forked from SciSharp/TensorFlow.NET
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLinearRegression.cs
99 lines (85 loc) · 4.04 KB
/
LinearRegression.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
using NumSharp.Core;
using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow;
namespace TensorFlowNET.Examples
{
/// <summary>
/// A linear regression learning algorithm example using TensorFlow library.
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py
/// </summary>
public class LinearRegression : Python, IExample
{
NumPyRandom rng = np.random;
// Parameters
float learning_rate = 0.01f;
int training_epochs = 1000;
int display_step = 50;
public void Run()
{
// Training Data
var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
var n_samples = train_X.shape[0];
// tf Graph Input
var X = tf.placeholder(tf.float32);
var Y = tf.placeholder(tf.float32);
// Set model weights
// We can set a fixed init value in order to debug
// var rnd1 = rng.randn<float>();
// var rnd2 = rng.randn<float>();
var W = tf.Variable(-0.06f, name: "weight");
var b = tf.Variable(-0.73f, name: "bias");
// Construct a linear model
var pred = tf.add(tf.multiply(X, W), b);
// Mean squared error
var cost = tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * n_samples);
// Gradient descent
// Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
// Initialize the variables (i.e. assign their default value)
var init = tf.global_variables_initializer();
// Start training
with<Session>(tf.Session(), sess =>
{
// Run the initializer
sess.run(init);
// Fit all training data
for (int epoch = 0; epoch < training_epochs; epoch++)
{
foreach (var (x, y) in zip<float>(train_X, train_Y))
{
sess.run(optimizer,
new FeedItem(X, x),
new FeedItem(Y, y));
}
// Display logs per epoch step
if ((epoch + 1) % display_step == 0)
{
var c = sess.run(cost,
new FeedItem(X, train_X),
new FeedItem(Y, train_Y));
Console.WriteLine($"Epoch: {epoch + 1} cost={c} " + $"W={sess.run(W)} b={sess.run(b)}");
}
}
Console.WriteLine("Optimization Finished!");
var training_cost = sess.run(cost,
new FeedItem(X, train_X),
new FeedItem(Y, train_Y));
Console.WriteLine($"Training cost={training_cost} W={sess.run(W)} b={sess.run(b)}");
// Testing example
var test_X = np.array(6.83f, 4.668f, 8.9f, 7.91f, 5.7f, 8.7f, 3.1f, 2.1f);
var test_Y = np.array(1.84f, 2.273f, 3.2f, 2.831f, 2.92f, 3.24f, 1.35f, 1.03f);
Console.WriteLine("Testing... (Mean square loss Comparison)");
var testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * test_X.shape[0]),
new FeedItem(X, test_X),
new FeedItem(Y, test_Y));
Console.WriteLine($"Testing cost={testing_cost}");
Console.WriteLine($"Absolute mean square loss difference: {Math.Abs((float)training_cost - (float)testing_cost)}");
});
}
}
}