From aba183268c0912fac38a169e35508f033f95a348 Mon Sep 17 00:00:00 2001 From: JesperDramsch Date: Sun, 11 Feb 2024 14:30:35 +0000 Subject: [PATCH] deploy: 1d8ff030d88d0599926caac6fb97678631419b08 --- ...a4f44a864c0067336c34ef3ff01e4ddccbfd7b.png | Bin 13395 -> 0 bytes ...91ff1d1f709d050d2aefc911ebec8a74b404e3.png | Bin 0 -> 17124 bytes ...3d395e2e4c3f0e6bc69ce6ee11d573526c9fb5.png | Bin 0 -> 16077 bytes ...045bd58e83dd8a764f2eeda59c9c191f8d47b8.png | Bin 16070 -> 0 bytes _sources/notebooks/5-interpretability.ipynb | 40 ++++- notebooks/0-basic-data-prep-and-model.html | 132 +++++++-------- notebooks/1-model-evaluation.html | 4 +- notebooks/5-interpretability.html | 155 +++++++++--------- searchindex.js | 2 +- 9 files changed, 181 insertions(+), 152 deletions(-) delete mode 100644 _images/2a2607fbc74903709fb433c13fa4f44a864c0067336c34ef3ff01e4ddccbfd7b.png create mode 100644 _images/5dd4146ebf31fbe53c566ab5a091ff1d1f709d050d2aefc911ebec8a74b404e3.png create mode 100644 _images/986d3355a04a331a4f82450cdb3d395e2e4c3f0e6bc69ce6ee11d573526c9fb5.png delete mode 100644 _images/aecbb96219de7dc8c19cf2a447045bd58e83dd8a764f2eeda59c9c191f8d47b8.png diff --git a/_images/2a2607fbc74903709fb433c13fa4f44a864c0067336c34ef3ff01e4ddccbfd7b.png b/_images/2a2607fbc74903709fb433c13fa4f44a864c0067336c34ef3ff01e4ddccbfd7b.png deleted file mode 100644 index 6f727f986c4cbbb18bd526d7193431775c113651..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13395 zcmeHuWmHvrxAy`YM2+SmG)Ok64k%w4EWY+)QrY zp_Q}t9GCVyo&U1?GDXkoZdG=R)%|YAGVT(l^&abj_a5TW#O?W(7FWz{xp7y-KWZc@d$!MkR-LF95`|!`TFC-ON&=lSA!qK2F&!AX@B_ep`8~&Dm6Qc9wc#> zE__y=lVGcpxpyxneq`WwhE`rc3tXH3glMkzA9B>ZFsx{S?-l)$HoVQ^lLA)J?em&(s z`H6pgB>#Iq+?X10J4#H`z`$T>eO-NfZ8p!U>m$Fbu7ktJvnPC9*JfOV^r;a<<;EB{ z3%^N&g1dX^sZ*!I-o8y~&(Kb@?8vP9_U+0nG2gl;aj43NIGsiiCuSi?%o2wa-CGg+ z*uy8zCKncpNJ>dr)P-@79X&zWNE_7#souKvCE7Fak3UGq#>T=o zpzgwzi|W3rbDCGQ3%*Dz!G-lLX)J^vRR3PNq|*V$;*p`Se4hqB4aC+?5Fxds}o~ zk?;i=Vc~)eqlw1IG2ded(s)i)cXRy6iL*b-*89^s^u2Ufr`tqFIyN^qzcn>AJ^cn% zn#8V7m!eLHN>xdTotc?A)svHxqgvs)t5j>-U#i)YZ{5OG(5qCMk(@laL6fPa${=K= z5PI=W<3(WvNxo3$_`as2L*2S3U)93GVlh89_IyHOV(Lww6A3}^^F?X|y$mW&wKHBT zlRs}pVjY|Ps5oiKq5bN--d_|K*UQe%_Ve{sEO|H^78Vu{KgPk$jSFcd=t~G%bt?G! z`l9c!{uP&eY5Bw1?hq9VQ3P4Q!J8{{U2X0!a}zXapfxr&=D=X&9!xZHF|`&O)t=bg zSh%N-Aa*8aaY-%ajKfW%V`Cib>@r0~MX9Q3uj0 z`8``zq)@d$1LH_mL6fqK)q@=8zXHa$6ai()Itd{lSMGQN8@&=25K&}`s+{cx8 z9pn20CJBd8 znX&P4YOk5zqMSdk@rBE><>2AN7S(=KSm%Wp_(m#bX2SF5M|It1^NgA1Cnne=BqW?} z9YBy80F&vqv?PpbD!Zs?$(Oa68LKve{(cx?d2#WlB#rI`SwBC&W;ngDH*cKlP^v7I zF0yIafZKpJm%DR^t6xn;CBC&)#c}e-P{2S^aXo^g&-a(n^P2>G{P^(<6;%S9Fg2w`U$&8tyZfHgr?DR&Zqkc6XL;^z znyM1?bicnB?pT>>X-iWl_-%6okzT1E!eb-b&+XmT(~AOF4SWASO)Jl$XomRYs(6p_ z{494*jZ;C8w_GCMj*iTZ6++#(vMy{1{Qb|w!v9`o{I7TOe_Mw9TOdSn;+p1Xrf6%% zA)X$g@)E~`hzOhAFWG}lXUl z1nssKCQ7JJ`J(!-0d)Llpyr=EIcRKRlIloopYF~}b8v8|6Z72L*({!jatnL)DiN9z zBOsunTa5pisavw=;0!b|$N4XayAzVYwxiGjlX3W|y^p~v?B`tg6- z|4~2PMkgkSlRx89wF~Arf`Nn-^z`(6;hq()gr^0}^c38MrzAUej3fK%g$uVdH8o9F zm{_C&6doU@kUR4(^zYH)OGb`)O)xWIbo9Q*&SEXlqr{j!i*%5Rjg8G>Eoh6rH>VJ! zP`N0IUx}c1RW(IPva73$HQ&_KG|h8&E6HPaxk-YsI8sZ5(`-+8t>@Zpw7atdx2Yaw zhJZ3v&E#Y$FE6(M=J)-S#CACDA#`~d;r(TUKcYOh%)dv9sskXKMxzo6JLXAh3Hr&< z$cXCn={R6$4h{}kpA(EqIyw;-QuHf4EjqJ4oH~7)RkrEsdPGeCUEKPBmp(|dY9o1z z_Vko@f|hE71pqOPlK+;|cjo`7=OmQI!oyD5dTnd_uFJ~E{HWMlB~-j(0+qDfXkq>C z+|6fZUtgRvo_jCh<>}j0VBPajNFT26e5^h3e=e^7ZB_r@>zDtHS8mk|fB7wxjq}o_ z+k1O^76avFueh`y)){&2EK2v;*D{iklZRFfDJUs5cbOalk*x49+gMyeLjUB+lk^gv zrPCdR{nrN$Al`Ke|C+?>xl3;EuY2t$mCToGdwP1Bt_YHmk%hf}tv(D?sDc~AKsB9J zl#+S|jJ;DKys)SU+BpwD)l5bn{^m_`OiavhFjzP;H(Tfp&3~-J$;bu&Gb4ZQXMlQp zmD)~HH#{-nR8xQl8Y;@rQU5#IJ)A^}c;_f(@(mM-Y2Y_7f`WO@+J9n8+lQMzWRze+ zF%=F2iN3+X>Q+|ihK7c%nYyB^tgKVOdw%}@p%+$(9d{`hgjB#Z#E(4I>&VpA-kH!X zd1ww&AXPIbk-K;@mTX52y@ljn<9Ky~UU!KT0qw-}^h=VGlIC;0Mb(eBoMt-DF-Py~ z+I5w=6~xBH`Ac~1ZBDH2EH@F~S!Vv+*<9Y=asp0lG&dFWc7zV2=esZSb{oe{3(f3+ zjWk_01}{N#&zk-p`Ro5rng4B@577ivUIQvtus5D|{vt|e+RXnm%-}US2tMC%2Um?v z<75eCyQ`+5@n&atx2@d6jY~U!Cb!mW<)^d-I5PAPQ&l-V7OQDYsZbCX|JO2_RsPjv zl-t}-kM+K!vHI6(rcF`PT{%hZ>6**0tDprR=tI|j@jWeQH+T)z*nE6S%89oXuU+#_ z#6@b2FY=Uc#M+cDN?qNWjI;O|`xGUSJo6SQo{F6%{S&~1jUHq4{0^gEPa5C9Z#Me% zWp$7H-^_7tL&qiEVwJ_kMb>=B*>2VS%_cA0rX%#Qih_c|j*E>=<^>KO9)g&CeMa){ z0}1oDGJTme5fgN|<`W`N6Ik)y7a4xZfz_Tm}%xlaP9Uksj zM+k+!&o-)k)y+gtuN76O$HD#$OM)BJai(tcnSkF;I7RwHD8$arJ{h)s)j{Yx7<+l0 zJ77VZ_jb1(`&}l!4cXCN6m@fPaUr9iXai1GO;h6{is%I|4_y(ViF*8C=nAI32vRDn z-JmzUfSFzQ$Uhe46%8F=g)4MwVws>V@82-Ac#-|g> z$0vsI>bG$09f+E~zJ8u{k6KDfN_7v&`LK8IQbB}=ZN5YQE20-tzBQeu{FipJZTV7L z%PAzJ2E1<3kr^2h5`v%naSmRlY{=FsG3glv1BRDZF+>1Asi6DdyP)gPQ<~N?Hz!s$ zHlh!+=MU5=We-5yAi@@260kDeCJ%O{?G3L{Sa^5>I5va);@yJ`5tL1ziWbho`y8^K z_&l_evnd29#Qo)l%RdjvTt-I*IUhs%0wwFzUG7n`w7l#HXvT@fY7Gqywf`(_MBPn9 zM7pFubvTw8PPC2Dsdq@QWkT%E_3I@2vw@HpNy0}bW==6A>%8gK{zT2AmrkSat{CmH z_BM#=YHCc(@2K6_UY}P7_j3OHdHnwFy5*0U>tx4|=LTt~fCin;u4PhobuG>;U6RYQ z?7&gb3$TkbTeheFjFt2U3QDSFa=RTYwsf?DR@bUA;!1V39dHi@gHeKmIm5`9!L3`& z&doh{wcU+oBAxJ66vDI@GkZT*Rjp3O z1*baA_b2K0m`yb&xB@shP9?ma_GOE*)4#^Ev{=h*`Q`aZv|i!p9@ZHa;-{2W=Lhuf zO6=w~O6m^Q%X5P_;~*6tJHo_xo#WYo!Ajgw^o)T--Y6=18!_LnF+3 zY=BCPy1s|%fy2iYz@6`{bixr?G(}x4-rFMfy=V|+yz06V&{*BY6wKf8;pP#vR)qWT z%D!v@(N;ims2jd<KFQ+b0--Xw1=1B zVd+^veFNYewG$b|W6Q>!4yjA&jMi}y!dj+UK`hAcE``QhW){`3zjXq?@$*5`)g*u` zZRtf8fuC(0s z3kbO6D2`dCEJ||Oo-Gh`n$x)xiOu`+z!|Y^tMJ#lZ$f&owM9Fy-#>vMe>an5C(of<%P$+iRK5IDT}Vom=# zMKSIf+B5###b2>x7X)p3H6W=niumIQ6u>ih%%rr;;yNrDLaDepK~7gRS4_-x7?UH? zZV68CVb8d&);znbGgLJ=-!TvB^7zU?l2}mYyJ|A@w#jupp3U z%cW1;8@kaH8XBrR-gKDq;K5Q#<1dmLtnE1~@aAwy$`HAYby3$qgm#93Aq~v?)F^q* znVXfO_Ru8g=d$cROqlf*=Rx1co@9{<(>%@~Y-1I6+?y&hpzt~LAd0f+X`qT<)M+k0 zz}Xur!VF}J*l)jG+U>D8gd%?62Kf6EU)*e!aF19 z(@zmK%XinbQ3M4K%-LV_`Kb_^zQaocjLK{<{Ca?dWWEZ{*C1S@>GS8OQAPlnTBXj} z;|*_>Etso+TfphS`Bhe4gTl{|OZP#a{UkMY;(Ob2%{b{`H5r-bj%N`j@25*T@c>a4 z&GEjD$9LdPT!ZvIHzli{QN%q**lVomX|80;&1l<}C3t%ypdaR6Y1{nFGN{URUA3U* z7I+BN%*n+S`0+#xZGpMY6IH{jbT28><`+ z*A4>)oLg^AAj4|q0ZOx-jYS)%B|VohsywrwH%?!?{R7BBZno+B_cq|l5AgkI018`U zul0{Bx%!})!@^LNDSpOjz$2+E$FxM`By#t&)jKi)^X3bIw7fSSAE9ig5blk6^M)3> z`Wkq~tgUBB zuZ*PSA10lentI1;^o*KID<1ME^uAMJMgncqmS?Gsj(H%1$_|=RMGIqPWkqR%1&iIv z<+oO_N4xm7zNaR?X`>26jxbg^4|-;7VnQA(eqeUqYrkY`eV)h5%WEVT>Gee$2e2v^ z+VfQPWtd{XfF>vCaOKfoLD=w?08A(U&OHrZVc}MR2o??(xJVjhs5MBJf3k-=L5kc8 zFa&x}YkYHK{Jm{J2noW@!o4(GFn|&~$RW3s+AmO*+Z2pgm6pUi%7962AC2XqB#1J4 zL^My8@Z90>KSw@B((eOk4^fm7oR~>dR0cVBp|`$gO-N|yDwGvuS^)8-{R8`ZPFxyU z*Vg;pcqAB*3yTpa{|?XKbuLddbyU;nTQOD>+rXvfm^QVCtLvFF9`g3Nhot%E+79Tw z7qb2s^k{!;LSjD!D(Gc+_|)2~@!Ky2@Ioa)u=rLoDB%P+ zzHpH>znSqYy0><0WcYRlU^OkMJZazR*`UtXs zguNsi9T{Qqsj{#0@`&!NMby@x`}>QI7!9}*xo9q4$K&z7+2`QiLRzL&G&D3)4Bxzc zJ2mHw1n_$2ky`f^w_!>5y#E-w0<%SPMiTEMBY-xSfDuulo2tguwGPrZ5q#7_#7W^2 zK<==RkXV48*PT(I0;8_FEk&F}F5d#kfK1*DG!WT|6WrOmP(+G$c9#pxdmBJPfk8=V zl*ZwL=!LA30YvCom&G9s+1lHlM=eKq=U$I(MG91enCZcV8@-A4FHalY#I4oyR3u9U z(jWFMZDBq_MbIr#g9}wh(@;}efbmDuIY|KmIE8$^dS_5WXpH{&7Lu+gh3WLAgK_Ci zXrtHB(fW(!Fnol;wjBCQs$zuGR8*`!Rp)%FJ^&eJw(h}1!Lm7C_VBmTrle?3t(^&% z<#9+mlQ)*(=U^g;5fke@PmdVESw9^1$^yuL^ypD4#QTflU{!QIH^ASCcwLg5UGWnr}W;7&=Vd z;o4Apki?>4R?V@pT6vx_mGL!+JuCc7=gS^bZ<-;fgn+YGlnA9uerTOSLMj`A%1HDm zQG|jr2nTN#7Ivo3m6%au&RGFWoP0N0+!bcRa#ldQKVY1Ja&_GOel{^N9k5oa!1N$T zSY%Ojr26f*7=Sqp-~g0^oV>iUnOU;E7BYuY_@e_yQWfK*=&!oseP^4*mILx_2Qtwy z@UdgZ-T~`-ZVVlX3+rcrp;ww(1}4vM39!Ab*wGT;iUA6Y*?r-Wp4+To84xDQQt>0f zKKr#2dmpyvEA-X%ToUHWw{2i}qz_;xfFrMD1f)52=1hD*K!8%kj*xYCJeq0=3#)_4 z?l69>n+U#{HerPc+Oh@ER@0*FT|vLAJdh5kyeLJ!`IdOu)8F3-$}1`=vgY&Xm+Lt7 z+WX{Nb;Y77M3Cs*59k)F8>Due@TQ+vR8+jWq^Xn|a0$dakVQy*Y;5eXL{%Q@fj}g% zv#{KRCMt>_F_IGBnq&!N6wUv_e;NMPfU1RarYlFfHi(fkZx<@2nlb^*8wo4p!uc@J zO_Lvd1VC1TMw|Rt&mD?)Z}`e!Tl#@5%K1j~;t`3+9m37R8W;(%%I@#2SFEC--ry0U zq1Z)%b)1g(+8JSX9SIZ$1;{nEq5AR&lXJ|*Cp?U##!1YeCWHdXVWi;Zx;ge5oeRn; zL1C@@xJj7;_#6^n7@L|Bp>dUN-FhMw%#@Lpbr~w%qx~dFr6sS)7fB(T-ei&kht0l) zu(IYyYkYrge{61bCZ}l{Xr&!wyIeX&D{u%XcSWh*`N@tuX6AR)h_YI(?rG3FyU zfL3rw=|+PU=UG@ltHdhxm^Maeij|$28zK_5O?VFumK6fkp+gELw;5jWt2pRTOw?y* z6!Zc@T#|T=YS76zGkYlHu27T{PK5UH2w$n)he)wY|qq91Im`6(R2O)QZW(UsYdMzrl-JG z9qF7c7KaM$>K}4y_`G1bEC`_f3aBe9N6` z`Gl&xXUFMc;jME(hTbX;dt0DkIU$P#dB`U-5ed|s0)o73bNoFPDh^cNcvCb1@X-QH zHk5fG-2n~V`=Gq10S!`SuV25u1*P4~{8j#Yw1htFp%~9S5IO5Q`chf|vVP&DB^%(5 z<`7o-QK%n7H&6wOv$v7{r#%APFy!{I?#@kVU4ugg9;3amgcE%@qX18cE2=QAe}zU; z45wk2A-N%CR$_lAhxEV!ic=(6Qhy@01#B8@L6?J*N8K zIT9J$15W@jUBY`3Fd#NQK7P1~@r2I_Cb47~fij(>bml-Y63jnzI85?2cIq3On(hL+ zbhO-+u#RYS+t}Ec{7WO%_g2^ri1*o5QHVWh3`9i$8n!}JfyqJ(0&RaFQS+hCPeGgH z2OX{a4oLqHGFy01*&~!pD);ZlL$Dkk8X9+)f?h*Wba?P-A)nGGNM0-$NfuV!Ph{!Qzw;?KY zbL*_iaU@Hc?vc8ToLn=cUYQ`WK!qR?PkICv$j}is+!1;z@E#$K%J>3l44COPVp;O>CXtK*9l?*53@N!s@U;4=Sx5j5mNz z2*iU{)~H>kN4p-p{wnB;G`MY4L-_8VX2S{m1>|qahBQ(C_1>mf7L@_i+&amq>-_ZT z6WW^n?#p)|p=!a#c4*|71a{||gI1YJik6!h+2rwd8WsxlcL(xAbL16(HSjDA*q{!u z9*^frmvPk)Mqj?H05GWnYy=a-L{PT6XrDOVLKd`upAFWYnWn&O3tcW-SXek^d>@QD zI@>@Qkoa8B6xgS`)FlUUiewO`G(6{zRc@mwg5EbI+!^rF*~P?4zpSAH4TGv@QYob^ zFpr1@aV`(U3WeKUXdj2Bx&t2TDIovQTTN#nwd05L{!&w;C0)tf3sE6Gui+C^S)h>} z6_xqoa5dVgkeQn@Hl?9?1B5Ou@Qzy{c^#gG99GHQUCbEtx!9w&r$V;<>2R=9FkDdt zU4OwGGT_`a?p6t9D|GqvR1bKQ zRIsTG38eRYfyT(GFQI6&0u;^x`%}=LVHYxVij+Y00WJp<2n0Q^T}NwJ?~C@@D?%+1 z;3^S5ts0I|MX!$T;r;%5OzRqyWIZej{(cg%M0F7?9IQf~Gzn>82!UX`xCY`MH{iLQ zVZb-vo~+0M_3U^a^A-D^ zDYH;9-37MM*U!(7mGMOlyA{1z$~M_S#W| z@V#TW+CO82k;ZFjuhuTmxF=bwPFrExA zwO#S|DWKFgz}^(NhHMCE5;U*|LZoLqaPJY{up!XJ4-obEg~98R($f59&0nDfGGN`s z0(3vPreeplgnYZ98+{J-Trdkm?fC@`P`eeoYwyLkXZX=DK;#_a6bJZpR@_|!6$|JD zBP%OQDR`o(p+P`y+ynI^Fb$dn6V6e70~jnBO3e}!o>rM_p8XAE4*2LK;Ki%c!OZ(T z1AB=tUc6AUjJf=*)&sJTOxWs7*32%Nht$cL!C=_a0ssm60Xk5yGb zxs(QdPdfsnJ(m5YF2&QSY3Y!Ef-`_H&oQCyD?D^7_>DLf#qnF@oQ0|SE(@0Cchz;yq5M3C+5uwDSTr+n?&wG@(c zs4ZbQqq-bgJrD@GZw`7V4FYWSf=t?iK?7{-Hq1~^z6cAu&q%T_`3bS(`x6;3@D@C_ z*Nl<0BhLc^^Mbr30EZugr&HPakpl`4oCOm`Fqz8R3B6ovvf|?|hMJ|NrN#}7!v)1n zAgJ&#wBm%tI7Te~1>PMYq6YSF7L%lq0dhPrOPQ1sJ1@GBXOQ^st@xcez}iQU4ZS$s zk`x>T&hb>w=~Jf!phls`yV&Uv&Obr3><~G1#A0@b&VxYm(7|BHKOlF)=;D9Egu}MC zP%%ThKn+LNAW2!7T-Sa|Gn>zJW^X|hFMpOiW@$u-qV$F)W%t&I^C^%hP0?3Z zW)9XYA^ndzS*V`Fm59(CT#K7OW)oK#oPFKXtnKVLw^PQojN%|totlA&h|peO5RD1^5lxBa+Qj$Ml)=of>k)!3Wfc$$qL7xDj1f!Vq53HX$7$G0jh61mJ7wyA_ml8M#@x2Wr zVYUNE1jGVp#Xke1Z;2*A@H*dacfbW;>SYG?Z-X26K(*Jxf?cL3!j1~sQ&d!r-CYcJ z!LS~#A<-D6<`5C_>p3+SxX(a^hEwJT&NeBxT2Pu2t@FK8>ZhCm&-paBW^^=mME;Vf4j zv=c%7&7CN*&D>x%>1xfsWv}k3w*O8O+lN3Xqv9q9}^H&Lj z!Fvy*xVBt#<+c>%T5O2AFQkfbBmHQq$VM_~4xeop7}(D}a8VeN615DiDTtYEaEB3Z zQ^N+CL!!WEDsRe2kZZDNYG$}r1C*&}!JGq&_w0c^0#uhku7dtn1k(PMVp+D|ZeGkj z9}3GK0B?N!{4PJ>Uk~iVppC=?)|c$YL9>6Ep+Jzmv%k`1Lxl4mrOSW!4`p^GEctKd VQS9AbgwZ=9D~Y?6dE?$6{{id7VuJtx diff --git a/_images/5dd4146ebf31fbe53c566ab5a091ff1d1f709d050d2aefc911ebec8a74b404e3.png b/_images/5dd4146ebf31fbe53c566ab5a091ff1d1f709d050d2aefc911ebec8a74b404e3.png new file mode 100644 index 0000000000000000000000000000000000000000..8b041c2153db3a5dc7da2369bb8affff27e7b4b4 GIT binary patch literal 17124 zcmdsfby(Hgy6zOk0Am@TBC&LdN=+0*0SOCr0!j#zE)_vgY7&AHcA%mNqJorkmy!Zv zprjxn(kh+O&3%Wiea_nVthM*P=Q-z|=iWb%wb_$jjPb=A-{6Mwk%LQEI9MnY$`ab4 z{i+lSlOVn}ES!&@bUELDgl`hIa+f> z+F8GzdPiM#yP5p&qs+${du~A81IU9ILRsH3>TN4}6RRx$MLCaz81+lo~qW0b?s z-)%jl^^I=k{!vj&bKkMY5m$6tJSSaV^6vRnrFmwizwL}gpd(ky`Ic;dk9@~l=SxRj z#{EiuwJaTXDNU5%TzUnm5Tyf5sUs#cELZzy5a z7^C`~Mk^&cf3+Oqz$N0Va0N49cbV5U&kc>MD>`T22uv1ryb&;3#_ z-gT~^-q2g=q^XBBuxMuaPh9Jdw{}puVEj4d)XnSH?*;?}96NsenbUA5>qOnu_@Hre zO+~bZu#f$9MNAot5N+D>olW z)8VF2A}-b~6}-P$sVZ>KC9k`816zxI1@Or^bLPk^Dap2($SWue_rF@!HQpAWp{C|l zD1)b}s8GATR`h`Mxe+y7ar?QE(_G?KyLnuvtgn3a_VS7d49qpgo~irjTxj|B{(iyx z_bR%&b@6l0I`UDeM`~(n+NSDQg|h;inhd2!J{@lv>8VRUYM)teT$G!;`_0?8{){3o zuT{+R=S!yc_ggtECE;OI$0B%b84vx`smQ&1_v(J$w|DP})LMb5qJfse;gMQP^S8Iw zvh~VNN;tgbly*uP7#w_3+wkICy~JV)#p+6=y~F}pm#H*v$8XDvA8y;XXU`s=)4B!* z2ICVG`bpmrpEbBXemXERLbtGpQ#glz_U_wPINX@+oN3?lIW)5`yS9c-r`xx#(})fe z(s?c}>*MPija^H>wU&#k=ZGVP5_r?5>%mu6widF{gyJj=( zyW>n$U(T#Pc8Xy!TF3B^wCfD9>#E|DlG43*?;gvNC3b6*0|R$sNu#V3DU>G1x@=xA zFRzd}bLVf_wCO-kZK{TuS=7y&H?dE@(mES+ayqNy*1^Qo+k=?j9VlfLq(lPb#Wb}u18_`Pi5a9Gv*(bo&Scb zQ~47VeRmvQzI-`i>FDXxG4yzS=aOvJ)l@Y_#am|8aj~71(E^f^+KkpB>kd(?rrkBC zclgAbSI4bB%0cofDt+<-Gb{TRK0ey1Q>Sj;zO9bk`||bcGvh*b<^>CUx(re+^rR=d zlg&P-M4mr?eyAfnfPek^JuhFryy@ZLFw*t;S#*PA8&_L(c6Rn^$3s~7DC4#r=H*Sn@9Bf5?9^Jj$t^DIhfo|8yp46^}bA9T`CyOf*jP@m-%h-Z(c-QUC^bvEG+r-V(3 zwW_Krf}p()<@xt?vld9;lsT^%8XC&7Xp!})Ws4TwtGAGCYr{&aKRvKyd~7V@pa=J3 zNxP`ttidB~GjV#EW+UA-1w};_uWzh;X4|2Pyf}j>uqcNH{;4ereu0@r03(k-wvw9>q|Qnkb3A< zn|j&P({sCFF6GVZ*AdQ>Bl3q2tE;HoTd`urM%wh`sK)ffu(zk@hK{0nH4h)I5j*`! z86|$AJGpebNeSoS02w_`HBHTkwg6XsEC=1xG~&5sV;t@grSkLuwa_1}q0MGj!cfP@ zgV&aFm8V&MMU7;`yWG09xNUzO3ii9gu4>kua&mGUA}6ko^we&4b#)ax^I472R-zst zV%K^Y8Ep3M%Sl*p`ib|N1B#)ng-V$F*0@2^rUC)zOcc=FasF z2#D8yW~TSNZ{_!);KCjD#-GK4u2u44k*oSF8+hmaw{+#dstfAL85D{}Hj0pzUf%5K z>dV}8A4-!{THZg!E&sTH=&2b#+HvObh7B7~1H(Uk(u~!AG2!RDnyMRtZK{mZ)2WQs z(6F^lX)Sv6wLHJs%Cs)cI!Ytne`am!4 zMTVXEoBVtMVd40^8AN?$a;Z#oclYTtpAz;gTC_<1(4h}s-nc(;{>v_|J9UpBf>%Ac zB8~$mmT+u8gkLjj$Vx9SFJJY`FM&ftLoAbxE|WbOqYdXOW3)s`RPDRAR2_XL<@~q} z%_J@^BrMFV=;5}`n&fb7W@t^aNf+ST1j@evXL3l$er9H7>N?c44CKvbC4aReNA7(2 z^2LQKw@|^_+Pa{mWTw7!7w1yrlPApz9|&a(SLyK5b~*HV)mu2M72Ud3IWaM@jZ>7D zSMI`v3nfBQQgu&W0X=H0No6W*esxVB%Rc0s68n1 zXn1GIu0F4gZEbaH8AI)51*N497UxEL?b@~ic(R3Q8=t?Ar8KM0u;UjLR6BVx3|Y2{ zjV-j+GG{vY?cngRcYJ(bsL%=^zrxtu6{}Wlw6wHrX>H9&X=`moRUGmQ7#tW-eR|;b zMp{`}8GzY+6g5&!cKx4qc~5OmtY-)s@0F`pGj3@qD+gk&)5SLZSipa=rPE9{ zy?cuqVf5-MKObM2Nq}>h1f$h-VyMG&qi=B-e%$e9wSn5#x3}5Wu8mAQo{tw-eBm^l zVS5n#Bu>*}!2=oRiS`dc`v3y`y6rQApFZ`zcdyxRd!|V#x1-~@LetEsDY>tA}b)>eu2}7K7 zX|(&80o$roTd=`EAW`bkRmPJt%aw#PP9N6@`w5k!9!B*izbs`|9Q^`JToF!M%BU9^a+&e2Gp90Bkp;F^?XD`fM zP;fFi{WKcGi-+YD%5JuA_J&#sh8GZ!UVeTtV&+v5NOJUd4Sjw6E7QqINkdJSmYKcx zvSkiG zQ}HdXHr8+C{on!r#*ME-r8jQeZ=X4R@$DKhGq1e7Jl(xYpeAA<45UtCC?H`)`0(`fh@_g&T6OY!4WD8W&} ztb*(Gf8h7Eq9;wOVzfwAnZJxXCOCKlu-hTeiP66JvZn`kO)B|`tDx7aJ2_>b!=Pgu zr`D=#YHpz+rz?&sNr!q1XaH~O5u8)%FI^d-@*6saLGUZYgoa3J+du2~oZFozY@bLu zs=7{n<SdN#;D-SUjBcd(ysqW7S1whVr<;;asf|;C$ECnlP9rY zvUVNia+9Nd4kM2cJ7J2Cf>Tnq1E0$i@NoWo))7B(>+c64CPgj&PbRu&iLM^)@Zrjb z+m2Txnu7^Ua$#(~@pJKIrLq zQs+I#Q3ARuB9BJtq{eML)mHK(skVoDeE$6T{5y7x_#F=m2|>;OkbdRbwaniUIo(j= z{8$3G2-}JkU&^^xtk{rQ@3QCkEei)1OR^U%~dFf=0hQ6cR%1w$NRvVlTf=VP&Tk6t#>@8Bl|7C10 zXx3A(c8SeJ@-{~Tdp-ocl91hbs(j;Z9$EdhYuDbqal^W1H5%uK56V8RkFpKhS4zUx-HQP^r+WKPbi@RA}TH=P^eiO6r z)&x(^l2aMqmdiec%3xXcOvHk9!9PO_8O*q~_xK0sxA84zB zXLjtMkG1Fh`@?mNQkv(1JDicIA<{ErUnT9kAL1+G)~#E!r~DyFMMzT3{v>T(9Hamm zR_mYLBb?Qr_r?okBuf1MHaP#UY3B`c%nwd|4CC9dVXupe3s`j}Xn1MOD4>d3U&9Nw z<;&OORVykgY@Gei^-BEUTMRXUOv34zvRR(J#$kV%wBEhj;Vl!rEG$Win$; zp^`@+0WvfG1zx;hDW@`IIzNM)fdT<1AOqXlGpT$60t%ifmW?vfV@;O;e6Gi(w{qBZ ze^L?9h^r8*)*Y1PCf%L|vE}LY@L|O3*RNSdpDbB#LJ(uKm7hb__+XoX;#yFZeQOfs z7Xm+@|AS)wKLcw2Lcag2hxrQ(j1uJ0S)Z9oU`uk1*WP!(UEOLm`bHXO5UXSFz~~N4+SK{947v&cnm=%)I&t zV0X#$q$Cjl-6*i_)#|w|YY^;eLKb>P_d-HKHZEDSb@#Sy+sqoXU#K2EO4!!r%kyZe zvoq7`IWEqjAt8q(MI-Ie97<&S8gmSw8XrY(sX(-|a^ON|ccji$fMR3Y{$c&?bvuvP zXX=5u7QB0Bb>wkeeLJrrZljHK(aMz}LcIq{K6)b7`^*Y6fD9P(;j&AB#a(c!nbB?c<|i zG|MJHZzrhkxQBEY_8C=79}URIWvqFDj|*sD<;zP8p44VJ4pMu;ly`f7wKseu<(M>o z2?yC(umRxaU| z(mV)OV!{Pcf`7{vs~QrgEq{jB^qWn(?I-(2`anESmios+_dN_|qToYSPqnC5)7I8* ze)xxG(#r{?nwF;q$&J?eSCnkRgIih~mAxb$AZwuzUcm_Qzlep!Gc`5UhQZML%wRCU zOtqU$;I`Cv3e!|nRDe*+pP#Aauj}jTiiRGQ{uql7&o!>lOOQby zqT{op(AvAw+x$N|G&+aBe!ZWjYGf4T@6^c`tDCM0Lr4`Olha6dEt_2&u&rwXu0NLTcu(wnx+Mnwjj2PXIOhe~p_Fe-!|O|K?ez zdzHMpD>63?C1lK_!Ap)%jmi_I9d+50Cs;?y(Az)lL5`EI{Vx{~2L-8K0nOieq{f6g z$+h$vf##s%?;9HpkSm{|GQ9C3-0D|wtBcI6#8~_G?L@3r@&Tx`bkMJXfdT&RoMUfT zNS}A=PRviS@6m=^ssOpCe3|T2Q@1D>#NkIGa>!tWr8javZfxxA6LIS=Upy8gw%7jS zCibja|0v4LFgSgrR`N*>z%y71(bWd7dgYIz1tKFOIYdw1B2fiCa|(WlB>Zt1^w`;s zCX%&HRUx&%XaCcK9`?`COn>)N*<3d5+NFa$qn-hnE!mpHXggBVV-H>@F}mOfZKK0= zMV4BoZ&QHyqpJF4N)jTgCy{|ln$u!qLdKHr7-&&PUBe4<)3++9i}U!gGOVaYHWH=z zHHlnH^ZQ2Z{sZ_dBWCf`t$GWD9;Du0*;@NJnH(4x!Eh+Db zZ_>9eXv^dDV@+0jJ1!0{7Vbf5ZQD)VDkOYfpQ}RkL1IVY&*31?c7pr3* zbtm>8Jg6Za79SrENlfoEWR;$hpf#~raEco4D!{$oj~_?g~ZWT3T{NOPr^*KZRk$(0!-90csHI z_kZa0W^UjqHc&_2k=6P9;#}%YcXzvDvFZpIZFr%SjO`vtr#@~X?+p_{z=4XMTbb!# z>7lj5^fAEPOs$S7iXuLm6>Q*mG3t_WG5c7nujSBZ^Z1VYN-|~e3E)F+fuqGG?WBfP zhlO4K)k8LJv;Wz>P+n6q>i9`N=YYHYK-eJ8*D_m+nChsqgSt}~a?pN$`VpGXcAIa9 zU>n{t@b{@fAonizAQ1>FpCtT_GoK^S5&=@v0v+x&mG_T~RH5awadHZF6fx4E>ZtY_ zKTDh9b{;BY?ey{YcX=d`xb#A(XFW7G?c|fUxt-eA*E^5aBOLCbUNdH~%qgd9M9^@Q zx~k)=yK9o|+MYOQYg$(lX+PZGNq(91&X zAg?<-vT?ojnE|3wCrwPu0cuEfAw(s*Fm3=tAy5^cTnL4$r=8>S0wh;3u4wSAqhln9 ztl7t~+a;sslL50+CcJd@^o4@n-M4o(e0b_16BQko(djU0QJ1Cy9;^l>NFYe0lmQi) zRdU(tTAtN$fVQM)p}MvXgmgE41}zIa@`TtqOL%0mRtO9!&SPgxwFtYG0TNXN?wLz$ zYl9pYA}v)KtMg+fCvY!3M<`4s(OTG~imOZ3Jv1@7hYc6fO;hgZ=+I6)c7@nL`P}D- z7y13VFjd{1j>8T__8!%e0uA;wGO>h*Yi@cytszph*M~OdU15#gQu?%~;f0QF?RZ{mksKjXx^l&e z;2SG9n_&y-K3~3HUCI@;v*GN%C-BPq+rB(;Xh@6@$<>~9RxlkOXvye`%OpcPP-gud zdNtJd7$y<{%Ip69rx5Bj^={@z!-UM9nJ^c#sQc8ZDy0uCUkp~bU0*|erz++6;ZB8ieeK1DMj* zV=-I|>s;?#&oe|*v7_ZtjTW7-dF-rb8ngA3q`qH9kqZaF@zN2gjZznI=O2_pweKu@ zdd+2`V>3W;R$Y2Tf$O4&C&3kgzyOXj3Po>Hly+D(<+46j((tx?B+^l}mzdfxt-bHw zZ92Vc*NvOBRPV0$n*)f%3b}H#p7U^}V#>1*bC*d4Vl;wJTwD{vTua_pKx@IM#R(-v zk3?gsFKzH((i81ZN#LV{X*7S^tLBe}+<}N!1z?S#zWGYnnS_J{25fj_S5y4bcuxcY z=9|NxH>-%aR~dRX3y9wI`V%>Vk&5s&(|{ zZ5ZYIAbP;y?nZ<&)TC20P9jpf1} zbA^MqD-mBxcD0o9@_wW)>-VdMjG?Y-rKQ*QAr+-2Ume4$5S<2fFr-nRvPp``-(6=f z`eKlC@h!Z^bAhF?y*Vcj(k7Jj845rLts0-ZIpB)dn z(peQ7jk=_*H~+Q!mc#JAmZQ4)B{1bOr(PDc9a-|SFKh4)R6qhzNNwkkIiHq2J97?~ zOq}e^R8n{#xV~tv)k~rE|MoapL*)u&`UCOCzt}@bW;{gBdrrcN3vc#jtzWZ6SVUyN zZxXYUSRa)em6WZ_KgSjk@VCyJ-XVgLRU;Xg#2cmGs-#d#uH~w}kIR{HBJC5Rv6N*F zV67Rfy2o3M_VTK?I)*6)#G(G5Di5K-i8`7-4bPTLmJEH^w=5EzlPFuv>P}Y|t=!b^ zW8jh=m<@ZaJXp@1%8;WdzTyv(-(lCOhUy|uOk)(HNQ^!})P`oSBs)8myu+d{qNUKM ziwLpsjo@^hwtKH$RUWD^+~+#0b2R)&Wqa9EfG|50O!3kyki4NN&R@zI!Q(P^!T7mP z84$Z&&$H@IaGC0QhsIc3Uyo5N<{9!aTxpjpwYB6)^xOqYO#zJAH5LaZZM*hn1BBUX zfO*nCNj1-z8gRdO@nQv12M$?R^EDni3TF)U<8d;MgbxclQ1SAN2DbfawpH;4@dSJ0 z_CY9m-+Fq4Fdu|*4F$>Ms9q)4iTilCEwZw*?$ON3HBjtssnY3T00wE7^D#09MORCY zgTne#+(@fh@~4w7XP3Ia0ZU6cQ@f+3r3HR$k#S>eYJ-`Ix_@{|iW=Gv#uZLpY5M}s znG_*Haoca0SW)0DFpOO}HQHO>!d+9k?xH|7jC`W-4!4)>6Vgt(TYNG(W1|NVjj&yQ zqEZ6``*KB>YYGm%Ua3T81>M<&Q~`I#cuxf(R=TD~8#QpTSQNJD4kg!evMKL=^XO;H z$-U8*pcw(4L~sFs#0fh-ZeffPXlZF>^k#ICQb@*IaJ_Prs?&CSl*M@=I; z`1bhCddg;c&{BO2_U_GN9(4w2q8{fpMNu!*^+rIyZ?@X9VMDO)SzU~Z8T%~Ar6^{^ zp1@d2O2)h?*}c~#@Ycq5iztipQ6-$AxMXyM`KrY}Hn)&+o=Bm`Xuf1<@|Te^euZ^) z6x<|g5B3~gV0Ed{9Ev+u8zB>WX~8mnaq&-~(-@gxS-Q0Kfif?Mq-VVaLJj|+1}zUE zSP)zwr3B40dwN8NbSY{Nq4!up$EB=IL8QARGt^zWaE&Pa7a7cKj{dX$^IlkgJpdNh zR*gY8(iG8rVz(3@?}0v(m!Pkz8jJxlE#>8umFNUk_I5YH5iqsW($&>f2Uj8rk=h>S zYmpQs<*|Z`OUSo)6O55vy=hPDTmX>|Kas4wSRhrJGdpeB7O+}aKL)e6KW_z_8C-@f zbk0`Fg*Qwlvm5NiImswDhMAsB!U?zidV8lCgj%|Hn~HsJ9UnkXM8p=1L}^#+GHx>h zFt!8rsimjqjL{YUuidY8a9_-@rgdjx=T|LX9;9L5jC)fax=9GKJI#!@i5+{r&|;P{ z%PS(Hib^_kK|eAC3MXDD?zx%y zr-UGGmocLk{dug^p7-zHKi=gKhp9XZ6=VO+cppF(RrGy8=HF-&7@|f`4#b0Q5f)a0 z)TNzt;s(Yhh2q$E8?R5$G{vfBjC?jHexc6@oK2NXhrX&?YemWI2qt_xFom2PAz%6n zE`sg#I>#7+uwID~GL$VHwMT7_c3S!q!uSHyA7*&65K)iL*};I>7&6JTv+;Z~W+S6v zdOD9aUt`x`4NOAlkO5vlKR>v-Hq~zyNXT&D)14vhgP#WRT*C2VeKTu4LDZ;kM zD3Of1Bd=7b2{D?9#J=+kfkNIEU_B0FQ<~5i8yg!EUGkEm*IF(ulld@MD%&@3>+ZSU z^!z9h={yiEAoUKLo^YiAdznutRJVRvc6JSu`<0oA>YUCSoBfqBnr4yKJfCLLnvjJ> zaB6*Ivhj(dTb1Q(=nVx+jK_F}kTHmfeAyY5W*J(RT;>Yf&I%ggQ9mYT5NE_iUyJG1 z!Dg36*IDUh_vT71MxP&nz0^5eZBYF{NM|GM@Z;@e2D1|ypl16#L!dmqNta~mp9dM< zLu%kUhQ948)ir3647*T_raTrkxdS|ra^n386a#s%n8Y+~iZ_JyskZ?83$M@rl;xOA zurST!;`#fV4hzODbn{*)IA7dxAcRyAI=!{r1-(&Q?Oq$7kWgiza83-MAV%0a!vkDY zQCZ&J;fe-&A@lTfpM@0e+sG}5UeN^B$7&|#g-&;C9GCSj2ZREam?**%*m-6u<0mD8bGpY zDc@@&13nF|v(CR0lQpjkJDH@ka6LPW6Ga!gmH4@%b$FZ4f~G%FFjtX49RhBmNUhV* z6x?q8W&dqX302{osU&dt4&6LQ2s+OMqlyM^!5W!6fAI%+i0bIxsN`fq@v-!|=Q7hn zN2Aez{?@-bu(fUWzfd;Q7inQiwum{daVE4VM8{lE=eZ(m^NR#8-2ET#VJrrp{T`f-f4Nqf_N1k;Izn0p-^gFFdnVEQ$$K131SEJ z7f6!w%IXU9hey%c0Ms}y-~+G+UXH=zVxdKpt@G|%2t5a?0fSK5S#NtEAXu12!U)2J zg|)H&aZHSn1c&oGoI7_}J1~<5#?r~ee|*l&=gtACau9%FaQcImS>LY?@?Im}CN%6f zK$$E+nLN%z_aLyeVDgU)rD4d^(+jh_Kz=n}I;CDgf48mHb09W5iX8xzZwk7RGql!; zS3EO;kQ&U&w|S7Uc4yNE1(W`}r}e z;l4%#Lh-={p}mI^`vmkH)SvF7*}}VN6A0O13^@s=mZEjzqzELDYCsC1h!Rnv!;)VG z&yNLE`aI6K=j|N|_2LwaF$8=rlVZlR4|on+l=27W%N8%LAVZNkzb?aBq)>=XETa$= zQ8N`GoyL8Ol0si8Oo7;oG48aKgZuZ3TlzBfOOb~qQ`OkxIA;)SC`d_x8%i-m!;O9b zNDdwrRG;afaZGNDfIzerZ5CdG8t?@xKa(L7>JagHaM}alMjdRQ2)GT-qk6a3Y}*T< z@H|7xLmBhiZf3e)v@(xt=JJQ z*e)doHzB~0Q#}|uv$VGJe+d-yJ8aTvo_Td`Sr=wxzpZ!iHpP(@3>f;nYW{$nWLvrN zDVPAPpF;+&)6dYDW2wvCn18P=c+oJ#G_j>njxhy6EQiWab;qA-MO1q}h_(_}+<6q- zDgbR=e@P;g6*e|Dc9v5#FXtW$M1&H{YRWTa-fBr%vL!z0E2jLpcGkZEw_kkc{S~9+Y*g6=O>6&nWb5mLyUaUIf3j+r)_Hz9GDIF`ipbWEDyA64IR)lK zQE0rQr>h%-7a3s8IlBeS*$`qBhP&5IU7+A%@B8FP!2DU9&Ioc%}t4U z!^Xb59LVSyc9EQgK`ia+i(N$7-SU-%_18!uib43pfNU(4nW8-Bf!JJ6^kf0Qc}pl; z=U!mGi~1OaDyt3KCn;kUWjAvg@4Q1m8Fz?)3E_x&-n@1wWi~agL+vWiHU!DgB!qtA zV1v`>fUIA_%j}I&+;$L0Kq`56m#b^&4QDQ+&ue-_3WY^|#woxFc}2w-D`R;AEQnYE zDhw+=oFc=f#n|sL6ze9uLK?1DJ<6nf~9F;R*6hRJlz_B`d{`um7 zus9R)qX3}h9K}29jer)`{8R#tt*3`QJl;_r3efFqkv)Er;9sYXP#-emi5>0gNo}mc z42r4U4eqb_t_-NkOOu@*x?d>c?=kl*6(qbJy2THxjObI)S?E4r%W$eFaI!DQ09FJ+ zjHG1#4h;#;hje3NcZ1SYwos7$nDI>sNGU<&L=;XxQ7;%{#fXoCDL5nC)dY9^jI&o3 zFNW#klasp)SXgpJtrgz=SVdAr`$n9isN#S zv$v3zNOnu#d00JKVV>a}lBSE-7}_lwa|MFNIOWqJIJ)mnCX;d5#`A->58PT4goc52 zJh&E29vUcr4~|BmYcigX;%o)pZXSE?zV9JA?nI$E{`OWGz)D0`mK3d=NMbk%SN5eq zs*rSPR8D?)7$C}ICZD`bz3s=tL^G{yarD9|t-UyjSHUyWzrbe%!D0@Y#;(qsYX-PO)m<3$ryCBdL1J55e-R6@-X!$A?pbLYsj z^YQbm?%usSeFP=1pt`#H;!QyA++#r`mdWw3?5P0-lt1y>J}9H`HOun~q^e<3MWecR zU0A@~RMyXq6NEbCfL~j+iDelu4-NPwDM5rnKep8U3XwQqCY)>eeCg69(x_Sa2Xvtn z5k~z$P%9VRk4)WSZ$&*qS5(I8Xy9?we=uW``3MX$5t#$Mnjj&J zGs1TgLmGDmUE?l?c=)JW>juX8hJoXwF;qtPVWJV~qrqkJ%$d(AG|!4GM+OnNkT!)x~Rr$*cmh zF*R*3h5l=T=5=qrR`JO#W3n^fJ#a3IZ?uG?b)`Bt$RO(K5p1sYsYb9Z6vAQLNK_){~;*l688om?=z%#&D)4G za$uo3?+VJ^Zs^NsiN?=6Ll4gFT+wd;Oco5ENs@=N8b@iShvQv^b}nD-*4Fgk?iJWW zB?YTkF|DU-Ww7ZR-5$I-#O7X=_^qo$ZV!a-hZN2@xLQA9TSPb1tlqOiKHt#d`%?+2{CQ5fJpg<;{1J@Ls)a8M{s|lBB?8ouNMZNhsJuwLWf4 zZm-!M$mbV$2^2z>!tvn{Oe9Au%%OO^#m}FEGDR!6tt0FS=O&{IBL>LeG@-KqERRKu z3mhk9#=qV7R%4^w2cW*I+dvU~l3qaC1BobtTX6hQD5^+w|A7OY;Ljf`H4I|ky?e(P zNv=8lIq~>GUi$ppRVcUQolPt&r$_Re->$P%b8?cjteF2p=XqVQiZKP17nmZW^|3il zA(*JhQQT(VqRf!r%3A-447seXa~Syc-Y0PdB@7#c5$OcoTIi&Fmg{Psrc6 zaYH-Z#yH*h8`M{#H+emH@OC9#I2l-2Us<-nbSY`AYfV9Xh+PacSQ)D3__xEt5V$qc zTnoJTNQ0XhFLkBkZw$E2{*3#WYPf5d0F8i?!PeUdK1oJL$Qf-LV}FyM#_2bH7B?2s zL@_GXruXP#q43U~sdWmQXLZ2uU_=GU$Gl^}D$*owpOsa@#z>qL#v49S?Fk5hP-J#yjN3L=Xr6ePvI{1s{L}zq7YUm(~!R3b_BV_&-Y%MuZq*U}| z(Hi3Ff|EQUN8yMp2+BVb3i=#{zCtDk{GCU%q6>!>?(mJRn__ECrii=KQrQiSZ)y>a z0`0&Yeoaa3iXFa(F(vUB4u&HSn}+l&!Wzh6 zsA3;WWoKi43X8-yCzzs=*U{_p<;$#{qX6H!t@4zI*K?1}!8xhHBSUqlaLBGmXak|1 z0&^+3ib%rT8gIU~ynjlGMF)yZF6&7GXB z?Ck{jg!u${emU*p;@~XC&u{zp5AfMLS@N@75P5@(taLc0=S-n6nUX(r$g~R35wETn zr!7^elz;c0#=TxaA(rMFcXnH!x9SZk{IIN$<1#Z>NB1_VuFuQvZFDG|>YAc?3<-2O zmri|q>>TjHxpq3**~axrCm$Z?f`=YEe!LG>)umAUMmX`(pHcA6rs5L_hn`$ziL!mT4SEunjS6`sdu;~jd)SN@$>`18k`a>e|_ zFS~o@G_B*wahBmv+ex8FEcN==F7hwl^Uoje)6%tgbtmrf z?i$P9-Mf#l8oS30wq#}X_n$7A9eSc{_Qmzd^T5qXb#R&2|a!7z_451WcC(mAH&wx)~mt6i?;N}#`vkDt=+t>w9Br5d*@DBgM6E})E1*X z@@+Y00i$DMQTdxTZcKjn?wx?0fRK>ZxpU`&j=Hu{G* zQ~|=y@OVkl_w8#oA8d5%_D%{3`Pux`DNa#QJvBA8q7Rogzd7SoT3R|fF_F=F1G}V) zn;trJXmoN?`_Q3t4WsAJFY&*4F>-`zY;0`(_P#&IUNJHKh=aE3*4C+ZNaHFRBO@a- z8{6Qc*ZuwdgU^sicB%RS7tfwO+nA`xihGHKk*&bXJ32b{6-QmY%2<`q`r^egTvo(3 z7fF?-la<+gkdERvn>x8Y?$f7JyLRv9LTnj5an;h-zZb+V{vaWNL%!aRj=nKnPayHZ z0|hamLkIDR*Ac=xdU|)IX1@rK==1!V*TNxxFhWU1V&tN+`v-!ALPu2pc{5Jek==yWs|2YT$0n+`8A1A;_Iq~pv5~~6G zZ$FFg8Gk6YFVXnH)3L9PMVqJS-id{5ad1fT9}Hh zOm*yeZrxFs^RcIgJ8+wbL#)lgh=zEtsiD60Ybcb$IBV80hE*&il=tr4TmAB-8g?x7 z#*J8PHCL6Tg~ec(*KkvPqGD)hXd;rBN^4fam#J(mC0=e{yUV&q+!yDkYKPg8BLx~? zpC0fSJ++2S@EDNCx;;O`;!R|VpC9G*J)yMfk;S<_>52aMU@ind2?PWCl0*bDiSEF$ zi3zP^$1eB0MI;GWaB_2N01+CH2ZdSI8^U_3g1N=T4Ms*r%52MP6!EjVx>_vB_I6m< z;Ik|1t?Lu6G>pD_bzI1{O*2D3ul~k%S(pC0I03tz|4}@M%-?U_$m#FzFB%#>)cNGh zP{-ry7cc5?afJVYiT<~;y}i9!c4mJG40ERIcOS2tn;r|jdv~w2v~<;|&-{$<9PB z7q!3c5J@l#iwAb4)1MXEMn)0(%2#m4^P;pLSU8(VJW0kDvfk$E%I zreo|ON3O|gayD))yI3UEMpN_l`Sa&*M?@Gzxg+_Mw9>M_fB&AW7|y4>-ai3gT`jg2`lxU9V|ab&n9daiLY;9XU`ZP zcd0tuQCuwH;W6KQ!Px7o5IdmWt&=Qwz|FDVDmwnx=2xH7k~nGBn8Ef zP1;9dOcT$aFc#?|?$WQihF$DYHTCY@yUMk0LmeK?wkVWmUWV-ITaTD=Uoo_6DM-w} zm`VSCef&*Y_NzPlW!J4+hsD>hu}N=E*K>ZJV_!P`AhTprU&yXQH*mACHcCw52r7Bc z^FWQ$r<3RA=QnKImWA|;RuKdSUrII7W#Q3{ML|hSNZ{PF=P0|ltEP<1dB#<%(ze9h zy_@1ST%v<0)Y8@tds_Fjfz=Xjw+Y9}U(9XX?oT zpbi!Tjo+UfZ0co-*k^kFb8So(@C;-zYRdJjw|6g%W^myp;{Ro8UcfF+&SPC&U0j@; z4*JHbs@FWw0$Tt-ikA<;%PMyLRo855dO7qUP)c)`kcY*w`$rJX|sry<^9YEo16z zf~RAbtzmm%kvni@PjuZX{^Hm$UIVTJ2h`1~g0ysX?|4oP895I#BP7yMjQ$!l5?X%; zjr^X^c`e2bfH)99H&NR?yLQRdO3kKoSbchN6HNHdR-f;t?4nMGTMV58>l+#t8zoq= zu2O$y5^R*IO0xOZU&T;Rf2KC-kok_*T#R5S}N=jNM zPQ>=C+q!ij$>$){uR$JT&2JZ$YZ)77zJGrrsTa6XU0W+X{1X6*01TpOqU}tU75Gun zWZM}kVFFdbTP5}7Mh}7f&VW=1xM&;&&)(bcGOp*Hjo?ddiPB!%U z?95E`#J8XE%=}Gl6+bgGbJ*M4Z(wE?;pOM#6ro*g8!YGphE#x-j)a%>^pTeQB)k_xYI{J7@v z=i-h+)Pw|b_z zvx@H%M$=;ATXH}^V3)ktC@;Nvy^W}z0tc&#*T^7n;X_Ds0Jg|T~os`E*T zFRW0=9=3nA?Cb*1s@((j^zEk(#T9=yEdFQG=f6f%{HLB>JnQKJv*)Yj4j+C|TdRT~ z)ko57s#^Ho6Fk_E6b$e^mD>t}Jel+Z!WHvY)tqNobvrUL{q}9<-cO&B0l%oos>qDc z9z{h($n(UN>vwZtIEW&a)ak| zZ+KIdiS+c$O!EuE`z%wmO+|g?3Loa?f<`R1FDou)2AxPxPak7+kZR}o-+29nY8j7UjIVO+i1MFL!)mPWFw<$Z|d%D_J*TSgEno3&cW;Oe!E zj3EUD1rX4YVXVx|k&ZI9wl)ndEmPOWOi?grQ<}H3Y}>YtI#4gSY15`4bG#>*y{e&M zhX+G)Ajz01^$ba#5VA7Qo*k}y_AL2KOQwRNV#A*~@jan44;mXa<&$x1Y9T_h1 zni_mET&e-=YP>IZ&ADwiBGRUbkH>p0*OZfKo>fq@|TTn`VA(a{;( zs@JG+jVT&?s>Vo4WEGEI%>*Yhx3GwA__2byuwkAwZC^+Sv@tAOmI{g!$R?CJ7PIZI z7)owRzt@6~va3?k?`n3B}^Kxs2E*rLSUn#TtkqMjqa2rC;o-BCC)U9uC5#x+$- zH)xx5=9e!v;C74obo~7I$<583R^4*S+*~v;JmKQSiwZpg0s>8stTghhn-qx5i<1p_ zb0kXs1w8T<>I_dYu9S~`1pioy{xTWtQdir+tTsaIrQeu zxGU@TShqejAAB1hP+e1#)?oqf3YHyv@V9T@{$Q`yMHG`w%6x)+3+%g%*~MH`$3DM? zBu&6!Y zuo*i3aW$-Nc~)6T-krZ}ZuEN3F00yTNimoH8#1!8Y3oT@NwJREMG{@O`>clZ=T~nZ zC`AaKdhyertK(@D_Mj11-WuS<#@-WJwq3<~gkv^m8l_?V6hdIBjyGzkST&_;wLNxD z0+)8FVs}f1nF~Bkjw5husF&CGkIb>=Kg_YME=^iG11N(HclMi&zY?fTHm?br0em-Q z8i~sjOgm`vE>_g}bN`E*J0Z6;3hX)sedgQ=*wztZpZTSDcPBVTV@|-QDb!VN-Y4+y zs8gM8I-*@L+Z4liL}NB0D`XwUWdG9T|EFN_e>MgFU;g-C+GM#wCWQ`h`UQ5paBcDs zv@zb3cN;vRGNC!)nP@I7EWmwkY0faH-NOdTCJTUH#loZN@i11owr@WK zpF%6hF4n^e@Oa?@#)}UX$|CdXkhFLoDet+FD&N7^$eJnDEU^p0zas_;X# zn!g!osiQ)AdU^`V%C7ohH*UP=+$rw*Mb*cr6a<=`Mo&+_0UZG}6n>cc2mfyBYie@H zbAf@rX;0a|!8|c+&M-}HqPw8!d$HuIm;%cWWBH%^+P+RoZ!ySt>h$gXq0sPfZV{1p zRvr!x*$3^r413Q2eqkZR#0=~DdbZwuK4%O>iS`h3Y#rb4Iet2+>p z>&E1pO^&KHe>~JkV{N-#0j>XSJo0I_BIhq{dd=y3L{SGx&&Mz@Fo0K6+19hO8}%Oa z{-MKZkG?!z#h?Dhz>ynuc{F+PoR^rCeeKh}uX++AV+-+;+(}wz>NEbDuKyXJ>i0`Q z1aIHIUD*siM4sowpnx5?wR@QLwx6*X+9yxmha_*zJEH>wVgN=ta3_Rg&BlGd!cNt| zT5+JeW?Hl`Lz@^(%SzSBGQKD6TS`z$xXWEO1nh78*?N_Je^z7FnlRoCn>M9@&~Wka z97micp!BHCd$Tn!4+2JV^F+ZY>17Z>}qJ39Xpl=^o({3+NL zX|NR)0;=9e|2-}i%nr^zj#LDIo!I`*eL6l5D<2gYOAlZmfs+|=@$xpo-bh!D65D&= zK>gt9WK(29Jp@7C+38V*7&rJ*Gvfml1HpD+oY!kvzq2c!ai!}%I~Mo=*`p#ouenD# zQWd%nHW&5#H&f`ty*q$#SU6u&dSQ#>O1FHGG4D(^#1%R4tdff zg9wK>kBjkLX#IH6A})L5&_s(#%LOK>{_oqyT5UQC)ga(oUJG{{E`O=ISvgX~Q8{K} zIw(NzC-VJcUt_W0QmyG)P#h?$a>`( ziLYUwqTjdMmyr$yyd>R$v1m{%xfDv{?HHdKc?3<9$-*cr(Xi+ms##g3pzmo<73@*f zHGF|b5QLQs>OBZ$O64hN|N5}ihKrxSU?016n<9Tn!hW;o$#_7vy|Pni|8 zPkad27M&Bzr~l~1{Zq-jaOqVQ6s{8Asbp@nruy~kCVD1`Sd`_{UBw|C+?Y9bt; zWHL)M3LQJpUwojhqEw93*wx70aNhj3mefc@^o2Gbngk&TJR|w zdn3-WOV)Pfnl(-7dby49N13V~uHU2Ff7delEmQ=O!@^W-3~zG`LgaQ-REBnjz8*UR z^%oQ`6W{qf{d^lMDs$sGGzQ4?ARdyM)KrfW$`>0O%hkebkbj*&uB;-|&gccPTR`~G z$ETk9{_VrP{brY%_NyKR$-`osQ&%^}p;tl7HT#l@Ff<7=Dgu}k#i)`GSa|hyBi~4T zF?HMyC!*o~Zx^U&3Z6B#tc?&|Gi3fIQWQPE z7Q9BaA|3$Wm+rCqKW6bKjdhEan{-n#|fQBC!yp@Fia6 zyt2sMKhUfs3FRBaZEEcDR_^#Cs`FHbb8wgMqBm&?!8!*xvMjfEq#qp`HwM89?G?IjL{$s6iWI{O!?gDL_}UJ;z|Gz+xIITlDcM zlYG{ecV^=GW_wNjF0@pk_6%;kuwiCleR!sY&l_#=E$!n!!C+Mb4bBKUC-%^NAZQSN+OP9JkPrko)!Z>S^(@YcB=_ zIFB4;CaLeSZD_R) zY@GU9&~2x7pz#u3&I+p!C*_sZH_A0u{^mzk4T8>}kHbgMWnWH>h1?|l7*a+^u|>H+ z%Ig>!MoKNtIcK`gisSv9@+0E0exOQ)@0zn;dq(i%oy7!oD{4Z)@y8-zrVY&nV) zd9+V7+8I*?1UQAY{52ol6hs75r$faWHX-ZV90Rk%Wjf(}Mz`=v2fi*`i=fRd~+~Bwf97!13sBI}J(sK2Q}B(nL7OrcknMpdZuxqNISn5wz{cDkO~?Pj=x1*;}QY7Wj>O^PsV>C8^ZVG%YhQ$KC`AU zD{>#wgG^Wu?-Bvpz%fg@0{2|jFkVv}86B-}(lN0`=G|=Qe#praZ3?wIgAQupzJ%rd zh+NEMSSdw{sKKtyfidHPey>=w{k!aQ*N$kPd-_pExw}M|m-qD`XEHs>SyJP$u1>j% zOb+P(ok5&2voP%glkD{9iz0~B6nlvN^<9CZQc_Yu6QuQrGRAZK^zPlAML%IF^?)vk zC{|}M1rlW5@ul9IUBX@U%9Sf<37iRK2*vWo+`qqr_=spwDAzD;lS&8Ri-c~>4ya6Y zm@=+?`kGHt5!;Pk=w|PQ>AuirHPudy6DLlD)b9MfIyJ8J=nc&&)4%Lhf%eMUNv^{CKYxa%!Fy}A7 zln;s|n-eROr2TN&VswO&r=R$6u?AXJy^1S;|9D49ORht%V(lo3BRGZ<`W~qdW2FEn zEW7Am{ffQpC}DLl!4QO{p=ECCBUn6Q$La3`{4iXq5)3Nd?vbn^wxq`wF!Tx3$HtRv zlzq$nD;;28KPJr_^jKo39ncX%kef<(_QeH-#2qY#k8IuWAdqxz5l>qBCYqWFkebI) z+;y$IIcD!TbLccrF3ttSt0j!yz88<7 zOUulh0CXILWO>i5%Ua;rbHvE$<*p(kEZc1heoQNwoXz1FfHN4>J?t^|*$M=bRPf3x zbhLc|m2&C2IWmw)b)&sCdBDN>(HeeubLvUTQMWNxfa|Crzw*U)Ti3yD&pTOp6}%1q z_{MYDI>Q=5cF+hUl^@z73>uh#q`p4aKx6AU-`VzVL5KIhf~M+4vShEtxY}w}H8lb+ zA{!bpdjh(y$G&FYlHcdp=Bpun|6;z4mR)!UM6LJp=hW~3*de{3d<4SL|nN z(nuFHeR@%VMbpk_h00OH4opsM5IbyJI-qC4@A2d5u|66qjVj!UjG*&k-wMj+l|a!O zKpe`^nPSMS_$Wi>v!J-r;3|;9vjX}bGXw-YNG&jQ|KP7*?4CnNMOr-N$jSPQRaXK7 zwe0LNNy&~rJ1Vbq_kh2+tJh^X{Am~q)2^aiuiVN~fw8dPMut&4tqL@tz1p%kw_kHpTUQC8yusFS>q7AIeQ)9usEGD2&WM{d9u5 zrCfxWr2^*WON-p75rfGA>hU5f6Iu;@5|dGGT`83u$*aJJo$jTDL_}~ySzo?g1%x|YZh>(mpp#f<<$*B~$n4jc4{~Q_ytZltZ3+Ms@w}3H1J<&uH#|@h<@jWQ zrVj>`Oa{jIcz84cY%U+4t-OX5JS-q`D`Y zLcrhXw9|oshNge~HU83fId9MbM#6_8rTkZ_-BMO5&TF+nkH|&e?KcKi&K)~svPx%C z8D3Iyk;ML_vZKSkG{Bc4%nZe0Up9|PwnN%S>8>9(rCXhEUc*Ar1L`Y;BhRYg2pTzB zwB`(6Wu(hBSsA`hQ>=HzkP!rl&{3+x7zni|P+0%QTA{BP2U9QenP*>wNDsvj zpM_~lhNVlB4_#OWqM(U&3*$3N#kkY8h9y7JpP06ae2)*4>Z88^{eK#dKxSwNU#Pss zdIkuIc4GKR*%C( zdy*_huB*TcnE6)0#H+ljQ4*WHa`kGEP1i)}6OSK19;{Eih7RTtt%i zNO?c48673O z14cD@?hxhIrXIA60^)Zb6Qh1e>GqYqaK;lHdzbv;_bTb}VBfj;YHCQKMnOd3$n(t; zFLnm^XB2di`oR&^_T&I+SQW$4vc&~2z8%YhE4OcF9jo3qou(P(hzo)~jS^xP}d^g~jRijL&W0+G1B2^y(9cnhtuCoZ0CE1Ia zrJP|7ld-o|nR2k;M6-k_dvAy18(MjVA^^En2Q3Z3nT$e`)EjQ-bVcrp>SpBkM7<)v z6-I0^oKXi_pOBo)Nv5cvKs@{70@8z4P^gzgdH7BtIy}Gqwmi?NS0Sl4Y53zSiDgrS zeprM30(C$kXckr~Ec?;xbT;Fn*#J#$pyZ zG2&I7*7el;Rg}1neeuX8%$r%P*(&iarx;P&R_u}M4;6;se9)R}iD^+|>y}LRvhMO> zB8ACND|TpTXV3P@p-zJVX4iqn6dKHu>|fSdH-Oqq{I+~svSn>FL4Z%@R7&KNeB1Ux zC_N%nkX9LC{3ga$)1VFgB40NQRa8|aRi9^k&per3c!S7WjAwWbB!)L4)2mW~lZclO z^}L2m9l__qJ=3s~K#F5zxEJQ-M9kt`)gYh@NSHv(n}LQTXOR`jODtDD{)sc}<#O=LZ@6qX-axWgrHEZhXa@{XLIuQR*sA^ob+9H>DMQ`7}-NHwC ze-kS7B;Gj_62wHuh#HDl;FkA<_YO+Kc((8`pAgl8X5`AuMNKM|aSp#?*TSVRvW9{4d~ZR|O) z>smwHgHNA74`PB+3lkco7y^o|u$cO=vlm9g%g9!>m3lvE+OJmO`n4@_@@qRSNPMVn zalU(T0AL)VtdzeE6I7K06q@6)7yd4Tjq*_QEo3@4+f+8gq|6wz8$Uek@%|5m43dWJ zAdo=%-N+zKeanJ&G9`u(u*TdpOMu!{BWQ*0 zRrofi@bX1NMKms6rq$3i82^>}$yyGyMqLAd4`xjaOVWR#Ml$BvPLK8y(+C4JO2&Vq^-D2q zpawm`du-_)e=s=$<)#&vtiapg_COxTEKJw>T0gtIj_tsy%S|Jyvap{(Z5*CYK*mB2 zWK*6^L%fDi8WTJh1G~rms~C#zVjP+iT?3SG3^!_l9p>A0rovtEo}XyJlBP7R zqf>+*K~N?%A|efAm!w~a#vCb6n3-yNt4a@60FPI*DeLn%ja0HCt$8Z-Wc*AycYHTF zib^}m>{i~eZvclw{x}d)1*8Szy_B2T{m@*IeHR_2oDJzm7b&!)Fbl3i)Wq5j_|$Dh zRPM6wZ|?Ad=)gj<#g_Q#*FSNy$AJsJbCNuManJ&SI4yuMO3u#CuHSmF)RF!h2T3&{ zPDK(Dz0w!NkPw%(qem3P2>DD)> zNRu?xXJ?@B;9<*EAv3gL_$fzAkP+k`6qg1;Y6BbO5iB&)Y$XE?KOC|x<;US5R^J;+bY39M-D1H%qFl`4?Yde{!+*)UYB6)ogMIL7VOsn1{f{r5cf3oaAWK?pYMn8 z`e7WTSSiyAmob%Z-yS{+ySyJ?Z9w%#s!`kR!k&MNKa1=rTGaYXU zUq@u>vah2IuJ*6=cWAzBX;l|{t`yZ4gMnfj!f*%DIG+K6WdvQ;zk%4q3l0>~GH-#0 z_I!Temqdv3hxB!|P9OYPtrr*O!CGDPOYJ(vV4%FZubIpXR$ebT)e#S52Bun}5|YU* zStiK@a4{MlHcxEFiM`-I^2d)q5?eB;3bH7O;cQ;RLRB0~fMA>X9AQs_2)&SUQX>d* zF|ZoOVnz@U^*pE8zPl71ln2@6J&uV6thu)B2Lm?=93kC$^nG^8!{2`FGdFS+F#UiS z;MSc*c^Ea(QdhrEsv6#=K}*Mo*p9mFOhRA4pUEKjM0nX;rIiOTjOf~H>U5uDQQXk8 zO#yI|BQ*qv$$)e{-0U?CD8RLo- z$&co~eW<_*lDuEmonXP+d%&Zb0MqP;0J{x-Z#E5;kN`JY@6PJHfe=MLH3$uAt>lzL ztE;dpoF8kXKec(+H&|2iJ|1I`e4?F)ArJ z@@&25`*X`5nN_VN-VaXTC^Hp?qwrve*QcILcagp%ISWEU3;~n^GOk@k&r?MO`MA7p z=OfPvYqG!LMy_|AoSZZ<)rvv2)8&42ugn|;;Gw=Hr$%xuRUmf#dP#M}bIp`3&PusFbX+-oJ}B2)&%+W*KW}@ z10+fC%!7P$?cJ*eu6gJ3zyr{@cucI56h$9cyXp|{EI8p08wCC|24O=Iz?q04j$T8` z4-aAel4gQOGjJlu(T33?%Y{iSuFk95_w1=6jEBe=h9yte-!1C-;*vn7~A*TQ_N$DAyF&wBCp1LF^S`Qk7f1=KDnE zYe}NR|IMkEKH@#Bch+qVGV(8A@v07U#*ZLmtKLBz>uy+|y*l8c;R?$@ z_b?)ba0h~`cpL_H6j+ zCsnKZuOBJ`h+a~S+Pno+Co%8N(tYc3^%n#&rn-GiKy-T3*D>7)3$yrP8mw?|#kE4< z$YL)#eHZ7C7fn#$NNOMbmA(C;`86o&&xH<#P^#mYD%ZMqd6oN)wJRUrK#n>$Uyk7B zHgzYnlvxQDzalp=WePyuo|H=S69Tm~LaVZ$CeZ}mcfZ#nsMV;)KpIiUy2 z>!4psrD6N`eMXs^dGm%*<&%`Gj(jYRA|JoWbk0Udw2Cq^WYL1In7MT)Ezb$iZYRQJ;@ zEK{RLS%bs_rxm|xelgv@1$&rDx_<-HAnlI;+C;pNk|UR*YT)B5ph0=_uHvM~8@Atu z(K$MfF;h&;=Zi5?8aGX5Z?qezPt-o@XNrS%d2k3osFxj&64N3QcW!P@kUH3y8$>1& zXq+2P?4Bff(*0yiA!#xJ2Z>C`aTkQa5BeMu_u%l6Bi0brMg8}$!GQ31?g;2_FR;(5 zIOXSoh`pG5M51P(;#}F{hLX{0Zeq?4wXG?S|J!nOcbBwazyarHa&T)Ng{72cQwUvB zn4ZGCGjVbn6%7Vsa^l@h_lmf5z^u?P(qtVS8NsK7M^T7Kx!2FL)=Jc9g7zlkIz-wT z&Nr?}Hz*j2eC}xJ>L)8>X9}fFs6BWg+B)=hW%I72eMdTFHTO* zWEZoVMJ>!hv%^(dyFTt9Ii5#aG`P+#c`|$m_XKvXjpKoG9@2{fCMWfQ*hG^NMzDmq zdLu8D_H5G&7>c5aY_P5wF7rE!P7@}A^ElU>;QKvXYwG~EWb@Gw%+fsK3n7j3AN^1q zd7SJN-JT9RCPu{{+!kRTDlEgp#Z?c`BVB8Q8>{n7VJ`j{%79-KK4{ zX{KpsxS;t?dM^d=fiJ(dNE7t+pXT}1{C7h6(St~q?Xs6n<3LZ4>@w^;4i=#u`CN~` zXKl;J-rmHmlAbSGT699jQD6oiMA)gr!;X56WO{Mc-ETkQ!w>P%f^=fe3Fa+!Dv?`8x?DZ+Q~p_+;NdJODXS% zaMkzYdOMM4XA-HPy_9cD(QBZC=?u>>x45K42>vM|D@Wlo&` EUwCLwa{vGU literal 0 HcmV?d00001 diff --git a/_images/aecbb96219de7dc8c19cf2a447045bd58e83dd8a764f2eeda59c9c191f8d47b8.png b/_images/aecbb96219de7dc8c19cf2a447045bd58e83dd8a764f2eeda59c9c191f8d47b8.png deleted file mode 100644 index 8497fbc06afd046ced8d2101839ba8add39061ed..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16070 zcmdse2UM2Vn(mKX5G#VBKvYzu+UPA}1rh1Jh$sjsy?2d>ih?3V=^#ii3P>+Oih_bt zMXDeoKSk*s?z5B3tjswlXU@!;weFp}RuYZE&;It_@AE$8{qD%iou;Q{rln9Q^wMWe zC{ifPxbg4qHLLI^1Fnyr;1^+=lj=4~=7u)*`c{`I=k#qXuA19iHNN*-@ky@+{%cL@fV>Qe8^ghGaA+u$_9P%FHO8;oH2zWaYXvW zF=dC)p>}6=W!vt`ky;O$ZqI|8%VH_~e2&NV-Wg`v%%{_qe3UCd^X#0$z9)uBiW=8d zB^+7@4Nc6916!Lk)z4lGj$ivMAgF9d2Ze9#Zco~=xmT6O``?#&jDG9F)?j7H@CZY?tBR5H?0w} z`w)Hdu8&WXCzEdcDtcxPPEMKcMRTe3+w$8}M|vugG%^em^@@wSySp=O2b#w2-~`&_ zv*@aCtfcez_mBDV(HQijheAu@S7A|dvh3x{mwo!m%gbr$=#&%`9^$rWhh;16DUHz8?vt!v zA*$r8#X>{rD!uFNy>;V83pw}Vq%5!A>5-nQni^GY?KblrKSmX`wL@RLc(M3n0+)CD z_U)fuT=q`Q9~P0W^I;M7kBIo5`Od?GQeIXTY8i6izyaDdYb?aD=)^Gr)P{G0s=lzp zkI1U(>a9C>4rYpBg)=iVMlL#JIRaNX*x1-6hTFC3pPj4c$!^;%?bEDc6k$oOHkNNNZis(aG&d|7;P20|XU}nIY3aN7?lsU0wpr-5j!jGiq@|g^ zyR`zvnW(D2mX_8pJ3E_}mNqnyiGhKGo&C$bw6W1q#p*zwz0&yfPnpJ#6crV1UeOB* z>8i=gM;g8h7QS|blQU6d1Pc#IY}&O8i?bd2q=JX`xs2_tdi`4d>eWGE^SJ2f(nH1q zyLU_N+OV%X^K1v6Wo8~_5w(+DyLPQ# z%=P7~6CKCC%1BE;v@yAH6qd-v|6W^F>Aw{9h#kC5P>lB1z`R43Z$_cy0StludViR;QGDXE9Yk~x3gUN-n$ zb@ij5W^++99MQAWY_7`AlYs4|9oBlw?HN>yb*YL z>GOHMmm)Xz+C7_mDYC5Vrug4N_&@*bnxyo%j}IOH{Q2|f*qD;6?7gOB4eN^M=0!8l zQVSW}m6 zzo(++MeYxLcMVc+NWwDoVYm657a1A&qp8+a1qBRDOmWG{$=07v85<|ag$hOOI~Od(Q~UOOJpNCfB!rk3<<{A`xVrWZ3~23t zf})v7%<|gH!EvUeql1%!!$MORh5z8egN&ld05x3&6O+WE>25mP!H*-!27C7G*~-8W z)7I8TEn7~Zm?dg@mRDAu*2%ZC4L<1XwCoz7V7s26aUJ`)#|Mw~_xGchEWU~W{<5-& z*qnJ6%%3DD20(b0=o%=msOZ<>GIs9WlOv}?1g_Pk>%X!Y{CH?DJNp^GRqJ=gA2O&A zsyL4)@2R+7pRAF=z{;9BKkw4p*OwF%bHYzqQ879$+({-$HKnd5Of=x(!zj_=oZ~!N zFO^+fT<8l4?o=g;d&TM%yNOtIc~tnarQzF8o;-O#T)h3zCP6;F^SZjl6Oqlj&gUw9 z*_w6i+j}#^(80v#1~Wz{C!5f%jvCeMWD&MH5fv3h?I_IOC;PZWY%7KGQ@_~$_I>;I zaUMGKyvp{;lP7Yu_QP$CP1hRJ^z_aKatlXn!;u`f;M?`@^yi<~&fl@6|IJ_i7t~_% zonU7}Rm2^uwBoNJp+YwJs5BTzgvcb}de9ks$TO=idY znT0GO2kr8ujvt@+^60$Dm)8&dVo-f6SFbjm9BiR>7Q4q@^A89}NKSq`Qjn9Q4&KAb z$*G8Yn>1!;a$>sPdtlxu_=1s%dD0$AmQSa7!+W(LKofCOgB`cRRx5FrR3z~ zbP9C!#^&S*fuw}h3&@;3YujD6mfyJUgkPpX<$BzG(Q8M3`srs7BBM4#8JWAwmMz=q zo1UKj2O~&SQD4t07EhMGdbKFehV|=J-P{(1uNjPg`#?)iZ_D6cpO#c3Q27twBdMA# zFgQ4IW~`6v$Pp!Q!oETlJv}`DV$+4gxW+F`hW-(ONKSL@4N&vPck&fYO95wWxFr|z z##;7KC_mOUa&k*ZNKijzB>`M_R%28AQKlb1emqiSM!4TW{Tp@l^;=n3hBA5ohB(yb zkpdR}mx%*A!N{IU-)86Ug>gTASX37Hqka?hU)_4qa@DE(&i?UII=*<7B-OjOZ@|p>+lyIGGXcL75;7$7E`4>20Ebu!{4COcuWi{K(Pg}OzHtWc>O3TSLWz+S-HTXx_s~nx20l2$UbBXk~LAJxUgn2j%1+6l7oV z{7({Kv7r{4$uQ|3N`O9=-PjbOR-Byjbe)Izhdw?(j{cP5!z!-XJB^MQA0PjEIX65;?5$A?avKPLvVbnJImL&n$0EBi`6N<&OuMFGlNwZ`gS;0(^>t- zjT>KvhEi_aSQgj2a^*^+FnKKY%B9R##O} zhyn*Guc&BJkN5N2e6986Inv0VU&F^Xs|+2N!jUi^z49RX>C?s(Ey38>*#3{t4Y0=# z*y(o)$%9*~0jXk?w%7`qwSAkO>L_%cXt(c7Ky8||yohBt2B78*y==AVj}0>EEON#1 z212F`7fy8qJ4N8=J#qBo1I_1GuiyC|IxHX}A}v0iBQ`EhbYJ(^-rhIW1KBKsbCW|# zeKlb$wR(=dTMI|4xbhZf2LhfvIUxNh!^jsOrb`$Ilb*}-)ZDMkDVkX_`29$Pi!*)z zOK5XUYgyTez5Dj5<__De73P5~w##2gZVi!iUz{n!nX}$-UW?xGSMJ6?zx_1>b@Lwk z>D-;3H*Vs7ek3cqaTCSi;Qt=8;LlHIuj_dk^pkeOhMI65W`b28@mUzDWNXYe z*You9sy56xz{4|i-h2xzkw8@4N;*cO{@%QKQ}yPJLY!O}0~=c!y@~sPwSo=q38?hfhEqnlz_|!5=u_?(R-5UDXKb*t%{rmnXh=>J=3g z@xLH_LIaJ@hfOkdaPTUW{lZHcK0f?Tow{Y9@w>uc*s;S|m&U{(1Rq|gY`Vdleed4A#_uDKfhenHo3;A~20k;W^f|C= z*D=4N7F|E{n|EjfJ^bX(CAQ~SKJDp*`fs%Fbd4j;?Q(TsUnY6{mP8%(*@=O;<*V0U znV%j3`Bzg`_D5@Fd1MHE|D|`L)h7f9n_%5ny7q!G zPVOUyZ{@KW^YilzTedvqH*E^FoiFvIBgO&xSi*6y^|ON+wV_S_RavW+s+|D3qP9VN z{6SNSRvh?9Jgkh_&t7by6%*e+9G{!|ZZFp1zO*pr412L;NI5@UHe5{O_^ovcQc^cQ zWtql3Ibu}R*{PRd_%6|E-v5A7!_(6n#3ve*Oj=*2K&?db>f~JkgO%%n;M=-+bGO5a zRja}~MNwyFaevjs5?#)zss`3ONW+XvJ1PM-crHXhWuPgA|LVts0MT#vgrUO!Lo@vQ zf>N6a#(qie?8JiJg^8-cFA5g2j1J_{dWLqDSWr+_}>24UCNZ$rzruc!D!$&SX`b zRlIa522IaDBt)y%32c_%tnFhzV7yH&i`LuM*Ei2@C=tD_@&$b9%a<;32nf8aYA&m& z5V;=|!&f{%daq}%F+?|>`2p-v)i4K~!a0>W?x>g;_QIL3A;CwCd|)BOpq2fHo(IUV zyvHWtl7kwYpeCi6jD3CQ1WJ=-H>8OsBjYC{BQxHhbl$izQRP#vbsXriO(lzcJSv)O zdQ|pW3PoEZtM9McUeh0KkJYA8MXeu=vK}3G;_Z=I!fm^CU3 zFr%RyJO-7M;&b6nSVCcn&kwJUuW-fwtDgElEyUkbg#Y`P^A9=fz_ceFQzFWQSYNPw z##@Xcgj2FxhnOYZ3UG6t0iC&cdF8aS&BXr&HtW_~6_7X8;XLvF_y*(lJX>mgoG+^Q zDVy8$um8Dge*d2n-H5}N?>dctiz4O;xLhM_^M=^7Oy?pbbm|fcxr~jCnMLiAhjV(? z!}C!<$G}~h8%KLzN)TL)(m7s8T_^Fo6UJ}&c3b6PzJF`BNmb34E?-8wdSk5N;!^PR z-XQ2J5E4$hb@GNaYvf@H!ZmLwc3+Zd<>um2($IL);|NomJps~J#5}G-**`#Y)H=nm z(Y;f(XKa$&r6b(4wlz4yG`n@l;%XLc^{>CIh69$0rXAP&>#x6lDsZ$8NPAOTn`Y(W z=2m2|(0|#8dCVD0a2n3-uM<<#sc!PP<14G+o4SOZbYfJlvG?Et!d|Aa4Jv=-z zeBi|&Dt~;)AawGRva<5GAD>_4eT(+Kl+nU1tC~$B07k}V?fLdemOT}!mB)DgSX8-^ zq&ch$cy-|V;~OeflhRkLT=}N8RSUFQu9}XPmSOW|#a>fjQH{vrxH}^QLp-7rIfLlv z=)|^XX=!P|-b|Boc@zJTimT29 zfBdK(H{v(m8>A;var(pwxcOzqvX++5Rnv4`EB;_o{~|YMH=h3Sneb(TRf+cBJAx(M zi<(k(k_0;(j{9LV#>=*x|AtIR9&Q`MrcF^;?*WJ$*V*xeTzkZx+NxP}XN%nyY`RKl z?z2hil0(0HR}m`4pzf-!Zg@d~TdSq@Kf$WX$H?^vggQ-s_Oku*dXtXzJAU}~;Fx;! z1t+IqRwjM<@G~5^m%O2KwvI6^ekZP!mi=H_~kDFhu6{A?YxSr>NCVl zrVuuqJUor%OnS*M4!L&kE~Q?H*C!U_{LEOE%gm@uggvhB?Bq~&zpoh_-g~u7(=2kP zb~K$XWA~rQK8ZdrxuCpXE>!;KpFOC}X=$&#HY6cfg5)Es=ePML&u`N3nwm4c#mdU+ zs7V7yiu!XYH9glX5`4UWFJIZW@M?qPm6_3Am|#uu3Qx)Q{_uK7@3J`4=W`>^dCE*h zSvekY7_}`ogIL`+Z{D=dYo^t%u8Tcu+jCzKDg|~{^B!L@#mYNxPw5|O8_MoX4GrB% zzwO}9+3j{A&|)gZZmyNHNLx+ugPfKYrn1}?oJcFqZnN_Cyfb2S;>3w>331_d9yH5q zoZRu8+~=MgJ_!q_;Yh8Rl0A*W)5VE2cVk#bB2MG+P7_qyiW|WJ0kNn-)6$!3^QOCj z`1hH+aWs`|?%I5X<9@t3UCX5F@C5;g`L=SYe(Q^He<>8D!NGmYd10b?qU)CpB8!zS z0y_lF8WtDkY{%XSHXl3OaBB;8v);(Hs7F5#*ZMw-sH(X0q)ndG^!K6md^OnVO5p0J z?rl@>TB{JE3fe>>BQ#wnqyoek6CZzn+@w7(i}>Yd`3f7Tw@*bOmAUW`dX=6a&t z1^4MFS|6fk8DtOCD;4^6Dc+n14k&<`*B?Hgzc+XP^kl1fmQBARu@q(t_MZ>Gs=!I% z?~RLas{`4Z2r8aG37J_B5~HlCnTUK;o#mYn10&N5ECFqu6I7{qaW=^yx7{r0ouQJW zW3Feve7&wy|6cM)a0XO~8tzS4l zT3z+-UE}f%Vv$IrOgai2@7}+kB@(S5#QsGpwP@A^0X#jML_ra@8!7#0U$CHgIPSw` zTZV>*zpUPX)F8gf76C=i*>B%1Vzrp8%D1Xr0o72g{F!C@p^Gl`1WP`K1_Uo6|T92ZX+ChJbD-c_+A!;{x zMFF=3WR2vbk_+RHa4c&5V}^3SID-lMfNg=DbH|zT{OWq`WBM_KO^9CKqsp@`S2N;A zo1h~hcCByAwNCN5!mzJB?*Y+FtuL>^uCUM)`NSENqV_WbNd1^LyuJu%p2@_6%Z&bN_LQSS?O#Ag;D359^m{^?;0 z2RH8}fYmHaXQ7w*#pk-nDD(-Zu&@Ta8FDv3xO=*NS-;}CH;>gyrlI`Kh}hnigw;vn zC+s$loDnP89nt{!3Vz&Rb@_43_S^fYx)OXP^^64fU z*FQ7<`t}K|fozfW)SuDVhw}z_Q*`oG|CsMUP?v`Kb_L974^7(R`Mz8gJZ(^yGUteP zU6UsvES&4(7s(5ek_bZ&1&GwnJ@$svtiM`L1n}g_t6TJ>WU(u`*N3*tt5ZrS)?eQW z56l8A8x=M;yab97pC`M+DaoKERM>i_m&Y8K6PEU-xw*O2|0{5T*CRw{+3-`N+VH&3 zw{{$L8owf4hXYPa)yX%36erq=I1J*WulEqro=y^KfDKFCjWk&xmv3UYvU{ zX6_1#Nn&AK>E!9tXZ;ozr;1HmUR>6Ee$kWN_;aZze5@vnsifR9-ihY1tF5p(qYbD1 zqIC$2kg>V<2c@N@g&1czBO27uDl9L?!ulZ6J%?;K!)+^n)ytZrZ}a!g7xW!E!W>>-e$H z<<-?^Ne5~?B!61Yy*fJG;TAf>z*Ap|?$QUWk!oqWPP6@S{FdD(T<1qBN2jKmk<<*R z7wf-T#mlU*lGd9}*mbG{p*?Qf`htljEoKp$_{rh+>UX^2B?xwsCkC38)Wu3bCT;q{ z?5VQ@X=*qteq8#Q>1m;++F<^(pi$Weqnzs zYzI=ZP1?HON~>a@-{yTJlaOLA$K1HXUy&HO1RMl-v94PBR!lPI?YuqhSB1~kaF=t~~k zaTNH9Wy4?{-S-CIcE2?5)b%o^jNvL{YU;6#snBeU(G$3i!oKZ=&e=r}nVPc8DPJSg zw++LcZU#lMg~gNM(~4cf-aKn)Xb=JV|G~Z)ioTZlR_(6JKiY36ET%v#%}4xXHH=aMFOD5M#w_NL z?l%2-wcK@EOY#YOgS4abzZYr!K~Zc+%9+mk$%TvcPcMX{r%VpD#^qY~X@+h~UvI6h zU4|c+dEwV(JbFdiuV*9b8~ZuUV6 zYaVRLfP=2k+qclDrl;Y*jzVQcEhoczUcPGGd!P-c&Wnirsk{hW?cb6_w1!XF=6oUV z3~kvPqKOa4&p&Z*Wk3j9X}tnk;`^xM2+LB+y_v`$);x{1^;lnRGjaQM3!O-F?lO0u z3n3oMYE}mimfio_W;7B;~Yl>sm3# z(HJnuH@50+Z_f#~$DH(L>_;?cqp7Q{oeT%gf`yU7>IoWDP*|AdzU0P#?NfvC463Ig z(^zT!+T87syC@2^*#bH`x<=?vkf>794?+KDfyK5TPBIDeNLqclooCZuYOCHgLO7dT zt;$RxjKT!;DMogwYtx-~notnR5Uo9q;E7-^V%C2$#`2 zJ)IazP=H$b?PtMkf`-#Sd9;KBM8#rusRZFRV$2wj1<@wJ^|vanw1x+}jwj#sVtxr~ z3$jVL6Nn(;{44{QuOOQN(@pE~M*jZsGOdtz&+uTvDfwMD=*XM~PQ3BPB@d0quezne zori_*?-cfXCF!w)gs<71Zt&`UN_t8;6`f95)r!%%XXirjkASq_ratAEYpa77^~g=or_F7=!R%P#;4=MsMFjiB7>AZcI?x9}pO*>Ax=PGdfT64)cO2aGbMP<^vn5;)1W( z=xw4LNEKrsp%}))IBaCiP{w#?9P;Lk8zTn?2W8w#tgNjY!I^|^KX3LzGV1rW%sagjVDSSPxIgd#$P`cdpyf_Z1rry|#UqQqbhnILFw zy19b8Y$qdAH~K{YmzpXkHnB9biWlsXE=J!P>@3y;?@P{{|MKRMkN4_Zw{DGIUcu^(f+VvUM9hITk#)0& z1-}|?(lYOVVif++hFYprymV_-^EehN;8>xY5H`)0J~+JnV=;!GxgzV*5C97 zTEtnAEc?qJ)AfDm*0_P7YoA!p>WyCiHDYN#4&xxHm?ApkrLe?vzAW~wyEnCy*Tej)Oa$SOj1gm~nqIJiCNrlHjj zM6q7PhJ$29u!qe`)nPo$dkc+WWO_~{rWTUY)8%m_a@BmfUp9MhjuJp_JP;eCTZb7I z6^vtn)=L9lFsm90?m}!q4VFz5>N+&Z*SH--SDU~yl&e19S^mUv-Ec3=jRvsaqnN~s zb3T~`k^x_jfl*Ki=2=UI5!aqQPpkOY^;{V5g|CvPE56VtxuihigaRs0 zTP1YTM8yvCZ@8XKXg(~}qR89<+**&XKYIGGQ27xk4nO-Owjv z_!R+x?yypP>UBR$0BsVv<0*3b;Brq8A)LC;jGb|kMx|SX&N^sf%!bI{gKqNUoX6Kh4S@`o7%U7niE(q7B5L2f!ayy ztqvNP>5FIv5UOCjjD#oPTH0Q(=ojFGG{SsojFH}=1NszD^nhD4^EIJ#AAxa!ygDYf zD;l1grWLA!UB!ZCujVcIAw|9|OJvmrZe+c;K>V>WO}KuTY+%^FJpm#1dM3(`Gtiue zs)P8NQP^oosd+MZgaG!!x#4^wCCcB(Kf=c+;(<6Y95B^p?F)O}43Z;>c>N&SDL!7B zR-<2}7p97r8VAyfhjZS1Mpa@!?xN-45+@=?Kb&SeAR(a(PNasx38Xjd(intuLg3CV z=N0T15|RWVu7c4`4BkE@a^(IFK@&)r*=oJTXmAT-*dD5tC+J(VOoI@HM3PCnr78C% zk~p3b;csz6gwGhaJh^h$E~dI%Yoq(y4oTs!l%Jlup9$BAbPr-jM6Rs5yxO&A3l5W_tt;yOA0|wr&N-BgrnfU=FeJmp9`RS$0j8%$ut|Eq!o2 zdd1@9PIJBjYu&tgb2Nq-WvbPZ)uVvbI_P20ykf-y(Pa>lyA|jdy8GsoNiWX;033;L3 z_K1b-_(mq!K~$xs@1Vo%mz0!*%LVtk0p=&o@1!e{sx~%mm3nnB9F#l(slAX+%QT`O zB}mQ`pH=EUrQNHV()7|$7e7|NJr_DK?~mnX20kiT(VA`E41kyb?x?e@OlL4!OLHsg zc9%PgxKn18QX9?rS20@fMO{NNk&cjXP4=PWtRMvi-|0P0o{WA%lgl`NoUWiRd6e$8 z@?Znd45PJi@Tn8Pl#RqOEHmsQ&g~IJcn->(i<7g8%0amxEN8lE9kKg*Pnc4EoM2!q zkq1x`Eu3ZDCkKw=(JREhVjG!UMu!&xcbs2Xu>Ex9&#d*|QlU%c!r>Cw_P_-CiNa0%Pk80!6a6va&MHTISpyA5m_Z zRb92r@W~Jg1Ox}0*fNxy8N~JCQcdnk-n1d(TB`u*$RI}{#C--;qQbRlCSt0Zuec5O z>=;^R17>8$JC_#KFpaAMp&QzCK3uHj-$ZA|DY0tQOhbmzdBPD0ZcKE0^CiL<(JXc= z>~NdA<_g4BJ$-_n9-*E1PDCU zb6;qr-i}|Ho104>ki12KDcVj;Yo(HU%QLTk+s9m@QNYDdo;V@IqnB+K1_EZLz}XOp zI_(F)`~YMIrs9fLsE1%C3Z!l3MiCgy8C!05W zgW_QT<@JR-=UmO-kw5v#l;3_>yK=1Fi)R11;23bt52a{ygv=K$EjlA^b`A&>gvkIH z%KT}Q$s^zvUYLlFJsXtx2ay?I;?cZBs3Y9se!?E`obW9yiTh5rYdxDpGTscRpgMT; zk_IXl!9VI8%HJJM-tZvw>eF)rFJeT)GLBo_b{73-qW-*Of3Rul2NwIbC}`vU8qx0! zNK_i4Ptqmz&;<5~fZ3xDX%;$V;e6w(dGlpqgAtG@xxSnq!!%!?=RAQ9y#hNOucibw zDo{$S&>gL?u7%E}g$Tpi@DvCuWJKqCdwZD=Uhu%5ygMN)xCN0HIcN+cJ{O^-zQ*s9 zA!D?V8Tql3_Y26N5|nZI8_EE5I=MW=^}sth@vwkp%WRZjQYs(~BhEX>#cxIuI(5^v z?Dl8G6es>6-Yg)&mn*O*556h4+!}T7(q-GIL3(Z<^p`~GezA=9#q&?4D6G|Skot}dCWNBT8>&Ix#l zi@Y{OOn&1TI0g)O83N3uoZy8}N{gr1NZA%A=;q(jrkU02hA;m|%XvL{>k7}GsH{%- zf?Sx0hCl7W)wpa0gt%m0*@TL}4L6dETu`^g?;)o8tqp9c@D+3%djtGpaQTffNQRNk zMgYT31LE$h$d()i*6hMf(D*w?+2l!3a|@q03LTy^{;Q0xb^7FF0 zO*`5@iPlUakN6t;^$4fxG-a1PzC#>6f*8P|Gythp)9uw~en;tzdshgF!sy%%N0yug zbitASrseCHkG`g^i8s)Cd6l?aJDGe;;SWQLJeS#GNprr8FrLU`%WIe|tub=eCl2#gy2NAW`3=a)WMj&7emxXcf^0z;uD`0OHabR{e26$0!R#Wyy-q+uyBAFhM ztHuynB2FVAGqZu5B`MnB;w3liOd_lfeDgDoUEu?_c9^{%?XBk88c0$)c!yaWTQ97~ z(|=ChR67d25@9PY_{y3Ow>S> zYV4UV#LB_jq@nC!L3xP0Vr6^<+1x-~b5It(_RFg+7oiP25|rYo=uLr8l}N0dnx5lM zIk3bodt1hezP;pZuiM`cp1CkL#l_FBLOLS+LvEQ{!JAROBwva4=2bj#qHKF5$lA5e zqQdo$Xb=bFY^-4(;f~v|dT~*0oH!roqdBI66ko#d$VGH>pVEctqvJACPW(cSO%!!6 zVfeUcsdV<=ZQU{c+9zf=`sGd5;}r+lPys7etWegptLDjmU0LasajNY#F~DGJVCXcl zE`bW>P24CleVpn>U4@;om+Q$nB3iO*S9ZGNm?5F|F)?Mx-e}17n-z?l0-uhqnjkMV zpwmH9EF}3nqVcdLZZcN!3VJ9JZ>eRWHB?Q62%4)RdjrK#t9&EB0|s*{Jc`L^iaW8h z**Q6>$wv1}#2FYEl=GhVE+wj^h2wQOd9OS2A(~kxvDm&OkOIFLw}n|_YC{6;`t>h` zwqIbx-Dm+O*IVPJpN9l&MtUjVpIR74d?;8$Nj=K(JjF}PMlt$wVDH}Y=%XIFf2{9# znrpb7coT0?O(M%z#>+_%mb=ir`zMVdgEOUIh$@$qK>dbxpodS)aX zer`}nMJbc8gXr0Xxz44g;-v+1GVu?}+XVM?0@A0Q`Z#`gSm1zpxF)F+#s_hL{?KC-f09;$T4l!?Hh*_RARHOxS_LUF2 zxw>g8AkZneAKH>j^BM3?E@!u5WQz+ghG?>^<>%hD>vL!Y;bvK(D-Q1PEMGZ2GZSXJ z+0e`^mB=I_1#wUmc|laiGW0mBeWCozC>Hjpev8@Uhu}V0bs{y)G!%zruogWqm~9JK z?da&h6s9uh@7}QB{KEzn>u{J{`}cd%oui?&F?yDt1XHGzJVL8kXLO%J5!>|pd(6_= l7*G52JJ)|TEwv!IRYHqfc=7lJ4Bb(rPs*K0mAY`_{{a34d=CHs diff --git a/_sources/notebooks/5-interpretability.ipynb b/_sources/notebooks/5-interpretability.ipynb index 18d2750..5ad92c5 100644 --- a/_sources/notebooks/5-interpretability.ipynb +++ b/_sources/notebooks/5-interpretability.ipynb @@ -383,13 +383,11 @@ "\n", "We have the 3 features and how varying these changes the impact in predicting a specific class.\n", "\n", - "Interestingly, we can see that the Culmen length for [A] is smaller, because larger values reduce the partial dependence , [B] however seems to have a larger Culmen length and [C] is almost unaffected by this feature!\n", + "Interestingly, we can see that the Culmen length for Adelie is smaller, because larger values reduce the partial dependence, Chinstrap penguins however seem to have a larger Culmen length, and Gentoo is almost unaffected by this feature!\n", "\n", - "Similarly only [C] seems to have larger Flippers, whereas smaller flippers have a lower partial dependence for large values.\n", + "Similarly only Gentoo seems to have larger Flippers, whereas smaller flippers have a lower partial dependence for large values.\n", "\n", - "I'm not a penguin expert, I just find them adorable, and I'm able to glean this interpretable information from the plots.\n", - "\n", - "I think is a great tool!" + "I'm not a penguin expert, I just find them adorable, and I'm able to glean this interpretable information from the plots. I think is a great tool! 🐧" ] }, { @@ -397,7 +395,21 @@ "metadata": {}, "source": [ "### Feature importances with Tree importance vs Permutation importance\n", - "\n" + "\n", + "Understanding feature importance is crucial in machine learning, as it helps us identify which features have the most significant impact on model predictions. \n", + "\n", + "Two standard methods for assessing feature importance are Tree Importance and Permutation Importance.\n", + "Tree Importance, usually associated with tree-based models like random forests, calculates feature importances based on how frequently a feature is used to split nodes in the trees. It's a counting exercise.\n", + "\n", + "Features frequently selected for splitting are considered more important because they contribute more to the model's predictive performance. One benefit of Tree Importance is its computational efficiency, as feature importance can be readily obtained by training. However, Tree Importance may overestimate the importance of correlated features, features with high cardinality and randomness, and features that struggle with feature interactions.\n", + "\n", + "On the other hand, Permutation Importance assesses feature importance by measuring the decrease in model performance when the values of a feature are randomly shuffled. Features that, when shuffled, lead to a significant decrease in model performance are deemed more important. Permutation Importance is model-agnostic and can be applied to any type of model, making it versatile and applicable in various scenarios. Additionally, Permutation Importance accounts for feature interactions and is less biased by correlated features. However, it is computationally more expensive, especially for models with large numbers of features or complex interactions.\n", + "\n", + "People are interested in feature importances for several reasons. Firstly, feature importances provide insights into the underlying relationships between features and the target variable, aiding in feature selection and dimensionality reduction. \n", + "\n", + "Moreover, understanding feature importances helps researchers and practitioners interpret model predictions and identify potential areas for improvement or further investigation. Feature importances can also inform domain experts and stakeholders about which features are driving model decisions, enhancing transparency and trust in machine learning systems.\n", + "\n", + "We'll start out by training a different type of model in this section, a standard Random Forest. Then we can directly compare the tree-based feature importnace with permutation importances. The data split from [the Data notebook](/notebooks/0-basic-data-prep-and-model.html) we established earlier remains the same and the pre-processing is also the same, despite Random Forests dealing with non-normalised data well." ] }, { @@ -437,13 +449,22 @@ "\n", "rf = Pipeline(steps=[\n", " ('preprocessor', preprocessor),\n", - " ('classifier', RandomForestClassifier()),\n", + " ('classifier', RandomForestClassifier(random_state=42)),\n", "])\n", "\n", "rf.fit(X_train, y_train)\n", "rf.score(X_test, y_test)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can simply plot the feature importances obtained from training the model.\n", + "\n", + "These will always be slightly different, due to the training process of Random Forests on randomly selected subsets of the data." + ] + }, { "cell_type": "code", "execution_count": 10, @@ -473,6 +494,11 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, { "cell_type": "code", "execution_count": 11, diff --git a/notebooks/0-basic-data-prep-and-model.html b/notebooks/0-basic-data-prep-and-model.html index f7b85a4..b69f323 100644 --- a/notebooks/0-basic-data-prep-and-model.html +++ b/notebooks/0-basic-data-prep-and-model.html @@ -984,39 +984,39 @@

Machine Learning -
-
{'fit_time': array([0.00643802, 0.0052402 , 0.00526881, 0.00526285, 0.0052402 ]),
- 'score_time': array([0.00420523, 0.0040257 , 0.00399923, 0.00399208, 0.0042634 ]),
+
{'fit_time': array([0.00581956, 0.00523829, 0.00519466, 0.00517082, 0.00550675]),
+ 'score_time': array([0.00410533, 0.00397706, 0.00397515, 0.00400424, 0.00418091]),
  'test_MCC': array([0.37796447, 0.27863911, 0.40824829, 0.02424643, 0.08625819]),
  'test_ACC': array([0.73333333, 0.7       , 0.76666667, 0.66666667, 0.62068966])}
 
diff --git a/notebooks/5-interpretability.html b/notebooks/5-interpretability.html index 10005a0..7c5f853 100644 --- a/notebooks/5-interpretability.html +++ b/notebooks/5-interpretability.html @@ -612,67 +612,61 @@

5.3.1. Partial Dependence for Machine Le

dict_keys(['grid_values', 'values', 'average'])
-Example Values: [37.  37.7 39.3 40.1 40.6 41.1 41.7 44.1 45.2 45.5 45.6 45.7 45.8 47.6
- 49.  50.2 50.5 51.3 52.7], Average: [[0.63714511 0.5385696  0.42161577 0.39381485 0.36065106 0.3238969
-  0.26682915 0.20091536 0.19660165 0.18819461 0.15634479 0.17994034
-  0.17925519 0.17867114]
- [0.66318481 0.59388464 0.47709496 0.42037882 0.39250963 0.3267896
-  0.32231986 0.20354233 0.19911826 0.19050522 0.15695345 0.17994863
-  0.17914305 0.17824962]
- [0.66562535 0.62561145 0.4800818  0.45236882 0.4192684  0.32990531
-  0.32540806 0.23015716 0.20192886 0.19308603 0.21046148 0.20383814
-  0.20289978 0.20166824]
- [0.84718512 0.63752568 0.62712499 0.59446692 0.5669389  0.44405449
-  0.41597796 0.34951325 0.34475954 0.28255543 0.21691291 0.20687517
-  0.20524067 0.20228448]
- [0.93972872 0.69121058 0.65761143 0.6540416  0.65035044 0.53323133
-  0.47636721 0.35760839 0.35286468 0.31948567 0.22185888 0.20994723
-  0.20782948 0.20370368]
- [1.00059758 0.72339829 0.66107451 0.65759595 0.65397513 0.56078326
-  0.53294581 0.41441573 0.35709513 0.34739729 0.2247428  0.21189619
-  0.20953764 0.2047238 ]
- [1.00366195 0.72670267 0.66457261 0.66117499 0.65764569 0.59361288
-  0.53692337 0.4186242  0.39032028 0.38072077 0.22792981 0.21411943
-  0.21150941 0.20596682]
- [1.50900785 1.47183047 1.41302442 1.41074092 1.35570081 1.24235242
-  1.23937357 1.17689039 1.14954414 1.11252866 0.74548389 0.54670843
-  0.51222928 0.38544081]
- [1.62434096 1.61664115 1.61046548 1.60819089 1.60582263 1.59809884
-  1.59528701 1.50455142 1.47758459 1.38900603 1.00265443 0.73356448
-  0.69871695 0.65742776]
- [1.62980239 1.62237432 1.61615296 1.61384879 1.61143257 1.6036396
-  1.6008404  1.53904675 1.53574034 1.47614674 1.08085006 0.79284749
-  0.73418057 0.68750833]
- [1.63943184 1.63287989 1.6266261  1.62424331 1.62175122 1.61364826
-  1.61076178 1.6015663  1.59828153 1.56759501 1.11613925 1.03936766
-  0.93827262 0.70424585]
- [1.6435549  1.63750425 1.63138763 1.62898639 1.62644408 1.61817501
-  1.61521615 1.60585824 1.60255746 1.59559347 1.14975076 1.04484802
-  1.03839281 0.76193802]
- [1.64545337 1.63960981 1.63362627 1.63122595 1.62866951 1.62030598
-  1.6173228  1.60785976 1.60454014 1.59757005 1.17553019 1.0763064
-  1.01722941 0.8800954 ]
- [1.64724805 1.64158374 1.63574989 1.63336845 1.63080655 1.62235007
-  1.61933771 1.60976925 1.60642479 1.59943461 1.17748052 1.07864503
-  1.04856445 0.90604118]
- [1.64894198 1.64343268 1.63773688 1.63539748 1.63284621 1.62430887
-  1.62126213 1.61158878 1.60821436 1.60119202 1.20824135 1.08080384
-  1.05080481 1.00293375]
- [1.68238854 1.64828327 1.64288393 1.64067212 1.63823839 1.62966681
-  1.62650424 1.61651791 1.61303065 1.60585638 1.2892403  1.11521733
-  1.10921478 0.98507371]
- [1.68491542 1.65097705 1.64569885 1.64354239 1.64117543 1.63275318
-  1.62954734 1.61934748 1.61578909 1.60848271 1.34441304 1.14180502
-  1.1359731  1.04101396]
- [1.68603796 1.65217043 1.64693599 1.64479968 1.64245743 1.63411697
-  1.63092122 1.62061868 1.6170318  1.6096552  1.34552126 1.17200642
-  1.13729958 1.01354773]
- [1.68877221 1.68410174 1.6500044  1.64790662 1.64561287 1.63748311
-  1.63433761 1.62386218 1.62018391 1.61261818 1.37718115 1.25136991
-  1.19842054 1.04626389]
- [1.71482178 1.68753488 1.68264896 1.68058937 1.64939092 1.64149842
-  1.63847645 1.62818187 1.6243867  1.61647898 1.38036652 1.31300013
-  1.22616058 1.18594288]]
+Example Values: [36.2 37.  37.3 37.7 38.8 40.8 41.1 42.1 42.3 43.2 43.5 45.6 46.2 46.7
+ 46.8 49.1 50.  50.5 50.7 51.5], Average: [[0.90177069 0.78671704 0.70469108 0.56801047 0.56387708 0.55967227
+  0.55107687 0.52167929 0.37392551 0.33493436 0.29741053 0.29468135
+  0.29041098 0.28760599 0.28612207 0.26249271]
+ [0.95854922 0.84406229 0.78728123 0.67601119 0.64692182 0.6176926
+  0.60894839 0.60450488 0.45647307 0.34221175 0.30205558 0.29872462
+  0.29333685 0.28960929 0.28738673 0.28743635]
+ [1.01551367 0.92684212 0.87024088 0.75932672 0.73040366 0.72631957
+  0.64263557 0.63808699 0.53973778 0.40017748 0.30797264 0.30409229
+  0.29746883 0.29261721 0.28948639 0.28796838]
+ [1.21543358 1.15454241 1.04923128 0.99011567 0.98671552 0.98310429
+  0.87532583 0.87120056 0.64807017 0.60751218 0.33510354 0.33014945
+  0.3205865  0.31189322 0.30470411 0.29497534]
+ [1.24402018 1.18345138 1.07825509 0.99439123 0.99110542 0.98762567
+  0.90504265 0.87597612 0.65319315 0.63762267 0.33948467 0.3343985
+  0.32463604 0.31556777 0.30788518 0.29670303]
+ [1.46518415 1.25675279 1.22731435 1.21935174 1.1913854  1.11326505
+  1.03165386 1.00314301 0.88281229 0.76848444 0.49282031 0.43715282
+  0.35095601 0.34009502 0.33025273 0.31129916]
+ [1.54706175 1.33922813 1.31009225 1.22762444 1.22474917 1.22169955
+  1.09012529 1.06164286 0.96704899 0.82799127 0.5776392  0.5217532
+  0.41022477 0.34899575 0.338429   0.31750116]
+ [1.56949432 1.56359638 1.56033575 1.47925381 1.40187371 1.34932349
+  1.29368981 1.26557547 1.17175739 1.0084355  0.7110423  0.6549509
+  0.64240401 0.58020699 0.46824794 0.34180036]
+ [1.5723779  1.56667319 1.56353138 1.50770101 1.48040632 1.40291521
+  1.32237702 1.29433087 1.17580618 1.03746466 0.74033273 0.70937585
+  0.64687068 0.60948593 0.52245194 0.34540078]
+ [1.61327044 1.60801497 1.60519383 1.60013854 1.59820991 1.5961448
+  1.59155638 1.5640031  1.29780848 1.23512441 0.96313622 0.93238057
+  0.8207369  0.70862276 0.64601296 0.44171237]
+ [1.61572641 1.61045503 1.60763686 1.60261566 1.60070985 1.59867496
+  1.59417395 1.5916806  1.37600032 1.23848599 0.99154717 0.93578386
+  0.84914562 0.73716793 0.67464783 0.4950705 ]
+ [1.73328051 1.65290729 1.64986218 1.64448946 1.64252114 1.6404623
+  1.61105659 1.60869728 1.56992278 1.50949592 1.21442115 1.15868685
+  1.04702336 0.96022004 0.9234437  0.64376455]
+ [1.73519938 1.67982643 1.6517578  1.64630121 1.64430186 1.64221505
+  1.63776544 1.61039161 1.57164816 1.51135617 1.21671527 1.21098726
+  1.07432268 0.98753812 0.9507733  0.67126142]
+ [1.7637881  1.73347284 1.68035391 1.64975343 1.64768095 1.64552627
+  1.64096246 1.638545   1.57477148 1.5396688  1.22093739 1.21519319
+  1.12855512 1.01680176 0.93005867 0.75092701]
+ [1.76995852 1.73979293 1.73663613 1.70588806 1.67869752 1.65139213
+  1.64651792 1.64396753 1.57984487 1.54487162 1.30285845 1.22211976
+  1.18553287 1.14884767 1.03720694 0.88385137]
+ [1.77368698 1.74365561 1.74045745 1.7096149  1.70740263 1.68005246
+  1.64995792 1.64728185 1.58272349 1.54769294 1.35665257 1.32599698
+  1.21445766 1.15288791 1.14136026 0.88856036]
+ [1.77647515 1.77170323 1.74349877 1.71253491 1.71028273 1.70790049
+  1.67772755 1.64993363 1.58485951 1.54968728 1.43434804 1.40375491
+  1.2673429  1.20591059 1.14452556 0.8923069 ]
+ [1.79945725 1.77243788 1.76985703 1.7392254  1.73695508 1.70949457
+  1.70407438 1.70116209 1.58464611 1.5485844  1.4341855  1.42907144
+  1.41867805 1.38335043 1.32327375 1.05009869]]
 
@@ -717,12 +711,19 @@

5.3.1. Partial Dependence for Machine Le

These plots can be very insightful, if you know how to interpret them correctly.

We have the 3 features and how varying these changes the impact in predicting a specific class.

-

Interestingly, we can see that the Culmen length for [A] is smaller, because larger values reduce the partial dependence , [B] however seems to have a larger Culmen length and [C] is almost unaffected by this feature!

-

Similarly only [C] seems to have larger Flippers, whereas smaller flippers have a lower partial dependence for large values.

-

I’m not a penguin expert, I just find them adorable, and I’m able to glean this interpretable information from the plots.

-

I think is a great tool!

+

Interestingly, we can see that the Culmen length for Adelie is smaller, because larger values reduce the partial dependence, Chinstrap penguins however seem to have a larger Culmen length, and Gentoo is almost unaffected by this feature!

+

Similarly only Gentoo seems to have larger Flippers, whereas smaller flippers have a lower partial dependence for large values.

+

I’m not a penguin expert, I just find them adorable, and I’m able to glean this interpretable information from the plots. I think is a great tool! 🐧

5.3.1.1. Feature importances with Tree importance vs Permutation importance#

+

Understanding feature importance is crucial in machine learning, as it helps us identify which features have the most significant impact on model predictions.

+

Two standard methods for assessing feature importance are Tree Importance and Permutation Importance. +Tree Importance, usually associated with tree-based models like random forests, calculates feature importances based on how frequently a feature is used to split nodes in the trees. It’s a counting exercise.

+

Features frequently selected for splitting are considered more important because they contribute more to the model’s predictive performance. One benefit of Tree Importance is its computational efficiency, as feature importance can be readily obtained by training. However, Tree Importance may overestimate the importance of correlated features, features with high cardinality and randomness, and features that struggle with feature interactions.

+

On the other hand, Permutation Importance assesses feature importance by measuring the decrease in model performance when the values of a feature are randomly shuffled. Features that, when shuffled, lead to a significant decrease in model performance are deemed more important. Permutation Importance is model-agnostic and can be applied to any type of model, making it versatile and applicable in various scenarios. Additionally, Permutation Importance accounts for feature interactions and is less biased by correlated features. However, it is computationally more expensive, especially for models with large numbers of features or complex interactions.

+

People are interested in feature importances for several reasons. Firstly, feature importances provide insights into the underlying relationships between features and the target variable, aiding in feature selection and dimensionality reduction.

+

Moreover, understanding feature importances helps researchers and practitioners interpret model predictions and identify potential areas for improvement or further investigation. Feature importances can also inform domain experts and stakeholders about which features are driving model decisions, enhancing transparency and trust in machine learning systems.

+

We’ll start out by training a different type of model in this section, a standard Random Forest. Then we can directly compare the tree-based feature importnace with permutation importances. The data split from the Data notebook we established earlier remains the same and the pre-processing is also the same, despite Random Forests dealing with non-normalised data well.

from sklearn.ensemble import RandomForestClassifier
@@ -737,7 +738,7 @@ 

5.3.1.1. Feature importances with Tree i rf = Pipeline(steps=[ ('preprocessor', preprocessor), - ('classifier', RandomForestClassifier()), + ('classifier', RandomForestClassifier(random_state=42)), ]) rf.fit(X_train, y_train) @@ -751,6 +752,8 @@

5.3.1.1. Feature importances with Tree i

+

Now we can simply plot the feature importances obtained from training the model.

+

These will always be slightly different, due to the training process of Random Forests on randomly selected subsets of the data.

pd.Series(rf.named_steps["classifier"].feature_importances_, index=num_features+['F', 'M']).plot.bar()
@@ -759,7 +762,7 @@ 

5.3.1.1. Feature importances with Tree i

-../_images/2a2607fbc74903709fb433c13fa4f44a864c0067336c34ef3ff01e4ddccbfd7b.png +../_images/5dd4146ebf31fbe53c566ab5a091ff1d1f709d050d2aefc911ebec8a74b404e3.png
@@ -776,7 +779,7 @@

5.3.1.1. Feature importances with Tree i

-../_images/aecbb96219de7dc8c19cf2a447045bd58e83dd8a764f2eeda59c9c191f8d47b8.png +../_images/986d3355a04a331a4f82450cdb3d395e2e4c3f0e6bc69ce6ee11d573526c9fb5.png
@@ -811,7 +814,7 @@

5.3.2. Shap Inspection -
<shap.explainers._tree.TreeExplainer at 0x7f7ad56eb610>
+
<shap.explainers._tree.TreeExplainer at 0x7f7772b66eb0>
 
@@ -842,7 +845,7 @@

5.3.2. Shap Inspection
- @@ -865,7 +868,7 @@

5.3.2. Shap Inspection
- @@ -930,7 +933,7 @@

5.3.3. Model Inspection -
tensor([[0.5068, 0.5604]], grad_fn=<SigmoidBackward0>)
+
tensor([[0.4504, 0.6628]], grad_fn=<SigmoidBackward0>)
 
diff --git a/searchindex.js b/searchindex.js index 5215a48..3143b7d 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["backmatter/bibliography", "backmatter/cite", "frontmatter/conda", "frontmatter/conda-m1", "frontmatter/data", "frontmatter/installation", "index", "legal/privacy-policy", "legal/terms-conditions", "motivation/collaboration", "motivation/increase-citations", "motivation/review", "motivation/why", "notebooks/0-basic-data-prep-and-model", "notebooks/1-model-evaluation", "notebooks/2-benchmarking", "notebooks/3-model-sharing", "notebooks/4-testing", "notebooks/5-interpretability", "notebooks/6-ablation-study", "resources/ablation", "resources/benchmarking", "resources/evaluation", "resources/interpretability", "resources/sharing", "resources/testing", "tutorial/ablation", "tutorial/benchmarking", "tutorial/evaluation", "tutorial/interpretability", "tutorial/sharing", "tutorial/testing", "workshops/euroscipy-2022", "workshops/pydata-global-2022"], "filenames": ["backmatter/bibliography.md", "backmatter/cite.md", "frontmatter/conda.md", "frontmatter/conda-m1.md", "frontmatter/data.md", "frontmatter/installation.md", "index.md", "legal/privacy-policy.md", "legal/terms-conditions.md", "motivation/collaboration.md", "motivation/increase-citations.md", "motivation/review.md", "motivation/why.md", "notebooks/0-basic-data-prep-and-model.ipynb", "notebooks/1-model-evaluation.ipynb", "notebooks/2-benchmarking.ipynb", "notebooks/3-model-sharing.ipynb", "notebooks/4-testing.ipynb", "notebooks/5-interpretability.ipynb", "notebooks/6-ablation-study.ipynb", "resources/ablation.md", "resources/benchmarking.md", "resources/evaluation.md", "resources/interpretability.md", "resources/sharing.md", "resources/testing.md", "tutorial/ablation.md", "tutorial/benchmarking.md", "tutorial/evaluation.md", "tutorial/interpretability.md", "tutorial/sharing.md", "tutorial/testing.md", "workshops/euroscipy-2022.md", "workshops/pydata-global-2022.md"], "titles": ["Bibliography", "Cite this Work", "Using Conda", "Conda on Apple M1 Chip", "Data", "Installation", "Increase citations, ease review & foster collaboration", "Privacy Policy", "Terms & Conditions", "Foster Collaboration", "Increase Citations", "Ease Review", "Why make it reproducible?", "Getting to know the data", "1.3. Model Evaluation", "2.3. Benchmarking", "3.3. Model Sharing", "4.4. Software Testing of Machine Learning Projects", "5.3. Interpretability & Model Inspection", "6.2. Ablation Studies", "6.3. Ablation Study Resources", "2.4. Benchmarking Resources", "1.4. Model Evaluation Resources", "5.4. Interpretability Resources", "3.4. Model Sharing Resources", "4.5. Testing Resources", "6. Ablation Studies", "2. Benchmarking", "1. Model Evaluation", "5. Interpretability", "3. Model Sharing", "4. Testing", "Increase citations, ease review & collaboration \u2013 Making machine learning in research reproducible", "Real-world Perspectives to Avoid the Worst Mistakes using Machine Learning in Science"], "terms": {"cab": [0, 24], "19": [0, 13, 14, 15, 16, 17, 18, 19, 24], "The": [0, 1, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33], "ture": [0, 24], "wai": [0, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 24, 27, 29, 30, 31, 32], "commun": [0, 6, 8, 9, 10, 11, 13, 22, 24, 28, 29, 31], "becki": [0, 24], "arnold": [0, 24], "louis": [0, 24], "bowler": [0, 24], "sarah": [0, 24], "gibson": [0, 24], "patricia": [0, 24], "herterich": [0, 24], "rosi": [0, 24], "higman": [0, 24], "anna": [0, 24], "krystal": [0, 24], "alexand": [0, 23, 24], "morlei": [0, 24], "martin": [0, 21, 23, 24], "o": [0, 13, 23, 24], "reilli": [0, 24], "kirsti": [0, 24], "whitak": [0, 24], "handbook": [0, 24], "reproduc": [0, 1, 5, 6, 8, 9, 10, 11, 13, 15, 18, 22, 24, 27, 28, 29, 30, 31, 33], "data": [0, 6, 9, 11, 12, 15, 16, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32], "scienc": [0, 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 21, 24, 27, 28, 30, 31], "2019": [0, 20, 22, 24], "url": [0, 7, 8, 20, 21, 22, 23, 24], "http": [0, 1, 5, 7, 20, 21, 22, 23, 24, 25], "zenodo": [0, 1, 24], "org": [0, 1, 5, 13, 16, 19, 20, 21, 22, 23, 24], "record": [0, 7, 8, 10, 14, 24], "3233986": [0, 24], "doi": [0, 1, 20, 21, 22, 23, 24], "10": [0, 1, 14, 17, 18, 19, 20, 21, 22, 23, 24], "5281": [0, 1, 24], "dd": [0, 21], "09": [0, 21, 32], "jia": [0, 21], "deng": [0, 21], "wei": [0, 21], "dong": [0, 21], "richard": [0, 20, 21], "socher": [0, 21], "li": [0, 14, 21], "kai": [0, 21], "fei": [0, 21], "imagenet": [0, 15, 21], "larg": [0, 18, 21], "scale": [0, 13, 19, 21], "hierarch": [0, 21], "imag": [0, 15, 16, 17, 21], "databas": [0, 21], "In": [0, 5, 9, 11, 13, 14, 15, 16, 17, 18, 19, 21, 23, 26, 28, 29, 30, 31], "2009": [0, 21, 23], "ieee": [0, 21], "confer": [0, 6, 20, 21, 23, 32], "comput": [0, 1, 5, 12, 15, 16, 18, 21], "vision": [0, 15, 21], "pattern": [0, 13, 18, 21], "recognit": [0, 10, 21, 30], "june": [0, 21], "1109": [0, 21], "cvpr": [0, 21], "5206848": [0, 21], "dra21": [0, 22], "jesper": [0, 22, 33], "s\u00f6ren": [0, 22], "dramsch": [0, 1, 22], "make": [0, 3, 6, 8, 9, 10, 11, 13, 14, 16, 17, 22, 29, 30, 33], "machin": [0, 6, 9, 10, 11, 12, 14, 15, 16, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "learn": [0, 6, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "work": [0, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33], "real": [0, 13, 14, 16, 22, 28], "world": [0, 10, 12, 13, 14, 16, 22, 28], "self": [0, 17, 18, 22], "publish": [0, 6, 8, 22, 32, 33], "2021": [0, 22, 23], "net": [0, 22], "project": [0, 1, 12, 13, 14, 16, 22], "book": [0, 1, 6, 22, 23], "ml": [0, 1, 2, 3, 5, 7, 8, 9, 22, 23, 25, 27, 28, 29, 30, 33], "dsc": [0, 21], "22": [0, 17, 21, 23], "peter": [0, 21], "d": [0, 8, 14, 21, 22, 23], "dueben": [0, 21], "g": [0, 13, 21, 23], "schultz": [0, 21], "matthew": [0, 14, 21], "chantri": [0, 21], "david": [0, 20, 21], "john": [0, 21], "gagn": [0, 21], "hall": [0, 21], "ami": [0, 21], "mcgovern": [0, 21], "challeng": [0, 9, 21, 22, 27], "benchmark": [0, 6, 33], "dataset": [0, 4, 6, 9, 13, 14, 21, 22, 27, 28], "atmospher": [0, 21], "definit": [0, 14, 17, 21], "statu": [0, 21], "outlook": [0, 21], "artifici": [0, 14, 20, 21], "intellig": [0, 20, 21], "earth": [0, 21], "system": [0, 8, 9, 12, 16, 17, 21, 30], "juli": [0, 21], "2022": [0, 1, 2, 3, 21, 23, 25, 32, 33], "1175": [0, 21], "ai": [0, 11, 18, 21, 23, 29], "21": [0, 14, 15, 17, 21, 23], "0002": [0, 21], "1": [0, 13, 14, 15, 16, 17, 18, 19, 21, 23], "hmh": [0, 20], "18": [0, 13, 14, 15, 16, 17, 18, 19, 20], "matteo": [0, 20], "hessel": [0, 20], "joseph": [0, 20], "modayil": [0, 20], "hado": [0, 20], "van": [0, 20, 23], "hasselt": [0, 20], "tom": [0, 20], "schaul": [0, 20], "georg": [0, 20], "ostrovski": [0, 20], "Will": [0, 20], "dabnei": [0, 20], "dan": [0, 20], "horgan": [0, 20], "bilal": [0, 20, 23], "piot": [0, 20], "mohammad": [0, 20], "azar": [0, 20], "silver": [0, 20], "rainbow": [0, 20], "combin": [0, 11, 14, 20, 29], "improv": [0, 6, 9, 10, 11, 20, 22, 27, 28, 29, 30, 31, 33], "deep": [0, 15, 20, 23, 27], "reinforc": [0, 20], "proceed": [0, 20], "aaai": [0, 20], "april": [0, 20], "2018": [0, 20, 22], "1609": [0, 20], "v32i1": [0, 20], "11796": [0, 20], "hhg20": 0, "allison": 0, "mari": 0, "horst": [0, 4], "alison": 0, "presman": 0, "hill": 0, "kristen": [0, 4, 13], "b": [0, 8, 18, 23], "gorman": [0, 4, 13], "palmerpenguin": 0, "palmer": [0, 4, 13], "archipelago": 0, "antarctica": [0, 4, 13, 14, 15, 17], "penguin": [0, 4, 13, 14, 15, 16, 17, 18, 19], "2020": [0, 4, 21, 22, 23], "r": [0, 5, 16, 17, 23], "packag": [0, 3, 5, 16, 17], "version": [0, 1, 9, 14, 16, 17, 30], "0": [0, 13, 14, 15, 16, 17, 18, 19], "allisonhorst": 0, "github": [0, 1, 13, 16, 18, 19, 23], "io": [0, 23], "3960218": 0, "klvc21": [0, 23], "jani": [0, 23], "klais": [0, 23], "arnaud": [0, 23], "looveren": [0, 23], "giovanni": [0, 23], "vacanti": [0, 23], "alexandru": [0, 23], "coca": [0, 23], "alibi": [0, 23], "explain": [0, 9, 11, 18, 23, 29], "algorithm": [0, 9, 11, 13, 22, 23, 29], "model": [0, 6, 11, 19, 21, 23, 25, 26, 27, 29, 31, 32, 33], "journal": [0, 16, 21, 23, 30], "research": [0, 4, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 23, 24, 27, 28, 29, 30, 31, 33], "181": [0, 13, 14, 15, 16, 17, 18, 19, 23], "7": [0, 13, 14, 15, 16, 17, 18, 19, 23], "jmlr": [0, 23], "paper": [0, 11, 14, 15, 20, 21, 22, 23, 27, 28, 31], "v22": [0, 23], "0017": [0, 23], "html": [0, 13, 16, 19, 23], "kmm": [0, 23], "20": [0, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "narin": [0, 23], "kokhlikyan": [0, 23], "vivek": [0, 23], "miglani": [0, 23], "miguel": [0, 23], "edward": [0, 23], "wang": [0, 21, 23], "alsallakh": [0, 23], "jonathan": [0, 21, 23], "reynold": [0, 23], "melnikov": [0, 23], "natalia": [0, 23], "kliushkina": [0, 23], "carlo": [0, 23], "araya": [0, 23], "siqi": [0, 23], "yan": [0, 23], "orion": [0, 23], "reblitz": [0, 23], "richardson": [0, 23], "captum": [0, 23], "unifi": [0, 23], "gener": [0, 7, 8, 9, 10, 13, 14, 16, 17, 22, 23, 28, 30], "interpret": [0, 6, 8, 13, 28, 33], "librari": [0, 6, 9, 13, 16, 18, 23, 29, 32, 33], "pytorch": [0, 17, 18, 23, 24], "arxiv": [0, 20, 22, 23], "07896": [0, 23], "lon21": [0, 22], "michael": [0, 22], "A": [0, 6, 14, 15, 16, 18, 20, 21, 22, 23], "lone": [0, 22], "how": [0, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 26, 29, 30], "avoid": [0, 6, 9, 13, 17, 18, 22, 26, 29, 31, 32], "pitfal": [0, 18, 22, 29], "guid": [0, 7, 9, 10, 13, 16, 22, 26, 27, 28, 29, 30, 31], "academ": [0, 22], "ab": [0, 20, 22, 23], "2108": [0, 22], "02497": [0, 22], "48550": [0, 20, 22, 23], "ll17": [0, 23], "scott": [0, 23], "lundberg": [0, 9, 23], "su": [0, 23], "lee": [0, 9, 23], "approach": [0, 9, 23], "predict": [0, 9, 11, 13, 14, 15, 18, 23, 29, 31], "2017": [0, 9, 21, 23], "1705": [0, 23], "07874": [0, 23], "mldpm19": [0, 20], "mey": [0, 20], "melani": [0, 20], "lu": [0, 20, 21], "constantin": [0, 20], "waubert": [0, 20], "de": [0, 20], "puiseau": [0, 20], "tobia": [0, 20], "meisen": [0, 20], "ablat": [0, 6, 33], "studi": [0, 6, 11, 13, 16, 28, 30, 33], "neural": [0, 6, 15, 17, 18, 20, 23, 27, 32], "network": [0, 4, 6, 7, 13, 15, 17, 18, 20, 23, 27, 32], "1901": [0, 20], "08644": [0, 20], "moh22": [0, 25], "goku": [0, 25], "mohanda": [0, 25], "home": [0, 8, 25], "made": [0, 4, 11, 13, 18, 25, 28, 31], "madewithml": [0, 25], "com": [0, 7, 8, 25], "mol22": [0, 23], "christoph": [0, 23], "molnar": [0, 23], "leanpub": [0, 23], "2": [0, 8, 13, 14, 15, 16, 17, 18, 19, 23], "edit": [0, 8, 23], "christophm": [0, 23], "pvg": [0, 23], "11": [0, 13, 17, 23], "f": [0, 2, 3, 14, 16, 17, 18, 23], "pedregosa": [0, 9, 23], "varoquaux": [0, 23], "gramfort": [0, 23], "v": [0, 1, 23], "michel": [0, 23], "thirion": [0, 23], "grisel": [0, 23], "m": [0, 18, 21, 23], "blondel": [0, 23], "p": [0, 23], "prettenhof": [0, 23], "weiss": [0, 23], "dubourg": [0, 23], "j": [0, 1, 23], "vanderpla": [0, 23], "passo": [0, 23], "cournapeau": [0, 23], "brucher": [0, 23], "perrot": [0, 23], "e": [0, 3, 8, 13, 14, 23, 28], "duchesnai": [0, 23], "scikit": [0, 6, 9, 13, 14, 16, 18, 23, 28, 29, 30, 32], "ython": [0, 23], "12": [0, 14, 17, 23, 33], "2825": [0, 23], "2830": [0, 23], "2011": [0, 9, 23], "pvl": [0, 22], "joell": [0, 22], "pineau": [0, 22], "philipp": [0, 22], "vincent": [0, 22], "lamarr": [0, 22], "koustuv": [0, 22], "sinha": [0, 22], "larivi\u00e8r": [0, 22], "alina": [0, 22], "beygelzim": [0, 22], "florenc": [0, 22], "alch\u00e9": [0, 22], "buc": [0, 22], "emili": [0, 22], "fox": [0, 22], "hugo": [0, 22], "larochel": [0, 22], "report": [0, 11, 14, 15, 22, 28, 31], "from": [0, 3, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 22, 26, 27, 28, 29, 30, 31, 32], "neurip": [0, 22], "program": [0, 22, 25], "2003": [0, 22], "12206": [0, 22], "ras18": [0, 22], "sebastian": [0, 21, 22], "raschka": [0, 22], "evalu": [0, 6, 10, 13, 15, 17, 19, 26, 27, 29, 31, 33], "select": [0, 13, 14, 22], "1811": [0, 22], "12808": [0, 22], "rd": [0, 21], "stephan": [0, 21], "rasp": [0, 21], "scher": [0, 21], "weyn": [0, 21], "soukayna": [0, 21], "mouatadid": [0, 21], "nil": [0, 21], "thuerei": [0, 21], "weatherbench": [0, 15, 21], "set": [0, 3, 8, 9, 10, 11, 12, 13, 14, 19, 21, 26, 27, 28, 30, 33], "driven": [0, 9, 21, 26], "weather": [0, 15, 21], "forecast": [0, 15, 21], "advanc": [0, 10, 11, 16, 21, 30, 31], "novemb": [0, 21], "1029": [0, 21], "2020ms002203": [0, 21], "wpl": [0, 21], "17": [0, 13, 14, 15, 16, 17, 18, 19, 21], "xiaosong": [0, 21], "yifan": [0, 21], "peng": [0, 21], "le": [0, 17, 21], "zhiyong": [0, 21], "mohammadhadi": [0, 21], "bagheri": [0, 21], "ronald": [0, 21], "summer": [0, 21], "chestx": [0, 15, 21], "ray8": [0, 15, 21], "hospit": [0, 21], "chest": [0, 21], "x": [0, 14, 18, 21], "rai": [0, 21], "weakli": [0, 21], "supervis": [0, 21], "classif": [0, 14, 15, 21], "local": [0, 17, 21], "common": [0, 9, 11, 15, 16, 21, 22, 27, 28], "thorax": [0, 21], "diseas": [0, 21], "369": [0, 21], "ycn": [0, 23], "15": [0, 13, 14, 15, 17, 23], "jason": [0, 23], "yosinski": [0, 23], "jeff": [0, 23], "clune": [0, 23], "anh": [0, 23], "nguyen": [0, 23], "thoma": [0, 23], "fuch": [0, 23], "hod": [0, 23], "lipson": [0, 23], "understand": [0, 9, 10, 11, 13, 14, 18, 22, 23, 26, 27, 28, 29, 30], "through": [0, 1, 7, 9, 13, 22, 23, 26, 27, 28, 31], "visual": [0, 8, 9, 18, 23, 29], "workshop": [0, 1, 6, 23, 33], "intern": [0, 9, 23, 29], "icml": [0, 23], "2015": [0, 23], "licens": 1, "under": [1, 7, 8], "mit": 1, "we": [1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30, 31], "appreci": 1, "mention": 1, "you": [1, 2, 3, 5, 6, 7, 8, 9, 13, 16, 17, 18, 23], "can": [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 25, 27, 28, 29, 30, 31, 33], "see": [1, 7, 9, 13, 14, 15, 16, 17, 18, 28, 29], "contribut": [1, 6, 9, 10, 11, 13, 19, 26, 29, 30, 31, 32], "contributor": 1, "graph": 1, "event": [1, 32, 33], "talk": [1, 6, 16, 30, 33], "section": [1, 6, 8, 15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 31], "recip": [1, 7, 8], "archiv": 1, "10381234": 1, "page": [1, 7, 8, 13, 16, 19], "creat": [1, 2, 3, 7, 8, 15, 16, 17, 18, 21], "citat": [1, 11, 12, 16], "which": [1, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 22, 28, 29, 30, 31, 33], "look": [1, 8, 13, 14, 16, 17], "someth": [1, 19, 26], "like": [1, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 22, 27, 29], "apa": 1, "s": [1, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 27, 28, 29, 31, 32], "maggio": 1, "increas": [1, 9, 11, 12, 16, 18, 28, 29, 33], "eas": [1, 16, 33], "review": [1, 8, 12, 14, 33], "foster": 1, "collabor": [1, 10, 12, 13, 16, 33], "pydata": [1, 2, 3, 33], "global": [1, 2, 3, 33], "softwar": [1, 31], "jesperdramsch": [1, 5, 33], "tutori": [1, 2, 4, 5, 6, 13, 18, 29, 32, 33], "pleas": [1, 2, 3, 7, 8, 13, 14, 16, 19], "visit": [1, 7, 8], "repo": 1, "most": [1, 8, 12, 13, 14, 15, 16, 17, 30], "up": [1, 8, 9, 10, 12, 16, 17, 28, 30, 31], "date": [1, 7, 8, 9, 13, 17, 31, 32, 33], "refer": [1, 7, 8, 9, 11, 14, 27, 29], "If": [2, 3, 7, 8, 13, 15, 18], "re": [2, 3, 9, 12, 13, 16, 17, 18], "appl": 2, "m1": 2, "chip": 2, "follow": [2, 3, 6, 7, 8, 9, 13, 17], "instruct": [2, 7], "an": [2, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 22, 25, 26, 28, 29, 32], "repro": [2, 3], "environ": [2, 3, 5, 13, 15, 16, 19], "execut": [2, 3], "env": [2, 3, 16], "requir": [2, 3, 5, 6, 7, 9, 16, 27, 30, 32], "yml": [2, 3, 5, 16], "later": 2, "activ": [2, 3, 7, 8], "might": [2, 5, 13, 14, 16, 28, 30], "also": [2, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 27, 29, 30, 31], "onli": [2, 9, 11, 12, 13, 14, 18, 29, 31], "updat": 2, "your": [2, 3, 5, 6, 7, 8, 9, 13, 14, 16, 17], "current": [2, 23, 24], "prefix": 2, "file": [2, 16, 17, 18], "prune": 2, "us": [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 26, 27, 28, 29, 30, 31, 32], "mac": 3, "latest": [3, 16], "highli": [3, 11, 14], "recommend": [3, 17], "instal": [3, 6, 16, 18], "specif": [3, 7, 9, 10, 14, 16, 17, 18, 27, 28, 30], "tailor": 3, "hardwar": 3, "architectur": [3, 13, 18], "i": [3, 14, 15, 16, 17, 18, 28, 30], "arm64": 3, "To": [3, 6, 7, 8, 13, 14, 25], "do": [3, 7, 8, 12, 13, 14, 16, 17, 18], "so": [3, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 28, 31], "command": [3, 16], "conda_subdir": 3, "osx": 3, "thi": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 31, 32, 33], "sure": [3, 13, 22], "automat": [3, 7, 12, 16, 30], "fetch": 3, "appropri": [3, 6, 8, 9, 13, 31, 32], "channel": [3, 7], "run": [3, 5, 12, 16, 17, 18], "onc": [3, 13, 14], "subdir": 3, "futur": [3, 6, 14, 16, 17, 32], "config": 3, "were": [4, 8, 13, 14, 16], "collect": [4, 6, 7, 13, 17], "avail": [4, 6, 8, 9, 13, 15, 18, 23, 30, 32, 33], "dr": [4, 13], "station": [4, 13], "lter": [4, 13], "member": [4, 13], "long": [4, 8, 13, 14, 16], "term": [4, 7, 13, 16], "ecolog": [4, 13], "et": [4, 9, 20, 21, 22, 23, 24], "al": [4, 9, 20, 21, 22, 23, 24], "artwork": [4, 8], "allison_horst": 4, "both": [5, 8, 14, 15, 22, 25], "txt": [5, 16], "ar": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33], "provid": [5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18, 22, 27, 28, 29, 30, 31, 32], "notebook": [5, 6, 13, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31], "cloud": 5, "button": [5, 12], "binder": 5, "automag": 5, "depend": [5, 9, 11, 14, 30], "let": [5, 8, 13, 14, 19], "explor": [5, 6, 13, 14, 16, 18, 26, 27, 28, 29, 30, 31], "onlin": [5, 8, 33], "simpli": [5, 13, 14, 16], "launch": [5, 22], "mybind": 5, "v2": 5, "gh": 5, "head": [5, 13, 14, 15, 16, 17, 18, 19], "addit": [5, 6, 7, 9, 10, 14, 15, 18, 22, 28, 29, 30, 32, 33], "everi": [5, 6, 14, 17, 32], "below": [5, 13, 16], "ha": [5, 6, 7, 11, 12, 13, 14, 16, 18, 23, 28, 31, 32, 33], "link": [5, 7, 32, 33], "colab": 5, "paperspac": 5, "gradient": 5, "aw": 5, "studio": 5, "These": [5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 27, 29, 30, 31, 33], "have": [5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 28, 29, 31, 33], "honestli": [5, 13], "thei": [5, 7, 8, 9, 10, 11, 13, 16, 17, 18, 28, 29, 30], "often": [5, 13, 14, 17, 18, 28, 29, 31], "standard": [5, 6, 7, 9, 10, 13, 14, 19, 26, 27, 30, 31], "stack": 5, "should": [5, 8, 14, 15, 16, 17, 27], "good": [5, 9, 13, 15, 24, 30], "easi": [6, 9, 12, 13, 14, 15, 16, 17, 30, 31, 32, 33], "win": [6, 33], "focus": [6, 22], "basic": [6, 13, 17], "get": [6, 14, 17, 22, 28], "90": [6, 13, 14], "top": 6, "tier": 6, "scientif": [6, 9, 10, 11, 13, 14, 21, 25, 27, 30, 32, 33], "seen": [6, 13, 15, 32], "massiv": [6, 32], "uptick": [6, 32], "applic": [6, 7, 8, 9, 14, 20, 27, 28, 32, 33], "some": [6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 21, 26, 27, 28, 29, 30, 31, 32], "type": [6, 7, 8, 13, 14, 17, 32], "whether": [6, 11, 13, 14, 17, 31, 32], "linear": [6, 9, 14, 18, 27, 32], "regress": [6, 32], "transform": [6, 13, 14, 16, 18, 19, 32], "hug": [6, 32], "face": [6, 32], "custom": [6, 7, 8, 9, 31, 32], "convolut": [6, 32], "jax": [6, 32], "breadth": [6, 32], "vast": [6, 32], "qualiti": [6, 9, 10, 11, 12, 24, 28, 29, 30, 32, 33], "aim": [6, 22, 32], "method": [6, 9, 11, 12, 13, 14, 16, 17, 18, 22, 26, 27, 28, 29, 31, 32, 33], "aspect": [6, 11, 22, 25, 28, 32], "fellow": [6, 32, 33], "iter": [6, 9, 12, 16, 26, 30, 32], "public": [6, 8, 10, 11, 12, 18, 19, 26, 29, 30, 32], "valid": [6, 7, 9, 10, 11, 13, 22, 28, 29, 30, 31, 32, 33], "techniqu": [6, 9, 13, 22, 27, 28, 32], "code": [6, 9, 10, 12, 15, 17, 18, 22, 24, 25, 30, 31, 32, 33], "acceler": [6, 32], "process": [6, 8, 9, 10, 11, 14, 15, 16, 17, 22, 28, 29, 30, 31, 32, 33], "dure": [6, 11, 13, 28, 31, 32], "possibl": [6, 7, 9, 13, 14, 16, 28, 32], "reject": [6, 14, 15, 27, 28, 32], "due": [6, 17, 31, 32], "defici": [6, 32], "methodolog": [6, 9, 32], "visibl": [6, 8, 10, 27, 30, 31, 32], "enabl": [6, 8, 9, 13, 16, 18, 27, 30, 31, 32], "easier": [6, 8, 9, 10, 11, 12, 13, 16, 17, 29, 30, 31, 32], "outsiz": [6, 32], "impact": [6, 9, 10, 11, 13, 18, 19, 26, 28, 29, 30, 31, 32, 33], "compar": [6, 9, 10, 15, 19, 22, 27, 28, 30, 32], "limit": [6, 8, 9, 10, 11, 16, 28, 29, 31, 32], "exist": [6, 10, 13, 14, 31, 32, 33], "python": [6, 16, 17, 32], "overfit": [6, 13, 18], "ensur": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 26, 28, 29, 30, 31], "result": [6, 8, 9, 10, 11, 13, 15, 17, 18, 22, 27, 28, 29, 30, 31, 33], "reliabl": [6, 9, 10, 11, 13, 22, 28, 29, 30, 31], "other": [6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 27, 28, 29, 30, 31], "solut": [6, 9, 10, 13, 15, 18, 19, 26, 27, 31, 33], "metric": [6, 9, 11, 13, 16, 28, 30], "share": [6, 7, 17, 18, 22, 33], "export": [6, 9, 30], "gain": [6, 9, 13, 27], "test": [6, 13, 14, 15, 18, 22, 28, 29, 33], "catch": [6, 14], "error": [6, 9, 11, 17, 18, 22, 29, 31], "earli": [6, 20], "treat": [6, 13], "correctli": [6, 11, 14, 17, 18, 31], "inspect": [6, 9, 23, 29], "spuriou": [6, 9, 18, 26, 29], "correl": [6, 14, 18, 28, 29], "build": [6, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 26, 28, 29, 31], "part": [6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 26, 28, 29], "actual": [6, 12, 13], "matter": [6, 14, 28], "organ": [6, 8], "major": [6, 14], "motiv": [6, 26, 27, 28, 29, 30, 31], "expand": [6, 17], "aid": 6, "front": 6, "goe": [6, 9, 12, 24, 30], "resourc": [6, 8, 9], "artifact": 6, "showcas": [6, 10, 27], "present": [6, 8, 16, 19, 22, 26, 33], "around": [6, 8, 14], "materi": [6, 8], "overal": [6, 9, 10, 11, 16, 27, 29, 30], "appli": [6, 7, 8, 9, 12, 13, 14, 15, 18, 27, 28, 29, 31, 33], "scientist": [6, 9, 10, 12, 27, 28, 29, 30, 31, 33], "want": [6, 14, 15, 16, 28, 30], "problem": [6, 9, 12, 14, 19, 26, 27, 28], "implement": [6, 9, 11, 15, 17, 29, 31, 33], "catastroph": 6, "failur": [6, 17, 31], "all": [6, 7, 8, 9, 10, 13, 14, 16, 18, 26, 27], "its": [6, 7, 8, 9, 10, 11, 13, 16, 29, 31], "benefit": [6, 8, 12, 16, 26, 27, 28, 29, 30, 31], "At": 7, "access": [7, 8, 9, 10, 22, 30, 31], "one": [7, 8, 9, 10, 13, 14, 16, 17, 18, 22, 28, 31], "our": [7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30, 31], "main": [7, 10], "prioriti": 7, "visitor": 7, "document": [7, 9, 11, 16, 24, 28, 30, 31], "contain": [7, 8, 13, 16, 17], "question": 7, "more": [7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 27, 28, 29, 30, 31, 33], "about": [7, 9, 12, 13, 14, 16, 18, 21, 29, 30], "hesit": 7, "contact": [7, 8], "procedur": [7, 10, 11, 17, 28, 31], "when": [7, 9, 10, 11, 12, 13, 14, 16, 17, 22, 27, 28, 29, 30, 31], "websit": 7, "host": 7, "compani": [7, 8, 12], "servic": [7, 8], "analyt": 7, "includ": [7, 8, 9, 10, 13, 17, 18, 29, 30], "internet": [7, 8], "protocol": 7, "ip": 7, "address": [7, 9, 10, 11, 13, 14, 16, 27, 28, 30, 31, 33], "browser": 7, "isp": 7, "time": [7, 8, 13, 15, 16, 27, 28], "stamp": 7, "exit": 7, "number": [7, 13, 16], "click": [7, 13], "ani": [7, 8, 9, 11, 13, 14, 15, 27, 29, 31], "person": [7, 8, 15], "identifi": [7, 9, 10, 11, 13, 27, 28, 29, 31], "purpos": [7, 8, 13, 16, 18], "analyz": 7, "trend": [7, 13], "administ": 7, "site": [7, 8, 17], "track": 7, "user": [7, 8, 16, 17, 18], "movement": 7, "gather": 7, "demograph": 7, "wa": [7, 13, 14, 16, 18, 20, 22, 33], "help": [7, 8, 9, 10, 11, 13, 18, 27, 28, 29, 30, 31], "store": [7, 16, 17], "prefer": [7, 13], "optim": [7, 22], "experi": [7, 9, 10, 11, 14, 16, 28, 30], "content": 7, "base": [7, 10, 12, 13, 16, 18, 22, 29], "For": [7, 10, 13, 14, 16, 20, 27], "read": [7, 16, 23], "articl": [7, 22], "vendor": 7, "It": [7, 9, 11, 13, 14, 16, 17, 22, 28], "known": [7, 8, 9, 13, 17, 31], "serv": [7, 9, 10, 18, 19, 26, 27, 29, 33], "ad": [7, 9, 13, 27], "upon": [7, 8, 9, 10, 11, 16, 28, 30], "www": 7, "howev": [7, 12, 14, 15, 16, 18, 27, 30, 33], "mai": [7, 8, 9, 10, 13, 14, 16, 27, 28, 31], "choos": [7, 13, 22], "declin": 7, "technolog": [7, 9, 10], "consult": [7, 8], "list": [7, 8, 18, 22], "find": [7, 8, 9, 10, 11, 13, 14, 16, 18, 22, 28, 30], "each": [7, 8, 9, 13, 14, 18, 19, 26, 28, 29], "advertis": [7, 8], "partner": [7, 8], "server": 7, "javascript": [7, 18], "respect": [7, 8, 14], "appear": [7, 8], "sent": 7, "directli": [7, 8, 12, 18, 33], "receiv": 7, "occur": 7, "measur": [7, 13, 14], "effect": [7, 9, 13, 14, 15, 16, 29, 31], "campaign": 7, "note": [7, 14], "control": [7, 9, 15, 30], "over": [7, 9, 14, 15, 18, 30], "doe": [7, 8, 14, 16], "thu": 7, "advis": 7, "detail": [7, 8, 24], "practic": [7, 9, 13, 18, 24, 30, 33], "opt": [7, 17], "out": [7, 12, 13, 14, 16, 17, 18, 22, 30], "certain": [7, 8, 9, 16, 18, 31], "option": 7, "disabl": [7, 17], "individu": [7, 9, 13, 18, 29], "know": [7, 9, 12, 14, 17, 18, 31], "manag": [7, 13], "found": 7, "what": [7, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30], "anoth": [7, 14, 15, 18, 27], "protect": [7, 8], "while": [7, 13, 18, 33], "encourag": [7, 22], "parent": 7, "guardian": 7, "observ": 7, "particip": [7, 10, 27], "monitor": [7, 8], "knowingli": 7, "ag": 7, "13": [7, 13, 15, 17], "think": [7, 18], "child": 7, "kind": [7, 14, 28], "strongli": 7, "immedi": [7, 8, 16], "best": [7, 9, 13, 23, 28, 30], "effort": 7, "promptli": 7, "remov": [7, 13], "regard": [7, 18, 29], "offlin": 7, "via": [7, 14], "than": [7, 13, 14, 15, 20, 28], "By": [7, 8, 9, 10, 11, 13, 16, 27, 28, 29, 30], "herebi": [7, 8], "agre": [7, 8, 9, 28], "condit": 7, "welcom": 8, "outlin": [8, 9, 27], "rule": [8, 16], "regul": 8, "locat": [8, 13, 32, 33], "assum": 8, "accept": [8, 11, 29], "continu": 8, "take": [8, 9, 11, 13, 14, 15, 16, 17, 22, 28, 29, 31, 33], "state": [8, 16, 18, 23], "terminolog": 8, "privaci": 8, "statement": 8, "notic": [8, 10, 16, 27, 33], "agreement": 8, "client": 8, "log": 8, "compliant": 8, "ourselv": 8, "parti": 8, "offer": [8, 9, 13, 18, 28], "consider": [8, 18, 29], "payment": 8, "necessari": [8, 13], "undertak": 8, "assist": 8, "manner": [8, 9, 28], "express": 8, "meet": 8, "need": [8, 11, 13, 14, 15, 16, 17, 22, 27, 29], "provis": 8, "accord": 8, "subject": 8, "prevail": 8, "law": [8, 14, 28], "netherland": 8, "abov": [8, 14, 18], "word": 8, "singular": 8, "plural": 8, "capit": 8, "he": 8, "she": 8, "taken": [8, 26, 27, 28, 29, 30, 31], "interchang": 8, "therefor": [8, 11, 12, 13, 14], "same": [8, 13, 14, 16, 17, 22, 28], "emploi": [8, 16], "polici": [8, 22], "interact": [8, 33], "retriev": [8, 16], "function": [8, 13, 16, 17, 18], "area": [8, 9, 10, 11, 14, 27, 28, 29, 31, 33], "peopl": [8, 16, 21], "affili": 8, "unless": 8, "otherwis": [8, 16, 17], "licensor": 8, "own": [8, 9, 10, 27, 28], "intellectu": 8, "properti": 8, "restrict": 8, "must": [8, 13, 18], "republish": 8, "sell": 8, "rent": 8, "sub": 8, "duplic": 8, "copi": [8, 16, 17], "redistribut": 8, "shall": 8, "begin": 8, "hereof": 8, "opportun": [8, 9, 10, 16, 27, 29, 30], "post": [8, 15], "exchang": [8, 9], "opinion": 8, "inform": [8, 9, 13, 16, 18, 29], "filter": 8, "comment": [8, 13], "prior": 8, "presenc": 8, "reflect": 8, "view": [8, 18], "agent": 8, "who": [8, 9, 28, 31, 33], "extent": 8, "permit": 8, "liabl": 8, "damag": 8, "expens": 8, "caus": 8, "suffer": 8, "consid": [8, 14, 17], "inappropri": 8, "offens": 8, "breach": 8, "warrant": 8, "repres": [8, 14, 17], "entitl": 8, "consent": 8, "invad": 8, "without": [8, 13, 14, 16], "copyright": 8, "patent": 8, "trademark": 8, "third": 8, "defamatori": 8, "libel": 8, "indec": 8, "unlaw": 8, "invas": 8, "solicit": 8, "promot": [8, 9, 10, 30, 31], "busi": [8, 16], "commerci": 8, "grant": 8, "non": [8, 13, 33], "exclus": 8, "author": [8, 10, 30], "form": [8, 9, 13, 31], "format": [8, 9, 16, 17, 30], "media": 8, "written": [8, 16, 18], "approv": 8, "govern": 8, "agenc": 8, "search": [8, 16], "engin": [8, 19, 26], "new": [8, 9, 11, 14, 15, 17, 21, 25, 27, 28], "directori": 8, "distributor": 8, "wide": [8, 9, 22], "accredit": 8, "except": [8, 14, 17], "profit": 8, "chariti": 8, "shop": 8, "mall": 8, "fundrais": 8, "group": [8, 14], "web": 8, "decept": 8, "fals": [8, 13, 17], "impli": 8, "sponsorship": 8, "endors": 8, "product": [8, 9, 16, 17, 33], "c": [8, 13, 18], "fit": [8, 13, 14, 15, 16, 18], "within": [8, 13, 14, 18], "context": [8, 14, 28], "request": 8, "commonli": [8, 9, 13, 27], "consum": 8, "sourc": [8, 9, 10, 11, 14, 18, 24, 29, 30], "dot": 8, "associ": [8, 17], "portal": 8, "account": [8, 10, 11, 14, 28, 29], "firm": 8, "educ": [8, 33], "institut": 8, "trade": [8, 22], "decid": [8, 14], "would": [8, 12, 14, 15, 16], "unfavor": 8, "neg": 8, "compens": 8, "absenc": 8, "paragraph": 8, "interest": [8, 10], "send": 8, "mail": 8, "name": [8, 9, 14, 16, 17, 23], "well": [8, 10, 11, 13, 14, 22, 27, 28, 31], "intend": 8, "wait": 8, "3": [8, 13, 14, 15, 16, 17, 18, 19], "week": 8, "respons": [8, 18], "corpor": 8, "uniform": 8, "being": [8, 14, 33], "descript": [8, 16], "sens": [8, 18], "No": [8, 14, 19, 28], "logo": 8, "allow": [8, 9, 10, 11, 13, 16, 18, 27, 28, 29, 30, 31], "absent": 8, "permiss": 8, "frame": [8, 12], "webpag": 8, "alter": 8, "hold": [8, 9, 14], "defend": 8, "against": [8, 13, 14, 15, 17, 18, 29, 31], "claim": [8, 11, 31], "rise": 8, "obscen": 8, "crimin": 8, "infring": 8, "violat": [8, 14], "advoc": 8, "particular": [8, 9, 14, 16, 19, 26, 27], "amen": 8, "bound": [8, 9, 27], "reason": [8, 9, 10, 13, 15, 17, 27], "free": [8, 17], "moment": [8, 14], "oblig": 8, "respond": 8, "correct": [8, 9, 14, 25, 31], "complet": [8, 13, 14, 18], "accuraci": [8, 9, 10, 11, 14, 29, 31], "nor": 8, "promis": [8, 9, 13], "remain": 8, "kept": 8, "maximum": 8, "exclud": 8, "represent": [8, 13, 16, 19], "warranti": 8, "relat": 8, "noth": 8, "death": 8, "injuri": 8, "fraud": 8, "fraudul": 8, "misrepresent": 8, "prohibit": 8, "elsewher": 8, "preced": 8, "aris": 8, "contract": 8, "tort": 8, "statutori": 8, "duti": 8, "As": [8, 14, 15], "charg": 8, "loss": 8, "natur": [8, 9, 17, 26, 31], "initi": [9, 16], "wonder": 9, "why": [9, 11, 13, 14, 18, 28, 29, 33], "differ": [9, 10, 13, 14, 15, 16, 22, 27, 30, 33], "rang": [9, 16], "expertis": [9, 15], "bring": 9, "togeth": [9, 10, 13, 27, 29, 30], "specialist": 9, "mani": [9, 11, 14, 18, 28], "domain": [9, 18, 21, 27, 28, 29, 31], "cooper": 9, "give": [9, 16, 17, 21, 29, 30], "greater": [9, 13], "higher": 9, "replic": [9, 10, 11, 16, 28, 30], "better": [9, 12, 15, 27, 29, 33], "multipl": [9, 14, 22], "topic": [9, 33], "innov": [9, 27, 28], "creativ": 9, "forum": 9, "thought": [9, 10], "viewpoint": 9, "fresh": 9, "issu": [9, 10, 13, 16, 22, 27, 28, 31], "effici": [9, 11, 13, 16, 28, 30], "quicker": 9, "achiev": [9, 13, 14, 18, 33], "pool": 9, "broader": [9, 10, 30], "interdisciplinari": 9, "across": [9, 16], "sector": 9, "societi": 9, "addition": [9, 10, 11, 16, 27, 28], "bridg": 9, "between": [9, 13, 14, 18, 27, 28, 30, 31], "academia": [9, 10, 12, 16, 30], "industri": [9, 10, 22, 30], "lead": [9, 10, 11, 13, 14, 27, 28, 29, 30], "invest": 9, "But": [9, 12, 14, 16, 28, 30], "end": 9, "quot": 9, "true": [9, 14, 16, 17], "closest": 9, "6": [9, 13, 14, 15, 16, 17, 18, 19], "month": 9, "ago": 9, "And": [9, 13, 14], "terribl": 9, "repli": 9, "email": 9, "here": [9, 11, 12, 13, 14, 16, 17, 21, 22, 26, 27, 28, 29, 30, 31, 33], "avenu": [9, 28], "expert": [9, 11, 13, 18, 28, 29], "trust": [9, 13, 14, 16, 18, 19, 26, 28, 29, 31], "caveat": [9, 28], "framework": [9, 28, 29], "contrast": [9, 28], "variou": [9, 28, 29], "order": [9, 18, 28], "verifi": [9, 11, 14, 15, 25, 28, 31], "relev": [9, 10, 22, 28], "critic": [9, 10, 11, 13, 28], "proper": [9, 13, 14, 15, 22, 27, 28], "criteria": [9, 28], "been": [9, 11, 14, 17, 18, 20, 28, 31, 33], "practition": [9, 10, 27, 28, 29, 30, 31], "potenti": [9, 11, 13, 28, 29, 31, 33], "further": [9, 10, 11, 12, 13, 16, 22, 24, 28, 29, 30, 31, 33], "done": [9, 13, 14, 16, 20, 28], "transpar": [9, 10, 11, 27, 28, 29, 30, 31], "abl": [9, 10, 14, 18, 28], "strength": [9, 10, 27, 28, 29], "weak": [9, 10, 11, 27, 28, 29, 31], "them": [9, 13, 16, 18, 28, 29, 30], "moreov": [9, 10, 13, 28], "develop": [9, 10, 14, 22, 27, 28, 31], "drive": [9, 28], "field": [9, 10, 11, 15, 27, 28, 30], "insight": [9, 13, 14, 18, 28, 29], "anchor": [9, 27], "dummi": [9, 27], "simpl": [9, 13, 14, 15, 17, 20, 27, 31], "straightforward": [9, 16, 27], "baselin": [9, 10, 15, 27], "comparison": [9, 10, 22, 27, 31], "complex": [9, 13, 18, 19, 20, 26, 27], "perform": [9, 10, 11, 13, 14, 15, 16, 18, 20, 22, 27, 29, 31], "valu": [9, 13, 18, 22, 27, 29], "ground": [9, 27], "lower": [9, 18, 22, 27], "random": [9, 13, 14, 15, 24, 27, 30], "statist": [9, 13, 14, 22, 27], "equival": [9, 27], "That": [9, 13, 14, 17, 27], "mean": [9, 10, 11, 13, 14, 17, 18, 19, 27, 28, 31], "those": [9, 14, 27, 28], "start": [9, 15, 16, 18, 27, 29], "point": [9, 14, 27, 28, 31], "deeper": [9, 13, 27, 29], "simplest": [9, 13, 14, 27, 31], "plai": [9, 10, 11, 27, 31], "role": [9, 10, 11, 27, 31], "easili": [9, 10, 11, 16, 30], "fine": [9, 30], "tune": [9, 30], "fix": [9, 16, 17, 30, 31], "robust": [9, 11, 13, 22, 28, 30, 31], "clear": [9, 10, 11, 28, 30, 31], "readabl": [9, 30], "toward": [9, 30], "usabl": [9, 30], "train": [9, 11, 12, 14, 16, 30, 31], "guarante": [9, 14, 28, 30], "resolv": [9, 30], "docker": [9, 30], "platform": [9, 16, 30], "deploy": [9, 12, 16, 30], "even": [9, 10, 13, 14, 16, 17, 28, 30, 31], "oper": [9, 12, 16, 17, 25, 30], "consist": [9, 11, 13, 14, 16, 17, 22, 29, 31], "determinist": [9, 31], "underli": [9, 13, 31], "chang": [9, 14, 16, 18, 31], "conduct": [9, 31], "safeguard": [9, 31], "don": [9, 13, 14, 16, 18, 30, 31], "t": [9, 13, 14, 15, 16, 17, 18, 19, 28, 29, 30, 31], "introduc": [9, 13, 16, 18, 22, 29, 31], "bug": [9, 16, 17, 31], "produc": [9, 11, 29, 31], "output": [9, 16, 17, 31, 33], "exampl": [9, 13, 14, 15, 16, 18, 20, 21, 31, 33], "essenti": [9, 10, 11, 13, 14, 16, 17, 22, 28, 31], "canari": [9, 31], "similarli": [9, 18, 31], "autom": [9, 16, 31], "docstr": [9, 30, 31], "accur": [9, 11, 13, 31], "input": [9, 16, 19, 31], "path": [9, 13, 14, 15, 16, 17, 18, 19, 31], "prevent": [9, 10, 11, 13, 17, 29, 31], "hand": [9, 13, 31], "off": [9, 18, 22, 31], "tool": [9, 13, 15, 16, 17, 18, 23, 29, 30], "interfac": [9, 29], "becaus": [9, 10, 11, 13, 15, 16, 17, 18, 29, 30], "decis": [9, 11, 29], "tree": [9, 29], "import": [9, 10, 11, 13, 14, 15, 16, 17, 19, 22, 25, 28, 29, 30, 33], "permut": [9, 29], "two": [9, 14, 18, 29], "featur": [9, 13, 14, 15, 16, 17, 19, 29], "discuss": [9, 18, 19, 22, 26, 29, 33], "shap": [9, 23, 29], "shaplei": [9, 29], "explan": [9, 29], "given": [9, 21, 29], "sampl": [9, 13, 14, 17, 18, 29], "examin": [9, 29], "reduc": [9, 13, 18, 26], "compon": [9, 17, 25, 26], "sneak": [9, 26], "acknowledg": 10, "idea": [10, 14], "establish": [10, 15, 18, 27, 29], "credibl": [10, 11, 27, 31], "cite": [10, 27], "knowledg": [10, 18, 29], "elev": [10, 33], "plagiar": 10, "progress": 10, "pursuit": [10, 16, 30], "final": [10, 13, 14, 18, 19, 26, 29], "determin": [10, 11, 17, 28, 31], "One": [10, 12, 13, 15, 16, 18, 29], "citabl": 10, "There": [10, 16, 17, 18, 23], "three": [10, 13, 14], "sever": [10, 18, 30], "confirm": [10, 22, 30], "confid": [10, 11, 30], "origin": [10, 16, 17, 22, 30], "extend": [10, 30], "suggest": [10, 30], "modif": [10, 30], "extens": [10, 18, 30], "wider": [10, 30], "audienc": [10, 30], "dissemin": [10, 30], "awar": [10, 30], "task": [10, 13, 14, 27], "demonstr": [10, 11, 27, 28], "evid": [10, 27], "rel": [10, 13, 15, 27], "instanc": [10, 27], "recogn": [10, 27], "rigor": [10, 11, 22, 31], "design": [10, 11, 28, 29, 31], "turn": [10, 11, 31], "among": [10, 13, 31], "thoroughli": [10, 31], "pre": [10, 17, 31], "basi": [10, 31], "furthermor": [10, 11, 29, 31], "where": [10, 11, 13, 14, 15, 16, 17, 28, 29, 31, 33], "object": [10, 11, 14, 16, 17, 31], "crucial": [11, 13, 29, 31], "greatli": 11, "choic": [11, 14, 16], "hyperparamet": 11, "smoother": 11, "reli": 11, "generaliz": [11, 13, 28], "care": [11, 14, 28], "thereof": [11, 28], "disarm": [11, 28], "abil": [11, 28], "emphas": [11, 28], "becom": [11, 13, 28], "increasingli": [11, 28], "streamlin": [11, 28], "focu": [11, 28], "scalabl": [11, 16, 31], "experiment": [11, 31], "summari": [11, 16, 31], "influenc": [11, 13, 14, 28, 31], "ultim": [11, 30, 31], "understood": [11, 29], "human": [11, 29], "assess": [11, 13, 14, 18, 22, 29], "bias": [11, 13, 29], "factor": [11, 29], "reach": [11, 29], "conclus": [11, 22, 28, 29], "assumpt": [11, 14, 29], "detect": [11, 13, 29], "unreli": [11, 13, 29], "flaw": [11, 29], "high": [11, 14, 29], "trustworthi": [11, 22, 29], "tenet": 12, "alwai": [12, 14, 16, 17, 28], "did": [12, 14], "suppos": [12, 17, 18], "place": 12, "especi": [12, 14], "titl": [12, 14, 18], "sai": [12, 14], "cycl": [12, 14, 28], "market": 12, "skill": [12, 33], "outsid": 12, "technic": 12, "debt": 12, "slowli": 12, "degrad": 12, "case": [12, 13, 14, 17, 28], "amazon": 12, "googl": [12, 16], "expect": [12, 14, 16, 17, 18, 28], "entir": [12, 14, 16], "press": 12, "devast": 12, "prospect": 12, "postdoc": 12, "leav": [12, 22], "luckili": [12, 14, 18], "lot": [12, 13, 14], "cut": 12, "alreadi": [12, 13, 17, 18, 31], "few": [12, 13, 14, 23], "frequent": 12, "come": [12, 13, 16], "proport": [12, 13], "cost": 12, "fact": 12, "fairli": [12, 13, 14, 15, 17, 27, 31], "go": [12, 14, 17, 18, 28, 29], "obtain": [12, 14], "goal": 12, "foundat": 13, "step": [13, 14, 16, 18, 19], "primari": 13, "direct": [13, 14, 18], "anomali": 13, "inconsist": 13, "affect": 13, "preprocess": [13, 14, 15, 16, 17, 18, 19], "handl": 13, "miss": 13, "class": [13, 14, 15, 17, 18], "imbal": 13, "normalis": [13, 17], "meaning": 13, "distribut": [13, 14, 15, 28], "relationship": [13, 18], "suit": [13, 17], "captur": 13, "dive": [13, 14, 18, 23], "quick": [13, 14, 16, 17], "pathlib": [13, 14, 15, 16, 17, 18, 19], "data_fold": [13, 14, 15, 16, 17, 18, 19], "data_filepath": [13, 14, 15, 16, 17, 18, 19], "csv": [13, 14, 15, 16, 17, 18, 19], "ll": [13, 14, 16, 17, 18, 19, 26, 28, 29, 31], "panda": [13, 14, 15, 16, 17, 18, 19], "load": [13, 16, 17, 18, 19, 31], "quit": [13, 14, 17], "conveni": 13, "drop": [13, 19], "column": [13, 14, 15, 17, 19], "pd": [13, 14, 15, 16, 17, 18, 19], "penguins_raw": 13, "read_csv": [13, 14, 15, 16, 17, 18, 19], "studynam": 13, "speci": [13, 14, 15, 16, 17, 18, 19], "region": 13, "island": 13, "stage": [13, 22], "id": 13, "clutch": 13, "egg": 13, "culmen": [13, 14, 15, 16, 17, 18, 19], "length": [13, 14, 15, 16, 17, 18, 19], "mm": [13, 14, 15, 16, 17, 18, 19], "depth": [13, 14, 15, 16, 17, 18, 19], "flipper": [13, 14, 15, 16, 17, 18, 19], "bodi": 13, "mass": 13, "sex": [13, 14, 15, 16, 17, 18, 19], "delta": 13, "n": [13, 17], "oo": 13, "pal0708": 13, "adeli": [13, 14, 15, 16, 17, 18, 19], "pygosc": [13, 14, 15, 16, 17, 18, 19], "adelia": [13, 14, 15, 16, 17, 18, 19], "anver": 13, "torgersen": 13, "adult": 13, "n1a1": 13, "ye": 13, "2007": 13, "39": [13, 14, 15, 16, 17, 18, 19], "3750": 13, "male": [13, 14, 15, 16, 17, 18, 19], "nan": 13, "Not": [13, 14, 28], "enough": [13, 14, 16, 28, 30], "blood": 13, "isotop": 13, "n1a2": 13, "5": [13, 14, 15, 16, 17, 18, 19], "4": [13, 14, 15, 16, 17, 18, 19], "186": [13, 14, 15, 16, 17, 18, 19], "3800": 13, "femal": [13, 14, 15, 16, 17, 18, 19], "8": [13, 14, 15, 16, 17, 18], "94956": 13, "24": 13, "69454": 13, "n2a1": 13, "16": [13, 15], "40": [13, 14, 15, 16, 17, 18, 19], "195": [13, 14, 15, 16, 17, 18, 19], "3250": 13, "36821": 13, "25": [13, 17], "33302": 13, "n2a2": 13, "n3a1": 13, "36": [13, 14, 15, 16, 17, 18, 19], "193": [13, 14, 15, 16, 17, 18, 19], "3450": 13, "76651": 13, "32426": 13, "usual": [13, 14, 17, 28], "toi": [13, 14], "full": [13, 19], "proven": 13, "live": 13, "variabl": [13, 16, 18], "leak": 13, "tell": [13, 16], "coloni": 13, "numer": [13, 14, 18, 19, 33], "categor": 13, "exhibit": 13, "sexual": 13, "dimorph": 13, "target": [13, 14, 15, 16, 17, 18, 19], "num_featur": [13, 14, 15, 16, 17, 18, 19], "cat_featur": [13, 14, 15, 16, 17, 18, 19], "339": 13, "55": [13, 14], "207": 13, "chinstrap": [13, 14, 15, 17], "340": 13, "43": [13, 15, 17], "202": 13, "341": 13, "49": [13, 14, 15, 18], "342": 13, "50": [13, 17, 18], "210": [13, 15], "343": 13, "198": [13, 15, 17], "344": 13, "row": [13, 14, 15], "much": [13, 14, 20], "deal": [13, 14, 22, 28], "indispens": 13, "quickli": [13, 14, 15], "grasp": 13, "scatter": 13, "plot": [13, 14, 18], "histogram": 13, "box": [13, 18], "invalu": 13, "structur": 13, "outlier": 13, "facilit": [13, 16], "team": 13, "intuit": [13, 18, 29], "convei": 13, "essenc": 13, "cornerston": 13, "enhanc": 13, "seaborn": [13, 14], "job": [13, 14], "granular": 13, "matplotlib": [13, 14, 18], "sn": [13, 14], "pairplot_figur": [13, 14], "pairplot": [13, 14], "hue": [13, 14], "separ": [13, 14], "cluster": 13, "probabl": 13, "readi": 13, "great": [13, 15, 16, 17, 18], "though": 13, "imput": 13, "fill": [13, 16], "small": [13, 17, 18, 22], "size": [13, 16], "could": [13, 14], "inaccuraci": 13, "sometim": [13, 14, 15, 18, 28], "Then": [13, 14, 16], "boolean": 13, "encod": 13, "missing": 13, "dropna": 13, "axi": [13, 14, 18], "190": [13, 14, 15, 16, 17, 18, 19], "334": 13, "data_clean_filepath": 13, "penguins_clean": [13, 14, 15, 16, 17, 18, 19], "to_csv": 13, "index": [13, 14, 15, 17, 18], "too": [13, 16], "bad": [13, 14, 15, 17, 28, 31], "lost": 13, "ten": 13, "after": 13, "classifi": [13, 14, 16, 18, 19], "first": [13, 14, 16, 17, 18, 20], "split": [13, 17, 18], "portion": 13, "unseen": [13, 14], "memor": 13, "fail": [13, 17], "phenomenon": 13, "poor": 13, "scenario": [13, 14, 28], "mitig": [13, 14], "70": [13, 17], "sklearn": [13, 14, 15, 16, 17, 18, 19], "model_select": [13, 14, 15, 16, 17, 18, 19], "train_test_split": [13, 14, 15, 16, 17, 18, 19, 28], "x_train": [13, 14, 15, 16, 17, 18, 19], "x_test": [13, 14, 15, 16, 17, 18, 19], "y_train": [13, 14, 15, 16, 17, 18, 19], "y_test": [13, 14, 15, 16, 17, 18, 19], "train_siz": [13, 14, 15, 16, 17, 18, 19], "326": 13, "48": [13, 15, 17], "199": 13, "225": 13, "46": [13, 14, 15, 17], "14": [13, 15], "217": [13, 17], "289": 13, "52": [13, 14, 17, 18], "201": [13, 17], "180": 13, "35": [13, 17], "324": 13, "51": [13, 15, 18], "187": 13, "147": 13, "184": [13, 14, 15], "73": [13, 17], "45": [13, 15, 18], "9": [13, 15, 17], "197": [13, 14], "114": 13, "191": [13, 14, 15, 17], "143": [13, 17], "233": [13, 14, 15, 17], "gentoo": [13, 14, 15, 17], "papua": [13, 14, 15, 17], "now": [13, 14], "pipelin": [13, 14, 16, 17, 18, 19], "realli": 13, "prepocessor": 13, "alon": 13, "cleanli": 13, "leakag": [13, 14], "next": 13, "prepar": [13, 14, 22], "power": [13, 18], "standardscal": [13, 14, 16, 17, 18, 19], "onehotencod": [13, 14, 16, 17, 18, 19], "unit": [13, 17], "varianc": [13, 22], "equal": [13, 14, 15], "particularli": [13, 14], "benefici": 13, "sensit": 13, "support": [13, 14, 15, 27], "vector": [13, 14, 15, 27], "k": [13, 22], "nearest": 13, "neighbour": 13, "On": [13, 16, 19], "instrument": 13, "convert": 13, "binari": [13, 16], "categori": 13, "ordin": 13, "stronger": [13, 15], "fed": 13, "tip": [13, 14, 15, 16, 22], "anyth": 13, "treatment": [13, 21], "unfortun": [13, 15, 16], "manual": [13, 18, 29], "befor": [13, 16, 22], "num_transform": [13, 14, 16, 18, 19], "cat_transform": [13, 14, 16, 18, 19], "handle_unknown": [13, 14, 16, 18, 19], "ignor": [13, 14, 16, 17, 18, 19], "columntransform": [13, 14, 16, 17, 18, 19], "neat": 13, "right": [13, 17], "pretti": [13, 14], "subset": 13, "leverag": [13, 16], "instead": 13, "standalon": 13, "flexibl": 13, "integr": [13, 25], "intric": 13, "workflow": 13, "versatil": 13, "valuabl": [13, 18, 29], "demand": 13, "comprehens": 13, "strategi": [13, 17, 22, 31], "beyond": [13, 17, 22], "scope": 13, "unleash": 13, "compos": [13, 14, 16, 17, 18, 19], "preprocessor": [13, 14, 16, 18, 19], "num": [13, 14, 16, 18, 19], "cat": [13, 14, 16, 18, 19], "ok": [13, 14], "svm": [13, 14, 16, 17, 18, 19], "svc": [13, 14, 16, 17, 18, 19], "x27": [13, 19], "jupyt": [13, 16, 19, 26, 27, 28, 29, 30, 31], "rerun": [13, 16, 19], "cell": [13, 16, 17, 19], "show": [13, 14, 15, 16, 18, 19, 28], "unabl": [13, 16, 19], "render": [13, 16, 19], "try": [13, 15, 16, 17, 19, 30], "nbviewer": [13, 16, 19], "pipelinepipelin": [13, 19], "columntransformercolumntransform": [13, 19], "standardscalerstandardscal": [13, 19], "onehotencoderonehotencod": [13, 19], "svcsvc": [13, 16, 19], "nice": [13, 17], "modul": [13, 16, 18], "argument": [13, 16, 17], "pass": 13, "unknown": 13, "unintent": 13, "encapsul": 13, "sequenti": 13, "independ": [13, 14, 28], "normal": [13, 20], "sole": [13, 18, 29], "inadvert": 13, "risk": 13, "preserv": [13, 16], "accid": 13, "involv": [13, 14], "correspond": 13, "label": 13, "adjust": 13, "paramet": [13, 16, 17], "minim": [13, 16, 33], "subsequ": [13, 14], "processor": 13, "exact": [13, 16, 17], "decent": [13, 14], "score": [13, 14, 15, 16, 17, 18, 19], "yet": [13, 18], "9914163090128756": 13, "check": [13, 16, 17, 18, 25], "tweak": 13, "invalid": 13, "val": 13, "extraordinari": 13, "100": [13, 16, 17], "prototyp": [14, 28], "glean": [14, 18, 28], "my": [14, 16, 28], "isn": [14, 15, 17, 28], "dimens": [14, 28], "geospati": [14, 28], "tobler": [14, 28], "thing": [14, 17, 28], "closer": [14, 28], "larger": [14, 18, 28], "distanc": [14, 28], "tempor": [14, 28], "submiss": [14, 22, 28], "manuscript": [14, 28], "worst": [14, 28], "incorrect": [14, 28], "retract": [14, 28], "properli": [14, 28], "ident": [14, 28], "randomli": 14, "datafram": [14, 17, 19], "veri": [14, 15, 17, 18, 31], "big": 14, "mostli": [14, 18], "similar": 14, "core": [14, 16, 17, 30], "concept": 14, "random_st": [14, 15, 16, 17, 18, 19], "42": [14, 15, 16, 17, 18, 19], "284": 14, "294": 14, "56": 14, "37": [14, 15, 17, 18], "185": 14, "175": [14, 17], "47": [14, 15, 18], "222": 14, "188": 14, "216": 14, "71": [14, 17], "106": [14, 17], "270": 14, "102": [14, 15, 17], "38": [14, 15, 17], "pyplot": [14, 18], "plt": [14, 18], "groupbi": [14, 15], "count": [14, 15, 17], "bar": [14, 18, 22], "extrem": [14, 16], "twice": 14, "accident": [14, 22], "almost": [14, 16, 18], "overselect": 14, "reset_index": [14, 15], "97": [14, 17], "strata": 14, "rather": [14, 16], "y": [14, 18], "stratifi": [14, 15, 16, 17, 18, 19], "qualit": 14, "fig": 14, "ax1": 14, "ax2": 14, "subplot": 14, "figsiz": 14, "ax": 14, "ylim": 14, "len": 14, "drastic": 14, "minor": 14, "less": 14, "either": 14, "worth": 14, "keep": [14, 17], "mind": 14, "keyword": 14, "match": [14, 17], "gold": [14, 19, 26], "fold": [14, 22], "held": 14, "rest": 14, "round": 14, "robin": 14, "style": [14, 16], "schema": [14, 17], "heterogen": 14, "cross_val_scor": [14, 16, 19], "cv": [14, 16, 19], "arrai": [14, 16, 17], "9787234": [14, 16], "97826087": [14, 16], "print": [14, 16, 18], "2f": 14, "deviat": [14, 19], "std": [14, 17, 19], "99": [14, 17], "01": [14, 32], "wrong": 14, "brilliant": 14, "recap": 14, "far": 14, "partit": 14, "retain": 14, "had": 14, "last": [14, 17], "chose": 14, "candid": 14, "never": 14, "awai": 14, "messag": 14, "forget": [14, 16], "until": 14, "thank": 14, "indic": 14, "behav": 14, "calcul": 14, "averag": [14, 18, 19], "prove": [14, 19, 26], "assert": [14, 17], "presum": 14, "accuracy_scor": 14, "y_pred": 14, "acc": 14, "y_true": 14, "conclud": 14, "fantast": 14, "96": [14, 15, 17], "mere": 14, "sake": 14, "realist": 14, "pretend": 14, "craft": 14, "least": 14, "recal": 14, "146": 14, "68": [14, 17], "120": 14, "str": [14, 16, 17], "startswith": 14, "shape": [14, 17], "verif": 14, "harder": 14, "rid": 14, "clearli": [14, 17], "hardest": 14, "plan": 14, "iow": 14, "lenght": 14, "previou": 14, "carefulli": 14, "selected_num_featur": 14, "44": [14, 17, 18], "coeffici": [14, 16], "mcc": 14, "cross_valid": 14, "make_scor": 14, "matthews_corrcoef": 14, "mcc_scorer": 14, "acc_scor": 14, "fit_tim": 14, "00643802": 14, "0052402": 14, "00526881": 14, "00526285": 14, "score_tim": 14, "00420523": 14, "0040257": 14, "00399923": 14, "00399208": 14, "0042634": 14, "test_mcc": 14, "37796447": 14, "27863911": 14, "40824829": 14, "02424643": 14, "08625819": 14, "test_acc": 14, "73333333": 14, "76666667": 14, "66666667": 14, "62068966": 14, "numpi": [14, 17, 19], "np": [14, 19], "avg": 14, "697471264367816": 14, "2350712993854009": 14, "7230769230769231": 14, "29439815585406465": 14, "exactli": 14, "happen": [14, 15, 17], "confus": 14, "matrix": 14, "confusionmatrixdisplai": 14, "from_estim": [14, 18], "whilst": 14, "tricki": [14, 16], "imagin": 14, "growth": 14, "babi": 14, "hank": 14, "suddenli": 14, "anymor": 14, "sinc": 14, "lie": 14, "interpol": 14, "along": [14, 22], "timeseriessplit": 14, "tscv": 14, "n_split": 14, "gap": 14, "max_train_s": 14, "none": [14, 16, 17], "test_siz": 14, "map": 14, "satellit": 14, "suppli": [14, 15, 27], "contin": 14, "bin": 14, "lat": 14, "lon": 14, "grid": 14, "scheme": 14, "groupkfold": 14, "001": 14, "europ": 14, "africa": 14, "america": 14, "asia": 14, "rare": 14, "still": [14, 15], "cheat": 14, "merit": 14, "caught": 14, "prolong": 14, "divert": 14, "fund": 14, "redact": 14, "lack": [15, 27], "short": [15, 27], "disciplin": [15, 27, 33], "superf": [15, 27], "simpler": [15, 27], "forest": [15, 27], "221": [15, 17], "220": 15, "315": 15, "262": 15, "215": 15, "34": [15, 17], "183": 15, "208": 15, "212": 15, "64": 15, "33": [15, 17], "easiest": 15, "coin": 15, "flip": 15, "obviou": 15, "aren": 15, "84": [15, 17], "dummyclassifi": 15, "dummyregressor": 15, "clf": [15, 16, 17], "43564356435643564": 15, "weren": 15, "adequ": 15, "nevertheless": 15, "legitim": 15, "meteorolog": [15, 21], "medic": [15, 21], "fanci": [15, 17], "exercis": 15, "anytim": [16, 30], "altruist": [16, 30], "itself": [16, 30], "nobl": [16, 30], "save": [16, 18, 30], "adapt": [16, 30], "linter": [16, 30], "container": [16, 30], "pickl": 16, "joblib": [16, 17, 18], "persist": 16, "storag": 16, "dump": [16, 18], "serial": 16, "disk": 16, "attribut": 16, "seamless": 16, "reus": [16, 17], "deploi": 16, "analysi": 16, "retrain": 16, "scratch": 16, "mechan": 16, "overhead": 16, "ideal": 16, "model_fold": [16, 17, 18], "mkdir": 16, "exist_ok": 16, "model_export_fil": [16, 17, 18], "seed": 16, "defeat": 16, "amaz": 16, "clean": 16, "flake8": 16, "editor": 16, "vscode": 16, "unus": 16, "trail": 16, "white": 16, "space": [16, 18], "line": [16, 17], "typo": 16, "pain": 16, "stakingli": 16, "tri": 16, "close": 16, "pep8": 16, "black": 16, "compli": 16, "shortcut": 16, "built": 16, "put": 16, "cursor": 16, "bracket": 16, "hit": 16, "shift": 16, "tab": 16, "autogener": 16, "footprint": 16, "minimum": 16, "auto": [16, 17], "just": [16, 18], "happi": [16, 17], "def": [16, 17, 18], "hello_world": 16, "_summary_": 16, "_description_": 16, "hello": 16, "repositori": 16, "pip": 16, "conda": 16, "add": 16, "histori": 16, "cross": [16, 22], "elimin": 16, "yaml": 16, "necessarili": [16, 18], "maco": 16, "window": 16, "linux": 16, "defin": [16, 17], "break": 16, "ship": 16, "dockerfil": 16, "syntax": 16, "slim": 16, "buster": 16, "workdir": 16, "pip3": 16, "cmd": 16, "py": [16, 17], "hard": [17, 31], "soft": [17, 31], "difficult": [17, 31], "secretli": 17, "write": [17, 25, 31], "incred": [17, 31], "touch": [17, 31], "probe": [17, 18, 29, 31], "layer": 17, "conv2d": 17, "kera": [17, 24], "convol": 17, "kernel": 17, "pytest": 17, "admittedli": 17, "script": 17, "test_penguin": 17, "answer": 17, "test_data": 17, "178": 17, "test_target": 17, "upgrad": 17, "call": [17, 23], "doctest": 17, "yourself": 17, "shorten_class_nam": 17, "df": 17, "shorten": 17, "shortest": 17, "return": [17, 18], "pp": 17, "enguin": 17, "testmod": 17, "testresult": 17, "attempt": [17, 18], "usag": 17, "api": 17, "pandera": 17, "pa": 17, "describ": 17, "000000": 17, "982403": 17, "228755": 17, "412017": 17, "537146": 17, "994191": 17, "929695": 17, "min": 17, "500000": 17, "100000": 17, "172": 17, "700000": 17, "400000": 17, "300000": 17, "75": 17, "800000": 17, "213": 17, "max": 17, "59": 17, "600000": 17, "200000": 17, "231": 17, "doesn": [17, 19], "dataframeschema": 17, "float": 17, "ge": 17, "30": 17, "60": 17, "170": 17, "235": 17, "isin": 17, "validated_test": 17, "schemaerror": 17, "traceback": 17, "recent": 17, "hostedtoolcach": 17, "x64": 17, "lib": 17, "python3": 17, "443": 17, "__call__": 17, "tail": 17, "lazi": 17, "inplac": 17, "415": 17, "416": 17, "417": 17, "423": 17, "bool": 17, "424": 17, "425": 17, "alia": [17, 23], "func": 17, "426": 17, "427": 17, "param": 17, "441": 17, "442": 17, "444": 17, "445": 17, "375": 17, "check_obj": 17, "363": 17, "map_partit": 17, "364": 17, "_valid": 17, "365": 17, "371": 17, "meta": 17, "372": 17, "373": 17, "add_schema": 17, "376": 17, "377": 17, "378": 17, "379": 17, "380": 17, "381": 17, "382": 17, "383": 17, "404": 17, "395": 17, "_is_inf": 17, "396": 17, "warn": [17, 19], "397": 17, "infer": 17, "hasn": 17, "398": 17, "modifi": 17, "refin": 17, "401": 17, "userwarn": 17, "402": 17, "get_backend": 17, "405": 17, "406": 17, "407": 17, "408": 17, "409": 17, "410": 17, "411": 17, "412": 17, "413": 17, "backend": 17, "dataframeschemabackend": 17, "92": 17, "collect_schema_compon": 17, "93": 17, "column_info": 17, "94": 17, "error_handl": 17, "run_checks_and_handle_error": 17, "98": 17, "101": 17, "103": 17, "104": 17, "105": 17, "107": 17, "108": 17, "110": 17, "collected_error": 17, "111": 17, "getattr": 17, "drop_invalid_row": 17, "161": 17, "els": 17, "162": 17, "163": 17, "164": 17, "reason_cod": 17, "171": 17, "collect_error": 17, "173": 17, "174": 17, "original_exc": 17, "176": 17, "schemaerrorhandl": 17, "schema_error": 17, "31": 17, "rais": [17, 22], "32": 17, "string": 17, "_lazi": 17, "delet": 17, "41": [17, 18], "seri": [17, 18, 28], "del": 17, "192": 17, "run_schema_component_check": 17, "schema_compon": 17, "194": 17, "check_pass": 17, "append": 17, "is_tabl": 17, "196": 17, "err": 17, "169": 17, "142": 17, "144": 17, "150": 17, "151": 17, "152": 17, "153": 17, "154": 17, "167": 17, "168": 17, "177": 17, "119": 17, "columnbackend": 17, "115": 17, "validate_column": 17, "116": 17, "column_nam": 17, "return_check_obj": 17, "117": 17, "118": 17, "121": 17, "122": 17, "123": 17, "124": 17, "125": 17, "126": 17, "89": 17, "85": 17, "86": 17, "87": 17, "88": 17, "65": 17, "66": 17, "67": 17, "pylint": 17, "super": [17, 18], "validated_check_obj": 17, "69": 17, "set_nam": 17, "72": 17, "74": 17, "76": 17, "77": 17, "79": 17, "80": 17, "arrayschemabackend": 17, "exc": 17, "139": 17, "140": 17, "141": 17, "148": 17, "149": 17, "156": 17, "datatyp": 17, "element": 17, "wise": 17, "failure_cas": 17, "259": 17, "uniqu": [17, 18], "dtype": 17, "loc": [17, 19], "conform": 17, "level": [18, 29], "artefact": [18, 29, 33], "shouldn": [18, 29], "truth": [18, 29], "With": 18, "partialdependencedisplai": 18, "partial_depend": 18, "quantifi": 18, "uncov": 18, "vari": 18, "margin": 18, "magnitud": 18, "pd_result": 18, "kei": 18, "dict_kei": 18, "grid_valu": 18, "63714511": 18, "5385696": 18, "42161577": 18, "39381485": 18, "36065106": 18, "3238969": 18, "26682915": 18, "20091536": 18, "19660165": 18, "18819461": 18, "15634479": 18, "17994034": 18, "17925519": 18, "17867114": 18, "66318481": 18, "59388464": 18, "47709496": 18, "42037882": 18, "39250963": 18, "3267896": 18, "32231986": 18, "20354233": 18, "19911826": 18, "19050522": 18, "15695345": 18, "17994863": 18, "17914305": 18, "17824962": 18, "66562535": 18, "62561145": 18, "4800818": 18, "45236882": 18, "4192684": 18, "32990531": 18, "32540806": 18, "23015716": 18, "20192886": 18, "19308603": 18, "21046148": 18, "20383814": 18, "20289978": 18, "20166824": 18, "84718512": 18, "63752568": 18, "62712499": 18, "59446692": 18, "5669389": 18, "44405449": 18, "41597796": 18, "34951325": 18, "34475954": 18, "28255543": 18, "21691291": 18, "20687517": 18, "20524067": 18, "20228448": 18, "93972872": 18, "69121058": 18, "65761143": 18, "6540416": 18, "65035044": 18, "53323133": 18, "47636721": 18, "35760839": 18, "35286468": 18, "31948567": 18, "22185888": 18, "20994723": 18, "20782948": 18, "20370368": 18, "00059758": 18, "72339829": 18, "66107451": 18, "65759595": 18, "65397513": 18, "56078326": 18, "53294581": 18, "41441573": 18, "35709513": 18, "34739729": 18, "2247428": 18, "21189619": 18, "20953764": 18, "2047238": 18, "00366195": 18, "72670267": 18, "66457261": 18, "66117499": 18, "65764569": 18, "59361288": 18, "53692337": 18, "4186242": 18, "39032028": 18, "38072077": 18, "22792981": 18, "21411943": 18, "21150941": 18, "20596682": 18, "50900785": 18, "47183047": 18, "41302442": 18, "41074092": 18, "35570081": 18, "24235242": 18, "23937357": 18, "17689039": 18, "14954414": 18, "11252866": 18, "74548389": 18, "54670843": 18, "51222928": 18, "38544081": 18, "62434096": 18, "61664115": 18, "61046548": 18, "60819089": 18, "60582263": 18, "59809884": 18, "59528701": 18, "50455142": 18, "47758459": 18, "38900603": 18, "00265443": 18, "73356448": 18, "69871695": 18, "65742776": 18, "62980239": 18, "62237432": 18, "61615296": 18, "61384879": 18, "61143257": 18, "6036396": 18, "6008404": 18, "53904675": 18, "53574034": 18, "47614674": 18, "08085006": 18, "79284749": 18, "73418057": 18, "68750833": 18, "63943184": 18, "63287989": 18, "6266261": 18, "62424331": 18, "62175122": 18, "61364826": 18, "61076178": 18, "6015663": 18, "59828153": 18, "56759501": 18, "11613925": 18, "03936766": 18, "93827262": 18, "70424585": 18, "6435549": 18, "63750425": 18, "63138763": 18, "62898639": 18, "62644408": 18, "61817501": 18, "61521615": 18, "60585824": 18, "60255746": 18, "59559347": 18, "14975076": 18, "04484802": 18, "03839281": 18, "76193802": 18, "64545337": 18, "63960981": 18, "63362627": 18, "63122595": 18, "62866951": 18, "62030598": 18, "6173228": 18, "60785976": 18, "60454014": 18, "59757005": 18, "17553019": 18, "0763064": 18, "01722941": 18, "8800954": 18, "64724805": 18, "64158374": 18, "63574989": 18, "63336845": 18, "63080655": 18, "62235007": 18, "61933771": 18, "60976925": 18, "60642479": 18, "59943461": 18, "17748052": 18, "07864503": 18, "04856445": 18, "90604118": 18, "64894198": 18, "64343268": 18, "63773688": 18, "63539748": 18, "63284621": 18, "62430887": 18, "62126213": 18, "61158878": 18, "60821436": 18, "60119202": 18, "20824135": 18, "08080384": 18, "05080481": 18, "00293375": 18, "68238854": 18, "64828327": 18, "64288393": 18, "64067212": 18, "63823839": 18, "62966681": 18, "62650424": 18, "61651791": 18, "61303065": 18, "60585638": 18, "2892403": 18, "11521733": 18, "10921478": 18, "98507371": 18, "68491542": 18, "65097705": 18, "64569885": 18, "64354239": 18, "64117543": 18, "63275318": 18, "62954734": 18, "61934748": 18, "61578909": 18, "60848271": 18, "34441304": 18, "14180502": 18, "1359731": 18, "04101396": 18, "68603796": 18, "65217043": 18, "64693599": 18, "64479968": 18, "64245743": 18, "63411697": 18, "63092122": 18, "62061868": 18, "6170318": 18, "6096552": 18, "34552126": 18, "17200642": 18, "13729958": 18, "01354773": 18, "68877221": 18, "68410174": 18, "6500044": 18, "64790662": 18, "64561287": 18, "63748311": 18, "63433761": 18, "62386218": 18, "62018391": 18, "61261818": 18, "37718115": 18, "25136991": 18, "19842054": 18, "04626389": 18, "71482178": 18, "68753488": 18, "68264896": 18, "68058937": 18, "64939092": 18, "64149842": 18, "63847645": 18, "62818187": 18, "6243867": 18, "61647898": 18, "38036652": 18, "31300013": 18, "22616058": 18, "18594288": 18, "earlier": 18, "interestingli": 18, "smaller": 18, "seem": 18, "unaffect": 18, "wherea": 18, "ador": 18, "ensembl": 18, "randomforestclassifi": 18, "rf": 18, "9900990099009901": 18, "named_step": 18, "feature_importances_": 18, "permutation_import": 18, "n_repeat": 18, "importances_mean": 18, "_tree": 18, "treeexplain": 18, "0x7f7ad56eb610": 18, "shap_valu": 18, "initj": 18, "force_plot": 18, "expected_valu": 18, "feature_nam": 18, "omit": 18, "strip": 18, "secur": 18, "jupyterlab": 18, "figur": 18, "debug": 18, "switch": 18, "regular": 18, "move": 18, "batch": 18, "capabl": 18, "connect": 18, "surgeon": 18, "extract": 18, "submodel": 18, "doc": 18, "torch": 18, "nn": 18, "surgeon_pytorch": 18, "get_nod": 18, "somemodel": 18, "__init__": 18, "layer1": 18, "layer2": 18, "layer3": 18, "forward": 18, "x1": 18, "relu": 18, "x2": 18, "sigmoid": 18, "tanh": 18, "node": 18, "model_ext": 18, "node_out": 18, "rand": 18, "tensor": 18, "5570": 18, "3652": 18, "grad_fn": 18, "sigmoidbackward0": 18, "5068": 18, "5604": 18, "constitu": [19, 26], "propos": [19, 26], "dissect": [19, 26], "viabil": [19, 26], "solv": [19, 26], "filterwarn": 19, "model2": 19, "standardis": 19, "435455": 19, "045172": 19, "if_binari": 19, "singl": 19, "analog": 20, "neurosurgeri": 20, "deepmind": 20, "adopt": 20, "thorough": [20, 21], "divid": 21, "competit": 21, "curiou": 21, "cover": [22, 33], "holdout": 22, "altern": 22, "bootstrap": 22, "estim": 22, "uncertainti": 22, "bia": 22, "introductori": 22, "walk": 22, "solid": 22, "entail": 22, "open": 22, "checklist": 22, "submit": 22, "student": 22, "fundament": 22, "preprint": 22, "typic": 22, "remedi": 22, "five": 22, "fair": 22, "fancier": 23, "xai": 23, "beauti": 23, "deepviz": 23, "toolbox": 23, "video": [32, 33], "euroscipi": [32, 33], "basel": 32, "switzerland": 32, "02": 33, "youtub": 33, "crisi": 33, "danger": 33, "unsustain": 33, "aros": 33, "brunt": 33, "nowadai": 33, "spot": 33, "insuffici": 33, "teach": 33, "lesson": 33, "overview": 33, "scene": 33, "loos": 33, "session": 33, "disproportion": 33, "reusabl": 33, "snippet": 33}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"bibliographi": [0, 20, 21, 22, 23, 24, 25], "cite": 1, "thi": 1, "work": 1, "us": [2, 5, 33], "conda": [2, 3], "appl": 3, "m1": 3, "chip": 3, "data": [4, 13, 14, 17], "instal": 5, "avoid": [5, 33], "pip": 5, "increas": [6, 10, 27, 30, 31, 32], "citat": [6, 10, 27, 30, 31, 32], "eas": [6, 11, 28, 29, 31, 32], "review": [6, 11, 28, 29, 31, 32], "foster": [6, 9, 26, 27, 28, 29, 30, 31], "collabor": [6, 9, 26, 27, 28, 29, 30, 31, 32], "privaci": 7, "polici": 7, "log": 7, "file": 7, "cooki": [7, 8], "web": 7, "beacon": 7, "googl": 7, "doubleclick": 7, "dart": 7, "third": 7, "parti": 7, "children": 7, "s": 7, "inform": 7, "onlin": 7, "onli": 7, "consent": 7, "term": 8, "condit": 8, "licens": 8, "hyperlink": 8, "our": 8, "content": 8, "ifram": 8, "liabil": 8, "reserv": 8, "right": 8, "remov": 8, "link": 8, "from": 8, "websit": 8, "disclaim": 8, "model": [9, 10, 13, 14, 15, 16, 17, 18, 22, 24, 28, 30], "evalu": [9, 11, 14, 22, 28], "benchmark": [9, 10, 15, 21, 27], "share": [9, 10, 16, 24, 30], "test": [9, 10, 11, 17, 25, 31], "interpret": [9, 11, 18, 23, 29], "ablat": [9, 19, 20, 26], "studi": [9, 19, 20, 26], "why": 12, "make": [12, 32], "reproduc": [12, 16, 32], "get": 13, "know": 13, "visual": 13, "clean": 13, "machin": [13, 17, 18, 32, 33], "learn": [13, 17, 18, 32, 33], "pre": 13, "process": 13, "train": 13, "split": 14, "stratif": 14, "cross": 14, "valid": [14, 17], "choos": 14, "appropri": 14, "metric": 14, "time": 14, "seri": 14, "spatial": 14, "conclus": 14, "dummi": 15, "classifi": 15, "dataset": 15, "domain": 15, "method": 15, "linear": 15, "standard": 15, "export": 16, "sourc": 16, "random": 16, "good": 16, "code": 16, "practic": 16, "lint": 16, "formatt": 16, "docstr": [16, 17], "depend": [16, 18], "docker": 16, "ultim": 16, "softwar": 17, "project": 17, "determinist": 17, "autom": 17, "exampl": 17, "input": 17, "inspect": 18, "partial": 18, "featur": 18, "import": 18, "tree": 18, "vs": 18, "permut": 18, "shap": 18, "resourc": [20, 21, 22, 23, 24, 25], "scientif": [28, 29, 31], "research": 32, "real": 33, "world": 33, "perspect": 33, "worst": 33, "mistak": 33, "scienc": 33}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["backmatter/bibliography", "backmatter/cite", "frontmatter/conda", "frontmatter/conda-m1", "frontmatter/data", "frontmatter/installation", "index", "legal/privacy-policy", "legal/terms-conditions", "motivation/collaboration", "motivation/increase-citations", "motivation/review", "motivation/why", "notebooks/0-basic-data-prep-and-model", "notebooks/1-model-evaluation", "notebooks/2-benchmarking", "notebooks/3-model-sharing", "notebooks/4-testing", "notebooks/5-interpretability", "notebooks/6-ablation-study", "resources/ablation", "resources/benchmarking", "resources/evaluation", "resources/interpretability", "resources/sharing", "resources/testing", "tutorial/ablation", "tutorial/benchmarking", "tutorial/evaluation", "tutorial/interpretability", "tutorial/sharing", "tutorial/testing", "workshops/euroscipy-2022", "workshops/pydata-global-2022"], "filenames": ["backmatter/bibliography.md", "backmatter/cite.md", "frontmatter/conda.md", "frontmatter/conda-m1.md", "frontmatter/data.md", "frontmatter/installation.md", "index.md", "legal/privacy-policy.md", "legal/terms-conditions.md", "motivation/collaboration.md", "motivation/increase-citations.md", "motivation/review.md", "motivation/why.md", "notebooks/0-basic-data-prep-and-model.ipynb", "notebooks/1-model-evaluation.ipynb", "notebooks/2-benchmarking.ipynb", "notebooks/3-model-sharing.ipynb", "notebooks/4-testing.ipynb", "notebooks/5-interpretability.ipynb", "notebooks/6-ablation-study.ipynb", "resources/ablation.md", "resources/benchmarking.md", "resources/evaluation.md", "resources/interpretability.md", "resources/sharing.md", "resources/testing.md", "tutorial/ablation.md", "tutorial/benchmarking.md", "tutorial/evaluation.md", "tutorial/interpretability.md", "tutorial/sharing.md", "tutorial/testing.md", "workshops/euroscipy-2022.md", "workshops/pydata-global-2022.md"], "titles": ["Bibliography", "Cite this Work", "Using Conda", "Conda on Apple M1 Chip", "Data", "Installation", "Increase citations, ease review & foster collaboration", "Privacy Policy", "Terms & Conditions", "Foster Collaboration", "Increase Citations", "Ease Review", "Why make it reproducible?", "Getting to know the data", "1.3. Model Evaluation", "2.3. Benchmarking", "3.3. Model Sharing", "4.4. Software Testing of Machine Learning Projects", "5.3. Interpretability & Model Inspection", "6.2. Ablation Studies", "6.3. Ablation Study Resources", "2.4. Benchmarking Resources", "1.4. Model Evaluation Resources", "5.4. Interpretability Resources", "3.4. Model Sharing Resources", "4.5. Testing Resources", "6. Ablation Studies", "2. Benchmarking", "1. Model Evaluation", "5. Interpretability", "3. Model Sharing", "4. Testing", "Increase citations, ease review & collaboration \u2013 Making machine learning in research reproducible", "Real-world Perspectives to Avoid the Worst Mistakes using Machine Learning in Science"], "terms": {"cab": [0, 24], "19": [0, 13, 14, 15, 16, 17, 18, 19, 24], "The": [0, 1, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33], "ture": [0, 24], "wai": [0, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 24, 27, 29, 30, 31, 32], "commun": [0, 6, 8, 9, 10, 11, 13, 22, 24, 28, 29, 31], "becki": [0, 24], "arnold": [0, 24], "louis": [0, 24], "bowler": [0, 24], "sarah": [0, 24], "gibson": [0, 24], "patricia": [0, 24], "herterich": [0, 24], "rosi": [0, 24], "higman": [0, 24], "anna": [0, 24], "krystal": [0, 24], "alexand": [0, 23, 24], "morlei": [0, 24], "martin": [0, 21, 23, 24], "o": [0, 13, 23, 24], "reilli": [0, 24], "kirsti": [0, 24], "whitak": [0, 24], "handbook": [0, 24], "reproduc": [0, 1, 5, 6, 8, 9, 10, 11, 13, 15, 18, 22, 24, 27, 28, 29, 30, 31, 33], "data": [0, 6, 9, 11, 12, 15, 16, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32], "scienc": [0, 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 21, 24, 27, 28, 30, 31], "2019": [0, 20, 22, 24], "url": [0, 7, 8, 20, 21, 22, 23, 24], "http": [0, 1, 5, 7, 20, 21, 22, 23, 24, 25], "zenodo": [0, 1, 24], "org": [0, 1, 5, 13, 16, 19, 20, 21, 22, 23, 24], "record": [0, 7, 8, 10, 14, 24], "3233986": [0, 24], "doi": [0, 1, 20, 21, 22, 23, 24], "10": [0, 1, 14, 17, 18, 19, 20, 21, 22, 23, 24], "5281": [0, 1, 24], "dd": [0, 21], "09": [0, 21, 32], "jia": [0, 21], "deng": [0, 21], "wei": [0, 21], "dong": [0, 21], "richard": [0, 20, 21], "socher": [0, 21], "li": [0, 14, 21], "kai": [0, 21], "fei": [0, 21], "imagenet": [0, 15, 21], "larg": [0, 18, 21], "scale": [0, 13, 19, 21], "hierarch": [0, 21], "imag": [0, 15, 16, 17, 21], "databas": [0, 21], "In": [0, 5, 9, 11, 13, 14, 15, 16, 17, 18, 19, 21, 23, 26, 28, 29, 30, 31], "2009": [0, 21, 23], "ieee": [0, 21], "confer": [0, 6, 20, 21, 23, 32], "comput": [0, 1, 5, 12, 15, 16, 18, 21], "vision": [0, 15, 21], "pattern": [0, 13, 18, 21], "recognit": [0, 10, 21, 30], "june": [0, 21], "1109": [0, 21], "cvpr": [0, 21], "5206848": [0, 21], "dra21": [0, 22], "jesper": [0, 22, 33], "s\u00f6ren": [0, 22], "dramsch": [0, 1, 22], "make": [0, 3, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 22, 29, 30, 33], "machin": [0, 6, 9, 10, 11, 12, 14, 15, 16, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "learn": [0, 6, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "work": [0, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33], "real": [0, 13, 14, 16, 22, 28], "world": [0, 10, 12, 13, 14, 16, 22, 28], "self": [0, 17, 18, 22], "publish": [0, 6, 8, 22, 32, 33], "2021": [0, 22, 23], "net": [0, 22], "project": [0, 1, 12, 13, 14, 16, 22], "book": [0, 1, 6, 22, 23], "ml": [0, 1, 2, 3, 5, 7, 8, 9, 22, 23, 25, 27, 28, 29, 30, 33], "dsc": [0, 21], "22": [0, 17, 21, 23], "peter": [0, 21], "d": [0, 8, 14, 21, 22, 23], "dueben": [0, 21], "g": [0, 13, 21, 23], "schultz": [0, 21], "matthew": [0, 14, 21], "chantri": [0, 21], "david": [0, 20, 21], "john": [0, 21], "gagn": [0, 21], "hall": [0, 21], "ami": [0, 21], "mcgovern": [0, 21], "challeng": [0, 9, 21, 22, 27], "benchmark": [0, 6, 33], "dataset": [0, 4, 6, 9, 13, 14, 21, 22, 27, 28], "atmospher": [0, 21], "definit": [0, 14, 17, 21], "statu": [0, 21], "outlook": [0, 21], "artifici": [0, 14, 20, 21], "intellig": [0, 20, 21], "earth": [0, 21], "system": [0, 8, 9, 12, 16, 17, 18, 21, 30], "juli": [0, 21], "2022": [0, 1, 2, 3, 21, 23, 25, 32, 33], "1175": [0, 21], "ai": [0, 11, 18, 21, 23, 29], "21": [0, 14, 15, 17, 21, 23], "0002": [0, 21], "1": [0, 13, 14, 15, 16, 17, 18, 19, 21, 23], "hmh": [0, 20], "18": [0, 13, 14, 15, 16, 17, 18, 19, 20], "matteo": [0, 20], "hessel": [0, 20], "joseph": [0, 20], "modayil": [0, 20], "hado": [0, 20], "van": [0, 20, 23], "hasselt": [0, 20], "tom": [0, 20], "schaul": [0, 20], "georg": [0, 20], "ostrovski": [0, 20], "Will": [0, 20], "dabnei": [0, 20], "dan": [0, 20], "horgan": [0, 20], "bilal": [0, 20, 23], "piot": [0, 20], "mohammad": [0, 20], "azar": [0, 20], "silver": [0, 20], "rainbow": [0, 20], "combin": [0, 11, 14, 20, 29], "improv": [0, 6, 9, 10, 11, 18, 20, 22, 27, 28, 29, 30, 31, 33], "deep": [0, 15, 20, 23, 27], "reinforc": [0, 20], "proceed": [0, 20], "aaai": [0, 20], "april": [0, 20], "2018": [0, 20, 22], "1609": [0, 20], "v32i1": [0, 20], "11796": [0, 20], "hhg20": 0, "allison": 0, "mari": 0, "horst": [0, 4], "alison": 0, "presman": 0, "hill": 0, "kristen": [0, 4, 13], "b": [0, 8, 23], "gorman": [0, 4, 13], "palmerpenguin": 0, "palmer": [0, 4, 13], "archipelago": 0, "antarctica": [0, 4, 13, 14, 15, 17], "penguin": [0, 4, 13, 14, 15, 16, 17, 18, 19], "2020": [0, 4, 21, 22, 23], "r": [0, 5, 16, 17, 23], "packag": [0, 3, 5, 16, 17], "version": [0, 1, 9, 14, 16, 17, 30], "0": [0, 13, 14, 15, 16, 17, 18, 19], "allisonhorst": 0, "github": [0, 1, 13, 16, 18, 19, 23], "io": [0, 23], "3960218": 0, "klvc21": [0, 23], "jani": [0, 23], "klais": [0, 23], "arnaud": [0, 23], "looveren": [0, 23], "giovanni": [0, 23], "vacanti": [0, 23], "alexandru": [0, 23], "coca": [0, 23], "alibi": [0, 23], "explain": [0, 9, 11, 18, 23, 29], "algorithm": [0, 9, 11, 13, 22, 23, 29], "model": [0, 6, 11, 19, 21, 23, 25, 26, 27, 29, 31, 32, 33], "journal": [0, 16, 21, 23, 30], "research": [0, 4, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 23, 24, 27, 28, 29, 30, 31, 33], "181": [0, 13, 14, 15, 16, 17, 18, 19, 23], "7": [0, 13, 14, 15, 16, 17, 18, 19, 23], "jmlr": [0, 23], "paper": [0, 11, 14, 15, 20, 21, 22, 23, 27, 28, 31], "v22": [0, 23], "0017": [0, 23], "html": [0, 13, 16, 19, 23], "kmm": [0, 23], "20": [0, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "narin": [0, 23], "kokhlikyan": [0, 23], "vivek": [0, 23], "miglani": [0, 23], "miguel": [0, 23], "edward": [0, 23], "wang": [0, 21, 23], "alsallakh": [0, 23], "jonathan": [0, 21, 23], "reynold": [0, 23], "melnikov": [0, 23], "natalia": [0, 23], "kliushkina": [0, 23], "carlo": [0, 23], "araya": [0, 23], "siqi": [0, 23], "yan": [0, 23], "orion": [0, 23], "reblitz": [0, 23], "richardson": [0, 23], "captum": [0, 23], "unifi": [0, 23], "gener": [0, 7, 8, 9, 10, 13, 14, 16, 17, 22, 23, 28, 30], "interpret": [0, 6, 8, 13, 28, 33], "librari": [0, 6, 9, 13, 16, 18, 23, 29, 32, 33], "pytorch": [0, 17, 18, 23, 24], "arxiv": [0, 20, 22, 23], "07896": [0, 23], "lon21": [0, 22], "michael": [0, 22], "A": [0, 6, 14, 15, 16, 18, 20, 21, 22, 23], "lone": [0, 22], "how": [0, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 26, 29, 30], "avoid": [0, 6, 9, 13, 17, 18, 22, 26, 29, 31, 32], "pitfal": [0, 18, 22, 29], "guid": [0, 7, 9, 10, 13, 16, 22, 26, 27, 28, 29, 30, 31], "academ": [0, 22], "ab": [0, 20, 22, 23], "2108": [0, 22], "02497": [0, 22], "48550": [0, 20, 22, 23], "ll17": [0, 23], "scott": [0, 23], "lundberg": [0, 9, 23], "su": [0, 23], "lee": [0, 9, 23], "approach": [0, 9, 23], "predict": [0, 9, 11, 13, 14, 15, 18, 23, 29, 31], "2017": [0, 9, 21, 23], "1705": [0, 23], "07874": [0, 23], "mldpm19": [0, 20], "mey": [0, 20], "melani": [0, 20], "lu": [0, 20, 21], "constantin": [0, 20], "waubert": [0, 20], "de": [0, 20], "puiseau": [0, 20], "tobia": [0, 20], "meisen": [0, 20], "ablat": [0, 6, 33], "studi": [0, 6, 11, 13, 16, 28, 30, 33], "neural": [0, 6, 15, 17, 18, 20, 23, 27, 32], "network": [0, 4, 6, 7, 13, 15, 17, 18, 20, 23, 27, 32], "1901": [0, 20], "08644": [0, 20], "moh22": [0, 25], "goku": [0, 25], "mohanda": [0, 25], "home": [0, 8, 25], "made": [0, 4, 11, 13, 18, 25, 28, 31], "madewithml": [0, 25], "com": [0, 7, 8, 25], "mol22": [0, 23], "christoph": [0, 23], "molnar": [0, 23], "leanpub": [0, 23], "2": [0, 8, 13, 14, 15, 16, 17, 18, 19, 23], "edit": [0, 8, 23], "christophm": [0, 23], "pvg": [0, 23], "11": [0, 13, 17, 23], "f": [0, 2, 3, 14, 16, 17, 18, 23], "pedregosa": [0, 9, 23], "varoquaux": [0, 23], "gramfort": [0, 23], "v": [0, 1, 23], "michel": [0, 23], "thirion": [0, 23], "grisel": [0, 23], "m": [0, 18, 21, 23], "blondel": [0, 23], "p": [0, 23], "prettenhof": [0, 23], "weiss": [0, 23], "dubourg": [0, 23], "j": [0, 1, 23], "vanderpla": [0, 23], "passo": [0, 23], "cournapeau": [0, 23], "brucher": [0, 23], "perrot": [0, 23], "e": [0, 3, 8, 13, 14, 23, 28], "duchesnai": [0, 23], "scikit": [0, 6, 9, 13, 14, 16, 18, 23, 28, 29, 30, 32], "ython": [0, 23], "12": [0, 14, 17, 23, 33], "2825": [0, 23], "2830": [0, 23], "2011": [0, 9, 23], "pvl": [0, 22], "joell": [0, 22], "pineau": [0, 22], "philipp": [0, 22], "vincent": [0, 22], "lamarr": [0, 22], "koustuv": [0, 22], "sinha": [0, 22], "larivi\u00e8r": [0, 22], "alina": [0, 22], "beygelzim": [0, 22], "florenc": [0, 22], "alch\u00e9": [0, 22], "buc": [0, 22], "emili": [0, 22], "fox": [0, 22], "hugo": [0, 22], "larochel": [0, 22], "report": [0, 11, 14, 15, 22, 28, 31], "from": [0, 3, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 22, 26, 27, 28, 29, 30, 31, 32], "neurip": [0, 22], "program": [0, 22, 25], "2003": [0, 22], "12206": [0, 22], "ras18": [0, 22], "sebastian": [0, 21, 22], "raschka": [0, 22], "evalu": [0, 6, 10, 13, 15, 17, 19, 26, 27, 29, 31, 33], "select": [0, 13, 14, 18, 22], "1811": [0, 22], "12808": [0, 22], "rd": [0, 21], "stephan": [0, 21], "rasp": [0, 21], "scher": [0, 21], "weyn": [0, 21], "soukayna": [0, 21], "mouatadid": [0, 21], "nil": [0, 21], "thuerei": [0, 21], "weatherbench": [0, 15, 21], "set": [0, 3, 8, 9, 10, 11, 12, 13, 14, 19, 21, 26, 27, 28, 30, 33], "driven": [0, 9, 21, 26], "weather": [0, 15, 21], "forecast": [0, 15, 21], "advanc": [0, 10, 11, 16, 21, 30, 31], "novemb": [0, 21], "1029": [0, 21], "2020ms002203": [0, 21], "wpl": [0, 21], "17": [0, 13, 14, 15, 16, 17, 18, 19, 21], "xiaosong": [0, 21], "yifan": [0, 21], "peng": [0, 21], "le": [0, 17, 21], "zhiyong": [0, 21], "mohammadhadi": [0, 21], "bagheri": [0, 21], "ronald": [0, 21], "summer": [0, 21], "chestx": [0, 15, 21], "ray8": [0, 15, 21], "hospit": [0, 21], "chest": [0, 21], "x": [0, 14, 18, 21], "rai": [0, 21], "weakli": [0, 21], "supervis": [0, 21], "classif": [0, 14, 15, 21], "local": [0, 17, 21], "common": [0, 9, 11, 15, 16, 21, 22, 27, 28], "thorax": [0, 21], "diseas": [0, 21], "369": [0, 21], "ycn": [0, 23], "15": [0, 13, 14, 15, 17, 23], "jason": [0, 23], "yosinski": [0, 23], "jeff": [0, 23], "clune": [0, 23], "anh": [0, 23], "nguyen": [0, 23], "thoma": [0, 23], "fuch": [0, 23], "hod": [0, 23], "lipson": [0, 23], "understand": [0, 9, 10, 11, 13, 14, 18, 22, 23, 26, 27, 28, 29, 30], "through": [0, 1, 7, 9, 13, 22, 23, 26, 27, 28, 31], "visual": [0, 8, 9, 18, 23, 29], "workshop": [0, 1, 6, 23, 33], "intern": [0, 9, 23, 29], "icml": [0, 23], "2015": [0, 23], "licens": 1, "under": [1, 7, 8], "mit": 1, "we": [1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30, 31], "appreci": 1, "mention": 1, "you": [1, 2, 3, 5, 6, 7, 8, 9, 13, 16, 17, 18, 23], "can": [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 25, 27, 28, 29, 30, 31, 33], "see": [1, 7, 9, 13, 14, 15, 16, 17, 18, 28, 29], "contribut": [1, 6, 9, 10, 11, 13, 18, 19, 26, 29, 30, 31, 32], "contributor": 1, "graph": 1, "event": [1, 32, 33], "talk": [1, 6, 16, 30, 33], "section": [1, 6, 8, 15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 31], "recip": [1, 7, 8], "archiv": 1, "10381234": 1, "page": [1, 7, 8, 13, 16, 19], "creat": [1, 2, 3, 7, 8, 15, 16, 17, 18, 21], "citat": [1, 11, 12, 16], "which": [1, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 22, 28, 29, 30, 31, 33], "look": [1, 8, 13, 14, 16, 17], "someth": [1, 19, 26], "like": [1, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 22, 27, 29], "apa": 1, "s": [1, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 27, 28, 29, 31, 32], "maggio": 1, "increas": [1, 9, 11, 12, 16, 18, 28, 29, 33], "eas": [1, 16, 33], "review": [1, 8, 12, 14, 33], "foster": 1, "collabor": [1, 10, 12, 13, 16, 33], "pydata": [1, 2, 3, 33], "global": [1, 2, 3, 33], "softwar": [1, 31], "jesperdramsch": [1, 5, 33], "tutori": [1, 2, 4, 5, 6, 13, 18, 29, 32, 33], "pleas": [1, 2, 3, 7, 8, 13, 14, 16, 19], "visit": [1, 7, 8], "repo": 1, "most": [1, 8, 12, 13, 14, 15, 16, 17, 18, 30], "up": [1, 8, 9, 10, 12, 16, 17, 28, 30, 31], "date": [1, 7, 8, 9, 13, 17, 31, 32, 33], "refer": [1, 7, 8, 9, 11, 14, 27, 29], "If": [2, 3, 7, 8, 13, 15, 18], "re": [2, 3, 9, 12, 13, 16, 17, 18], "appl": 2, "m1": 2, "chip": 2, "follow": [2, 3, 6, 7, 8, 9, 13, 17], "instruct": [2, 7], "an": [2, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 22, 25, 26, 28, 29, 32], "repro": [2, 3], "environ": [2, 3, 5, 13, 15, 16, 19], "execut": [2, 3], "env": [2, 3, 16], "requir": [2, 3, 5, 6, 7, 9, 16, 27, 30, 32], "yml": [2, 3, 5, 16], "later": 2, "activ": [2, 3, 7, 8], "might": [2, 5, 13, 14, 16, 28, 30], "also": [2, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 21, 22, 27, 29, 30, 31], "onli": [2, 9, 11, 12, 13, 14, 18, 29, 31], "updat": 2, "your": [2, 3, 5, 6, 7, 8, 9, 13, 14, 16, 17], "current": [2, 23, 24], "prefix": 2, "file": [2, 16, 17, 18], "prune": 2, "us": [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 26, 27, 28, 29, 30, 31, 32], "mac": 3, "latest": [3, 16], "highli": [3, 11, 14], "recommend": [3, 17], "instal": [3, 6, 16, 18], "specif": [3, 7, 9, 10, 14, 16, 17, 18, 27, 28, 30], "tailor": 3, "hardwar": 3, "architectur": [3, 13, 18], "i": [3, 14, 15, 16, 17, 18, 28, 30], "arm64": 3, "To": [3, 6, 7, 8, 13, 14, 25], "do": [3, 7, 8, 12, 13, 14, 16, 17, 18], "so": [3, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 28, 31], "command": [3, 16], "conda_subdir": 3, "osx": 3, "thi": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 31, 32, 33], "sure": [3, 13, 22], "automat": [3, 7, 12, 16, 30], "fetch": 3, "appropri": [3, 6, 8, 9, 13, 31, 32], "channel": [3, 7], "run": [3, 5, 12, 16, 17, 18], "onc": [3, 13, 14], "subdir": 3, "futur": [3, 6, 14, 16, 17, 32], "config": 3, "were": [4, 8, 13, 14, 16], "collect": [4, 6, 7, 13, 17], "avail": [4, 6, 8, 9, 13, 15, 18, 23, 30, 32, 33], "dr": [4, 13], "station": [4, 13], "lter": [4, 13], "member": [4, 13], "long": [4, 8, 13, 14, 16], "term": [4, 7, 13, 16], "ecolog": [4, 13], "et": [4, 9, 20, 21, 22, 23, 24], "al": [4, 9, 20, 21, 22, 23, 24], "artwork": [4, 8], "allison_horst": 4, "both": [5, 8, 14, 15, 22, 25], "txt": [5, 16], "ar": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33], "provid": [5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18, 22, 27, 28, 29, 30, 31, 32], "notebook": [5, 6, 13, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31], "cloud": 5, "button": [5, 12], "binder": 5, "automag": 5, "depend": [5, 9, 11, 14, 30], "let": [5, 8, 13, 14, 19], "explor": [5, 6, 13, 14, 16, 18, 26, 27, 28, 29, 30, 31], "onlin": [5, 8, 33], "simpli": [5, 13, 14, 16, 18], "launch": [5, 22], "mybind": 5, "v2": 5, "gh": 5, "head": [5, 13, 14, 15, 16, 17, 18, 19], "addit": [5, 6, 7, 9, 10, 14, 15, 18, 22, 28, 29, 30, 32, 33], "everi": [5, 6, 14, 17, 32], "below": [5, 13, 16], "ha": [5, 6, 7, 11, 12, 13, 14, 16, 18, 23, 28, 31, 32, 33], "link": [5, 7, 32, 33], "colab": 5, "paperspac": 5, "gradient": 5, "aw": 5, "studio": 5, "These": [5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 27, 29, 30, 31, 33], "have": [5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 28, 29, 31, 33], "honestli": [5, 13], "thei": [5, 7, 8, 9, 10, 11, 13, 16, 17, 18, 28, 29, 30], "often": [5, 13, 14, 17, 18, 28, 29, 31], "standard": [5, 6, 7, 9, 10, 13, 14, 18, 19, 26, 27, 30, 31], "stack": 5, "should": [5, 8, 14, 15, 16, 17, 27], "good": [5, 9, 13, 15, 24, 30], "easi": [6, 9, 12, 13, 14, 15, 16, 17, 30, 31, 32, 33], "win": [6, 33], "focus": [6, 22], "basic": [6, 13, 17], "get": [6, 14, 17, 22, 28], "90": [6, 14], "top": 6, "tier": 6, "scientif": [6, 9, 10, 11, 13, 14, 21, 25, 27, 30, 32, 33], "seen": [6, 13, 15, 32], "massiv": [6, 32], "uptick": [6, 32], "applic": [6, 7, 8, 9, 14, 18, 20, 27, 28, 32, 33], "some": [6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 21, 26, 27, 28, 29, 30, 31, 32], "type": [6, 7, 8, 13, 14, 17, 18, 32], "whether": [6, 11, 13, 14, 17, 31, 32], "linear": [6, 9, 14, 18, 27, 32], "regress": [6, 32], "transform": [6, 13, 14, 16, 18, 19, 32], "hug": [6, 32], "face": [6, 32], "custom": [6, 7, 8, 9, 31, 32], "convolut": [6, 32], "jax": [6, 32], "breadth": [6, 32], "vast": [6, 32], "qualiti": [6, 9, 10, 11, 12, 24, 28, 29, 30, 32, 33], "aim": [6, 22, 32], "method": [6, 9, 11, 12, 13, 14, 16, 17, 18, 22, 26, 27, 28, 29, 31, 32, 33], "aspect": [6, 11, 22, 25, 28, 32], "fellow": [6, 32, 33], "iter": [6, 9, 12, 16, 26, 30, 32], "public": [6, 8, 10, 11, 12, 18, 19, 26, 29, 30, 32], "valid": [6, 7, 9, 10, 11, 13, 22, 28, 29, 30, 31, 32, 33], "techniqu": [6, 9, 13, 22, 27, 28, 32], "code": [6, 9, 10, 12, 15, 17, 18, 22, 24, 25, 30, 31, 32, 33], "acceler": [6, 32], "process": [6, 8, 9, 10, 11, 14, 15, 16, 17, 18, 22, 28, 29, 30, 31, 32, 33], "dure": [6, 11, 13, 28, 31, 32], "possibl": [6, 7, 9, 13, 14, 16, 28, 32], "reject": [6, 14, 15, 27, 28, 32], "due": [6, 17, 18, 31, 32], "defici": [6, 32], "methodolog": [6, 9, 32], "visibl": [6, 8, 10, 27, 30, 31, 32], "enabl": [6, 8, 9, 13, 16, 18, 27, 30, 31, 32], "easier": [6, 8, 9, 10, 11, 12, 13, 16, 17, 29, 30, 31, 32], "outsiz": [6, 32], "impact": [6, 9, 10, 11, 13, 18, 19, 26, 28, 29, 30, 31, 32, 33], "compar": [6, 9, 10, 15, 18, 19, 22, 27, 28, 30, 32], "limit": [6, 8, 9, 10, 11, 16, 28, 29, 31, 32], "exist": [6, 10, 13, 14, 31, 32, 33], "python": [6, 16, 17, 32], "overfit": [6, 13, 18], "ensur": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 26, 28, 29, 30, 31], "result": [6, 8, 9, 10, 11, 13, 15, 17, 18, 22, 27, 28, 29, 30, 31, 33], "reliabl": [6, 9, 10, 11, 13, 22, 28, 29, 30, 31], "other": [6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 27, 28, 29, 30, 31], "solut": [6, 9, 10, 13, 15, 18, 19, 26, 27, 31, 33], "metric": [6, 9, 11, 13, 16, 28, 30], "share": [6, 7, 17, 18, 22, 33], "export": [6, 9, 30], "gain": [6, 9, 13, 27], "test": [6, 13, 14, 15, 18, 22, 28, 29, 33], "catch": [6, 14], "error": [6, 9, 11, 17, 18, 22, 29, 31], "earli": [6, 20], "treat": [6, 13], "correctli": [6, 11, 14, 17, 18, 31], "inspect": [6, 9, 23, 29], "spuriou": [6, 9, 18, 26, 29], "correl": [6, 14, 18, 28, 29], "build": [6, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 26, 28, 29, 31], "part": [6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 26, 28, 29], "actual": [6, 12, 13], "matter": [6, 14, 28], "organ": [6, 8], "major": [6, 14], "motiv": [6, 26, 27, 28, 29, 30, 31], "expand": [6, 17], "aid": [6, 18], "front": 6, "goe": [6, 9, 12, 24, 30], "resourc": [6, 8, 9], "artifact": 6, "showcas": [6, 10, 27], "present": [6, 8, 16, 19, 22, 26, 33], "around": [6, 8, 14], "materi": [6, 8], "overal": [6, 9, 10, 11, 16, 27, 29, 30], "appli": [6, 7, 8, 9, 12, 13, 14, 15, 18, 27, 28, 29, 31, 33], "scientist": [6, 9, 10, 12, 27, 28, 29, 30, 31, 33], "want": [6, 14, 15, 16, 28, 30], "problem": [6, 9, 12, 14, 19, 26, 27, 28], "implement": [6, 9, 11, 15, 17, 29, 31, 33], "catastroph": 6, "failur": [6, 17, 31], "all": [6, 7, 8, 9, 10, 13, 14, 16, 18, 26, 27], "its": [6, 7, 8, 9, 10, 11, 13, 16, 18, 29, 31], "benefit": [6, 8, 12, 16, 18, 26, 27, 28, 29, 30, 31], "At": 7, "access": [7, 8, 9, 10, 22, 30, 31], "one": [7, 8, 9, 10, 13, 14, 16, 17, 18, 22, 28, 31], "our": [7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30, 31], "main": [7, 10], "prioriti": 7, "visitor": 7, "document": [7, 9, 11, 16, 24, 28, 30, 31], "contain": [7, 8, 13, 16, 17], "question": 7, "more": [7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 27, 28, 29, 30, 31, 33], "about": [7, 9, 12, 13, 14, 16, 18, 21, 29, 30], "hesit": 7, "contact": [7, 8], "procedur": [7, 10, 11, 17, 28, 31], "when": [7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 27, 28, 29, 30, 31], "websit": 7, "host": 7, "compani": [7, 8, 12], "servic": [7, 8], "analyt": 7, "includ": [7, 8, 9, 10, 13, 17, 18, 29, 30], "internet": [7, 8], "protocol": 7, "ip": 7, "address": [7, 9, 10, 11, 13, 14, 16, 27, 28, 30, 31, 33], "browser": 7, "isp": 7, "time": [7, 8, 13, 15, 16, 27, 28], "stamp": 7, "exit": 7, "number": [7, 13, 16, 18], "click": [7, 13], "ani": [7, 8, 9, 11, 13, 14, 15, 18, 27, 29, 31], "person": [7, 8, 15], "identifi": [7, 9, 10, 11, 13, 18, 27, 28, 29, 31], "purpos": [7, 8, 13, 16, 18], "analyz": 7, "trend": [7, 13], "administ": 7, "site": [7, 8, 17], "track": 7, "user": [7, 8, 16, 17, 18], "movement": 7, "gather": 7, "demograph": 7, "wa": [7, 13, 14, 16, 18, 20, 22, 33], "help": [7, 8, 9, 10, 11, 13, 18, 27, 28, 29, 30, 31], "store": [7, 16, 17], "prefer": [7, 13], "optim": [7, 22], "experi": [7, 9, 10, 11, 14, 16, 28, 30], "content": 7, "base": [7, 10, 12, 13, 16, 18, 22, 29], "For": [7, 10, 13, 14, 16, 20, 27], "read": [7, 16, 23], "articl": [7, 22], "vendor": 7, "It": [7, 9, 11, 13, 14, 16, 17, 18, 22, 28], "known": [7, 8, 9, 13, 17, 31], "serv": [7, 9, 10, 18, 19, 26, 27, 29, 33], "ad": [7, 9, 13, 27], "upon": [7, 8, 9, 10, 11, 16, 28, 30], "www": 7, "howev": [7, 12, 14, 15, 16, 18, 27, 30, 33], "mai": [7, 8, 9, 10, 13, 14, 16, 18, 27, 28, 31], "choos": [7, 13, 22], "declin": 7, "technolog": [7, 9, 10], "consult": [7, 8], "list": [7, 8, 18, 22], "find": [7, 8, 9, 10, 11, 13, 14, 16, 18, 22, 28, 30], "each": [7, 8, 9, 13, 14, 18, 19, 26, 28, 29], "advertis": [7, 8], "partner": [7, 8], "server": 7, "javascript": [7, 18], "respect": [7, 8, 14], "appear": [7, 8], "sent": 7, "directli": [7, 8, 12, 18, 33], "receiv": 7, "occur": 7, "measur": [7, 13, 14, 18], "effect": [7, 9, 13, 14, 15, 16, 29, 31], "campaign": 7, "note": [7, 14], "control": [7, 9, 15, 30], "over": [7, 9, 14, 15, 18, 30], "doe": [7, 8, 14, 16], "thu": 7, "advis": 7, "detail": [7, 8, 24], "practic": [7, 9, 13, 18, 24, 30, 33], "opt": [7, 17], "out": [7, 12, 13, 14, 16, 17, 18, 22, 30], "certain": [7, 8, 9, 16, 18, 31], "option": 7, "disabl": [7, 17], "individu": [7, 9, 13, 18, 29], "know": [7, 9, 12, 14, 17, 18, 31], "manag": [7, 13], "found": 7, "what": [7, 11, 12, 13, 14, 15, 16, 17, 18, 29, 30], "anoth": [7, 14, 15, 18, 27], "protect": [7, 8], "while": [7, 13, 18, 33], "encourag": [7, 22], "parent": 7, "guardian": 7, "observ": 7, "particip": [7, 10, 27], "monitor": [7, 8], "knowingli": 7, "ag": 7, "13": [7, 13, 15, 17], "think": [7, 18], "child": 7, "kind": [7, 14, 28], "strongli": 7, "immedi": [7, 8, 16], "best": [7, 9, 13, 23, 28, 30], "effort": 7, "promptli": 7, "remov": [7, 13], "regard": [7, 18, 29], "offlin": 7, "via": [7, 14], "than": [7, 13, 14, 15, 20, 28], "By": [7, 8, 9, 10, 11, 13, 16, 27, 28, 29, 30], "herebi": [7, 8], "agre": [7, 8, 9, 28], "condit": 7, "welcom": 8, "outlin": [8, 9, 27], "rule": [8, 16], "regul": 8, "locat": [8, 13, 32, 33], "assum": 8, "accept": [8, 11, 29], "continu": 8, "take": [8, 9, 11, 13, 14, 15, 16, 17, 22, 28, 29, 31, 33], "state": [8, 16, 18, 23], "terminolog": 8, "privaci": 8, "statement": 8, "notic": [8, 10, 16, 27, 33], "agreement": 8, "client": 8, "log": 8, "compliant": 8, "ourselv": 8, "parti": 8, "offer": [8, 9, 13, 18, 28], "consider": [8, 18, 29], "payment": 8, "necessari": [8, 13], "undertak": 8, "assist": 8, "manner": [8, 9, 28], "express": 8, "meet": 8, "need": [8, 11, 13, 14, 15, 16, 17, 22, 27, 29], "provis": 8, "accord": 8, "subject": 8, "prevail": 8, "law": [8, 14, 28], "netherland": 8, "abov": [8, 14, 18], "word": 8, "singular": 8, "plural": 8, "capit": 8, "he": 8, "she": 8, "taken": [8, 26, 27, 28, 29, 30, 31], "interchang": 8, "therefor": [8, 11, 12, 13, 14], "same": [8, 13, 14, 16, 17, 18, 22, 28], "emploi": [8, 16], "polici": [8, 22], "interact": [8, 18, 33], "retriev": [8, 16], "function": [8, 13, 16, 17, 18], "area": [8, 9, 10, 11, 14, 18, 27, 28, 29, 31, 33], "peopl": [8, 16, 18, 21], "affili": 8, "unless": 8, "otherwis": [8, 16, 17], "licensor": 8, "own": [8, 9, 10, 27, 28], "intellectu": 8, "properti": 8, "restrict": 8, "must": [8, 13, 18], "republish": 8, "sell": 8, "rent": 8, "sub": 8, "duplic": 8, "copi": [8, 16, 17], "redistribut": 8, "shall": 8, "begin": 8, "hereof": 8, "opportun": [8, 9, 10, 16, 27, 29, 30], "post": [8, 15], "exchang": [8, 9], "opinion": 8, "inform": [8, 9, 13, 16, 18, 29], "filter": 8, "comment": [8, 13], "prior": 8, "presenc": 8, "reflect": 8, "view": [8, 18], "agent": 8, "who": [8, 9, 28, 31, 33], "extent": 8, "permit": 8, "liabl": 8, "damag": 8, "expens": [8, 18], "caus": 8, "suffer": 8, "consid": [8, 14, 17, 18], "inappropri": 8, "offens": 8, "breach": 8, "warrant": 8, "repres": [8, 14, 17], "entitl": 8, "consent": 8, "invad": 8, "without": [8, 13, 14, 16], "copyright": 8, "patent": 8, "trademark": 8, "third": 8, "defamatori": 8, "libel": 8, "indec": 8, "unlaw": 8, "invas": 8, "solicit": 8, "promot": [8, 9, 10, 30, 31], "busi": [8, 16], "commerci": 8, "grant": 8, "non": [8, 13, 18, 33], "exclus": 8, "author": [8, 10, 30], "form": [8, 9, 13, 31], "format": [8, 9, 16, 17, 30], "media": 8, "written": [8, 16, 18], "approv": 8, "govern": 8, "agenc": 8, "search": [8, 16], "engin": [8, 19, 26], "new": [8, 9, 11, 14, 15, 17, 21, 25, 27, 28], "directori": 8, "distributor": 8, "wide": [8, 9, 22], "accredit": 8, "except": [8, 14, 17], "profit": 8, "chariti": 8, "shop": 8, "mall": 8, "fundrais": 8, "group": [8, 14], "web": 8, "decept": 8, "fals": [8, 13, 17], "impli": 8, "sponsorship": 8, "endors": 8, "product": [8, 9, 16, 17, 33], "c": [8, 13], "fit": [8, 13, 14, 15, 16, 18], "within": [8, 13, 14, 18], "context": [8, 14, 28], "request": 8, "commonli": [8, 9, 13, 27], "consum": 8, "sourc": [8, 9, 10, 11, 14, 18, 24, 29, 30], "dot": 8, "associ": [8, 17, 18], "portal": 8, "account": [8, 10, 11, 14, 18, 28, 29], "firm": 8, "educ": [8, 33], "institut": 8, "trade": [8, 22], "decid": [8, 14], "would": [8, 12, 14, 15, 16], "unfavor": 8, "neg": 8, "compens": 8, "absenc": 8, "paragraph": 8, "interest": [8, 10, 18], "send": 8, "mail": 8, "name": [8, 9, 14, 16, 17, 23], "well": [8, 10, 11, 13, 14, 18, 22, 27, 28, 31], "intend": 8, "wait": 8, "3": [8, 13, 14, 15, 16, 17, 18, 19], "week": 8, "respons": [8, 18], "corpor": 8, "uniform": 8, "being": [8, 14, 33], "descript": [8, 16], "sens": [8, 18], "No": [8, 14, 19, 28], "logo": 8, "allow": [8, 9, 10, 11, 13, 16, 18, 27, 28, 29, 30, 31], "absent": 8, "permiss": 8, "frame": [8, 12], "webpag": 8, "alter": 8, "hold": [8, 9, 14], "defend": 8, "against": [8, 13, 14, 15, 17, 18, 29, 31], "claim": [8, 11, 31], "rise": 8, "obscen": 8, "crimin": 8, "infring": 8, "violat": [8, 14], "advoc": 8, "particular": [8, 9, 14, 16, 19, 26, 27], "amen": 8, "bound": [8, 9, 27], "reason": [8, 9, 10, 13, 15, 17, 18, 27], "free": [8, 17], "moment": [8, 14], "oblig": 8, "respond": 8, "correct": [8, 9, 14, 25, 31], "complet": [8, 13, 14, 18], "accuraci": [8, 9, 10, 11, 14, 29, 31], "nor": 8, "promis": [8, 9, 13], "remain": [8, 18], "kept": 8, "maximum": 8, "exclud": 8, "represent": [8, 13, 16, 19], "warranti": 8, "relat": 8, "noth": 8, "death": 8, "injuri": 8, "fraud": 8, "fraudul": 8, "misrepresent": 8, "prohibit": 8, "elsewher": 8, "preced": 8, "aris": 8, "contract": 8, "tort": 8, "statutori": 8, "duti": 8, "As": [8, 14, 15], "charg": 8, "loss": 8, "natur": [8, 9, 17, 26, 31], "initi": [9, 16], "wonder": 9, "why": [9, 11, 13, 14, 18, 28, 29, 33], "differ": [9, 10, 13, 14, 15, 16, 18, 22, 27, 30, 33], "rang": [9, 16], "expertis": [9, 15], "bring": 9, "togeth": [9, 10, 13, 27, 29, 30], "specialist": 9, "mani": [9, 11, 14, 18, 28], "domain": [9, 18, 21, 27, 28, 29, 31], "cooper": 9, "give": [9, 16, 17, 21, 29, 30], "greater": [9, 13], "higher": 9, "replic": [9, 10, 11, 16, 28, 30], "better": [9, 12, 15, 27, 29, 33], "multipl": [9, 14, 22], "topic": [9, 33], "innov": [9, 27, 28], "creativ": 9, "forum": 9, "thought": [9, 10], "viewpoint": 9, "fresh": 9, "issu": [9, 10, 13, 16, 22, 27, 28, 31], "effici": [9, 11, 13, 16, 18, 28, 30], "quicker": 9, "achiev": [9, 13, 14, 18, 33], "pool": 9, "broader": [9, 10, 30], "interdisciplinari": 9, "across": [9, 16], "sector": 9, "societi": 9, "addition": [9, 10, 11, 16, 18, 27, 28], "bridg": 9, "between": [9, 13, 14, 18, 27, 28, 30, 31], "academia": [9, 10, 12, 16, 30], "industri": [9, 10, 22, 30], "lead": [9, 10, 11, 13, 14, 18, 27, 28, 29, 30], "invest": 9, "But": [9, 12, 14, 16, 28, 30], "end": 9, "quot": 9, "true": [9, 14, 16, 17], "closest": 9, "6": [9, 13, 14, 15, 16, 17, 18, 19], "month": 9, "ago": 9, "And": [9, 13, 14], "terribl": 9, "repli": 9, "email": 9, "here": [9, 11, 12, 13, 14, 16, 17, 21, 22, 26, 27, 28, 29, 30, 31, 33], "avenu": [9, 28], "expert": [9, 11, 13, 18, 28, 29], "trust": [9, 13, 14, 16, 18, 19, 26, 28, 29, 31], "caveat": [9, 28], "framework": [9, 28, 29], "contrast": [9, 28], "variou": [9, 18, 28, 29], "order": [9, 18, 28], "verifi": [9, 11, 14, 15, 25, 28, 31], "relev": [9, 10, 22, 28], "critic": [9, 10, 11, 13, 28], "proper": [9, 13, 14, 15, 22, 27, 28], "criteria": [9, 28], "been": [9, 11, 14, 17, 18, 20, 28, 31, 33], "practition": [9, 10, 18, 27, 28, 29, 30, 31], "potenti": [9, 11, 13, 18, 28, 29, 31, 33], "further": [9, 10, 11, 12, 13, 16, 18, 22, 24, 28, 29, 30, 31, 33], "done": [9, 13, 14, 16, 20, 28], "transpar": [9, 10, 11, 18, 27, 28, 29, 30, 31], "abl": [9, 10, 14, 18, 28], "strength": [9, 10, 27, 28, 29], "weak": [9, 10, 11, 27, 28, 29, 31], "them": [9, 13, 16, 18, 28, 29, 30], "moreov": [9, 10, 13, 18, 28], "develop": [9, 10, 14, 22, 27, 28, 31], "drive": [9, 18, 28], "field": [9, 10, 11, 15, 27, 28, 30], "insight": [9, 13, 14, 18, 28, 29], "anchor": [9, 27], "dummi": [9, 27], "simpl": [9, 13, 14, 15, 17, 20, 27, 31], "straightforward": [9, 16, 27], "baselin": [9, 10, 15, 27], "comparison": [9, 10, 22, 27, 31], "complex": [9, 13, 18, 19, 20, 26, 27], "perform": [9, 10, 11, 13, 14, 15, 16, 18, 20, 22, 27, 29, 31], "valu": [9, 13, 18, 22, 27, 29], "ground": [9, 27], "lower": [9, 18, 22, 27], "random": [9, 13, 14, 15, 18, 24, 27, 30], "statist": [9, 13, 14, 22, 27], "equival": [9, 27], "That": [9, 13, 14, 17, 27], "mean": [9, 10, 11, 13, 14, 17, 18, 19, 27, 28, 31], "those": [9, 14, 27, 28], "start": [9, 15, 16, 18, 27, 29], "point": [9, 14, 27, 28, 31], "deeper": [9, 13, 27, 29], "simplest": [9, 13, 14, 27, 31], "plai": [9, 10, 11, 27, 31], "role": [9, 10, 11, 27, 31], "easili": [9, 10, 11, 16, 30], "fine": [9, 30], "tune": [9, 30], "fix": [9, 16, 17, 30, 31], "robust": [9, 11, 13, 22, 28, 30, 31], "clear": [9, 10, 11, 28, 30, 31], "readabl": [9, 30], "toward": [9, 30], "usabl": [9, 30], "train": [9, 11, 12, 14, 16, 18, 30, 31], "guarante": [9, 14, 28, 30], "resolv": [9, 30], "docker": [9, 30], "platform": [9, 16, 30], "deploy": [9, 12, 16, 30], "even": [9, 10, 13, 14, 16, 17, 28, 30, 31], "oper": [9, 12, 16, 17, 25, 30], "consist": [9, 11, 13, 14, 16, 17, 22, 29, 31], "determinist": [9, 31], "underli": [9, 13, 18, 31], "chang": [9, 14, 16, 18, 31], "conduct": [9, 31], "safeguard": [9, 31], "don": [9, 13, 14, 16, 18, 30, 31], "t": [9, 13, 14, 15, 16, 17, 18, 19, 28, 29, 30, 31], "introduc": [9, 13, 16, 18, 22, 29, 31], "bug": [9, 16, 17, 31], "produc": [9, 11, 29, 31], "output": [9, 16, 17, 31, 33], "exampl": [9, 13, 14, 15, 16, 18, 20, 21, 31, 33], "essenti": [9, 10, 11, 13, 14, 16, 17, 22, 28, 31], "canari": [9, 31], "similarli": [9, 18, 31], "autom": [9, 16, 31], "docstr": [9, 30, 31], "accur": [9, 11, 13, 31], "input": [9, 16, 19, 31], "path": [9, 13, 14, 15, 16, 17, 18, 19, 31], "prevent": [9, 10, 11, 13, 17, 29, 31], "hand": [9, 13, 18, 31], "off": [9, 18, 22, 31], "tool": [9, 13, 15, 16, 17, 18, 23, 29, 30], "interfac": [9, 29], "becaus": [9, 10, 11, 13, 15, 16, 17, 18, 29, 30], "decis": [9, 11, 18, 29], "tree": [9, 29], "import": [9, 10, 11, 13, 14, 15, 16, 17, 19, 22, 25, 28, 29, 30, 33], "permut": [9, 29], "two": [9, 14, 18, 29], "featur": [9, 13, 14, 15, 16, 17, 19, 29], "discuss": [9, 18, 19, 22, 26, 29, 33], "shap": [9, 23, 29], "shaplei": [9, 29], "explan": [9, 29], "given": [9, 21, 29], "sampl": [9, 13, 14, 17, 18, 29], "examin": [9, 29], "reduc": [9, 13, 18, 26], "compon": [9, 17, 25, 26], "sneak": [9, 26], "acknowledg": 10, "idea": [10, 14], "establish": [10, 15, 18, 27, 29], "credibl": [10, 11, 27, 31], "cite": [10, 27], "knowledg": [10, 18, 29], "elev": [10, 33], "plagiar": 10, "progress": 10, "pursuit": [10, 16, 30], "final": [10, 13, 14, 18, 19, 26, 29], "determin": [10, 11, 17, 28, 31], "One": [10, 12, 13, 15, 16, 18, 29], "citabl": 10, "There": [10, 16, 17, 18, 23], "three": [10, 13, 14], "sever": [10, 18, 30], "confirm": [10, 22, 30], "confid": [10, 11, 30], "origin": [10, 16, 17, 22, 30], "extend": [10, 30], "suggest": [10, 30], "modif": [10, 30], "extens": [10, 18, 30], "wider": [10, 30], "audienc": [10, 30], "dissemin": [10, 30], "awar": [10, 30], "task": [10, 13, 14, 27], "demonstr": [10, 11, 27, 28], "evid": [10, 27], "rel": [10, 13, 15, 27], "instanc": [10, 27], "recogn": [10, 27], "rigor": [10, 11, 22, 31], "design": [10, 11, 28, 29, 31], "turn": [10, 11, 31], "among": [10, 13, 31], "thoroughli": [10, 31], "pre": [10, 17, 18, 31], "basi": [10, 31], "furthermor": [10, 11, 29, 31], "where": [10, 11, 13, 14, 15, 16, 17, 28, 29, 31, 33], "object": [10, 11, 14, 16, 17, 31], "crucial": [11, 13, 18, 29, 31], "greatli": 11, "choic": [11, 14, 16], "hyperparamet": 11, "smoother": 11, "reli": 11, "generaliz": [11, 13, 28], "care": [11, 14, 28], "thereof": [11, 28], "disarm": [11, 28], "abil": [11, 28], "emphas": [11, 28], "becom": [11, 13, 28], "increasingli": [11, 28], "streamlin": [11, 28], "focu": [11, 28], "scalabl": [11, 16, 31], "experiment": [11, 31], "summari": [11, 16, 31], "influenc": [11, 13, 14, 28, 31], "ultim": [11, 30, 31], "understood": [11, 29], "human": [11, 29], "assess": [11, 13, 14, 18, 22, 29], "bias": [11, 13, 18, 29], "factor": [11, 29], "reach": [11, 29], "conclus": [11, 22, 28, 29], "assumpt": [11, 14, 29], "detect": [11, 13, 29], "unreli": [11, 13, 29], "flaw": [11, 29], "high": [11, 14, 18, 29], "trustworthi": [11, 22, 29], "tenet": 12, "alwai": [12, 14, 16, 17, 18, 28], "did": [12, 14], "suppos": [12, 17, 18], "place": 12, "especi": [12, 14, 18], "titl": [12, 14, 18], "sai": [12, 14], "cycl": [12, 14, 28], "market": 12, "skill": [12, 33], "outsid": 12, "technic": 12, "debt": 12, "slowli": 12, "degrad": 12, "case": [12, 13, 14, 17, 28], "amazon": 12, "googl": [12, 16], "expect": [12, 14, 16, 17, 18, 28], "entir": [12, 14, 16], "press": 12, "devast": 12, "prospect": 12, "postdoc": 12, "leav": [12, 22], "luckili": [12, 14, 18], "lot": [12, 13, 14], "cut": 12, "alreadi": [12, 13, 17, 18, 31], "few": [12, 13, 14, 23], "frequent": [12, 18], "come": [12, 13, 16], "proport": [12, 13], "cost": 12, "fact": 12, "fairli": [12, 13, 14, 15, 17, 27, 31], "go": [12, 14, 17, 18, 28, 29], "obtain": [12, 14, 18], "goal": 12, "foundat": 13, "step": [13, 14, 16, 18, 19], "primari": 13, "direct": [13, 14, 18], "anomali": 13, "inconsist": 13, "affect": 13, "preprocess": [13, 14, 15, 16, 17, 18, 19], "handl": 13, "miss": 13, "class": [13, 14, 15, 17, 18], "imbal": 13, "normalis": [13, 17, 18], "meaning": 13, "distribut": [13, 14, 15, 28], "relationship": [13, 18], "suit": [13, 17], "captur": 13, "dive": [13, 14, 18, 23], "quick": [13, 14, 16, 17], "pathlib": [13, 14, 15, 16, 17, 18, 19], "data_fold": [13, 14, 15, 16, 17, 18, 19], "data_filepath": [13, 14, 15, 16, 17, 18, 19], "csv": [13, 14, 15, 16, 17, 18, 19], "ll": [13, 14, 16, 17, 18, 19, 26, 28, 29, 31], "panda": [13, 14, 15, 16, 17, 18, 19], "load": [13, 16, 17, 18, 19, 31], "quit": [13, 14, 17], "conveni": 13, "drop": [13, 19], "column": [13, 14, 15, 17, 19], "pd": [13, 14, 15, 16, 17, 18, 19], "penguins_raw": 13, "read_csv": [13, 14, 15, 16, 17, 18, 19], "studynam": 13, "speci": [13, 14, 15, 16, 17, 18, 19], "region": 13, "island": 13, "stage": [13, 22], "id": 13, "clutch": 13, "egg": 13, "culmen": [13, 14, 15, 16, 17, 18, 19], "length": [13, 14, 15, 16, 17, 18, 19], "mm": [13, 14, 15, 16, 17, 18, 19], "depth": [13, 14, 15, 16, 17, 18, 19], "flipper": [13, 14, 15, 16, 17, 18, 19], "bodi": 13, "mass": 13, "sex": [13, 14, 15, 16, 17, 18, 19], "delta": 13, "n": [13, 17], "oo": 13, "pal0708": 13, "adeli": [13, 14, 15, 16, 17, 18, 19], "pygosc": [13, 14, 15, 16, 17, 18, 19], "adelia": [13, 14, 15, 16, 17, 18, 19], "anver": 13, "torgersen": 13, "adult": 13, "n1a1": 13, "ye": 13, "2007": 13, "39": [13, 14, 15, 16, 17, 18, 19], "3750": 13, "male": [13, 14, 15, 16, 17, 18, 19], "nan": 13, "Not": [13, 14, 28], "enough": [13, 14, 16, 28, 30], "blood": 13, "isotop": 13, "n1a2": 13, "5": [13, 14, 15, 16, 17, 18, 19], "4": [13, 14, 15, 16, 17, 18, 19], "186": [13, 14, 15, 16, 17, 18, 19], "3800": 13, "femal": [13, 14, 15, 16, 17, 18, 19], "8": [13, 14, 15, 16, 17, 18], "94956": 13, "24": 13, "69454": 13, "n2a1": 13, "16": [13, 15], "40": [13, 14, 15, 16, 17, 18, 19], "195": [13, 14, 15, 16, 17, 18, 19], "3250": 13, "36821": 13, "25": [13, 17], "33302": 13, "n2a2": 13, "n3a1": 13, "36": [13, 14, 15, 16, 17, 18, 19], "193": [13, 14, 15, 16, 17, 18, 19], "3450": 13, "76651": 13, "32426": 13, "usual": [13, 14, 17, 18, 28], "toi": [13, 14], "full": [13, 19], "proven": 13, "live": 13, "variabl": [13, 16, 18], "leak": 13, "tell": [13, 16], "coloni": 13, "numer": [13, 14, 18, 19, 33], "categor": 13, "exhibit": 13, "sexual": 13, "dimorph": 13, "target": [13, 14, 15, 16, 17, 18, 19], "num_featur": [13, 14, 15, 16, 17, 18, 19], "cat_featur": [13, 14, 15, 16, 17, 18, 19], "339": 13, "55": [13, 14], "207": 13, "chinstrap": [13, 14, 15, 17, 18], "340": 13, "43": [13, 15, 17, 18], "202": 13, "341": 13, "49": [13, 14, 15, 18], "342": 13, "50": [13, 17, 18], "210": [13, 15], "343": 13, "198": [13, 15, 17], "344": 13, "row": [13, 14, 15], "much": [13, 14, 20], "deal": [13, 14, 18, 22, 28], "indispens": 13, "quickli": [13, 14, 15], "grasp": 13, "scatter": 13, "plot": [13, 14, 18], "histogram": 13, "box": [13, 18], "invalu": 13, "structur": 13, "outlier": 13, "facilit": [13, 16], "team": 13, "intuit": [13, 18, 29], "convei": 13, "essenc": 13, "cornerston": 13, "enhanc": [13, 18], "seaborn": [13, 14], "job": [13, 14], "granular": 13, "matplotlib": [13, 14, 18], "sn": [13, 14], "pairplot_figur": [13, 14], "pairplot": [13, 14], "hue": [13, 14], "separ": [13, 14], "cluster": 13, "probabl": 13, "readi": 13, "great": [13, 15, 16, 17, 18], "though": 13, "imput": 13, "fill": [13, 16], "small": [13, 17, 18, 22], "size": [13, 16], "could": [13, 14], "inaccuraci": 13, "sometim": [13, 14, 15, 18, 28], "Then": [13, 14, 16, 18], "boolean": 13, "encod": 13, "missing": 13, "dropna": 13, "axi": [13, 14, 18], "190": [13, 14, 15, 16, 17, 18, 19], "334": 13, "data_clean_filepath": 13, "penguins_clean": [13, 14, 15, 16, 17, 18, 19], "to_csv": 13, "index": [13, 14, 15, 17, 18], "too": [13, 16], "bad": [13, 14, 15, 17, 28, 31], "lost": 13, "ten": 13, "after": 13, "classifi": [13, 14, 16, 18, 19], "first": [13, 14, 16, 17, 18, 20], "split": [13, 17, 18], "portion": 13, "unseen": [13, 14], "memor": 13, "fail": [13, 17], "phenomenon": 13, "poor": 13, "scenario": [13, 14, 18, 28], "mitig": [13, 14], "70": [13, 17], "sklearn": [13, 14, 15, 16, 17, 18, 19], "model_select": [13, 14, 15, 16, 17, 18, 19], "train_test_split": [13, 14, 15, 16, 17, 18, 19, 28], "x_train": [13, 14, 15, 16, 17, 18, 19], "x_test": [13, 14, 15, 16, 17, 18, 19], "y_train": [13, 14, 15, 16, 17, 18, 19], "y_test": [13, 14, 15, 16, 17, 18, 19], "train_siz": [13, 14, 15, 16, 17, 18, 19], "38": [13, 14, 15, 17, 18], "37": [13, 14, 15, 17, 18], "93": [13, 17], "152": [13, 17], "46": [13, 14, 15, 17, 18], "211": 13, "209": 13, "45": [13, 15, 18], "220": [13, 15], "161": [13, 17], "215": [13, 15], "91": 13, "41": [13, 17, 18], "205": 13, "183": [13, 15], "42": [13, 14, 15, 16, 17, 18, 19], "14": [13, 15], "286": 13, "337": 13, "189": 13, "330": 13, "187": 13, "233": [13, 14, 15, 17], "gentoo": [13, 14, 15, 17, 18], "papua": [13, 14, 15, 17], "now": [13, 14, 18], "pipelin": [13, 14, 16, 17, 18, 19], "realli": 13, "prepocessor": 13, "alon": 13, "cleanli": 13, "leakag": [13, 14], "next": 13, "prepar": [13, 14, 22], "power": [13, 18], "standardscal": [13, 14, 16, 17, 18, 19], "onehotencod": [13, 14, 16, 17, 18, 19], "unit": [13, 17], "varianc": [13, 22], "equal": [13, 14, 15], "particularli": [13, 14], "benefici": 13, "sensit": 13, "support": [13, 14, 15, 27], "vector": [13, 14, 15, 27], "k": [13, 22], "nearest": 13, "neighbour": 13, "On": [13, 16, 18, 19], "instrument": 13, "convert": 13, "binari": [13, 16], "categori": 13, "ordin": 13, "stronger": [13, 15], "fed": 13, "tip": [13, 14, 15, 16, 22], "anyth": 13, "treatment": [13, 21], "unfortun": [13, 15, 16], "manual": [13, 18, 29], "befor": [13, 16, 22], "num_transform": [13, 14, 16, 18, 19], "cat_transform": [13, 14, 16, 18, 19], "handle_unknown": [13, 14, 16, 18, 19], "ignor": [13, 14, 16, 17, 18, 19], "columntransform": [13, 14, 16, 17, 18, 19], "neat": 13, "right": [13, 17], "pretti": [13, 14], "subset": [13, 18], "leverag": [13, 16], "instead": 13, "standalon": 13, "flexibl": 13, "integr": [13, 25], "intric": 13, "workflow": 13, "versatil": [13, 18], "valuabl": [13, 18, 29], "demand": 13, "comprehens": 13, "strategi": [13, 17, 22, 31], "beyond": [13, 17, 22], "scope": 13, "unleash": 13, "compos": [13, 14, 16, 17, 18, 19], "preprocessor": [13, 14, 16, 18, 19], "num": [13, 14, 16, 18, 19], "cat": [13, 14, 16, 18, 19], "ok": [13, 14], "svm": [13, 14, 16, 17, 18, 19], "svc": [13, 14, 16, 17, 18, 19], "x27": [13, 19], "jupyt": [13, 16, 19, 26, 27, 28, 29, 30, 31], "rerun": [13, 16, 19], "cell": [13, 16, 17, 19], "show": [13, 14, 15, 16, 18, 19, 28], "unabl": [13, 16, 19], "render": [13, 16, 19], "try": [13, 15, 16, 17, 19, 30], "nbviewer": [13, 16, 19], "pipelinepipelin": [13, 19], "columntransformercolumntransform": [13, 19], "standardscalerstandardscal": [13, 19], "onehotencoderonehotencod": [13, 19], "svcsvc": [13, 16, 19], "nice": [13, 17], "modul": [13, 16, 18], "argument": [13, 16, 17], "pass": 13, "unknown": 13, "unintent": 13, "encapsul": 13, "sequenti": 13, "independ": [13, 14, 28], "normal": [13, 20], "sole": [13, 18, 29], "inadvert": 13, "risk": 13, "preserv": [13, 16], "accid": 13, "involv": [13, 14], "correspond": 13, "label": 13, "adjust": 13, "paramet": [13, 16, 17], "minim": [13, 16, 33], "subsequ": [13, 14], "processor": 13, "exact": [13, 16, 17], "decent": [13, 14], "score": [13, 14, 15, 16, 17, 18, 19], "yet": [13, 18], "9871244635193133": 13, "check": [13, 16, 17, 18, 25], "tweak": 13, "invalid": 13, "val": 13, "9900990099009901": [13, 18], "extraordinari": 13, "100": [13, 16, 17], "prototyp": [14, 28], "glean": [14, 18, 28], "my": [14, 16, 28], "isn": [14, 15, 17, 28], "dimens": [14, 28], "geospati": [14, 28], "tobler": [14, 28], "thing": [14, 17, 28], "closer": [14, 28], "larger": [14, 18, 28], "distanc": [14, 28], "tempor": [14, 28], "submiss": [14, 22, 28], "manuscript": [14, 28], "worst": [14, 28], "incorrect": [14, 28], "retract": [14, 28], "properli": [14, 28], "ident": [14, 28], "randomli": [14, 18], "datafram": [14, 17, 19], "veri": [14, 15, 17, 18, 31], "big": 14, "mostli": [14, 18], "similar": 14, "core": [14, 16, 17, 30], "concept": 14, "random_st": [14, 15, 16, 17, 18, 19], "284": 14, "294": 14, "191": [14, 15, 17], "56": 14, "185": 14, "175": [14, 17], "47": [14, 15], "222": 14, "188": 14, "216": 14, "71": [14, 17], "184": [14, 15], "106": [14, 17], "270": 14, "52": [14, 17], "197": 14, "102": [14, 15, 17], "pyplot": [14, 18], "plt": [14, 18], "groupbi": [14, 15], "count": [14, 15, 17, 18], "bar": [14, 18, 22], "extrem": [14, 16], "twice": 14, "accident": [14, 22], "almost": [14, 16, 18], "overselect": 14, "reset_index": [14, 15], "97": [14, 17], "strata": 14, "rather": [14, 16], "y": [14, 18], "stratifi": [14, 15, 16, 17, 18, 19], "qualit": 14, "fig": 14, "ax1": 14, "ax2": 14, "subplot": 14, "figsiz": 14, "ax": 14, "ylim": 14, "len": 14, "drastic": 14, "minor": 14, "less": [14, 18], "either": 14, "worth": 14, "keep": [14, 17], "mind": 14, "keyword": 14, "match": [14, 17], "gold": [14, 19, 26], "fold": [14, 22], "held": 14, "rest": 14, "round": 14, "robin": 14, "style": [14, 16], "schema": [14, 17], "heterogen": 14, "cross_val_scor": [14, 16, 19], "cv": [14, 16, 19], "arrai": [14, 16, 17], "9787234": [14, 16], "97826087": [14, 16], "print": [14, 16, 18], "2f": 14, "deviat": [14, 19], "std": [14, 17, 19], "99": [14, 17], "01": [14, 32], "wrong": 14, "brilliant": 14, "recap": 14, "far": 14, "partit": 14, "retain": 14, "had": 14, "last": [14, 17], "chose": 14, "candid": 14, "never": 14, "awai": 14, "messag": 14, "forget": [14, 16], "until": 14, "thank": 14, "indic": 14, "behav": 14, "calcul": [14, 18], "averag": [14, 18, 19], "prove": [14, 19, 26], "assert": [14, 17], "presum": 14, "accuracy_scor": 14, "y_pred": 14, "acc": 14, "y_true": 14, "conclud": 14, "fantast": 14, "96": [14, 15, 17], "mere": 14, "sake": 14, "realist": 14, "pretend": 14, "craft": 14, "least": 14, "recal": 14, "146": 14, "68": [14, 17], "120": 14, "str": [14, 16, 17], "startswith": 14, "shape": [14, 17], "verif": 14, "harder": 14, "rid": 14, "clearli": [14, 17], "hardest": 14, "plan": 14, "iow": 14, "lenght": 14, "previou": 14, "carefulli": 14, "selected_num_featur": 14, "44": [14, 17], "coeffici": [14, 16], "mcc": 14, "cross_valid": 14, "make_scor": 14, "matthews_corrcoef": 14, "mcc_scorer": 14, "acc_scor": 14, "fit_tim": 14, "00581956": 14, "00523829": 14, "00519466": 14, "00517082": 14, "00550675": 14, "score_tim": 14, "00410533": 14, "00397706": 14, "00397515": 14, "00400424": 14, "00418091": 14, "test_mcc": 14, "37796447": 14, "27863911": 14, "40824829": 14, "02424643": 14, "08625819": 14, "test_acc": 14, "73333333": 14, "76666667": 14, "66666667": 14, "62068966": 14, "numpi": [14, 17, 19], "np": [14, 19], "avg": 14, "697471264367816": 14, "2350712993854009": 14, "7230769230769231": 14, "29439815585406465": 14, "exactli": 14, "happen": [14, 15, 17], "confus": 14, "matrix": 14, "confusionmatrixdisplai": 14, "from_estim": [14, 18], "whilst": 14, "tricki": [14, 16], "imagin": 14, "growth": 14, "babi": 14, "hank": 14, "suddenli": 14, "anymor": 14, "sinc": 14, "lie": 14, "interpol": 14, "along": [14, 22], "timeseriessplit": 14, "tscv": 14, "n_split": 14, "gap": 14, "max_train_s": 14, "none": [14, 16, 17], "test_siz": 14, "map": 14, "satellit": 14, "suppli": [14, 15, 27], "contin": 14, "bin": 14, "lat": 14, "lon": 14, "grid": 14, "scheme": 14, "groupkfold": 14, "001": 14, "europ": 14, "africa": 14, "america": 14, "asia": 14, "rare": 14, "still": [14, 15], "cheat": 14, "merit": 14, "caught": 14, "prolong": 14, "divert": 14, "fund": 14, "redact": 14, "lack": [15, 27], "short": [15, 27], "disciplin": [15, 27, 33], "superf": [15, 27], "simpler": [15, 27], "forest": [15, 18, 27], "221": [15, 17], "51": [15, 18], "315": 15, "262": 15, "9": [15, 17], "34": [15, 17], "48": [15, 17], "208": 15, "212": 15, "64": 15, "33": [15, 17], "easiest": 15, "coin": 15, "flip": 15, "obviou": 15, "aren": 15, "84": [15, 17], "dummyclassifi": 15, "dummyregressor": 15, "clf": [15, 16, 17], "43564356435643564": 15, "weren": 15, "adequ": 15, "nevertheless": 15, "legitim": 15, "meteorolog": [15, 21], "medic": [15, 21], "fanci": [15, 17], "exercis": [15, 18], "anytim": [16, 30], "altruist": [16, 30], "itself": [16, 30], "nobl": [16, 30], "save": [16, 18, 30], "adapt": [16, 30], "linter": [16, 30], "container": [16, 30], "pickl": 16, "joblib": [16, 17, 18], "persist": 16, "storag": 16, "dump": [16, 18], "serial": 16, "disk": 16, "attribut": 16, "seamless": 16, "reus": [16, 17], "deploi": 16, "analysi": 16, "retrain": 16, "scratch": 16, "mechan": 16, "overhead": 16, "ideal": 16, "model_fold": [16, 17, 18], "mkdir": 16, "exist_ok": 16, "model_export_fil": [16, 17, 18], "seed": 16, "defeat": 16, "amaz": 16, "clean": 16, "flake8": 16, "editor": 16, "vscode": 16, "unus": 16, "trail": 16, "white": 16, "space": [16, 18], "line": [16, 17], "typo": 16, "pain": 16, "stakingli": 16, "tri": 16, "close": 16, "pep8": 16, "black": 16, "compli": 16, "shortcut": 16, "built": 16, "put": 16, "cursor": 16, "bracket": 16, "hit": 16, "shift": 16, "tab": 16, "autogener": 16, "footprint": 16, "minimum": 16, "auto": [16, 17], "just": [16, 18], "happi": [16, 17], "def": [16, 17, 18], "hello_world": 16, "_summary_": 16, "_description_": 16, "hello": 16, "repositori": 16, "pip": 16, "conda": 16, "add": 16, "histori": 16, "cross": [16, 22], "elimin": 16, "yaml": 16, "necessarili": [16, 18], "maco": 16, "window": 16, "linux": 16, "defin": [16, 17], "break": 16, "ship": 16, "dockerfil": 16, "syntax": 16, "slim": 16, "buster": 16, "workdir": 16, "pip3": 16, "cmd": 16, "py": [16, 17], "hard": [17, 31], "soft": [17, 31], "difficult": [17, 31], "secretli": 17, "write": [17, 25, 31], "incred": [17, 31], "touch": [17, 31], "probe": [17, 18, 29, 31], "layer": 17, "conv2d": 17, "kera": [17, 24], "convol": 17, "kernel": 17, "pytest": 17, "admittedli": 17, "script": 17, "test_penguin": 17, "answer": 17, "test_data": 17, "178": 17, "test_target": 17, "upgrad": 17, "call": [17, 23], "doctest": 17, "yourself": 17, "shorten_class_nam": 17, "df": 17, "shorten": 17, "shortest": 17, "return": [17, 18], "pp": 17, "enguin": 17, "testmod": 17, "testresult": 17, "attempt": [17, 18], "usag": 17, "api": 17, "pandera": 17, "pa": 17, "describ": 17, "000000": 17, "982403": 17, "228755": 17, "201": 17, "412017": 17, "537146": 17, "994191": 17, "929695": 17, "min": 17, "500000": 17, "100000": 17, "172": 17, "700000": 17, "400000": 17, "300000": 17, "75": 17, "800000": 17, "213": 17, "max": 17, "59": 17, "600000": 17, "200000": 17, "231": 17, "doesn": [17, 19], "dataframeschema": 17, "float": 17, "ge": 17, "30": 17, "60": 17, "170": 17, "235": 17, "isin": 17, "validated_test": 17, "schemaerror": 17, "traceback": 17, "recent": 17, "hostedtoolcach": 17, "x64": 17, "lib": 17, "python3": 17, "443": 17, "__call__": 17, "tail": 17, "lazi": 17, "inplac": 17, "415": 17, "416": 17, "417": 17, "423": 17, "bool": 17, "424": 17, "425": 17, "alia": [17, 23], "func": 17, "426": 17, "427": 17, "param": 17, "441": 17, "442": 17, "444": 17, "445": 17, "375": 17, "check_obj": 17, "363": 17, "map_partit": 17, "364": 17, "_valid": 17, "365": 17, "371": 17, "meta": 17, "372": 17, "373": 17, "add_schema": 17, "376": 17, "377": 17, "378": 17, "379": 17, "380": 17, "381": 17, "382": 17, "383": 17, "404": 17, "395": 17, "_is_inf": 17, "396": 17, "warn": [17, 19], "397": 17, "infer": 17, "hasn": 17, "398": 17, "modifi": 17, "refin": 17, "401": 17, "userwarn": 17, "402": 17, "get_backend": 17, "405": 17, "406": 17, "407": 17, "408": 17, "409": 17, "410": 17, "411": 17, "412": 17, "413": 17, "backend": 17, "dataframeschemabackend": 17, "92": 17, "collect_schema_compon": 17, "column_info": 17, "94": 17, "error_handl": 17, "run_checks_and_handle_error": 17, "98": 17, "101": 17, "103": 17, "104": 17, "105": 17, "107": 17, "108": 17, "110": 17, "collected_error": 17, "111": 17, "getattr": 17, "drop_invalid_row": 17, "els": 17, "162": 17, "163": 17, "164": 17, "reason_cod": 17, "171": 17, "collect_error": 17, "173": 17, "174": 17, "original_exc": 17, "176": 17, "schemaerrorhandl": 17, "schema_error": 17, "31": 17, "rais": [17, 22], "32": 17, "string": 17, "35": 17, "_lazi": 17, "delet": 17, "seri": [17, 18, 28], "del": 17, "192": 17, "run_schema_component_check": 17, "schema_compon": 17, "194": 17, "check_pass": 17, "append": 17, "is_tabl": 17, "196": 17, "err": 17, "169": 17, "142": 17, "143": 17, "144": 17, "150": 17, "151": 17, "153": 17, "154": 17, "167": 17, "168": 17, "177": 17, "119": 17, "columnbackend": 17, "115": 17, "validate_column": 17, "116": 17, "column_nam": 17, "return_check_obj": 17, "117": 17, "118": 17, "121": 17, "122": 17, "123": 17, "124": 17, "125": 17, "126": 17, "89": 17, "85": 17, "86": 17, "87": 17, "88": 17, "65": 17, "66": 17, "67": 17, "pylint": 17, "super": [17, 18], "validated_check_obj": 17, "69": 17, "set_nam": 17, "72": 17, "73": 17, "74": 17, "76": 17, "77": 17, "79": 17, "80": 17, "arrayschemabackend": 17, "exc": 17, "139": 17, "140": 17, "141": 17, "148": 17, "149": 17, "156": 17, "datatyp": 17, "element": 17, "wise": 17, "failure_cas": 17, "259": 17, "uniqu": [17, 18], "dtype": 17, "loc": [17, 19], "217": 17, "conform": 17, "level": [18, 29], "artefact": [18, 29, 33], "shouldn": [18, 29], "truth": [18, 29], "With": 18, "partialdependencedisplai": 18, "partial_depend": 18, "quantifi": 18, "uncov": 18, "vari": 18, "margin": 18, "magnitud": 18, "pd_result": 18, "kei": 18, "dict_kei": 18, "grid_valu": 18, "90177069": 18, "78671704": 18, "70469108": 18, "56801047": 18, "56387708": 18, "55967227": 18, "55107687": 18, "52167929": 18, "37392551": 18, "33493436": 18, "29741053": 18, "29468135": 18, "29041098": 18, "28760599": 18, "28612207": 18, "26249271": 18, "95854922": 18, "84406229": 18, "78728123": 18, "67601119": 18, "64692182": 18, "6176926": 18, "60894839": 18, "60450488": 18, "45647307": 18, "34221175": 18, "30205558": 18, "29872462": 18, "29333685": 18, "28960929": 18, "28738673": 18, "28743635": 18, "01551367": 18, "92684212": 18, "87024088": 18, "75932672": 18, "73040366": 18, "72631957": 18, "64263557": 18, "63808699": 18, "53973778": 18, "40017748": 18, "30797264": 18, "30409229": 18, "29746883": 18, "29261721": 18, "28948639": 18, "28796838": 18, "21543358": 18, "15454241": 18, "04923128": 18, "99011567": 18, "98671552": 18, "98310429": 18, "87532583": 18, "87120056": 18, "64807017": 18, "60751218": 18, "33510354": 18, "33014945": 18, "3205865": 18, "31189322": 18, "30470411": 18, "29497534": 18, "24402018": 18, "18345138": 18, "07825509": 18, "99439123": 18, "99110542": 18, "98762567": 18, "90504265": 18, "87597612": 18, "65319315": 18, "63762267": 18, "33948467": 18, "3343985": 18, "32463604": 18, "31556777": 18, "30788518": 18, "29670303": 18, "46518415": 18, "25675279": 18, "22731435": 18, "21935174": 18, "1913854": 18, "11326505": 18, "03165386": 18, "00314301": 18, "88281229": 18, "76848444": 18, "49282031": 18, "43715282": 18, "35095601": 18, "34009502": 18, "33025273": 18, "31129916": 18, "54706175": 18, "33922813": 18, "31009225": 18, "22762444": 18, "22474917": 18, "22169955": 18, "09012529": 18, "06164286": 18, "96704899": 18, "82799127": 18, "5776392": 18, "5217532": 18, "41022477": 18, "34899575": 18, "338429": 18, "31750116": 18, "56949432": 18, "56359638": 18, "56033575": 18, "47925381": 18, "40187371": 18, "34932349": 18, "29368981": 18, "26557547": 18, "17175739": 18, "0084355": 18, "7110423": 18, "6549509": 18, "64240401": 18, "58020699": 18, "46824794": 18, "34180036": 18, "5723779": 18, "56667319": 18, "56353138": 18, "50770101": 18, "48040632": 18, "40291521": 18, "32237702": 18, "29433087": 18, "17580618": 18, "03746466": 18, "74033273": 18, "70937585": 18, "64687068": 18, "60948593": 18, "52245194": 18, "34540078": 18, "61327044": 18, "60801497": 18, "60519383": 18, "60013854": 18, "59820991": 18, "5961448": 18, "59155638": 18, "5640031": 18, "29780848": 18, "23512441": 18, "96313622": 18, "93238057": 18, "8207369": 18, "70862276": 18, "64601296": 18, "44171237": 18, "61572641": 18, "61045503": 18, "60763686": 18, "60261566": 18, "60070985": 18, "59867496": 18, "59417395": 18, "5916806": 18, "37600032": 18, "23848599": 18, "99154717": 18, "93578386": 18, "84914562": 18, "73716793": 18, "67464783": 18, "4950705": 18, "73328051": 18, "65290729": 18, "64986218": 18, "64448946": 18, "64252114": 18, "6404623": 18, "61105659": 18, "60869728": 18, "56992278": 18, "50949592": 18, "21442115": 18, "15868685": 18, "04702336": 18, "96022004": 18, "9234437": 18, "64376455": 18, "73519938": 18, "67982643": 18, "6517578": 18, "64630121": 18, "64430186": 18, "64221505": 18, "63776544": 18, "61039161": 18, "57164816": 18, "51135617": 18, "21671527": 18, "21098726": 18, "07432268": 18, "98753812": 18, "9507733": 18, "67126142": 18, "7637881": 18, "73347284": 18, "68035391": 18, "64975343": 18, "64768095": 18, "64552627": 18, "64096246": 18, "638545": 18, "57477148": 18, "5396688": 18, "22093739": 18, "21519319": 18, "12855512": 18, "01680176": 18, "93005867": 18, "75092701": 18, "76995852": 18, "73979293": 18, "73663613": 18, "70588806": 18, "67869752": 18, "65139213": 18, "64651792": 18, "64396753": 18, "57984487": 18, "54487162": 18, "30285845": 18, "22211976": 18, "18553287": 18, "14884767": 18, "03720694": 18, "88385137": 18, "77368698": 18, "74365561": 18, "74045745": 18, "7096149": 18, "70740263": 18, "68005246": 18, "64995792": 18, "64728185": 18, "58272349": 18, "54769294": 18, "35665257": 18, "32599698": 18, "21445766": 18, "15288791": 18, "14136026": 18, "88856036": 18, "77647515": 18, "77170323": 18, "74349877": 18, "71253491": 18, "71028273": 18, "70790049": 18, "67772755": 18, "64993363": 18, "58485951": 18, "54968728": 18, "43434804": 18, "40375491": 18, "2673429": 18, "20591059": 18, "14452556": 18, "8923069": 18, "79945725": 18, "77243788": 18, "76985703": 18, "7392254": 18, "73695508": 18, "70949457": 18, "70407438": 18, "70116209": 18, "58464611": 18, "5485844": 18, "4341855": 18, "42907144": 18, "41867805": 18, "38335043": 18, "32327375": 18, "05009869": 18, "earlier": 18, "interestingli": 18, "smaller": 18, "seem": 18, "unaffect": 18, "wherea": 18, "ador": 18, "signific": 18, "node": 18, "readili": 18, "overestim": 18, "cardin": 18, "struggl": 18, "decreas": 18, "shuffl": 18, "deem": 18, "agnost": 18, "computation": 18, "firstli": 18, "dimension": 18, "reduct": 18, "investig": 18, "stakehold": 18, "importnac": 18, "despit": 18, "ensembl": 18, "randomforestclassifi": 18, "rf": 18, "slightli": 18, "named_step": 18, "feature_importances_": 18, "permutation_import": 18, "n_repeat": 18, "importances_mean": 18, "_tree": 18, "treeexplain": 18, "0x7f7772b66eb0": 18, "shap_valu": 18, "initj": 18, "force_plot": 18, "expected_valu": 18, "feature_nam": 18, "omit": 18, "strip": 18, "secur": 18, "jupyterlab": 18, "figur": 18, "debug": 18, "switch": 18, "regular": 18, "move": 18, "batch": 18, "capabl": 18, "connect": 18, "surgeon": 18, "extract": 18, "submodel": 18, "doc": 18, "torch": 18, "nn": 18, "surgeon_pytorch": 18, "get_nod": 18, "somemodel": 18, "__init__": 18, "layer1": 18, "layer2": 18, "layer3": 18, "forward": 18, "x1": 18, "relu": 18, "x2": 18, "sigmoid": 18, "tanh": 18, "model_ext": 18, "node_out": 18, "rand": 18, "tensor": 18, "5570": 18, "3652": 18, "grad_fn": 18, "sigmoidbackward0": 18, "4504": 18, "6628": 18, "constitu": [19, 26], "propos": [19, 26], "dissect": [19, 26], "viabil": [19, 26], "solv": [19, 26], "filterwarn": 19, "model2": 19, "standardis": 19, "435455": 19, "045172": 19, "if_binari": 19, "singl": 19, "analog": 20, "neurosurgeri": 20, "deepmind": 20, "adopt": 20, "thorough": [20, 21], "divid": 21, "competit": 21, "curiou": 21, "cover": [22, 33], "holdout": 22, "altern": 22, "bootstrap": 22, "estim": 22, "uncertainti": 22, "bia": 22, "introductori": 22, "walk": 22, "solid": 22, "entail": 22, "open": 22, "checklist": 22, "submit": 22, "student": 22, "fundament": 22, "preprint": 22, "typic": 22, "remedi": 22, "five": 22, "fair": 22, "fancier": 23, "xai": 23, "beauti": 23, "deepviz": 23, "toolbox": 23, "video": [32, 33], "euroscipi": [32, 33], "basel": 32, "switzerland": 32, "02": 33, "youtub": 33, "crisi": 33, "danger": 33, "unsustain": 33, "aros": 33, "brunt": 33, "nowadai": 33, "spot": 33, "insuffici": 33, "teach": 33, "lesson": 33, "overview": 33, "scene": 33, "loos": 33, "session": 33, "disproportion": 33, "reusabl": 33, "snippet": 33}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"bibliographi": [0, 20, 21, 22, 23, 24, 25], "cite": 1, "thi": 1, "work": 1, "us": [2, 5, 33], "conda": [2, 3], "appl": 3, "m1": 3, "chip": 3, "data": [4, 13, 14, 17], "instal": 5, "avoid": [5, 33], "pip": 5, "increas": [6, 10, 27, 30, 31, 32], "citat": [6, 10, 27, 30, 31, 32], "eas": [6, 11, 28, 29, 31, 32], "review": [6, 11, 28, 29, 31, 32], "foster": [6, 9, 26, 27, 28, 29, 30, 31], "collabor": [6, 9, 26, 27, 28, 29, 30, 31, 32], "privaci": 7, "polici": 7, "log": 7, "file": 7, "cooki": [7, 8], "web": 7, "beacon": 7, "googl": 7, "doubleclick": 7, "dart": 7, "third": 7, "parti": 7, "children": 7, "s": 7, "inform": 7, "onlin": 7, "onli": 7, "consent": 7, "term": 8, "condit": 8, "licens": 8, "hyperlink": 8, "our": 8, "content": 8, "ifram": 8, "liabil": 8, "reserv": 8, "right": 8, "remov": 8, "link": 8, "from": 8, "websit": 8, "disclaim": 8, "model": [9, 10, 13, 14, 15, 16, 17, 18, 22, 24, 28, 30], "evalu": [9, 11, 14, 22, 28], "benchmark": [9, 10, 15, 21, 27], "share": [9, 10, 16, 24, 30], "test": [9, 10, 11, 17, 25, 31], "interpret": [9, 11, 18, 23, 29], "ablat": [9, 19, 20, 26], "studi": [9, 19, 20, 26], "why": 12, "make": [12, 32], "reproduc": [12, 16, 32], "get": 13, "know": 13, "visual": 13, "clean": 13, "machin": [13, 17, 18, 32, 33], "learn": [13, 17, 18, 32, 33], "pre": 13, "process": 13, "train": 13, "split": 14, "stratif": 14, "cross": 14, "valid": [14, 17], "choos": 14, "appropri": 14, "metric": 14, "time": 14, "seri": 14, "spatial": 14, "conclus": 14, "dummi": 15, "classifi": 15, "dataset": 15, "domain": 15, "method": 15, "linear": 15, "standard": 15, "export": 16, "sourc": 16, "random": 16, "good": 16, "code": 16, "practic": 16, "lint": 16, "formatt": 16, "docstr": [16, 17], "depend": [16, 18], "docker": 16, "ultim": 16, "softwar": 17, "project": 17, "determinist": 17, "autom": 17, "exampl": 17, "input": 17, "inspect": 18, "partial": 18, "featur": 18, "import": 18, "tree": 18, "vs": 18, "permut": 18, "shap": 18, "resourc": [20, 21, 22, 23, 24, 25], "scientif": [28, 29, 31], "research": 32, "real": 33, "world": 33, "perspect": 33, "worst": 33, "mistak": 33, "scienc": 33}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}}) \ No newline at end of file