-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
64 lines (51 loc) · 2.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import cvzone
import cv2
from cvzone.HandTrackingModule import HandDetector
import numpy as np
import google.generativeai as genai
import os
from dotenv import load_dotenv
from PIL import Image
load_dotenv()
genai.configure(api_key=os.environ.get('GENAI_API_KEY'))
model = genai.GenerativeModel("gemini-1.5-flash")
# Initialize the webcam to capture video
# The '2' indicates the third camera connected to your computer; '0' would usually refer to the built-in camera
cap = cv2.VideoCapture(0)
cap.set(3, 1280) # Set the width of the frame
cap.set(4, 720) # Set the height of the frame
# Initialize the HandDetector class with the given parameters
detector = HandDetector(staticMode=False, maxHands=1, modelComplexity=1, detectionCon=0.7, minTrackCon=0.5)
def getHandInfo(img):
# Find hands in the current frame
# The 'draw' parameter draws landmarks and hand outlines on the image if set to True
# The 'flipType' parameter flips the image, making it easier for some detections
hands, img = detector.findHands(img, draw=True, flipType=True)
# Check if any hands are detected
if hands:
hand = hands[0]
lmList = hand["lmList"] # List of 21 landmarks for the first hand
# Count the number of fingers up for the first hand
fingers = detector.fingersUp(hand)
return fingers, lmList
else:
return None
def draw(info, prev_pos, canvas, img):
fingers, lmList = info
current_pos = None
if fingers == [0, 1, 0, 0, 0]:
current_pos = lmList[8][0:2]
if prev_pos is None:
prev_pos = current_pos
cv2.line(canvas, current_pos, prev_pos, (255, 0, 255), 10)
elif fingers == [1, 0, 0, 0, 0]:
canvas = np.zeros_like(img)
return current_pos, canvas
def sendToIA(canvas, fingers, model):
if fingers == [1, 1, 1, 0, 1]:
pil_image = Image.fromarray(canvas)
response = model.generate_content(["Solve this math problem, and add a short explantion:", pil_image])
return response.text
prev_pos = None
canvas = None
image_combined = None