Skip to content

Files

Latest commit

f64114b Β· Mar 2, 2025

History

History
391 lines (319 loc) Β· 16.3 KB

README.md

File metadata and controls

391 lines (319 loc) Β· 16.3 KB

@mements/sati-orm

A type-safe persistence layer for AI agents with semantic memory and structured I/O.

// Create a customer support agent in 5 lines
import { Agent } from '@mements/sati-orm';
import { z } from 'zod';

const ticketSchema = z.object({ issue: z.string() });
const responseSchema = z.object({ solution: z.string() });
const supportAgent = Agent('support').init(ticketSchema, responseSchema);

Quick Start

# Install the package
npm install @mements/sati-orm zod

# Set up your environment variables
echo "EMBEDDINGS_API_KEY=your_key" > .env
echo "ANTHROPIC_API_KEY=your_key" >> .env  # Or any other LLM provider
import { Agent } from '@mements/sati-orm';
import { z } from 'zod';

// 1. Define your schemas
const inputSchema = z.object({
  question: z.string(),
  context: z.string().optional()
});

const outputSchema = z.object({
  answer: z.string(),
  sources: z.array(z.string()).optional()
});

// 2. Initialize your agent
const agent = Agent('my_agent').init(inputSchema, outputSchema);

// 3. Use your agent
const result = await agent.infer({
  question: "What is sati-orm?",
  context: "I'm building an AI application"
});

console.log(result);
// { answer: "Sati-ORM is a type-safe persistence layer...", sources: [...] }

System Architecture

Sati-ORM creates a powerful dual-table architecture with vector embeddings:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    Input Table    β”‚       β”‚    Output Table    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ id: string (PK)   │───┐   β”‚ id: string (PK)    β”‚
β”‚ field1: type      β”‚   └──>β”‚ field1: type       β”‚
β”‚ field2: type      β”‚       β”‚ field2: type       β”‚
β”‚ object_json: text β”‚       β”‚ object_json: text  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                             β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        β”‚
                        β–Ό
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
              β”‚     Vector Index     β”‚
              β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
              β”‚ id: string           β”‚
              β”‚ agent_name: string   β”‚
              β”‚ input_embedding: vec β”‚
              β”‚ output_embedding: vecβ”‚
              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

How It Works

When you create and use an agent, here's what happens under the hood:

  1. Schema Translation: Your Zod schemas are converted to SQLite tables
  2. Data Storage: Input/output pairs are stored in their respective tables
  3. Vector Embedding: Text is converted to vector embeddings for semantic search
  4. LLM Formatting: Data is formatted as XML for consistent LLM responses
  5. Type Validation: All data is validated against your schemas

RAG-Enabled Customer Support Bot

Let's build a complete customer support agent with retrieval-augmented generation:

import { Agent } from '@mements/sati-orm';
import { z } from 'zod';

// Define ticket schema with customer data and conversation history
const ticketSchema = z.object({
  customer: z.object({
    name: z.string(),
    email: z.string().email(),
    tier: z.enum(['free', 'pro', 'enterprise'])
  }),
  issue: z.string().describe('Customer problem description'),
  category: z.enum(['billing', 'technical', 'account']).optional(),
  // This field will store similar past tickets for RAG
  similarIssues: z.array(z.object({
    issue: z.string(),
    solution: z.string()
  })).optional()
});

// Define response schema
const responseSchema = z.object({
  solution: z.string().describe('Response to customer'),
  internalNotes: z.string().describe('Notes for support team'),
  nextSteps: z.array(z.string()),
  category: z.enum(['billing', 'technical', 'account'])
});

// Create and initialize the agent
const supportBot = Agent('support_bot').init(ticketSchema, responseSchema);

What Happens When We Initialize the Agent?

When init() is called, the following database tables are created:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ input_support_bot (table) β”‚      β”‚ output_support_bot (table)  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€      β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ id: TEXT PRIMARY KEY      β”‚      β”‚ id: TEXT PRIMARY KEY        β”‚
β”‚ customer_json: TEXT       β”‚      β”‚ solution: TEXT              β”‚
β”‚ issue: TEXT               β”‚      β”‚ internalNotes: TEXT         β”‚
β”‚ category: TEXT            β”‚      β”‚ nextSteps_json: TEXT        β”‚
β”‚ similarIssues_json: TEXT  β”‚      β”‚ category: TEXT              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Notice how:

  • Complex objects like customer become JSON fields (customer_json)
  • Arrays like nextSteps become JSON fields (nextSteps_json)
  • Simple fields remain as their respective SQL types

Implementing RAG Workflow

Now let's implement a complete RAG workflow:

// Process a new customer ticket with RAG
async function handleTicket(ticketData) {
  // 1. Extract the issue
  const { issue } = ticketData;
  
  // 2. Search for similar past tickets using vector similarity
  const similarTickets = await supportBot.recall({ issue }, null);
  console.log(`Found ${similarTickets.length} similar tickets`);
  
  // Diagram of what happens during recall():
  // 
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚  Input   │───>β”‚  Generate   │───>β”‚Input Embeddingβ”‚
  // β”‚ (issue)  β”‚    β”‚  Embedding  β”‚    β”‚   (vector)    β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  //                                            β”‚
  //                                            β–Ό
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Similar Records  β”‚<───│ Vector Similarity Search    β”‚
  // β”‚ (sorted by      β”‚    β”‚ in vec_index table           β”‚
  // β”‚  similarity)    β”‚    β”‚ using input_embedding MATCH  β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  
  // 3. Extract relevant context from similar tickets
  const relevantTickets = similarTickets.slice(0, 3).map(ticket => ({
    issue: ticket.input.issue,
    solution: ticket.output.solution
  }));
  
  // 4. Create augmented ticket with RAG context
  const augmentedTicket = {
    ...ticketData,
    similarIssues: relevantTickets
  };
  
  // 5. Generate response using augmented context
  const response = await supportBot.infer(augmentedTicket, {
    temperature: 0.3,  // Lower for more consistent support responses
    model: "claude-3-opus-20240229"
  });
  
  // Diagram of what happens during infer():
  //
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Augmented    │───>β”‚ Convert to  │───>β”‚ Send to LLM   β”‚
  // β”‚ Ticket Data  β”‚    β”‚ XML Format  β”‚    β”‚ with Schemas  β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  //                                                β”‚
  //                                                β–Ό
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Validated    β”‚<───│ Parse XML   β”‚<───│ LLM Response  β”‚
  // β”‚ Response     β”‚    β”‚ Response    β”‚    β”‚ as XML        β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  
  // 6. Store this interaction for future reference
  await supportBot.reinforce(augmentedTicket, response);
  
  // Diagram of what happens during reinforce():
  //
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Input &  │───>β”‚ Generate     │───>β”‚ Input & Output β”‚
  // β”‚ Output   β”‚    β”‚ Embeddings   β”‚    β”‚ Embeddings     β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  //       β”‚                                     β”‚
  //       β–Ό                                     β–Ό
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Store in Input  β”‚              β”‚ Store in vec_index  β”‚
  // β”‚ & Output Tables β”‚              β”‚ for future recall   β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  
  return response;
}

// Example usage
const ticket = {
  customer: {
    name: "Jordan Smith",
    email: "[email protected]",
    tier: "pro"
  },
  issue: "I can't export my data to CSV. The export button is disabled.",
  category: "technical"
};

const response = await handleTicket(ticket);
console.log(response);

Updating Ticket Data

When the customer provides additional information, you can update the record:

// Update the ticket with new information
async function updateTicket(id, newData) {
  // Edit stored record
  await supportBot.edit(id, newData);
  
  // Diagram of what happens during edit():
  //
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Record ID &  │───>β”‚ Retrieve     │───>β”‚ Update       β”‚
  // β”‚ New Data     β”‚    β”‚ Existing Dataβ”‚    β”‚ Database     β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  //                                                β”‚
  //                                                β–Ό
  // β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
  // β”‚ Update Vector    β”‚<────────────│ Generate New Embeddingsβ”‚
  // β”‚ Index            β”‚             β”‚ For Changed Fields     β”‚
  // β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
}

API Reference

Agent Creation and Management

// Create or access an agent
Agent(name: string)

// Initialize with schemas  
agent.init(inputSchema: ZodObject, outputSchema: ZodObject)

// Connect to remote agent
agent.connectRemote(url: string)

// Delete agent and all data
agent.erase()

Core Operations

// Generate output using LLM
await agent.infer(
  input: YourInputType,
  options?: {
    temperature?: number;   // 0-1, controls randomness
    model?: string;         // e.g., "claude-3-opus-20240229"
    reasoning_effort?: string; // For models that support it
  }
)

// Find similar past interactions
await agent.recall(
  input: YourInputType | null,
  output: YourOutputType | null
)

// Store with vector embeddings
await agent.reinforce(input, output)

// Store without embeddings
await agent.store(input, output)

Data Management

// Query stored data by exact match
await agent.find(inputFilter?, outputFilter?)

// Create index for faster queries
await agent.addIndex("input" | "output", fieldName)

// Update stored record
await agent.edit(id, inputUpdates?, outputUpdates?)

// Delete record
await agent.delete(id)

Data Flow Diagram

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Define Zod  │────>β”‚ Initialize │────>β”‚ SQLite Tables β”‚
β”‚ Schemas     β”‚     β”‚ Agent      β”‚     β”‚ Created       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                               β”‚
      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚
      β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Agent.infer │────>β”‚ LLM Call   │────>β”‚ XML Response  β”‚
β”‚ (input)     β”‚     β”‚ with XML   β”‚     β”‚ Parsed        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚                                        β”‚
      β”‚                                        β–Ό
      β”‚                               β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      β”‚                               β”‚ Validated     β”‚
      β”‚                               β”‚ Output        β”‚
      β”‚                               β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚                                        β”‚
      β–Ό                                        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Agent.      │────>β”‚ Store Data │────>β”‚ Generate      β”‚
β”‚ reinforce   β”‚     β”‚ in Tables  β”‚     β”‚ Embeddings    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                               β”‚
                                               β–Ό
                                      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                                      β”‚ Store in      β”‚
                                      β”‚ Vector Index  β”‚
                                      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Environment Configuration

// Required for embeddings
EMBEDDINGS_API_KEY=your_key
EMBEDDINGS_API_URL=https://api.example.com/embeddings  // Optional

// At least one LLM provider required
ANTHROPIC_API_KEY=your_key    // For Claude
OPENAI_API_KEY=your_key       // For GPT models
DEEPSEEK_API_KEY=your_key     // For DeepSeek models
GROK_API_KEY=your_key         // For Grok models

// Optional configuration
AGENT_MODE=silent             // Suppress logs
SATI_DB_NAME=custom_db_name   // Custom database name
VERBOSE_MODE=true             // Enable detailed logging

Supported LLM Models

Provider Model Examples Environment Variable
Claude claude-3-opus-20240229 ANTHROPIC_API_KEY
GPT gpt-4-turbo OPENAI_API_KEY
DeepSeek deepseek-ai/DeepSeek-R1 DEEPSEEK_API_KEY
Grok grok-1 GROK_API_KEY

MIT Licensed | Mements Team