-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathconvert.c
944 lines (787 loc) · 28.8 KB
/
convert.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <syscall.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <monitor.h>
#include <tep.h>
#include <linux/thread_map.h>
#include <tp_struct.h>
#include <linux/math64.h>
#include <api/fs/fs.h>
bool current_clocksource_is_tsc = false;
/*
* { u64 id; } && PERF_SAMPLE_IDENTIFIER
* { u64 ip; } && PERF_SAMPLE_IP
* { u32 pid, tid; } && PERF_SAMPLE_TID
* { u64 time; } && PERF_SAMPLE_TIME
*/
#define SAMPLE_TYPE_MASK (PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_TIME)
u64 rdtsc(void)
{
#if defined(__i386__) || defined(__x86_64__)
unsigned int low, high;
asm volatile("rdtsc" : "=a" (low), "=d" (high));
return low | ((u64)high) << 32;
#else
return 0;
#endif
}
static inline tsc_t perfclock_to_tsc(struct prof_dev *dev, perfclock_t ns)
{
struct perf_tsc_conversion *tc = &dev->convert.tsc_conv;
u64 t, quot, rem;
// ((ns - time_zero) << time_shift) / time_mult
t = ns - tc->time_zero;
quot = t / tc->time_mult;
rem = t % tc->time_mult;
return (quot << tc->time_shift) +
(rem << tc->time_shift) / tc->time_mult;
}
static inline perfclock_t tsc_to_perfclock(struct prof_dev *dev, tsc_t tsc)
{
struct perf_tsc_conversion *tc = &dev->convert.tsc_conv;
u64 ns;
// (tsc * time_mult) >> time_mult + time_zaro
ns = mul_u64_u32_shr(tsc, tc->time_mult, tc->time_shift);
return ns + tc->time_zero;
}
static inline perfclock_t tsc_to_fixed_perfclock(struct prof_dev *dev, tsc_t tsc)
{
struct perf_tsc_conversion *tc = &dev->convert.tsc_conv_fixed;
u64 ns;
// (tsc * time_mult) >> time_mult + time_zaro
ns = mul_u64_u32_shr(tsc, tc->time_mult, tc->time_shift);
return ns + tc->time_zero;
}
#if defined(__i386__) || defined(__x86_64__)
#define __USE_GNU
#include <sched.h>
#include <cpuid.h>
u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits = 0;
u64 __read_mostly kvm_default_tsc_scaling_ratio = 0;
unsigned short kvm_pvclock_update_id;
unsigned short kvm_write_tsc_offset_id;
#define MSR_IA32_VMX_PROCBASED_CTLS 0x00000482
#define CPU_BASED_ACTIVATE_SECONDARY_CONTROLS 0x80000000
#define MSR_IA32_VMX_PROCBASED_CTLS2 0x0000048b
#define SECONDARY_EXEC_TSC_SCALING 0x02000000
static int adjust_vmx_controls(uint64_t msr_value)
{
u32 vmx_msr_low = (u32)msr_value;
u32 vmx_msr_high = msr_value >> 32;
u32 ctl = -1;
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
return ctl;
}
static int tsc_scaling_setup(void)
{
static int once = 0;
int vendor;
if (once != 0) return once;
once = -1;
vendor = get_cpu_vendor();
if (vendor == X86_VENDOR_INTEL) {
char path[64];
int fd, cpu = sched_getcpu();
uint64_t msr_value;
snprintf(path, sizeof(path), "/dev/cpu/%d/msr", cpu < 0 ? 0 : cpu);
fd = open(path, O_RDONLY);
if (fd < 0) return -1;
if (pread(fd, &msr_value, sizeof(msr_value), MSR_IA32_VMX_PROCBASED_CTLS) != sizeof(msr_value))
goto ret;
if (!(adjust_vmx_controls(msr_value) & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
goto ret;
if (pread(fd, &msr_value, sizeof(msr_value), MSR_IA32_VMX_PROCBASED_CTLS2) != sizeof(msr_value))
goto ret;
if (!(adjust_vmx_controls(msr_value) & SECONDARY_EXEC_TSC_SCALING))
goto ret;
kvm_tsc_scaling_ratio_frac_bits = 48;
kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
once = 1;
ret:
close(fd);
} else if (vendor == X86_VENDOR_AMD) {
__u32 eax, ebx, ecx, edx;
eax = ebx = ecx = edx = 0;
__get_cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
if (eax >= 0x8000000a) {
__get_cpuid(0x8000000a, &eax, &ebx, &ecx, &edx);
/*
* CPUID Fn8000_000A_EDX SVM Feature Identification
* bit4 TscRateMsr MSR based TSC rate control. Indicates support for MSR TSC ratio
* MSRC000_0104. See "TSC Ratio MSR (C000_0104h)."
*/
if (edx & 0x8) {
kvm_tsc_scaling_ratio_frac_bits = 32;
kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
once = 1;
}
}
}
return once;
}
static int vcpu_info_update_vcpu0_tsc(struct vcpu_info *vcpu)
{
const char *debugfs;
char path[512];
unsigned long long tsc_offset;
unsigned long long tsc_scaling_ratio;
unsigned long long tsc_scaling_ratio_frac_bits;
/*
* Read /sys/kernel/debug/kvm/$pid-$kvm_vm_fd/vcpu/tsc-offset
* Only read vcpu0, use the master clock to ensure that the values of all vcpu are the same.
*/
debugfs = debugfs__mountpoint();
snprintf(path, sizeof(path), "%s/kvm/%d-%d/vcpu0/tsc-offset", debugfs, vcpu->tgid, vcpu->kvm_vm_fd);
if (filename__read_ull(path, &tsc_offset) < 0)
return -1;
snprintf(path, sizeof(path), "%s/kvm/%d-%d/vcpu0/tsc-scaling-ratio", debugfs, vcpu->tgid, vcpu->kvm_vm_fd);
if (filename__read_ull(path, &tsc_scaling_ratio) < 0)
tsc_scaling_ratio = 0;
snprintf(path, sizeof(path), "%s/kvm/%d-%d/vcpu0/tsc-scaling-ratio-frac-bits", debugfs, vcpu->tgid, vcpu->kvm_vm_fd);
if (filename__read_ull(path, &tsc_scaling_ratio_frac_bits) < 0)
tsc_scaling_ratio_frac_bits = 0;
vcpu->vcpu[0].tsc_offset = tsc_offset;
vcpu->vcpu[0].tsc_scaling_ratio = tsc_scaling_ratio;
vcpu->vcpu[0].tsc_scaling_ratio_frac_bits = tsc_scaling_ratio_frac_bits;
return 0;
}
static void kvm_pvclock_update(void *parent, void *raw)
{
struct prof_dev *dev = parent, *tmp;
struct kvm_pvclock_update *pvclock = raw;
struct kvm_write_tsc_offset *tsc = raw;
struct vcpu_info *vcpu = dev->convert.vcpu;
if (likely(pvclock->common_type == kvm_pvclock_update_id)) {
struct pvclock_vcpu_time_info *pvti = &vcpu->vcpu[0].pvti;
bool update = !pvti->version;
pvti->version = pvclock->version;
pvti->tsc_timestamp = pvclock->tsc_timestamp;
pvti->system_time = pvclock->system_time;
pvti->tsc_to_system_mul = pvclock->tsc_to_system_mul;
pvti->tsc_shift = pvclock->tsc_shift;
pvti->flags = pvclock->flags;
// The same --kvmclock option points to the same vcpu. So, enable the same for all devices.
for_each_dev_get(dev, tmp, &prof_dev_list, dev_link) {
if (dev->convert.vcpu != vcpu)
continue;
if (update) {
print_time(stdout);
printf("%s: pvclock updated.\n", dev->prof->name);
}
prof_dev_enable(dev);
}
} else if (tsc->common_type == kvm_write_tsc_offset_id) {
u64 *tsc_offset = &vcpu->vcpu[0].tsc_offset;
if (tsc->vcpu_id == 0 &&
tsc->previous_tsc_offset == *tsc_offset) {
*tsc_offset = tsc->next_tsc_offset;
} else {
fprintf(stderr, "%s: tsc_offset update failed\n", dev->prof->name);
}
}
}
static void kvm_pvclock_hangup(void *parent)
{
prof_dev_close(parent);
}
static inline u64 __scale_tsc(u64 ratio, u64 tsc)
{
return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
}
static inline u64 kvm_scale_tsc(struct prof_dev *dev, u64 tsc)
{
u64 _tsc = tsc;
u64 ratio = dev->convert.vcpu->vcpu[0].tsc_scaling_ratio;
if (ratio != kvm_default_tsc_scaling_ratio)
_tsc = __scale_tsc(ratio, tsc);
return _tsc;
}
static inline u64 kvm_read_l1_tsc(struct prof_dev *dev, u64 host_tsc)
{
return dev->convert.vcpu->vcpu[0].tsc_offset + kvm_scale_tsc(dev, host_tsc);
}
static inline kvmclock_t host_tsc_to_kvmclock(struct prof_dev *dev, tsc_t host_tsc)
{
// host_tsc => guest_tsc
// guest_tsc = tsc_offset + (host_tsc * tsc_scaling_ratio) >> kvm_tsc_scaling_ratio_frac_bits
tsc_t guest_tsc = kvm_read_l1_tsc(dev, host_tsc);
// guest_tsc => kvmclock
// nsec = (guest_tsc - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
// + system_time
return __pvclock_read_cycles(&dev->convert.vcpu->vcpu[0].pvti, guest_tsc);
}
static inline kvmclock_t perfclock_to_kvmclock(struct prof_dev *dev, perfclock_t time)
{
tsc_t host_tsc = perfclock_to_tsc(dev, time);
return host_tsc_to_kvmclock(dev, host_tsc);
}
static inline perfclock_t kvmclock_to_perfclock(struct prof_dev *dev, kvmclock_t time)
{
struct vcpu_data *v0 = &dev->convert.vcpu->vcpu[0];
int tsc_shift = v0->pvti.tsc_shift - 32;
u64 offset;
u64 delta;
u64 guest_tsc;
u64 host_tsc;
// kvmclock => guest_tsc
// guest_tsc = ((time - system_time) << -(tsc_shift-32)) / tsc_to_system_mul + tsc_timestamp
if (tsc_shift < 0) tsc_shift = -tsc_shift;
offset = time - v0->pvti.system_time;
delta = mul_u64_u64_div64(offset, 1UL << tsc_shift, v0->pvti.tsc_to_system_mul);
guest_tsc = delta + v0->pvti.tsc_timestamp;
// guest_tsc => host_tsc
// host_tsc = ((guest_tsc - tsc_offset) << kvm_tsc_scaling_ratio_frac_bits) / tsc_scaling_ratio
host_tsc = guest_tsc - v0->tsc_offset;
if (v0->tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
host_tsc = mul_u64_u64_div64(guest_tsc, kvm_default_tsc_scaling_ratio, v0->tsc_scaling_ratio);
// host_tsc => perfclock
return tsc_to_perfclock(dev, host_tsc);
}
static int perf_event_convert_kvmclock_init(struct prof_dev *dev)
{
struct vcpu_data *vcpu0;
tsc_scaling_setup();
// The same --kvmclock option points to the same vcpu.
dev->convert.vcpu = vcpu_info_get(dev->env->kvmclock);
if (!dev->convert.vcpu)
goto failed;
vcpu0 = &dev->convert.vcpu->vcpu[0];
if (!vcpu0->pvclock_update) {
struct perf_thread_map *vcpumap;
struct prof_dev *pvclock;
vcpumap = thread_map__new_by_tid(vcpu0->thread_id);
if (!vcpumap)
goto failed;
pvclock = trace_dev_open("kvm:kvm_pvclock_update,kvm:kvm_write_tsc_offset", NULL, vcpumap,
dev, kvm_pvclock_update, kvm_pvclock_hangup);
perf_thread_map__put(vcpumap);
if (!pvclock)
goto failed;
if (prof_dev_enable(pvclock) < 0)
goto failed;
if (vcpu_info_update_vcpu0_tsc(dev->convert.vcpu) < 0)
goto failed;
kvm_pvclock_update_id = tep__event_id("kvm", "kvm_pvclock_update");
kvm_write_tsc_offset_id = tep__event_id("kvm", "kvm_write_tsc_offset");
vcpu0->pvclock_update = true;
}
// version == 0, means pvclock has not been updated.
if (!vcpu0->pvti.version) {
print_time(stdout);
printf("%s: wait pvclock update\n", dev->prof->name);
dev->state = PROF_DEV_STATE_OFF;
}
dev->convert.need_conv = CONVERT_TO_KVMCLOCK;
return 0;
failed:
fprintf(stderr, "Could not convert to kvmclock.\n");
return -1;
}
static void perf_event_convert_kvmclock_deinit(struct prof_dev *dev)
{
if (dev->convert.vcpu)
vcpu_info_put(dev->convert.vcpu);
}
#else
static inline kvmclock_t host_tsc_to_kvmclock(struct prof_dev *dev, tsc_t host_tsc)
{
return (kvmclock_t)host_tsc;
}
static inline kvmclock_t perfclock_to_kvmclock(struct prof_dev *dev, perfclock_t time)
{
return (kvmclock_t)time;
}
static inline perfclock_t kvmclock_to_perfclock(struct prof_dev *dev, kvmclock_t time)
{
return (perfclock_t)time;
}
static int perf_event_convert_kvmclock_init(struct prof_dev *dev)
{
fprintf(stderr, "Non-x86 architecture cannot be converted to kvmclock.\n");
return -1;
}
static void perf_event_convert_kvmclock_deinit(struct prof_dev *dev) {}
#endif
static inline evclock_t __perfclock_to_evclock(struct prof_dev *dev, perfclock_t time)
{
evclock_t evclock;
if (dev->convert.need_conv == CONVERT_TO_TSC) {
evclock.tsc = perfclock_to_tsc(dev, time);
} else if (dev->convert.need_conv == CONVERT_TO_KVMCLOCK) {
evclock.kvmclock = perfclock_to_kvmclock(dev, time);
} else
evclock.perfclock = time;
evclock.clock += dev->env->clock_offset;
return evclock;
}
evclock_t perfclock_to_evclock(struct prof_dev *dev, perfclock_t time)
{
if (likely(!dev->convert.need_conv))
return (evclock_t)time;
else
return __perfclock_to_evclock(dev, time);
}
perfclock_t evclock_to_perfclock(struct prof_dev *dev, evclock_t time)
{
if (likely(!dev->convert.need_conv)) {
return time.perfclock;
}
time.clock -= dev->env->clock_offset;
if (dev->convert.need_conv == CONVERT_TO_TSC) {
return tsc_to_perfclock(dev, time.tsc);
} else if (dev->convert.need_conv == CONVERT_TO_KVMCLOCK) {
return kvmclock_to_perfclock(dev, time.kvmclock);
} else
return time.perfclock;
}
/*
* evclock converts to real ns units.
*
* CONVERT_NONE
* perfclock is originally in ns unit.
* kernel < 4.12.0: perfclock is inaccurate and needs to be fixed.
* kernel >= 4.12.0: is accurate, no fix needed.
* See the comments for tsc_conv_fixed().
*
* CONVERT_TO_TSC
* Needs to be converted to perfclock, which is in ns units.
* kernel < 4.12.0: Convert to fixed perfclock.
* kernel >= 4.12.0: Convert to perfclock.
*
* CONVERT_TO_KVMCLOCK
* It is originally in ns units and does not need to be converted.
*
* CONVERT_ADD_OFFSET
* Same as CONVERT_NONE.
*/
real_ns_t evclock_to_real_ns(struct prof_dev *dev, evclock_t time)
{
if (likely(!dev->convert.need_conv)) {
convert_none:
if (dev->convert.need_fixed) {
tsc_t tsc = perfclock_to_tsc(dev, time.perfclock);
return tsc_to_fixed_perfclock(dev, tsc);
} else
return time.perfclock;
}
time.clock -= dev->env->clock_offset;
if (dev->convert.need_conv == CONVERT_TO_TSC) {
return dev->convert.need_fixed ?
tsc_to_fixed_perfclock(dev, time.tsc) :
tsc_to_perfclock(dev, time.tsc);
} else if (dev->convert.need_conv == CONVERT_TO_KVMCLOCK) {
return time.kvmclock;
} else
goto convert_none;
}
static inline bool is_sampling_event(struct perf_event_attr *attr)
{
return attr->sample_period != 0;
}
static int perf_sample_pos_init(struct prof_dev *dev)
{
struct perf_evlist *evlist = dev->evlist;
struct perf_evsel *evsel;
u64 mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_TIME |
PERF_SAMPLE_ADDR | PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU;
u64 sample_type = 0;
int pos = 0;
perf_evlist__for_each_evsel(evlist, evsel) {
struct perf_event_attr *attr = perf_evsel__attr(evsel);
if (is_sampling_event(attr)) {
if (sample_type == 0) {
sample_type = attr->sample_type & mask;
} else if (sample_type != (attr->sample_type & mask)) {
fprintf(stderr, "Could not init pos: sample_type mismatch.\n");
return -1;
}
}
}
dev->pos.sample_type = sample_type;
dev->pos.tid_pos = -1;
dev->pos.time_pos = -1;
dev->pos.id_pos = -1;
dev->pos.cpu_pos = -1;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
pos += sizeof(u64);
if (sample_type & PERF_SAMPLE_IP)
pos += sizeof(u64);
if (sample_type & PERF_SAMPLE_TID) {
dev->pos.tid_pos = pos;
pos += sizeof(u32) + sizeof(u32);
}
if (sample_type & PERF_SAMPLE_TIME) {
dev->pos.time_pos = pos;
pos += sizeof(u64);
}
if (sample_type & PERF_SAMPLE_ADDR)
pos += sizeof(u64);
if (sample_type & PERF_SAMPLE_ID) {
dev->pos.id_pos = pos;
pos += sizeof(u64);
}
if (sample_type & PERF_SAMPLE_STREAM_ID)
pos += sizeof(u64);
if (sample_type & PERF_SAMPLE_CPU) {
dev->pos.cpu_pos = pos;
pos += sizeof(u32) + sizeof(u32);
}
return 0;
}
int perf_sample_forward_init(struct prof_dev *dev)
{
u64 sample_type_mask = PERF_SAMPLE_TID | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU;
u64 sample_type;
if (perf_sample_pos_init(dev) < 0)
return -1;
sample_type = dev->pos.sample_type;
if (sample_type && (sample_type & sample_type_mask) != sample_type_mask) {
fprintf(stderr, "Could not init forward: sample_type mismatch.\n");
return -1;
}
dev->forward.forwarded_time_pos = sizeof(u32) + sizeof(u32); // PERF_SAMPLE_TID
return 0;
}
int perf_sample_time_init(struct prof_dev *dev)
{
u64 sample_type;
if (perf_sample_pos_init(dev) < 0)
return -1;
sample_type = dev->pos.sample_type;
if (sample_type && !(sample_type & PERF_SAMPLE_TIME)) {
fprintf(stderr, "Could not init time_ctx: sample_type mismatch.\n");
return -1;
}
dev->time_ctx.last_evtime.clock = ULLONG_MAX;
return 0;
}
int perf_event_convert_init(struct prof_dev *dev)
{
struct env *env = dev->env;
u64 sample_type = 0;
int err;
err = perf_sample_time_init(dev);
if (!env->tsc && !env->kvmclock && !env->clock_offset) {
dev->convert.need_conv = CONVERT_NONE;
return 0;
}
if (err < 0)
return -1;
sample_type = dev->pos.sample_type;
if (sample_type & PERF_SAMPLE_TIME) {
if (env->tsc) {
env->tsc = true;
dev->convert.need_conv = CONVERT_TO_TSC;
} else if (env->kvmclock) {
if (perf_event_convert_kvmclock_init(dev) < 0)
return -1;
} else
dev->convert.need_conv = CONVERT_ADD_OFFSET;
dev->convert.event_copy = malloc(PERF_SAMPLE_MAX_SIZE);
if (!dev->convert.event_copy) {
fprintf(stderr, "Could not alloc event_copy.\n");
return -1;
}
} else {
env->tsc = false;
env->clock_offset = 0;
dev->convert.need_conv = CONVERT_NONE;
}
return 0;
}
void perf_event_convert_deinit(struct prof_dev *dev)
{
perf_event_convert_kvmclock_deinit(dev);
if (dev->convert.event_copy)
free(dev->convert.event_copy);
dev->convert.need_conv = CONVERT_NONE;
}
void perf_event_convert_read_tsc_conversion(struct prof_dev *dev, struct perf_mmap *map)
{
if (unlikely(dev->convert.need_conv == CONVERT_TO_TSC ||
dev->convert.need_conv == CONVERT_TO_KVMCLOCK)) {
if (perf_mmap__read_tsc_conversion(map, &dev->convert.tsc_conv) == -EOPNOTSUPP ||
!current_clocksource_is_tsc) {
fprintf(stderr, "TSC conversion is not supported.\n");
dev->env->tsc = false;
dev->env->clock_offset = 0;
dev->convert.need_conv = CONVERT_NONE;
}
}
}
union perf_event *perf_event_convert(struct prof_dev *dev, union perf_event *event, bool writable)
{
void *data;
evclock_t *time;
if (likely(!dev->convert.need_conv))
return event;
if (likely(!writable)) {
memcpy(dev->convert.event_copy, event, event->header.size);
event = (union perf_event *)dev->convert.event_copy;
}
data = (void *)event->sample.array;
time = (evclock_t *)(data + dev->pos.time_pos);
*time = __perfclock_to_evclock(dev, time->perfclock);
return event;
}
#include <asm/div64.h>
/**
* clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
* @mult: pointer to mult variable
* @shift: pointer to shift variable
* @from: frequency to convert from
* @to: frequency to convert to
* @maxsec: guaranteed runtime conversion range in seconds
*
* The function evaluates the shift/mult pair for the scaled math
* operations of clocksources and clockevents.
*
* @to and @from are frequency values in HZ. For clock sources @to is
* NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
* event @to is the counter frequency and @from is NSEC_PER_SEC.
*
* The @maxsec conversion range argument controls the time frame in
* seconds which must be covered by the runtime conversion with the
* calculated mult and shift factors. This guarantees that no 64bit
* overflow happens when the input value of the conversion is
* multiplied with the calculated mult factor. Larger ranges may
* reduce the conversion accuracy by chosing smaller mult and shift
* factors.
*/
static void
clocks_calc_mult_shift(u32 *mult, u16 *shift, u32 from, u32 to, u32 maxsec)
{
u64 tmp;
u32 sft, sftacc= 32;
/*
* Calculate the shift factor which is limiting the conversion
* range:
*/
tmp = ((u64)maxsec * from) >> 32;
while (tmp) {
tmp >>=1;
sftacc--;
}
/*
* Find the conversion shift/mult pair which has the best
* accuracy and fits the maxsec conversion range:
*/
for (sft = 32; sft > 0; sft--) {
tmp = (u64) to << sft;
tmp += from / 2;
do_div(tmp, from);
if ((tmp >> sftacc) == 0)
break;
}
*mult = tmp;
*shift = sft;
}
static void tsc_conv_fixed(struct prof_dev *dev)
{
static int once = 0;
static int tsc_khz = 0;
/*
* For kernels before 4.12
*
* LINUX aa7b630 x86/tsc: Feed refined TSC calibration into sched_clock()
*
* In the Linux kernel, the initial tsc_khz=2500000, is refined in
* tsc_refine_calibration_work(), and then tsc_khz=2494140. cyc2ns_mul, cyc2ns_shift
* are used to convert tsc to ns, but they are not re-modified after tsc_khz changes.
* It's fixed in aa7b630.
*
* Therefore, within sched_clock(), tsc to ns are not accurate, and so is perfclock.
* Get the correct tsc_khz, and calculate cyc2ns_mul and cyc2ns_shift, here.
*/
if (kernel_release() < KERNEL_VERSION(4,12,0)) {
if (once == 0) {
once = 1;
tsc_khz = get_tsc_khz();
}
dev->convert.need_fixed = tsc_khz > 0;
if (dev->convert.need_fixed) {
dev->convert.tsc_conv_fixed = dev->convert.tsc_conv;
/*
* Compute a new multiplier as per the above comment and ensure our
* time function is continuous; see the comment near struct
* cyc2ns_data.
*/
clocks_calc_mult_shift(&dev->convert.tsc_conv_fixed.time_mult,
&dev->convert.tsc_conv_fixed.time_shift,
tsc_khz, NSEC_PER_MSEC, 0);
/*
* cyc2ns_shift is exported via arch_perf_update_userpage() where it is
* not expected to be greater than 31 due to the original published
* conversion algorithm shifting a 32-bit value (now specifies a 64-bit
* value) - refer perf_event_mmap_page documentation in perf_event.h.
*/
if (dev->convert.tsc_conv_fixed.time_shift == 32) {
dev->convert.tsc_conv_fixed.time_shift = 31;
dev->convert.tsc_conv_fixed.time_mult >>= 1;
}
}
}
}
static int evtime_init(struct prof_dev *dev)
{
struct perf_evlist *evlist = dev->evlist;
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = 0,
.size = sizeof(struct perf_event_attr),
.sample_period = 1,
.sample_type = PERF_SAMPLE_TIME,
.pinned = 1,
.disabled = 1,
.watermark = 0,
.wakeup_events = 1,
};
struct perf_evsel *evsel;
int id = tep__event_id("syscalls", "sys_enter_getpid");
if (id < 0) goto failed;
dev->private = NULL;
dev->type = PROF_DEV_TYPE_SERVICE;
attr.config = id;
evsel = perf_evsel__new(&attr);
if (!evsel) goto failed;
perf_evlist__add(evlist, evsel);
return 0;
failed:
return -1;
}
static void evtime_deinit(struct prof_dev *dev)
{
}
static void evtime_sample(struct prof_dev *dev, union perf_event *event, int instance)
{
struct prof_dev *pdev = dev->private;
// PERF_SAMPLE_TIME
struct sample_type_header {
__u64 time;
} *data = (void *)event->sample.array;
pdev->time_ctx.base_evtime = data->time;
}
static profiler evtime = {
.name = "event-basetime",
.pages = 1,
.init = evtime_init,
.deinit = evtime_deinit,
.sample = evtime_sample,
};
static void perf_timespec_sync(struct timer *timer)
{
struct prof_dev *dev = container_of(timer, struct prof_dev, time_ctx.base_timer);
perf_timespec_init(dev);
}
__ctor static void current_clocksource(void)
{
char *current_clocksource = NULL;
size_t size;
/*
* LINUX 698eff6355f (sched/clock, x86/perf: Fix "perf test tsc")
* Only for tsc clocksource. Determine whether the current clocksource is tsc.
*/
current_clocksource_is_tsc =
(sysfs__read_str("devices/system/clocksource/clocksource0/current_clocksource",
¤t_clocksource, &size) == 0 && strncmp(current_clocksource, "tsc", 3) == 0);
if (current_clocksource)
free(current_clocksource);
}
int perf_timespec_init(struct prof_dev *dev)
{
struct perf_evlist *evlist = dev->evlist;
struct perf_mmap *map;
struct perf_thread_map *tidmap;
struct env *e = NULL;
struct prof_dev *evt;
if (!dev->pages || dev->prof == &evtime)
return 0;
if (!(dev->pos.sample_type & PERF_SAMPLE_TIME))
return 0;
if (dev->silent)
return 0;
perf_evlist__for_each_mmap(evlist, map, dev->env->overwrite) {
int err = 0;
perf_event_convert_read_tsc_conversion(dev, map);
if (dev->convert.need_conv == CONVERT_TO_TSC ||
dev->convert.need_conv == CONVERT_TO_KVMCLOCK ||
/*
* Guest uses kvm-clock source, perf_mmap__read_tsc_conversion() can also return successfully
* on old kernels, but tsc_conv_fixed() cannot fix the conversion. Therefore, the tsc conversion
* can only be done when the current clocksource is tsc.
*/
((err = perf_mmap__read_tsc_conversion(map, &dev->convert.tsc_conv)) == 0 &&
current_clocksource_is_tsc)) {
evclock_t base_evtime;
base_evtime.tsc = rdtsc();
clock_gettime(CLOCK_REALTIME, &dev->time_ctx.base_timespec);
if (base_evtime.tsc > 0) {
/*
* First, tsc -> perfclock; secondly, perfclock -> evclock.
*
* Simplified:
* CONVERT_NONE, tsc => perfclock + 0.
* CONVERT_TO_TSC, tsc => tsc + clock_offset
* CONVERT_TO_KVMCLOCK, tsc => kvmclock + clock_offset.
* CONVERT_ADD_OFFSET, tsc => perfclock + clock_offset.
*/
if (!dev->convert.need_conv || dev->convert.need_conv == CONVERT_ADD_OFFSET)
base_evtime.perfclock = tsc_to_perfclock(dev, base_evtime.tsc);
else if (dev->convert.need_conv == CONVERT_TO_KVMCLOCK)
base_evtime.kvmclock = host_tsc_to_kvmclock(dev, base_evtime.tsc);
base_evtime.clock += dev->env->clock_offset;
if (!timer_started(&dev->time_ctx.base_timer)) {
tsc_conv_fixed(dev);
/*
* There will be a slight difference between tsc_khz and the real frequency.
* After a long time, the converted nanoseconds will accumulate a large error.
* Therefore, Synchronize base_evtime and base_timespec every 30 seconds.
*/
if (timer_init(&dev->time_ctx.base_timer, 1, perf_timespec_sync) == 0)
timer_start(&dev->time_ctx.base_timer, 30 * NSEC_PER_SEC, false);
}
dev->time_ctx.base_evtime = evclock_to_real_ns(dev, base_evtime);
return 0;
}
}
if (err == -EOPNOTSUPP)
break;
}
tidmap = thread_map__new_by_tid(getpid());
if (!tidmap) goto NULL_tidmap;
e = zalloc(sizeof(*e)); // free in prof_dev_close()
if (!e) goto NULL_e;
evt = prof_dev_open_cpu_thread_map(&evtime, e, NULL, tidmap, NULL);
e = NULL;
if (!evt) goto NULL_e;
evt->private = dev;
// trigger getpid syscall
clock_gettime(CLOCK_REALTIME, &dev->time_ctx.base_timespec);
syscall(SYS_getpid); // syscall does not necessarily occur with getpid().
prof_dev_flush(evt, PROF_DEV_FLUSH_NORMAL);
prof_dev_close(evt);
if (dev->time_ctx.base_evtime == 0) {
dev->time_ctx.base_timespec.tv_sec = 0;
dev->time_ctx.base_timespec.tv_nsec = 0;
} else {
evclock_t base_evtime = perfclock_to_evclock(dev, dev->time_ctx.base_evtime);
dev->time_ctx.base_evtime = evclock_to_real_ns(dev, base_evtime);
if (!timer_started(&dev->time_ctx.base_timer)) {
// Synchronize base_evtime and base_timespec every 60 seconds.
// evtime is very slow from open to close, so choose 60s synchronization interval.
if (timer_init(&dev->time_ctx.base_timer, 1, perf_timespec_sync) == 0)
timer_start(&dev->time_ctx.base_timer, 60 * NSEC_PER_SEC, false);
}
}
NULL_e:
perf_thread_map__put(tidmap);
NULL_tidmap:
return dev->time_ctx.base_evtime > 0 ? 0 : -1;
}