-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy patheval_ood_imagenet.py
191 lines (171 loc) · 6.94 KB
/
eval_ood_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import collections
import os, sys
ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')
sys.path.append(ROOT_DIR)
import numpy as np
import pandas as pd
import argparse
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import ResNet50_Weights, Swin_T_Weights, ViT_B_16_Weights, RegNet_Y_16GF_Weights
from torchvision import transforms as trn
from torch.hub import load_state_dict_from_url
from openood.evaluation_api import Evaluator
from openood.networks import ResNet50, Swin_T, ViT_B_16, RegNet_Y_16GF
from openood.networks.conf_branch_net import ConfBranchNet
from openood.networks.godin_net import GodinNet
from openood.networks.rot_net import RotNet
from openood.networks.cider_net import CIDERNet
from openood.networks.t2fnorm_net import T2FNormNet
def update(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = update(d.get(k, {}), v)
else:
d[k] = v
return d
parser = argparse.ArgumentParser()
parser.add_argument('--arch',
default='resnet50',
choices=['resnet50', 'swin-t', 'vit-b-16', 'regnet'])
parser.add_argument('--tvs-version', default=1, choices=[1, 2])
parser.add_argument('--ckpt-path', default=None)
parser.add_argument('--tvs-pretrained', action='store_true')
parser.add_argument('--postprocessor', default='msp')
parser.add_argument('--save-csv', action='store_true')
parser.add_argument('--save-score', action='store_true')
parser.add_argument('--fsood', action='store_true')
parser.add_argument('--batch-size', default=200, type=int)
args = parser.parse_args()
if not args.tvs_pretrained:
assert args.ckpt_path is not None
root = '/'.join(args.ckpt_path.split('/')[:-1])
else:
root = os.path.join(
ROOT_DIR, 'results',
f'imagenet_{args.arch}_tvsv{args.tvs_version}_base_default')
if not os.path.exists(root):
os.makedirs(root)
# specify an implemented postprocessor
# 'openmax', 'msp', 'temp_scaling', 'odin'...
postprocessor_name = args.postprocessor
# load pre-setup postprocessor if exists
if os.path.isfile(
os.path.join(root, 'postprocessors', f'{postprocessor_name}.pkl')):
with open(
os.path.join(root, 'postprocessors', f'{postprocessor_name}.pkl'),
'rb') as f:
postprocessor = pickle.load(f)
else:
postprocessor = None
# assuming the model is either
# 1) torchvision pre-trained; or
# 2) a specified checkpoint
if args.tvs_pretrained:
if args.arch == 'resnet50':
net = ResNet50()
weights = eval(f'ResNet50_Weights.IMAGENET1K_V{args.tvs_version}')
net.load_state_dict(load_state_dict_from_url(weights.url))
preprocessor = weights.transforms()
elif args.arch == 'swin-t':
net = Swin_T()
weights = eval(f'Swin_T_Weights.IMAGENET1K_V{args.tvs_version}')
net.load_state_dict(load_state_dict_from_url(weights.url))
preprocessor = weights.transforms()
elif args.arch == 'vit-b-16':
net = ViT_B_16()
weights = eval(f'ViT_B_16_Weights.IMAGENET1K_V{args.tvs_version}')
net.load_state_dict(load_state_dict_from_url(weights.url))
preprocessor = weights.transforms()
elif args.arch == 'regnet':
net = RegNet_Y_16GF()
weights = eval(
f'RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V{args.tvs_version}')
net.load_state_dict(load_state_dict_from_url(weights.url))
preprocessor = weights.transforms()
else:
raise NotImplementedError
else:
if args.arch == 'resnet50':
if postprocessor_name == 'conf_branch':
net = ConfBranchNet(backbone=ResNet50(), num_classes=1000)
elif postprocessor_name == 'godin':
backbone = ResNet50()
net = GodinNet(backbone=backbone,
feature_size=backbone.feature_size,
num_classes=1000)
elif postprocessor_name == 'rotpred':
net = RotNet(backbone=ResNet50(), num_classes=1000)
elif postprocessor_name in ['cider', 'reweightood']:
net = CIDERNet(backbone=ResNet50(),
head='mlp',
feat_dim=128,
num_classes=1000)
elif postprocessor_name == 't2fnorm':
net = T2FNormNet(backbone=ResNet50(), num_classes=1000)
else:
net = ResNet50()
ckpt = torch.load(args.ckpt_path, map_location='cpu')
net.load_state_dict(ckpt)
preprocessor = trn.Compose([
trn.Resize(256),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
else:
raise NotImplementedError
net.cuda()
net.eval()
# a unified evaluator
evaluator = Evaluator(
net,
id_name='imagenet', # the target ID dataset
data_root=os.path.join(ROOT_DIR, 'data'),
config_root=os.path.join(ROOT_DIR, 'configs'),
preprocessor=preprocessor, # default preprocessing
postprocessor_name=postprocessor_name,
postprocessor=postprocessor,
batch_size=args.
batch_size, # for certain methods the results can be slightly affected by batch size
shuffle=True,
num_workers=8)
# load pre-computed scores if exists
if os.path.isfile(os.path.join(root, 'scores', f'{postprocessor_name}.pkl')):
with open(os.path.join(root, 'scores', f'{postprocessor_name}.pkl'),
'rb') as f:
scores = pickle.load(f)
update(evaluator.scores, scores)
print('Loaded pre-computed scores from file.')
# save postprocessor for future reuse
if hasattr(evaluator.postprocessor, 'setup_flag'
) or evaluator.postprocessor.hyperparam_search_done is True:
pp_save_root = os.path.join(root, 'postprocessors')
if not os.path.exists(pp_save_root):
os.makedirs(pp_save_root)
if not os.path.isfile(
os.path.join(pp_save_root, f'{postprocessor_name}.pkl')):
with open(os.path.join(pp_save_root, f'{postprocessor_name}.pkl'),
'wb') as f:
pickle.dump(evaluator.postprocessor, f, pickle.HIGHEST_PROTOCOL)
# the metrics is a dataframe
metrics = evaluator.eval_ood(fsood=args.fsood)
# saving and recording
if args.save_csv:
saving_root = os.path.join(root, 'ood' if not args.fsood else 'fsood')
if not os.path.exists(saving_root):
os.makedirs(saving_root)
if not os.path.isfile(
os.path.join(saving_root, f'{postprocessor_name}.csv')):
metrics.to_csv(os.path.join(saving_root, f'{postprocessor_name}.csv'),
float_format='{:.2f}'.format)
if args.save_score:
score_save_root = os.path.join(root, 'scores')
if not os.path.exists(score_save_root):
os.makedirs(score_save_root)
with open(os.path.join(score_save_root, f'{postprocessor_name}.pkl'),
'wb') as f:
pickle.dump(evaluator.scores, f, pickle.HIGHEST_PROTOCOL)