-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathDay 8 Least Square Regression Line.py
68 lines (44 loc) · 1.4 KB
/
Day 8 Least Square Regression Line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Created on Wed Apr 4 09:55:41 2018
@author: Nodar.Okroshiashvili
"""
# OLS from scratch
N = int(input())
X = []
Y = []
for i in range(N):
grades = [int(i) for i in input().split()]
X+=[grades[0]]
Y+=[grades[1]]
mean_x = sum(X) / N
mean_y = sum(Y) / N
def ols(X,Y):
sumXY = sum([X[i] * Y[i] for i in range(N)])
sum_X_squared = sum([X[i]**2 for i in range(N)])
sumX_squared = sum(X)**2
b = ((N * sumXY) - (sum(X)*sum(Y))) / ((N*sum_X_squared) - sumX_squared)
a = mean_y - b*mean_x
SST = sum([(Y[i] - mean_y)**2 for i in range(N)])
y_hat = [a + (b*X[i]) for i in range(N)]
residuals = [Y[i] - y_hat[i] for i in range(N)]
SSR = sum([(y_hat[i] - mean_y)**2 for i in range(N)])
SSE = sum([(y_hat[i] - Y[i])**2 for i in range(N)])
R_squared = SSR / SST
return {'Intercept':a, 'Slope':b, 'SST':SST, 'SSR':SSR, 'SSE':SSE, 'R_Squared':R_squared}
print(ols(X,Y))
#%%
# Solution
X = []
Y = []
for i in range(5):
grades = [int(i) for i in input().split()]
X+=[grades[0]]
Y+=[grades[1]]
mean_x = sum(X) / 5
mean_y = sum(Y) / 5
sumXY = sum([X[i] * Y[i] for i in range(5)])
sum_X_squared = sum([X[i]**2 for i in range(5)])
sumX_squared = sum(X)**2
b = ((5 * sumXY) - (sum(X)*sum(Y))) / ((5 * sum_X_squared) - sumX_squared)
a = mean_y - b * mean_x
print(round(a+b*80,3))