-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_web_ignored.py
180 lines (144 loc) · 7.65 KB
/
main_web_ignored.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import torch
import yaml
import numpy as np
import os.path as osp
from torchvision import datasets
from utils.transforms import *
from utils.dataset import *
from utils import *
from torch.utils.data.dataloader import DataLoader
from models import models
from mcd_trainer import MCDTrainer
from coteaching_trainer import CoTeachingTrainer
from models.build import build_mcd_model,build_dg_model,build_digits_dg_model,build_digits_mcd_model
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def build_mcd_optimizer(model, config):
if config['optimizer']['name'] == 'SGD':
opt_F = torch.optim.SGD(list(model["F"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.SGD(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.SGD(list(model["C2"].parameters()),
**config['optimizer']['params'])
else:
opt_F = torch.optim.Adam(list(model["F"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.Adam(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.Adam(list(model["C2"].parameters()),
**config['optimizer']['params'])
return {"F": opt_F, "C1": opt_C1, "C2": opt_C2}
def build_dg_optimizer(model, config):
if config['optimizer']['name'] == 'SGD':
opt_F1 = torch.optim.SGD(list(model["F1"].parameters()),
**config['optimizer']['params'])
opt_F2 = torch.optim.SGD(list(model["F2"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.SGD(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.SGD(list(model["C2"].parameters()),
**config['optimizer']['params'])
else:
opt_F1 = torch.optim.Adam(list(model["F1"].parameters()),
**config['optimizer']['params'])
opt_F2 = torch.optim.Adam(list(model["F2"].parameters()),
**config['optimizer']['params'])
opt_C1 = torch.optim.Adam(list(model["C1"].parameters()),
**config['optimizer']['params'])
opt_C2 = torch.optim.Adam(list(model["C2"].parameters()),
**config['optimizer']['params'])
return {"F1": opt_F1,"F2": opt_F2, "C1": opt_C1, "C2": opt_C2 }
def build_dataloader(data_list, batch_size, config, transform=None, istrain=True):
dataset = base_dataset(data_list, transform=transform)
return DataLoader(dataset, batch_size=batch_size,
num_workers=config['trainer']['num_workers'],
drop_last=istrain, shuffle=istrain)
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--task', default='art2clipart', help='task name')
args = parser.parse_args()
set_random_seed(1)
config = yaml.load(open("./config/" + args.task + ".yaml", "r"), Loader=yaml.FullLoader)
config['trainer']['save_model_addr'] = f"{config['trainer']['save_model_addr']}_ignored"
config['log']['save_name'] = f"{config['log']['save_name']}_ignored"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# logger info
logdir = osp.join(osp.dirname(__file__), config['log']['save_addr'], config['log']['save_name'] + '.log')
setup_logger(logdir)
print(config)
# network 建立网络模型,即骨干网络
mcd_model_1 = build_mcd_model(config).to(device)
#mcd_model_2 = build_mcd_model(config).to(device) #两个APL模块的网络
dg_model = build_dg_model(config).to(device) #DCG过程的网络
# optim
mcd_opt_1 = build_mcd_optimizer(mcd_model_1, config)
#mcd_opt_2 = build_mcd_optimizer(mcd_model_2, config)
dg_opt = build_dg_optimizer(dg_model, config)
# data_list, transform
input_size = config['data_transforms']['input_size']
batch_size = config['trainer']['batch_size']
#transform设置
mcd_transform_test = simple_transform_test(input_size=input_size, type = config['data']['type'])
mcd_transform_train = simple_transform_train(input_size=input_size, type = config['data']['type'])
#读取数据
impath_label_x = get_image_dirs(root=config['data']['root'],
dname=config['data']['source_domain_x'],
split="train") #源域1
impath_label_u_1 = get_web_image_dirs(root=config['data']['webroot']
) #web数据
impath_label_t = get_image_dirs(root=config['data']['root'],
dname=config['data']['target_domain'],
split="train")
fake_dg_u_1 = []
# trainer
trainer_mcd_1 = MCDTrainer(mcd_model_1, mcd_opt_1, device, 1, **config['trainer'])
for index in range(3):
print(f"Round {index}: Training MCD.".center(100, "#"))
# dataloader
train_data_1 = impath_label_x + fake_dg_u_1
dataloader_x_1 = build_dataloader(train_data_1, batch_size, config, mcd_transform_train)
print('dataset dataloader_x_1: {}'.format(len(dataloader_x_1)))
dataloader_u_1 = build_dataloader(impath_label_u_1, batch_size, config, mcd_transform_train)
print('dataset dataloader_u_1: {}'.format(len(dataloader_u_1)))
# train
trainer_mcd_1.update_lr(index + 1)
trainer_mcd_1.train_mcd(dataloader_x_1, dataloader_u_1, 30)
del dataloader_x_1, dataloader_u_1
# test dataloader.
dataloader_u_1 = build_dataloader(impath_label_u_1, batch_size, config, mcd_transform_test, False)
# test
print("test dataloader_u_1.".center(60, "#"))
trainer_mcd_1.test(dataloader_u_1)
# get pseudo label.
print("get pseudo label.".center(60, "#")) #通过MCD训练得到模型后,经过test得到伪标签
fake_mcd_u_1 = trainer_mcd_1.get_pl(dataloader_u_1)
del dataloader_u_1
# Train Co-teach0ing
print("Training CO-Teaching.".center(100, "#"))
train_data = impath_label_x + fake_mcd_u_1 #数据为路径加标签,即文本中的一行
dg_transform_test = simple_transform_test(input_size=input_size, type = config['data']['type'])
dg_transform_train = simple_transform_train(input_size=input_size, type = config['data']['type'])
dataloader_train = build_dataloader(train_data, batch_size, config, dg_transform_train)
print('dataset dg train dataloader: {}'.format(len(dataloader_train)))
dataloader_test = build_dataloader(impath_label_t, batch_size, config, dg_transform_test)
print('dataset dg test dataloader: {}'.format(len(dataloader_test)))
source_domain = config['data']['source_domain_x']
trainer_dg = CoTeachingTrainer(dg_model, dg_opt, device, 1, source_domain, **config['trainer'])
#train
trainer_dg.update_lr(index + 1)
trainer_dg.train_dg(dataloader_train,dataloader_test,15)
#test dataloader
dataloader_u_1 = build_dataloader(impath_label_u_1, batch_size, config, mcd_transform_test, False)
#get pseudo label
ratio = config['ratio']
print("get dg pseudo label.".center(60, "#"))
fake_dg_u_1 = trainer_dg.get_pl(dataloader_u_1,ratio = ratio)
del dataloader_u_1
if __name__ == '__main__':
main()