|
468 | 468 | " if z_err:\n",
|
469 | 469 | " self.props.r_source = Ncm.Vector.new_array(z_err)\n",
|
470 | 470 | "\n",
|
471 |
| - " self.y.set_array(gt_profile)\n", |
| 471 | + " self.peek_mean().set_array(gt_profile)\n", |
472 | 472 | "\n",
|
473 |
| - " self.sigma.set_array(\n", |
| 473 | + " self.peek_std().set_array(\n", |
474 | 474 | " gt_err\n",
|
475 | 475 | " ) # Diagonal covariance matrix: standard deviation values in gt_err.\n",
|
476 | 476 | "\n",
|
477 | 477 | " self.set_init(True)\n",
|
478 | 478 | "\n",
|
479 | 479 | " # Once the NcmDataGaussDiag is initialized, its parent class variable np is set with the n_points value.\n",
|
480 | 480 | " def do_get_length(self):\n",
|
481 |
| - " return self.np\n", |
| 481 | + " return self.get_size()\n", |
482 | 482 | "\n",
|
483 | 483 | " def do_get_dof(self):\n",
|
484 |
| - " return self.np\n", |
| 484 | + " return self.get_size()\n", |
485 | 485 | "\n",
|
486 | 486 | " def do_begin(self):\n",
|
487 | 487 | " pass\n",
|
|
605 | 605 | "metadata": {},
|
606 | 606 | "outputs": [],
|
607 | 607 | "source": [
|
608 |
| - "fit1 = Ncm.Fit.new(Ncm.FitType.NLOPT, \"ln-neldermead\", lh1, mset1, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
609 |
| - "fit2 = Ncm.Fit.new(Ncm.FitType.NLOPT, \"ln-neldermead\", lh2, mset2, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
610 |
| - "fit3 = Ncm.Fit.new(Ncm.FitType.NLOPT, \"ln-neldermead\", lh3, mset3, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
| 608 | + "fit1 = Ncm.Fit.factory(Ncm.FitType.NLOPT, \"ln-neldermead\", lh1, mset1, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
| 609 | + "fit2 = Ncm.Fit.factory(Ncm.FitType.NLOPT, \"ln-neldermead\", lh2, mset2, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
| 610 | + "fit3 = Ncm.Fit.factory(Ncm.FitType.NLOPT, \"ln-neldermead\", lh3, mset3, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
611 | 611 | "\n",
|
612 | 612 | "fit1.run(Ncm.FitRunMsgs.SIMPLE)\n",
|
613 | 613 | "fit1.fisher()\n",
|
|
768 | 768 | "init_sampler.set_cov_from_rescale(1.0e-1)\n",
|
769 | 769 | "\n",
|
770 | 770 | "nwalkers = 100 # Number of walkers\n",
|
771 |
| - "walker = Ncm.FitESMCMCWalkerAPS.new(nwalkers, mset3.fparams_len())\n", |
| 771 | + "walker = Ncm.FitESMCMCWalkerAPES.new(nwalkers, mset3.fparams_len())\n", |
772 | 772 | "\n",
|
773 | 773 | "# Ensemble Sampler MCMC\n",
|
774 | 774 | "esmcmc = Ncm.FitESMCMC.new(fit3, nwalkers, init_sampler, walker, Ncm.FitRunMsgs.SIMPLE)\n",
|
|
792 | 792 | "\n",
|
793 | 793 | "Here, instead of building an object directly on top of NcmDataGauss*, we use NumCosmo's framework to build non-binned likelihood for weak-lensing cluster analysis.\n",
|
794 | 794 | "\n",
|
795 |
| - "For that we need two objects: a NcGalaxyWLReducedShearGauss that model a Gaussian distributed reduced shear likelihood, here the observables matrix is simply $(r, \\gamma_t, \\sigma_{\\gamma_t})$ for each galaxy. If the data has spectroscopic redshifts then we use NcGalaxyRedshiftSpec with an array of real redshifts. When photometric errors are included we use the NcGalaxyRedshiftGauss object that receives $(z, \\sigma_z)$ for each galaxy. \n", |
| 795 | + "For that we need two objects: a NcGalaxyWLEllipticityGauss that model a Gaussian distributed reduced shear likelihood, here the observables matrix is simply $(r, \\gamma_t, \\sigma_{\\gamma_t})$ for each galaxy. If the data has spectroscopic redshifts then we use NcGalaxyRedshiftSpec with an array of real redshifts. When photometric errors are included we use the NcGalaxyRedshiftGauss object that receives $(z, \\sigma_z)$ for each galaxy. \n", |
796 | 796 | "\n",
|
797 | 797 | "Once we have the data objects ready we can proceed as in the previous examples.\n"
|
798 | 798 | ]
|
|
812 | 812 | " sigma_g = 1.0e-4 if not sigma_g else sigma_g\n",
|
813 | 813 | " m_obs = np.column_stack((r, g_t, np.repeat(sigma_g, len(r))))\n",
|
814 | 814 | "\n",
|
815 |
| - " grsg = Nc.GalaxyWLReducedShearGauss(pos=Nc.GalaxyWLReducedShearGaussPos.R)\n", |
| 815 | + " grsg = Nc.GalaxyWLEllipticityGauss(pos=Nc.GalaxyWLEllipticityGaussPos.R)\n", |
816 | 816 | " grsg.set_obs(Ncm.Matrix.new_array(m_obs.flatten(), 3))\n",
|
817 | 817 | "\n",
|
818 | 818 | " if sigma_z:\n",
|
|
837 | 837 | " for data in data_array:\n",
|
838 | 838 | " dset.append_data(data)\n",
|
839 | 839 | " lh = Ncm.Likelihood.new(dset)\n",
|
840 |
| - " fit = Ncm.Fit.new(Ncm.FitType.NLOPT, \"ln-neldermead\", lh, mset, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
| 840 | + " fit = Ncm.Fit.factory(Ncm.FitType.NLOPT, \"ln-neldermead\", lh, mset, Ncm.FitGradType.NUMDIFF_FORWARD)\n", |
841 | 841 | " # fit.set_params_reltol (1.0e-8)\n",
|
842 | 842 | " # fit.set_m2lnL_reltol (1.0e-11)\n",
|
843 | 843 | "\n",
|
|
948 | 948 | "init_sampler.set_cov_from_rescale(1.0e-1)\n",
|
949 | 949 | "\n",
|
950 | 950 | "nwalkers = 100\n",
|
951 |
| - "stretch = Ncm.FitESMCMCWalkerAPS.new(nwalkers, mset3.fparams_len())\n", |
| 951 | + "stretch = Ncm.FitESMCMCWalkerAPES.new(nwalkers, mset3.fparams_len())\n", |
952 | 952 | "\n",
|
953 | 953 | "esmcmc = Ncm.FitESMCMC.new(fit3, nwalkers, init_sampler, stretch, Ncm.FitRunMsgs.SIMPLE)\n",
|
954 | 954 | "esmcmc.set_data_file(\"example2_fit3_esmcmc_out_aps.fits\")\n",
|
|
1026 | 1026 | "outputs": [],
|
1027 | 1027 | "source": [
|
1028 | 1028 | "ser = Ncm.Serialize.new(0)\n",
|
1029 |
| - "data = fit3.lh.dset.get_data(0)\n", |
| 1029 | + "data = fit3.peek_likelihood().peek_dataset().get_data(0)\n", |
1030 | 1030 | "ser.to_file(data, \"example2_fit3_data.obj\")"
|
1031 | 1031 | ]
|
1032 | 1032 | }
|
|
0 commit comments