-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParameters.py
106 lines (84 loc) · 3.46 KB
/
Parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
# Retinal Topology: ----------------------------------------------------------------------------------------------------
num_rods = 100000
num_S_cones = int(0.015*num_rods)
num_M_cones = int(0.015*num_rods)
num_sensors = num_rods + num_S_cones + num_M_cones
num_RGCs = 45000
num_horizontal_cells = 18000
#sensors_per_RF = 100
diam_retina = 5.
rad_VF = diam_retina/2 # radius of visual field [mm]
# number of sensors the RGCs are connected to directly:
# for 100k: 20
conn_in_inner_RF = int(num_rods/5000)
# number of sensors the RGCs are connected to via horizontal cells:
# for 100k: 10
conn_in_outer_RF = int(0.5*conn_in_inner_RF)
# number of horizontal cells that connect to each RGC:
horizontal_inputs = 10
# delay of horizontal input to RGC:
horizontal_delay = 1
# Canvas Parameters: ---------------------------------------------------------------------------------------------------
resolution = 5000
# Experimental Setup: --------------------------------------------------------------------------------------------------
# Choose between: 'TFT', 'LED'
Signal_source = 'LED'
# LED Emission Peaks m1, m2, m3:
m1 = 350
m2 = 450
m3 = 550
# Signal Parameters: ---------------------------------------------------------------------------------------------------
Signal_dict = dict([
('LED1', (61, 0, 61)),
('LED2', (0, 46, 255)),
('LED3', (163, 255, 0)),
('TFT1', (0, 0, 255)),
('TFT2', (0, 255, 0)),
('TFT3', (255, 0, 0))
])
# Network Specifications: ----------------------------------------------------------------------------------------------
# Factors to account for the 10-fold higher number of release sites in cones compared to rods and the absolute light
# gathering capabilities:
rod_factor = 1.
S_cone_factor = 10.
M_cone_factor = 10.
J_e = 100. # [mV]
g = 1. # inhibition scaling factor for syn strength
J_i = -g*J_e
J_RGC = -10.
syn_delay = 0.1 # [ms]
#model parameters for 'iaf_psc_delta':
RGC_model = 'iaf_psc_alpha'
horizontal_model = 'iaf_psc_alpha'
RGC_params = {
'E_L': -70.0, # -70 mV is default. Resting membrane potential in mV.
'V_th': -55.0, # -55mV is default. Spike threshold in mV.
'V_reset': -70.0, # -70.0 is default. Reset potential of the membrane in mV
'tau_m': 10.0, # 10 ms is default. Membrane time constant in ms
't_ref': 2.0, # 2ms is default. Duration of refractory period in ms.
'I_e': 0.0, # Constant input current in pA
'V_min': -100.0 # V_min double - Absolute lower value for the membrane potential in mV
}
horizontal_params = {
'E_L': -70.0, # -70 mV is default. Resting membrane potential in mV.
'V_th': -55.0, # -55mV is default. Spike threshold in mV.
'V_reset': -70.0, # -70.0 is default. Reset potential of the membrane in mV
'tau_m': 10.0, # 10 ms is default. Membrane time constant in ms
't_ref': 2.0, # 2ms is default. Duration of refractory period in ms.
'I_e': 0.0, # Constant input current in pA
'V_min': -100.0 # V_min double - Absolute lower value for the membrane potential in mV
}
# Connection dictionary:
conn_dict = {'rule': 'one_to_one'}
rod_delay = syn_delay
S_cone_delay = syn_delay
M_cone_delay = syn_delay
# between horizontal cells and RGCs:
horizontal_RGC_synapse_dict_inh={
'weight': J_RGC,
'delay': horizontal_delay #ms
}
# Simulation parameters: -----------------------------------------------------------------------------------------------
wuptime = 50.0
simtime = 100.0