forked from YyzHarry/multi-domain-imbalance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_best_hparam.py
132 lines (115 loc) · 5.21 KB
/
eval_best_hparam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import collections
import os
from os.path import join
import numpy as np
import torch.utils.data
from mdlt.dataset import datasets
from mdlt.learning import algorithms
from mdlt.utils import misc
from mdlt.dataset.fast_dataloader import FastDataLoader
from mdlt.learning import model_selection
from mdlt.utils import reporting
def load_records():
records = reporting.load_records(join(args.output_dir, args.folder_name))
if 'Imbalance' in args.dataset:
records = reporting.get_imbalanced_grouped_records(records)
records = records.filter(
lambda r: r['dataset'] == args.dataset and
r['algorithm'] == args.algorithm and
r['imb_type'] == args.imb_type and
r['imb_factor'] == args.imb_factor
)
else:
records = reporting.get_grouped_records(records)
records = records.filter(
lambda r: r['dataset'] == args.dataset and
r['algorithm'] == args.algorithm
)
selection_method = model_selection.ValMeanAccSelectionMethod
assert len(records) == 1
group = records[0]
print(f"(trial) seed: {group['seed']}")
sorted_hparams = selection_method.hparams_accs(group['records'])
# 'sorted_hparams' sorted by 'val_acc'
run_acc, best_hparam_records = sorted_hparams[0]
print(f"\t{run_acc}")
for r in best_hparam_records:
assert(r['hparams'] == best_hparam_records[0]['hparams'])
print("\t\thparams:")
for k, v in sorted(best_hparam_records[0]['hparams'].items()):
print('\t\t\t{}: {}'.format(k, v))
print("\t\toutput_dirs:")
output_dir = best_hparam_records.select('args.output_dir').unique()
assert len(output_dir) == 1
print(f"\t\t\t{output_dir[0]}")
return run_acc, best_hparam_records[0]['hparams'], output_dir[0]
def validate(algorithm, dataset):
algorithm.eval()
test_splits = []
for env in dataset:
test_splits.append((env, None))
eval_loaders = [FastDataLoader(
dataset=env,
batch_size=64,
num_workers=dataset.N_WORKERS)
for env, _ in test_splits
]
eval_weights = [None for _, weights in test_splits]
eval_loader_names = [f'env{i}_test' for i in range(len(test_splits))]
evals = zip(eval_loader_names, eval_loaders, eval_weights)
class_acc_output = collections.defaultdict(list)
env_acc_output = {}
for name, loader, weights in sorted(evals, key=lambda x: x[0]):
acc, shot_acc, class_acc = misc.accuracy(
algorithm, loader, weights, [], many_shot_thr=100, few_shot_thr=20, device=device, class_shot_acc=True)
if 'test' in name:
class_acc_output[name.split('_')[0]] = list(class_acc)
env_acc_output[name.split('_')[0]] = acc
print("\nTest accuracy (best validation checkpoint):")
print(f"\tmean:\t[{np.mean(list(env_acc_output.values())):.3f}]\n\tworst:\t[{min(env_acc_output.values()):.3f}]")
print("Class-wise accuracy:")
for env in sorted(class_acc_output):
print('\t[{}] overall {:.3f}, class-wise {}'.format(
env, env_acc_output[env], (np.array2string(
np.array(class_acc_output[env]), separator=', ', formatter={'float_kind': lambda x: "%.3f" % x}))))
def parse_args():
parser = argparse.ArgumentParser(description='Evaluation using best hparams given a (algo, dataset, seed) pair')
# related args
parser.add_argument('--dataset', type=str, default="PACS", choices=datasets.DATASETS)
parser.add_argument('--algorithm', type=str, default="ERM", choices=algorithms.ALGORITHMS)
parser.add_argument('--folder_name', type=str)
# imbalance related
parser.add_argument('--imb_type', type=str, default="eee")
parser.add_argument('--imb_factor', type=float, default=0.1)
# others
parser.add_argument('--data_dir', type=str, default="./data")
parser.add_argument('--output_dir', type=str, default="./output")
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
return args
if __name__ == "__main__":
"""Example usage:
python -u -m mdlt.evaluate.eval_best_hparam --algorithm ERM --dataset VLCS \
--data_dir ... --output_dir ... --folder_name ...
"""
args = parse_args()
run_acc, hparams, input_dir = load_records()
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.dataset in vars(datasets):
dataset = vars(datasets)[args.dataset](args.data_dir, 'test', hparams)
else:
raise NotImplementedError
algorithm_class = algorithms.get_algorithm_class(args.algorithm)
algorithm = algorithm_class(dataset.input_shape, dataset.num_classes, len(dataset), hparams)
if torch.cuda.device_count() > 1:
algorithm = torch.nn.DataParallel(algorithm)
checkpoint_path = join(input_dir, 'model.best.pkl')
assert os.path.isfile(checkpoint_path), f"No checkpoint found at '{checkpoint_path}'!"
checkpoint = torch.load(checkpoint_path)
algorithm.load_state_dict(checkpoint['model_dict'], strict=False)
algorithm.to(device)
print(f"===> Loaded checkpoint '{checkpoint_path}'")
validate(algorithm, dataset)