forked from sisinflab/elliot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced_configuration.yml
66 lines (66 loc) · 1.74 KB
/
advanced_configuration.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
experiment:
dataset: movielens_1m
data_config:
strategy: dataset
dataset_path: ../data/{0}/dataset.tsv
prefiltering:
strategy: iterative_k_core
core: 10
splitting:
test_splitting:
strategy: random_subsampling
folds: 1
test_ratio: 0.2
validation_splitting:
strategy: random_cross_validation
folds: 5
top_k: 50
evaluation:
simple_metrics: [nDCG, ACLT, ARP]
complex_metrics:
- metric: UserMADrating
clustering_name: Happiness
clustering_file: ../data/movielens_1m/u_happy.tsv
relevance_threshold: 1
wilcoxon_test: True
gpu: 0
models:
NeuMF:
meta:
hyper_max_evals: 5
hyper_opt_alg: tpe
lr: [loguniform, -10, -1]
batch_size: [128, 256, 512]
epochs: 50
mf_factors: [quniform, 8, 32, 1]
mlp_factors: [8, 16]
mlp_hidden_size: [(32, 16, 8), (64, 32, 16)]
prob_keep_dropout: 0.2
is_mf_train: True
is_mlp_train: True
MultiVAE:
meta:
hyper_max_evals: 5
hyper_opt_alg: tpe
lr: [0.0005, 0.001, 0.005, 0.01]
epochs: 50
batch_size: [128, 256, 512]
intermediate_dim: [300, 400, 500]
latent_dim: [100, 200, 300]
dropout_pkeep: 1
reg_lambda: [0.1, 0.0, 10]
BPRMF:
meta:
hyper_max_evals: 5
hyper_opt_alg: rand
lr: [0.0005, 0.001, 0.005, 0.01]
batch_size: [128, 256, 512]
epochs: 50
bias_regularization: 0
user_regularization: [0.0025, 0.005, 0.01]
positive_item_regularization: [0.0025, 0.005, 0.01]
negative_item_regularization: [0.00025, 0.0005, 0.001]
update_negative_item_factors: True
update_users: True
update_items: True
update_bias: True