A type-safe persistence layer for AI agents with semantic memory and structured I/O.
// Create a customer support agent in 5 lines
import { Agent } from '@mements/sati-orm';
import { z } from 'zod';
const ticketSchema = z.object({ issue: z.string() });
const responseSchema = z.object({ solution: z.string() });
const supportAgent = Agent('support').init(ticketSchema, responseSchema);
# Install the package
npm install @mements/sati-orm zod
# Set up your environment variables
echo "EMBEDDINGS_API_KEY=your_key" > .env
echo "ANTHROPIC_API_KEY=your_key" >> .env # Or any other LLM provider
import { Agent } from '@mements/sati-orm';
import { z } from 'zod';
// 1. Define your schemas
const inputSchema = z.object({
question: z.string(),
context: z.string().optional()
});
const outputSchema = z.object({
answer: z.string(),
sources: z.array(z.string()).optional()
});
// 2. Initialize your agent
const agent = Agent('my_agent').init(inputSchema, outputSchema);
// 3. Use your agent
const result = await agent.infer({
question: "What is sati-orm?",
context: "I'm building an AI application"
});
console.log(result);
// { answer: "Sati-ORM is a type-safe persistence layer...", sources: [...] }
Sati-ORM creates a powerful dual-table architecture with vector embeddings:
βββββββββββββββββββββ ββββββββββββββββββββββ
β Input Table β β Output Table β
βββββββββββββββββββββ€ ββββββββββββββββββββββ€
β id: string (PK) βββββ β id: string (PK) β
β field1: type β βββ>β field1: type β
β field2: type β β field2: type β
β object_json: text β β object_json: text β
βββββββββββββββββββββ ββββββββββββββββββββββ
β β
ββββββββββββββββ¬βββββββββββββββ
β
βΌ
ββββββββββββββββββββββββ
β Vector Index β
ββββββββββββββββββββββββ€
β id: string β
β agent_name: string β
β input_embedding: vec β
β output_embedding: vecβ
ββββββββββββββββββββββββ
When you create and use an agent, here's what happens under the hood:
- Schema Translation: Your Zod schemas are converted to SQLite tables
- Data Storage: Input/output pairs are stored in their respective tables
- Vector Embedding: Text is converted to vector embeddings for semantic search
- LLM Formatting: Data is formatted as XML for consistent LLM responses
- Type Validation: All data is validated against your schemas
Let's build a complete customer support agent with retrieval-augmented generation:
import { Agent } from '@mements/sati-orm';
import { z } from 'zod';
// Define ticket schema with customer data and conversation history
const ticketSchema = z.object({
customer: z.object({
name: z.string(),
email: z.string().email(),
tier: z.enum(['free', 'pro', 'enterprise'])
}),
issue: z.string().describe('Customer problem description'),
category: z.enum(['billing', 'technical', 'account']).optional(),
// This field will store similar past tickets for RAG
similarIssues: z.array(z.object({
issue: z.string(),
solution: z.string()
})).optional()
});
// Define response schema
const responseSchema = z.object({
solution: z.string().describe('Response to customer'),
internalNotes: z.string().describe('Notes for support team'),
nextSteps: z.array(z.string()),
category: z.enum(['billing', 'technical', 'account'])
});
// Create and initialize the agent
const supportBot = Agent('support_bot').init(ticketSchema, responseSchema);
When init()
is called, the following database tables are created:
βββββββββββββββββββββββββββββ βββββββββββββββββββββββββββββββ
β input_support_bot (table) β β output_support_bot (table) β
βββββββββββββββββββββββββββββ€ βββββββββββββββββββββββββββββββ€
β id: TEXT PRIMARY KEY β β id: TEXT PRIMARY KEY β
β customer_json: TEXT β β solution: TEXT β
β issue: TEXT β β internalNotes: TEXT β
β category: TEXT β β nextSteps_json: TEXT β
β similarIssues_json: TEXT β β category: TEXT β
βββββββββββββββββββββββββββββ βββββββββββββββββββββββββββββββ
Notice how:
- Complex objects like
customer
become JSON fields (customer_json
) - Arrays like
nextSteps
become JSON fields (nextSteps_json
) - Simple fields remain as their respective SQL types
Now let's implement a complete RAG workflow:
// Process a new customer ticket with RAG
async function handleTicket(ticketData) {
// 1. Extract the issue
const { issue } = ticketData;
// 2. Search for similar past tickets using vector similarity
const similarTickets = await supportBot.recall({ issue }, null);
console.log(`Found ${similarTickets.length} similar tickets`);
// Diagram of what happens during recall():
//
// ββββββββββββ βββββββββββββββ ββββββββββββββββ
// β Input ββββ>β Generate ββββ>βInput Embeddingβ
// β (issue) β β Embedding β β (vector) β
// ββββββββββββ βββββββββββββββ ββββββββββββββββ
// β
// βΌ
// ββββββββββββββββββββ βββββββββββββββββββββββββββββββ
// β Similar Records β<ββββ Vector Similarity Search β
// β (sorted by β β in vec_index table β
// β similarity) β β using input_embedding MATCH β
// ββββββββββββββββββββ βββββββββββββββββββββββββββββββ
// 3. Extract relevant context from similar tickets
const relevantTickets = similarTickets.slice(0, 3).map(ticket => ({
issue: ticket.input.issue,
solution: ticket.output.solution
}));
// 4. Create augmented ticket with RAG context
const augmentedTicket = {
...ticketData,
similarIssues: relevantTickets
};
// 5. Generate response using augmented context
const response = await supportBot.infer(augmentedTicket, {
temperature: 0.3, // Lower for more consistent support responses
model: "claude-3-opus-20240229"
});
// Diagram of what happens during infer():
//
// ββββββββββββββββ βββββββββββββββ βββββββββββββββββ
// β Augmented ββββ>β Convert to ββββ>β Send to LLM β
// β Ticket Data β β XML Format β β with Schemas β
// ββββββββββββββββ βββββββββββββββ βββββββββββββββββ
// β
// βΌ
// ββββββββββββββββ βββββββββββββββ βββββββββββββββββ
// β Validated β<ββββ Parse XML β<ββββ LLM Response β
// β Response β β Response β β as XML β
// ββββββββββββββββ βββββββββββββββ βββββββββββββββββ
// 6. Store this interaction for future reference
await supportBot.reinforce(augmentedTicket, response);
// Diagram of what happens during reinforce():
//
// ββββββββββββ ββββββββββββββββ ββββββββββββββββββ
// β Input & ββββ>β Generate ββββ>β Input & Output β
// β Output β β Embeddings β β Embeddings β
// ββββββββββββ ββββββββββββββββ ββββββββββββββββββ
// β β
// βΌ βΌ
// βββββββββββββββββββ βββββββββββββββββββββββ
// β Store in Input β β Store in vec_index β
// β & Output Tables β β for future recall β
// βββββββββββββββββββ βββββββββββββββββββββββ
return response;
}
// Example usage
const ticket = {
customer: {
name: "Jordan Smith",
email: "[email protected]",
tier: "pro"
},
issue: "I can't export my data to CSV. The export button is disabled.",
category: "technical"
};
const response = await handleTicket(ticket);
console.log(response);
When the customer provides additional information, you can update the record:
// Update the ticket with new information
async function updateTicket(id, newData) {
// Edit stored record
await supportBot.edit(id, newData);
// Diagram of what happens during edit():
//
// ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ
// β Record ID & ββββ>β Retrieve ββββ>β Update β
// β New Data β β Existing Dataβ β Database β
// ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ
// β
// βΌ
// ββββββββββββββββββββ ββββββββββββββββββββββββββ
// β Update Vector β<βββββββββββββ Generate New Embeddingsβ
// β Index β β For Changed Fields β
// ββββββββββββββββββββ ββββββββββββββββββββββββββ
}
// Create or access an agent
Agent(name: string)
// Initialize with schemas
agent.init(inputSchema: ZodObject, outputSchema: ZodObject)
// Connect to remote agent
agent.connectRemote(url: string)
// Delete agent and all data
agent.erase()
// Generate output using LLM
await agent.infer(
input: YourInputType,
options?: {
temperature?: number; // 0-1, controls randomness
model?: string; // e.g., "claude-3-opus-20240229"
reasoning_effort?: string; // For models that support it
}
)
// Find similar past interactions
await agent.recall(
input: YourInputType | null,
output: YourOutputType | null
)
// Store with vector embeddings
await agent.reinforce(input, output)
// Store without embeddings
await agent.store(input, output)
// Query stored data by exact match
await agent.find(inputFilter?, outputFilter?)
// Create index for faster queries
await agent.addIndex("input" | "output", fieldName)
// Update stored record
await agent.edit(id, inputUpdates?, outputUpdates?)
// Delete record
await agent.delete(id)
βββββββββββββββ ββββββββββββββ βββββββββββββββββ
β Define Zod βββββ>β Initialize βββββ>β SQLite Tables β
β Schemas β β Agent β β Created β
βββββββββββββββ ββββββββββββββ βββββββββββββββββ
β
ββββββββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββ ββββββββββββββ βββββββββββββββββ
β Agent.infer βββββ>β LLM Call βββββ>β XML Response β
β (input) β β with XML β β Parsed β
βββββββββββββββ ββββββββββββββ βββββββββββββββββ
β β
β βΌ
β βββββββββββββββββ
β β Validated β
β β Output β
β βββββββββββββββββ
β β
βΌ βΌ
βββββββββββββββ ββββββββββββββ βββββββββββββββββ
β Agent. βββββ>β Store Data βββββ>β Generate β
β reinforce β β in Tables β β Embeddings β
βββββββββββββββ ββββββββββββββ βββββββββββββββββ
β
βΌ
βββββββββββββββββ
β Store in β
β Vector Index β
βββββββββββββββββ
// Required for embeddings
EMBEDDINGS_API_KEY=your_key
EMBEDDINGS_API_URL=https://api.example.com/embeddings // Optional
// At least one LLM provider required
ANTHROPIC_API_KEY=your_key // For Claude
OPENAI_API_KEY=your_key // For GPT models
DEEPSEEK_API_KEY=your_key // For DeepSeek models
GROK_API_KEY=your_key // For Grok models
// Optional configuration
AGENT_MODE=silent // Suppress logs
SATI_DB_NAME=custom_db_name // Custom database name
VERBOSE_MODE=true // Enable detailed logging
Provider | Model Examples | Environment Variable |
---|---|---|
Claude | claude-3-opus-20240229 | ANTHROPIC_API_KEY |
GPT | gpt-4-turbo | OPENAI_API_KEY |
DeepSeek | deepseek-ai/DeepSeek-R1 | DEEPSEEK_API_KEY |
Grok | grok-1 | GROK_API_KEY |
MIT Licensed | Mements Team