Skip to content

Commit 9b5af41

Browse files
authored
support repvgg (#429)
Summary: * support repvgg backbone, and verify the consistency of train mode and eval mode * onnx export logger style modification
1 parent cb7a1cb commit 9b5af41

File tree

5 files changed

+360
-5
lines changed

5 files changed

+360
-5
lines changed

fastreid/modeling/backbones/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,3 +13,4 @@
1313
from .regnet import build_regnet_backbone, build_effnet_backbone
1414
from .shufflenet import build_shufflenetv2_backbone
1515
from .mobilenet import build_mobilenetv2_backbone
16+
from .repvgg import build_repvgg_backbone

fastreid/modeling/backbones/regnet/regnet.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -549,6 +549,10 @@ def build_regnet_backbone(cfg):
549549
# fmt: on
550550

551551
cfg_files = {
552+
'200x': 'fastreid/modeling/backbones/regnet/regnetx/RegNetX-200MF_dds_8gpu.yaml',
553+
'200y': 'fastreid/modeling/backbones/regnet/regnety/RegNetY-200MF_dds_8gpu.yaml',
554+
'400x': 'fastreid/modeling/backbones/regnet/regnetx/RegNetX-400MF_dds_8gpu.yaml',
555+
'400y': 'fastreid/modeling/backbones/regnet/regnety/RegNetY-400MF_dds_8gpu.yaml',
552556
'800x': 'fastreid/modeling/backbones/regnet/regnetx/RegNetX-800MF_dds_8gpu.yaml',
553557
'800y': 'fastreid/modeling/backbones/regnet/regnety/RegNetY-800MF_dds_8gpu.yaml',
554558
'1600x': 'fastreid/modeling/backbones/regnet/regnetx/RegNetX-1.6GF_dds_8gpu.yaml',

fastreid/modeling/backbones/repvgg.py

Lines changed: 309 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,309 @@
1+
# encoding: utf-8
2+
# ref: https://github.com/CaoWGG/RepVGG/blob/develop/repvgg.py
3+
4+
5+
import logging
6+
7+
import numpy as np
8+
import torch
9+
import torch.nn as nn
10+
11+
from fastreid.layers import *
12+
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
13+
from .build import BACKBONE_REGISTRY
14+
15+
logger = logging.getLogger(__name__)
16+
17+
18+
def deploy(self, mode=False):
19+
self.deploying = mode
20+
for module in self.children():
21+
if hasattr(module, 'deploying'):
22+
module.deploy(mode)
23+
24+
25+
nn.Sequential.deploying = False
26+
nn.Sequential.deploy = deploy
27+
28+
29+
def conv_bn(norm_type, in_channels, out_channels, kernel_size, stride, padding, groups=1):
30+
result = nn.Sequential()
31+
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
32+
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
33+
bias=False))
34+
result.add_module('bn', get_norm(norm_type, out_channels))
35+
return result
36+
37+
38+
class RepVGGBlock(nn.Module):
39+
40+
def __init__(self, in_channels, out_channels, norm_type, kernel_size,
41+
stride=1, padding=0, groups=1):
42+
super(RepVGGBlock, self).__init__()
43+
self.deploying = False
44+
45+
self.groups = groups
46+
self.in_channels = in_channels
47+
48+
assert kernel_size == 3
49+
assert padding == 1
50+
51+
padding_11 = padding - kernel_size // 2
52+
53+
self.nonlinearity = nn.ReLU()
54+
55+
self.in_channels = in_channels
56+
self.in_channels = in_channels
57+
self.kernel_size = kernel_size
58+
self.stride = stride
59+
self.padding = padding
60+
self.groups = groups
61+
62+
self.register_parameter('fused_weight', None)
63+
self.register_parameter('fused_bias', None)
64+
65+
self.rbr_identity = get_norm(norm_type, in_channels) if out_channels == in_channels and stride == 1 else None
66+
self.rbr_dense = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
67+
stride=stride, padding=padding, groups=groups)
68+
self.rbr_1x1 = conv_bn(norm_type, in_channels=in_channels, out_channels=out_channels, kernel_size=1,
69+
stride=stride, padding=padding_11, groups=groups)
70+
71+
def forward(self, inputs):
72+
if self.deploying:
73+
assert self.fused_weight is not None and self.fused_bias is not None, \
74+
"Make deploy mode=True to generate fused weight and fused bias first"
75+
fused_out = self.nonlinearity(torch.nn.functional.conv2d(
76+
inputs, self.fused_weight, self.fused_bias, self.stride, self.padding, 1, self.groups))
77+
return fused_out
78+
79+
if self.rbr_identity is None:
80+
id_out = 0
81+
else:
82+
id_out = self.rbr_identity(inputs)
83+
out = self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
84+
85+
return out
86+
87+
def get_equivalent_kernel_bias(self):
88+
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
89+
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
90+
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
91+
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
92+
93+
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
94+
if kernel1x1 is None:
95+
return 0
96+
else:
97+
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
98+
99+
def _fuse_bn_tensor(self, branch):
100+
if branch is None:
101+
return 0, 0
102+
if isinstance(branch, nn.Sequential):
103+
kernel = branch.conv.weight
104+
running_mean = branch.bn.running_mean
105+
running_var = branch.bn.running_var
106+
gamma = branch.bn.weight
107+
beta = branch.bn.bias
108+
eps = branch.bn.eps
109+
else:
110+
assert branch.__class__.__name__.find('BatchNorm') != -1
111+
if not hasattr(self, 'id_tensor'):
112+
input_dim = self.in_channels // self.groups
113+
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
114+
for i in range(self.in_channels):
115+
kernel_value[i, i % input_dim, 1, 1] = 1
116+
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
117+
kernel = self.id_tensor
118+
running_mean = branch.running_mean
119+
running_var = branch.running_var
120+
gamma = branch.weight
121+
beta = branch.bias
122+
eps = branch.eps
123+
std = (running_var + eps).sqrt()
124+
t = (gamma / std).reshape(-1, 1, 1, 1)
125+
return kernel * t, beta - running_mean * gamma / std
126+
127+
def deploy(self, mode=False):
128+
self.deploying = mode
129+
if mode:
130+
fused_weight, fused_bias = self.get_equivalent_kernel_bias()
131+
self.register_parameter('fused_weight', nn.Parameter(fused_weight))
132+
self.register_parameter('fused_bias', nn.Parameter(fused_bias))
133+
del self.rbr_identity, self.rbr_1x1, self.rbr_dense
134+
135+
136+
class RepVGG(nn.Module):
137+
138+
def __init__(self, last_stride, norm_type, num_blocks, width_multiplier=None, override_groups_map=None):
139+
super(RepVGG, self).__init__()
140+
141+
assert len(width_multiplier) == 4
142+
143+
self.deploying = False
144+
self.override_groups_map = override_groups_map or dict()
145+
146+
assert 0 not in self.override_groups_map
147+
148+
self.in_planes = min(64, int(64 * width_multiplier[0]))
149+
150+
self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, norm_type=norm_type,
151+
kernel_size=3, stride=2, padding=1)
152+
self.cur_layer_idx = 1
153+
self.stage1 = self._make_stage(int(64 * width_multiplier[0]), norm_type, num_blocks[0], stride=2)
154+
self.stage2 = self._make_stage(int(128 * width_multiplier[1]), norm_type, num_blocks[1], stride=2)
155+
self.stage3 = self._make_stage(int(256 * width_multiplier[2]), norm_type, num_blocks[2], stride=2)
156+
self.stage4 = self._make_stage(int(512 * width_multiplier[3]), norm_type, num_blocks[3], stride=last_stride)
157+
158+
def _make_stage(self, planes, norm_type, num_blocks, stride):
159+
strides = [stride] + [1] * (num_blocks - 1)
160+
blocks = []
161+
for stride in strides:
162+
cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
163+
blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, norm_type=norm_type,
164+
kernel_size=3, stride=stride, padding=1, groups=cur_groups))
165+
self.in_planes = planes
166+
self.cur_layer_idx += 1
167+
return nn.Sequential(*blocks)
168+
169+
def deploy(self, mode=False):
170+
self.deploying = mode
171+
for module in self.children():
172+
if hasattr(module, 'deploying'):
173+
module.deploy(mode)
174+
175+
def forward(self, x):
176+
out = self.stage0(x)
177+
out = self.stage1(out)
178+
out = self.stage2(out)
179+
out = self.stage3(out)
180+
out = self.stage4(out)
181+
return out
182+
183+
184+
optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
185+
g2_map = {l: 2 for l in optional_groupwise_layers}
186+
g4_map = {l: 4 for l in optional_groupwise_layers}
187+
188+
189+
def create_RepVGG_A0(last_stride, norm_type):
190+
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
191+
width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None)
192+
193+
194+
def create_RepVGG_A1(last_stride, norm_type):
195+
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
196+
width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)
197+
198+
199+
def create_RepVGG_A2(last_stride, norm_type):
200+
return RepVGG(last_stride, norm_type, num_blocks=[2, 4, 14, 1],
201+
width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None)
202+
203+
204+
def create_RepVGG_B0(last_stride, norm_type):
205+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
206+
width_multiplier=[1, 1, 1, 2.5], override_groups_map=None)
207+
208+
209+
def create_RepVGG_B1(last_stride, norm_type):
210+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
211+
width_multiplier=[2, 2, 2, 4], override_groups_map=None)
212+
213+
214+
def create_RepVGG_B1g2(last_stride, norm_type):
215+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
216+
width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map)
217+
218+
219+
def create_RepVGG_B1g4(last_stride, norm_type):
220+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
221+
width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map)
222+
223+
224+
def create_RepVGG_B2(last_stride, norm_type):
225+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
226+
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None)
227+
228+
229+
def create_RepVGG_B2g2(last_stride, norm_type):
230+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
231+
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map)
232+
233+
234+
def create_RepVGG_B2g4(last_stride, norm_type):
235+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
236+
width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map)
237+
238+
239+
def create_RepVGG_B3(last_stride, norm_type):
240+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
241+
width_multiplier=[3, 3, 3, 5], override_groups_map=None)
242+
243+
244+
def create_RepVGG_B3g2(last_stride, norm_type):
245+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
246+
width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map)
247+
248+
249+
def create_RepVGG_B3g4(last_stride, norm_type):
250+
return RepVGG(last_stride, norm_type, num_blocks=[4, 6, 16, 1],
251+
width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map)
252+
253+
254+
@BACKBONE_REGISTRY.register()
255+
def build_repvgg_backbone(cfg):
256+
"""
257+
Create a RepVGG instance from config.
258+
Returns:
259+
RepVGG: a :class: `RepVGG` instance.
260+
"""
261+
262+
# fmt: off
263+
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
264+
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
265+
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
266+
bn_norm = cfg.MODEL.BACKBONE.NORM
267+
depth = cfg.MODEL.BACKBONE.DEPTH
268+
# fmt: on
269+
270+
func_dict = {
271+
'A0': create_RepVGG_A0,
272+
'A1': create_RepVGG_A1,
273+
'A2': create_RepVGG_A2,
274+
'B0': create_RepVGG_B0,
275+
'B1': create_RepVGG_B1,
276+
'B1g2': create_RepVGG_B1g2,
277+
'B1g4': create_RepVGG_B1g4,
278+
'B2': create_RepVGG_B2,
279+
'B2g2': create_RepVGG_B2g2,
280+
'B2g4': create_RepVGG_B2g4,
281+
'B3': create_RepVGG_B3,
282+
'B3g2': create_RepVGG_B3g2,
283+
'B3g4': create_RepVGG_B3g4,
284+
}
285+
286+
model = func_dict[depth](last_stride, bn_norm)
287+
288+
if pretrain:
289+
try:
290+
state_dict = torch.load(pretrain_path, map_location=torch.device("cpu"))
291+
logger.info(f"Loading pretrained model from {pretrain_path}")
292+
except FileNotFoundError as e:
293+
logger.info(f'{pretrain_path} is not found! Please check this path.')
294+
raise e
295+
except KeyError as e:
296+
logger.info("State dict keys error! Please check the state dict.")
297+
raise e
298+
299+
incompatible = model.load_state_dict(state_dict, strict=False)
300+
if incompatible.missing_keys:
301+
logger.info(
302+
get_missing_parameters_message(incompatible.missing_keys)
303+
)
304+
if incompatible.unexpected_keys:
305+
logger.info(
306+
get_unexpected_parameters_message(incompatible.unexpected_keys)
307+
)
308+
309+
return model

tests/test_repvgg.py

Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
import sys
2+
import unittest
3+
4+
import torch
5+
6+
sys.path.append('.')
7+
from fastreid.config import get_cfg
8+
from fastreid.modeling.backbones import build_backbone
9+
10+
11+
class MyTestCase(unittest.TestCase):
12+
def test_fusebn(self):
13+
cfg = get_cfg()
14+
cfg.defrost()
15+
cfg.MODEL.BACKBONE.NAME = 'build_repvgg_backbone'
16+
cfg.MODEL.BACKBONE.DEPTH = 'B1g2'
17+
cfg.MODEL.BACKBONE.PRETRAIN = False
18+
model = build_backbone(cfg)
19+
model.eval()
20+
21+
test_inp = torch.randn((1, 3, 256, 128))
22+
23+
y = model(test_inp)
24+
25+
model.deploy(mode=True)
26+
from ipdb import set_trace; set_trace()
27+
fused_y = model(test_inp)
28+
29+
print("final error :", torch.max(torch.abs(fused_y - y)).item())
30+
31+
32+
if __name__ == '__main__':
33+
unittest.main()

0 commit comments

Comments
 (0)