forked from sled-group/world-to-words
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
415 lines (369 loc) · 14.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Dict, Iterable, Optional
import torch
import torch.nn
import torch.optim
import utils.dist as dist
from datasets.clevrref import ClevrRefEvaluator
from datasets.coco_eval import CocoEvaluator
from datasets.flickr_eval import FlickrEvaluator
from datasets.phrasecut_eval import PhrasecutEvaluator
from datasets.refexp import RefExpEvaluator
from utils.metrics import MetricLogger, SmoothedValue
from utils.misc import targets_to
from utils.optim import adjust_learning_rate, update_ema
import wandb
from copy import deepcopy
from math import log10
from torch.cuda.amp import autocast
from pathlib import Path
from tqdm import tqdm
def train_one_epoch(
model: torch.nn.Module,
# note: contrastive align if part of the criterion
criterion: Optional[torch.nn.Module],
contrastive_criterion: Optional[torch.nn.Module],
mvm_criterion: Optional[torch.nn.Module],
mlm_criterion: Optional[torch.nn.Module],
qa_criterion: Optional[torch.nn.Module],
weight_dict: Dict[str, float],
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
args,
max_norm: float = 0,
model_ema: Optional[torch.nn.Module] = None,
grad_scalar = None,
start_iter: int = 0,
):
model.train()
if criterion is not None:
criterion.train()
if contrastive_criterion is not None:
contrastive_criterion.train()
if qa_criterion is not None:
qa_criterion.train()
num_training_steps = int(len(data_loader) * args.epochs)
for i, batch_dict in tqdm(enumerate(data_loader)):
optimizer.zero_grad(set_to_none=True)
with autocast():
curr_step = epoch * len(data_loader) + i
samples = batch_dict["samples"].to(device)
positive_map = batch_dict["positive_map"].to(device) if "positive_map" in batch_dict else None
targets = batch_dict["targets"]
answers = {k: v.to(device) for k, v in batch_dict["answers"].items()} if "answers" in batch_dict else None
captions = [t["caption"] for t in targets]
targets = targets_to(targets, device)
memory_cache = None
if args.masks:
# not used in MaskDETR
outputs = model(samples, captions)
else:
memory_cache = model(samples, captions, encode_and_save=True, positive_map= [t['positive_map'] for t in targets])
# TODO: Why cannot pass into it??
temp_tokenized = memory_cache["tokenized"]
outputs = model(samples, captions, encode_and_save=False, memory_cache=memory_cache)
outputs['tokenized'] = temp_tokenized
if outputs['aux_outputs']:
for t in outputs['aux_outputs']:
t['tokenized'] = temp_tokenized
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, positive_map))
if contrastive_criterion is not None:
# this is not used (from github issue)
assert memory_cache is not None
contrastive_loss = contrastive_criterion(memory_cache["text_pooled_op"], memory_cache["cross_pooled_op"])
loss_dict["contrastive_loss"] = contrastive_loss
if qa_criterion is not None:
answer_losses = qa_criterion(outputs, answers)
loss_dict.update(answer_losses)
if mvm_criterion is not None:
assert False, "mvm Not implemented"
mvm_loss = mvm_criterion(outputs, memory_cache)
loss_dict['mvm_loss'] = mvm_loss
if mlm_criterion is not None:
mlm_loss = mlm_criterion(outputs, memory_cache)
loss_dict['mlm_loss'] = mlm_loss
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
log_dict = {k: v.detach() for k,v in loss_dict_reduced.items()}
log_dict['loss_all_scaled'] = losses.detach()
if args.gpu == 0:
wandb.log({"train/":log_dict})
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
if not torch.isnan(losses):
# gradient backpropagation
if grad_scalar is not None:
grad_scalar.scale(losses).backward()
else:
losses.backward()
# gradient clipping
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
# optimize
if grad_scalar is not None:
grad_scalar.step(optimizer)
grad_scalar.update()
else:
optimizer.step()
else:
wandb.alert(
title="Loss is NAN",
text=f"loss is not a number, be aware! at {curr_step}"
)
if not args.no_vl_mapping_stage2:
adjust_learning_rate(
optimizer,
epoch,
curr_step,
num_training_steps=num_training_steps,
args=args,
)
if model_ema is not None:
update_ema(model, model_ema, args.ema_decay)
# metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
# metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# metric_logger.update(lr_backbone=optimizer.param_groups[1]["lr"])
# metric_logger.update(lr_text_encoder=optimizer.param_groups[2]["lr"])
if args.save_for_aoa:
this_iter_num = curr_step
do_save = False
if this_iter_num < 20:
if this_iter_num % 2 == 0:
do_save = True
if this_iter_num < 100:
if this_iter_num % 5 == 0:
do_save = True
if this_iter_num < 500:
if this_iter_num % 10 == 0:
do_save = True
elif this_iter_num < 1000:
if this_iter_num % 50 == 0:
do_save = True
elif this_iter_num < 10000:
if this_iter_num % 500 == 0:
do_save = True
else:
if this_iter_num % 10000 == 0:
do_save = True
if do_save:
assert args.output_dir is not None
if args.output_dir:
print("Saving model for AOA")
output_dir = Path(args.output_dir)
checkpoint_paths = [output_dir / "checkpoint.pth"]
checkpoint_paths.append(output_dir / f"checkpoint_step{curr_step}.pth")
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model.module.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"curr_step": curr_step,
"args": args,
},
checkpoint_path,
)
if args.learn_word_till_converge:
this_iter_num = curr_step
if this_iter_num == 50:
assert args.output_dir is not None
if args.output_dir:
output_dir = Path(args.output_dir)
config_name = args.dataset_config.split("/")[-1].split(".")[0]
checkpoint_paths = []
if not args.is_gl:
# checkpoint_paths = [output_dir / f"{config_name}.pth"]
checkpoint_paths = [args.output_dir_raw +"/" + f"{config_name}.pth"]
else:
checkpoint_paths = [args.output_dir_raw + "/" + f"{config_name}_gl.pth"]
print("Saving final model after continue learning")
print(checkpoint_paths)
# if not args.is_gl:
# checkpoint_paths += [args.output_dir_raw / f"{config_name}.pth"]
# else:
# checkpoint_paths += [args.output_dir_raw / f"{config_name}_gl.pth"]
# checkpoint_paths.append(output_dir / f"checkpoint_step{curr_step}.pth")
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model.module.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"curr_step": curr_step,
"args": args,
},
checkpoint_path,
)
exit()
if args.learn_all_words:
this_iter_num = curr_step
if this_iter_num == 50*31:
assert args.output_dir is not None
if args.output_dir:
output_dir = Path(args.output_dir)
config_name = args.dataset_config.split("/")[-1].split(".")[0]
checkpoint_paths = []
if not args.is_gl:
# checkpoint_paths = [output_dir / f"{config_name}.pth"]
checkpoint_paths = [args.output_dir_raw +"/" + f"{config_name}.pth"]
else:
checkpoint_paths = [args.output_dir_raw + "/" + f"{config_name}_gl.pth"]
print("Saving final model after continue learning")
print(checkpoint_paths)
# if not args.is_gl:
# checkpoint_paths += [args.output_dir_raw / f"{config_name}.pth"]
# else:
# checkpoint_paths += [args.output_dir_raw / f"{config_name}_gl.pth"]
# checkpoint_paths.append(output_dir / f"checkpoint_step{curr_step}.pth")
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model.module.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"curr_step": curr_step,
"args": args,
},
checkpoint_path,
)
exit()
@torch.no_grad()
def evaluate(
model: torch.nn.Module,
criterion: Optional[torch.nn.Module],
contrastive_criterion: Optional[torch.nn.Module],
qa_criterion: Optional[torch.nn.Module],
postprocessors: Dict[str, torch.nn.Module],
weight_dict: Dict[str, float],
data_loader,
evaluator_list,
device: torch.device,
args,
):
model.eval()
if criterion is not None:
criterion.eval()
if contrastive_criterion is not None:
contrastive_criterion.eval()
if qa_criterion is not None:
qa_criterion.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "Test:"
for batch_dict in metric_logger.log_every(data_loader, 10, header):
samples = batch_dict["samples"].to(device)
positive_map = batch_dict["positive_map"].to(device) if "positive_map" in batch_dict else None
targets = batch_dict["targets"]
answers = {k: v.to(device) for k, v in batch_dict["answers"].items()} if "answers" in batch_dict else None
captions = [t["caption"] for t in targets]
targets = targets_to(targets, device)
memory_cache = None
if args.masks:
outputs = model(samples, captions)
else:
memory_cache = model(samples, captions, encode_and_save=True)
outputs = model(samples, captions, encode_and_save=False, memory_cache=memory_cache)
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, positive_map))
if contrastive_criterion is not None:
assert memory_cache is not None
contrastive_loss = contrastive_criterion(memory_cache["text_pooled_op"], memory_cache["img_pooled_op"])
loss_dict["contrastive_loss"] = contrastive_loss
if qa_criterion is not None:
answer_losses = qa_criterion(outputs, answers)
loss_dict.update(answer_losses)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()}
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled,
)
if not args.no_detection:
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors["bbox"](outputs, orig_target_sizes)
if "segm" in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors["segm"](results, outputs, orig_target_sizes, target_sizes)
flickr_res = [] if "flickr_bbox" in postprocessors.keys() else None
if "flickr_bbox" in postprocessors.keys():
image_ids = [t["original_img_id"] for t in targets]
sentence_ids = [t["sentence_id"] for t in targets]
items_per_batch_element = [t["nb_eval"] for t in targets]
positive_map_eval = batch_dict["positive_map_eval"].to(device)
flickr_results = postprocessors["flickr_bbox"](
outputs, orig_target_sizes, positive_map_eval, items_per_batch_element
)
assert len(flickr_results) == len(image_ids) == len(sentence_ids)
for im_id, sent_id, output in zip(image_ids, sentence_ids, flickr_results):
flickr_res.append({"image_id": im_id, "sentence_id": sent_id, "boxes": output})
phrasecut_res = None
if "phrasecut" in postprocessors.keys():
phrasecut_res = postprocessors["phrasecut"](results)
assert len(targets) == len(phrasecut_res)
for i in range(len(targets)):
phrasecut_res[i]["original_id"] = targets[i]["original_id"]
phrasecut_res[i]["task_id"] = targets[i]["task_id"]
res = {target["image_id"].item(): output for target, output in zip(targets, results)}
for evaluator in evaluator_list:
if isinstance(evaluator, FlickrEvaluator):
evaluator.update(flickr_res)
elif isinstance(evaluator, PhrasecutEvaluator):
evaluator.update(phrasecut_res)
else:
evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
for evaluator in evaluator_list:
evaluator.synchronize_between_processes()
refexp_res = None
flickr_res = None
phrasecut_res = None
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
evaluator.accumulate()
evaluator.summarize()
elif isinstance(evaluator, (RefExpEvaluator, ClevrRefEvaluator)):
refexp_res = evaluator.summarize()
elif isinstance(evaluator, FlickrEvaluator):
flickr_res = evaluator.summarize()
elif isinstance(evaluator, PhrasecutEvaluator):
phrasecut_res = evaluator.summarize()
# accumulate predictions from all images
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = evaluator.coco_eval["bbox"].stats.tolist()
if "segm" in postprocessors.keys():
stats["coco_eval_masks"] = evaluator.coco_eval["segm"].stats.tolist()
if refexp_res is not None:
stats.update(refexp_res)
if flickr_res is not None:
stats["flickr"] = flickr_res
if phrasecut_res is not None:
stats["phrasecut"] = phrasecut_res
return stats