Skip to content

Latest commit

 

History

History
43 lines (35 loc) · 977 Bytes

readme.md

File metadata and controls

43 lines (35 loc) · 977 Bytes

Cuda Implementation of CNN

  • This project provides several layer classes and a network class with tunable parameters
  • Try to solve MNIST Dataset
  • MSE loss function
  • mini-batch SGD
  • learning rate delay

Dependency

  • CUDA Toolkit 12.2
  • cuBlas -- Matrix Operation
  • cuDNN v8.9 -- Convolution forward and backward, activation

Layers

  • Conv2d: 28x28x1 6filters 5x5 s=1 p=2 RELU
  • MaxPooling2d: 28x28x6 s=2
  • Conv2d: 14x14x6 16filters 5x5 s=1 p=0 RELU
  • MaxPooling2d: 10x10x16 s=2
  • Dense: 160 SIGMOID
  • Dense: 84 SIGMOID
  • Dense: 10 SIGMOID

Model Overview

overview

Params

  • Epoch 30
  • BatchSize 10
  • LearningRate 0.1
  • DelayRate 0.1

result

Accurate: 98.2% Running time: 1036.790s Device: 3060ti