-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculates ratings and updates airtable.py
379 lines (299 loc) · 13 KB
/
calculates ratings and updates airtable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# -*- coding: utf-8
# Reinaldo Chaves ([email protected])
# Script that uses our statistical model to make assessments of the likelihood
# of hate speech on automatically captured tweets - these assessments are then
# stored in Airtable
# Model: https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
#
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import os
import pandas as pd
import requests
import json
import time
# Loads the pretrained XLM-roBERTa-base model that is on the computer
path = "app\\" # your path
model_name = "roberta" # your path
model = f"{path}{model_name}"
#print(model)
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForSequenceClassification.from_pretrained(model)
clf = pipeline("text-classification", model=model, tokenizer=tokenizer)
#answer = clf("Este es un ejemplo")
#print(type(answer))
#print(answer[0])
#dict = answer[0]
#print(type(dict))
#print(dict.keys())
#print(dict['score'])
# Function to add new data to airtable
def add_to_airtable(tweet_id, probability_of_being_an_attack, created_at, source, expanded_url, author_name, author_screen_name, location,text, likely_target_of_attack, ENDPOINT):
data = {
"records": [
{
"fields": {
"text": text,
"probability_of_being_an_attack": str(probability_of_being_an_attack),
"likely_target_of_attack": str(likely_target_of_attack),
"tweet_id": str(tweet_id),
"created_at": str(created_at),
"author_screen_name": str(author_screen_name),
"author_name": str(author_name),
"location": str(location),
"source": str(source),
"expanded_url": str(expanded_url)
}
}
]
}
data = json.dumps(data, indent=4, sort_keys=False, default=str)
#print(data)
#time.sleep(1)
try:
r = requests.request("POST", ENDPOINT, headers=headers, data=data)
except requests.exceptions.HTTPError as err:
raise SystemExit(err)
#print(f"Response status code: {r.status_code}")
#print(r.json())
return r.status_code
# BRAZIL
# Airtable keys
# https://airtable.com/api
# First, collects the tweets that are already stored in the Airtable table - Portuguese - Brazil
# The tweets directly from API
AIRTABLE_BASE_ID_P = ""
AIRTABLE_TABLE_NAME = ""
AIRTABLE_API_KEY = ""
ENDPOINT = f'https://api.airtable.com/v0/{AIRTABLE_BASE_ID_P}/{AIRTABLE_TABLE_NAME}'
headers = {
"Authorization": f"Bearer {AIRTABLE_API_KEY}",
"Content-Type": "application/json"
}
params = ()
airtable_records = []
run = True
while run is True:
response = requests.get(ENDPOINT, params=params, headers=headers)
airtable_response = response.json()
airtable_records += (airtable_response['records'])
if 'offset' in airtable_response:
run = True
params = (('offset', airtable_response['offset']),)
else:
run = False
airtable_rows = []
airtable_index = []
for record in airtable_records:
airtable_rows.append(record['fields'])
airtable_index.append(record['id'])
df_current_data_p = pd.DataFrame(airtable_rows, index=airtable_index)
df_current_data_p.info()
# Second, loads the tweets that have already been evaluated by the BERT model
AIRTABLE_BASE_ID_P_already = ""
AIRTABLE_TABLE_NAME_already = ""
ENDPOINT = f'https://api.airtable.com/v0/{AIRTABLE_BASE_ID_P_already}/{AIRTABLE_TABLE_NAME_already}'
params = ()
airtable_records = []
run = True
while run is True:
response = requests.get(ENDPOINT, params=params, headers=headers)
airtable_response = response.json()
airtable_records += (airtable_response['records'])
if 'offset' in airtable_response:
run = True
params = (('offset', airtable_response['offset']),)
else:
run = False
airtable_rows = []
airtable_index = []
for record in airtable_records:
airtable_rows.append(record['fields'])
airtable_index.append(record['id'])
df_current_data_p_rated = pd.DataFrame(airtable_rows, index=airtable_index)
df_current_data_p_rated.info()
# Merge the dataframes and leave only the tweets not yet evaluated, by ID
all_data = pd.merge(df_current_data_p, \
df_current_data_p_rated, \
how = 'left',
left_on=['author_screen_name','text'], \
right_on=['author_screen_name','text'])
all_data = all_data[all_data['probability_of_being_an_attack'].isna()]
all_data.info()
all_data = all_data[["coordinates", "tweet_id_x", "expanded_url_x", "source_x", "created_at_x", "author_screen_name", "author_name_x", "location_x", "likely_target_of_attack_x", "text", "geo"]]
all_data.rename(columns = {'coordinates_x':'coordinates'},inplace = True)
all_data.rename(columns = {'tweet_id_x':'tweet_id'},inplace = True)
all_data.rename(columns = {'expanded_url_x':'expanded_url'},inplace = True)
all_data.rename(columns = {'source_x':'source'},inplace = True)
all_data.rename(columns = {'created_at_x':'created_at'},inplace = True)
all_data.rename(columns = {'author_name_x':'author_name'},inplace = True)
all_data.rename(columns = {'location_x':'location'},inplace = True)
all_data.rename(columns = {'likely_target_of_attack_x':'likely_target_of_attack'},inplace = True)
all_data.rename(columns = {'geo_x':'geo'},inplace = True)
all_data.info()
# Test if there are tweets
size = len(all_data.index)
if size != 0:
model_notes = []
for index, row in all_data.iterrows():
tweet_id = row["tweet_id"]
source = row["source"]
created_at = row["created_at"]
author_screen_name = row["author_screen_name"]
author_name = row["author_name"]
location = row["location"]
likely_target_of_attack = row["likely_target_of_attack"]
text = str(row["text"])
expanded_url = row["expanded_url"]
answer = clf(text)
values = answer[0]
note = values['score']
dicionario = {"text": text,
"probability_of_being_an_attack": str(note),
"likely_target_of_attack": likely_target_of_attack,
"tweet_id": tweet_id,
"created_at": created_at,
"author_screen_name": author_screen_name,
"author_name": author_name,
"location": location,
"source": source,
"expanded_url": expanded_url
}
model_notes.append(dicionario)
df_model_notes_br = pd.DataFrame(model_notes)
df_model_notes_br.info()
#df_model_notes_br.to_excel('test_notes_brazil.xlsx',sheet_name='Sheet1',index=False)
# Add the new model ratings
AIRTABLE_BASE_ID_P_RATES = ""
AIRTABLE_TABLE_NAME_RATES = ""
ENDPOINT = f'https://api.airtable.com/v0/{AIRTABLE_BASE_ID_P_RATES}/{AIRTABLE_TABLE_NAME_RATES}'
for num, row in df_model_notes_br.iterrows():
tweet_id = row['tweet_id']
created_at = row['created_at']
source = row['source']
location = row['location']
expanded_url = row['expanded_url']
author_name = row['author_name']
author_screen_name = row['author_screen_name']
text = row['text']
likely_target_of_attack = row['likely_target_of_attack']
probability_of_being_an_attack = row['probability_of_being_an_attack']
add_to_airtable(tweet_id, probability_of_being_an_attack, created_at, source, expanded_url, author_name, author_screen_name, location,text,likely_target_of_attack, ENDPOINT)
# MEXICO
# Airtable keys
# https://airtable.com/api
# First, collects the tweets that are already stored in the Airtable table - Spanish - Mexico
# The tweets directly from API
AIRTABLE_BASE_ID_M = ""
AIRTABLE_TABLE_NAME_M = ""
ENDPOINT = f'https://api.airtable.com/v0/{AIRTABLE_BASE_ID_M}/{AIRTABLE_TABLE_NAME_M}'
params = ()
airtable_records = []
run = True
while run is True:
response = requests.get(ENDPOINT, params=params, headers=headers)
airtable_response = response.json()
airtable_records += (airtable_response['records'])
if 'offset' in airtable_response:
run = True
params = (('offset', airtable_response['offset']),)
else:
run = False
airtable_rows = []
airtable_index = []
for record in airtable_records:
airtable_rows.append(record['fields'])
airtable_index.append(record['id'])
df_current_data_m = pd.DataFrame(airtable_rows, index=airtable_index)
df_current_data_m.info()
# Second, loads the tweets that have already been evaluated by the BERT model
AIRTABLE_BASE_ID_M_already = ""
AIRTABLE_TABLE_NAME_already_M = ""
ENDPOINT = f'https://api.airtable.com/v0/{AIRTABLE_BASE_ID_M_already}/{AIRTABLE_TABLE_NAME_already_M}'
params = ()
airtable_records = []
run = True
while run is True:
response = requests.get(ENDPOINT, params=params, headers=headers)
airtable_response = response.json()
airtable_records += (airtable_response['records'])
if 'offset' in airtable_response:
run = True
params = (('offset', airtable_response['offset']),)
else:
run = False
airtable_rows = []
airtable_index = []
for record in airtable_records:
airtable_rows.append(record['fields'])
airtable_index.append(record['id'])
df_current_data_m_rated = pd.DataFrame(airtable_rows, index=airtable_index)
df_current_data_m_rated.info()
# Filter BERT model ratings greater than or equal to 0.8
#df_current_data_e = df_current_data_m_rated.copy()
#df_current_data_e['probability_of_being_an_attack'] = df_current_data_e['probability_of_being_an_attack'].astype(float)
#df_current_data_e = df_current_data_e[df_current_data_e['probability_of_being_an_attack'] >= 0.8]
#df_current_data_e.info()
all_data = pd.merge(df_current_data_m, \
df_current_data_m_rated, \
how = 'left',
left_on=['author_screen_name','text'], \
right_on=['author_screen_name','text'])
all_data = all_data[all_data['probability_of_being_an_attack'].isna()]
all_data.info()
all_data = all_data[["coordinates", "tweet_id_x", "expanded_url_x", "source_x", "created_at_x", "author_screen_name", "author_name_x", "location_x", "likely_target_of_attack_x", "text", "geo"]]
all_data.rename(columns = {'coordinates_x':'coordinates'},inplace = True)
all_data.rename(columns = {'tweet_id_x':'tweet_id'},inplace = True)
all_data.rename(columns = {'expanded_url_x':'expanded_url'},inplace = True)
all_data.rename(columns = {'source_x':'source'},inplace = True)
all_data.rename(columns = {'created_at_x':'created_at'},inplace = True)
all_data.rename(columns = {'author_name_x':'author_name'},inplace = True)
all_data.rename(columns = {'location_x':'location'},inplace = True)
all_data.rename(columns = {'likely_target_of_attack_x':'likely_target_of_attack'},inplace = True)
all_data.rename(columns = {'geo_x':'geo'},inplace = True)
all_data.info()
# Test if there are tweets
size = len(all_data.index)
if size != 0:
model_notes = []
for index, row in all_data.iterrows():
tweet_id = row["tweet_id"]
source = row["source"]
created_at = row["created_at"]
author_screen_name = row["author_screen_name"]
author_name = row["author_name"]
location = row["location"]
likely_target_of_attack = row["likely_target_of_attack"]
text = str(row["text"])
expanded_url = row["expanded_url"]
answer = clf(text)
values = answer[0]
note = values['score']
dicionario = {"text": text,
"probability_of_being_an_attack": str(note),
"likely_target_of_attack": likely_target_of_attack,
"tweet_id": tweet_id,
"created_at": created_at,
"author_screen_name": author_screen_name,
"author_name": author_name,
"location": location,
"source": source,
"expanded_url": expanded_url
}
model_notes.append(dicionario)
df_model_notes_mx = pd.DataFrame(model_notes)
df_model_notes_mx.info()
#df_model_notes_br.to_excel('test_notes_brazil.xlsx',sheet_name='Sheet1',index=False)
# Add the new model ratings
ENDPOINT = f'https://api.airtable.com/v0/{AIRTABLE_BASE_ID_M_already}/{AIRTABLE_TABLE_NAME_already_M}'
for num, row in df_model_notes_mx.iterrows():
tweet_id = row['tweet_id']
created_at = row['created_at']
source = row['source']
location = row['location']
expanded_url = row['expanded_url']
author_name = row['author_name']
author_screen_name = row['author_screen_name']
text = row['text']
likely_target_of_attack = row['likely_target_of_attack']
probability_of_being_an_attack = row['probability_of_being_an_attack']
add_to_airtable(tweet_id, probability_of_being_an_attack, created_at, source, expanded_url, author_name, author_screen_name, location,text,likely_target_of_attack, ENDPOINT)