-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnetParams.py
724 lines (602 loc) · 35.3 KB
/
netParams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
"""
netParams.py
High-level specifications for A1 network model using NetPyNE
Contributors: [email protected], [email protected]
"""
from netpyne import specs
import pickle, json
netParams = specs.NetParams() # object of class NetParams to store the network parameters
try:
from __main__ import cfg # import SimConfig object with params from parent module
except:
from cfg import cfg
#------------------------------------------------------------------------------
# VERSION
#------------------------------------------------------------------------------
netParams.version = 34
#------------------------------------------------------------------------------
#
# NETWORK PARAMETERS
#
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# General network parameters
#------------------------------------------------------------------------------
netParams.scale = cfg.scale # Scale factor for number of cells # NOT DEFINED YET! 3/11/19 # How is this different than scaleDensity?
netParams.sizeX = cfg.sizeX # x-dimension (horizontal length) size in um
netParams.sizeY = cfg.sizeY # y-dimension (vertical height or cortical depth) size in um
netParams.sizeZ = cfg.sizeZ # z-dimension (horizontal depth) size in um
netParams.shape = 'cylinder' # cylindrical (column-like) volume
#------------------------------------------------------------------------------
# General connectivity parameters
#------------------------------------------------------------------------------
netParams.scaleConnWeight = 1.0 # Connection weight scale factor (default if no model specified)
netParams.scaleConnWeightModels = { 'HH_reduced': 1.0, 'HH_full': 1.0} #scale conn weight factor for each cell model
netParams.scaleConnWeightNetStims = 1.0 #0.5 # scale conn weight factor for NetStims
netParams.defaultThreshold = 0.0 # spike threshold, 10 mV is NetCon default, lower it for all cells
netParams.defaultDelay = 2.0 # default conn delay (ms)
netParams.propVelocity = 500.0 # propagation velocity (um/ms)
netParams.probLambda = 100.0 # length constant (lambda) for connection probability decay (um)
#------------------------------------------------------------------------------
# Cell parameters
#------------------------------------------------------------------------------
Etypes = ['IT', 'ITS4', 'PT', 'CT']
Itypes = ['PV', 'SOM', 'VIP', 'NGF']
cellModels = ['HH_reduced', 'HH_full'] # List of cell models
# II: 100-950, IV: 950-1250, V: 1250-1550, VI: 1550-2000
layer = {'1': [0.00, 0.05], '2': [0.05, 0.08], '3': [0.08, 0.475], '4': [0.475, 0.625], '5A': [0.625, 0.667], '5B': [0.667, 0.775], '6': [0.775, 1], 'thal': [1.2, 1.4], 'cochlear': [1.6, 1.8]} # normalized layer boundaries
layerGroups = { '1-3': [layer['1'][0], layer['3'][1]], # L1-3
'4': layer['4'], # L4
'5': [layer['5A'][0], layer['5B'][1]], # L5A-5B
'6': layer['6']} # L6
# add layer border correction ??
#netParams.correctBorder = {'threshold': [cfg.correctBorderThreshold, cfg.correctBorderThreshold, cfg.correctBorderThreshold],
# 'yborders': [layer['2'][0], layer['5A'][0], layer['6'][0], layer['6'][1]]} # correct conn border effect
#------------------------------------------------------------------------------
## Load cell rules previously saved using netpyne format (DOES NOT INCLUDE VIP, NGF and spiny stellate)
## include conditions ('conds') for each cellRule
cellParamLabels = ['IT2_reduced', 'IT3_reduced', 'ITP4_reduced', 'ITS4_reduced',
'IT5A_reduced', 'CT5A_reduced', 'IT5B_reduced',
'PT5B_reduced', 'CT5B_reduced', 'IT6_reduced', 'CT6_reduced',
'PV_reduced', 'SOM_reduced', 'VIP_reduced', 'NGF_reduced',
'RE_reduced', 'TC_reduced', 'HTC_reduced', 'TI_reduced']
for ruleLabel in cellParamLabels:
netParams.loadCellParamsRule(label=ruleLabel, fileName='cells/' + ruleLabel + '_cellParams.json') # Load cellParams for each of the above cell subtype
# change weightNorm
for k in cfg.weightNormScaling:
for sec in netParams.cellParams[k]['secs'].values():
for i in range(len(sec['weightNorm'])):
sec['weightNorm'][i] *= cfg.weightNormScaling[k]
#------------------------------------------------------------------------------
# Population parameters
#------------------------------------------------------------------------------
## load densities
with open('cells/cellDensity.pkl', 'rb') as fileObj: density = pickle.load(fileObj)['density']
density = {k: [x * cfg.scaleDensity for x in v] for k,v in density.items()} # Scale densities
# ### LAYER 1:
netParams.popParams['NGF1'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced','ynormRange': layer['1'], 'density': density[('A1','nonVIP')][0]}
### LAYER 2:
netParams.popParams['IT2'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['2'], 'density': density[('A1','E')][1]} #
netParams.popParams['SOM2'] = {'cellType': 'SOM', 'cellModel': 'HH_reduced', 'ynormRange': layer['2'], 'density': density[('A1','SOM')][1]}
netParams.popParams['PV2'] = {'cellType': 'PV', 'cellModel': 'HH_reduced', 'ynormRange': layer['2'], 'density': density[('A1','PV')][1]}
netParams.popParams['VIP2'] = {'cellType': 'VIP', 'cellModel': 'HH_reduced', 'ynormRange': layer['2'], 'density': density[('A1','VIP')][1]}
netParams.popParams['NGF2'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced', 'ynormRange': layer['2'], 'density': density[('A1','nonVIP')][1]}
### LAYER 3:
netParams.popParams['IT3'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['3'], 'density': density[('A1','E')][1]}
netParams.popParams['SOM3'] = {'cellType': 'SOM', 'cellModel': 'HH_reduced', 'ynormRange': layer['3'], 'density': density[('A1','SOM')][1]}
netParams.popParams['PV3'] = {'cellType': 'PV', 'cellModel': 'HH_reduced', 'ynormRange': layer['3'], 'density': density[('A1','PV')][1]}
netParams.popParams['VIP3'] = {'cellType': 'VIP', 'cellModel': 'HH_reduced', 'ynormRange': layer['3'], 'density': density[('A1','VIP')][1]}
netParams.popParams['NGF3'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced', 'ynormRange': layer['3'], 'density': density[('A1','nonVIP')][1]}
### LAYER 4:
netParams.popParams['ITP4'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['4'], 'density': 0.5*density[('A1','E')][2]} ## CHANGE DENSITY #
netParams.popParams['ITS4'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['4'], 'density': 0.5*density[('A1','E')][2]}
netParams.popParams['SOM4'] = {'cellType': 'SOM', 'cellModel': 'HH_reduced', 'ynormRange': layer['4'], 'density': density[('A1','SOM')][2]}
netParams.popParams['PV4'] = {'cellType': 'PV', 'cellModel': 'HH_reduced', 'ynormRange': layer['4'], 'density': density[('A1','PV')][2]}
netParams.popParams['VIP4'] = {'cellType': 'VIP', 'cellModel': 'HH_reduced', 'ynormRange': layer['4'], 'density': density[('A1','VIP')][2]}
netParams.popParams['NGF4'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced', 'ynormRange': layer['4'], 'density': density[('A1','nonVIP')][2]}
# # ### LAYER 5A:
netParams.popParams['IT5A'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['5A'], 'density': 0.5*density[('A1','E')][3]}
netParams.popParams['CT5A'] = {'cellType': 'CT', 'cellModel': 'HH_reduced', 'ynormRange': layer['5A'], 'density': 0.5*density[('A1','E')][3]}
netParams.popParams['SOM5A'] = {'cellType': 'SOM', 'cellModel': 'HH_reduced', 'ynormRange': layer['5A'], 'density': density[('A1','SOM')][3]}
netParams.popParams['PV5A'] = {'cellType': 'PV', 'cellModel': 'HH_reduced', 'ynormRange': layer['5A'], 'density': density[('A1','PV')][3]}
netParams.popParams['VIP5A'] = {'cellType': 'VIP', 'cellModel': 'HH_reduced', 'ynormRange': layer['5A'], 'density': density[('A1','VIP')][3]}
netParams.popParams['NGF5A'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced', 'ynormRange': layer['5A'], 'density': density[('A1','nonVIP')][3]}
### LAYER 5B:
netParams.popParams['IT5B'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': (1/3)*density[('A1','E')][4]}
netParams.popParams['CT5B'] = {'cellType': 'CT', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': (1/3)*density[('A1','E')][4]}
netParams.popParams['PT5B'] = {'cellType': 'PT', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': (1/3)*density[('A1','E')][4]}
netParams.popParams['SOM5B'] = {'cellType': 'SOM', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': density[('A1', 'SOM')][4]}
netParams.popParams['PV5B'] = {'cellType': 'PV', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': density[('A1','PV')][4]}
netParams.popParams['VIP5B'] = {'cellType': 'VIP', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': density[('A1','VIP')][4]}
netParams.popParams['NGF5B'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced', 'ynormRange': layer['5B'], 'density': density[('A1','nonVIP')][4]}
# # ### LAYER 6:
netParams.popParams['IT6'] = {'cellType': 'IT', 'cellModel': 'HH_reduced', 'ynormRange': layer['6'], 'density': 0.5*density[('A1','E')][5]}
netParams.popParams['CT6'] = {'cellType': 'CT', 'cellModel': 'HH_reduced', 'ynormRange': layer['6'], 'density': 0.5*density[('A1','E')][5]}
netParams.popParams['SOM6'] = {'cellType': 'SOM', 'cellModel': 'HH_reduced', 'ynormRange': layer['6'], 'density': density[('A1','SOM')][5]}
netParams.popParams['PV6'] = {'cellType': 'PV', 'cellModel': 'HH_reduced', 'ynormRange': layer['6'], 'density': density[('A1','PV')][5]}
netParams.popParams['VIP6'] = {'cellType': 'VIP', 'cellModel': 'HH_reduced', 'ynormRange': layer['6'], 'density': density[('A1','VIP')][5]}
netParams.popParams['NGF6'] = {'cellType': 'NGF', 'cellModel': 'HH_reduced', 'ynormRange': layer['6'], 'density': density[('A1','nonVIP')][5]}
### THALAMIC POPULATIONS (from prev model)
thalDensity = density[('A1','PV')][2] * 1.25 # temporary estimate (from prev model)
netParams.popParams['TC'] = {'cellType': 'TC', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': 0.75*thalDensity}
netParams.popParams['TCM'] = {'cellType': 'TC', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': thalDensity}
netParams.popParams['HTC'] = {'cellType': 'HTC', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': 0.25*thalDensity}
netParams.popParams['IRE'] = {'cellType': 'RE', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': thalDensity}
netParams.popParams['IREM'] = {'cellType': 'RE', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': thalDensity}
netParams.popParams['TI'] = {'cellType': 'TI', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': 0.33 * thalDensity} ## Winer & Larue 1996; Huang et al 1999
netParams.popParams['TIM'] = {'cellType': 'TI', 'cellModel': 'HH_reduced', 'ynormRange': layer['thal'], 'density': 0.33 * thalDensity} ## Winer & Larue 1996; Huang et al 1999
if cfg.singleCellPops:
for pop in netParams.popParams.values(): pop['numCells'] = 1
## List of E and I pops to use later on
Epops = ['IT2', 'IT3', 'ITP4', 'ITS4', 'IT5A', 'CT5A', 'IT5B', 'CT5B' , 'PT5B', 'IT6', 'CT6'] # all layers
Ipops = ['NGF1', # L1
'PV2', 'SOM2', 'VIP2', 'NGF2', # L2
'PV3', 'SOM3', 'VIP3', 'NGF3', # L3
'PV4', 'SOM4', 'VIP4', 'NGF4', # L4
'PV5A', 'SOM5A', 'VIP5A', 'NGF5A', # L5A
'PV5B', 'SOM5B', 'VIP5B', 'NGF5B', # L5B
'PV6', 'SOM6', 'VIP6', 'NGF6'] # L6
#------------------------------------------------------------------------------
# Synaptic mechanism parameters
#------------------------------------------------------------------------------
### From M1 detailed netParams.py
netParams.synMechParams['NMDA'] = {'mod': 'MyExp2SynNMDABB', 'tau1NMDA': 15, 'tau2NMDA': 150, 'e': 0}
netParams.synMechParams['AMPA'] = {'mod':'MyExp2SynBB', 'tau1': 0.05, 'tau2': 5.3*cfg.AMPATau2Factor, 'e': 0}
netParams.synMechParams['GABAB'] = {'mod':'MyExp2SynBB', 'tau1': 3.5, 'tau2': 260.9, 'e': -93}
netParams.synMechParams['GABAA'] = {'mod':'MyExp2SynBB', 'tau1': 0.07, 'tau2': 18.2, 'e': -80}
netParams.synMechParams['GABAA_VIP'] = {'mod':'MyExp2SynBB', 'tau1': 0.3, 'tau2': 6.4, 'e': -80} # Pi et al 2013
netParams.synMechParams['GABAASlow'] = {'mod': 'MyExp2SynBB','tau1': 2, 'tau2': 100, 'e': -80}
netParams.synMechParams['GABAASlowSlow'] = {'mod': 'MyExp2SynBB', 'tau1': 200, 'tau2': 400, 'e': -80}
ESynMech = ['AMPA', 'NMDA']
SOMESynMech = ['GABAASlow','GABAB']
SOMISynMech = ['GABAASlow']
PVSynMech = ['GABAA']
VIPSynMech = ['GABAA_VIP']
NGFSynMech = ['GABAA', 'GABAB']
#------------------------------------------------------------------------------
# Local connectivity parameters
#------------------------------------------------------------------------------
## load data from conn pre-processing file
with open('conn/conn.pkl', 'rb') as fileObj: connData = pickle.load(fileObj)
pmat = connData['pmat']
lmat = connData['lmat']
wmat = connData['wmat']
bins = connData['bins']
connDataSource = connData['connDataSource']
wmat = cfg.wmat
layerGainLabels = ['1', '2', '3', '4', '5A', '5B', '6']
#------------------------------------------------------------------------------
## E -> E
if cfg.addConn and cfg.EEGain > 0.0:
for pre in Epops:
for post in Epops:
for l in layerGainLabels: # used to tune each layer group independently
if connDataSource['E->E/I'] in ['Allen_V1', 'Allen_custom']:
prob = '%f * exp(-dist_2D/%f)' % (pmat[pre][post], lmat[pre][post])
else:
prob = pmat[pre][post]
netParams.connParams['EE_'+pre+'_'+post+'_'+l] = {
'preConds': {'pop': pre},
'postConds': {'pop': post, 'ynorm': layer[l]},
'synMech': ESynMech,
'probability': prob,
'weight': wmat[pre][post] * cfg.EEGain * cfg.EELayerGain[l],
'synMechWeightFactor': cfg.synWeightFractionEE,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'dend_all'}
#------------------------------------------------------------------------------
## E -> I
if cfg.addConn and cfg.EIGain > 0.0:
for pre in Epops:
for post in Ipops:
for postType in Itypes:
if postType in post: # only create rule if celltype matches pop
for l in layerGainLabels: # used to tune each layer group independently
if connDataSource['E->E/I'] in ['Allen_V1', 'Allen_custom']:
prob = '%f * exp(-dist_2D/%f)' % (pmat[pre][post], lmat[pre][post])
else:
prob = pmat[pre][post]
if 'NGF' in post:
synWeightFactor = cfg.synWeightFractionENGF
else:
synWeightFactor = cfg.synWeightFractionEI
netParams.connParams['EI_'+pre+'_'+post+'_'+postType+'_'+l] = {
'preConds': {'pop': pre},
'postConds': {'pop': post, 'cellType': postType, 'ynorm': layer[l]},
'synMech': ESynMech,
'probability': prob,
'weight': wmat[pre][post] * cfg.EIGain * cfg.EICellTypeGain[postType] * cfg.EILayerGain[l],
'synMechWeightFactor': synWeightFactor,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'proximal'}
#------------------------------------------------------------------------------
## I -> E
if cfg.addConn and cfg.IEGain > 0.0:
if connDataSource['I->E/I'] == 'Allen_custom':
ESynMech = ['AMPA', 'NMDA']
SOMESynMech = ['GABAASlow','GABAB']
SOMISynMech = ['GABAASlow']
PVSynMech = ['GABAA']
VIPSynMech = ['GABAA_VIP']
NGFSynMech = ['GABAA', 'GABAB']
for pre in Ipops:
for preType in Itypes:
if preType in pre: # only create rule if celltype matches pop
for post in Epops:
for l in layerGainLabels: # used to tune each layer group independently
prob = '%f * exp(-dist_2D/%f)' % (pmat[pre][post], lmat[pre][post])
if 'SOM' in pre:
synMech = SOMESynMech
elif 'PV' in pre:
synMech = PVSynMech
elif 'VIP' in pre:
synMech = VIPSynMech
elif 'NGF' in pre:
synMech = NGFSynMech
netParams.connParams['IE_'+pre+'_'+preType+'_'+post+'_'+l] = {
'preConds': {'pop': pre},
'postConds': {'pop': post, 'ynorm': layer[l]},
'synMech': synMech,
'probability': prob,
'weight': wmat[pre][post] * cfg.IEGain * cfg.IECellTypeGain[preType] * cfg.IELayerGain[l],
'synMechWeightFactor': cfg.synWeightFractionEI,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'proximal'}
#------------------------------------------------------------------------------
## I -> I
if cfg.addConn and cfg.IIGain > 0.0:
if connDataSource['I->E/I'] == 'Allen_custom':
for pre in Ipops:
for post in Ipops:
for l in layerGainLabels:
prob = '%f * exp(-dist_2D/%f)' % (pmat[pre][post], lmat[pre][post])
if 'SOM' in pre:
synMech = SOMISynMech
elif 'PV' in pre:
synMech = PVSynMech
elif 'VIP' in pre:
synMech = VIPSynMech
elif 'NGF' in pre:
synMech = NGFSynMech
netParams.connParams['II_'+pre+'_'+post+'_'+l] = {
'preConds': {'pop': pre},
'postConds': {'pop': post, 'ynorm': layer[l]},
'synMech': synMech,
'probability': prob,
'weight': wmat[pre][post] * cfg.IIGain * cfg.IILayerGain[l],
'synMechWeightFactor': cfg.synWeightFractionII,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'proximal'}
#------------------------------------------------------------------------------
# Thalamic connectivity parameters
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
## Intrathalamic
TEpops = ['TC', 'TCM', 'HTC']
TIpops = ['IRE', 'IREM', 'TI', 'TIM']
if cfg.addConn and cfg.addIntraThalamicConn:
for pre in TEpops+TIpops:
for post in TEpops+TIpops:
if post in pmat[pre]:
# for syns use ESynMech, SOMESynMech and SOMISynMech
if pre in TEpops: # E->E/I
syn = ESynMech
synWeightFactor = cfg.synWeightFractionEE
elif post in TEpops: # I->E
syn = SOMESynMech
synWeightFactor = cfg.synWeightFractionIE
else: # I->I
syn = SOMISynMech
synWeightFactor = [1.0]
netParams.connParams['ITh_'+pre+'_'+post] = {
'preConds': {'pop': pre},
'postConds': {'pop': post},
'synMech': syn,
'probability': pmat[pre][post],
'weight': wmat[pre][post] * cfg.intraThalamicGain,
'synMechWeightFactor': synWeightFactor,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'soma'}
#------------------------------------------------------------------------------
## Corticothalamic
if cfg.addConn and cfg.addCorticoThalamicConn:
for pre in Epops:
for post in TEpops+TIpops:
if post in pmat[pre]:
netParams.connParams['CxTh_'+pre+'_'+post] = {
'preConds': {'pop': pre},
'postConds': {'pop': post},
'synMech': ESynMech,
'probability': pmat[pre][post],
'weight': wmat[pre][post] * cfg.corticoThalamicGain,
'synMechWeightFactor': cfg.synWeightFractionEE,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'soma'}
#------------------------------------------------------------------------------
## Thalamocortical
if cfg.addConn and cfg.addThalamoCorticalConn:
for pre in TEpops+TIpops:
for post in Epops+Ipops:
if post in pmat[pre]:
# for syns use ESynMech, SOMESynMech and SOMISynMech
if pre in TEpops: # E->E/I
syn = ESynMech
synWeightFactor = cfg.synWeightFractionEE
elif post in Epops: # I->E
syn = SOMESynMech
synWeightFactor = cfg.synWeightFractionIE
else: # I->I
syn = SOMISynMech
synWeightFactor = [1.0]
netParams.connParams['ThCx_'+pre+'_'+post] = {
'preConds': {'pop': pre},
'postConds': {'pop': post},
'synMech': syn,
'probability': '%f * exp(-dist_2D/%f)' % (pmat[pre][post], lmat[pre][post]),
'weight': wmat[pre][post] * cfg.thalamoCorticalGain,
'synMechWeightFactor': synWeightFactor,
'delay': 'defaultDelay+dist_3D/propVelocity',
'synsPerConn': 1,
'sec': 'soma'}
#------------------------------------------------------------------------------
# Subcellular connectivity (synaptic distributions)
#------------------------------------------------------------------------------
# Set target sections (somatodendritic distribution of synapses)
# From Billeh 2019 (Allen V1) (fig 4F) and Tremblay 2016 (fig 3)
if cfg.addSubConn:
#------------------------------------------------------------------------------
# E -> E2/3,4: soma,dendrites <200um
netParams.subConnParams['E->E2,3,4'] = {
'preConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'postConds': {'pops': ['IT2', 'IT3', 'ITP4', 'ITS4']},
'sec': 'proximal',
'groupSynMechs': ESynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# E -> E5,6: soma,dendrites (all)
netParams.subConnParams['E->E5,6'] = {
'preConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'postConds': {'pops': ['IT5A', 'CT5A', 'IT5B', 'PT5B', 'CT5B', 'IT6', 'CT6']},
'sec': 'all',
'groupSynMechs': ESynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# E -> I: soma, dendrite (all)
netParams.subConnParams['E->I'] = {
'preConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'postConds': {'cellType': ['PV','SOM','NGF', 'VIP']},
'sec': 'all',
'groupSynMechs': ESynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# NGF1 -> E: apic_tuft
netParams.subConnParams['NGF1->E'] = {
'preConds': {'pops': ['NGF1']},
'postConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'sec': 'apic_tuft',
'groupSynMechs': NGFSynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# NGF2,3,4 -> E2,3,4: apic_trunk
netParams.subConnParams['NGF2,3,4->E2,3,4'] = {
'preConds': {'pops': ['NGF2', 'NGF3', 'NGF4']},
'postConds': {'pops': ['IT2', 'IT3', 'ITP4', 'ITS4']},
'sec': 'apic_trunk',
'groupSynMechs': NGFSynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# NGF2,3,4 -> E5,6: apic_uppertrunk
netParams.subConnParams['NGF2,3,4->E5,6'] = {
'preConds': {'pops': ['NGF2', 'NGF3', 'NGF4']},
'postConds': {'pops': ['IT5A', 'CT5A', 'IT5B', 'PT5B', 'CT5B', 'IT6', 'CT6']},
'sec': 'apic_uppertrunk',
'groupSynMechs': NGFSynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# NGF5,6 -> E5,6: apic_lowerrunk
netParams.subConnParams['NGF5,6->E5,6'] = {
'preConds': {'pops': ['NGF5A', 'NGF5B', 'NGF6']},
'postConds': {'pops': ['IT5A', 'CT5A', 'IT5B', 'PT5B', 'CT5B', 'IT6', 'CT6']},
'sec': 'apic_lowertrunk',
'groupSynMechs': NGFSynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# SOM -> E: all_dend (not close to soma)
netParams.subConnParams['SOM->E'] = {
'preConds': {'cellType': ['SOM']},
'postConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'sec': 'dend_all',
'groupSynMechs': SOMESynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# PV -> E: proximal
netParams.subConnParams['PV->E'] = {
'preConds': {'cellType': ['PV']},
'postConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'sec': 'proximal',
'groupSynMechs': PVSynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# TC -> E: proximal
netParams.subConnParams['TC->E'] = {
'preConds': {'cellType': ['TC', 'HTC']},
'postConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'sec': 'proximal',
'groupSynMechs': ESynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# TCM -> E: apical
netParams.subConnParams['TCM->E'] = {
'preConds': {'cellType': ['TCM']},
'postConds': {'cellType': ['IT', 'ITS4', 'PT', 'CT']},
'sec': 'apic',
'groupSynMechs': ESynMech,
'density': 'uniform'}
#------------------------------------------------------------------------------
# Background inputs
#------------------------------------------------------------------------------
if cfg.addBkgConn:
# add bkg sources for E and I cells
netParams.stimSourceParams['excBkg'] = {'type': 'NetStim', 'start': cfg.startBkg, 'rate': cfg.rateBkg['exc'], 'noise': cfg.noiseBkg, 'number': 1e9}
netParams.stimSourceParams['inhBkg'] = {'type': 'NetStim', 'start': cfg.startBkg, 'rate': cfg.rateBkg['inh'], 'noise': cfg.noiseBkg, 'number': 1e9}
if cfg.cochlearThalInput:
from input import cochlearInputSpikes
numCochlearCells = cfg.cochlearThalInput['numCells']
cochlearSpkTimes = cochlearInputSpikes(numCells = numCochlearCells,
duration = cfg.duration,
freqRange = cfg.cochlearThalInput['freqRange'],
toneFreq=cfg.cochlearThalInput['toneFreq'],
loudnessDBs=cfg.cochlearThalInput['loudnessDBs'])
netParams.popParams['cochlea'] = {'cellModel': 'VecStim', 'numCells': numCochlearCells, 'spkTimes': cochlearSpkTimes, 'ynormRange': layer['cochlear']}
if cfg.ICThalInput:
# load file with IC output rates
from scipy.io import loadmat
import numpy as np
data = loadmat(cfg.ICThalInput['file'])
fs = data['RsFs'][0][0]
ICrates = data['BE_sout_population'].tolist()
ICtimes = list(np.arange(0, cfg.duration, 1000./fs)) # list with times to set each time-dep rate
ICrates = ICrates * 4 # 200 cells
numCells = len(ICrates)
# Option 1: create population of DynamicNetStims with time-varying rates
#netParams.popParams['IC'] = {'cellModel': 'DynamicNetStim', 'numCells': numCells, 'ynormRange': layer['cochlear'],
# 'dynamicRates': {'rates': ICrates, 'times': ICtimes}}
# Option 2:
from input import inh_poisson_generator
maxLen = min(len(ICrates[0]), len(ICtimes))
spkTimes = [[x+cfg.ICThalInput['startTime'] for x in inh_poisson_generator(ICrates[i][:maxLen], ICtimes[:maxLen], cfg.duration, cfg.ICThalInput['seed']+i)] for i in range(len(ICrates))]
netParams.popParams['IC'] = {'cellModel': 'VecStim', 'numCells': numCells, 'ynormRange': layer['cochlear'],
'spkTimes': spkTimes}
# excBkg/I -> thalamus + cortex
with open('cells/bkgWeightPops.json', 'r') as f:
weightBkg = json.load(f)
pops = list(cfg.allpops)
pops.remove('IC')
for pop in ['TC', 'TCM', 'HTC']:
weightBkg[pop] *= cfg.EbkgThalamicGain
for pop in ['IRE', 'IREM', 'TI', 'TIM']:
weightBkg[pop] *= cfg.IbkgThalamicGain
for pop in pops:
netParams.stimTargetParams['excBkg->'+pop] = {
'source': 'excBkg',
'conds': {'pop': pop},
'sec': 'apic',
'loc': 0.5,
'synMech': ESynMech,
'weight': weightBkg[pop],
'synMechWeightFactor': cfg.synWeightFractionEE,
'delay': cfg.delayBkg}
netParams.stimTargetParams['inhBkg->'+pop] = {
'source': 'inhBkg',
'conds': {'pop': pop},
'sec': 'proximal',
'loc': 0.5,
'synMech': 'GABAA',
'weight': weightBkg[pop],
'delay': cfg.delayBkg}
# cochlea -> thal
if cfg.cochlearThalInput:
netParams.connParams['cochlea->ThalE'] = {
'preConds': {'pop': 'cochlea'},
'postConds': {'cellType': ['TC', 'HTC']},
'sec': 'soma',
'loc': 0.5,
'synMech': ESynMech,
'probability': cfg.probInput['ThalE'],
'weight': cfg.weightInput['ThalE'],
'synMechWeightFactor': cfg.synWeightFractionEE,
'delay': cfg.delayBkg}
netParams.connParams['cochlea->ThalI'] = {
'preConds': {'pop': 'cochlea'},
'postConds': {'cellType': ['RE']},
'sec': 'soma',
'loc': 0.5,
'synMech': ESynMech,
'probability': cfg.probInput['ThalI'],
'weight': cfg.weightInput['ThalI'],
'synMechWeightFactor': cfg.synWeightFractionEI,
'delay': cfg.delayBkg}
# cochlea/IC -> thal
if cfg.ICThalInput:
netParams.connParams['IC->ThalE'] = {
'preConds': {'pop': 'IC'},
'postConds': {'cellType': ['TC', 'HTC']},
'sec': 'soma',
'loc': 0.5,
'synMech': ESynMech,
'probability': cfg.ICThalInput['probE'],
'weight': cfg.ICThalInput['weightE'],
'synMechWeightFactor': cfg.synWeightFractionEE,
'delay': cfg.delayBkg}
netParams.connParams['IC->ThalI'] = {
'preConds': {'pop': 'IC'},
'postConds': {'cellType': ['RE', 'TI']},
'sec': 'soma',
'loc': 0.5,
'synMech': 'GABAA',
'probability': cfg.ICThalInput['probI'],
'weight': cfg.ICThalInput['weightI'],
'delay': cfg.delayBkg}
#------------------------------------------------------------------------------
# NetStim inputs (to simulate short external stimuli; not bkg)
#------------------------------------------------------------------------------
if cfg.addNetStim:
for key in [k for k in dir(cfg) if k.startswith('NetStim')]:
params = getattr(cfg, key, None)
[pop, ynorm, sec, loc, synMech, synMechWeightFactor, start, interval, noise, number, weight, delay] = \
[params[s] for s in ['pop', 'ynorm', 'sec', 'loc', 'synMech', 'synMechWeightFactor', 'start', 'interval', 'noise', 'number', 'weight', 'delay']]
# add stim source
netParams.stimSourceParams[key] = {'type': 'NetStim', 'start': start, 'interval': interval, 'noise': noise, 'number': number}
if not isinstance(pop, list):
pop = [pop]
for eachPop in pop:
# connect stim source to target
print(key, eachPop)
netParams.stimTargetParams[key+'_'+eachPop] = {
'source': key,
'conds': {'pop': eachPop, 'ynorm': ynorm},
'sec': sec,
'loc': loc,
'synMech': synMech,
'weight': weight,
'synMechWeightFactor': synMechWeightFactor,
'delay': delay}
#------------------------------------------------------------------------------
# Description
#------------------------------------------------------------------------------
netParams.description = """
v7 - Added template for connectivity
v8 - Added cell types
v9 - Added local connectivity
v10 - Added thalamic populations from prev model
v11 - Added thalamic conn from prev model
v12 - Added CT cells to L5B
v13 - Added CT cells to L5A
v14 - Fixed L5A & L5B E cell densities + added CT5A & CT5B to 'Epops'
v15 - Added cortical and thalamic conn to CT5A and CT5B
v16 - Updated multiple cell types
v17 - Changed NGF -> I prob from strong (1.0) to weak (0.35)
v18 - Fixed bug in VIP cell morphology
v19 - Added in 2-compartment thalamic interneuron model
v20 - Added TI conn and updated thal pop
v21 - Added exc+inh bkg inputs specific to each cell type
v22 - Made exc+inh bkg inputs specific to each pop; automated calculation
v23 - IE/II specific layer gains and simplified code (assume 'Allen_custom')
v24 - Fixed bug in IE/II specific layer gains
v25 - Fixed subconnparams TC->E and NGF1->E; made IC input deterministic
v26 - Changed NGF AMPA:NMDA ratio
v27 - Split thalamic interneurons into core and matrix (TI and TIM)
v28 - Set recurrent TC->TC conn to 0
v29 - Added EI specific layer gains
v30 - Added EE specific layer gains; and split combined L1-3 gains into L1,L2,L3
v31 - Added EI postsyn-cell-type specific gains; update ITS4 and NGF
v32 - Added IE presyn-cell-type specific gains
v33 - Fixed bug in matrix thalamocortical conn (were very low)
v34 - Added missing conn from cortex to matrix thalamus IREM and TIM
"""