-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtestNeuralNetEigen.cpp
124 lines (110 loc) · 3.52 KB
/
testNeuralNetEigen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <iostream>
#include "Learning/NeuralNet.h"
#include "Utilities/Utilities.h"
#include <Eigen/Eigen>
int main(){
std::cout << "Testing NeuralNet class in NeuralNet.h\n" ;
std::cout << "Initialising neural network...\n" ;
size_t numIn = 3 ;
size_t numOut = 2 ;
size_t numHidden = 4 ;
NeuralNet myNN(numIn,numOut,numHidden) ; // numIn, numOut, numHidden
const char strA[] = "initialA.txt" ;
const char strB[] = "initialB.txt" ;
std::cout << "Saving initial weights...\n" ;
myNN.OutputNN(strA,strB) ;
MatrixXd A0 = myNN.GetWeightsA() ;
MatrixXd B0 = myNN.GetWeightsB() ;
for (int i = 0; i < A0.rows(); i++){
for (int j = 0; j < A0.cols(); j++){
std::cout << A0(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B0.rows(); i++){
for (int j = 0; j < B0.cols(); j++){
std::cout << B0(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Testing input/output calculations...\n" ;
VectorXd input(numIn) ;
std::cout << "Input values: [" ;
for (size_t i = 0; i < numIn; i++){
input(i) = rand_interval(-1,1) ;
std::cout << input(i) << "," ;
}
std::cout << "]\n" ;
VectorXd output = myNN.EvaluateNN(input) ;
std::cout << "Output values: [" ;
for (size_t i = 0; i < numOut; i++)
std::cout << output(0) << "," ;
std::cout << "]\n" ;
std::cout << "Testing mutation...\n" ;
myNN.MutateWeights() ;
const char strC[] = "newA.txt" ;
const char strD[] = "newB.txt" ;
std::cout << "Saving new weights...\n" ;
myNN.OutputNN(strC,strD) ;
MatrixXd A1 = myNN.GetWeightsA() ;
MatrixXd B1 = myNN.GetWeightsB() ;
for (int i = 0; i < A1.rows(); i++){
for (int j = 0; j < A1.cols(); j++){
std::cout << A1(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B1.rows(); i++){
for (int j = 0; j < B1.cols(); j++){
std::cout << B1(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Resetting to previous weights...\n" ;
myNN.SetWeights(A0,B0) ;
MatrixXd A2 = myNN.GetWeightsA() ;
MatrixXd B2 = myNN.GetWeightsB() ;
for (int i = 0; i < A2.rows(); i++){
for (int j = 0; j < A2.cols(); j++){
std::cout << A2(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B2.rows(); i++){
for (int j = 0; j < B2.cols(); j++){
std::cout << B2(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Testing function approximation via backpropagation..\n" ;
std::cout << "Initialising neural network...\n" ;
size_t newIn = 1 ;
size_t newOut = 1 ;
size_t newHidden = 4 ;
NeuralNet backpropNN(newIn,newOut,newHidden,TANH,UNBOUNDED) ;
vector<VectorXd> trainInputs ;
vector<VectorXd> trainTargets ;
size_t numTrain = 1000 ;
for (size_t i = 0; i < numTrain; i++){
VectorXd x(1) ;
x(0) = easymath::rand_interval(-2.0,2.0) ;
trainInputs.push_back(x) ;
VectorXd y(1) ;
y(0) = pow(x(0),3) ; // approximate f(x) = x^3
trainTargets.push_back(y) ;
}
std::cout << "Training via backpropagation...\n" ;
backpropNN.BackPropagation(trainInputs,trainTargets) ;
size_t numTest = 10 ;
std::cout << "(Truth, approximated, difference, percentage)\n" ;
for (size_t i = 0; i < numTest; i++){
VectorXd x(1) ;
x(0) = 5.0*(-1.0 + 2.0*(double)i/(double)numTest) ;
VectorXd y = backpropNN.EvaluateNN(x) ;
double t = pow(x(0),3) ;
std::cout << "(" << t << "," << y(0) << "," << t-y(0) << "," << 100.0*(t-y(0))/t << ")\n" ; ;
}
std::cout << "\n" ;
std::cout << "Testing complete!\n" ;
return 0 ;
}