Implementation of papers in 100 lines of code.
- Maxout Networks [arXiv]
- Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, Yoshua Bengio
2013-02-18
- Network In Network [arXiv]
- Min Lin, Qiang Chen, Shuicheng Yan
2013-12-13
- Playing Atari with Deep Reinforcement Learning [arXiv]
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller
2013-12-19
- Auto-Encoding Variational Bayes [arXiv]
- Diederik P Kingma, Max Welling
2013-12-20
- Generative Adversarial Networks [arXiv]
- Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio
2014-06-10
- Conditional Generative Adversarial Nets [arXiv]
- Mehdi Mirza, Simon Osindero
2014-11-06
- Adam: A Method for Stochastic Optimization [arXiv]
- Diederik P. Kingma, Jimmy Ba
2014-12-22
- NICE: Non-linear Independent Components Estimation [arXiv]
- Laurent Dinh, David Krueger, Yoshua Bengio
2014-10-30
- Human-level control through deep reinforcement learning [nature]
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis
2015-02-25
- Deep Unsupervised Learning using Nonequilibrium Thermodynamics [arXiv]
- Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
2015-03-12
- Variational Inference with Normalizing Flows [arXiv]
- Danilo Jimenez Rezende, Shakir Mohamed
2015-05-21
- Deep Reinforcement Learning with Double Q-learning [arXiv]
- Hado van Hasselt, Arthur Guez, David Silver
2015-09-22
- Convolutional Generative Adversarial Networks [arXiv]
- Alec Radford, Luke Metz, Soumith Chintala
2015-11-19
- Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) [arXiv]
- Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
2015-11-23
- Adversarially Learned Inference [arXiv]
- Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, Aaron Courville
2016-06-02
- Improved Techniques for Training GANs [arXiv]
- Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen
2016-06-10
- Gaussian Error Linear Units (GELUs) [arXiv]
- Dan Hendrycks, Kevin Gimpel
2016-06-27
- Least Squares Generative Adversarial Networks [arXiv]
- Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, Stephen Paul Smolley
2016-11-13
- Image-to-Image Translation with Conditional Adversarial Networks [arXiv]
- Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros
2016-11-21
- Wasserstein GAN [arXiv]
- Martin Arjovsky, Soumith Chintala, Léon Bottou
2017-01-26
- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [arXiv]
- Chelsea Finn, Pieter Abbeel, Sergey Levine
2017-03-09
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [arXiv]
- Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros
2017-03-30
- Improved Training of Wasserstein GANs [arXiv]
- Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville
2017-03-31
- Adversarial Feature Learning [arXiv]
- Jeff Donahue, Philipp Krähenbühl, Trevor Darrell
2017-04-03
- Self-Normalizing Neural Networks [arXiv]
- Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter
2017-06-08
- Proximal Policy Optimization Algorithms [arXiv]
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
2017-08-28
- Deep Image Prior [arXiv]
- Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky
2017-11-29
- On First-Order Meta-Learning Algorithms [arXiv]
- Alex Nichol, Joshua Achiam, John Schulman
2018-03-08
- Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows [arXiv]
- George Papamakarios, David C. Sterratt, Iain Murray
2018-05-18
- On the Variance of the Adaptive Learning Rate and Beyond [arXiv]
- Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, Jiawei Han
2019-08-08
- Optimizing Millions of Hyperparameters by Implicit Differentiation [PMLR]
- Jonathan Lorraine, Paul Vicol, David Duvenaud
2019-10-06
- Implicit Neural Representations with Periodic Activation Functions [arXiv]
- Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
2020-06-17
- Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains [arXiv]
- Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng
2020-06-18
- Denoising Diffusion Probabilistic Models [arXiv]
- Jonathan Ho, Ajay Jain, Pieter Abbeel
2020-06-19
- Likelihood-free MCMC with Amortized Approximate Ratio Estimators [PMLR]
- Joeri Hermans, Volodimir Begy, Gilles Louppe
2020-06-26
- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [arXiv]
- Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
2020-08-03
- Multiplicative Filter Networks [OpenReview]
- Rizal Fathony, Anit Kumar Sahu, Devin Willmott, J Zico Kolter
2020-09-28
- Learned Initializations for Optimizing Coordinate-Based Neural Representations [arXiv]
- Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, Ren Ng
2020-12-03
- FastNeRF: High-Fidelity Neural Rendering at 200FPS [arXiv]
- Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, Julien Valentin
2021-03-18
- KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs [arXiv]
- Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger
2021-03-25
- PlenOctrees for Real-time Rendering of Neural Radiance Fields [arXiv]
- Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa
2021-03-25
- NeRF--: Neural Radiance Fields Without Known Camera Parameters [arXiv]
- Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, Victor Adrian Prisacariu
2021-02-14
- Gromov-Wasserstein Distances between Gaussian Distributions [arXiv]
- Antoine Salmona, Julie Delon, Agnès Desolneux
2021-08-16
- Plenoxels: Radiance Fields without Neural Networks [arXiv]
- Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa
2021-12-09
- InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [arXiv]
- Mijeong Kim, Seonguk Seo, Bohyung Han
2021-12-31
- Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [arXiv]
- Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller
2022-01-16
- Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow [arXiv]
- Xingchao Liu, Chengyue Gong, Qiang Liu
2022-09-07
- K-Planes: Explicit Radiance Fields in Space, Time, and Appearance [arXiv]
- Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, Angjoo Kanazawa
2023-01-24
- FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization [arXiv]
- Jiawei Yang, Marco Pavone, Yue Wang
2023-03-13