-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCellchat.R
268 lines (216 loc) · 11.8 KB
/
Cellchat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
### 20210923 Cellchat 尝试
library(Seurat)
library(CellChat)
setwd("/Users/zhengyiyi/Desktop/projects/Ob_Hypo/Ob_13wk_female/")
dir.create("20210923_CellChatTry")
setwd("20210923_CellChatTry")
seurat_object <- readRDS("/Users/zhengyiyi/Desktop/projects/Ob_Hypo/Ob_13wk_female/Final_Rds/20210301_female_Aggregated_seurat.sct.rds")
DefaultAssay(seurat_object)
## 1.提取出基因表达谱和构建细胞信息
data.input <- GetAssayData(seurat_object, assay = "RNA", slot = "data") # normalized data matrix
head(data.input)
dim(data.input) # 19420 gene * 15449 cell
class([email protected])
names([email protected])
meta <- data.frame(group = seurat_object$orig.ident,
nCount_RNA = seurat_object$nCount_RNA,
nFeature_RNA = seurat_object$nFeature_RNA,
percent.mt = seurat_object$percent.mt,
percent.rp = seurat_object$percent.rp,
celltype_assign = seurat_object$celltype_assign,
row.names = rownames([email protected])) # create a dataframe of the cell labels
## 2.先试下用ob组的数据 构建CellChat 对象
cell.use = rownames(meta)[meta$group == "ob/ob"] # extract the cell names from disease data
head(cell.use)
length(cell.use) # 6550 细胞
# Prepare input data for CelChat analysis
data.input = data.input[, cell.use]
dim(data.input)
meta = meta[cell.use, ]
head(meta)
unique(meta$celltype_assign) # check the cell labels
cellchat <- createCellChat(object = data.input, meta = meta,
group.by = "celltype_assign")
rm(seurat_object)
head(cellchat@meta)
# 如果没把meta在构建的时候加进去的话可以用这个代码后续加进去
# cellchat <- addMeta(cellchat, meta = meta, meta.name = "labels")
# set "labels" as default cell identity
cellchat <- setIdent(cellchat, ident.use = "celltype_assign")
levels(cellchat@idents) # show factor levels of the cell labels
## 3.Set the ligand-receptor interaction database
CellChatDB <- CellChatDB.mouse # use CellChatDB.mouse if running on mouse data
showDatabaseCategory(CellChatDB)
# Show the structure of the database
dplyr::glimpse(CellChatDB$interaction)
CellChatDB
# use a subset of CellChatDB for cell-cell communication analysis
CellChatDB.use <- subsetDB(CellChatDB, search = "Secreted Signaling") # use Secreted Signaling
# use all CellChatDB for cell-cell communication analysis
# CellChatDB.use <- CellChatDB # simply use the default CellChatDB
cellchat@DB <- CellChatDB.use
## 4.数据预处理
# Preprocessing the expression data for cell-cell communication analysis
# subset the expression data of signaling genes for saving computation cost
cellchat <- subsetData(cellchat) # This step is necessary even if using the whole database
future::plan("multiprocess", workers = 4) # do parallel
#> Warning: [ONE-TIME WARNING] Forked processing ('multicore') is disabled
#> in future (>= 1.13.0) when running R from RStudio, because it is
#> considered unstable. Because of this, plan("multicore") will fall
#> back to plan("sequential"), and plan("multiprocess") will fall back to
#> plan("multisession") - not plan("multicore") as in the past. For more details,
#> how to control forked processing or not, and how to silence this warning in
#> future R sessions, see ?future::supportsMulticore
cellchat <- identifyOverExpressedGenes(cellchat)
cellchat <- identifyOverExpressedInteractions(cellchat)
# project gene expression data onto PPI network (optional)
cellchat <- projectData(cellchat, PPI.mouse)
## Inference of cell-cell communication network
## 5.Compute the communication probability and infer cellular communication network
table(cellchat@meta$celltype_assign)
cellchat <- computeCommunProb(cellchat)
# Filter out the cell-cell communication if there are only few number of cells in certain cell groups
cellchat <- filterCommunication(cellchat, min.cells = 10)
# The cell-cell communication related with the following cell groups are excluded due to the few number of cells: Fibroblast Macrophage NFO
# 配体受体
df.net <- subsetCommunication(cellchat, slot.name = "net")
write.csv(df.net, 'df.net_lr.csv')
# Infer the cell-cell communication at a signaling pathway level
cellchat <- computeCommunProbPathway(cellchat)
# at the level of signaling pathways
df.netP <- subsetCommunication(cellchat, slot.name = "netP")
write.csv(df.netP, 'df.netP.csv')
# Calculate the aggregated cell-cell communication network
cellchat <- aggregateNet(cellchat)
# We can also visualize the aggregated cell-cell communication network.
# For example, showing the number of interactions or the total interaction strength (weights) between any two cell groups using circle plot.
groupSize <- as.numeric(table(cellchat@meta$celltype_assign))
par(mfrow = c(1,2), xpd=TRUE)
netVisual_circle(cellchat@net$count, vertex.weight = groupSize,
weight.scale = T, label.edge= F,
title.name = "Number of interactions")
netVisual_circle(cellchat@net$weight, vertex.weight = groupSize,
weight.scale = T, label.edge= F,
title.name = "Interaction weights/strength")
# Due to the complicated cell-cell communication network,
# we can examine the signaling sent from each cell group.
# Here we also control the parameter edge.weight.max so that we can compare edge weights between differet networks.
mat <- cellchat@net$weight[c(1,2,3,4,6,7,9,11), c(1,2,3,4,6,7,9,11)]
groupSize <- groupSize[c(1,2,3,4,6,7,9,11)]
par(mfrow = c(2,4), xpd=TRUE)
for (i in 1:nrow(mat)) {
mat2 <- matrix(0, nrow = nrow(mat),
ncol = ncol(mat),
dimnames = dimnames(mat))
mat2[i, ] <- mat[i, ]
netVisual_circle(mat2,
vertex.weight = groupSize,
weight.scale = T,
edge.weight.max = max(mat),
title.name = rownames(mat)[i])
}
mat <- cellchat@net$weight[c(1,2,3,4,6,7,9,11), c(1,2,3,4,6,7,9,11)]
groupSize <- groupSize[c(1,2,3,4,6,7,9,11)]
par(mfrow = c(2,4), xpd=TRUE)
for (i in 1:nrow(mat)) {
mat2 <- matrix(0, nrow = nrow(mat),
ncol = ncol(mat),
dimnames = dimnames(mat))
mat2[i, ] <- mat[i, ]
netVisual_circle(mat2,
vertex.weight = groupSize,
weight.scale = T,
edge.weight.max = max(mat),
title.name = rownames(mat)[i])
}
## Visualization of cell-cell communication network
# 查看都有哪些信号通路
opar <- par(no.readonly = TRUE)
par(opar)
cellchat@netP$pathways
levels(cellchat@idents)
pathways.show <- c("CXCL")
# Hierarchy plot
# Here we define `vertex.receive` so that the left portion of the hierarchy plot shows signaling to fibroblast and the right portion shows signaling to immune cells
vertex.receiver = c(1, 4, 6, 7, 9, 12) # a numeric vector.
netVisual_aggregate(cellchat, signaling = pathways.show,
vertex.receiver = vertex.receiver,
layout = "hierarchy")
netVisual_aggregate(cellchat, signaling = pathways.show,
vertex.receiver = vertex.receiver,
layout = "circle")
netVisual_aggregate(cellchat, signaling = pathways.show,
vertex.receiver = vertex.receiver,
layout = "chord")
# Heatmap
par(mfrow=c(1,1))
netVisual_heatmap(cellchat, signaling = pathways.show,
color.heatmap = "Reds")
# Chord diagram
group.cellType <- c(rep("Astrocyte", 4), rep("Microglia", 4),
rep("Neuron", 4)) # grouping cell clusters into fibroblast, DC and TC cells
names(group.cellType) <- levels(cellchat@idents)
netVisual_chord_cell(cellchat, signaling = pathways.show, group = group.cellType, title.name = paste0(pathways.show, " signaling network"))
netAnalysis_contribution(cellchat, signaling = pathways.show)
pairLR.CXCL <- extractEnrichedLR(cellchat, signaling = pathways.show,
geneLR.return = FALSE)
LR.show <- pairLR.CXCL[1,] # show one ligand-receptor pair
# Hierarchy plot
vertex.receiver = seq(1,12) # a numeric vector
netVisual_individual(cellchat, signaling = pathways.show,
pairLR.use = LR.show,
vertex.receiver = vertex.receiver)
# Access all the signaling pathways showing significant communications
pathways.show.all <- cellchat@netP$pathways
# check the order of cell identity to set suitable vertex.receiver
vertex.receiver = seq(1, 3)
for (i in 1:length(pathways.show.all)) {
# Visualize communication network associated with both signaling pathway and individual L-R pairs
netVisual(cellchat, signaling = pathways.show.all[i],
vertex.receiver = vertex.receiver, layout = "hierarchy")
# Compute and visualize the contribution of each ligand-receptor pair to the overall signaling pathway
gg <- netAnalysis_contribution(cellchat,
signaling = pathways.show.all[i])
ggsave(filename=paste0(pathways.show.all[i],
"_L-R_contribution.pdf"),
plot=gg, width = 3, height = 2, units = 'in', dpi = 300)
}
# Bubble plot
# show all the significant interactions (L-R pairs) from some cell groups (defined by 'sources.use') to other cell groups (defined by 'targets.use')
netVisual_bubble(cellchat, sources.use = 4,
targets.use = c(5:11), remove.isolate = FALSE)
#> Comparing communications on a single object
# show all the significant interactions (L-R pairs) associated with certain signaling pathways
netVisual_bubble(cellchat, sources.use = 4,
targets.use = c(5:11),
signaling = c("CCL","CXCL"), remove.isolate = FALSE)
#> Comparing communications on a single object
pairLR.use <- extractEnrichedLR(cellchat, signaling = c("CCL","CXCL","FGF"))
netVisual_bubble(cellchat, sources.use = c(3,4), targets.use = c(5:8), pairLR.use = pairLR.use, remove.isolate = TRUE)
#> Comparing communications on a single object
# show all the significant interactions (L-R pairs) from some cell groups (defined by 'sources.use') to other cell groups (defined by 'targets.use')
# show all the interactions sending from Inflam.FIB
netVisual_chord_gene(cellchat, sources.use = 4, targets.use = c(5:11), lab.cex = 0.5,legend.pos.y = 30)
netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), targets.use = 8, legend.pos.x = 15)
# Part IV: Systems analysis of cell-cell communication network
# Compute and visualize the network centrality scores
# Compute the network centrality scores
cellchat <- netAnalysis_computeCentrality(cellchat,
slot.name = "netP") # the slot 'netP' means the inferred intercellular communication network of signaling pathways
# Visualize the computed centrality scores using heatmap, allowing ready identification of major signaling roles of cell groups
netAnalysis_signalingRole_network(cellchat, signaling = pathways.show,
width = 8, height = 2.5, font.size = 10)
# Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
gg1 <- netAnalysis_signalingRole_scatter(cellchat)
#> Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
# Signaling role analysis on the cell-cell communication networks of interest
gg2 <- netAnalysis_signalingRole_scatter(cellchat,
signaling = c("CXCL", "CCL"))
#> Signaling role analysis on the cell-cell communication network from user's input
gg1 + gg2
# Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways
ht1 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = "outgoing")
ht2 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = "incoming")
ht1 + ht2
# Signaling role analysis on the cell-cell communication networks of interest
ht <- netAnalysis_signalingRole_heatmap(cellchat, signaling = c("CXCL", "CCL"))