forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_regr.py
100 lines (88 loc) · 4.15 KB
/
knn_regr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
import numpy as np
def main():
from sklearn.neighbors import KNeighborsRegressor
# Load generated data
X_train, X_test, y_train, y_test = bench.load_data(params)
params.n_classes = len(np.unique(y_train))
# Create a regression object
knn_regr = KNeighborsRegressor(n_neighbors=params.n_neighbors,
weights=params.weights,
algorithm=params.method,
metric=params.metric,
n_jobs=params.n_jobs)
# Measure time and accuracy on fitting
train_time, _ = bench.measure_function_time(
knn_regr.fit, X_train, y_train, params=params)
if params.task == 'regression':
y_pred = knn_regr.predict(X_train)
train_rmse = bench.rmse_score(y_train, y_pred)
train_r2 = bench.r2_score(y_train, y_pred)
# Measure time and accuracy on prediction
if params.task == 'regression':
predict_time, yp = bench.measure_function_time(knn_regr.predict, X_test,
params=params)
test_rmse = bench.rmse_score(y_test, yp)
test_r2 = bench.r2_score(y_test, yp)
else:
predict_time, _ = bench.measure_function_time(knn_regr.kneighbors, X_test,
params=params)
if params.task == 'regression':
bench.print_output(
library='sklearn',
algorithm=knn_regr._fit_method + '_knn_regr',
stages=['training', 'prediction'],
params=params,
functions=['knn_regr.fit', 'knn_regr.predict'],
times=[train_time, predict_time],
metric_type=['rmse', 'r2_score'],
metrics=[[train_rmse, test_rmse], [train_r2, test_r2]],
data=[X_train, X_test],
alg_instance=knn_regr,
)
else:
bench.print_output(
library='sklearn',
algorithm=knn_regr._fit_method + '_knn_search',
stages=['training', 'search'],
params=params,
functions=['knn_regr.fit', 'knn_regr.kneighbors'],
times=[train_time, predict_time],
metric_type=None,
metrics=[],
data=[X_train, X_test],
alg_instance=knn_regr,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='scikit-learn kNN classifier benchmark')
parser.add_argument('--task', default='regression', type=str,
choices=('search', 'regression'),
help='The type of kNN task: search or regression')
parser.add_argument('--n-neighbors', default=5, type=int,
help='The number of neighbors to use')
parser.add_argument('--weights', type=str, default='uniform',
help='The weight function to be used in prediction')
parser.add_argument('--method', type=str, default='brute',
choices=('brute', 'kd_tree', 'ball_tree', 'auto'),
help='The method to find the nearest neighbors')
parser.add_argument('--metric', type=str, default='euclidean',
help='The metric to calculate distances')
params = bench.parse_args(parser)
bench.run_with_context(params, main)