-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_web_retained.py
140 lines (111 loc) · 5.86 KB
/
main_web_retained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import torch
import yaml
import numpy as np
import os.path as osp
from torchvision import datasets
from utils.transforms import *
from utils.dataset import *
from utils import *
from torch.utils.data.dataloader import DataLoader
from models import models
from mcd_trainer import MCDTrainer
from coteaching_trainer import CoTeachingTrainer
from models.build import build_mcd_model,build_dg_model,build_digits_dg_model,build_digits_mcd_model
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def build_mcd_optimizer(model, config):
if config['optimizer']['name'] == 'SGD':
opt_F = torch.optim.SGD(list(model["F"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.SGD(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.SGD(list(model["C2"].parameters()),
**config['optimizer']['params'])
else:
opt_F = torch.optim.Adam(list(model["F"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.Adam(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.Adam(list(model["C2"].parameters()),
**config['optimizer']['params'])
return {"F": opt_F, "C1": opt_C1, "C2": opt_C2}
def build_dg_optimizer(model, config):
if config['optimizer']['name'] == 'SGD':
opt_F1 = torch.optim.SGD(list(model["F1"].parameters()),
**config['optimizer']['params'])
opt_F2 = torch.optim.SGD(list(model["F2"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.SGD(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.SGD(list(model["C2"].parameters()),
**config['optimizer']['params'])
else:
opt_F1 = torch.optim.Adam(list(model["F1"].parameters()),
**config['optimizer']['params'])
opt_F2 = torch.optim.Adam(list(model["F2"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.Adam(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.Adam(list(model["C2"].parameters()),
**config['optimizer']['params'])
return {"F1": opt_F1,"F2": opt_F2, "C1": opt_C1, "C2": opt_C2 }
def build_dataloader(data_list, batch_size, config, transform=None, istrain=True):
dataset = base_dataset(data_list, transform=transform)
return DataLoader(dataset, batch_size=batch_size,
num_workers=config['trainer']['num_workers'],
drop_last=istrain, shuffle=istrain)
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--task', default='art2clipart', help='task name')
args = parser.parse_args()
set_random_seed(1)
config = yaml.load(open("./config/" + args.task + ".yaml", "r"), Loader=yaml.FullLoader)
config['trainer']['save_model_addr'] = f"{config['trainer']['save_model_addr']}_retained"
config['log']['save_name'] = f"{config['log']['save_name']}_retained"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# logger info
logdir = osp.join(osp.dirname(__file__), config['log']['save_addr'], config['log']['save_name'] + '.log')
setup_logger(logdir)
print(config)
# network 建立网络模型,即骨干网络
mcd_model_1 = build_mcd_model(config).to(device)
dg_model = build_dg_model(config).to(device) #DCG过程的网络
# optim
mcd_opt_1 = build_mcd_optimizer(mcd_model_1, config)
dg_opt = build_dg_optimizer(dg_model, config)
# data_list, transform
input_size = config['data_transforms']['input_size']
batch_size = config['trainer']['batch_size']
#transform设置
mcd_transform_test = simple_transform_test(input_size=input_size, type = config['data']['type'])
mcd_transform_train = simple_transform_train(input_size=input_size, type = config['data']['type'])
#读取数据
impath_label_x = get_image_dirs(root=config['data']['root'],
dname=config['data']['source_domain_x'],
split="train") #源域1
impath_label_u_1 = get_web_image_dirs(root=config['data']['webroot']) #源域2即web数据
impath_label_t = get_image_dirs(root=config['data']['root'],
dname=config['data']['target_domain'],
split="train")
fake_dg_u_1 = []
# Train Co-teach0ing
print("Training CO-Teaching.".center(100, "#"))
train_data = impath_label_x + impath_label_u_1 #数据为路径加标签,即文本中的一行
dg_transform_test = simple_transform_test(input_size=input_size, type = config['data']['type'])
dg_transform_train = simple_transform_train(input_size=input_size, type = config['data']['type'])
dataloader_train = build_dataloader(train_data, batch_size, config, dg_transform_train)
print('dataset dg train dataloader: {}'.format(len(dataloader_train)))
dataloader_test = build_dataloader(impath_label_t, batch_size, config, dg_transform_test)
print('dataset dg test dataloader: {}'.format(len(dataloader_test)))
source_domain = config['data']['source_domain_x']
trainer_dg = CoTeachingTrainer(dg_model, dg_opt, device, 1, source_domain, **config['trainer'])
#train
trainer_dg.update_lr(1)
trainer_dg.train_dg(dataloader_train,dataloader_test,15)
if __name__ == '__main__':
main()