-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_dataset.py
498 lines (368 loc) · 15.9 KB
/
process_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import numpy as np
import pandas as pd
import os
import sys
import json
import argparse
TYPE_TRANSFORM ={
'float', np.float32,
'str', str,
'int', int
}
INFO_PATH = 'data/Info'
parser = argparse.ArgumentParser(description='process dataset')
# General configs
parser.add_argument('--dataname', type=str, default=None, help='Name of dataset.')
args = parser.parse_args()
def preprocess_beijing():
with open(f'{INFO_PATH}/beijing.json', 'r') as f:
info = json.load(f)
data_path = info['raw_data_path']
data_df = pd.read_csv(data_path)
columns = data_df.columns
data_df = data_df[columns[1:]]
df_cleaned = data_df.dropna()
df_cleaned.to_csv(info['data_path'], index = False)
def preprocess_beijing_dcr():
with open(f'{INFO_PATH}/beijing_dcr.json', 'r') as f:
info = json.load(f)
data_path = info['raw_data_path']
data_df = pd.read_csv(data_path)
columns = data_df.columns
data_df = data_df[columns[1:]]
df_cleaned = data_df.dropna()
df_cleaned.to_csv(info['data_path'], index = False)
def preprocess_news(remove_cat=False):
name = 'news' if not remove_cat else 'news_nocat'
with open(f'{INFO_PATH}/{name}.json', 'r') as f:
info = json.load(f)
data_path = info['raw_data_path']
data_df = pd.read_csv(data_path)
data_df = data_df.drop('url', axis=1)
columns = np.array(data_df.columns.tolist())
cat_columns1 = columns[list(range(12,18))]
cat_columns2 = columns[list(range(30,38))]
if not remove_cat:
cat_col1 = data_df[cat_columns1].astype(int).to_numpy().argmax(axis = 1)
cat_col2 = data_df[cat_columns2].astype(int).to_numpy().argmax(axis = 1)
data_df = data_df.drop(cat_columns2, axis=1)
data_df = data_df.drop(cat_columns1, axis=1)
if not remove_cat:
data_df['data_channel'] = cat_col1
data_df['weekday'] = cat_col2
data_save_path = f'data/{name}/{name}.csv'
data_df.to_csv(f'{data_save_path}', index = False)
columns = np.array(data_df.columns.tolist())
num_columns = columns[list(range(45))]
cat_columns = ['data_channel', 'weekday'] if not remove_cat else []
target_columns = columns[[45]]
info['num_col_idx'] = list(range(45))
info['cat_col_idx'] = [46, 47] if not remove_cat else []
info['target_col_idx'] = [45]
info['data_path'] = data_save_path
with open(f'{INFO_PATH}/{name}.json', 'w') as file:
json.dump(info, file, indent=4)
def preprocess_news_dcr(remove_cat=False):
name = 'news_dcr' if not remove_cat else 'news_nocat_dcr'
with open(f'{INFO_PATH}/{name}.json', 'r') as f:
info = json.load(f)
data_path = info['raw_data_path']
data_df = pd.read_csv(data_path)
data_df = data_df.drop('url', axis=1)
columns = np.array(data_df.columns.tolist())
cat_columns1 = columns[list(range(12,18))]
cat_columns2 = columns[list(range(30,38))]
if not remove_cat:
cat_col1 = data_df[cat_columns1].astype(int).to_numpy().argmax(axis = 1)
cat_col2 = data_df[cat_columns2].astype(int).to_numpy().argmax(axis = 1)
data_df = data_df.drop(cat_columns2, axis=1)
data_df = data_df.drop(cat_columns1, axis=1)
if not remove_cat:
data_df['data_channel'] = cat_col1
data_df['weekday'] = cat_col2
data_save_path = f'data/{name}/{name}.csv'
data_df.to_csv(f'{data_save_path}', index = False)
columns = np.array(data_df.columns.tolist())
num_columns = columns[list(range(45))]
cat_columns = ['data_channel', 'weekday'] if not remove_cat else []
target_columns = columns[[45]]
info['num_col_idx'] = list(range(45))
info['cat_col_idx'] = [46, 47] if not remove_cat else []
info['target_col_idx'] = [45]
info['data_path'] = data_save_path
with open(f'{INFO_PATH}/{name}.json', 'w') as file:
json.dump(info, file, indent=4)
def get_column_name_mapping(data_df, num_col_idx, cat_col_idx, target_col_idx, column_names = None):
if not column_names:
column_names = np.array(data_df.columns.tolist())
idx_mapping = {}
curr_num_idx = 0
curr_cat_idx = len(num_col_idx)
curr_target_idx = curr_cat_idx + len(cat_col_idx)
for idx in range(len(column_names)):
if idx in num_col_idx:
idx_mapping[int(idx)] = curr_num_idx
curr_num_idx += 1
elif idx in cat_col_idx:
idx_mapping[int(idx)] = curr_cat_idx
curr_cat_idx += 1
else:
idx_mapping[int(idx)] = curr_target_idx
curr_target_idx += 1
inverse_idx_mapping = {}
for k, v in idx_mapping.items():
inverse_idx_mapping[int(v)] = k
idx_name_mapping = {}
for i in range(len(column_names)):
idx_name_mapping[int(i)] = column_names[i]
return idx_mapping, inverse_idx_mapping, idx_name_mapping
def train_val_test_split(data_df, cat_columns, num_train = 0, num_test = 0):
total_num = data_df.shape[0]
idx = np.arange(total_num)
seed = 1234
while True:
np.random.seed(seed)
np.random.shuffle(idx)
train_idx = idx[:num_train]
test_idx = idx[-num_test:]
train_df = data_df.loc[train_idx]
test_df = data_df.loc[test_idx]
flag = 0
for i in cat_columns:
if len(set(train_df[i])) != len(set(data_df[i])):
flag = 1
break
if flag == 0:
break
else:
seed += 1
return train_df, test_df, seed
def process_data(name):
if name == 'news':
preprocess_news()
elif name == 'news_nocat':
preprocess_news(remove_cat=True)
elif name == 'news_dcr':
preprocess_news_dcr()
elif name == 'beijing':
preprocess_beijing()
elif name == 'beijing_dcr':
preprocess_beijing_dcr()
with open(f'{INFO_PATH}/{name}.json', 'r') as f:
info = json.load(f)
data_path = info['data_path']
if info['file_type'] == 'csv':
data_df = pd.read_csv(data_path, header = info['header'])
elif info['file_type'] == 'xls':
data_df = pd.read_excel(data_path, sheet_name='Data', header=1)
data_df = data_df.drop('ID', axis=1)
num_data = data_df.shape[0]
column_names = info['column_names'] if info['column_names'] else data_df.columns.tolist()
num_col_idx = info['num_col_idx']
cat_col_idx = info['cat_col_idx']
target_col_idx = info['target_col_idx']
num_columns = [column_names[i] for i in num_col_idx]
cat_columns = [column_names[i] for i in cat_col_idx]
target_columns = [column_names[i] for i in target_col_idx]
idx_mapping, inverse_idx_mapping, idx_name_mapping = get_column_name_mapping(data_df, num_col_idx, cat_col_idx, target_col_idx, column_names)
has_val = bool(info['val_path'])
val_df = pd.DataFrame(columns=data_df.columns).astype(data_df.dtypes) # by default (val_path is not provided), set val_Df to be empty
if info['test_path']:
# if testing data is given
test_path = info['test_path']
if "adult" in name: # BUG: currently data saved at adult's test_path cannot be directly loaded. Consider integrate the following code to a preprocesing function for adult
with open(test_path, 'r') as f:
lines = f.readlines()[1:]
test_save_path = f'data/{name}/test.data'
if not os.path.exists(test_save_path):
with open(test_save_path, 'a') as f1:
for line in lines:
save_line = line.strip('\n').strip('.')
f1.write(f'{save_line}\n')
test_df = pd.read_csv(test_save_path, header = None)
else:
test_df = pd.read_csv(test_path, header = info['header'])
if has_val: # currently you cannot have a val path without a test path
val_path = info['val_path']
val_df = pd.read_csv(val_path, header = info['header'])
train_df = data_df
if "dcr" in name: # create 50/50 splits for dcr datasets
complete_df = pd.concat([train_df, test_df, val_df], axis = 0, ignore_index=True)
num_data = complete_df.shape[0]
num_train = int(num_data*0.5)
num_test = num_data - num_train
complete_df.rename(columns = idx_name_mapping, inplace=True)
train_df, test_df, seed = train_val_test_split(complete_df, cat_columns, num_train, num_test)
else:
# Train/ Test Split, 90% Training (50% for dcr eval exclusively), 10% Testing (Validation set will be selected from Training set)
if "dcr" in name:
num_train = int(num_data*0.5)
else:
num_train = int(num_data*0.9)
num_test = num_data - num_train
train_df, test_df, seed = train_val_test_split(data_df, cat_columns, num_train, num_test)
complete_df = pd.concat([train_df, test_df, val_df], axis = 0)
name_idx_mapping = {val: key for key, val in idx_name_mapping.items()}
int_columns = []
int_col_idx = []
int_col_idx_wrt_num = []
for i, col_idx in enumerate(num_col_idx):
col = column_names[col_idx]
col_data = complete_df.iloc[:,col_idx]
is_int = (col_data%1 == 0).all()
if is_int:
int_columns.append(col)
int_col_idx.append(name_idx_mapping[col])
int_col_idx_wrt_num.append(i)
info['int_col_idx'] = int_col_idx
info['int_columns'] = int_columns
info['int_col_idx_wrt_num'] = int_col_idx_wrt_num
train_df.columns = range(len(train_df.columns))
test_df.columns = range(len(test_df.columns))
val_df.columns = range(len(val_df.columns))
print(name, train_df.shape, val_df.shape, test_df.shape, data_df.shape)
col_info = {}
for col_idx in num_col_idx:
col_info[col_idx] = {}
col_info['type'] = 'numerical'
col_info['max'] = float(train_df[col_idx].max())
col_info['min'] = float(train_df[col_idx].min())
for col_idx in cat_col_idx:
col_info[col_idx] = {}
col_info['type'] = 'categorical'
col_info['categorizes'] = list(set(train_df[col_idx]))
for col_idx in target_col_idx:
if info['task_type'] == 'regression':
col_info[col_idx] = {}
col_info['type'] = 'numerical'
col_info['max'] = float(train_df[col_idx].max())
col_info['min'] = float(train_df[col_idx].min())
else:
col_info[col_idx] = {}
col_info['type'] = 'categorical'
col_info['categorizes'] = list(set(train_df[col_idx]))
info['column_info'] = col_info
train_df.rename(columns = idx_name_mapping, inplace=True)
test_df.rename(columns = idx_name_mapping, inplace=True)
val_df.rename(columns = idx_name_mapping, inplace=True)
for col in num_columns:
if (train_df[col] == ' ?').sum() > 0:
print(col)
import pdb; pdb.set_trace()
if (train_df[col] == '?').sum() > 0:
print(col)
import pdb; pdb.set_trace()
train_df.loc[train_df[col] == '?', col] = np.nan
for col in cat_columns:
train_df.loc[train_df[col] == '?', col] = 'nan'
for col in num_columns:
if (train_df[col] == ' ?').sum() > 0:
print(col)
import pdb; pdb.set_trace()
if (train_df[col] == '?').sum() > 0:
print(col)
import pdb; pdb.set_trace()
test_df.loc[test_df[col] == '?', col] = np.nan
for col in cat_columns:
test_df.loc[test_df[col] == '?', col] = 'nan'
for col in num_columns:
val_df.loc[val_df[col] == '?', col] = np.nan
for col in cat_columns:
val_df.loc[val_df[col] == '?', col] = 'nan'
if train_df.isna().any().any():
print("Training data contains nan in the numerical cols")
import pdb; pdb.set_trace()
X_num_train = train_df[num_columns].to_numpy().astype(np.float32)
X_cat_train = train_df[cat_columns].to_numpy()
y_train = train_df[target_columns].to_numpy()
X_num_test = test_df[num_columns].to_numpy().astype(np.float32)
X_cat_test = test_df[cat_columns].to_numpy()
y_test = test_df[target_columns].to_numpy()
X_num_val = val_df[num_columns].to_numpy().astype(np.float32)
X_cat_val = val_df[cat_columns].to_numpy()
y_val = val_df[target_columns].to_numpy()
save_dir = f'data/{name}'
np.save(f'{save_dir}/X_num_train.npy', X_num_train)
np.save(f'{save_dir}/X_cat_train.npy', X_cat_train)
np.save(f'{save_dir}/y_train.npy', y_train)
np.save(f'{save_dir}/X_num_test.npy', X_num_test)
np.save(f'{save_dir}/X_cat_test.npy', X_cat_test)
np.save(f'{save_dir}/y_test.npy', y_test)
if has_val:
np.save(f'{save_dir}/X_num_val.npy', X_num_val)
np.save(f'{save_dir}/X_cat_val.npy', X_cat_val)
np.save(f'{save_dir}/y_val.npy', y_val)
train_df[num_columns] = train_df[num_columns].astype(np.float32)
test_df[num_columns] = test_df[num_columns].astype(np.float32)
val_df[num_columns] = val_df[num_columns].astype(np.float32)
train_df.to_csv(f'{save_dir}/train.csv', index = False)
test_df.to_csv(f'{save_dir}/test.csv', index = False)
if has_val:
val_df.to_csv(f'{save_dir}/val.csv', index = False)
if not os.path.exists(f'synthetic/{name}'):
os.makedirs(f'synthetic/{name}')
train_df.to_csv(f'synthetic/{name}/real.csv', index = False)
test_df.to_csv(f'synthetic/{name}/test.csv', index = False)
if has_val:
val_df.to_csv(f'synthetic/{name}/val.csv', index = False)
print('Numerical', X_num_train.shape)
print('Categorical', X_cat_train.shape)
info['column_names'] = column_names
info['train_num'] = train_df.shape[0]
info['test_num'] = test_df.shape[0]
info['val_num'] = val_df.shape[0]
info['idx_mapping'] = idx_mapping
info['inverse_idx_mapping'] = inverse_idx_mapping
info['idx_name_mapping'] = idx_name_mapping
metadata = {'columns': {}}
task_type = info['task_type']
num_col_idx = info['num_col_idx']
cat_col_idx = info['cat_col_idx']
target_col_idx = info['target_col_idx']
for i in num_col_idx:
metadata['columns'][i] = {}
metadata['columns'][i]['sdtype'] = 'numerical'
metadata['columns'][i]['computer_representation'] = 'Float'
for i in cat_col_idx:
metadata['columns'][i] = {}
metadata['columns'][i]['sdtype'] = 'categorical'
if task_type == 'regression':
for i in target_col_idx:
metadata['columns'][i] = {}
metadata['columns'][i]['sdtype'] = 'numerical'
metadata['columns'][i]['computer_representation'] = 'Float'
else:
for i in target_col_idx:
metadata['columns'][i] = {}
metadata['columns'][i]['sdtype'] = 'categorical'
info['metadata'] = metadata
with open(f'{save_dir}/info.json', 'w') as file:
json.dump(info, file, indent=4)
print(f'Processing and Saving {name} Successfully!')
print(name)
print('Total', info['train_num'] + info['test_num'])
print('Train', info['train_num'])
print('Val', info['val_num'])
print('Test', info['test_num'])
if info['task_type'] == 'regression':
num = len(info['num_col_idx'] + info['target_col_idx'])
cat = len(info['cat_col_idx'])
else:
cat = len(info['cat_col_idx'] + info['target_col_idx'])
num = len(info['num_col_idx'])
print('Num', num)
print('Int', len(info['int_col_idx']))
print('Cat', cat)
if __name__ == "__main__":
if args.dataname:
process_data(args.dataname)
else:
for name in [
'adult', 'default', 'shoppers', 'magic', 'beijing', 'news', 'news_nocat',
'adult_dcr',
'default_dcr',
'shoppers_dcr',
'beijing_dcr',
'news_dcr',
]:
process_data(name)