-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGfluct.mod
202 lines (155 loc) · 5.98 KB
/
Gfluct.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
TITLE Fluctuating conductances
COMMENT
-----------------------------------------------------------------------------
Fluctuating conductance model for synaptic bombardment
======================================================
THEORY
Synaptic bombardment is represented by a stochastic model containing
two fluctuating conductances g_e(t) and g_i(t) descibed by:
Isyn = g_e(t) * [V - E_e] + g_i(t) * [V - E_i]
d g_e / dt = -(g_e - ge0) / tau_e + sqrt(D_e) * Ft
d g_i / dt = -(g_i - gi0) / tau_i + sqrt(D_i) * Ft
where E_e, E_i are the reversal potentials, ge0, gi0 are the average
conductances, tau_e, tau_i are time constants, D_e, D_i are noise diffusion
coefficients and Ft is a gaussian white noise of unit standard deviation.
g_e and g_i are described by an Ornstein-Uhlenbeck (OU) stochastic process
where tau_e and tau_i represent the "correlation" (if tau_e and tau_i are
zero, g_e and g_i are white noise). The estimation of OU parameters can
be made from the power spectrum:
S(w) = 2 * D * tau^2 / (1 + w^2 * tau^2)
and the diffusion coeffient D is estimated from the variance:
D = 2 * sigma^2 / tau
NUMERICAL RESOLUTION
The numerical scheme for integration of OU processes takes advantage
of the fact that these processes are gaussian, which led to an exact
update rule independent of the time step dt (see Gillespie DT, Am J Phys
64: 225, 1996):
x(t+dt) = x(t) * exp(-dt/tau) + A * N(0,1)
where A = sqrt( D*tau/2 * (1-exp(-2*dt/tau)) ) and N(0,1) is a normal
random number (avg=0, sigma=1)
IMPLEMENTATION
This mechanism is implemented as a nonspecific current defined as a
point process.
PARAMETERS
The mechanism takes the following parameters:
E_e = 0 (mV) : reversal potential of excitatory conductance
E_i = -75 (mV) : reversal potential of inhibitory conductance
ge0 = 0.0121 (umho) : average excitatory conductance
gi0 = 0.0573 (umho) : average inhibitory conductance
stde = 0.0030 (umho) : standard dev of excitatory conductance
stdi = 0.0066 (umho) : standard dev of inhibitory conductance
tau_e = 2.728 (ms) : time constant of excitatory conductance
tau_i = 10.49 (ms) : time constant of inhibitory conductance
REFERENCE
Destexhe, A., Rudolph, M., Fellous, J-M. and Sejnowski, T.J.
Fluctuating synaptic conductances recreate in-vivo--like activity in
neocortical neurons. Neuroscience 107: 13-24 (2001).
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
A. Destexhe, 1999
-----------------------------------------------------------------------------
20150414 -- Ted Carnevale
Fixed so that zero value for tau_e or tau_i results in
"white noise" fluctuation of g_e or g_i.
In the previous implementation, tau_e or tau_i == 0
made g_e or g_i equal to ge0 or gi0.
The fix involved
1. restructuring conditional statements so that
zero value for tau_e or tau_i had desired effect,
and
2. moving all calls to normrand from the BREAKPOINT block
into PROCEDURE oup.
The latter was necessary because code in the BREAKPOINT block
is executed twice per time step in order to estimate di/dv
(the slope conductance of this "channel") for the Jacobian matrix.
The estimate is simply
di/dv ~ (i(v+0.001) - i(v))/0.001
where the current i is calculated by a statement of the form
i = f(v)
and f() is an algebraic expression that involves v.
Clearly if the algebraic expression involves terms that change
from one call to the next, the estimate of di/dv will be incorrect,
and the solution will be corrupted.
The most obvious symptom of this is an occasional, abrupt, large
jump of v, but even step-to-step small fluctuations of v will be
incorrect.
The solution is to relegate calls to random number generators
either to a PROCEDURE that is SOLVEd, or to a BEFORE BREAKPOINT block,
because code in those blocks is executed only once per advance.
ENDCOMMENT
NEURON {
POINT_PROCESS Gfluct
RANGE g_e, g_i, E_e, E_i, ge0, gi0, g_e1, g_i1
RANGE stde, stdi, tau_e, tau_i, D_e, D_i
RANGE new_seed
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
}
PARAMETER {
dt (ms)
E_e = 0 (mV) : reversal potential of excitatory conductance
E_i = -75 (mV) : reversal potential of inhibitory conductance
ge0 = 0.0121 (umho) : average excitatory conductance
gi0 = 0.0573 (umho) : average inhibitory conductance
stde = 0.0030 (umho) : standard dev of excitatory conductance
stdi = 0.0066 (umho) : standard dev of inhibitory conductance
tau_e = 2.728 (ms) : time constant of excitatory conductance
tau_i = 10.49 (ms) : time constant of inhibitory conductance
}
ASSIGNED {
v (mV) : membrane voltage
i (nA) : fluctuating current
g_e (umho) : total excitatory conductance
g_i (umho) : total inhibitory conductance
g_e1 (umho) : fluctuating excitatory conductance
g_i1 (umho) : fluctuating inhibitory conductance
D_e (umho umho /ms) : excitatory diffusion coefficient
D_i (umho umho /ms) : inhibitory diffusion coefficient
exp_e
exp_i
amp_e (umho)
amp_i (umho)
}
INITIAL {
g_e1 = 0
g_i1 = 0
if(tau_e != 0) {
D_e = 2 * stde * stde / tau_e
exp_e = exp(-dt/tau_e)
amp_e = stde * sqrt( (1-exp(-2*dt/tau_e)) )
}
if(tau_i != 0) {
D_i = 2 * stdi * stdi / tau_i
exp_i = exp(-dt/tau_i)
amp_i = stdi * sqrt( (1-exp(-2*dt/tau_i)) )
}
}
BREAKPOINT {
SOLVE oup
i = g_e * (v - E_e) + g_i * (v - E_i)
}
PROCEDURE oup() { : use Scop function normrand(mean, std_dev)
if(tau_e==0) {
g_e = ge0 + stde * normrand(0,1)
} else {
g_e1 = exp_e * g_e1 + amp_e * normrand(0,1)
g_e = ge0 + g_e1
}
if (g_e < 0) { g_e = 0 }
if(tau_i==0) {
g_i = gi0 + stdi * normrand(0,1)
} else {
g_i1 = exp_i * g_i1 + amp_i * normrand(0,1)
g_i = gi0 + g_i1
}
if (g_i < 0) { g_i = 0 }
}
PROCEDURE new_seed(seed) { : procedure to set the seed
set_seed(seed)
VERBATIM
printf("Setting random generator with seed = %g\n", _lseed);
ENDVERBATIM
}