-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVM_classifier.m
331 lines (319 loc) · 13.3 KB
/
SVM_classifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
clc%清空终端
close all%删除其句柄未隐藏的所有图窗
%%
%%读取数据集
%读取训练音频文件——批量读取文件
PathToDatabase1='D:\Matlab\toolbox\libsvm-3.24\windows\database\noise';
PathToDatabase2='D:\Matlab\toolbox\libsvm-3.24\windows\database\music';
PathToDatabase3='D:\Matlab\toolbox\libsvm-3.24\windows\database\speech';
cd(PathToDatabase1);%进入训练数据集文件夹noise
filedir1=dir('*.wav');%列出本文件夹中的wav文件
cd (PathToDatabase2);%进入训练数据集文件夹music
filedir2=dir('*.wav');%列出本文件夹中的wav文件
cd (PathToDatabase3);%进入训练数据集文件夹speech
filedir3=dir('*.wav');%列出本文件夹中的wav文件
disp(filedir1(1).name);
length_filedir=length(filedir1)+length(filedir2)+length(filedir3);
%Y将存储.wav采样数据和FS目录中所有音频文件的采样率。
Y=cell(length_filedir,1);
%Y的格式为1*length_filedir
Fs=Y;%预加载Fs
label=cell(length_filedir,1);
for i = 1:length_filedir
label{i,1}=zeros(1,1);
end
%[0 0 0]表示noise music speech的标签,
%若某种标签成立,则对应元素为1
%将label定义为一个数组(one_hot类型的)
%{
label_1='noise';
label_2='music';
label_3='speech';
%}
for i= 1:length(filedir1)
%读取.wav文件并将他们存储再cell数组中
[Y{i,1}, Fs{i,1}] = audioread(filedir1(i).name);
%将文件夹作为标签
label{i,1}(1,1)=1;
disp(Y{i,1});
end
length_12=length(filedir1)+length(filedir2);
for i= length(filedir1)+1 : length_12
%读取.wav文件并将他们存储再cell数组中
[Y{i,1}, Fs{i,1}] = audioread(filedir2(i-length(filedir1)).name);
%将文件夹作为标签
label{i,1}(1,1)=2;
end
for i= length_12+1 : length_filedir
%读取.wav文件并将他们存储再cell数组中
[Y{i,1}, Fs{i,1}] = audioread(filedir3(i-length_12).name);
%将文件夹作为标签
label{i,1}(1,1)=3;
end
%%
%%提取特征
%{
MFCC-CON,MFCC-CMS, MFCC-AUD,
MFCC-PRE, MFCC-FFT, SPEC-FFT
一共六种特征,需要六种分类器;
再最后提取完特征后,取其中的一半作为训练数据集,
另外一半作为测试数据集
%}
%%
%提取mfcc_con_feature
mfcc_con_feature=cell(length_filedir,1);
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
for i =1 : length_filedir
%该特征的固定输出为:13行n列(不确定)
mfcc_con_feature{i,1} = mfcc_con(Y{i,1},Fs{i,1},100);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_con_feature{i,1}=mean(cov(transpose(mfcc_con_feature{i,1})),1);
end
%将label元组与mfcc_con_feature元组合并
%label{i行[1行3列]*1列}
%mfcc_con_feature{i行[1行13列]*1列}
mfcc_con_Feature_total=cell(length_filedir,1);
for i = 1 : length_filedir
mfcc_con_Feature_total{i,1}=zeros(14);%合并系数
mfcc_con_Feature_total{i,1}=[mfcc_con_feature{i,1} label{i,1}];
end
%将元胞数组l转换为基础数组[length_filedir*14]
mfcc_con_Feature_total=cell2mat(mfcc_con_Feature_total);
mfcc_con_Feature_total=mfcc_con_Feature_total(randperm(size(mfcc_con_Feature_total,1)),:);
%打乱数组
%制作训练数据集以及测试数据集(3,7比例分)
mfccConTrainingfeature=mfcc_con_Feature_total(1:round(3*(length_filedir/10)),:);
mfccConTestingfeature=mfcc_con_Feature_total(round(3*(length_filedir/10))+1:length_filedir,:);
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
save MfccConTrainingData.mat mfccConTrainingfeature;
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\testing_dataset');
save MfccConTestingData.mat mfccConTestingfeature;
%%
%提取mfcc_cms_feature
mfcc_cms_feature=cell(length_filedir,1);
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
for i =1 : length_filedir
%该特征的固定输出为:13维n列(不确定)
mfcc_cms_feature{i,1} = mfcc_cms(Y{i,1},Fs{i,1},100);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_cms_feature{i,1}=mean(cov(transpose(mfcc_cms_feature{i,1})),1);
end
%将label元组与mfcc_cms_feature元组合并
%label{i行[1行3列]*1列}
%mfcc_cms_feature{i行[1行13列]*1列}
mfcc_cms_feature_total=cell(length_filedir,1);
for i = 1 : length_filedir
mfcc_cms_feature_total{i,1}=zeros(14);%合并系数
mfcc_cms_feature_total{i,1}=[mfcc_cms_feature{i,1} label{i,1}];
end
%将元胞数组l转换为基础数组[length_filedir*14]
mfcc_cms_feature_total=cell2mat(mfcc_cms_feature_total);
mfcc_cms_feature_total=mfcc_cms_feature_total(randperm(size(mfcc_cms_feature_total,1)),:);
%打乱数组
%制作训练数据集以及测试数据集(3,7比例分)
mfccCmsTrainingfeature=mfcc_cms_feature_total(1:round(3*(length_filedir/10)),:);
mfccCmsTestingfeature=mfcc_cms_feature_total(round(3*(length_filedir/10))+1:length_filedir,:);
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
save MfccCmsTrainingData.mat mfccCmsTrainingfeature;
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\testing_dataset');
save MfccCmsTestingData.mat mfccCmsTestingfeature;
%%
%提取mfcc_aud_feature
mfcc_aud_feature=cell(length_filedir,1);
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
for i =1 : length_filedir
%该特征的固定输出为:13维n列(不确定)
if i>=1 && i<=length(filedir1)
path=fullfile(PathToDatabase1,filedir1(i).name);
mfcc_aud_feature{i,1} = mfcc_aud(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_aud_feature{i,1}=mean(cov(transpose(mfcc_aud_feature{i,1})),1);
%disp(mfcc_aud_feature{1,1});
end
if i>length(filedir1) && i<=length_12
path=fullfile(PathToDatabase1,filedir2(i-length(filedir1)).name);
mfcc_aud_feature{i,1} = mfcc_aud(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_aud_feature{i,1}=mean(cov(transpose(mfcc_aud_feature{i,1})),1);
%disp(mfcc_aud_feature);
end
if i>length_12 && i<=length_filedir
path=fullfile(PathToDatabase1,filedir3(i-length_12).name);
mfcc_aud_feature{i,1} = mfcc_aud(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_aud_feature{i,1}=mean(cov(transpose(mfcc_aud_feature{i,1})),1);
%disp(mfcc_aud_feature);
end
end
%disp(mfcc_aud_feature);
%将label元组与mfcc_aud_feature元组合并
%label{i行[1行3列]*1列}
%mfcc_aud_feature{i行[1行13列]*1列}
mfcc_aud_feature_total=cell(length_filedir,1);
for i = 1 : length_filedir
mfcc_aud_feature_total{i,1}=zeros(14);%合并系数
mfcc_aud_feature_total{i,1}=[mfcc_aud_feature{i,1} label{i,1}];
end
%将元胞数组l转换为基础数组[length_filedir*14]
mfcc_aud_feature_total=cell2mat(mfcc_aud_feature_total);
%打乱数数据集
mfcc_aud_feature_total=mfcc_aud_feature_total(randperm(size(mfcc_aud_feature_total,1)),:);
%制作训练数据集以及测试数据集(3,7比例分)
mfccAudTrainingfeature=mfcc_aud_feature_total(1:round(3*(length_filedir/10)),:);
%disp(size(mfccAudTrainingfeature));
mfccAudTestingfeature=mfcc_aud_feature_total(round(3*(length_filedir/10))+1:length_filedir,:);
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
save MfccAudTrainingData.mat mfccAudTrainingfeature;
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\testing_dataset');
save MfccAudTestingData.mat mfccAudTestingfeature;
%%
%提取mfcc_fft_feature
mfcc_fft_feature=cell(length_filedir,1);
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
for i =1 : length_filedir
%该特征的固定输出为:13维n列(不确定)
if i>=1 && i<=length(filedir1)
path=fullfile(PathToDatabase1,filedir1(i).name);
mfcc_fft_feature{i,1} = mfcc_fft(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_fft_feature{i,1}=mean(cov(transpose(mfcc_fft_feature{i,1})),1);
%disp(mfcc_fft_feature{1,1});
end
if i>length(filedir1) && i<=length_12
path=fullfile(PathToDatabase1,filedir2(i-length(filedir1)).name);
mfcc_fft_feature{i,1} = mfcc_fft(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_fft_feature{i,1}=mean(cov(transpose(mfcc_fft_feature{i,1})),1);
%disp(mfcc_fft_feature);
end
if i>length_12 && i<=length_filedir
path=fullfile(PathToDatabase1,filedir3(i-length_12).name);
mfcc_fft_feature{i,1} = mfcc_fft(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_fft_feature{i,1}=mean(cov(transpose(mfcc_fft_feature{i,1})),1);
%disp(mfcc_fft_feature);
end
end
%disp(mfcc_fft_feature);
%将label元组与mfcc_fft_feature元组合并
%label{i行[1行3列]*1列}
%mfcc_fft_feature{i行[1行13列]*1列}
mfcc_fft_feature_total=cell(length_filedir,1);
for i = 1 : length_filedir
mfcc_fft_feature_total{i,1}=zeros(14);%合并系数
mfcc_fft_feature_total{i,1}=[mfcc_fft_feature{i,1} label{i,1}];
end
%将元胞数组l转换为基础数组[length_filedir*14]
mfcc_fft_feature_total=cell2mat(mfcc_fft_feature_total);
%打乱数数据集
mfcc_fft_feature_total=mfcc_fft_feature_total(randperm(size(mfcc_fft_feature_total,1)),:);
%制作训练数据集以及测试数据集(3,7比例分)
mfccFftTrainingfeature=mfcc_fft_feature_total(1:round(3*(length_filedir/10)),:);
%disp(size(mfccAudTrainingfeature));
mfccFftTestingfeature=mfcc_fft_feature_total(round(3*(length_filedir/10))+1:length_filedir,:);
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
save MfccFftTrainingData.mat mfccFftTrainingfeature;
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\testing_dataset');
save MfccFftTestingData.mat mfccFftTestingfeature;
%%
%提取spec_fft_feature
mfcc_fft_feature=cell(length_filedir,1);
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
for i =1 : length_filedir
%该特征的固定输出为:13维n列(不确定)
if i>=1 && i<=length(filedir1)
path=fullfile(PathToDatabase1,filedir1(i).name);
mfcc_fft_feature{i,1} = mfcc_fft(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_fft_feature{i,1}=mean(cov(transpose(mfcc_fft_feature{i,1})),1);
%disp(mfcc_fft_feature{1,1});
end
if i>length(filedir1) && i<=length_12
path=fullfile(PathToDatabase1,filedir2(i-length(filedir1)).name);
mfcc_fft_feature{i,1} = mfcc_fft(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_fft_feature{i,1}=mean(cov(transpose(mfcc_fft_feature{i,1})),1);
%disp(mfcc_fft_feature);
end
if i>length_12 && i<=length_filedir
path=fullfile(PathToDatabase1,filedir3(i-length_12).name);
mfcc_fft_feature{i,1} = mfcc_fft(path);%将特征存入到数组当中
%将特征向量改为协方差向量并求每列均值转换为1*13的数据特征
mfcc_fft_feature{i,1}=mean(cov(transpose(mfcc_fft_feature{i,1})),1);
%disp(mfcc_fft_feature);
end
end
%disp(mfcc_fft_feature);
%将label元组与mfcc_fft_feature元组合并
%label{i行[1行3列]*1列}
%mfcc_fft_feature{i行[1行13列]*1列}
mfcc_fft_feature_total=cell(length_filedir,1);
for i = 1 : length_filedir
mfcc_fft_feature_total{i,1}=zeros(14);%合并系数
mfcc_fft_feature_total{i,1}=[mfcc_fft_feature{i,1} label{i,1}];
end
%将元胞数组l转换为基础数组[length_filedir*14]
mfcc_fft_feature_total=cell2mat(mfcc_fft_feature_total);
%打乱数数据集
mfcc_fft_feature_total=mfcc_fft_feature_total(randperm(size(mfcc_fft_feature_total,1)),:);
%制作训练数据集以及测试数据集(3,7比例分)
mfccFftTrainingfeature=mfcc_fft_feature_total(1:round(3*(length_filedir/10)),:);
%disp(size(mfccAudTrainingfeature));
mfccFftTestingfeature=mfcc_fft_feature_total(round(3*(length_filedir/10))+1:length_filedir,:);
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
save MfccFftTrainingData.mat mfccFftTrainingfeature;
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\testing_dataset');
save MfccFftTestingData.mat mfccFftTestingfeature;
%%
%%训练以及分类
%1.导入训练数据
%2.训练
%3.将训练模型保存到mat文件当中
clc
close all
%%
%训练mfcc_con_feature
%导入训练数据
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
load('MfccConTrainingData.mat','mfccConTrainingfeature');
%训练
disp(size(mfccConTrainingfeature));
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
mfccCon_model_classifier=libsvmtrain(mfccConTrainingfeature(:,14),mfccConTrainingfeature(:,1:13),'-c 2 -g 0.07');
%2代表设置了核函数为RBF
%保存训练模型到mat文件中
%disp(mfccCon_model_classifier);
svm_savemodel(mfccCon_model_classifier,'D:\Matlab\toolbox\libsvm-3.24\windows\model\mfcccon_model.model');
%%
%训练mfcc_cms_feature
%导入训练数据
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
load('MfccCmsTrainingData.mat','mfccCmsTrainingfeature');
%训练
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
mfccCms_model_classifier=libsvmtrain(mfccCmsTrainingfeature(:,14),mfccCmsTrainingfeature(:,1:13),'-c 2 -g 0.07');
%2代表设置了核函数为RBF
%保存训练模型到mat文件中
svm_savemodel(mfccCms_model_classifier,'D:\Matlab\toolbox\libsvm-3.24\windows\model\mfcccms_model.model');
%%
%训练mfcc_aud_feature
%导入训练数据
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
load('MfccAudTrainingData.mat','mfccAudTrainingfeature');
%训练
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
mfccAud_model_classifier=libsvmtrain(mfccAudTrainingfeature(:,14),mfccAudTrainingfeature(:,1:13),'-c 2 -g 0.07');
%2代表设置了核函数为RBF
%保存训练模型到mat文件中
svm_savemodel(mfccAud_model_classifier,'D:\Matlab\toolbox\libsvm-3.24\windows\model\mfccaud_model.model');
%%
%训练mfcc_fft_feature
%导入训练数据
cd('D:\Matlab\toolbox\libsvm-3.24\windows\dataset\training_dataset');
load('MfccFftTrainingData.mat','mfccFftTrainingfeature');
%训练
cd('D:\Matlab\toolbox\libsvm-3.24\windows');
mfccFft_model_classifier=libsvmtrain(mfccFftTrainingfeature(:,14),mfccFftTrainingfeature(:,1:13),'-c 2 -g 0.07');
%2代表设置了核函数为RBF
%保存训练模型到mat文件中
svm_savemodel(mfccFft_model_classifier,'D:\Matlab\toolbox\libsvm-3.24\windows\model\mfccfft_model.model');