-
Notifications
You must be signed in to change notification settings - Fork 0
/
Test_2_Conjecture_6_local.sage
79 lines (67 loc) · 2.64 KB
/
Test_2_Conjecture_6_local.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import sys
import time
import sage.parallel.multiprocessing_sage
import itertools
from multiprocessing import Pool
from sage.databases.cremona import cremona_to_lmfdb, lmfdb_to_cremona
from sage.schemes.elliptic_curves.ell_modular_symbols import ModularSymbolECLIB
def FindGenerator(Level):
for PossibleGenerator in range(1,Level):
for Exponent in range(1,Level):
if Exponent == Level - 1:
return PossibleGenerator
elif PossibleGenerator**Exponent % Level == 1:
print('here')
def MorphismFromUnits2Cyclic(Level, Generator, Number):
for PossibleImage in range(1, Level):
if (Generator**PossibleImage - Number) % Level == 0:
return PossibleImage
def TestConjectures(Ep):
File = open('./Results.txt', 'w')
if True:
Error = False
E_Sage = EllipticCurve(Ep[0])
E_Cremona = CremonaDatabase().data_from_coefficients(Ep[0])
M_Sage = E_Sage.modular_symbol(+1, implementation='sage')
M_Cremona = ModularSymbolECLIB(E_Sage, +1)
for a in range(Ep[1]):
if M_Sage(Rational(a/Ep[1])) != M_Cremona(Rational(a/Ep[1])):
Error = True
if Error:
print('The elliptic curve:', Ep, 'has problems!!')
ord_period = E_Sage.j_invariant().denominator().valuation(Ep[1])
torsion_period = Integer(E_Sage.tate_curve(Ep[1]).parameter().unit_part().expansion()[0])
C_5_L = 1
C_6 = 1
C_6_L = 1
Denominators = []
for a in range(Ep[1]):
Denominators.append(M_Sage(Rational(a/Ep[1])))
D = lcm(Denominators)
LeftSide = 1
RightSide = 1
for a in range(Ep[1]):
LeftSide = LeftSide * a**(D * ord_period * M_Sage(Rational(a/Ep[1]))) % Ep[1]
RightSide = torsion_period^(D * M_Sage(0))
if LeftSide % Ep[1] != RightSide % Ep[1] and LeftSide % Ep[1] != - RightSide % Ep[1]:
C_6 = 0
for ell in list(factor(Ep[1] - 1)):
if gcd(ell[0], E_Sage.modular_degree()) > 1:
continue
generator = FindGenerator(Ep[1])
Image_Left = MorphismFromUnits2Cyclic(Ep[1], generator, LeftSide)
Image_Right = MorphismFromUnits2Cyclic(Ep[1], generator, RightSide)
if Image_Left % ell[0]**(ell[1]) != Image_Right % ell[0]**(ell[1]) and Image_Left % ell[0]**(ell[1]) != - Image_Right % ell[0]**(ell[1]):
C_6_L = 0
File.write(str(Ep) + ': ' + str([C_6, C_6_L]))
File.close()
return None
if '__main__' == __name__:
for i in ['00000-09999', '10000-19999', '20000-29999','30000-39999','40000-49999','50000-59999','60000-69999','70000-79999','80000-89999','90000-99999']:
ModularSymbolsfile = eval(open('./ModularSymbolsReady/{}.txt'.format(i), 'r').readlines()[0])
for key in ModularSymbolsfile.keys():
for prime in ModularSymbolsfile[key].keys():
E = eval(key)
p = Integer(prime)
TestConjectures([E,p])