-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbitlist64.go
434 lines (367 loc) · 12.4 KB
/
bitlist64.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
package bitfield
import (
"encoding/binary"
"fmt"
"math/bits"
)
var _ = Bitfield(&Bitlist64{})
const (
// wordSize configures how many bits are there in a single element of bitlist array.
wordSize = uint64(64)
// wordSizeLog2 allows optimized division by wordSize using right shift (numBits >> wordSizeLog2).
// Note: log_2(64) = 6.
wordSizeLog2 = uint64(6)
// bytesInWord defines how many bytes are there in a single word i.e. wordSize/8.
bytesInWord = 8
// bytesInWordLog2 = log_2(8)
bytesInWordLog2 = 3
// allBitsSet is a word with all bits set.
allBitsSet = uint64(0xffffffffffffffff)
)
// Bitlist64 is a bitfield implementation backed by an array of uint64.
type Bitlist64 struct {
size uint64
data []uint64
}
// NewBitlist64 creates a new bitlist of size `n`.
func NewBitlist64(n uint64) *Bitlist64 {
return &Bitlist64{
size: n,
data: make([]uint64, numWordsRequired(n)),
}
}
// NewBitlist64From creates a new bitlist for a given uint64 array.
func NewBitlist64From(data []uint64) *Bitlist64 {
return &Bitlist64{
size: uint64(len(data)) * wordSize,
data: data,
}
}
// NewBitlist64FromBytes creates a new bitlist for a given array of bytes.
// Size of the bitlist is explicitly specified via `n` (since number of bits required may not align
// perfectly to the word size).
func NewBitlist64FromBytes(n uint64, b []byte) (*Bitlist64, error) {
if n > uint64(len(b)<<3) {
return nil, fmt.Errorf("an array of %d bytes is not enough to hold n=%d bits", len(b), n)
}
// Extend input slice with zero bytes if it isn't evenly divisible by word size.
if numExtraBytes := len(b) % bytesInWord; numExtraBytes != 0 {
b = append(b, make([]byte, bytesInWord-numExtraBytes)...)
}
data := make([]uint64, numWordsRequired(n))
for i := 0; i < len(data); i++ {
idx := i << bytesInWordLog2
data[i] = binary.LittleEndian.Uint64(b[idx : idx+bytesInWord])
}
return &Bitlist64{
size: n,
data: data,
}, nil
}
// BitAt returns the bit value at the given index. If the index requested
// exceeds the number of bits in the bitlist, then this method returns false.
func (b *Bitlist64) BitAt(idx uint64) bool {
// Out of bounds, must be false.
if idx >= b.size {
return false
}
i := uint64(1 << (idx % wordSize))
return b.data[idx>>wordSizeLog2]&i == i
}
// SetBitAt will set the bit at the given index to the given value.
// If the index requested exceeds the number of bits in the bitlist, then this method returns false.
func (b *Bitlist64) SetBitAt(idx uint64, val bool) {
// Out of bounds, do nothing.
if idx >= b.size {
return
}
bit := uint64(1 << (idx % wordSize))
if val {
b.data[idx>>wordSizeLog2] |= bit
} else {
b.data[idx>>wordSizeLog2] &^= bit
}
}
// Len returns the number of bits in a bitlist (note that underlying array can be bigger).
func (b *Bitlist64) Len() uint64 {
return b.size
}
// Bytes returns underlying array of uint64s as an array of bytes.
// The leading zeros in the bitlist will be trimmed to the smallest byte length representation of
// the bitlist. This may produce an empty byte slice if all bits were zero.
func (b *Bitlist64) Bytes() []byte {
if len(b.data) == 0 {
return []byte{}
}
ret := make([]byte, len(b.data)*bytesInWord)
for idx, word := range b.data {
start := idx << bytesInWordLog2
binary.LittleEndian.PutUint64(ret[start:start+bytesInWord], word)
}
// Clear any leading zero bytes.
allLeadingZeroes := 0
for i := len(b.data) - 1; i >= 0; i-- {
leadingZeroes := 0
if b.data[i] == 0 {
leadingZeroes = int(wordSize)
} else {
leadingZeroes = bits.LeadingZeros64(b.data[i])
}
allLeadingZeroes += leadingZeroes
// If the whole word is 0x0, allow to test the next word, break otherwise.
if uint64(leadingZeroes) != wordSize {
break
}
}
return ret[:len(ret)-allLeadingZeroes>>bytesInWordLog2]
}
// ToBitlist converts []uint64 backed bitlist into []byte backed bitlist.
func (b *Bitlist64) ToBitlist() Bitlist {
if len(b.data) == 0 || b.size == 0 {
return NewBitlist(0)
}
ret := make([]byte, len(b.data)*bytesInWord)
for idx, word := range b.data {
start := idx << bytesInWordLog2
binary.LittleEndian.PutUint64(ret[start:start+bytesInWord], word)
}
// Append size bit. If number of bits align evenly with number byte size (8), add extra byte.
// Otherwise, set the most significant bit as a length bit.
if b.size%8 == 0 {
// Limit number of bits to a known size. Add extra byte, with size bit set.
ret = append(ret[:b.size>>3], 0x1)
} else {
// Limit number of bits to a known size.
ret = ret[:b.size>>3+1]
// Set size bit on the last byte.
idx := uint8(1 << (b.size % 8))
ret[len(ret)-1] |= idx
}
return ret
}
// Count returns the number of 1s in the bitlist.
func (b *Bitlist64) Count() uint64 {
c := 0
for _, bt := range b.data {
c += bits.OnesCount64(bt)
}
return uint64(c)
}
// Contains returns true if the bitlist contains all of the bits from the provided argument
// bitlist i.e. if `b` is a superset of `c`.
// This method will return an error if bitlists are not the same length.
func (b *Bitlist64) Contains(c *Bitlist64) (bool, error) {
if b.Len() != c.Len() {
return false, ErrBitlistDifferentLength
}
// To ensure all of the bits in c are present in b, we iterate over every word, combine
// the words from b and c, then XOR them against b. If the result of this is non-zero, then we
// are assured that a word in c had bits not present in word in b.
for idx, word := range b.data {
if word^(word|c.data[idx]) != 0 {
return false, nil
}
}
return true, nil
}
// Overlaps returns true if the bitlist contains one of the bits from the provided argument
// bitlist. This method will return an error if bitlists are not the same length.
func (b *Bitlist64) Overlaps(c *Bitlist64) (bool, error) {
lenB, lenC := b.Len(), c.Len()
if lenB != lenC {
return false, ErrBitlistDifferentLength
}
if lenB == 0 || lenC == 0 {
return false, nil
}
// To ensure all of the bits in c are not overlapped in b, we iterate over every word, invert b
// and xor the word from b and c, then and it against c. If the result is non-zero, then
// we can be assured that word in c had bits not overlapped in b.
for idx, word := range b.data {
if (^word^c.data[idx])&c.data[idx]&allBitsSet != 0 {
return true, nil
}
}
return false, nil
}
// Or returns the OR result of the two bitfields (union).
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) Or(c *Bitlist64) (*Bitlist64, error) {
if b.Len() != c.Len() {
return nil, ErrBitlistDifferentLength
}
ret := b.Clone()
b.NoAllocOr(c, ret)
return ret, nil
}
// NoAllocOr computes the OR result of the two bitfields (union).
// Result is written into provided variable, so no allocation takes place inside the function.
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) NoAllocOr(c, ret *Bitlist64) error {
if b.Len() != c.Len() || b.Len() != ret.Len() {
return ErrBitlistDifferentLength
}
for idx, word := range b.data {
ret.data[idx] = word | c.data[idx]
}
return nil
}
// OrCount calculates number of bits set in a union of two bitfields.
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) OrCount(c *Bitlist64) (uint64, error) {
if b.Len() != c.Len() {
return 0, ErrBitlistDifferentLength
}
var cnt int
for idx := range b.data {
cnt += bits.OnesCount64(b.data[idx] | c.data[idx])
}
return uint64(cnt), nil
}
// And returns the AND result of the two bitfields (intersection).
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) And(c *Bitlist64) (*Bitlist64, error) {
if b.Len() != c.Len() {
return nil, ErrBitlistDifferentLength
}
ret := b.Clone()
b.NoAllocAnd(c, ret)
return ret, nil
}
// AndCount calculates number of bits set in an intersection of two bitfields.
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) AndCount(c *Bitlist64) (uint64, error) {
if b.Len() != c.Len() {
return 0, ErrBitlistDifferentLength
}
var cnt int
for idx := range b.data {
cnt += bits.OnesCount64(b.data[idx] & c.data[idx])
}
return uint64(cnt), nil
}
// NoAllocAnd computes the AND result of the two bitfields (intersection).
// Result is written into provided variable, so no allocation takes place inside the function.
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) NoAllocAnd(c, ret *Bitlist64) error {
if b.Len() != c.Len() || b.Len() != ret.Len() {
return ErrBitlistDifferentLength
}
for idx, word := range b.data {
ret.data[idx] = word & c.data[idx]
}
return nil
}
// Xor returns the XOR result of the two bitfields (symmetric difference).
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) Xor(c *Bitlist64) (*Bitlist64, error) {
if b.Len() != c.Len() {
return nil, ErrBitlistDifferentLength
}
ret := b.Clone()
b.NoAllocXor(c, ret)
return ret, nil
}
// NoAllocXor returns the XOR result of the two bitfields (symmetric difference).
// Result is written into provided variable, so no allocation takes place inside the function.
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) NoAllocXor(c, ret *Bitlist64) error {
if b.Len() != c.Len() || b.Len() != ret.Len() {
return ErrBitlistDifferentLength
}
for idx, word := range b.data {
ret.data[idx] = word ^ c.data[idx]
}
return nil
}
// XorCount calculates number of bits set in a symmetric difference of two bitfields.
// This method will return an error if the bitlists are not the same length.
func (b *Bitlist64) XorCount(c *Bitlist64) (uint64, error) {
if b.Len() != c.Len() {
return 0, ErrBitlistDifferentLength
}
var cnt int
for idx := range b.data {
cnt += bits.OnesCount64(b.data[idx] ^ c.data[idx])
}
return uint64(cnt), nil
}
// Not returns the NOT result of the bitfield (complement).
func (b *Bitlist64) Not() *Bitlist64 {
if b.Len() == 0 {
return b
}
ret := b.Clone()
b.NoAllocNot(ret)
return ret
}
// NoAllocNot returns the NOT result of the bitfield (complement).
// Result is written into provided variable, so no allocation takes place inside the function.
func (b *Bitlist64) NoAllocNot(ret *Bitlist64) {
if b.Len() == 0 {
return
}
for idx, word := range b.data {
ret.data[idx] = ^word
}
ret.clearUnusedBits()
}
// BitIndices returns list of bit indexes of bitlist where value is set to true.
func (b *Bitlist64) BitIndices() []int {
indices := make([]int, b.Count())
b.NoAllocBitIndices(indices)
return indices
}
// NoAllocBitIndices returns list of bit indexes of bitlist where value is set to true.
// No allocation happens inside the function, so number of returned indexes is capped by the capacity
// of the ret param.
//
// Expected usage pattern:
//
// b := NewBitlist64(n)
// indices := make([]int, b.Count())
// b.NoAllocBitIndices(indices)
func (b *Bitlist64) NoAllocBitIndices(ret []int) {
capacity := cap(ret)
k := 0
processWord := func(idx int, word uint64) uint64 {
// Push index of the first non-zero bit.
ret[k] = (idx << wordSizeLog2) + bits.TrailingZeros64(word)
k++
if k == capacity {
return 0
}
// Clear less significant (rightmost) non-zero bit, and iterate.
// Consider the following bitlist, b := 0001.1001.0011.0000
// The `(^word) + 1` clears all bits till the word's non-zero bit i.e. `(^word)` == 1110.0110.1100.1111,
// then `(^word) + 1` == 1110.0110.1101.0000.
// The `word & ((^word) + 1)` clears all bits, except the one that was set to 1 in the original word i.e.
// `word & ((^word) + 1)` == 0000.0000.0001.0000.
// Now, XOR this with the original word to remove the rightmost bit.
return word ^ (word & ((^word) + 1))
}
for idx, word := range b.data {
for word != 0 {
word = processWord(idx, word)
}
}
}
// Clone safely copies a given bitlist.
func (b *Bitlist64) Clone() *Bitlist64 {
c := NewBitlist64(b.size)
if b.data != nil {
copy(c.data, b.data)
}
return c
}
// numWordsRequired calculates how many words are required to hold bitlist of n bits.
func numWordsRequired(n uint64) int {
return int((n + (wordSize - 1)) >> wordSizeLog2)
}
// clearUnusedBits zeroes unused bits in the last word.
func (b *Bitlist64) clearUnusedBits() {
// Unless bitlist is divisible by a word evenly, we need to zero unused bits in the last word.
if !(b.size%wordSize == 0) {
b.data[len(b.data)-1] &= allBitsSet >> (wordSize - b.size%wordSize)
}
}