-
Notifications
You must be signed in to change notification settings - Fork 308
/
Copy pathtrain.py
224 lines (199 loc) · 7.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import numpy as np
import torch
import wandb as wb
from dgl.dataloading import GraphDataLoader
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm
from constants import Constants
from physicsnemo.datapipes.gnn.vortex_shedding_re300_1000_dataset import (
VortexSheddingRe300To1000Dataset,
)
from physicsnemo.distributed.manager import DistributedManager
from physicsnemo.launch.logging import (
PythonLogger,
RankZeroLoggingWrapper,
)
from physicsnemo.launch.logging.wandb import initialize_wandb
from physicsnemo.launch.utils import load_checkpoint, save_checkpoint
from physicsnemo.models.mesh_reduced.mesh_reduced import Mesh_Reduced
C = Constants()
class Mesh_ReducedTrainer:
def __init__(self, wb, dist, rank_zero_logger):
self.dist = dist
dataset_train = VortexSheddingRe300To1000Dataset(
name="vortex_shedding_train", split="train"
)
dataset_test = VortexSheddingRe300To1000Dataset(
name="vortex_shedding_train", split="test"
)
self.dataloader = GraphDataLoader(
dataset_train,
batch_size=C.batch_size,
shuffle=True,
drop_last=True,
pin_memory=True,
use_ddp=dist.world_size > 1,
)
self.dataloader_test = GraphDataLoader(
dataset_test,
batch_size=C.batch_size,
shuffle=False,
drop_last=False,
pin_memory=True,
use_ddp=dist.world_size > 1,
)
self.model = Mesh_Reduced(
C.num_input_features, C.num_edge_features, C.num_output_features
)
if C.jit:
self.model = torch.jit.script(self.model).to(dist.device)
else:
self.model = self.model.to(dist.device)
if C.watch_model and not C.jit and dist.rank == 0:
wb.watch(self.model)
# enable train mode
self.model.train()
# instantiate loss, optimizer, and scheduler
self.criterion = torch.nn.MSELoss()
# instantiate loss, optimizer, and scheduler
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=C.lr)
self.scheduler = torch.optim.lr_scheduler.LambdaLR(
self.optimizer, lr_lambda=lambda epoch: C.lr_decay_rate**epoch
)
self.scaler = GradScaler()
# load checkpoint
if dist.world_size > 1:
torch.distributed.barrier()
self.epoch_init = load_checkpoint(
os.path.join(C.ckpt_path, C.ckpt_name),
models=self.model,
optimizer=self.optimizer,
scheduler=self.scheduler,
scaler=self.scaler,
device=dist.device,
)
def forward(self, graph, position_mesh, position_pivotal):
with autocast(enabled=C.amp):
z = self.model.encode(
graph.ndata["x"],
graph.edata["x"],
graph,
position_mesh,
position_pivotal,
)
x = self.model.decode(
z, graph.edata["x"], graph, position_mesh, position_pivotal
)
loss = self.criterion(x, graph.ndata["x"])
return loss
def train(self, graph, position_mesh, position_pivotal):
graph = graph.to(self.dist.device)
self.optimizer.zero_grad()
loss = self.forward(graph, position_mesh, position_pivotal)
self.backward(loss)
self.scheduler.step()
return loss
@torch.no_grad()
def test(self, graph, position_mesh, position_pivotal):
graph = graph.to(self.dist.device)
with autocast(enabled=C.amp):
z = self.model.encode(
graph.ndata["x"],
graph.edata["x"],
graph,
position_mesh,
position_pivotal,
)
x = self.model.decode(
z, graph.edata["x"], graph, position_mesh, position_pivotal
)
loss = self.criterion(x, graph.ndata["x"])
relative_error = (
loss / self.criterion(graph.ndata["x"], graph.ndata["x"] * 0.0).detach()
)
relative_error_s_record = []
for i in range(C.num_input_features):
loss_s = self.criterion(x[:, i], graph.ndata["x"][:, i])
relative_error_s = (
loss_s
/ self.criterion(
graph.ndata["x"][:, i], graph.ndata["x"][:, i] * 0.0
).detach()
)
relative_error_s_record.append(relative_error_s)
return loss, relative_error, relative_error_s_record
def backward(self, loss):
# backward pass
if C.amp:
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
else:
loss.backward()
self.optimizer.step()
if __name__ == "__main__":
# initialize distributed manager
DistributedManager.initialize()
dist = DistributedManager()
# save constants to JSON file
if dist.rank == 0:
os.makedirs(C.ckpt_path, exist_ok=True)
with open(
os.path.join(C.ckpt_path, C.ckpt_name.replace(".pt", ".json")), "w"
) as json_file:
json_file.write(C.model_dump_json(indent=4))
# initialize loggers
initialize_wandb(
project="PhysicsNeMo-Launch",
entity="PhysicsNeMo",
name="Vortex_Shedding-Training",
group="Vortex_Shedding-DDP-Group",
mode=C.wandb_mode,
) # Wandb logger
logger = PythonLogger("main") # General python logger
rank_zero_logger = RankZeroLoggingWrapper(logger, dist) # Rank 0 logger
logger.file_logging()
trainer = Mesh_ReducedTrainer(wb, dist, rank_zero_logger)
start = time.time()
rank_zero_logger.info("Training started...")
position_mesh = torch.from_numpy(np.loadtxt(C.mesh_dir)).to(dist.device)
position_pivotal = torch.from_numpy(np.loadtxt(C.pivotal_dir)).to(dist.device)
for epoch in range(trainer.epoch_init, C.epochs):
for graph in tqdm(trainer.dataloader):
loss = trainer.train(graph, position_mesh, position_pivotal)
rank_zero_logger.info(
f"epoch: {epoch}, loss: {loss:10.3e}, time per epoch: {(time.time()-start):10.3e}"
)
wb.log({"loss": loss.detach().cpu()})
# save checkpoint
if dist.world_size > 1:
torch.distributed.barrier()
if dist.rank == 0 and epoch % 100 == 0:
save_checkpoint(
os.path.join(C.ckpt_path, C.ckpt_name),
models=trainer.model,
optimizer=trainer.optimizer,
scheduler=trainer.scheduler,
scaler=trainer.scaler,
epoch=epoch,
)
logger.info(f"Saved model on rank {dist.rank}")
start = time.time()
rank_zero_logger.info("Training completed!")