-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpattern_mobility_surround_evaluation.hpp
354 lines (322 loc) · 14.9 KB
/
pattern_mobility_surround_evaluation.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#pragma once
#include <iostream>
#include <fstream>
#include "board.hpp"
using namespace std;
#define sc_w 6400 // 評価値の絶対値が取る最大値
// 3の累乗
#define p31 3
#define p32 9
#define p33 27
#define p34 81
#define p35 243
#define p36 729
#define p37 2187
#define p38 6561
#define p39 19683
#define p310 59049
#define n_patterns 3 // 使うパターンの種類
const int pattern_sizes[n_patterns] = {8, 10, 10}; // パターンごとのマスの数
// モデルの設計パラメータ
#define n_dense0 16
#define n_dense1 16
#define n_add_input 3
#define n_add_dense0 8
#define n_all_input 4
#define max_mobility 30
#define max_surround 50
#define max_evaluate_idx 59049
int mobility_arr[2][n_line]; // mobility_arr[プレイヤー][ボードのインデックス] = そのインデックスでプレイヤーが着手可能な位置
int surround_arr[2][n_line]; // surround_arr[プレイヤー][ボードのインデックス] = そのインデックスでプレイヤーが空マスに接している数
// モデルの前計算した値と生のパラメータ
double pattern_arr[n_patterns][max_evaluate_idx];
double add_arr[max_mobility * 2 + 1][max_surround + 1][max_surround + 1];
double final_dense[n_all_input];
double final_bias;
// 着手可能数と囲み度合いの前計算
inline void evaluate_init1() {
int idx, place, b, w;
for (idx = 0; idx < n_line; ++idx) {
b = create_one_color(idx, 0);
w = create_one_color(idx, 1);
mobility_arr[black][idx] = 0;
mobility_arr[white][idx] = 0;
surround_arr[black][idx] = 0;
surround_arr[white][idx] = 0;
for (place = 0; place < hw; ++place) {
if (place > 0) {
if ((1 & (b >> (place - 1))) == 0 && (1 & (w >> (place - 1))) == 0) {
if (1 & (b >> place))
++surround_arr[black][idx];
else if (1 & (w >> place))
++surround_arr[white][idx];
}
}
if (place < hw - 1) {
if ((1 & (b >> (place + 1))) == 0 && (1 & (w >> (place + 1))) == 0) {
if (1 & (b >> place))
++surround_arr[black][idx];
else if (1 & (w >> place))
++surround_arr[white][idx];
}
}
}
for (place = 0; place < hw; ++place) {
if (legal_arr[black][idx][place])
++mobility_arr[black][idx];
if (legal_arr[white][idx][place])
++mobility_arr[white][idx];
}
}
}
// 活性化関数
inline double leaky_relu(double x){
return max(0.01 * x, x);
}
// パターン評価の推論
inline double predict_pattern(int pattern_size, double in_arr[], double dense0[n_dense0][20], double bias0[n_dense0], double dense1[n_dense1][n_dense0], double bias1[n_dense1], double dense2[n_dense1], double bias2){
double hidden0[16], hidden1;
int i, j;
for (i = 0; i < n_dense0; ++i){
hidden0[i] = bias0[i];
for (j = 0; j < pattern_size * 2; ++j)
hidden0[i] += in_arr[j] * dense0[i][j];
hidden0[i] = leaky_relu(hidden0[i]);
}
double res = bias2;
for (i = 0; i < n_dense1; ++i){
hidden1 = bias1[i];
for (j = 0; j < n_dense0; ++j)
hidden1 += hidden0[j] * dense1[i][j];
hidden1 = leaky_relu(hidden1);
res += hidden1 * dense2[i];
}
res = leaky_relu(res);
return res;
}
// パターンの左右反転に使う
inline int calc_pop(int a, int b, int s){
return (a / pow3[s - 1 - b]) % 3;
}
// パターンの左右反転
inline int calc_rev_idx(int pattern_idx, int pattern_size, int idx){
int res = 0;
if (pattern_idx <= 1){
for (int i = 0; i < pattern_size; ++i)
res += pow3[i] * calc_pop(idx, i, pattern_size);
} else if (pattern_idx == 2){
res += p39 * calc_pop(idx, 0, pattern_size);
res += p38 * calc_pop(idx, 4, pattern_size);
res += p37 * calc_pop(idx, 7, pattern_size);
res += p36 * calc_pop(idx, 9, pattern_size);
res += p35 * calc_pop(idx, 1, pattern_size);
res += p34 * calc_pop(idx, 5, pattern_size);
res += p33 * calc_pop(idx, 8, pattern_size);
res += p32 * calc_pop(idx, 2, pattern_size);
res += p31 * calc_pop(idx, 6, pattern_size);
res += calc_pop(idx, 3, pattern_size);
}
return res;
}
// パターン評価の前計算
inline void pre_evaluation_pattern(int pattern_idx, int evaluate_idx, int pattern_size, double dense0[n_dense0][20], double bias0[n_dense0], double dense1[n_dense1][n_dense0], double bias1[n_dense1], double dense2[n_dense1], double bias2){
int digit, idx, i;
double arr[20], tmp_pattern_arr[max_evaluate_idx];
for (idx = 0; idx < pow3[pattern_size]; ++idx){
for (i = 0; i < pattern_size; ++i){
digit = (idx / pow3[pattern_size - 1 - i]) % 3;
if (digit == 0){
arr[i] = 1.0;
arr[pattern_size + i] = 0.0;
} else if (digit == 1){
arr[i] = 0.0;
arr[pattern_size + i] = 1.0;
} else{
arr[i] = 0.0;
arr[pattern_size + i] = 0.0;
}
}
pattern_arr[evaluate_idx][idx] = predict_pattern(pattern_size, arr, dense0, bias0, dense1, bias1, dense2, bias2);
tmp_pattern_arr[calc_rev_idx(pattern_idx, pattern_size, idx)] = pattern_arr[evaluate_idx][idx];
}
for (idx = 0; idx < pow3[pattern_size]; ++idx)
pattern_arr[evaluate_idx][idx] += tmp_pattern_arr[idx];
}
// 追加パラメータの推論
inline double predict_add(int mobility, int sur0, int sur1, double dense0[n_add_dense0][n_add_input], double bias0[n_add_dense0], double dense1[n_add_dense0], double bias1){
double hidden0[n_add_dense0], in_arr[n_add_input];
int i, j;
in_arr[0] = (double)mobility / 30.0;
in_arr[1] = ((double)sur0 - 15.0) / 15.0;
in_arr[2] = ((double)sur1 - 15.0) / 15.0;
for (i = 0; i < n_add_dense0; ++i){
hidden0[i] = bias0[i];
for (j = 0; j < n_add_input; ++j)
hidden0[i] += in_arr[j] * dense0[i][j];
hidden0[i] = leaky_relu(hidden0[i]);
}
double res = bias1;
for (j = 0; j < n_add_dense0; ++j)
res += hidden0[j] * dense1[j];
res = leaky_relu(res);
return res;
}
// 追加パラメータの前計算
inline void pre_evaluation_add(double dense0[n_add_dense0][n_add_input], double bias0[n_add_dense0], double dense1[n_add_dense0], double bias1){
int mobility, sur0, sur1;
for (mobility = -max_mobility; mobility <= max_mobility; ++mobility){
for (sur0 = 0; sur0 <= max_surround; ++sur0){
for (sur1 = 0; sur1 <= max_surround; ++sur1)
add_arr[mobility + max_mobility][sur0][sur1] = predict_add(mobility, sur0, sur1, dense0, bias0, dense1, bias1);
}
}
}
// 機械学習したモデルの読み込み
inline void evaluate_init2() {
ifstream ifs("evaluation/models/model.txt");
if (ifs.fail()){
cerr << "evaluation file not exist" << endl;
exit(1);
}
string line;
int i, j, pattern_idx;
// モデルのパラメータを格納する
double dense0[n_dense0][20];
double bias0[n_dense0];
double dense1[n_dense1][n_dense0];
double bias1[n_dense1];
double dense2[n_dense1];
double bias2;
double add_dense0[n_add_dense0][n_add_input];
double add_bias0[n_add_dense0];
double add_dense1[n_add_dense0];
double add_bias1;
// パターンのパラメータを得て前計算をする
for (pattern_idx = 0; pattern_idx < n_patterns; ++pattern_idx){
for (i = 0; i < n_dense0; ++i){
for (j = 0; j < pattern_sizes[pattern_idx] * 2; ++j){
getline(ifs, line);
dense0[i][j] = stof(line);
}
}
for (i = 0; i < n_dense0; ++i){
getline(ifs, line);
bias0[i] = stof(line);
}
for (i = 0; i < n_dense1; ++i){
for (j = 0; j < n_dense0; ++j){
getline(ifs, line);
dense1[i][j] = stof(line);
}
}
for (i = 0; i < n_dense1; ++i){
getline(ifs, line);
bias1[i] = stof(line);
}
for (i = 0; i < n_dense1; ++i){
getline(ifs, line);
dense2[i] = stof(line);
}
getline(ifs, line);
bias2 = stof(line);
pre_evaluation_pattern(pattern_idx, pattern_idx, pattern_sizes[pattern_idx], dense0, bias0, dense1, bias1, dense2, bias2);
}
// 追加入力のパラメータを得て前計算をする
for (i = 0; i < n_add_dense0; ++i){
for (j = 0; j < n_add_input; ++j){
getline(ifs, line);
add_dense0[i][j] = stof(line);
}
}
for (i = 0; i < n_add_dense0; ++i){
getline(ifs, line);
add_bias0[i] = stof(line);
}
for (i = 0; i < n_add_dense0; ++i){
getline(ifs, line);
add_dense1[i] = stof(line);
}
getline(ifs, line);
add_bias1 = stof(line);
pre_evaluation_add(add_dense0, add_bias0, add_dense1, add_bias1);
// 最後の層のパラメータを得る
for (i = 0; i < n_all_input; ++i){
getline(ifs, line);
final_dense[i] = stof(line);
}
getline(ifs, line);
final_bias = stof(line);
}
// 初期化
inline void evaluate_init() {
evaluate_init1();
evaluate_init2();
}
// 着手可能数 黒の手番なら正の値、白の手番では負の値にする 世界1位AIの手動for展開の名残があります
inline int calc_mobility(const board b){
return (b.player ? -1 : 1) * (
mobility_arr[b.player][b.board_idx[0]] + mobility_arr[b.player][b.board_idx[1]] + mobility_arr[b.player][b.board_idx[2]] + mobility_arr[b.player][b.board_idx[3]] +
mobility_arr[b.player][b.board_idx[4]] + mobility_arr[b.player][b.board_idx[5]] + mobility_arr[b.player][b.board_idx[6]] + mobility_arr[b.player][b.board_idx[7]] +
mobility_arr[b.player][b.board_idx[8]] + mobility_arr[b.player][b.board_idx[9]] + mobility_arr[b.player][b.board_idx[10]] + mobility_arr[b.player][b.board_idx[11]] +
mobility_arr[b.player][b.board_idx[12]] + mobility_arr[b.player][b.board_idx[13]] + mobility_arr[b.player][b.board_idx[14]] + mobility_arr[b.player][b.board_idx[15]] +
mobility_arr[b.player][b.board_idx[16] - p35 + 1] + mobility_arr[b.player][b.board_idx[26] - p35 + 1] + mobility_arr[b.player][b.board_idx[27] - p35 + 1] + mobility_arr[b.player][b.board_idx[37] - p35 + 1] +
mobility_arr[b.player][b.board_idx[17] - p34 + 1] + mobility_arr[b.player][b.board_idx[25] - p34 + 1] + mobility_arr[b.player][b.board_idx[28] - p34 + 1] + mobility_arr[b.player][b.board_idx[36] - p34 + 1] +
mobility_arr[b.player][b.board_idx[18] - p33 + 1] + mobility_arr[b.player][b.board_idx[24] - p33 + 1] + mobility_arr[b.player][b.board_idx[29] - p33 + 1] + mobility_arr[b.player][b.board_idx[35] - p33 + 1] +
mobility_arr[b.player][b.board_idx[19] - p32 + 1] + mobility_arr[b.player][b.board_idx[23] - p32 + 1] + mobility_arr[b.player][b.board_idx[30] - p32 + 1] + mobility_arr[b.player][b.board_idx[34] - p32 + 1] +
mobility_arr[b.player][b.board_idx[20] - p31 + 1] + mobility_arr[b.player][b.board_idx[22] - p31 + 1] + mobility_arr[b.player][b.board_idx[31] - p31 + 1] + mobility_arr[b.player][b.board_idx[33] - p31 + 1] +
mobility_arr[b.player][b.board_idx[21]] + mobility_arr[b.player][b.board_idx[32]]);
}
// 囲み具合
inline int sfill5(int b){
return pop_digit[b][2] != 2 ? b - p35 + 1 : b;
}
inline int sfill4(int b){
return pop_digit[b][3] != 2 ? b - p34 + 1 : b;
}
inline int sfill3(int b){
return pop_digit[b][4] != 2 ? b - p33 + 1 : b;
}
inline int sfill2(int b){
return pop_digit[b][5] != 2 ? b - p32 + 1 : b;
}
inline int sfill1(int b){
return pop_digit[b][6] != 2 ? b - p31 + 1 : b;
}
// 囲み度合い 世界1位AIの手動for展開の名残があります
inline int calc_surround(const board b, int p){
return surround_arr[p][b.board_idx[0]] + surround_arr[p][b.board_idx[1]] + surround_arr[p][b.board_idx[2]] + surround_arr[p][b.board_idx[3]] +
surround_arr[p][b.board_idx[4]] + surround_arr[p][b.board_idx[5]] + surround_arr[p][b.board_idx[6]] + surround_arr[p][b.board_idx[7]] +
surround_arr[p][b.board_idx[8]] + surround_arr[p][b.board_idx[9]] + surround_arr[p][b.board_idx[10]] + surround_arr[p][b.board_idx[11]] +
surround_arr[p][b.board_idx[12]] + surround_arr[p][b.board_idx[13]] + surround_arr[p][b.board_idx[14]] + surround_arr[p][b.board_idx[15]] +
surround_arr[p][sfill5(b.board_idx[16])] + surround_arr[p][sfill5(b.board_idx[26])] + surround_arr[p][sfill5(b.board_idx[27])] + surround_arr[p][sfill5(b.board_idx[37])] +
surround_arr[p][sfill4(b.board_idx[17])] + surround_arr[p][sfill4(b.board_idx[25])] + surround_arr[p][sfill4(b.board_idx[28])] + surround_arr[p][sfill4(b.board_idx[36])] +
surround_arr[p][sfill3(b.board_idx[18])] + surround_arr[p][sfill3(b.board_idx[24])] + surround_arr[p][sfill3(b.board_idx[29])] + surround_arr[p][sfill3(b.board_idx[35])] +
surround_arr[p][sfill2(b.board_idx[19])] + surround_arr[p][sfill2(b.board_idx[23])] + surround_arr[p][sfill2(b.board_idx[30])] + surround_arr[p][sfill2(b.board_idx[34])] +
surround_arr[p][sfill1(b.board_idx[20])] + surround_arr[p][sfill1(b.board_idx[22])] + surround_arr[p][sfill1(b.board_idx[31])] + surround_arr[p][sfill1(b.board_idx[33])] +
surround_arr[p][b.board_idx[21]] + surround_arr[p][b.board_idx[32]];
}
inline double edge_2x(const int b[], int x, int y){
return pattern_arr[1][pop_digit[b[x]][1] * p39 + b[y] * p31 + pop_digit[b[x]][6]];
}
inline double triangle0(const int b[], int w, int x, int y, int z){
return pattern_arr[2][b[w] / p34 * p36 + b[x] / p35 * p33 + b[y] / p36 * p31 + b[z] / p37];
}
inline double triangle1(const int b[], int w, int x, int y, int z){
return pattern_arr[2][reverse_board[b[w]] / p34 * p36 + reverse_board[b[x]] / p35 * p33 + reverse_board[b[y]] / p36 * p31 + reverse_board[b[z]] / p37];
}
// パターン評価部分
inline double calc_pattern(const board b){
return
final_dense[0] * (pattern_arr[0][b.board_idx[21]] + pattern_arr[0][b.board_idx[32]]) +
final_dense[1] * (edge_2x(b.board_idx, 1, 0) + edge_2x(b.board_idx, 6, 7) + edge_2x(b.board_idx, 9, 8) + edge_2x(b.board_idx, 14, 15)) +
final_dense[2] * (triangle0(b.board_idx, 0, 1, 2, 3) + triangle0(b.board_idx, 7, 6, 5, 4) + triangle0(b.board_idx, 15, 14, 13, 12) + triangle1(b.board_idx, 15, 14, 13, 12));
}
// 評価関数本体
inline int evaluate(const board b){
int mobility, sur0, sur1;
mobility = min(max_mobility * 2, max(0, max_mobility + calc_mobility(b)));
sur0 = min(max_surround, calc_surround(b, 0));
sur1 = min(max_surround, calc_surround(b, 1));
double res = (b.player ? -1.0 : 1.0) * (final_bias + calc_pattern(b) + final_dense[3] * add_arr[mobility][sur0][sur1]);
return (int)(max(-1.0, min(1.0, res)) * sc_w);
}