-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeatures.py
145 lines (128 loc) · 3.41 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas as pd
from datetime import datetime
import requests
def get_air_json(city_name,API_KEY):
return requests.get(f'https://api.waqi.info/feed/{city_name}/?token={API_KEY}').json()['data']
def get_air_quality_data(city_name,API_KEY):
json = get_air_json(city_name,API_KEY)
iaqi = json['iaqi']
forecast = json['forecast']['daily']
return [
city_name,
json['aqi'], # AQI
json['time']['s'][:10], # Date
iaqi['h']['v'],
iaqi['p']['v'],
iaqi['pm10']['v'],
iaqi['t']['v'],
forecast['o3'][0]['avg'],
forecast['o3'][0]['max'],
forecast['o3'][0]['min'],
forecast['pm10'][0]['avg'],
forecast['pm10'][0]['max'],
forecast['pm10'][0]['min'],
forecast['pm25'][0]['avg'],
forecast['pm25'][0]['max'],
forecast['pm25'][0]['min'],
forecast['uvi'][0]['avg'],
forecast['uvi'][0]['avg'],
forecast['uvi'][0]['avg']
]
def get_air_quality_df(data):
col_names = [
'city',
'aqi',
'date',
'iaqi_h',
'iaqi_p',
'iaqi_pm10',
'iaqi_t',
'o3_avg',
'o3_max',
'o3_min',
'pm10_avg',
'pm10_max',
'pm10_min',
'pm25_avg',
'pm25_max',
'pm25_min',
'uvi_avg',
'uvi_max',
'uvi_min',
]
new_data = pd.DataFrame(
data,
columns=col_names
)
new_data.date = new_data.date.apply(timestamp_2_time)
return new_data
def get_weather_json(city, date, API_KEY):
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city.lower()}/{date}?unitGroup=metric&include=days&key={API_KEY}&contentType=json').json()
def get_weather_data(city_name,date,API_KEY):
json = get_weather_json(city_name,date,API_KEY)
data = json['days'][0]
return [
json['address'].capitalize(),
data['datetime'],
data['tempmax'],
data['tempmin'],
data['temp'],
data['feelslikemax'],
data['feelslikemin'],
data['feelslike'],
data['dew'],
data['humidity'],
data['precip'],
data['precipprob'],
data['precipcover'],
data['snow'],
data['snowdepth'],
data['windgust'],
data['windspeed'],
data['winddir'],
data['pressure'],
data['cloudcover'],
data['visibility'],
data['solarradiation'],
data['solarenergy'],
data['uvindex'],
data['conditions']
]
def get_weather_df(data):
col_names = [
'city',
'date',
'tempmax',
'tempmin',
'temp',
'feelslikemax',
'feelslikemin',
'feelslike',
'dew',
'humidity',
'precip',
'precipprob',
'precipcover',
'snow',
'snowdepth',
'windgust',
'windspeed',
'winddir',
'pressure',
'cloudcover',
'visibility',
'solarradiation',
'solarenergy',
'uvindex',
'conditions'
]
new_data = pd.DataFrame(
data,
columns=col_names
)
new_data.date = new_data.date.apply(timestamp_2_time)
return new_data
def timestamp_2_time(x):
dt_obj = datetime.strptime(str(x), '%Y-%m-%d')
dt_obj = dt_obj.timestamp() * 1000
return int(dt_obj)