forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmbart_sample.py
58 lines (46 loc) · 2.08 KB
/
mbart_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddlenlp.transformers import MBart50Tokenizer, MBartForConditionalGeneration
model_name = "mbart-large-50-many-to-many-mmt"
tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX")
model = MBartForConditionalGeneration.from_pretrained(model_name)
model.eval()
def postprocess_response(seq, bos_idx, eos_idx):
"""Post-process the decoded sequence."""
eos_pos = len(seq) - 1
for i, idx in enumerate(seq):
if idx == eos_idx:
eos_pos = i
break
seq = [idx for idx in seq[: eos_pos + 1] if idx != bos_idx and idx != eos_idx]
res = tokenizer.convert_ids_to_string(seq)
return res
bos_id = tokenizer.lang_code_to_id["zh_CN"]
eos_id = model.mbart.config["eos_token_id"]
inputs = "PaddleNLP is a powerful NLP library with Awesome pre-trained models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications."
input_ids = tokenizer(inputs)["input_ids"]
input_ids = paddle.to_tensor(input_ids, dtype="int32").unsqueeze(0)
outputs, _ = model.generate(
input_ids=input_ids,
forced_bos_token_id=bos_id,
decode_strategy="beam_search",
num_beams=4,
max_length=50,
use_fast=True,
)
result = postprocess_response(outputs[0].numpy().tolist(), bos_id, eos_id)
print("Model input:", inputs)
print("Result:", result)
# PaddleNLP是一个强大的NLP库,具有超乎寻常的预训练模型和易于使用的接口,支持从研究到工业应用的广泛的NLP任务。