-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtestMAPElitesEigen.cpp
223 lines (191 loc) · 6.55 KB
/
testMAPElitesEigen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <iostream>
#include "Learning/MAPElites.h"
#include "Learning/NeuralNet.h"
#include "Utilities/Utilities.h"
using easymath::rand_interval ;
using easymath::sum ;
int main(){
std::cout << "Testing MAPElites class in MAPElites.h\n" ;
size_t nIn = 4 ;
size_t nOut = 2 ;
size_t nHid = 5 ;
size_t nBinDim = 4 ;
size_t nBinSize = 5 ;
MatrixXd bins(nBinDim,nBinSize) ;
for (int i = 0; i < bins.rows(); i++){
double lim = 0.0 ;
for (int j = 0; j < bins.cols(); j++){
bins(i,j) = lim ;
lim += 1.0/((double)bins.cols()-1) ;
}
}
std::cout << "Behaviour bins:\n" ;
for (int i = 0; i < bins.rows(); i++){
for (int j = 0; j < bins.cols(); j++){
std::cout << bins(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Creating MAPElites object...\n" ;
MAPElites testMAP(bins,nIn,nOut,nHid) ;
std::cout << "Selecting behaviour...[" ;
VectorXd bMap(4) ;
for (int i = 0; i < bMap.size(); i++){
bMap(i) = rand_interval(0.0,1.0) ;
std::cout << bMap(i) << "," ;
}
std::cout << "]\n" ;
size_t ind = testMAP.GetIndex(bMap) ;
std::cout << "Index: " << ind << std::endl ;
std::cout << "Current NN at selected behaviour has weights:\n" ;
NeuralNet * curNN = testMAP.GetNeuralNet(bMap) ;
MatrixXd A0 = curNN->GetWeightsA() ;
MatrixXd B0 = curNN->GetWeightsB() ;
for (int i = 0; i < A0.rows(); i++){
for (int j = 0; j < A0.cols(); j++){
std::cout << A0(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B0.rows(); i++){
for (int j = 0; j < B0.cols(); j++){
std::cout << B0(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Replacing a neural net in the behaviour performance map...\n" ;
NeuralNet * newNN = new NeuralNet(nIn,nOut,nHid) ;
double eval = 10.0 ;
testMAP.UpdateMap(newNN,bMap,eval) ;
MatrixXd A1 = newNN->GetWeightsA() ;
MatrixXd B1 = newNN->GetWeightsB() ;
std::cout << "Replacement NN has weights:\n" ;
for (int i = 0; i < A1.rows(); i++){
for (int j = 0; j < A1.cols(); j++){
std::cout << A1(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B1.rows(); i++){
for (int j = 0; j < B1.cols(); j++){
std::cout << B1(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Confirming NN stored in behaviour map has been updated...\n" ;
curNN = testMAP.GetNeuralNet(bMap) ;
MatrixXd A2 = curNN->GetWeightsA() ;
MatrixXd B2 = curNN->GetWeightsB() ;
std::cout << "NN at selected behaviour has weights:\n" ;
for (int i = 0; i < A2.rows(); i++){
for (int j = 0; j < A2.cols(); j++){
std::cout << A2(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B2.rows(); i++){
for (int j = 0; j < B2.cols(); j++){
std::cout << B2(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Considering a neural net with lower performance...\n" ;
NeuralNet * anotherNN = new NeuralNet(nIn,nOut,nHid) ;
eval = 5.0 ;
testMAP.UpdateMap(anotherNN,bMap,eval) ;
MatrixXd A3 = anotherNN->GetWeightsA() ;
MatrixXd B3 = anotherNN->GetWeightsB() ;
std::cout << "Considered NN has weights:\n" ;
for (int i = 0; i < A3.rows(); i++){
for (int j = 0; j < A3.cols(); j++){
std::cout << A3(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B3.rows(); i++){
for (int j = 0; j < B3.cols(); j++){
std::cout << B3(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Confirming NN stored in behaviour map has not been overwritten...\n" ;
curNN = testMAP.GetNeuralNet(bMap) ;
A2 = curNN->GetWeightsA() ;
B2 = curNN->GetWeightsB() ;
std::cout << "NN at selected behaviour has weights:\n" ;
for (int i = 0; i < A2.rows(); i++){
for (int j = 0; j < A2.cols(); j++){
std::cout << A2(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B2.rows(); i++){
for (int j = 0; j < B2.cols(); j++){
std::cout << B2(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Writing current behaviour performance map to binary file...\n" ;
testMAP.WriteBPMapBinary("testBPWrite") ;
std::cout << "Writing performance log to binary file...\n" ;
testMAP.WritePerformanceBinary("testPLogWrite") ;
std::cout << "Writing visitation booleans to binary file...\n" ;
testMAP.WriteVisitedBinary("testVisitWrite") ;
std::cout << "Creating new MAPElites object...\n" ;
MAPElites newMAP(bins,nIn,nOut,nHid) ;
std::cout << "Initial checksums...\n" ;
double pSum0 = sum(testMAP.GetPerformanceLog()) ;
double pSum1 = sum(newMAP.GetPerformanceLog()) ;
std::cout << "testMAP: " << pSum0 << ", newMAP: " << pSum1 << std::endl ;
std::cout << "Initial visitations checksum...\n" ;
int vSum0 = 0 ;
int vSum1 = 0 ;
for (size_t i = 0; i < testMAP.GetFilledLog().size(); i++){
if (testMAP.GetFilledLog()[i])
vSum0++ ;
if (newMAP.GetFilledLog()[i])
vSum1++ ;
}
std::cout << "testMAP: " << vSum0 << ", newMAP: " << vSum1 << std::endl ;
std::cout << "Reading in binary file of behaviour performance map...\n" ;
newMAP.ReadBPMapBinary("testBPWrite") ;
std::cout << "Reading in binary file of performance log...\n" ;
newMAP.ReadPerformanceBinary("testPLogWrite") ;
std::cout << "Reading in binary file of visitation booleans...\n" ;
newMAP.ReadVisitedBinary("testVisitWrite") ;
std::cout << "Confirming NN stored in behaviour map matches saved map...\n" ;
curNN = newMAP.GetNeuralNet(bMap) ;
A3 = curNN->GetWeightsA() ;
B3 = curNN->GetWeightsB() ;
std::cout << "NN at selected behaviour has weights:\n" ;
for (int i = 0; i < A3.rows(); i++){
for (int j = 0; j < A3.cols(); j++){
std::cout << A3(i,j) << "," ;
}
std::cout << std::endl ;
}
for (int i = 0; i < B3.rows(); i++){
for (int j = 0; j < B3.cols(); j++){
std::cout << B3(i,j) << "," ;
}
std::cout << std::endl ;
}
std::cout << "Confirming stored performances match via checksum...\n" ;
pSum0 = sum(testMAP.GetPerformanceLog()) ;
pSum1 = sum(newMAP.GetPerformanceLog()) ;
std::cout << "testMAP: " << pSum0 << ", newMAP: " << pSum1 << std::endl ;
std::cout << "Confirming stored visitations match via checksum...\n" ;
vSum0 = 0 ;
vSum1 = 0 ;
for (size_t i = 0; i < testMAP.GetFilledLog().size(); i++){
if (testMAP.GetFilledLog()[i])
vSum0++ ;
if (newMAP.GetFilledLog()[i])
vSum1++ ;
}
std::cout << "testMAP: " << vSum0 << ", newMAP: " << vSum1 << std::endl ;
delete(newNN) ;
delete(anotherNN) ;
std::cout << "Test complete!\n" ;
return 0 ;
}