forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog_reg.py
100 lines (86 loc) · 4.14 KB
/
log_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
import numpy as np
def main():
from sklearn.linear_model import LogisticRegression
# Load generated data
X_train, X_test, y_train, y_test = bench.load_data(params)
params.n_classes = len(np.unique(y_train))
if params.multiclass == 'auto':
params.multiclass = 'ovr' if params.n_classes == 2 else 'multinomial'
if not params.tol:
params.tol = 1e-3 if params.solver == 'newton-cg' else 1e-10
# Create our classifier object
clf = LogisticRegression(penalty='l2', C=params.C, n_jobs=params.n_jobs,
fit_intercept=params.fit_intercept,
verbose=params.verbose,
tol=params.tol, max_iter=params.maxiter,
solver=params.solver, multi_class=params.multiclass)
# Time fit and predict
fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params)
y_pred = clf.predict(X_train)
y_proba = clf.predict_proba(X_train)
train_acc = bench.accuracy_score(y_train, y_pred)
train_log_loss = bench.log_loss(y_train, y_proba)
train_roc_auc = bench.roc_auc_score(y_train, y_proba)
predict_time, y_pred = bench.measure_function_time(
clf.predict, X_test, params=params)
y_proba = clf.predict_proba(X_test)
test_acc = bench.accuracy_score(y_test, y_pred)
test_log_loss = bench.log_loss(y_test, y_proba)
test_roc_auc = bench.roc_auc_score(y_test, y_proba)
bench.print_output(
library='sklearn',
algorithm='log_reg',
stages=['training', 'prediction'],
params=params,
functions=['LogReg.fit', 'LogReg.predict'],
times=[fit_time, predict_time],
metric_type=['accuracy', 'log_loss', 'roc_auc'],
metrics=[
[train_acc, test_acc],
[train_log_loss, test_log_loss],
[train_roc_auc, test_roc_auc],
],
data=[X_train, X_test],
alg_instance=clf,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='scikit-learn logistic '
'regression benchmark')
parser.add_argument('--no-fit-intercept', dest='fit_intercept',
action='store_false', default=True,
help="Don't fit intercept")
parser.add_argument('--multiclass', default='auto',
choices=('auto', 'ovr', 'multinomial'),
help='How to treat multi class data. '
'"auto" picks "ovr" for binary classification, and '
'"multinomial" otherwise.')
parser.add_argument('--solver', default='lbfgs',
choices=('lbfgs', 'newton-cg', 'saga'),
help='Solver to use.')
parser.add_argument('--maxiter', type=int, default=100,
help='Maximum iterations for the iterative solver')
parser.add_argument('-C', dest='C', type=float, default=1.0,
help='Regularization parameter')
parser.add_argument('--tol', type=float, default=None,
help='Tolerance for solver. If solver == "newton-cg", '
'then the default is 1e-3. Otherwise, the default '
'is 1e-10.')
params = bench.parse_args(parser, loop_types=('fit', 'predict'))
bench.run_with_context(params, main)