-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
62 lines (43 loc) · 1.62 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import torch
import pandas as pd
import numpy as np
import tqdm
import argparse
from torch.utils.data import DataLoader
from src import dataset, ResNet
# Parsing arguments
my_parser = argparse.ArgumentParser(prog='inference',
description='Make inference on the MNIST dataset examples.')
my_parser.add_argument('--csvPath',
help='Path from the test csv.',
default='data/test.csv')
my_parser.add_argument('--outputPath',
help='Directory to where the predictions will be stored.',
default='data/')
my_parser.add_argument('--modelPath',
help='Path from where the model parameters are loaded.',
default='models/Adam_ep_5_lr_0.001_batch_64/model')
args = my_parser.parse_args()
# Loading the model
modelPath = args.modelPath
model = ResNet.load_pretrained_model(ResNet.resnet30(), modelPath)
print(f'Model loaded succesfully.')
# Loading Test Dataset
datasetPath = args.csvPath
dataset = dataset.MNIST_TrainingDataset(datasetPath, isKaggleTest=True)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
# Making inference
results = []
id = 1
print('Starting inference')
with torch.no_grad():
for X, _ in tqdm.tqdm(dataloader, desc='Inference'):
pred = model(X)
pred = np.argmax(pred.numpy().reshape(-1))
results.append([id, pred])
id += 1
# Saving results in a csv
df = pd.DataFrame(results, columns=['ImageId', 'Label'])
savePath = os.path.join(args.outputPath, 'predictions.csv')
df.to_csv(savePath, index=False)