-
Notifications
You must be signed in to change notification settings - Fork 200
/
setup.py
127 lines (105 loc) · 4.45 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Copyright (c) 2021, NVIDIA CORPORATION.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import sys
# import tensorflow as tf
from setuptools import find_packages
from skbuild import setup
REQUIRED_PACKAGES = [
"horovod>=0.26.1",
"scikit-build >= 0.16.3",
]
def _GetSOKVersion():
_version_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "sparse_operation_kit/"
)
sys.path.append(_version_path)
from _version import __version__
version = __version__
del __version__
sys.path.pop(-1)
return version
def get_cmake_args():
gpu_capabilities = ["70", "75", "80", "90"]
if os.getenv("SOK_COMPILE_GPU_SM"):
gpu_capabilities = os.getenv("SOK_COMPILE_GPU_SM")
gpu_capabilities = str(gpu_capabilities).strip().split(";")
use_nvtx = "OFF"
if os.getenv("SOK_COMPILE_USE_NVTX"):
use_nvtx = "ON" if os.getenv("SOK_COMPILE_USE_NVTX") in ["1", "ON", "On", "on"] else "OFF"
dedicated_cuda_stream = "ON"
if os.getenv("SOK_COMPILE_ASYNC"):
dedicated_cuda_stream = (
"OFF" if os.getenv("SOK_COMPILE_ASYNC") in ["0", "OFF", "Off", "off"] else "ON"
)
unit_test = "OFF"
if os.getenv("SOK_COMPILE_UNIT_TEST"):
unit_test = "ON" if os.getenv("SOK_COMPILE_UNIT_TEST") in ["1", "ON", "On", "on"] else "OFF"
cmake_build_type = "Release"
if os.getenv("SOK_COMPILE_BUILD_TYPE"):
cmake_build_type = (
"Debug"
if os.getenv("SOK_COMPILE_BUILD_TYPE") in ["DEBUG", "debug", "Debug"]
else "Release"
)
env_python_path = ""
if os.getenv("PYTHONPATH"):
env_python_path = os.getenv("PYTHONPATH")
enable_deeprec = "OFF"
if os.getenv("ENABLE_DEEPREC"):
enable_deeprec = (
"OFF" if os.getenv("ENABLE_DEEPREC") in ["0", "OFF", "Off", "off"] else "ON"
)
cmake_args = [
"-DSM='{}'".format(";".join(gpu_capabilities)),
"-DUSE_NVTX={}".format(use_nvtx),
"-DSOK_ASYNC={}".format(dedicated_cuda_stream),
"-DSOK_UNIT_TEST={}".format(unit_test),
"-DCMAKE_BUILD_TYPE={}".format(cmake_build_type),
"-DENV_PYTHONPATH={}".format(env_python_path),
"-DENABLE_DEEPREC={}".format(enable_deeprec),
]
return cmake_args
# We haven't found a proper way to maintain the directory structure of
# the parent folder(i.e. HugeCTR) when using skbuild to make pip package,
# so we use a workaround here: copy the content of parent folder into
# sparse_operation_kit/ before making pip package.
os.system("cp -r ../HugeCTR ./")
os.system("cp -r ../gpu_cache ./")
os.system("mkdir third_party")
os.system("cp -r ../third_party/json ./third_party/")
os.system("cp -r ../third_party/HierarchicalKV ./third_party/")
setup(
name="merlin-sok",
version=_GetSOKVersion(),
author="NVIDIA",
author_email="[email protected]",
url="https://github.com/NVIDIA-Merlin/HugeCTR/tree/master/sparse_operation_kit",
description="SparseOperationKit (SOK) is a python package wrapped GPU accelerated"
" operations dedicated for sparse training / inference cases.",
long_description="SparseOperationKit (SOK) is a python package wrapped GPU accelerated "
"operations dedicated for sparse training / inference cases. "
"It is designed to be compatible with common DeepLearning (DL) frameworks, "
"for instance, TensorFlow. "
"Most of the algorithm implementations in SOK are extracted from HugeCTR, "
"which is a GPU-accelerated recommender framework designed to distribute "
"training across multiple GPUs and nodes and estimate Click-Through Rates (CTRs). "
"If you are looking for a very efficient solution for CTRs, please check HugeCTR.",
extras_require={"tensorflow": "tensorflow>=1.15"},
license="Apache 2.0",
platforms=["Linux"],
install_requires=REQUIRED_PACKAGES,
python_requires=">=3", # TODO: make it compatible with python2.7
packages=find_packages(),
cmake_args=get_cmake_args(),
)