-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmcd_trainer.py
328 lines (264 loc) · 10.9 KB
/
mcd_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import time
import datetime
from torch.nn import functional as F
from utils import *
from utils.dataset import *
from utils.evaluator import Classification
from utils import mixup
def discrepancy(y1, y2):
return (y1 - y2).abs().mean()
class MCDTrainer:
def __init__(self, models, optimizer, device, index, **params):
self.index = index
self.n_step_f = params["n_step_f"]
self._models = models
self.F = models["F"]
self.C1 = models["C1"]
self.C2 = models["C2"]
self._optims = optimizer
self.device = device
self.batch_size = params['batch_size']
self.num_workers = params['num_workers']
self.batch_size = params['batch_size']
self.folder = osp.join(params['save_model_addr'], f"MCD{index}")
self.max_epoch = 0
self.start_epoch = self.epoch = 0
self.evaluator = Classification()
mkdir_if_missing(self.folder)
def get_model_names(self, names=None):
names_real = list(self._models.keys())
if names is not None:
names = tolist_if_not(names)
for name in names:
assert name in names_real
return names
else:
return names_real
def get_current_lr(self, names=None):
names = self.get_model_names(names)
name = names[0]
return self._optims[name].param_groups[0]['lr']
def set_model_mode(self, mode='train', names=None):
names = self.get_model_names(names)
for name in names:
if mode == 'train':
self._models[name].train()
else:
self._models[name].eval()
def model_zero_grad(self, names=None):
names = self.get_model_names(names)
for name in names:
if self._optims[name] is not None:
self._optims[name].zero_grad()
def detect_anomaly(self, loss):
if not torch.isfinite(loss).all():
raise FloatingPointError('Loss is infinite or NaN!')
def model_backward(self, loss, retain_graph):
self.detect_anomaly(loss)
loss.backward(retain_graph=retain_graph)
def model_update(self, names=None):
names = self.get_model_names(names)
for name in names:
if self._optims[name] is not None:
self._optims[name].step()
def model_backward_and_update(self, loss, names=None, retain_graph=False):
self.model_zero_grad(names)
self.model_backward(loss, retain_graph)
self.model_update(names)
def save_model(self, epoch, directory, is_best=False, model_name=''):
names = self.get_model_names()
for name in names:
model_dict = self._models[name].state_dict()
optim_dict = None
if self._optims[name] is not None:
optim_dict = self._optims[name].state_dict()
save_checkpoint(
{
'state_dict': model_dict,
'epoch': epoch + 1,
'optimizer': optim_dict
},
osp.join(directory, name),
is_best=is_best,
model_name=model_name
)
def after_epoch(self, test_loader):
if (self.epoch + 1) % 10 == 0:
self.test(test_loader)
last_epoch = (self.epoch + 1) == self.max_epoch
if last_epoch:
self.save_model(self.epoch, self.folder)
def before_train(self):
# Remember the starting time (for computing the elapsed time)
self.time_start = time.time()
def after_train(self):
print(f'Finished MCD_{self.index} training')
# Show elapsed time
elapsed = round(time.time() - self.time_start)
elapsed = str(datetime.timedelta(seconds=elapsed))
print('Elapsed: {}'.format(elapsed))
def train_mcd(self, train_loader, test_loader, max_epoch):
self.max_epoch = max_epoch
self.before_train()
for self.epoch in range(self.start_epoch, self.max_epoch):
self.run_epoch(train_loader, test_loader)
self.after_epoch(test_loader)
self.after_train()
def run_epoch(self, train_loader, test_loader):
self.set_model_mode('train')
losses = MetricMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
# Decide to iterate over labeled or unlabeled dataset
len_train_loader_x = len(train_loader)
len_train_loader_u = len(test_loader)
num_batches = min(len_train_loader_x, len_train_loader_u)
train_loader_x_iter = iter(train_loader)
train_loader_u_iter = iter(test_loader)
end = time.time()
for self.batch_idx in range(num_batches):
try:
batch_x = next(train_loader_x_iter)
except StopIteration:
train_loader_x_iter = iter(train_loader)
batch_x = next(train_loader_x_iter)
try:
batch_u = next(train_loader_u_iter)
except StopIteration:
train_loader_u_iter = iter(test_loader)
batch_u = next(train_loader_u_iter)
data_time.update(time.time() - end)
loss_summary = self.forward_backward(batch_x, batch_u)
batch_time.update(time.time() - end)
losses.update(loss_summary)
if (self.batch_idx + 1) % 10 == 0:
nb_this_epoch = num_batches - (self.batch_idx + 1)
nb_future_epochs = (
self.max_epoch - (self.epoch + 1)
) * num_batches
eta_seconds = batch_time.avg * (nb_this_epoch + nb_future_epochs)
eta = str(datetime.timedelta(seconds=int(eta_seconds)))
print(
'epoch [{0}/{1}][{2}/{3}]\t'
'time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'eta {eta}\t'
'{losses}\t'
'lr {lr}'.format(
self.epoch + 1,
self.max_epoch,
self.batch_idx + 1,
num_batches,
batch_time=batch_time,
data_time=data_time,
eta=eta,
losses=losses,
lr=self.get_current_lr()
)
)
end = time.time()
def forward_backward(self, batch_x, batch_u):
parsed = self.parse_batch_train(batch_x, batch_u)
input_x, label_x_a, label_x_b, lam, input_u = parsed #mixup
# Step A
feat_x = self.F(input_x)
logit_x1 = self.C1(feat_x)
logit_x2 = self.C2(feat_x)
# mixup
loss_x1 = lam * F.cross_entropy(logit_x1, label_x_a) + (1 - lam) * F.cross_entropy(logit_x1, label_x_b)
loss_x2 = lam * F.cross_entropy(logit_x2, label_x_a) + (1 - lam) * F.cross_entropy(logit_x2, label_x_b)
loss_step_A = loss_x1 + loss_x2
self.model_backward_and_update(loss_step_A)
# Step B
with torch.no_grad():
feat_x = self.F(input_x)
logit_x1 = self.C1(feat_x)
logit_x2 = self.C2(feat_x)
# mixup
loss_x1 = lam * F.cross_entropy(logit_x1, label_x_a) + (1 - lam) * F.cross_entropy(logit_x1, label_x_b)
loss_x2 = lam * F.cross_entropy(logit_x2, label_x_a) + (1 - lam) * F.cross_entropy(logit_x2, label_x_b)
loss_x = loss_x1 + loss_x2
with torch.no_grad():
feat_u = self.F(input_u)
pred_u1 = F.softmax(self.C1(feat_u), 1)
pred_u2 = F.softmax(self.C2(feat_u), 1)
loss_dis = discrepancy(pred_u1, pred_u2)
loss_step_B = loss_x - loss_dis
self.model_backward_and_update(loss_step_B, ['C1', 'C2'])
# Step C
for _ in range(self.n_step_f):
feat_u = self.F(input_u)
pred_u1 = F.softmax(self.C1(feat_u), 1)
pred_u2 = F.softmax(self.C2(feat_u), 1)
loss_step_C = discrepancy(pred_u1, pred_u2)
self.model_backward_and_update(loss_step_C, 'F')
loss_summary = {
'loss_step_A': loss_step_A.item(),
'loss_step_B': loss_step_B.item(),
'loss_step_C': loss_step_C.item()
}
return loss_summary
def parse_batch_train(self, batch_x, batch_u):
input_x = batch_x['img']
label_x = batch_x['label']
input_u = batch_u["img"]
input_x = input_x.to(self.device)
label_x = label_x.to(self.device)
input_u = input_u.to(self.device)
input_x, label_x_a, label_x_b, lam = mixup_data(input_x, label_x, alpha=1.0)
return input_x, label_x_a, label_x_b, lam, input_u
def parse_batch_test(self, batch):
input = batch['img']
label = batch['label']
impath = batch["impath"]
input = input.to(self.device)
label = label.to(self.device)
return input, label, impath
def model_inference(self, input):
feat = self.F(input)
return self.C1(feat)
def load_model(self, directory, epoch=None):
names = self.get_model_names()
# By default, the best model is loaded
model_file = 'model-best.pth.tar'
if epoch is not None:
model_file = 'model.pth.tar-' + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError(
'Model not found at "{}"'.format(model_path)
)
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint['state_dict']
epoch = checkpoint['epoch']
print(
'Loading weights to {} '
'from "{}" (epoch = {})'.format(name, model_path, epoch)
)
self._models[name].load_state_dict(state_dict)
def test(self, test_loader):
"""A testing pipeline."""
self.set_model_mode('eval')
self.evaluator.reset()
for batch_idx, batch in enumerate(test_loader):
input, label, _ = self.parse_batch_test(batch)
output = self.model_inference(input)
self.evaluator.process(output, label)
results = self.evaluator.evaluate()
return results['accuracy']
def update_lr(self, index=1):
for key in self._optims:
opt = self._optims[key]
lr = opt.defaults["lr"] / index ** 2
opt.param_groups[0]['lr'] = lr
def get_pl(self, target_loader):
pl = []
self.set_model_mode('eval')
for batch_idx, batch in enumerate(target_loader):
input, _, impath = self.parse_batch_test(batch)
output = self.model_inference(input)
pred = output.max(1)[1]
for index, path in enumerate(impath):
pl.append((path, int(pred[index])))
return pl