|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 | 5 | "execution_count": 1,
|
6 |
| - "metadata": { |
7 |
| - "collapsed": false |
8 |
| - }, |
| 6 | + "metadata": {}, |
9 | 7 | "outputs": [
|
10 | 8 | {
|
11 | 9 | "data": {
|
12 | 10 | "text/plain": [
|
13 |
| - "<matplotlib.figure.Figure at 0x7f5d6e0ca390>" |
| 11 | + "<matplotlib.figure.Figure at 0x7f68dee2a160>" |
14 | 12 | ]
|
15 | 13 | },
|
16 | 14 | "metadata": {},
|
|
31 | 29 | },
|
32 | 30 | {
|
33 | 31 | "cell_type": "code",
|
34 |
| - "execution_count": 3, |
35 |
| - "metadata": { |
36 |
| - "collapsed": false |
37 |
| - }, |
| 32 | + "execution_count": 2, |
| 33 | + "metadata": {}, |
38 | 34 | "outputs": [],
|
39 | 35 | "source": [
|
40 | 36 | "import redqueen.utils as U\n",
|
|
101 | 97 | },
|
102 | 98 | {
|
103 | 99 | "cell_type": "code",
|
104 |
| - "execution_count": 4, |
105 |
| - "metadata": { |
106 |
| - "collapsed": false |
107 |
| - }, |
| 100 | + "execution_count": 3, |
| 101 | + "metadata": {}, |
108 | 102 | "outputs": [],
|
109 | 103 | "source": [
|
110 | 104 | "sim_opts_1_follower = OM.SimOpts(\n",
|
111 | 105 | " src_id=0,\n",
|
112 | 106 | " end_time=100,\n",
|
113 |
| - " q_vec=np.array([1]),\n", |
114 |
| - " s=1.0,\n", |
| 107 | + " s=np.array([1]),\n", |
| 108 | + " q=1.0,\n", |
115 | 109 | " other_sources=[('Hawkes', {'src_id': 1, 'seed': 1, 'l_0': 1.0, 'alpha': 1.0, 'beta': 5.0})],\n",
|
116 | 110 | " sink_ids=[1000],\n",
|
117 | 111 | " edge_list=[(0, 1000), (1, 1000)]\n",
|
|
129 | 123 | },
|
130 | 124 | {
|
131 | 125 | "cell_type": "code",
|
132 |
| - "execution_count": 5, |
133 |
| - "metadata": { |
134 |
| - "collapsed": false |
135 |
| - }, |
| 126 | + "execution_count": 4, |
| 127 | + "metadata": {}, |
136 | 128 | "outputs": [
|
137 | 129 | {
|
138 | 130 | "name": "stdout",
|
139 | 131 | "output_type": "stream",
|
140 | 132 | "text": [
|
141 |
| - "CPU times: user 83.3 ms, sys: 3.33 ms, total: 86.7 ms\n", |
142 |
| - "Wall time: 84.6 ms\n" |
| 133 | + "CPU times: user 66.7 ms, sys: 0 ns, total: 66.7 ms\n", |
| 134 | + "Wall time: 63.1 ms\n" |
143 | 135 | ]
|
144 | 136 | }
|
145 | 137 | ],
|
|
154 | 146 | " 'type': 'Opt',\n",
|
155 | 147 | " 'seed': seed,\n",
|
156 | 148 | " 'capacity': num_opt_tweets,\n",
|
157 |
| - " 's': sim_opts_1_follower.s\n", |
| 149 | + " 'q': sim_opts_1_follower.q\n", |
158 | 150 | "}\n",
|
159 | 151 | "OR.add_perf(perf_opt, opt_df, sim_opts_1_follower)"
|
160 | 152 | ]
|
161 | 153 | },
|
162 | 154 | {
|
163 | 155 | "cell_type": "code",
|
164 |
| - "execution_count": 6, |
165 |
| - "metadata": { |
166 |
| - "collapsed": false |
167 |
| - }, |
| 156 | + "execution_count": 5, |
| 157 | + "metadata": {}, |
168 | 158 | "outputs": [
|
169 | 159 | {
|
170 | 160 | "name": "stdout",
|
171 | 161 | "output_type": "stream",
|
172 | 162 | "text": [
|
173 |
| - "CPU times: user 73.3 ms, sys: 0 ns, total: 73.3 ms\n", |
174 |
| - "Wall time: 72 ms\n" |
| 163 | + "CPU times: user 100 ms, sys: 6.67 ms, total: 107 ms\n", |
| 164 | + "Wall time: 103 ms\n" |
175 | 165 | ]
|
176 | 166 | }
|
177 | 167 | ],
|
|
186 | 176 | " 'type': 'Poisson',\n",
|
187 | 177 | " 'seed': seed,\n",
|
188 | 178 | " 'capacity': num_poisson_tweets,\n",
|
189 |
| - " 's': sim_opts_1_follower.s\n", |
| 179 | + " 'q': sim_opts_1_follower.q\n", |
190 | 180 | "}\n",
|
191 | 181 | "OR.add_perf(perf_poisson, poisson_df, sim_opts_1_follower)"
|
192 | 182 | ]
|
|
203 | 193 | {
|
204 | 194 | "cell_type": "code",
|
205 | 195 | "execution_count": 7,
|
206 |
| - "metadata": { |
207 |
| - "collapsed": false |
208 |
| - }, |
| 196 | + "metadata": {}, |
209 | 197 | "outputs": [
|
210 | 198 | {
|
211 | 199 | "name": "stdout",
|
|
223 | 211 | {
|
224 | 212 | "cell_type": "code",
|
225 | 213 | "execution_count": 8,
|
226 |
| - "metadata": { |
227 |
| - "collapsed": false |
228 |
| - }, |
| 214 | + "metadata": {}, |
229 | 215 | "outputs": [
|
230 | 216 | {
|
231 | 217 | "name": "stdout",
|
|
244 | 230 | {
|
245 | 231 | "cell_type": "code",
|
246 | 232 | "execution_count": 9,
|
247 |
| - "metadata": { |
248 |
| - "collapsed": false |
249 |
| - }, |
| 233 | + "metadata": {}, |
250 | 234 | "outputs": [
|
251 | 235 | {
|
252 | 236 | "data": {
|
|
274 | 258 | {
|
275 | 259 | "cell_type": "code",
|
276 | 260 | "execution_count": 10,
|
277 |
| - "metadata": { |
278 |
| - "collapsed": false |
279 |
| - }, |
| 261 | + "metadata": {}, |
280 | 262 | "outputs": [
|
281 | 263 | {
|
282 | 264 | "name": "stdout",
|
|
324 | 306 | {
|
325 | 307 | "cell_type": "code",
|
326 | 308 | "execution_count": 11,
|
327 |
| - "metadata": { |
328 |
| - "collapsed": false |
329 |
| - }, |
| 309 | + "metadata": {}, |
330 | 310 | "outputs": [
|
331 | 311 | {
|
332 | 312 | "data": {
|
|
354 | 334 | {
|
355 | 335 | "cell_type": "code",
|
356 | 336 | "execution_count": 12,
|
357 |
| - "metadata": { |
358 |
| - "collapsed": false |
359 |
| - }, |
| 337 | + "metadata": {}, |
360 | 338 | "outputs": [
|
361 | 339 | {
|
362 | 340 | "data": {
|
|
607 | 585 | },
|
608 | 586 | {
|
609 | 587 | "cell_type": "code",
|
610 |
| - "execution_count": 13, |
611 |
| - "metadata": { |
612 |
| - "collapsed": false |
613 |
| - }, |
| 588 | + "execution_count": 11, |
| 589 | + "metadata": {}, |
614 | 590 | "outputs": [],
|
615 | 591 | "source": [
|
616 | 592 | "@Deco.optioned('opts')\n",
|
|
646 | 622 | },
|
647 | 623 | {
|
648 | 624 | "cell_type": "code",
|
649 |
| - "execution_count": 14, |
650 |
| - "metadata": { |
651 |
| - "collapsed": false |
652 |
| - }, |
| 625 | + "execution_count": 12, |
| 626 | + "metadata": {}, |
653 | 627 | "outputs": [],
|
654 | 628 | "source": [
|
655 | 629 | "example_1 = perf_to_json([opt_df, poisson_df], ['redqueen', 'poisson'], \n",
|
|
658 | 632 | },
|
659 | 633 | {
|
660 | 634 | "cell_type": "code",
|
661 |
| - "execution_count": 15, |
662 |
| - "metadata": { |
663 |
| - "collapsed": false |
664 |
| - }, |
| 635 | + "execution_count": 13, |
| 636 | + "metadata": {}, |
665 | 637 | "outputs": [
|
666 | 638 | {
|
667 | 639 | "data": {
|
668 | 640 | "text/plain": [
|
669 | 641 | "43.482480948594869"
|
670 | 642 | ]
|
671 | 643 | },
|
672 |
| - "execution_count": 15, |
| 644 | + "execution_count": 13, |
673 | 645 | "metadata": {},
|
674 | 646 | "output_type": "execute_result"
|
675 | 647 | }
|
|
681 | 653 | {
|
682 | 654 | "cell_type": "code",
|
683 | 655 | "execution_count": 16,
|
684 |
| - "metadata": { |
685 |
| - "collapsed": false |
686 |
| - }, |
| 656 | + "metadata": {}, |
687 | 657 | "outputs": [
|
688 | 658 | {
|
689 | 659 | "data": {
|
|
1894 | 1864 | "name": "python",
|
1895 | 1865 | "nbconvert_exporter": "python",
|
1896 | 1866 | "pygments_lexer": "ipython3",
|
1897 |
| - "version": "3.5.2" |
| 1867 | + "version": "3.6.1" |
1898 | 1868 | }
|
1899 | 1869 | },
|
1900 | 1870 | "nbformat": 4,
|
|
0 commit comments