-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sc.sh
27 lines (26 loc) · 1.38 KB
/
train_sc.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/bash
#SBATCH -J nogcn # ��ҵ���� test
#SBATCH -p defq # �ύ��Ĭ�ϵ� defq ����
#SBATCH -N 1 # ʹ�� 1 ���ڵ�
#SBATCH --ntasks-per-node=1 # ÿ���ڵ㿪�� 1 ������
#SBATCH --cpus-per-task=6 # ÿ������ռ�� 6 �� CPU ����
#SBATCH --gres=gpu:1 # ����� GPU ������Ҫ�ڴ��ж��� GPU ����,�˴�Ϊ 1
#SBATCH -t 2500 # �����������ʱ���� 100 ����
source activate EPMEI
GPU_ID=0
dataset="14lap"
for seed in 41 42 43 44 45; do
CUDA_VISIBLE_DEVICES=$GPU_ID python3 run_sc.py --model_type bertsub \
--model_name_or_path bert_models/bert-base-uncased --do_lower_case \
--data_dir data/ASTE-Data-V2-EMNLP2020_pro/14lap/ \
--learning_rate 4e-5 --num_train_epochs 10 --per_gpu_train_batch_size 8 --per_gpu_eval_batch_size 16 --gradient_accumulation_steps 1 \
--max_seq_length 256 --max_pair_length 16 --save_steps 50 \
--do_train --do_eval --evaluate_during_training --eval_all_checkpoints --eval_logsoftmax\
--seed $seed \
--test_file result/ner/14lap/train_ner43/ent_pred_test_pro.json \
--use_ner_results \
--use_typemarker --gcn --n_gcn 2\
--output_dir result/sc/$dataset/result$seed --overwrite_output_dir --focalloss
done;
# Average the scores
#python3 sumup.py scire scire-scibert