-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm-kernel.py
325 lines (255 loc) · 9.58 KB
/
svm-kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# %%
# Mathieu Blondel, September 2010
# License: BSD 3 clause
# http://www.mblondel.org/journal/2010/09/19/support-vector-machines-in-python/
# visualizing what translating to another dimension does
# and bringing back to 2D:
# https://www.youtube.com/watch?v=3liCbRZPrZA
# Docs: http://cvxopt.org/userguide/coneprog.html#quadratic-programming
# Docs qp example: http://cvxopt.org/examples/tutorial/qp.html
# Nice tutorial:
# https://courses.csail.mit.edu/6.867/wiki/images/a/a7/Qp-cvxopt.pdf
import timeit
import matplotlib.pyplot as plt
import random
import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
from sklearn import datasets
def linear_kernel(x1, x2):
return np.dot(x1, x2)
def polynomial_kernel(x, y, p=3):
return (1 + np.dot(x, y)) ** p
def gaussian_kernel(x, y, sigma=5.0):
return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2)))
class SVM(object):
def __init__(self, kernel=linear_kernel, C=None):
self.kernel = kernel
self.C = C
if self.C is not None:
self.C = float(self.C)
def fit(self, X, y):
n_samples, n_features = X.shape
# Gram matrix
K = np.zeros((n_samples, n_samples))
for i in range(n_samples):
for j in range(n_samples):
K[i, j] = self.kernel(X[i], X[j])
P = cvxopt.matrix(np.outer(y, y) * K)
q = cvxopt.matrix(np.ones(n_samples) * -1)
A = cvxopt.matrix(y, (1, n_samples))
b = cvxopt.matrix(0.0)
if self.C is None:
G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
h = cvxopt.matrix(np.zeros(n_samples))
else:
tmp1 = np.diag(np.ones(n_samples) * -1)
tmp2 = np.identity(n_samples)
G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
tmp1 = np.zeros(n_samples)
tmp2 = np.ones(n_samples) * self.C
h = cvxopt.matrix(np.hstack((tmp1, tmp2)))
# solve QP problem
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
# Lagrange multipliers
a = np.ravel(solution['x'])
# Support vectors have non zero lagrange multipliers
sv = a > 1e-5
ind = np.arange(len(a))[sv]
self.a = a[sv]
self.sv = X[sv]
self.sv_y = y[sv]
print("%d support vectors out of %d points" % (len(self.a), n_samples))
# Intercept
self.b = 0
for n in range(len(self.a)):
self.b += self.sv_y[n]
self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv])
self.b /= len(self.a)
# Weight vector
if self.kernel == linear_kernel:
self.w = np.zeros(n_features)
for n in range(len(self.a)):
self.w += self.a[n] * self.sv_y[n] * self.sv[n]
else:
self.w = None
def project(self, X):
if self.w is not None:
return np.dot(X, self.w) + self.b
else:
y_predict = np.zeros(len(X))
for i in range(len(X)):
s = 0
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
s += a * sv_y * self.kernel(X[i], sv)
y_predict[i] = s
return y_predict + self.b
def predict(self, X):
return (self.project(X))
if __name__ == "__main__":
import pylab as pl
def plot_margin(X1_train, X2_train, clf):
def f(x, w, b, c=0):
# given x, return y such that [x,y] in on the line
# w.x + b = c
return (-w[0] * x - b + c) / w[1]
pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")
pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")
pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")
# w.x + b = 0
a0 = -4
a1 = f(a0, clf.w, clf.b)
b0 = 4
b1 = f(b0, clf.w, clf.b)
pl.plot([a0, b0], [a1, b1], "k")
# w.x + b = 1
a0 = -4
a1 = f(a0, clf.w, clf.b, 1)
b0 = 4
b1 = f(b0, clf.w, clf.b, 1)
pl.plot([a0, b0], [a1, b1], "k--")
# w.x + b = -1
a0 = -4
a1 = f(a0, clf.w, clf.b, -1)
b0 = 4
b1 = f(b0, clf.w, clf.b, -1)
pl.plot([a0, b0], [a1, b1], "k--")
pl.axis("tight")
pl.show()
def plot_contour(X1_train, X2_train, clf):
pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")
pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")
pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")
X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50))
X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])
Z = clf.project(X).reshape(X1.shape)
pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower')
pl.contour(X1, X2, Z + 1, [0.0], colors='grey',
linewidths=1, origin='lower')
pl.contour(X1, X2, Z - 1, [0.0], colors='grey',
linewidths=1, origin='lower')
pl.axis("tight")
pl.show()
# %%
iris = datasets.load_iris()
X = iris.data[:, 1:3]
# print(X)
y = iris.target
def oneversusrest(X, testdata):
setosa = X[:50]
versicolor = X[50:100]
virginica = X[100:]
# Get 10 Random Samples From Each Class
random_setosa = random.choices(setosa, k=10)
random_versicolor = random.choices(versicolor, k=10)
random_virginica = random.choices(virginica, k=10)
# CLASSIFIER 1
join1 = np.vstack((random_virginica, random_versicolor))
X_train = np.vstack((random_setosa, join1))
y1 = np.ones(len(random_setosa))
y2 = np.ones(len(join1)) * -1
y_train1 = np.hstack((y1, y2))
clf1 = SVM(C=1000.1)
clf1.fit(X_train, y_train1)
print("prediction1 : ", clf1.predict(testdata))
# plot_contour(X_train[y_train1 == 1], X_train[y_train1 == -1], clf1)
# =============================================================
# CLASSIFIER 2
join2 = np.vstack((random_setosa, random_virginica))
X_train2 = np.vstack((random_versicolor, join2))
y1 = np.ones(len(random_versicolor))
y2 = np.ones(len(join2)) * -1
y_train2 = np.hstack((y1, y2))
clf2 = SVM(gaussian_kernel)
clf2.fit(X_train2, y_train2)
print("prediction2 ,", np.average(clf2.predict(testdata)))
# plot_contour(X_train2[y_train2 == 1], X_train2[y_train2 == -1], clf2)
# =============================================================
# CLASSIFIER 3
join3 = np.vstack((random_setosa, random_versicolor))
X_train3 = np.vstack((random_virginica, join3))
y1 = np.ones(len(random_virginica))
y2 = np.ones(len(join3)) * -1
y_train3 = np.hstack((y1, y2))
clf3 = SVM(C=1000.1)
clf3.fit(X_train3, y_train3)
print("Prediction3,", clf3.predict(testdata))
# plot_contour(X_train3[y_train3 == 1], X_train3[y_train3 == -1], clf3)
# =============================================================
predictions = [clf1.predict(testdata), np.average(
clf2.predict(testdata)), clf3.predict(testdata)]
ovrpredict = predictions.index(max(predictions))
print("END PREDICTION 1 VS Rest: Class =", ovrpredict+1)
return ovrpredict
# =============================================================
# %%
def DAG(X, testData):
# %%
setosa = X[:50]
versicolor = X[50:100]
virginica = X[100:]
# Get 10 Random Samples From Each Class
random_setosa = random.choices(setosa, k=10)
random_versicolor = random.choices(versicolor, k=10)
random_virginica = random.choices(virginica, k=10)
# CLASSIFIER 1
X_train = np.vstack((random_setosa, random_virginica))
y1 = np.ones(len(random_setosa))
y2 = np.ones(len(random_virginica)) * -1
y_train1 = np.hstack((y1, y2))
clf1 = SVM(C=1000.1)
clf1.fit(X_train, y_train1)
# plot_contour(X_train[y_train1 == 1], X_train[y_train1 == -1], clf1)
res1 = np.sign(clf1.predict(testData))
def clf_2(data):
X_train2 = np.vstack((random_setosa, random_versicolor))
y1 = np.ones(len(random_setosa))
y2 = np.ones(len(random_versicolor)) * -1
y_train2 = np.hstack((y1, y2))
clf2 = SVM(C=1000.1)
clf2.fit(X_train2, y_train2)
print("prediction2 ,", np.average(clf2.predict(data)))
# plot_contour(X_train2[y_train2 == 1], X_train2[y_train2 == -1], clf2)
predicted = clf2.predict(data)
if np.sign(predicted) != 1:
return 2
else:
return 1
def clf_3(data):
X_train3 = np.vstack((random_versicolor, random_virginica))
y1 = np.ones(len(random_versicolor))
y2 = np.ones(len(random_virginica)) * -1
y_train3 = np.hstack((y1, y2))
clf3 = SVM(C=1000.1)
clf3.fit(X_train3, y_train3)
predicted = clf3.predict(data)
print("prediction2 ,", np.average(clf3.predict(data)))
# plot_contour(X_train3[y_train3 == 1], X_train3[y_train3 == -1], clf3)
if np.sign(predicted) != 1:
return 3
else:
return 2
if res1 != 1:
print("HASIL AKHIR METODE DAG:", clf_3(testData))
else:
print("HASIL AKHIR METODE DAG :", clf_2(testData))
# =============================================================
# CLASSIFIER 2
# X = iris.data
# print(X[:, 0])
# f = plt.figure()
# s = plt.scatter(X[:, 0], X[:, 1], c='y')
# plt.show(s)
# Jalanin Satu Aja Kalo bingung
# oneversusrest(X, X[101])
# DAG(X, X[101])
def wrapper(func, *args, **kwargs):
def wrapped():
return func(*args, **kwargs)
return wrapped
short_list = range(10)
wrapped = wrapper(oneversusrest, X, X[101])
# print(timeit.timeit(wrapped, number=1))
wrapped = wrapper(oneversusrest, X, X[101])
print("Function took: ", timeit.timeit(wrapped, number=1))