-
Notifications
You must be signed in to change notification settings - Fork 0
/
bug89.ok
144 lines (124 loc) · 5.28 KB
/
bug89.ok
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
TiMBL 6.4.14 (c) CLST/ILK/CLIPS 1998 - 2019.
Tilburg Memory Based Learner
Centre for Language and Speech Technology, Radboud University
Induction of Linguistic Knowledge Research Group, Tilburg University
CLiPS Computational Linguistics Group, University of Antwerp
Mon Sep 2 15:22:47 2019
Examine datafile 'tests/bug89.train' gave the following results:
Number of Features: 6
InputFormat : Columns
Phase 1: Reading Datafile: tests/bug89.train
Start: 0 @ Mon Sep 2 15:22:47 2019
Finished: 21 @ Mon Sep 2 15:22:47 2019
Calculating Entropy Mon Sep 2 15:22:47 2019
Lines of data : 21
DB Entropy : 1.0488413
Number of Classes : 3
Feats Vals X-square Variance InfoGain GainRatio
1 20 42.000000 1.0000000 1.0488413 0.24408236
2 16 38.266667 0.91111111 0.91765614 0.23649835
3 14 42.000000 1.0000000 1.0488413 0.28705832
4 13 22.586667 0.53777778 0.65053040 0.19007029
5 18 30.800000 0.73333333 0.95360317 0.23221216
6 21 42.000000 1.0000000 1.0488413 0.23878995
Preparation took 0 seconds, 0 milliseconds and 174 microseconds
Feature Permutation based on GainRatio/Values :
< 3, 2, 4, 5, 1, 6 >
Phase 2: Building multi index on Datafile: tests/bug89.train
Start: 0 @ Mon Sep 2 15:22:47 2019
Finished: 21 @ Mon Sep 2 15:22:47 2019
Phase 3: Learning from Datafile: tests/bug89.train
Start: 0 @ Mon Sep 2 15:22:47 2019
Finished: 21 @ Mon Sep 2 15:22:47 2019
Size of InstanceBase = 132 Nodes, (5280 bytes), 10.20 % compression
Learning took 0 seconds, 0 milliseconds and 158 microseconds
Examine datafile 'tests/bug89.test' gave the following results:
Number of Features: 6
InputFormat : Columns
Starting to test, Testfile: tests/bug89.test
Writing output in: bug89.out1
Algorithm : IB1
Global metric : Levenshtein, Prestored matrix
Deviant Feature Metrics:(none)
Size of value-matrix[1] = 48 Bytes
Size of value-matrix[2] = 48 Bytes
Size of value-matrix[3] = 48 Bytes
Size of value-matrix[4] = 48 Bytes
Size of value-matrix[5] = 48 Bytes
Size of value-matrix[6] = 48 Bytes
Total Size of value-matrices 288 Bytes
Weighting : Chi-square
Feature 1 : 42.000000000000000
Feature 2 : 38.266666666666673
Feature 3 : 42.000000000000000
Feature 4 : 22.586666666666662
Feature 5 : 30.799999999999979
Feature 6 : 41.999999999999993
Decay : Exponential Decay a=1.000000 b= 1.000000
Tested: 1 @ Mon Sep 2 15:22:47 2019
Ready: 1 @ Mon Sep 2 15:22:47 2019
Seconds taken: 0.0001 (12048.19 p/s)
overall accuracy: 0.000000 (0/1)
TiMBL 6.4.14 (c) CLST/ILK/CLIPS 1998 - 2019.
Tilburg Memory Based Learner
Centre for Language and Speech Technology, Radboud University
Induction of Linguistic Knowledge Research Group, Tilburg University
CLiPS Computational Linguistics Group, University of Antwerp
Mon Sep 2 15:22:47 2019
Examine datafile 'tests/bug89.train' gave the following results:
Number of Features: 6
InputFormat : Columns
Phase 1: Reading Datafile: tests/bug89.train
Start: 0 @ Mon Sep 2 15:22:47 2019
Finished: 21 @ Mon Sep 2 15:22:47 2019
Calculating Entropy Mon Sep 2 15:22:47 2019
Lines of data : 21
DB Entropy : 1.0488413
Number of Classes : 3
Feats Vals X-square Variance InfoGain GainRatio
1 20 42.000000 1.0000000 1.0488413 0.24408236
2 16 38.266667 0.91111111 0.91765614 0.23649835
3 14 42.000000 1.0000000 1.0488413 0.28705832
4 13 22.586667 0.53777778 0.65053040 0.19007029
5 18 30.800000 0.73333333 0.95360317 0.23221216
6 21 42.000000 1.0000000 1.0488413 0.23878995
Preparation took 0 seconds, 0 milliseconds and 181 microseconds
Feature Permutation based on GainRatio/Values :
< 3, 2, 4, 5, 1, 6 >
Phase 2: Building multi index on Datafile: tests/bug89.train
Start: 0 @ Mon Sep 2 15:22:47 2019
Finished: 21 @ Mon Sep 2 15:22:47 2019
Phase 3: Learning from Datafile: tests/bug89.train
Start: 0 @ Mon Sep 2 15:22:47 2019
Finished: 21 @ Mon Sep 2 15:22:47 2019
Size of InstanceBase = 132 Nodes, (5280 bytes), 10.20 % compression
Learning took 0 seconds, 0 milliseconds and 176 microseconds
Examine datafile 'tests/bug89.test' gave the following results:
Number of Features: 6
InputFormat : Columns
Starting to test, Testfile: tests/bug89.test
Writing output in: bug89.out2
Algorithm : IB1
Global metric : Levenshtein, Prestored matrix
Deviant Feature Metrics:(none)
Size of value-matrix[1] = 48 Bytes
Size of value-matrix[2] = 48 Bytes
Size of value-matrix[3] = 48 Bytes
Size of value-matrix[4] = 48 Bytes
Size of value-matrix[5] = 48 Bytes
Size of value-matrix[6] = 48 Bytes
Total Size of value-matrices 288 Bytes
Weighting : Chi-square
Feature 1 : 42.000000000000000
Feature 2 : 38.266666666666673
Feature 3 : 42.000000000000000
Feature 4 : 22.586666666666662
Feature 5 : 30.799999999999979
Feature 6 : 41.999999999999993
Decay : Exponential Decay a=1.000000 b= 1.000000
Tested: 1 @ Mon Sep 2 15:22:47 2019
Ready: 1 @ Mon Sep 2 15:22:47 2019
Seconds taken: 0.0001 (12500.00 p/s)
overall accuracy: 0.000000 (0/1)
63361 van D2 is ook 52299 ? T1 { T1 1.77636e-15, T2 6.66134e-16, T3 2.22045e-16 } 756.37333333333
63361 van D2 is ook 52299 ? T1 { T1 0.666667, T2 0.250000, T3 0.0833333 } 756.37333333333