-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain_Stage1g_K_stereo.py
397 lines (330 loc) · 18.6 KB
/
Train_Stage1g_K_stereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright (C) 2021 Juan Luis Gonzalez Bello ([email protected])
# This software is not for commercial use
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
# Select your GPU ID, if you have multiple GPU.
gpu = '1'
import argparse
import datetime
import time
import numpy as np
import Datasets
import models
dataset_names = sorted(name for name in Datasets.__all__)
model_names = sorted(name for name in models.__all__)
parser = argparse.ArgumentParser(description='FAL_net in pytorch',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-d', '--data', metavar='DIR', default='E:\\Datasets\\', help='path to dataset')
parser.add_argument('-n0', '--dataName0', metavar='Data Set Name 0', default='Kitti', choices=dataset_names)
parser.add_argument('-train_split', '--train_split', default='kitti_train_split')
parser.add_argument('-vdn', '--vdataName', metavar='Val data set Name', default='Kitti2015', choices=dataset_names)
parser.add_argument('-relbase_test', '--rel_baset', default=1, help='Relative baseline of testing dataset')
parser.add_argument('-maxd', '--max_disp', default=300)
parser.add_argument('-mind', '--min_disp', default=2)
# -----------------------------------------------------------------------------
parser.add_argument('-mm', '--m_model', metavar='Mono Model', default='FAL_net2B_gepss', choices=model_names)
parser.add_argument('-no_levels', '--no_levels', default=49, help='Number of quantization levels in MED')
parser.add_argument('-perc', '--a_p', default=0.01, help='Perceptual loss weight')
parser.add_argument('-smooth', '--a_sm', default=0.2 * 2 / 512, help='Smoothness loss weight')
# ------------------------------------------------------------------------------
parser.add_argument('-w', '--workers', metavar='Workers', default=4)
parser.add_argument('-b', '--batch_size', metavar='Batch Size', default=4)
parser.add_argument('-ch', '--crop_height', metavar='Batch crop H Size', default=192)
parser.add_argument('-cw', '--crop_width', metavar='Batch crop W Size', default=640)
parser.add_argument('-tbs', '--tbatch_size', metavar='Val Batch Size', default=1)
parser.add_argument('-op', '--optimizer', metavar='Optimizer', default='adam')
parser.add_argument('--lr', metavar='learning Rate', default=0.0001)
parser.add_argument('--beta', metavar='BETA', type=float, help='Beta parameter for adam', default=0.999)
parser.add_argument('--momentum', default=0.5, type=float, metavar='Momentum', help='Momentum for Optimizer')
parser.add_argument('--milestones', default=[30, 40, 50], metavar='N', nargs='*',
help='epochs at which learning rate is divided by 2')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='W', help='weight decay')
parser.add_argument('--bias-decay', default=0.0, type=float, metavar='B', help='bias decay')
parser.add_argument('--epochs', default=52, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--epoch_size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if set to 0)')
parser.add_argument('--sparse', default=True, action='store_true',
help='Depth GT is sparse, automatically seleted when choosing a KITTIdataset')
parser.add_argument('--print-freq', '-p', default=100, type=int, metavar='N', help='print frequency')
parser.add_argument('--start-epoch', default=12, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
# parser.add_argument('--pretrained', dest='pretrained', default=None, help='path to pre-trained model')
parser.add_argument('--pretrained', dest='pretrained',
default='Kitti_stage1g\\11-12-01_41\\FAL_net2B_gepss,e52es,b4,lr0.0001\\checkpoint.pth.tar',
help='directory of run')
def display_config(save_path):
settings = ''
settings = settings + '############################################################\n'
settings = settings + '# FAL_net - Pytorch implementation #\n'
settings = settings + '# by Juan Luis Gonzalez [email protected] #\n'
settings = settings + '############################################################\n'
settings = settings + '-------YOUR TRAINING SETTINGS---------\n'
for arg in vars(args):
settings = settings + "%15s: %s\n" % (str(arg), str(getattr(args, arg)))
print(settings)
# Save config in txt file
with open(os.path.join(save_path, 'settings.txt'), 'w+') as f:
f.write(settings)
def main():
print('-------Training on gpu ' + gpu + '-------')
best_rmse = -1
save_path = '{},e{}es{},b{},lr{}'.format(
args.m_model,
args.epochs,
str(args.epoch_size) if args.epoch_size > 0 else '',
args.batch_size,
args.lr,
)
timestamp = datetime.datetime.now().strftime("%m-%d-%H_%M")
save_path = os.path.join(timestamp, save_path)
save_path = os.path.join(args.dataName0 + "_stage1g", save_path)
if not os.path.exists(save_path):
os.makedirs(save_path)
display_config(save_path)
print('=> will save everything to {}'.format(save_path))
# Set output writters for showing up progress on tensorboardX
train_writer = SummaryWriter(os.path.join(save_path, 'train'))
test_writer = SummaryWriter(os.path.join(save_path, 'test'))
output_writers = []
for i in range(3):
output_writers.append(SummaryWriter(os.path.join(save_path, 'test', str(i))))
# Set up data augmentations
co_transform = data_gtransforms.Compose([
data_gtransforms.RandomResizeCrop((args.crop_height, args.crop_width), down=0.75, up=1.5),
data_gtransforms.RandomHorizontalFlipG(),
data_gtransforms.RandomGamma(min=0.8, max=1.2),
data_gtransforms.RandomBrightness(min=0.5, max=2.0),
data_gtransforms.RandomCBrightness(min=0.8, max=1.2),
])
input_transform = transforms.Compose([
data_gtransforms.ArrayToTensor(),
transforms.Normalize(mean=[0, 0, 0], std=[255, 255, 255]), # (input - mean) / std
transforms.Normalize(mean=[0.411, 0.432, 0.45], std=[1, 1, 1])
])
target_transform = transforms.Compose([
data_gtransforms.ArrayToTensor(),
transforms.Normalize(mean=[0], std=[1]),
])
# Torch Data Set List
input_path = os.path.join(args.data, args.dataName0)
[train_dataset0, _] = Datasets.__dict__[args.dataName0](split=1, # all for training
root=input_path,
transform=input_transform,
target_transform=target_transform,
co_transform=co_transform,
max_pix=args.max_disp,
train_split=args.train_split,
fix=True,
use_grid=True)
input_path = os.path.join(args.data, args.vdataName)
[_, test_dataset] = Datasets.__dict__[args.vdataName](split=0, # all to be tested
root=input_path,
disp=True,
of=False,
shuffle_test=False,
transform=input_transform,
target_transform=target_transform,
co_transform=co_transform)
# Torch Data Loaders
train_loader0 = torch.utils.data.DataLoader(train_dataset0, batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=False, shuffle=True)
val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.tbatch_size, num_workers=args.workers,
pin_memory=False, shuffle=False)
# create model
if args.pretrained:
network_data = torch.load(args.pretrained)
args.m_model = network_data['m_model']
print("=> using pre-trained model '{}'".format(args.m_model))
else:
network_data = None
print("=> creating m model '{}'".format(args.m_model))
m_model = models.__dict__[args.m_model](network_data, no_levels=args.no_levels).cuda()
m_model = torch.nn.DataParallel(m_model, device_ids=[0]).cuda()
print("=> Number of parameters m-model '{}'".format(utils.get_n_params(m_model)))
# Optimizer Settings
print('Setting {} Optimizer'.format(args.optimizer))
param_groups = [{'params': m_model.module.bias_parameters(), 'weight_decay': args.bias_decay},
{'params': m_model.module.weight_parameters(), 'weight_decay': args.weight_decay}]
if args.optimizer == 'adam':
g_optimizer = torch.optim.Adam(params=param_groups, lr=args.lr, betas=(args.momentum, args.beta))
g_scheduler = torch.optim.lr_scheduler.MultiStepLR(g_optimizer, milestones=args.milestones, gamma=0.5)
for epoch in range(args.start_epoch):
g_scheduler.step()
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
print('Learning rate {}'.format(g_scheduler.get_last_lr()))
train_loss = train(train_loader0, m_model, g_optimizer, epoch)
train_writer.add_scalar('train_loss', train_loss, epoch)
# evaluate on validation set, RMSE is from stereoscopic view synthesis task
rmse = validate(val_loader, m_model, epoch, output_writers)
test_writer.add_scalar('mean RMSE', rmse, epoch)
# Apply LR schedule (after optimizer.step() has been called for recent pyTorch versions)
g_scheduler.step()
if best_rmse < 0:
best_rmse = rmse
is_best = rmse < best_rmse
best_rmse = min(rmse, best_rmse)
utils.save_checkpoint({
'epoch': epoch + 1,
'm_model': args.m_model,
'state_dict': m_model.module.state_dict(),
'best_rmse': best_rmse,
}, is_best, save_path)
def train(train_loader, m_model, g_optimizer, epoch):
global args
epoch_size = len(train_loader) if args.epoch_size == 0 else min(len(train_loader), args.epoch_size)
batch_time = utils.AverageMeter()
data_time = utils.AverageMeter()
rec_losses = utils.AverageMeter()
losses = utils.AverageMeter()
# switch to train mode
m_model.train()
end = time.time()
for i, input_data0 in enumerate(train_loader):
# Read training data
left_view = input_data0[0][0].cuda()
right_view = input_data0[0][1].cuda()
in_grid = input_data0[1][0].cuda()
max_disp = input_data0[2].unsqueeze(1).unsqueeze(1).type(left_view.type())
min_disp = max_disp * args.min_disp / args.max_disp
B, C, H, W = left_view.shape
# measure data loading time
data_time.update(time.time() - end)
# Reset gradients
g_optimizer.zero_grad()
### Run forward pass ###
# rpan, ldisp = m_model(left_view, right_view, in_grid, min_disp, max_disp,
# ret_disp=True, ret_pan=True, ret_subocc=False)
pan, disp = m_model(torch.cat((left_view, right_view), 0),
torch.cat((right_view, left_view), 0),
torch.cat((in_grid, in_grid), 0),
torch.cat((min_disp, -min_disp), 0),
torch.cat((max_disp, -max_disp), 0),
ret_disp=True, ret_pan=True, ret_subocc=False)
# Compute rec loss
if args.a_p > 0:
# vgg_right = vgg(right_view)
vgg_rl = vgg(torch.cat((right_view, left_view), 0))
else:
# vgg_right = None
vgg_rl = None
# Over 2 as measured twice for left and right
mask = 1
# rec_loss = rec_loss_fnc(mask, rpan, right_view, vgg_right, args.a_p)
rec_loss = rec_loss_fnc(mask, pan, torch.cat((right_view, left_view), 0), vgg_rl, args.a_p)
rec_losses.update(rec_loss.detach().cpu(), args.batch_size)
# Compute smooth loss
sm_loss = 0
if args.a_sm > 0:
# Here we ignore the 20% left dis-occluded region, as there is no suppervision for it due to parralax
# sm_loss = smoothness(left_view[:, :, :, int(0.20 * W)::], ldisp[:, :, :, int(0.20 * W)::], gamma=2)
sm_loss = (smoothness(left_view[:, :, :, int(0.20 * W)::], torch.abs(disp[0:B, :, :, int(0.20 * W)::]),
gamma=2) +
smoothness(right_view[:, :, :, 0:int(0.80 * W)], torch.abs(disp[B::, :, :, 0:int(0.80 * W)]),
gamma=2)) / 2
# compute gradient and do optimization step
loss = rec_loss + args.a_sm * sm_loss
losses.update(loss.detach().cpu(), args.batch_size)
loss.backward()
g_optimizer.step()
g_optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}] Time {3} Data {4} Loss {5} RecLoss {6}'
.format(epoch, i, epoch_size, batch_time, data_time, losses, rec_losses))
# End training epoch earlier if args.epoch_size != 0
if i >= epoch_size:
break
return losses.avg
def validate(val_loader, m_model, epoch, output_writers):
global args
test_time = utils.AverageMeter()
RMSES = utils.AverageMeter()
EPEs = utils.AverageMeter()
kitti_erros = utils.multiAverageMeter(utils.kitti_error_names)
# switch to evaluate mode
m_model.eval()
# Disable gradients to save memory
with torch.no_grad():
for i, input_data in enumerate(val_loader):
# Prepare input data
input_left = input_data[0][0].cuda()
input_right = input_data[0][1].cuda()
target = input_data[1][0].cuda()
max_disp = torch.Tensor([args.max_disp * args.rel_baset]).unsqueeze(1).unsqueeze(1).type(input_left.type())
B, _, H, W = input_left.shape
min_disp = max_disp * args.min_disp / args.max_disp
# Prepare identity grid
i_tetha = torch.zeros(B, 2, 3).cuda()
i_tetha[:, 0, 0] = 1
i_tetha[:, 1, 1] = 1
a_grid = F.affine_grid(i_tetha, [B, 3, H, W])
in_grid = torch.zeros(B, 2, H, W).type(a_grid.type())
in_grid[:, 0, :, :] = a_grid[:, :, :, 0]
in_grid[:, 1, :, :] = a_grid[:, :, :, 1]
#### Measure inference time (start) ###
end = time.time()
p_im, disp, maskL, maskRL = m_model(input_left, input_right, in_grid, min_disp, max_disp,
ret_disp=True, ret_pan=True, ret_subocc=True)
### Measure inference time (end) ###
test_time.update(time.time() - end)
# Measure RMSE
rmse = utils.get_rmse(p_im, input_right)
RMSES.update(rmse)
# record EPE
flow2_EPE = realEPE(disp, target, sparse=args.sparse)
EPEs.update(flow2_EPE.detach(), target.size(0))
# Record kitti metrics
target_depth, pred_depth = utils.disps_to_depths_kitti2015(target.detach().squeeze(1).cpu().numpy(),
disp.detach().squeeze(1).cpu().numpy())
kitti_erros.update(utils.compute_kitti_errors(target_depth[0], pred_depth[0]), target.size(0))
denormalize = np.array([0.411, 0.432, 0.45])
denormalize = denormalize[:, np.newaxis, np.newaxis]
if i < len(output_writers): # log first output of first batches
if epoch == 0:
output_writers[i].add_image('Input left', input_left[0].cpu().numpy() + denormalize, 0)
# Plot disp
output_writers[i].add_image('Left disparity', utils.disp2rgb(disp[0].cpu().numpy(), None), epoch)
# Plot left subocclsion mask (even if it is not used during training)
output_writers[i].add_image('Left sub-occ', utils.disp2rgb(maskL[0].cpu().numpy(), None), epoch)
# Plot right-from-left subocclsion mask (even if it is not used during training)
output_writers[i].add_image('RightL sub-occ', utils.disp2rgb(maskRL[0].cpu().numpy(), None), epoch)
# Plot synthetic right (or panned) view output
p_im = p_im[0].detach().cpu().numpy() + denormalize
p_im[p_im > 1] = 1
p_im[p_im < 0] = 0
output_writers[i].add_image('Output Pan', p_im, epoch)
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t Time {2}\t RMSE {3}'.format(i, len(val_loader), test_time, RMSES))
print('* RMSE {0}'.format(RMSES.avg))
print(' * EPE {:.3f}'.format(EPEs.avg))
print(kitti_erros)
return RMSES.avg
if __name__ == '__main__':
import os
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
import torch
import torch.utils.data
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
import torch.nn.functional as F
import myUtils as utils
import data_gtransforms
from loss_functions import rec_loss_fnc, realEPE, smoothness, vgg
args = parser.parse_args()
main()