This repository was archived by the owner on Nov 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathExample_TurbSimBox.py
127 lines (105 loc) · 4.18 KB
/
Example_TurbSimBox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Example usage for the TurbSimFile class.
- Read a TurbSim file and display main properties
- Extract time series at a given y, z location and plot it
- Extract a horizontal plane and plot it
- Compute vertical profile/shear and plot it
- Fit vertical profiel with a power law
- Compute cross corelation in y and z directions
- Modify field (add a constant velocity in the streamwise direction) and write to disk
- Write to Mann Box format
- Write time series at given locations to a CSV file
NOTE: this example uses an extremely small TurbSim box.
Results will be more "physical" on a more realstic box.
"""
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyFAST.input_output import TurbSimFile
def main():
MyDir = os.path.dirname(__file__)
# --- Read a TurbSim file and display main properties
filename = os.path.join(MyDir, '../tests/example_files/TurbSim_WithTwr.bts')
ts = TurbSimFile(filename)
print(ts)
# --- Extract time series at a given y, z location and plot it
# Method 1 - use object method
u,v,w = ts.valuesAt(y=0, z=90, method='nearest')
# Method 2 - use data directly
iy, iz = ts.closestPoint(y=0, z=90)
u2,v2,w2 = ts['u'][0, :, iy, iz], ts['u'][1, :, iy, iz], ts['u'][2, :, iy, iz]
fig,ax = plt.subplots(1, 1)
ax.plot(ts.t, u, label='u')
ax.plot(ts.t, v, label='v')
ax.plot(ts.t, w, label='w')
ax.plot(ts.t, u2, 'k--')
ax.plot(ts.t, v2, 'k--')
ax.plot(ts.t, w2, 'k--')
ax.legend()
ax.set_xlabel('Time [s]')
ax.set_ylabel('Velocity [m/s]')
ax.set_title('Velocity at y=0 z=90')
# --- Extract a horizontal plane and plot it
U, V, W = ts.horizontalPlane(z=90)
T, Y = np.meshgrid(ts.t, ts.y)
fig,ax = plt.subplots(1, 1)
ax.contourf(T, Y, U.T)
ax.set_xlabel('Time [s]')
ax.set_ylabel('y [m]')
ax.set_title('Velocity at z=90')
# --- Compute vertical profile/shear and plot it
# NOTE: the example file has only three points in y&z
z, u_mean, u_std = ts.vertProfile(y_span='full')
# Fit a power law
u_fit, pfit, model, z_ref = ts.fitPowerLaw()
print('Power law: alpha={:.5f}, u_ref={:.5f}, z_ref={:.5f}'.format(pfit[1],pfit[0],z_ref))
print('Formula: {} '.format(model['formula']))
fig,ax = plt.subplots(1, 1)
ax.plot(u_mean[0,:], z, label='u')
ax.plot(u_mean[1,:], z, label='v')
ax.plot(u_mean[2,:], z, label='w')
ax.plot(u_fit , z, 'k--', label='u fit (power law)')
if 'uTwr' in ts:
ax.plot(np.mean(ts['uTwr'][0,:,:], axis=0), ts['zTwr'], label='u on tower')
ax.legend()
ax.set_xlabel('Velocity [m/s]')
ax.set_ylabel('z [m]')
ax.set_title('Vertical profiles (averaged over y and time)')
# --- Compute cross corelation in y and z directions
# NOTE: the example file has only three points in y&z
iy0, iz0 = ts.iMid # Index at middle of the box
y, rho_uu_y, rho_vv_y, rho_ww_y = ts.crosscorr_y(iy0, iz0)
z, rho_uu_z, rho_vv_z, rho_ww_z = ts.crosscorr_z(iy0, iz0)
fig,ax = plt.subplots(1, 1)
ax.plot(y, rho_uu_y, label=r'rho_uu}')
ax.plot(y, rho_vv_y, label=r'rho_vv}')
ax.plot(y, rho_ww_y, label=r'rho_ww}')
ax.set_xlabel('y [m]')
ax.set_ylabel('Cross correlation')
ax.set_title('Cross correlation in y direction at middle of the box')
ax.legend()
# --- Convert to "DataFrame"
# Contains relevant time series like vertical profile, midline, coherence, cross correlation
# dfs = ts.toDataFrame()
# --- Modify field and write to disk
ts['u'][0,:,:,:] += 1 # Adding 1 m/s in the streamwise
ts.makePeriodic() # Make the field periodic by mirroring it in the streamwise direction
ts.write('_MyNewTurbBox.bts')
# --- Write to Mann Box format
ts.toMannBox()
# --- Write time series at given locations to a CSV file
ts.writeProbes('_Probes.csv', yProbe=[0], zProbe=[65,115])
if __name__ == "__main__":
main()
plt.show()
if __name__=='__test__':
main()
try:
os.remove('_MyNewTurbBox.bts')
os.remove('_MyNewTurbBox_198x3x4.u')
os.remove('_MyNewTurbBox_198x3x4.v')
os.remove('_MyNewTurbBox_198x3x4.w')
os.remove('_Probes.csv')
except:
pass