-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathimagePreprocessing.py
294 lines (230 loc) · 11 KB
/
imagePreprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#imports
import numpy as np
import cv2
import os
from sklearn.cluster import KMeans
from scipy.spatial import distance
from sklearn.cluster import MiniBatchKMeans
from sklearn.svm import SVC
import sklearn.metrics as skmetrics
import random
import pickle
import imagePreprocessingUtils as ipu
#import glob
train_labels = []
test_labels = []
def preprocess_all_images():
images_labels = []
train_disc_by_class = {}
test_disc_by_class = {}
all_train_dis = []
train_img_disc = []
test_img_disc = []
label_value = 0
for (dirpath,dirnames,filenames) in os.walk(ipu.PATH):
dirnames.sort()
for label in dirnames:
#print(label)
if not (label == '.DS_Store'):
for (subdirpath,subdirnames,images) in os.walk(ipu.PATH+'/'+label+'/'):
#print(len(images))
count = 0
train_features = []
test_features = []
for image in images:
#print(label)
imagePath = ipu.PATH+'/'+label+'/'+image
#print(imagePath)
img = cv2.imread(imagePath)
if img is not None:
img = get_canny_edge(img)[0]
sift_disc = get_SIFT_descriptors(img)
print(sift_disc.shape)
if(count < (ipu.TOTAL_IMAGES * ipu.TRAIN_FACTOR * 0.01)):
print('Train:--------- Label is {} and Count is {}'.format(label, count) )
#train_features.append(sift_disc)
train_img_disc.append(sift_disc)
all_train_dis.extend(sift_disc)
train_labels.append(label_value)
elif((count>=(ipu.TOTAL_IMAGES * ipu.TRAIN_FACTOR * 0.01)) and count <ipu.TOTAL_IMAGES):
print('Test:--------- Label is {} and Count is {}'.format(label, count) )
#test_features.append(sift_disc)
test_img_disc.append(sift_disc)
test_labels.append(label_value)
count += 1
#images_labels.append((label,sift_disc))
#train_disc_by_class[label] = train_features
#test_disc_by_class[label] = test_features
label_value +=1
print('length of train features are %i' % len(train_img_disc))
print('length of test features are %i' % len(test_img_disc))
print('length of all train discriptors is {}'.format(len(all_train_dis)))
#print('length of all train discriptors by class is {}'.format(len(train_disc_by_class)))
#print('length of all test disc is {}'.format(len(test_disc_by_class)))
return all_train_dis, train_img_disc, train_disc_by_class, test_disc_by_class, test_img_disc
def get_canny_edge(image):
grayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Convert from RGB to HSV
HSVImaage = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Finding pixels with itensity of skin
lowerBoundary = np.array([0,40,30],dtype="uint8")
upperBoundary = np.array([43,255,254],dtype="uint8")
skinMask = cv2.inRange(HSVImaage, lowerBoundary, upperBoundary)
# blurring of gray scale using medianBlur
skinMask = cv2.addWeighted(skinMask,0.5,skinMask,0.5,0.0)
skinMask = cv2.medianBlur(skinMask, 5)
skin = cv2.bitwise_and(grayImage, grayImage, mask = skinMask)
#cv2.imshow("masked2",skin)
#. canny edge detection
canny = cv2.Canny(skin,60,60)
#plt.imshow(img2, cmap = 'gray')
return canny,skin
def get_SIFT_descriptors(canny):
# Intialising SIFT
surf = cv2.xfeatures2d.SURF_create()
#surf.extended=True
canny = cv2.resize(canny,(256,256))
# computing SIFT descriptors
kp, des = surf.detectAndCompute(canny,None)
#print(len(des))
#sift_features_image = cv2.drawKeypoints(canny,kp,None,(0,0,255),4)
return des
### K-means is not used as data is large and requires a better computer with good specifications
def kmeans(k, descriptor_list):
print('K-Means started.')
print ('%i descriptors before clustering' % descriptor_list.shape[0])
kmeanss = KMeans(k)
kmeanss.fit(descriptor_list)
visual_words = kmeanss.cluster_centers_
return visual_words, kmeanss
def mini_kmeans(k, descriptor_list):
print('Mini batch K-Means started.')
print ('%i descriptors before clustering' % descriptor_list.shape[0])
kmeans_model = MiniBatchKMeans(k)
kmeans_model.fit(descriptor_list)
print('Mini batch K means trained to get visual words.')
filename = 'mini_kmeans_model.sav'
pickle.dump(kmeans_model, open(filename, 'wb'))
return kmeans_model
def get_histograms(discriptors_by_class,visual_words, cluster_model):
histograms_by_class = {}
total_histograms = []
for label,images_discriptors in discriptors_by_class.items():
print('Label: %s' % label)
histograms = []
# loop for all images
for each_image_discriptors in images_discriptors:
## manual method to calculate words occurence as histograms
'''histogram = np.zeros(len(visual_words))
# loop for all discriptors in a image discriptorss
for each_discriptor in each_image_discriptors:
#list_words = visual_words.tolist()
a = np.array([visual_words])
index = find_index(each_discriptor, visual_words)
#print(index)
#del list_words
histogram[index] += 1
print(histogram)'''
## using cluster model
raw_words = cluster_model.predict(each_image_discriptors)
hist = np.bincount(raw_words, minlength=len(visual_words))
print(hist)
histograms.append(hist)
histograms_by_class[label] = histograms
total_histograms.append(histograms)
print('Histograms succesfully created for %i classes.' % len(histograms_by_class))
return histograms_by_class, total_histograms
def dataSplit(dataDictionary):
X = []
Y = []
for key,values in dataDictionary.items():
for value in values:
X.append(value)
Y.append(key)
return X,Y
def predict_svm(X_train, X_test, y_train, y_test):
svc=SVC(kernel='linear')
print("Support Vector Machine started.")
svc.fit(X_train,y_train)
filename = 'svm_model.sav'
pickle.dump(svc, open(filename, 'wb'))
y_pred=svc.predict(X_test)
np.savetxt('submission_svm.csv', np.c_[range(1,len(y_test)+1),y_pred,y_test], delimiter=',', header = 'ImageId,PredictedLabel,TrueLabel', comments = '', fmt='%d')
calculate_metrics("SVM",y_test,y_pred)
def calculate_metrics(method,label_test,label_pred):
print("Accuracy score for ",method,skmetrics.accuracy_score(label_test,label_pred))
print("Precision_score for ",method,skmetrics.precision_score(label_test,label_pred,average='micro'))
print("f1 score for ",method,skmetrics.f1_score(label_test,label_pred,average='micro'))
print("Recall score for ",method,skmetrics.recall_score(label_test,label_pred,average='micro'))
### STEP:1 SIFT discriptors for all train and test images with class seperation
all_train_dis,train_img_disc, train_disc_by_class, test_disc_by_class, test_img_disc = preprocess_all_images()
## deleting these variables as they are not used with mini batch k means
del train_disc_by_class, test_disc_by_class
### STEP:2 MINI K-MEANS
mini_kmeans_model = mini_kmeans(ipu.N_CLASSES * ipu.CLUSTER_FACTOR, np.array(all_train_dis))
del all_train_dis
### Collecting VISUAL WORDS for all images (train , test)
print('Collecting visual words for train .....')
train_images_visual_words = [mini_kmeans_model.predict(visual_words) for visual_words in train_img_disc]
print('Visual words for train data collected. length is %i' % len(train_images_visual_words))
print('Collecting visual words for test .....')
test_images_visual_words = [mini_kmeans_model.predict(visual_words) for visual_words in test_img_disc]
print('Visual words for test data collected. length is %i' % len(test_images_visual_words))
### STEP:3 HISTOGRAMS (findiing the occurence of each visual word of images in total words)
## Can be calculated using get_histograms function also manually
print('Calculating Histograms for train...')
bovw_train_histograms = np.array([np.bincount(visual_words, minlength=ipu.N_CLASSES * ipu.CLUSTER_FACTOR) for visual_words in train_images_visual_words])
print('Train histograms are collected. Length : %i ' % len(bovw_train_histograms))
print('Calculating Histograms for test...')
bovw_test_histograms = np.array([np.bincount(visual_words, minlength=ipu.N_CLASSES * ipu.CLUSTER_FACTOR) for visual_words in test_images_visual_words])
print('Test histograms are collected. Length : %i ' % len(bovw_test_histograms))
print('Each histogram length is : %i' % len(bovw_train_histograms[0]))
#----------------------
print('============================================')
# preperaing for training svm
X_train = bovw_train_histograms
X_test = bovw_test_histograms
Y_train = train_labels
Y_test = test_labels
#print(Y_train)
### shuffling
buffer = list(zip(X_train, Y_train))
random.shuffle(buffer)
random.shuffle(buffer)
random.shuffle(buffer)
X_train, Y_train = zip(*buffer)
#print(Y_train)
buffer = list(zip(X_test, Y_test))
random.shuffle(buffer)
random.shuffle(buffer)
X_test, Y_test = zip(*buffer)
print('Length of X-train: %i ' % len(X_train))
print('Length of Y-train: %i ' % len(Y_train))
print('Length of X-test: %i ' % len(X_test))
print('Length of Y-test: %i ' % len(Y_test))
predict_svm(X_train, X_test,Y_train, Y_test)
#######################################################
'''
#STEP:2 K-MEANS clustering to get visual words
visual_words, cluster_model = kmeans(ipu.N_CLASSES * 8, np.array(all_train_dis))
print(' Length of Visual words using k-means= %i' % len(visual_words))
print(type(visual_words))
print(visual_words.shape)
print('Histograms creation started for training set.')
bovw_train_histograms_by_class = get_histograms(train_disc_by_class,visual_words, cluster_model)[0]
print('Histograms created with k-means.')
for key, values in bovw_train_histograms_by_class.items():
for value in values:
print(value)
print('Histograms creation started for testing set.')
bovw_test_histograms_by_class = get_histograms(test_disc_by_class,visual_words, cluster_model)[0]
print('Histograms created.')
X_train, Y_train = dataSplit(bovw_train_histograms_by_class)
print('Length of x_train are % i ' % len(X_train))
print('Length of y_train are % i ' % len(Y_train))
X_test, Y_test = dataSplit(bovw_test_histograms_by_class)
print('Length of x_test are % i ' % len(X_test))
print('Length of y_test are % i ' % len(Y_test))
X_train, Y_train = dataSplit(bovw_train_histograms_by_class)
predict_svm(X_train, X_test,Y_train, Y_test)
'''