diff --git a/Exams/Final/Final.ipynb b/Exams/Final/Final.ipynb new file mode 100644 index 0000000..03c637d --- /dev/null +++ b/Exams/Final/Final.ipynb @@ -0,0 +1,252 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Final Exam\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github//afarbin/DATA1401-Spring-2020/blob/master/Exams/Final/Final.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall the drawing system from lecture 18:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Canvas:\n", + " def __init__(self, width, height):\n", + " self.width = width\n", + " self.height = height\n", + " self.data = [[' '] * width for i in range(height)]\n", + "\n", + " def set_pixel(self, row, col, char='*'):\n", + " self.data[row][col] = char\n", + "\n", + " def get_pixel(self, row, col):\n", + " return self.data[row][col]\n", + " \n", + " def h_line(self, x, y, w, **kargs):\n", + " for i in range(x,x+w):\n", + " self.set_pixel(i,y, **kargs)\n", + "\n", + " def v_line(self, x, y, h, **kargs):\n", + " for i in range(y,y+h):\n", + " self.set_pixel(x,i, **kargs)\n", + " \n", + " def line(self, x1, y1, x2, y2, **kargs):\n", + " slope = (y2-y1) / (x2-x1)\n", + " for y in range(y1,y2):\n", + " x= int(slope * y)\n", + " self.set_pixel(x,y, **kargs)\n", + " \n", + " def display(self):\n", + " print(\"\\n\".join([\"\".join(row) for row in self.data]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Shape:\n", + " def __init__(self, name=\"\", **kwargs):\n", + " self.name=name\n", + " self.kwargs=kwargs\n", + " \n", + " def paint(self, canvas): pass\n", + "\n", + "class Rectangle(Shape):\n", + " def __init__(self, x, y, w, h, **kwargs):\n", + " Shape.__init__(self, **kwargs)\n", + " self.x = x\n", + " self.y = y\n", + " self.w = w\n", + " self.h = h\n", + "\n", + " def paint(self, canvas):\n", + " canvas.h_line(self.x, self.y, self.w, **self.kwargs)\n", + " canvas.h_line(self.x, self.y + self.h, self.w, **self.kwargs)\n", + " canvas.v_line(self.x, self.y, self.h, **self.kwargs)\n", + " canvas.v_line(self.x + self.w, self.y, self.h, **self.kwargs)\n", + "\n", + "class Square(Rectangle):\n", + " def __init__(self, x, y, size, **kwargs):\n", + " Rectangle.__init__(self, x, y, size, size, **kwargs)\n", + "\n", + "class Line(Shape):\n", + " def __init__(self, x1, y1, x2, y2, **kwargs):\n", + " Shape.__init__(self, **kwargs)\n", + " self.x1=x1\n", + " self.y1=y1\n", + " self.x2=x2\n", + " self.y2=y2\n", + " \n", + " def paint(self, canvas):\n", + " canvas.line(self.x1,self.y1,self.x2,self.y2)\n", + " \n", + "class CompoundShape(Shape):\n", + " def __init__(self, shapes):\n", + " self.shapes = shapes\n", + "\n", + " def paint(self, canvas):\n", + " for s in self.shapes:\n", + " s.paint(canvas)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class RasterDrawing:\n", + " def __init__(self):\n", + " self.shapes=dict()\n", + " self.shape_names=list()\n", + " \n", + " def add_shape(self,shape):\n", + " if shape.name == \"\":\n", + " shape.name = self.assign_name()\n", + " \n", + " self.shapes[shape.name]=shape\n", + " self.shape_names.append(shape.name)\n", + " \n", + " def paint(self,canvas):\n", + " for shape_name in self.shape_names:\n", + " self.shapes[shape_name].paint(canvas)\n", + " \n", + " def assign_name(self):\n", + " name_base=\"shape\"\n", + " name = name_base+\"_0\"\n", + " \n", + " i=1\n", + " while name in self.shapes:\n", + " name = name_base+\"_\"+str(i)\n", + " \n", + " return name\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Add `Point` and `Triangle` classes and test them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Add an `Arc` class that is instantiated with a center location, two axis lengths, and starting and ending angles. If start and end are not specified or are the same angle, the `Arc` instance should draw an oval. If in addition the two axes are the same, the `Arc` instance should draw a circle. Create `Oval` and `Circle` classes that inherit from `Arc`. Test everything." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. Use your classes to create a `RasterDrawing` that draws a happy face." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Add to the `Shape` base class a `__str__()` method. Overwrite the method in each shape to generate a string of the python code necessary to reinstantiate the object. For example, for a rectangle originally instantiated using `Square(5,5,20,char=\"^\")`, `__str__()` should return the string `'Square(5,5,20,char=\"^\")'`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. Add to `RasterDrawing` two functions, `save(filename)` and `load(filename)`. The save function writes the `__str__()` of all of the shapes in the drawing to a file (one shape per line). The load function, reads the file, and instantiates each object using the python `eval(expression)` function, and adds each shape to the drawing, thereby recreating a \"saved\" raster drawing. Use this functionality to save and load your happy face.\n", + "\n", + " `eval` takes a string that contains a fragment of a python code and executes it. Consider the following examples: " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "eval(\"print('Hello')\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x = eval('1+2')\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Exams/Mid-term/Exam.ipynb b/Exams/Mid-term/Exam.ipynb new file mode 100644 index 0000000..5200376 --- /dev/null +++ b/Exams/Mid-term/Exam.ipynb @@ -0,0 +1,199 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Mid-term Exam\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github//afarbin/DATA1401-Spring-2020/blob/master/Exams/Mid-term/Exam.ipynb)\n", + "\n", + "Add cells to this notebook as you need for your solutions and your test of your solutions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Write a function `first_alphabetically(lst)` that takes a list `lst` of strings and returns the string that is alphabetically first. For example, calling your function with the list of states:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "states=['Mississippi', 'Maryland', 'Delaware', 'Connecticut', 'Virginia', 'Utah', 'Kansas',\n", + " 'Wyoming', 'Indiana', 'Louisiana', 'Missouri', 'Illinois', 'Minnesota', 'Vermont', \n", + " 'New Mexico', 'North Dakota', 'Wisconsin', 'Tennessee', 'New York', 'Oklahoma', \n", + " 'Colorado', 'Pennsylvania', 'West Virginia', 'Alabama', 'Montana', 'Texas', \n", + " 'Washington', 'Michigan', 'New Hampshire', 'Arkansas', 'Hawaii', 'Iowa', \n", + " 'Idaho', 'Kentucky', 'Ohio', 'Nebraska', 'Alaska', 'Oregon', 'South Dakota', \n", + " 'New Jersey', 'Florida', 'Georgia', 'Rhode Island', 'Arizona', 'Maine', \n", + " 'South Carolina', 'California', 'Nevada', 'Massachusetts', 'North Carolina']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "should return the string `\"Alabama\"`. Note that you can compare strings:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"A\">\"B\")\n", + "print(\"B\">\"A\")\n", + "print(\"A\">\"a\")\n", + "print(\"bca\">\"bbc\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make sure your implementation isn't case sensitive. Do not use python's built-in `min`, `max`, `sort` or any other sort function you find." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Write a function `arg_first_alphabetically(lst)`, which does the same thing as in exercise 1 but returns the index of the first string alphabetically." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. Use your result in question 2 to implement a function `arg_sort_alphabetically(lst)` that returns a list that is alphabetically sorted. Sorting can be accomplished by successively applying the function in question 1 and removing the first element alphabetically. You can remove an element from a list using `pop()`. Make sure your implementation isn't case sensitive. Do not use python's built-in `min`, `max`, `sort` or any other sort function you find." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Implement a function `outer_product` that takes two one-dimensional lists of numbers and returns the two-dimensional outer product matrix defined as:\n", + "\n", + "\\begin{equation*}\n", + "\\begin{pmatrix} x_1\\\\x_2\\\\ \\vdots \\\\x_m \\end{pmatrix} \\begin{pmatrix} y_1&y_2& \\dots &y_n\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + "x_1y_1 & x_1y_2 & \\dots & x_1y_n\\\\\n", + "x_2y_1 & x_2y_2 & \\dots & x_2y_n\\\\\n", + "\\vdots & \\vdots & \\ddots & \\vdots \\\\\n", + "x_my_1 & x_my_2 & \\dots & x_my_n\n", + "\\end{pmatrix}\n", + "\\end{equation*}\n", + "\n", + "In other words the elements of matrix C which is the outer product of A and B are $c_{ij} = a_i b_j$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. Implement a function `cumulative_sum(lst)` that takes a list of numbers and returns a list of same size where the element `i` is the sum of the elements `0` to `i` of the input list. For example given `[1,2,3]`, you should return [1,3,6]." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. Imagine you have a normal distributed random variable `x`. For example `x` can be grades on this exam. Using the normal distribution generator and histogram functions from lecture (provided below) and `cumulative_sum` from previous question to compute what is the value of $x_{90}$ in $\\sigma$ such that 90% of the values $x$ are below $x_{90}$. In other words:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\int_{-\\infty}^{x_{90}} N(x;\\mu=0,\\sigma=1) dx = 0.9\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import math,random\n", + "\n", + "def arange(x_min,x_max,steps=10):\n", + " step_size=(x_max-x_min)/steps\n", + " x=x_min\n", + " out = list()\n", + " for i in range(steps):\n", + " out.append(x)\n", + " x+=step_size\n", + " return out\n", + "\n", + "def generate_normal(N,m=0,s=1):\n", + " out = list() \n", + " \n", + " while len(out)=bin_edges[i] and d0: \n", + " print (\"Type of Data Contents:\", type(data[0]))\n", + " print (\"Data Minimum:\", min(data))\n", + " print (\"Data Maximum:\", max(data))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 2a:* \n", + "Write a function that computes the mean of values in a list." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Skeleton\n", + "def mean(Data):\n", + " m=0.\n", + " \n", + " ### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + " ### END SOLUTION\n", + " \n", + " return m" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Test your solution here\n", + "print (\"Mean of Data:\", mean(data))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 2b:* \n", + "Write a function that computes the variance of values in a list." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Skeleton\n", + "def variance(Data):\n", + " m=0.\n", + " \n", + " ### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + " ### END SOLUTION\n", + " \n", + " return m" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Test your solution here\n", + "print (\"Variance of Data:\", variance(data))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Histogramming" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 3:* Write a function that bins the data so that you can create a histogram. An example of how to implement histogramming is the following logic:\n", + "\n", + "* User inputs a list of values `x` and optionally `n_bins` which defaults to 10.\n", + "* If not supplied, find the minimum and maximum (`x_min`,`x_max`) of the values in x.\n", + "* Determine the bin size (`bin_size`) by dividing the range of the function by the number of bins.\n", + "* Create an empty list of zeros of size `n_bins`, call it `hist`.\n", + "* Loop over the values in `x`\n", + " * Loop over the values in `hist` with index `i`:\n", + " * If x is between `x_min+i*bin_size` and `x_min+(i+1)*bin_size`, increment `hist[i].` \n", + " * For efficiency, try to use continue to goto the next bin and data point.\n", + "* Return `hist` and the list corresponding of the bin edges (i.e. of `x_min+i*bin_size`). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution\n", + "def histogram(x,n_bins=10,x_min=None,x_max=None):\n", + " ### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + " ### END SOLUTION\n", + "\n", + " return hist,bin_edges" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Test your solution here\n", + "h,b=histogram(data,100)\n", + "print(h)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 4:* Write a function that uses the histogram function in the previous exercise to create a text-based \"graph\". For example the output could look like the following:\n", + "```\n", + "[ 0, 1] : ######\n", + "[ 1, 2] : #####\n", + "[ 2, 3] : ######\n", + "[ 3, 4] : ####\n", + "[ 4, 5] : ####\n", + "[ 5, 6] : ######\n", + "[ 6, 7] : #####\n", + "[ 7, 8] : ######\n", + "[ 8, 9] : ####\n", + "[ 9, 10] : #####\n", + "```\n", + "\n", + "Where each line corresponds to a bin and the number of `#`'s are proportional to the value of the data in the bin. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution\n", + "def draw_histogram(x,n_bins,x_min=None,x_max=None,character=\"#\",max_character_per_line=20):\n", + " ### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + " ### END SOLUTION\n", + "\n", + " return hist,bin_edges" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Test your solution here\n", + "h,b=histogram(data,20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Functional Programming\n", + "\n", + "*Exercise 5:* Write a function the applies a booling function (that returns true/false) to every element in data, and return a list of indices of elements where the result was true. Use this function to find the indices of entries greater than 0.5. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def where(mylist,myfunc):\n", + " out= []\n", + " \n", + " ### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + " ### END SOLUTION\n", + " \n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Test your solution here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 6:* The inrange(mymin,mymax) function below returns a function that tests if it's input is between the specified values. Write corresponding functions that test:\n", + "* Even\n", + "* Odd\n", + "* Greater than\n", + "* Less than\n", + "* Equal\n", + "* Divisible by" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def in_range(mymin,mymax):\n", + " def testrange(x):\n", + " return x=mymin\n", + " return testrange\n", + "\n", + "# Examples:\n", + "F1=inrange(0,10)\n", + "F2=inrange(10,20)\n", + "\n", + "# Test of in_range\n", + "print (F1(0), F1(1), F1(10), F1(15), F1(20))\n", + "print (F2(0), F2(1), F2(10), F2(15), F2(20))\n", + "\n", + "print (\"Number of Entries passing F1:\", len(where(data,F1)))\n", + "print (\"Number of Entries passing F2:\", len(where(data,F2)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + "### END SOLUTION" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Test your solution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 7:* Repeat the previous exercise using `lambda` and the built-in python functions sum and map instead of your solution above. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + "### END SOLUTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Monte Carlo\n", + "\n", + "*Exercise 7:* Write a \"generator\" function called `generate_function(func,x_min,x_max,N)`, that instead of generating a flat distribution, generates a distribution with functional form coded in `func`. Note that `func` will always be > 0. \n", + "\n", + "Use the test function below and your histogramming functions above to demonstrate that your generator is working properly.\n", + "\n", + "Hint: A simple, but slow, solution is to a draw random number test_x within the specified range and another number p between the min and max of the function (which you will have to determine). If p<=function(test_x), then place test_x on the output. If not, repeat the process, drawing two new numbers. Repeat until you have the specified number of generated numbers, N. For this problem, it's OK to determine the min and max by numerically sampling the function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_function(func,x_min,x_max,N=1000):\n", + " out = list()\n", + " ### BEGIN SOLUTION\n", + "\n", + " # Fill in your solution here \n", + " \n", + " ### END SOLUTION\n", + " \n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A test function\n", + "def test_func(x,a=1,b=1):\n", + " return abs(a*x+b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 8:* Use your function to generate 1000 numbers that are normal distributed, using the `gaussian` function below. Confirm the mean and variance of the data is close to the mean and variance you specify when building the Gaussian. Histogram the data. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "\n", + "def gaussian(mean, sigma):\n", + " def f(x):\n", + " return math.exp(-((x-mean)**2)/(2*sigma**2))/math.sqrt(math.pi*sigma)\n", + " return f\n", + "\n", + "# Example Instantiation\n", + "g1=gaussian(0,1)\n", + "g2=gaussian(10,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 9:* Combine your `generate_function`, `where`, and `in_range` functions above to create an integrate function. Use your integrate function to show that approximately 68% of Normal distribution is within one variance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def integrate(func, x_min, x_max, n_points=1000):\n", + " \n", + " return integral" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Labs/Lab-5/Lab-5.ipynb b/Labs/Lab-5/Lab-5.ipynb new file mode 100644 index 0000000..84b32cc --- /dev/null +++ b/Labs/Lab-5/Lab-5.ipynb @@ -0,0 +1,246 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lab 5- Object Oriented Programming\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github//afarbin/DATA1401-Spring-2020/blob/master/Labs/Lab-5/Lab-5.ipynb)\n", + "\n", + "For all of the exercises below, make sure you provide tests of your solutions.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Write a \"counter\" class that can be incremented up to a specified maximum value, will print an error if an attempt is made to increment beyond that value, and allows reseting the counter. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "class counter:\n", + " def __init__(self,max_val):\n", + " self.max_val=max_val\n", + " self.cur_val=1\n", + " \n", + " def increment(self):\n", + " if self.cur_val>self.max_val:\n", + " print(\"Max value reached.\")\n", + " else:\n", + " self.cur_val+=1\n", + " \n", + " def reset(self):\n", + " self.cur_val=1\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "my_counter=counter(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max value reached.\n", + "Max value reached.\n" + ] + } + ], + "source": [ + "my_counter.increment()\n", + "my_counter.increment()\n", + "my_counter.increment()\n", + "my_counter.increment()\n", + "my_counter.increment()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "my_counter.cur_val=100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Copy and paste your solution to question 1 and modify it so that all the data held by the counter is private. Implement functions to check the value of the counter, check the maximum value, and check if the counter is at the maximum." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "class counter:\n", + " def __init__(self,max_val):\n", + " self.__max_val=max_val\n", + " self.__cur_val=1\n", + " \n", + " def increment(self):\n", + " if self.__cur_val>self.__max_val:\n", + " print(\"Max value reached.\")\n", + " else:\n", + " self.__cur_val+=1\n", + " \n", + " def reset(self):\n", + " self.__cur_val=1\n", + " \n", + " def cur_val(self):\n", + " return self.__cur_val\n", + "\n", + " def max_val(self):\n", + " return self.__max_val\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "my_counter=counter(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_counter.cur_val()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. Implement a class to represent a rectangle, holding the length, width, and $x$ and $y$ coordinates of a corner of the object. Implement functions that compute the area and parameter of the rectangle. Make all data members private and privide accessors to retrieve values of data members. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class rectangle:\n", + " def __init__(self,width,length,x,y):\n", + " self.__width=width\n", + " self.__length=legth\n", + " self.__x=x\n", + " self.__y=y\n", + " \n", + " def area(self):\n", + " return self.__width*self.__length\n", + " \n", + " def perimeter(self):\n", + " return 2*(self.__width+self.__length)\n", + " \n", + " def x(self):\n", + " return self.__x\n", + " \n", + " ...\n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Implement a class to represent a circle, holding the radius and $x$ and $y$ coordinates of center of the object. Implement functions that compute the area and parameter of the rectangle. Make all data members private and privide accessors to retrieve values of data members. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. Implement a common base class for the classes implemented in 3 and 4 above which implements all common methods as dummy functions. Re-implement those classes to inherit from the base class and overload the functions accordingly. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. Implement an analogous triangle class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. Add a function to the object classes that test if a given set of $x$ and $y$ coordinates are inside of the object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. Add a function to the object classes that return a list of up to 16 pairs of $x$ and $y$ points on the parameter of the object.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. Add a function in the base class of the object classes that returns true/false testing that the object overlaps with another object." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Labs/Lab-6/Lab-6.ipynb b/Labs/Lab-6/Lab-6.ipynb new file mode 100644 index 0000000..0b9fcae --- /dev/null +++ b/Labs/Lab-6/Lab-6.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lab 6\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Matrix Representation: In this lab you will be creating a simple linear algebra system. In memory, we will represent matrices as nested python lists as we have done in lecture. \n", + "\n", + "1. Create a `matrix` class with the following properties:\n", + " * It can be initialized in 2 ways:\n", + " 1. with arguments `n` and `m`, the size of the matrix. A newly instanciated matrix will contain all zeros.\n", + " 2. with a list of lists of values. Note that since we are using lists of lists to implement matrices, it is possible that not all rows have the same number of columns. Test explicitly that the matrix is properly specified.\n", + " * Matrix instances `M` can be indexed with `M[i][j]` and `M[i,j]`.\n", + " * Matrix assignment works in 2 ways:\n", + " 1. If `M_1` and `M_2` are `matrix` instances `M_1=M_2` sets the values of `M_1` to those of `M_2`, if they are the same size. Error otherwise.\n", + " 2. In example above `M_2` can be a list of lists of correct size.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Add the following methods:\n", + " * `shape()`: returns a tuple `(n,m)` of the shape of the matrix.\n", + " * `transpose()`: returns a new matrix instance which is the transpose of the matrix.\n", + " * `row(n)` and `column(n)`: that return the nth row or column of the matrix M as a new appropriately shaped matrix object.\n", + " * `to_list()`: which returns the matrix as a list of lists.\n", + " * `block(n_0,n_1,m_0,m_1)` that returns a smaller matrix located at the n_0 to n_1 columns and m_0 to m_1 rows. \n", + " * (Extra credit) Modify `__getitem__` implemented above to support slicing.\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. Write functions that create special matrices (note these are standalone functions, not member functions of your `matrix` class):\n", + " * `constant(n,m,c)`: returns a `n` by `m` matrix filled with floats of value `c`.\n", + " * `zeros(n,m)` and `ones(n,m)`: return `n` by `m` matrices filled with floats of value `0` and `1`, respectively.\n", + " * `eye(n)`: returns the n by n identity matrix." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. Add the following member functions to your class. Make sure to appropriately test the dimensions of the matrices to make sure the operations are correct.\n", + " * `M.scalarmul(c)`: a matrix that is scalar product $cM$, where every element of $M$ is multiplied by $c$.\n", + " * `M.add(N)`: adds two matrices $M$ and $N$. Don’t forget to test that the sizes of the matrices are compatible for this and all other operations.\n", + " * `M.sub(N)`: subtracts two matrices $M$ and $N$.\n", + " * `M.mat_mult(N)`: returns a matrix that is the matrix product of two matrices $M$ and $N$.\n", + " * `M.element_mult(N)`: returns a matrix that is the element-wise product of two matrices $M$ and $N$.\n", + " * `M.equals(N)`: returns true/false if $M==N$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. Overload python operators to appropriately use your functions in 4 and allow expressions like:\n", + " * 2*M\n", + " * M*2\n", + " * M+N\n", + " * M-N\n", + " * M*N\n", + " * M==N\n", + " * M=N\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. Demonstrate the basic properties of matrices with your matrix class by creating two 2 by 2 example matrices using your Matrix class and illustrating the following:\n", + "\n", + "$$\n", + "(AB)C=A(BC)\n", + "$$\n", + "$$\n", + "A(B+C)=AB+AC\n", + "$$\n", + "$$\n", + "AB\\neq BA\n", + "$$\n", + "$$\n", + "AI=A\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Labs/Lab-7/Data1401-Grades.csv b/Labs/Lab-7/Data1401-Grades.csv new file mode 100644 index 0000000..ad6e2f6 --- /dev/null +++ b/Labs/Lab-7/Data1401-Grades.csv @@ -0,0 +1,17 @@ +l1_n,l1_1,12_n,l2_1,l2_2,l2_3,l2_4,l2_5,l2_6,l2_7,l3_n,l3_1,l3_2,l3_3,l3_4,l3_5,l3_6,l3_7,l3_8,l3_9,l3_10,l3_11,l3_12,l3_13,l3_14,l4_n,l4_1,l4_2,l4_3,l4_4,l4_5,l4_6,l4_7,l4_8,l4_9,l4_10,l4_11,q1_n,q1_1,e1_n,e1_1,e1_2,e1_3,e1_4,e1_5,e1_6,e1_7,e1_8,e1_9,e1_10,e1_11,e1_12,e1_13,e1_14,e1_15 +1,10,7,0,10,10,8,10,10,10,14,9,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,9.5,15,9,9,0,9,8,0,0,0,0,0,0,0,0,0,0 +1,10,7,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +1,10,7,0,0,0,0,0,0,0,14,9,10,10,10,7,10,3,6,3,3,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,5,15,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0 +1,10,7,10,10,3,9.5,10,10,9.5,14,10,10,10,8,5,10,5,10,3,0,10,3,10,8,11,10,10,10,10,10,10,0,0,10,5,0,1,10,15,9,9,10,9,7,9,0,0,10,10,9,5,10,8,10 +1,10,7,10,10,9.5,0,10,10,0,14,9.5,0,0,10,0,10,5,10,7,0,10,6,10,0,11,10,10,6,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,5,0,7,0,3,3,3,0,3,0,0 +1,10,7,10,10,10,9.5,10,10,9.5,14,5,9.5,9.5,8,10,10,8,10,8,0,5,6,0,0,11,0,10,10,10,0,5,0,0,0,0,0,1,9.5,15,9,9,10,9,9,10,7,0,9,9,9,0,5,0,0 +1,10,7,10,10,0,5,10,10,9.5,14,9.5,10,10,8,10,8,9,0,0,0,0,0,0,0,11,0,10,10,0,0,10,0,0,0,0,0,1,10,15,9,9,10,9,0,0,0,0,0,0,0,0,0,0,0 +1,10,7,10,10,10,9.5,10,10,9.5,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,3,3,0,0,5,0,0,1,10,15,9,9,10,0,10,0,7,5,9,9,9,0,0,0,0 +1,10,7,0,10,9.5,0,10,10,0,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,5,3,0,3,10,7,0,1,9.5,15,9,9,10,5,10,0,9,9,9,9,9,10,5,0,0 +1,10,7,10,10,0,10,10,10,10,14,10,6,10,0,0,0,0,0,0,0,0,0,0,0,11,10,10,0,7,0,0,0,0,0,0,0,1,9.5,15,9,9,10,9,5,9,7,9,10,10,10,5,10,5,0 +1,10,7,10,10,0,0,10,10,7,14,10,10,10,10,7,10,6,3,10,10,10,10,10,10,11,10,10,10,10,10,5,10,10,10,10,10,1,0,15,9,9,9,9,9,10,9,9,10,10,10,10,10,5,10 +1,10,7,10,10,9.5,9.5,10,10,9.5,14,9.5,10,10,10,8,10,8,10,10,7,5,0,0,0,11,10,10,10,10,5,6,0,0,0,0,0,1,10,15,9,9,10,9,8,9,7,9,10,10,10,10,0,0,0 +1,10,7,10,10,5,9.5,10,10,9.5,14,5,9,9,10,7,10,10,10,10,7,10,3,5,10,11,0,0,0,0,0,0,0,0,0,0,0,1,10,15,9,9,9,8,7,10,0,9,10,9,10,9,5,0,0 +1,10,7,10,10,9.5,0,10,10,0,14,9.5,10,10,10,10,10,10,10,0,0,10,5,10,10,11,0,10,10,0,0,5,0,0,0,0,0,1,0,15,9,9,10,0,8,9,7,9,10,10,10,10,10,0,0 +1,10,7,10,10,9.5,9,10,10,9.5,14,10,10,10,10,10,10,9,10,3,0,3,3,5,2,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,9,9,10,5,5,0,0,10,10,10,10,0,10,5,10 +1,10,7,10,10,3,7,10,10,9,14,10,10,10,10,0,10,9,10,7,7,3,7,5,8,11,10,10,10,8,5,3,0,0,7,0,0,1,9.5,15,9,9,10,10,7,10,10,10,10,10,10,10,9,8,2 diff --git a/Labs/Lab-7/Lab-7.ipynb b/Labs/Lab-7/Lab-7.ipynb new file mode 100644 index 0000000..5a9197d --- /dev/null +++ b/Labs/Lab-7/Lab-7.ipynb @@ -0,0 +1,586 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lab 7\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github//afarbin/DATA1401-Spring-2020/blob/master/Labs/Lab-7/Lab-7.ipynb)\n", + "\n", + "Here are the \"Gradebook\" classes from lecture. For this lab, you will use these classes and are encouraged to modify them as you need." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import math\n", + "\n", + "# Create some virtual classes\n", + "class base:\n", + " __name=\"\"\n", + " \n", + " def __init__(self,name):\n", + " self.__name=name\n", + "\n", + " def name(self):\n", + " return self.__name\n", + "\n", + "class data(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n", + " \n", + "class alg(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class grade(data):\n", + " __value=0\n", + " __numerical=True\n", + " __gradebook_name=str()\n", + " __letter_grades=[\"F-\",\"F\",\"F+\",\"D-\",\"D\",\"D+\",\"C-\",\"C\",\"C+\",\"B-\",\"B\",\"B+\",\"A-\",\"A\",\"A+\"]\n", + " \n", + " def __init__(self,name,numerical=True,value=None):\n", + " if value:\n", + " if isinstance(value,(int,float)):\n", + " self.__numerical=True\n", + " elif isinstance(value,str):\n", + " self.__numerical=False\n", + " self.set(value)\n", + " else: \n", + " self.__numerical=numerical\n", + " self.__gradebook_name=name\n", + " data.__init__(self,name+\" Grade Algorithm\") \n", + "\n", + " def set(self,value):\n", + " if isinstance(value,(int,float)) and self.__numerical:\n", + " self.__value=value\n", + " elif isinstance(value,str) and not self.__numerical:\n", + " if value in self.__letter_grades:\n", + " self.__value=value\n", + " else:\n", + " print (self.name()+\" Error: Bad Grade.\")\n", + " raise Exception\n", + " \n", + " def value(self):\n", + " return self.__value\n", + " \n", + " def numerical(self):\n", + " return self.__numerical\n", + " \n", + " def gradebook_name(self):\n", + " return self.__gradebook_name\n", + " \n", + " def __str__(self):\n", + " return self.__gradebook_name+\": \"+str(self.__value)\n", + "\n", + "class student(data):\n", + " __id_number=0\n", + " __grades=dict()\n", + " \n", + " def __init__(self,first_name, last_name,id_number):\n", + " self.__id_number=id_number\n", + " self.__grades=dict()\n", + " data.__init__(self,first_name+\" \"+last_name+\" Student Data\")\n", + "\n", + " def add_grade(self,a_grade,overwrite=False):\n", + " if overwrite or not a_grade.gradebook_name() in self.__grades:\n", + " self.__grades[a_grade.gradebook_name()]=a_grade\n", + " else:\n", + " print (self.name()+\" Error Adding Grade \"+a_grade.name()+\". Grade already exists.\")\n", + " raise Exception\n", + "\n", + " def id_number(self):\n", + " return self.__id_number\n", + " \n", + " def __getitem__(self,key):\n", + " return self.__grades[key]\n", + " \n", + " def print_grades(self):\n", + " for grade in self.__grades:\n", + " print (self.__grades[grade])\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade_book):\n", + " raise NotImplementedError\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_book(data):\n", + " # New member class to hold arbitrary data associated with the class\n", + "\n", + " __data=dict()\n", + " __students=dict()\n", + " \n", + " def __init__(self,name):\n", + " data.__init__(self,name+\" Course Grade Book\")\n", + " self.__students=dict()\n", + " self.__data=dict()\n", + " \n", + " # New method to access data\n", + " def __getitem__(self,key):\n", + " return self.__data[key]\n", + " \n", + " # New method to add data\n", + " def __setitem__(self, key, value):\n", + " self.__data[key] = value\n", + " \n", + " def add_student(self,a_student):\n", + " self.__students[a_student.id_number()]=a_student\n", + "\n", + " # New method to allow iterating over students\n", + " def get_students(self):\n", + " return self.__students\n", + " \n", + " def assign_grade(self,key,a_grade):\n", + " the_student=None\n", + " try:\n", + " the_student=self.__students[key]\n", + " except:\n", + " for id in self.__students:\n", + " if key == self.__students[id].name():\n", + " the_student=self.__students[id]\n", + " break\n", + " if the_student:\n", + " the_student.add_grade(a_grade)\n", + " else:\n", + " print (self.name()+\" Error: Did not find student.\")\n", + " \n", + " def apply_calculator(self,a_calculator,**kwargs):\n", + " a_calculator.apply(self,**kwargs)\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class uncurved_letter_grade_percent(calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__grade_name=grade_name\n", + " calculator.__init__(self,\n", + " \"Uncurved Percent Based Grade Calculator \"+self.__grade_name+\" Max=\"+str(self.__max_grade))\n", + " \n", + " def apply(self,a_grade_book,grade_name=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " \n", + " for k,a_student in a_grade_book.get_students().iteritems():\n", + " a_grade=a_student[grade_name]\n", + "\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " percent=a_grade.value()/self.__max_grade\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if percent>=v[0]:\n", + " break\n", + " \n", + " a_student.add_grade(grade(grade_name+\" Letter\",value=self.__grades_definition[i][1]))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class mean_std_calculator(calculator):\n", + " def __init__(self):\n", + " calculator.__init__(self,\"Mean and Standard Deviation Calculator\")\n", + " \n", + " def apply(self,a_grade_book,grade_name,**kwargs):\n", + " grades=list()\n", + " for k,a_student in a_grade_book.get_students().iteritems():\n", + " grades.append(a_student[grade_name].value())\n", + " \n", + " a_grade_book[grade_name+\" Mean\"] = np.mean(grades)\n", + " a_grade_book[grade_name+\" STD\"] = math.sqrt(np.var(grades))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## CSV Reader\n", + "\n", + "*Exercise 1*: The data for a class are stored in a \"camma separated values\" (CSV) file name `Data1401-Grades.csv` in the directory of this lab. You can see the contents using the `cat` shell command:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l1_n,l1_1,12_n,l2_1,l2_2,l2_3,l2_4,l2_5,l2_6,l2_7,l3_n,l3_1,l3_2,l3_3,l3_4,l3_5,l3_6,l3_7,l3_8,l3_9,l3_10,l3_11,l3_12,l3_13,l3_14,l4_n,l4_1,l4_2,l4_3,l4_4,l4_5,l4_6,l4_7,l4_8,l4_9,l4_10,l4_11,q1_n,q1_1,e1_n,e1_1,e1_2,e1_3,e1_4,e1_5,e1_6,e1_7,e1_8,e1_9,e1_10,e1_11,e1_12,e1_13,e1_14,e1_15\r", + "\r\n", + "1,10,7,0,10,10,8,10,10,10,14,9,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,9.5,15,9,9,0,9,8,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,0,0,0,0,0,0,0,14,9,10,10,10,7,10,3,6,3,3,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,5,15,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,10,10,3,9.5,10,10,9.5,14,10,10,10,8,5,10,5,10,3,0,10,3,10,8,11,10,10,10,10,10,10,0,0,10,5,0,1,10,15,9,9,10,9,7,9,0,0,10,10,9,5,10,8,10\r", + "\r\n", + "1,10,7,10,10,9.5,0,10,10,0,14,9.5,0,0,10,0,10,5,10,7,0,10,6,10,0,11,10,10,6,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,5,0,7,0,3,3,3,0,3,0,0\r", + "\r\n", + "1,10,7,10,10,10,9.5,10,10,9.5,14,5,9.5,9.5,8,10,10,8,10,8,0,5,6,0,0,11,0,10,10,10,0,5,0,0,0,0,0,1,9.5,15,9,9,10,9,9,10,7,0,9,9,9,0,5,0,0\r", + "\r\n", + "1,10,7,10,10,0,5,10,10,9.5,14,9.5,10,10,8,10,8,9,0,0,0,0,0,0,0,11,0,10,10,0,0,10,0,0,0,0,0,1,10,15,9,9,10,9,0,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,10,10,10,9.5,10,10,9.5,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,3,3,0,0,5,0,0,1,10,15,9,9,10,0,10,0,7,5,9,9,9,0,0,0,0\r", + "\r\n", + "1,10,7,0,10,9.5,0,10,10,0,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,5,3,0,3,10,7,0,1,9.5,15,9,9,10,5,10,0,9,9,9,9,9,10,5,0,0\r", + "\r\n", + "1,10,7,10,10,0,10,10,10,10,14,10,6,10,0,0,0,0,0,0,0,0,0,0,0,11,10,10,0,7,0,0,0,0,0,0,0,1,9.5,15,9,9,10,9,5,9,7,9,10,10,10,5,10,5,0\r", + "\r\n", + "1,10,7,10,10,0,0,10,10,7,14,10,10,10,10,7,10,6,3,10,10,10,10,10,10,11,10,10,10,10,10,5,10,10,10,10,10,1,0,15,9,9,9,9,9,10,9,9,10,10,10,10,10,5,10\r", + "\r\n", + "1,10,7,10,10,9.5,9.5,10,10,9.5,14,9.5,10,10,10,8,10,8,10,10,7,5,0,0,0,11,10,10,10,10,5,6,0,0,0,0,0,1,10,15,9,9,10,9,8,9,7,9,10,10,10,10,0,0,0\r", + "\r\n", + "1,10,7,10,10,5,9.5,10,10,9.5,14,5,9,9,10,7,10,10,10,10,7,10,3,5,10,11,0,0,0,0,0,0,0,0,0,0,0,1,10,15,9,9,9,8,7,10,0,9,10,9,10,9,5,0,0\r", + "\r\n", + "1,10,7,10,10,9.5,0,10,10,0,14,9.5,10,10,10,10,10,10,10,0,0,10,5,10,10,11,0,10,10,0,0,5,0,0,0,0,0,1,0,15,9,9,10,0,8,9,7,9,10,10,10,10,10,0,0\r", + "\r\n", + "1,10,7,10,10,9.5,9,10,10,9.5,14,10,10,10,10,10,10,9,10,3,0,3,3,5,2,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,9,9,10,5,5,0,0,10,10,10,10,0,10,5,10\r", + "\r\n", + "1,10,7,10,10,3,7,10,10,9,14,10,10,10,10,0,10,9,10,7,7,3,7,5,8,11,10,10,10,8,5,3,0,0,7,0,0,1,9.5,15,9,9,10,10,7,10,10,10,10,10,10,10,9,8,2\r", + "\r\n" + ] + } + ], + "source": [ + "!cat Data1401-Grades.csv " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will note that the first line has the names of the \"columns\" of data, and that subsequent lines (or \"rows\") have the data for each student, separated by cammas.\n", + "\n", + "Recalling that in lecture we created a file reader, create a CSV reader function that takes a filename as input and returns data structure(s) that store the data in the file. Note that you are not allowed to use a library. The point here is for *you* to write the CSV reader. Some options for your data structures (pick one):\n", + "\n", + "* A list of dictionaries, where each element of the list is corresponds to a row of data and the dictionaries are keyed by the column name. For example `data[5][\"l3_5\"]` corresponds to the 6th student's grade on lab 3 question 5.\n", + "\n", + "* A list of lists (i.e. a 2-D array or matrix) and a dictionary, where each element of the \"matrix\" corresponds to a a specific grade for a specific student and the dictionary maps the name of the column to the column index. For example `data[5][column_names[\"l1_5\"]]` corresponds to the 6th student's grade on lab 3 question 5.\n", + "\n", + "* A dictionary of lists, where each element of the dictionary corresponds to a column of data and the lists contain the data in that column. For example `data[\"l3_5\"][5]` corresponds to the 6th student's grade on lab 3 question 5.\n", + "\n", + "* (Extra Credit) A class that simultaneously supports all of the above methods." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your solution here.\n", + "\n", + "def cvs_reader(filename):\n", + " data=list() # if you choose first option\n", + " \n", + " return data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating a Gradebook\n", + "\n", + "*Exercise 2:* In lecture we used pandas to read the CSV file and create the grade book. The example below works for the CSV file for this lab. Modify the code below to use your CSV reader instead." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "class_data=pd.read_csv(\"Data1401-Grades.csv\")\n", + "\n", + "a_grade_book=grade_book(\"Data 1401\")\n", + "\n", + "for student_i in range(class_data.shape[0]):\n", + " a_student_0=student(\"Student\",str(student_i),student_i)\n", + "\n", + " for k in class_data.keys():\n", + " a_student_0.add_grade(grade(k,value=class_data[k][student_i]))\n", + "\n", + " a_grade_book.add_student(a_student_0)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Summing\n", + "\n", + "*Exercise 3:* In lectre we will change the design of our algorithm classes and then update the `uncurved_letter_grade_percent` calculator. In lecture we also created a `grade_summer` calcuator that takes a prefix (for example `e1_` and a number `n`) and sums all grades starting with that prefix up to `n` and creates a new sum grade. Update this calculator (below) to the new design of our algorithm classes. Test your updated calculator by using it to sum the grades for all labs, quizzes, and exams of each student." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Note this is the OLD design... you will need to modify it.\n", + "\n", + "class summary_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_student):\n", + " raise NotImplementedError\n", + "\n", + "class grade_summer(summary_calculator):\n", + " def __init__(self,prefix,n):\n", + " self.__prefix=prefix\n", + " self.__n=n\n", + " summary_calculator.__init__(self,\"Sum Grades\")\n", + " \n", + " def apply(self,a_student):\n", + " labels=[self.__prefix+str(x) for x in range(1,self.__n)]\n", + " \n", + " grade_sum=0.\n", + " for label in labels:\n", + " grade_sum+=a_student[label].value()\n", + "\n", + " a_student.add_grade(grade(self.__prefix+\"sum\",value=grade_sum))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Curving Grades\n", + "\n", + "*Exercise 4:* Use the `mean_std_calculator` above to calculate the mean and standard deviation for every lab, quiz, and exam in the class. Add a new print function to the `grade_book` class to print out such information in a nice way, and use this function to show your results.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your solution here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 5:* In lecture we will change the design of our algorithms classes and then update the `uncurved_letter_grade_percent` calculator. Do the same for the `curved_letter_grade` calculator below and by curving all the lab, quiz, and exam grades." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class curved_letter_grade(grade_calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,mean,std,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__mean=mean\n", + " self.__std=std\n", + " self.__grade_name=grade_name\n", + " grade_calculator.__init__(self,\n", + " \"Curved Percent Based Grade Calculator \"+self.__grade_name+ \\\n", + " \" Mean=\"+str(self.__mean)+\\\n", + " \" STD=\"+str(self.__std)+\\\n", + " \" Max=\"+str(self.__max_grade))\n", + " \n", + "\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Final Course Grade\n", + "\n", + "*Exercise 6:* Write a new calculator that sums grades with a prefix, as in the `grade_summer` calculator, but drops `n` lowest grades. Apply the algorithm to drop the lowest lab grade in the data.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your solution here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 7*: Write a new calculator that creates a new letter grade based on a weighted average of letter grades, by assigning the following numerical values to letter grades:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "GradeMap={\"A+\":12,\n", + " \"A\":11,\n", + " \"A-\":10,\n", + " \"B+\":9,\n", + " \"B\":8,\n", + " \"B-\":7,\n", + " \"C+\":6,\n", + " \"C\":5,\n", + " \"C-\":4,\n", + " \"D+\":3,\n", + " \"D\":2,\n", + " \"D-\":1,\n", + " \"F\":0}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Test you calculator by applying the weights from the syllabus of this course and computing everyone's grade in the course." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your solution here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-10/Lecture-10.ipynb b/Lectures/Lecture-10/Lecture-10.ipynb new file mode 100644 index 0000000..f7aec16 --- /dev/null +++ b/Lectures/Lecture-10/Lecture-10.ipynb @@ -0,0 +1,277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 10\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" + ] + } + ], + "source": [ + "#1\n", + "x=list(range(10))\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2, 3, 4]\n" + ] + } + ], + "source": [ + "#2\n", + "print(x[2:5])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[5, 4, 3]\n" + ] + } + ], + "source": [ + "#3\n", + "print(x[5:2:-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9\n" + ] + } + ], + "source": [ + "#4\n", + "print(x[-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[7, 8]\n" + ] + } + ], + "source": [ + "#5\n", + "print(x[-3:-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[7, 8, 9]\n" + ] + } + ], + "source": [ + "print(x[-3:])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]\n" + ] + } + ], + "source": [ + "#6\n", + "print(x[::-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#7\n", + "def test_matrix_0(x):\n", + " n=len(x)\n", + " for i in range(n):\n", + " if not x[i][i]==x[0][0]:\n", + " return False\n", + " return True\n", + "\n", + "\n", + "def test_matrix_1(x):\n", + " n=len(x)\n", + " for i in range(n):\n", + " if not x[i][n-i-1]==x[0][n-1]:\n", + " return False\n", + " return True " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n", + "False\n", + "True\n", + "False\n" + ] + } + ], + "source": [ + "print (test_matrix_0( [[ 0,0,0],\n", + " [ 0,0,0],\n", + " [ 0,0,0]] ))\n", + "\n", + "print (test_matrix_0( [[ 1,0,0],\n", + " [ 0,0,0],\n", + " [ 0,0,0]] ))\n", + "\n", + "print (test_matrix_1( [[ 1,0,0],\n", + " [ 0,0,0],\n", + " [ 0,0,0]] ))\n", + "\n", + "print (test_matrix_1( [[ 1,0,1],\n", + " [ 0,0,0],\n", + " [ 0,0,0]] ))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def eye(n):\n", + " matrix=list()\n", + " for i in range(n):\n", + " row=list()\n", + " for j in range(n):\n", + " if i==j:\n", + " row.append(1.)\n", + " else:\n", + " row.append(0.)\n", + " matrix.append(row)\n", + " return matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eye(10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-12/Lecture-12-Part-I.ipynb b/Lectures/Lecture-12/Lecture-12-Part-I.ipynb new file mode 100644 index 0000000..10fd558 --- /dev/null +++ b/Lectures/Lecture-12/Lecture-12-Part-I.ipynb @@ -0,0 +1,519 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 12\n", + "\n", + "## Python Libraries\n", + "\n", + "Until now we have been primarily used python built-ins. One of the great things about python is the incredible libraries that are either already installed with python or easily to install. If you want to do something in python, you can probably find a library or a GitHub page that already does it. \n", + "\n", + "Two resources of libraries are:\n", + "\n", + "* [The Python Standard Library reference](https://docs.python.org/2.7/library/): These packages are most likely already available in your python installation.\n", + "* [PyPI Repository](https://pypi.org): These packages can be installed easily using the `pip install` command.\n", + "\n", + "### `import`\n", + "\n", + "Up until now in this course we typically wrote everything in a jupyter notebook, which we sequentially executed. All of our variable assignments and function definitions are therefore executed in the python interperter that jupyter is running and available in the subsequent cells. In a real piece of software, the code would likely be organized into files. \n", + "\n", + "For example, consider the checkers example in lecture 6. We can copy all of the relevant code from that lecture into one file: [checkers.py](https://github.com/afarbin/DATA1401-Spring-2019/blob/master/Lectures/Lecture-8/checkers.py). \n", + "\n", + "Now we can run the checkers game by \"importing\" the checkers \"module\":" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import checkers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now have an \"checkers\" object in our current context:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "print(checkers)\n", + "print(type(checkers))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see the contents of the module using the `dir` built-in:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__builtins__',\n", + " '__cached__',\n", + " '__doc__',\n", + " '__file__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " 'checkers_game',\n", + " 'count_pieces',\n", + " 'draw_board',\n", + " 'empty',\n", + " 'empty_space',\n", + " 'game_won',\n", + " 'left_move',\n", + " 'make_game_board',\n", + " 'move_piece',\n", + " 'moves',\n", + " 'nice_move_piece',\n", + " 'parse_location',\n", + " 'parse_move',\n", + " 'player_1',\n", + " 'player_1_left_move',\n", + " 'player_1_piece',\n", + " 'player_1_right_move',\n", + " 'player_2',\n", + " 'player_2_left_move',\n", + " 'player_2_piece',\n", + " 'player_2_right_move',\n", + " 'player_moves',\n", + " 'print_message',\n", + " 'right_move',\n", + " 'size',\n", + " 'space_character',\n", + " 'take_move']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(checkers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that calling `dir()` without an argument will show you everything in your current context:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['In',\n", + " 'Out',\n", + " '_',\n", + " '_3',\n", + " '__',\n", + " '___',\n", + " '__builtin__',\n", + " '__builtins__',\n", + " '__doc__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " '_dh',\n", + " '_i',\n", + " '_i1',\n", + " '_i2',\n", + " '_i3',\n", + " '_i4',\n", + " '_ih',\n", + " '_ii',\n", + " '_iii',\n", + " '_oh',\n", + " 'checkers',\n", + " 'exit',\n", + " 'get_ipython',\n", + " 'quit',\n", + " 'x']" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x=1\n", + "dir()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To call something from the checkers module, we simply do, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[0, 1, 0, 1, 0, 1, 0, 1],\n", + " [1, 0, 1, 0, 1, 0, 1, 0],\n", + " [0, 1, 0, 1, 0, 1, 0, 1],\n", + " [0, 0, 0, 0, 0, 0, 0, 0],\n", + " [0, 0, 0, 0, 0, 0, 0, 0],\n", + " [2, 0, 2, 0, 2, 0, 2, 0],\n", + " [0, 2, 0, 2, 0, 2, 0, 2],\n", + " [2, 0, 2, 0, 2, 0, 2, 0]]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "checkers.make_game_board()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This may be combersome, so we can import a specific part of the checkers into our current context:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0, 1, 0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 2, 0, 2, 0, 2, 0], [0, 2, 0, 2, 0, 2, 0, 2], [2, 0, 2, 0, 2, 0, 2, 0]]\n" + ] + }, + { + "data": { + "text/plain": [ + "['In',\n", + " 'Out',\n", + " '_',\n", + " '_3',\n", + " '_4',\n", + " '_5',\n", + " '__',\n", + " '___',\n", + " '__builtin__',\n", + " '__builtins__',\n", + " '__doc__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " '_dh',\n", + " '_i',\n", + " '_i1',\n", + " '_i2',\n", + " '_i3',\n", + " '_i4',\n", + " '_i5',\n", + " '_i6',\n", + " '_ih',\n", + " '_ii',\n", + " '_iii',\n", + " '_oh',\n", + " 'checkers',\n", + " 'exit',\n", + " 'get_ipython',\n", + " 'make_game_board',\n", + " 'quit',\n", + " 'x']" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from checkers import make_game_board\n", + "print(make_game_board())\n", + "dir()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can rename what we import in our current context:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{1: {0: (1, 1), 1: (1, -1)}, 2: {0: (-1, -1), 1: (-1, 1)}}\n" + ] + } + ], + "source": [ + "from checkers import moves as checkers_moves\n", + "print(checkers_moves)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or we can import everything into our current context using `*`:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['In',\n", + " 'Out',\n", + " '_',\n", + " '_3',\n", + " '_4',\n", + " '_5',\n", + " '_6',\n", + " '__',\n", + " '___',\n", + " '__builtin__',\n", + " '__builtins__',\n", + " '__doc__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " '_dh',\n", + " '_i',\n", + " '_i1',\n", + " '_i2',\n", + " '_i3',\n", + " '_i4',\n", + " '_i5',\n", + " '_i6',\n", + " '_i7',\n", + " '_i8',\n", + " '_ih',\n", + " '_ii',\n", + " '_iii',\n", + " '_oh',\n", + " 'checkers',\n", + " 'checkers_game',\n", + " 'checkers_moves',\n", + " 'count_pieces',\n", + " 'draw_board',\n", + " 'empty',\n", + " 'empty_space',\n", + " 'exit',\n", + " 'game_won',\n", + " 'get_ipython',\n", + " 'left_move',\n", + " 'make_game_board',\n", + " 'move_piece',\n", + " 'moves',\n", + " 'nice_move_piece',\n", + " 'parse_location',\n", + " 'parse_move',\n", + " 'player_1',\n", + " 'player_1_left_move',\n", + " 'player_1_piece',\n", + " 'player_1_right_move',\n", + " 'player_2',\n", + " 'player_2_left_move',\n", + " 'player_2_piece',\n", + " 'player_2_right_move',\n", + " 'player_moves',\n", + " 'print_message',\n", + " 'quit',\n", + " 'right_move',\n", + " 'size',\n", + " 'space_character',\n", + " 'take_move',\n", + " 'x']" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from checkers import *\n", + "dir()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now you know how to import libraries. For example, the python math library:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__doc__',\n", + " '__file__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " 'acos',\n", + " 'acosh',\n", + " 'asin',\n", + " 'asinh',\n", + " 'atan',\n", + " 'atan2',\n", + " 'atanh',\n", + " 'ceil',\n", + " 'comb',\n", + " 'copysign',\n", + " 'cos',\n", + " 'cosh',\n", + " 'degrees',\n", + " 'dist',\n", + " 'e',\n", + " 'erf',\n", + " 'erfc',\n", + " 'exp',\n", + " 'expm1',\n", + " 'fabs',\n", + " 'factorial',\n", + " 'floor',\n", + " 'fmod',\n", + " 'frexp',\n", + " 'fsum',\n", + " 'gamma',\n", + " 'gcd',\n", + " 'hypot',\n", + " 'inf',\n", + " 'isclose',\n", + " 'isfinite',\n", + " 'isinf',\n", + " 'isnan',\n", + " 'isqrt',\n", + " 'ldexp',\n", + " 'lgamma',\n", + " 'log',\n", + " 'log10',\n", + " 'log1p',\n", + " 'log2',\n", + " 'modf',\n", + " 'nan',\n", + " 'perm',\n", + " 'pi',\n", + " 'pow',\n", + " 'prod',\n", + " 'radians',\n", + " 'remainder',\n", + " 'sin',\n", + " 'sinh',\n", + " 'sqrt',\n", + " 'tan',\n", + " 'tanh',\n", + " 'tau',\n", + " 'trunc']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import math\n", + "dir(math)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-12/Lecture-12-Part-II.ipynb b/Lectures/Lecture-12/Lecture-12-Part-II.ipynb new file mode 100644 index 0000000..1c7b55d --- /dev/null +++ b/Lectures/Lecture-12/Lecture-12-Part-II.ipynb @@ -0,0 +1,261 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 12 - Part II\n", + "\n", + "## Random Number Generator" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup to make historgrams later...\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def uniform_generator(seed=123124.):\n", + " a=1111111\n", + " b=2222222\n", + " m=6700417 # This is a large prime number\n", + " x=seed\n", + " \n", + " def random():\n", + " nonlocal x\n", + " x=(a*x+b)%m\n", + " return x/m # divide by m to set range to 0->1\n", + " \n", + " return random" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_uniform=uniform_generator()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "random_numbers=list()\n", + "for _ in range(10):\n", + " random_numbers.append(my_uniform())" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0.6326616686692783,\n", + " 0.6709910741376246,\n", + " 0.8950304137787245,\n", + " 0.46973837598465884,\n", + " 0.8083329739029675,\n", + " 0.9906205837636672,\n", + " 0.7591005156843224,\n", + " 0.26473680667934546,\n", + " 0.30966057784164774,\n", + " 0.6059604946975689]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "random_numbers" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAOKElEQVR4nO3db4yl5VnH8e9VVjBaGxZ3ulmXP0ObJWQbdWtHJOoLkMQumLg0NutitAuia5SaNPGFVF+0MSHiC0vbtGK2Flm0pSBKWFOqkq2m0bhtB6X8q8ACS9h1YbdAaxsiAr18ce4pT4czc2bmzDln9ur3k5yc59zPvyvP3Ps797nPn43MRJJUyxsmXYAkafUZ7pJUkOEuSQUZ7pJUkOEuSQWtm3QBABs2bMjp6elJlyFJJ5V77733a5k51W/dmgj36elpZmdnJ12GJJ1UIuKphdY5LSNJBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBa2Jb6hKEsD0tZ+dyHkPX/8LEznvKDlyl6SCHLlrWRxZSScHw13Sd5nUE7hWl9MyklSQI3dpAKeidDJy5C5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQH4U8CfklE0mDOHKXpIIMd0kqyHCXpIIGzrlHxFnALcBGIIG9mfmRiDgDuA2YBg4DOzPzhYgI4CPAZcCLwJWZ+R+jKX+ynPuWtFYtZeT+CvB7mbkVuBC4JiK2AtcCBzJzC3CgPQa4FNjSbnuAG1e9aknSogaGe2Yemxt5Z+Y3ga8Cm4EdwL622T7g8ra8A7glew4Cp0fEplWvXJK0oGV9FDIipoG3A18ENmbmsbbqGXrTNtAL/qc7ux1pbcc6bUTEHnoje84+++xlli3V57SfhrHkN1Qj4o3A3wLvy8z/6a7LzKQ3H79kmbk3M2cyc2Zqamo5u0qSBlhSuEfE99EL9k9l5t+15mfnplva/fHWfhQ4q7P7ma1NkjQmA8O9ffrlk8BXM/NDnVX7gd1teTdwV6f9PdFzIfCNzvSNJGkMljLn/jPArwEPRMR9re0PgOuB2yPiauApYGdbdze9j0EeovdRyKtWtWJJ0kADwz0z/xWIBVZf0mf7BK4Zsi5JGptJvnk9qv9O0W+oSlJBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBy/rPOqRJ8T+ukJbHkbskFXTSj9wd0UnS6zlyl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKmhguEfETRFxPCIe7LR9MCKORsR97XZZZ937I+JQRDwSEe8cVeGSpIUtZeR+M7C9T/sNmbmt3e4GiIitwC7gbW2fP4uIU1arWEnS0gwM98z8AvD8Eo+3A/hMZr6UmU8Ch4ALhqhPkrQCw8y5vzci7m/TNutb22bg6c42R1rb60TEnoiYjYjZEydODFGGJGm+lYb7jcBbgW3AMeBPl3uAzNybmTOZOTM1NbXCMiRJ/awo3DPz2cx8NTO/DXyC16ZejgJndTY9s7VJksZoReEeEZs6D98FzH2SZj+wKyJOi4hzgS3Al4YrUZK0XOsGbRARtwIXARsi4gjwAeCiiNgGJHAY+C2AzHwoIm4HHgZeAa7JzFdHU7okaSEDwz0zr+jT/MlFtr8OuG6YoiRJw/EbqpJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUNDPeIuCkijkfEg522MyLinoh4rN2vb+0RER+NiEMRcX9E/MQoi5ck9beUkfvNwPZ5bdcCBzJzC3CgPQa4FNjSbnuAG1enTEnScgwM98z8AvD8vOYdwL62vA+4vNN+S/YcBE6PiE2rVawkaWlWOue+MTOPteVngI1teTPwdGe7I63tdSJiT0TMRsTsiRMnVliGJKmfod9QzcwEcgX77c3MmcycmZqaGrYMSVLHSsP92bnplnZ/vLUfBc7qbHdma5MkjdFKw30/sLst7wbu6rS/p31q5kLgG53pG0nSmKwbtEFE3ApcBGyIiCPAB4Drgdsj4mrgKWBn2/xu4DLgEPAicNUIapYkDTAw3DPzigVWXdJn2wSuGbYoSdJw/IaqJBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQeuG2TkiDgPfBF4FXsnMmYg4A7gNmAYOAzsz84XhypQkLcdqjNwvzsxtmTnTHl8LHMjMLcCB9liSNEajmJbZAexry/uAy0dwDknSIoYN9wT+KSLujYg9rW1jZh5ry88AG/vtGBF7ImI2ImZPnDgxZBmSpK6h5tyBn83MoxHxZuCeiPiv7srMzIjIfjtm5l5gL8DMzEzfbSRJKzPUyD0zj7b748CdwAXAsxGxCaDdHx+2SEnS8qw43CPiByPih+aWgZ8HHgT2A7vbZruBu4YtUpK0PMNMy2wE7oyIueN8OjP/ISK+DNweEVcDTwE7hy9TkrQcKw73zHwC+PE+7c8BlwxTlCRpOH5DVZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqaCRhXtEbI+IRyLiUERcO6rzSJJebyThHhGnAB8HLgW2AldExNZRnEuS9HqjGrlfABzKzCcy8/+AzwA7RnQuSdI860Z03M3A053HR4Cf6m4QEXuAPe3htyLikRWeawPwtRXuO0prtS5Yu7VZ1/JY1/KsybriT4aq65yFVowq3AfKzL3A3mGPExGzmTmzCiWtqrVaF6zd2qxreaxreb7X6hrVtMxR4KzO4zNbmyRpDEYV7l8GtkTEuRFxKrAL2D+ic0mS5hnJtExmvhIR7wX+ETgFuCkzHxrFuViFqZ0RWat1wdqtzbqWx7qW53uqrsjMURxXkjRBfkNVkgoy3CWpoDUX7oN+tiAiroyIExFxX7v9Rmfd7oh4rN12d9rfEREPtGN+NCJiXHVFxLaI+PeIeCgi7o+IX+7sc3NEPNnZZ9u46mrrXu207++0nxsRX2zHvK29KT6WuiLi4k7bfRHxvxFxeVs38uvVttkZEQ+3v9mnO+0T618L1TXp/rVQXa19Yv1robom3b8i4obO8R+NiK931q1u/8rMNXOj9+br48BbgFOBrwBb521zJfCxPvueATzR7te35fVt3ZeAC4EAPgdcOsa6zgO2tOUfAY4Bp7fHNwPvnsT1auu+tUD77cCutvznwG+Ps655f9PngR8Y4/XaAvxnp++8eY30r4XqmnT/6lvXGuhfC9Y1yf41b/vfpfdhk5H0r7U2ch/mZwveCdyTmc9n5gvAPcD2iNgEvCkzD2bvSt0CXD6uujLz0cx8rC3/N3AcmFrm+Ve9roW0UcHPAXe0pn2M8XrN827gc5n54gr2XWldvwl8vPUhMvN4a590/+pb1xroXwtdr77G2L+WUtck+lfXFcCtbXnV+9daC/d+P1uwuc92v9Regt4REXNfllpo381tedAxR1XXd0TEBfSe0R/vNF/X9rkhIk4bc13fHxGzEXFw7qUp8MPA1zPzlQHHHGVdc3bxWuefM+rrdR5wXkT8W7su2wfsO67+tVBd3zGh/rVYXZPsXwOvF5PpXwBExDnAucDnB+y74v611sJ9Kf4emM7MH6P37LZvwvXMWbSu9gz8V8BVmfnt1vx+4HzgJ+m9HPv9Mdd1Tva+9vwrwIcj4q0jOP9K6pq7Xj9K77sSc8ZxvdbRe0l/Eb2R1Sci4vQRnGe5Fq1rgv1rsbom2b+Wcr0m0b/m7ALuyMxXR3WCtRbuA3+2IDOfy8yX2sO/AN4xYN+jbXnBY464LiLiTcBngT/MzIOdfY5lz0vAX9J7WTe2ujLzaLt/AvgX4O3Ac8DpETH3BbexX69mJ3BnZr7c2Wfk14veyGh/Zr6cmU8Cj9ILiYn2r0Xqmmj/WqyuSfavxepqJtW/5sx/1bD6/WspE/PjutF7tn2C3suVuTck3jZvm02d5XcBB/O1NySepPdmxPq2fEb2f0PisjHWdSpwAHhfn+NuavcBfBi4fox1rQdOa8sbgMdob/4Af8N3v+H1O+Oqq9N2ELh4AtdrO7Cvc12epjeVMOn+tVBdk+5fC9U16f7Vt65J96+23fnAYdqXSFvbqvevJRc+rhtwGb1n2cfpjUQA/gj4xbb8x8BD7cL9M3B+Z99fBw6121Wd9hngwXbMj3Uv6qjrAn4VeBm4r3Pb1tZ9Hnig1fbXwBvHWNdPt3N/pd1f3TnmW1qHOkTvH+JpY/47TtMbnbxh3jHHcb0C+BDwcDvXrjXSv/rWtQb610J1Tbp/LfZ3nFj/ao8/SJ8njtXuX/78gCQVtNbm3CVJq8Bwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKuj/AZhT1pWKXax0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "random_numbers=list()\n", + "for _ in range(10000):\n", + " random_numbers.append(my_uniform())\n", + "_=plt.hist(random_numbers,bins=10,range=(.5,.7))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([180., 204., 208., 219., 182., 215., 200., 218., 221., 195.]),\n", + " array([0.5 , 0.52, 0.54, 0.56, 0.58, 0.6 , 0.62, 0.64, 0.66, 0.68, 0.7 ]),\n", + " )" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAOKElEQVR4nO3db4yl5VnH8e9VVjBaGxZ3ulmXP0ObJWQbdWtHJOoLkMQumLg0NutitAuia5SaNPGFVF+0MSHiC0vbtGK2Flm0pSBKWFOqkq2m0bhtB6X8q8ACS9h1YbdAaxsiAr18ce4pT4czc2bmzDln9ur3k5yc59zPvyvP3Ps797nPn43MRJJUyxsmXYAkafUZ7pJUkOEuSQUZ7pJUkOEuSQWtm3QBABs2bMjp6elJlyFJJ5V77733a5k51W/dmgj36elpZmdnJ12GJJ1UIuKphdY5LSNJBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBa2Jb6hKEsD0tZ+dyHkPX/8LEznvKDlyl6SCHLlrWRxZSScHw13Sd5nUE7hWl9MyklSQI3dpAKeidDJy5C5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQH4U8CfklE0mDOHKXpIIMd0kqyHCXpIIGzrlHxFnALcBGIIG9mfmRiDgDuA2YBg4DOzPzhYgI4CPAZcCLwJWZ+R+jKX+ynPuWtFYtZeT+CvB7mbkVuBC4JiK2AtcCBzJzC3CgPQa4FNjSbnuAG1e9aknSogaGe2Yemxt5Z+Y3ga8Cm4EdwL622T7g8ra8A7glew4Cp0fEplWvXJK0oGV9FDIipoG3A18ENmbmsbbqGXrTNtAL/qc7ux1pbcc6bUTEHnoje84+++xlli3V57SfhrHkN1Qj4o3A3wLvy8z/6a7LzKQ3H79kmbk3M2cyc2Zqamo5u0qSBlhSuEfE99EL9k9l5t+15mfnplva/fHWfhQ4q7P7ma1NkjQmA8O9ffrlk8BXM/NDnVX7gd1teTdwV6f9PdFzIfCNzvSNJGkMljLn/jPArwEPRMR9re0PgOuB2yPiauApYGdbdze9j0EeovdRyKtWtWJJ0kADwz0z/xWIBVZf0mf7BK4Zsi5JGptJvnk9qv9O0W+oSlJBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBy/rPOqRJ8T+ukJbHkbskFXTSj9wd0UnS6zlyl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKmhguEfETRFxPCIe7LR9MCKORsR97XZZZ937I+JQRDwSEe8cVeGSpIUtZeR+M7C9T/sNmbmt3e4GiIitwC7gbW2fP4uIU1arWEnS0gwM98z8AvD8Eo+3A/hMZr6UmU8Ch4ALhqhPkrQCw8y5vzci7m/TNutb22bg6c42R1rb60TEnoiYjYjZEydODFGGJGm+lYb7jcBbgW3AMeBPl3uAzNybmTOZOTM1NbXCMiRJ/awo3DPz2cx8NTO/DXyC16ZejgJndTY9s7VJksZoReEeEZs6D98FzH2SZj+wKyJOi4hzgS3Al4YrUZK0XOsGbRARtwIXARsi4gjwAeCiiNgGJHAY+C2AzHwoIm4HHgZeAa7JzFdHU7okaSEDwz0zr+jT/MlFtr8OuG6YoiRJw/EbqpJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUNDPeIuCkijkfEg522MyLinoh4rN2vb+0RER+NiEMRcX9E/MQoi5ck9beUkfvNwPZ5bdcCBzJzC3CgPQa4FNjSbnuAG1enTEnScgwM98z8AvD8vOYdwL62vA+4vNN+S/YcBE6PiE2rVawkaWlWOue+MTOPteVngI1teTPwdGe7I63tdSJiT0TMRsTsiRMnVliGJKmfod9QzcwEcgX77c3MmcycmZqaGrYMSVLHSsP92bnplnZ/vLUfBc7qbHdma5MkjdFKw30/sLst7wbu6rS/p31q5kLgG53pG0nSmKwbtEFE3ApcBGyIiCPAB4Drgdsj4mrgKWBn2/xu4DLgEPAicNUIapYkDTAw3DPzigVWXdJn2wSuGbYoSdJw/IaqJBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQeuG2TkiDgPfBF4FXsnMmYg4A7gNmAYOAzsz84XhypQkLcdqjNwvzsxtmTnTHl8LHMjMLcCB9liSNEajmJbZAexry/uAy0dwDknSIoYN9wT+KSLujYg9rW1jZh5ry88AG/vtGBF7ImI2ImZPnDgxZBmSpK6h5tyBn83MoxHxZuCeiPiv7srMzIjIfjtm5l5gL8DMzEzfbSRJKzPUyD0zj7b748CdwAXAsxGxCaDdHx+2SEnS8qw43CPiByPih+aWgZ8HHgT2A7vbZruBu4YtUpK0PMNMy2wE7oyIueN8OjP/ISK+DNweEVcDTwE7hy9TkrQcKw73zHwC+PE+7c8BlwxTlCRpOH5DVZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqaCRhXtEbI+IRyLiUERcO6rzSJJebyThHhGnAB8HLgW2AldExNZRnEuS9HqjGrlfABzKzCcy8/+AzwA7RnQuSdI860Z03M3A053HR4Cf6m4QEXuAPe3htyLikRWeawPwtRXuO0prtS5Yu7VZ1/JY1/KsybriT4aq65yFVowq3AfKzL3A3mGPExGzmTmzCiWtqrVaF6zd2qxreaxreb7X6hrVtMxR4KzO4zNbmyRpDEYV7l8GtkTEuRFxKrAL2D+ic0mS5hnJtExmvhIR7wX+ETgFuCkzHxrFuViFqZ0RWat1wdqtzbqWx7qW53uqrsjMURxXkjRBfkNVkgoy3CWpoDUX7oN+tiAiroyIExFxX7v9Rmfd7oh4rN12d9rfEREPtGN+NCJiXHVFxLaI+PeIeCgi7o+IX+7sc3NEPNnZZ9u46mrrXu207++0nxsRX2zHvK29KT6WuiLi4k7bfRHxvxFxeVs38uvVttkZEQ+3v9mnO+0T618L1TXp/rVQXa19Yv1robom3b8i4obO8R+NiK931q1u/8rMNXOj9+br48BbgFOBrwBb521zJfCxPvueATzR7te35fVt3ZeAC4EAPgdcOsa6zgO2tOUfAY4Bp7fHNwPvnsT1auu+tUD77cCutvznwG+Ps655f9PngR8Y4/XaAvxnp++8eY30r4XqmnT/6lvXGuhfC9Y1yf41b/vfpfdhk5H0r7U2ch/mZwveCdyTmc9n5gvAPcD2iNgEvCkzD2bvSt0CXD6uujLz0cx8rC3/N3AcmFrm+Ve9roW0UcHPAXe0pn2M8XrN827gc5n54gr2XWldvwl8vPUhMvN4a590/+pb1xroXwtdr77G2L+WUtck+lfXFcCtbXnV+9daC/d+P1uwuc92v9Regt4REXNfllpo381tedAxR1XXd0TEBfSe0R/vNF/X9rkhIk4bc13fHxGzEXFw7qUp8MPA1zPzlQHHHGVdc3bxWuefM+rrdR5wXkT8W7su2wfsO67+tVBd3zGh/rVYXZPsXwOvF5PpXwBExDnAucDnB+y74v611sJ9Kf4emM7MH6P37LZvwvXMWbSu9gz8V8BVmfnt1vx+4HzgJ+m9HPv9Mdd1Tva+9vwrwIcj4q0jOP9K6pq7Xj9K77sSc8ZxvdbRe0l/Eb2R1Sci4vQRnGe5Fq1rgv1rsbom2b+Wcr0m0b/m7ALuyMxXR3WCtRbuA3+2IDOfy8yX2sO/AN4xYN+jbXnBY464LiLiTcBngT/MzIOdfY5lz0vAX9J7WTe2ujLzaLt/AvgX4O3Ac8DpETH3BbexX69mJ3BnZr7c2Wfk14veyGh/Zr6cmU8Cj9ILiYn2r0Xqmmj/WqyuSfavxepqJtW/5sx/1bD6/WspE/PjutF7tn2C3suVuTck3jZvm02d5XcBB/O1NySepPdmxPq2fEb2f0PisjHWdSpwAHhfn+NuavcBfBi4fox1rQdOa8sbgMdob/4Af8N3v+H1O+Oqq9N2ELh4AtdrO7Cvc12epjeVMOn+tVBdk+5fC9U16f7Vt65J96+23fnAYdqXSFvbqvevJRc+rhtwGb1n2cfpjUQA/gj4xbb8x8BD7cL9M3B+Z99fBw6121Wd9hngwXbMj3Uv6qjrAn4VeBm4r3Pb1tZ9Hnig1fbXwBvHWNdPt3N/pd1f3TnmW1qHOkTvH+JpY/47TtMbnbxh3jHHcb0C+BDwcDvXrjXSv/rWtQb610J1Tbp/LfZ3nFj/ao8/SJ8njtXuX/78gCQVtNbm3CVJq8Bwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKuj/AZhT1pWKXax0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(random_numbers,bins=10,range=(.5,.7))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exponential Generator" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "\n", + "def generate_exp(tau,seed=32144):\n", + " my_uniform=uniform_generator(seed)\n", + " \n", + " def generator():\n", + " nonlocal my_uniform\n", + " nonlocal tau\n", + " u = my_uniform()\n", + " return -tau*(math.log(1.-u))\n", + " \n", + " return generator" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "my_exp_generator= generate_exp(10.)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11.372504436305544" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_exp_generator()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAATBklEQVR4nO3df6zd9X3f8eerNiFpUtWm3CFqOzNbvUWkUgy6A6pUUwYLGJhmKnURaGqsDMmdZLRkiraZ7g+aZExEasOKlCK5wY2p0lBG0mERVuYSpCh/8MOkroMhjBsgtS2Db2sgyaLRwt7743wsHTn3+v46917u/Twf0tH5ft/fz/d7Ph99rdf53s/5nuNUFZKkPvzMcndAkrR0DH1J6oihL0kdMfQlqSOGviR1ZO1yd+Bszj///Nq8efNyd0OSVpSnn376r6tqbKpt7+jQ37x5MwcPHlzubkjSipLkB9Ntc3pHkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1JEZQz/Ju5M8meQvkxxJ8plW/3KSl5Icao+trZ4kdyWZSHI4yaVDx9qR5IX22LF4w5IkTWU238h9E7iyqn6c5Bzg20n+Z9v2H6rqgTPaXwtsaY/LgbuBy5OcB9wGjAMFPJ1kf1W9NoqBTGXz7m/Mqf3Ld1y/SD2RpHeGGa/0a+DHbfWc9jjbf7e1Hbi37fc4sC7JhcA1wIGqOtWC/gCwbWHdlyTNxazm9JOsSXIIOMkguJ9om25vUzh3Jjm31TYAR4d2P9Zq09XPfK2dSQ4mOTg5OTnH4UiSzmZWoV9Vb1fVVmAjcFmSXwZuBT4A/BPgPOA/jaJDVbWnqsaranxsbMofiZMkzdOc7t6pqteBx4BtVXWiTeG8CfwhcFlrdhzYNLTbxlabri5JWiKzuXtnLMm6tvwe4KPA99o8PUkC3AA803bZD3y83cVzBfBGVZ0AHgGuTrI+yXrg6laTJC2R2dy9cyGwL8kaBm8S91fVQ0m+mWQMCHAI+Let/cPAdcAE8BPgEwBVdSrJ54CnWrvPVtWp0Q1FkjSTGUO/qg4Dl0xRv3Ka9gXsmmbbXmDvHPsoSRoRv5ErSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOzBj6Sd6d5Mkkf5nkSJLPtPpFSZ5IMpHkT5K8q9XPbesTbfvmoWPd2urPJ7lmsQYlSZrabK703wSurKoPAVuBbUmuAD4P3FlVvwS8Btzc2t8MvNbqd7Z2JLkYuBH4ILAN+P0ka0Y5GEnS2c0Y+jXw47Z6TnsUcCXwQKvvA25oy9vbOm37VUnS6vdV1ZtV9RIwAVw2klFIkmZlVnP6SdYkOQScBA4A3wder6q3WpNjwIa2vAE4CtC2vwH8wnB9in2GX2tnkoNJDk5OTs59RJKkac0q9Kvq7araCmxkcHX+gcXqUFXtqarxqhofGxtbrJeRpC7N6e6dqnodeAz4FWBdkrVt00bgeFs+DmwCaNt/Hvib4foU+0iSlsBs7t4ZS7KuLb8H+CjwHIPw//XWbAfwYFve39Zp279ZVdXqN7a7ey4CtgBPjmogkqSZrZ25CRcC+9qdNj8D3F9VDyV5FrgvyX8B/gK4p7W/B/ijJBPAKQZ37FBVR5LcDzwLvAXsqqq3RzscSdLZzBj6VXUYuGSK+otMcfdNVf1f4F9Nc6zbgdvn3k1J0ij4jVxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHVkxtBPsinJY0meTXIkySdb/beTHE9yqD2uG9rn1iQTSZ5Pcs1QfVurTSTZvThDkiRNZ+0s2rwFfLqqvpPk54Cnkxxo2+6sqt8ZbpzkYuBG4IPALwJ/nuQftc1fBD4KHAOeSrK/qp4dxUAkSTObMfSr6gRwoi3/KMlzwIaz7LIduK+q3gReSjIBXNa2TVTViwBJ7mttDX1JWiJzmtNPshm4BHiilW5JcjjJ3iTrW20DcHRot2OtNl39zNfYmeRgkoOTk5Nz6Z4kaQazDv0k7wO+Bnyqqn4I3A38Q2Arg78EfncUHaqqPVU1XlXjY2NjozikJKmZzZw+Sc5hEPhfqaqvA1TVq0Pb/wB4qK0eBzYN7b6x1ThLXZK0BGZz906Ae4DnquoLQ/ULh5r9GvBMW94P3Jjk3CQXAVuAJ4GngC1JLkryLgYf9u4fzTAkSbMxmyv9DwO/AXw3yaFW+y3gpiRbgQJeBn4ToKqOJLmfwQe0bwG7quptgCS3AI8Aa4C9VXVkhGORJM1gNnfvfBvIFJsePss+twO3T1F/+Gz7SZIWl9/IlaSOGPqS1BFDX5I6YuhLUkdmdZ9+Lzbv/sac2r98x/WL1BNJWhxe6UtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOjJj6CfZlOSxJM8mOZLkk61+XpIDSV5oz+tbPUnuSjKR5HCSS4eOtaO1fyHJjsUbliRpKrO50n8L+HRVXQxcAexKcjGwG3i0qrYAj7Z1gGuBLe2xE7gbBm8SwG3A5cBlwG2n3ygkSUtjxtCvqhNV9Z22/CPgOWADsB3Y15rtA25oy9uBe2vgcWBdkguBa4ADVXWqql4DDgDbRjoaSdJZzWlOP8lm4BLgCeCCqjrRNr0CXNCWNwBHh3Y71mrT1c98jZ1JDiY5ODk5OZfuSZJmMOvQT/I+4GvAp6rqh8PbqqqAGkWHqmpPVY1X1fjY2NgoDilJamYV+knOYRD4X6mqr7fyq23ahvZ8stWPA5uGdt/YatPVJUlLZDZ37wS4B3iuqr4wtGk/cPoOnB3Ag0P1j7e7eK4A3mjTQI8AVydZ3z7AvbrVJElLZO0s2nwY+A3gu0kOtdpvAXcA9ye5GfgB8LG27WHgOmAC+AnwCYCqOpXkc8BTrd1nq+rUSEYhSZqVGUO/qr4NZJrNV03RvoBd0xxrL7B3Lh2UJI2O38iVpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHZgz9JHuTnEzyzFDtt5McT3KoPa4b2nZrkokkzye5Zqi+rdUmkuwe/VAkSTOZzZX+l4FtU9TvrKqt7fEwQJKLgRuBD7Z9fj/JmiRrgC8C1wIXAze1tpKkJbR2pgZV9a0km2d5vO3AfVX1JvBSkgngsrZtoqpeBEhyX2v77Jx7LEmat4XM6d+S5HCb/lnfahuAo0NtjrXadPWfkmRnkoNJDk5OTi6ge5KkM814pT+Nu4HPAdWefxf4N6PoUFXtAfYAjI+P1yiOuVg27/7GnNq/fMf1i9QTSZqdeYV+Vb16ejnJHwAPtdXjwKahphtbjbPUJUlLZF7TO0kuHFr9NeD0nT37gRuTnJvkImAL8CTwFLAlyUVJ3sXgw9798++2JGk+ZrzST/JV4CPA+UmOAbcBH0mylcH0zsvAbwJU1ZEk9zP4gPYtYFdVvd2OcwvwCLAG2FtVR0Y+GknSWc3m7p2bpijfc5b2twO3T1F/GHh4Tr2TJI2U38iVpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHZgz9JHuTnEzyzFDtvCQHkrzQnte3epLclWQiyeEklw7ts6O1fyHJjsUZjiTpbGZzpf9lYNsZtd3Ao1W1BXi0rQNcC2xpj53A3TB4kwBuAy4HLgNuO/1GIUlaOjOGflV9Czh1Rnk7sK8t7wNuGKrfWwOPA+uSXAhcAxyoqlNV9RpwgJ9+I5EkLbL5zulfUFUn2vIrwAVteQNwdKjdsVabrv5TkuxMcjDJwcnJyXl2T5I0lQV/kFtVBdQI+nL6eHuqaryqxsfGxkZ1WEkS8w/9V9u0De35ZKsfBzYNtdvYatPVJUlLaO0899sP7ADuaM8PDtVvSXIfgw9t36iqE0keAf7r0Ie3VwO3zr/bK9Pm3d+YU/uX77h+kXoiqVczhn6SrwIfAc5PcozBXTh3APcnuRn4AfCx1vxh4DpgAvgJ8AmAqjqV5HPAU63dZ6vqzA+HJUmLbMbQr6qbptl01RRtC9g1zXH2Anvn1DtJ0kj5jVxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR2Z73+MriUw1/9IHfzP1CWdnVf6ktSRBYV+kpeTfDfJoSQHW+28JAeSvNCe17d6ktyVZCLJ4SSXjmIAkqTZG8WV/j+rqq1VNd7WdwOPVtUW4NG2DnAtsKU9dgJ3j+C1JUlzsBjTO9uBfW15H3DDUP3eGngcWJfkwkV4fUnSNBYa+gX8ryRPJ9nZahdU1Ym2/ApwQVveABwd2vdYq0mSlshC79751ao6nuTvAQeSfG94Y1VVkprLAdubx06A97///QvsniRp2IKu9KvqeHs+CfwpcBnw6ulpm/Z8sjU/Dmwa2n1jq515zD1VNV5V42NjYwvpniTpDPMO/STvTfJzp5eBq4FngP3AjtZsB/BgW94PfLzdxXMF8MbQNJAkaQksZHrnAuBPk5w+zh9X1Z8leQq4P8nNwA+Aj7X2DwPXARPAT4BPLOC1JUnzMO/Qr6oXgQ9NUf8b4Kop6gXsmu/raXbm+i1ev8Er9cVv5EpSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BH/56zOeV+/1Bev9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oj36WtOvK9fWtm80pekjhj6ktQRp3e0qJwOkt5ZvNKXpI4Y+pLUkSWf3kmyDfg9YA3wpaq6Y6n7oHcup4OkxbWkoZ9kDfBF4KPAMeCpJPur6tml7IdWj7m+ScyHbyxaTZb6Sv8yYKKqXgRIch+wHTD09Y612H99LPYbl29aGrbUob8BODq0fgy4fLhBkp3Azrb64yTPL+D1zgf+egH7v1Ot1nHBKhhbPj9lednGNU1/RmXFn6+zWMlj+/vTbXjH3bJZVXuAPaM4VpKDVTU+imO9k6zWccHqHZvjWnlW69iW+u6d48CmofWNrSZJWgJLHfpPAVuSXJTkXcCNwP4l7oMkdWtJp3eq6q0ktwCPMLhlc29VHVnElxzJNNE70GodF6zesTmulWdVji1Vtdx9kCQtEb+RK0kdMfQlqSOrMvSTbEvyfJKJJLuXuz8LkWRTkseSPJvkSJJPtvp5SQ4keaE9r1/uvs5HkjVJ/iLJQ239oiRPtHP3J+0D/xUlybokDyT5XpLnkvzKKjpf/779O3wmyVeTvHslnrMke5OcTPLMUG3Kc5SBu9r4Die5dPl6vnCrLvSHfurhWuBi4KYkFy9vrxbkLeDTVXUxcAWwq41nN/BoVW0BHm3rK9EngeeG1j8P3FlVvwS8Bty8LL1amN8D/qyqPgB8iMH4Vvz5SrIB+HfAeFX9MoObMW5kZZ6zLwPbzqhNd46uBba0x07g7iXq46JYdaHP0E89VNXfAqd/6mFFqqoTVfWdtvwjBgGygcGY9rVm+4AblqeH85dkI3A98KW2HuBK4IHWZMWNK8nPA/8UuAegqv62ql5nFZyvZi3wniRrgZ8FTrACz1lVfQs4dUZ5unO0Hbi3Bh4H1iW5cGl6OnqrMfSn+qmHDcvUl5FKshm4BHgCuKCqTrRNrwAXLFO3FuK/Af8R+H9t/ReA16vqrba+Es/dRcAk8Idt2upLSd7LKjhfVXUc+B3grxiE/RvA06z8c3badOdoVWXKagz9VSnJ+4CvAZ+qqh8Ob6vBfbcr6t7bJP8COFlVTy93X0ZsLXApcHdVXQL8H86YylmJ5wugzXFvZ/DG9ovAe/npKZJVYaWeo9lYjaG/6n7qIck5DAL/K1X19VZ+9fSfmO355HL1b54+DPzLJC8zmIK7ksFc+Lo2dQAr89wdA45V1RNt/QEGbwIr/XwB/HPgpaqarKq/A77O4Dyu9HN22nTnaFVlymoM/VX1Uw9tnvse4Lmq+sLQpv3Ajra8A3hwqfu2EFV1a1VtrKrNDM7RN6vqXwOPAb/emq3Ecb0CHE3yj1vpKgY/Hb6iz1fzV8AVSX62/bs8PbYVfc6GTHeO9gMfb3fxXAG8MTQNtPJU1ap7ANcB/xv4PvCfl7s/CxzLrzL4M/MwcKg9rmMw//0o8ALw58B5y93XBYzxI8BDbfkfAE8CE8B/B85d7v7NYzxbgYPtnP0PYP1qOV/AZ4DvAc8AfwScuxLPGfBVBp9L/B2Dv85unu4cAWFwR+D3ge8yuHtp2ccw34c/wyBJHVmN0zuSpGkY+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakj/x/J8E94trc4fgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "random_numbers=list()\n", + "for _ in range(10000):\n", + " random_numbers.append(my_exp_generator())\n", + "_=plt.hist(random_numbers,bins=25)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-12/checkers.py b/Lectures/Lecture-12/checkers.py new file mode 100644 index 0000000..33dbd5d --- /dev/null +++ b/Lectures/Lecture-12/checkers.py @@ -0,0 +1,249 @@ +# Index assignment for the matrix representation of the game board +player_1 = 1 +player_2 = 2 +empty = 0 + +# Game board size +size = 8 + +def make_game_board(size=8): + # Make an empty board + board=[[empty]*size for i in range(size)] + + # Even Columns + for i in range(0,size,2): + board[1][i]=player_1 + board[-1][i]=player_2 + board[-3][i]=player_2 + + # Odd Columns + for i in range(1,size,2): + board[0][i]=player_1 + board[2][i]=player_1 + board[-2][i]=player_2 + + return board + +left_move=0 +right_move=1 + +player_1_left_move=(1,1) +player_1_right_move=(1,-1) + +player_2_left_move=(-1,-1) +player_2_right_move=(-1,1) + +def player_moves(player,direction): + if player==player_1: + if direction==left_move: + return (1,1) + elif direction==right_move: + return (1,-1) + if player==player_2: + if direction==left_move: + return (-1,-1) + elif direction==right_move: + return (-1,1) + +moves={ player_1: {left_move: player_1_left_move, + right_move:player_1_right_move}, + player_2: {left_move: player_2_left_move, + right_move: player_2_right_move}} + +def print_message(message,verbose=True): + if verbose: + print(message) + +def move_piece(board,player,location,move,verbose=True): + x,y=location + + # Check if player's piece is at location + if not board[x][y] == player: + print_message("Player does not have piece at location.",verbose) + return False + + # Fetch the offset for the move + x_offset,y_offset = moves[player][move] + + # Make sure the move is on the board: + move_possible= x+x_offset < size and \ + x+x_offset >= 0 and \ + y+y_offset < size and \ + y+y_offset >= 0 + + + jump_possible= x+2*x_offset < size and \ + x+2*x_offset >= 0 and \ + y+2*y_offset < size and \ + y+2*y_offset >= 0 + + if not (move_possible or jump_possible): + print_message("Move is off of board.",verbose) + return False + + # Try the move + # Is the target space empty + if move_possible and \ + board[x+x_offset][y+y_offset]==empty: + + # Make the move + # Empty the spot + board[x][y]=empty + # Place player in new spot + board[x+x_offset][y+y_offset]=player + print_message("Moved.",verbose) + + return True + # Does the target space have an opponent's piece, and the space after empty + elif jump_possible and \ + board[x+x_offset][y+y_offset]!=player and \ + board[x+2*x_offset][y+2*y_offset]==empty: + + # Make the move + # Empty the spot + board[x][y]=empty + # Remove the oppoent's piece + board[x+x_offset][y+y_offset]=empty + # Move player to new spot + board[x+2*x_offset][y+2*y_offset]=player + print_message("Took opponent's piece.",verbose) + + return True + else: + print_message("Move not possible.",verbose) + return False + +player_1_piece="X" +player_2_piece="O" +empty_space=" " + +space_character= { player_1: player_1_piece, + player_2: player_2_piece, + empty: empty_space } + + +def draw_board(board): + print(" ",end=" ") + for j in range(8): + print(column_names[j],end=" ") + print() + + for i in range(8): + print(row_names[i],end=" ") + for j in range(8): + print(space_character[board[i][j]],end=" ") + print() + +def parse_location(l_string): + if not isinstance(l_string,str): + print_message("Bad Input. Location must be string.") + return False + + if len(l_string)!=2: + print_message("Bad Input. Location must be 2 characters.") + return False + + row=l_string[0].upper() + col=l_string[1].upper() + + if not row in row_names: + print_message("Bad Row.") + return False + + if not col in column_names: + print_message("Bad Column.") + return False + + return row_map[row],column_map[col] + +def parse_move(m_string): + if not isinstance(m_string,str): + print_message("Bad Input. Location must be string.") + return -1 + + if len(m_string)!=1: + print_message("Bad Input. Location must be 1 character.") + return -1 + + if m_string.upper()=="L": + return left_move + + if m_string.upper()=="R": + return right_move + + print_message("Bad Move. must be R/L.") + + return -1 + + +def nice_move_piece(board,player,location,move): + loc=parse_location(location) + mov=parse_move(move) + + if loc and mov!=-1: + return move_piece(board,player,loc,mov) + else: + return print_message("Bad move.") + +def take_move(board,player): + good_move=False + + while not good_move: + loc_str =input("Input location:") + mov_str =input("Input move (L/R):") + + good_move = nice_move_piece(board,player,loc_str,mov_str) + +def count_pieces(board,player): + n=0 + for i in range(size): + for j in range(size): + if board[i][j]==player: + n+=1 + return n + + +def game_won(board): + player_1_n=count_pieces(board,player_1) + player_2_n=count_pieces(board,player_2) + + if player_1_n==0: + return player_2 + if player_1_n==0: + return player_1 + + return False + + +def checkers_game(): + + print ("Welcome to Checkers.") + print ("--------------------") + + # Make a game board + board_0=make_game_board() + + # Start with player 1 + player=player_1 + + this_game_won=False + while not this_game_won: + # Draw the board + draw_board(board_0) + + # Make a move + print("Player",player,"move:") + take_move(board_0,player) + + # Check if the game has been won + this_game_won=game_won(board_0) + + # Switch players + if player==player_1: + player=player_2 + else: + player=player_1 + + + print("Winner is player:",this_game_won) + diff --git a/Lectures/Lecture-14/Lecture-14.ipynb b/Lectures/Lecture-14/Lecture-14.ipynb new file mode 100644 index 0000000..7f692be --- /dev/null +++ b/Lectures/Lecture-14/Lecture-14.ipynb @@ -0,0 +1,819 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scaling/Shifting\n", + "\n", + "In the beginning of Lab 4 you are asked to take random numbers between 0 and 1 and scale and shift them to be between $x_{min}$ and $x_{max}$. The formula is pretty basic. If $x_0$ is between 0 and 1 then $x$ computed as:\n", + "$$\n", + "x= (x_{max}-x_{min}) x_0 + x_{min}\n", + "$$\n", + "will be between $x_{min}$ and $x_{max}$. \n", + "\n", + "In your solution, you'll most likely generate $x_0$ one by one, compute $x$, and store $x$ into a list to be returned from your function.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mean/Variance\n", + "\n", + "Also for lab 4, remember the equations for mean/variance. If you have a data sample ${x_1, x_2, ..., x_N}$ the mean is:\n", + "\n", + "$$ \n", + "\\bar{x} = \\frac{1}{N}\\sum_{i=1}^{N} x_i\n", + "$$\n", + "\n", + "and the variance is:\n", + "\n", + "$$\n", + " = \\frac{1}{N-1} \\sum_{i=1}^{N} (x_i - \\bar{x})^2\n", + "$$\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Histogram\n", + "\n", + "In Lab 4 you are asked to write a histogram function:\n", + "\n", + "* User inputs a list of values `x` and optionally `n_bins` which defaults to 10.\n", + "* If not supplied, find the minimum and maximum (`x_min`,`x_max`) of the values in x.\n", + "* Determine the bin size (`bin_size`) by dividing the range of the function by the number of bins.\n", + "* Create an empty list of zeros of size `n_bins`, call it `hist`.\n", + "* Loop over the values in `x`\n", + " * Loop over the values in `hist` with index `i`:\n", + " * If x is between `x_min+i*bin_size` and `x_min+(i+1)*bin_size`, increment `hist[i].` \n", + " * For efficiency, try to use continue to goto the next bin and data point.\n", + "* Return `hist` and the list corresponding of the bin edges (i.e. of `x_min+i*bin_size`). \n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Functional Programming\n", + "\n", + "In lab 3 you built a tic-tac-toe game by implementing a series of functions that performed various tasks, which you then combined in various ways to implement the game logic. What you wrote was a *structured program*, which consist of sequences of instructions, utilizing control flow (if/then/else), repetition (while and for), block structures, and function calls. \n", + "\n", + "*Functional Programming* is another style of programming that is not well suited to writing games, but is well suited to manipulating data. A function program performs computation by evaluating mathematical functions, where the output only depend on the input. Data passes through as inputs/outputs of functions, but is otherwise never changed. This paradigm is often used in data science because manipulation of data can othen be viewed as composition of functions:\n", + "\n", + "$$\n", + "D_{result} = f_n(f_{n-1}(...(f_0(D_{input}))))\n", + "$$\n", + "\n", + "Consider the `find_min` example from last lecture:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def a_function(x):\n", + " return (1+x)**2\n", + "\n", + "def find_min_0(f,x_min,x_max,steps=10):\n", + " step_size=(x_max-x_min)/steps\n", + " x=x_min\n", + " y_min=f(x_min)\n", + " x_min_val=x_min\n", + "\n", + " for i in range(steps):\n", + " y=f(x)\n", + " if y1:\n", + " return [x_min] + a_range(x_min+((x_max-x_min)/steps),x_max,steps-1)\n", + " else:\n", + " return [x_min]\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are not going to write functions this way, but the idea is to get familiar with seeing data manipulations as a composition of functions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Algebra\n", + "\n", + "Linear Algebra was invented to solve equations like this:\n", + "\n", + "\\begin{align}\n", + "4 x_1 + 5 x_2 &=& 12\\\\\n", + "-2 x_1 - x_2 &=& 2\n", + "\\end{align}\n", + "\n", + "by representing them as matrices like this:\n", + "\n", + "\\begin{equation*}\n", + "\\begin{pmatrix}\n", + "4 & 5 & 12\\\\\n", + "-2 & -1 & 2\n", + "\\end{pmatrix}\n", + "\\end{equation*}\n", + "\n", + "or\n", + "\n", + "\\begin{equation*}\n", + "A = \\begin{pmatrix} 4 & 5 \\\\ -2 & -1\\end{pmatrix}, \n", + "\\vec{x} = \\begin{pmatrix} x_1 \\\\ x_2\\end{pmatrix}, \n", + "\\vec{y} = \\begin{pmatrix} 12 \\\\2 \\end{pmatrix},\n", + "\\end{equation*}\n", + "\n", + "\\begin{equation*}\n", + "A\\vec{x}=\\vec{y} \\Rightarrow \\vec{x}=A^{-1} \\vec{y}\n", + "\\end{equation*}\n", + "\n", + "Where $A^{-1}$ is the inverse of $A$, which if the equations are not linearly dependent can be computed algorithmically.\n", + "\n", + "\\begin{equation*}\n", + "\\end{equation*}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Properties of Matrices\n", + "$$\n", + "(AB)C=A(BC)\n", + "$$\n", + "$$\n", + "A(B+C)=AB+AC\n", + "$$\n", + "$$\n", + "AB\\neq BA\n", + "$$\n", + "$$\n", + "AI=A\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matrix Elements\n", + "Consider an arbitrary matrix $A$:\n", + "\n", + "\\begin{equation*}\n", + "A_{m,n} = \n", + " \\begin{pmatrix}\n", + " a_{11} & a_{12} & \\cdots & a_{1n} \\\\\n", + " a_{21} & a_{22} & \\cdots & a_{2n} \\\\\n", + " \\vdots & \\vdots & \\ddots & \\vdots\\\\\n", + " a_{m1} & a_{m2} & \\cdots & a_{mn} \n", + "\\end{pmatrix}\n", + "\\end{equation*}\n", + "\n", + "we define the columns as $a_j=A_{:,j}$:\n", + "\n", + "\\begin{pmatrix} \n", + "| & | & &|\\\\\n", + "a_1 & a_2 & \\dots &\\ a_n\\\\\n", + "| & | & &|\n", + "\\end{pmatrix}\n", + "\n", + "and rows $a^T_i = A_{i,:}$:\n", + "\n", + "\\begin{pmatrix} \n", + "- & a^T_1 & -\\\\\n", + "- & a^T_2 & -\\\\\n", + " & \\vdots & \\\\\n", + "- & a^T_3 & -\\\\\n", + "\\end{pmatrix}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Matrix Operations\n", + "\n", + "* Transpose: $(A^T)_{ij} = A_{ji}$\n", + "* Sum (elementwise): $C_{ij} = A_{ij} + B_{ij}$\n", + "* Elementwise product: $C_{ij} = A_{ij} B_{ij}$\n", + "* Matrix product: $C=A \\cdot B$: $C_{ij} = \\sum_{k} A_{ik} B_{kj}$.\n", + " * Note than if size of $A$ is $n \\times m$ then $B$ has to be of size $m \\times k$ and the resulting matrix will be of size $n \\times k$.\n", + " * Good way to visualize product:\n", + " \\begin{equation*}\n", + " AB=\n", + "\\begin{pmatrix} \n", + "- & a_1 & -\\\\\n", + "- & a_2 & -\\\\\n", + " & \\vdots & \\\\\n", + "- & a_m & -\\\\\n", + "\\end{pmatrix} \n", + "\\begin{pmatrix} \n", + "| & | & &|\\\\\n", + "b_1 & b_2 & \\dots &\\ b_n\\\\\n", + "| & | & &|\n", + "\\end{pmatrix}=\n", + "\\begin{pmatrix}\n", + "a^T_1b_1 & a^T_1b_2 & \\dots & a^T_1b_n\\\\\n", + "a^T_2b_1 & a^T_2b_2 & \\dots & a^T_2b_n\\\\\n", + "\\vdots & \\vdots & \\ddots & \\vdots \\\\\n", + "a^T_mb_1 & a^T_mb_2 & \\dots & a^T_mb_n\n", + "\\end{pmatrix}\n", + "\\end{equation*}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$A$ is $m_1$ by $n_1$ and $B$ is $m_2$ by $n_2$ then you can multiply ($AB$) if $n_1=m_2$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Vector Products\n", + "\n", + "* Dot product: $x\\cdot y = x^T y = \\sum_{i=1}^n x_i y_i$\n", + "* Other product: \n", + "\\begin{equation*}\n", + "\\begin{pmatrix} x_1\\\\x_2\\\\ \\vdots \\\\x_m \\end{pmatrix} \\begin{pmatrix} y_1&y_2& \\dots &y_n\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + "x_1y_1 & x_1y_2 & \\dots & x_1y_n\\\\\n", + "x_2y_1 & x_2y_2 & \\dots & x_2y_n\\\\\n", + "\\vdots & \\vdots & \\ddots & \\vdots \\\\\n", + "x_my_1 & x_my_2 & \\dots & x_my_n\n", + "\\end{pmatrix}\n", + "\\end{equation*}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Norms\n", + "* $l=1$ Norm: $\\parallel x \\parallel_1 = \\sum_{i=1}^{n}|x_i|$\n", + "* $l=2$ Norm: $\\parallel x \\parallel_2 = \\sqrt{\\sum_{i=1}^{n}x_i^2}$\n", + "* $l=p$ Norm: $\\parallel x \\parallel_p = \\left(\\sum_{i=1}^{n}x_i^p\\right)^\\frac{1}{p}$\n", + "* $l=\\infty$ Norm: $\\parallel x \\parallel_\\infty = \\max_i |x_i|$\n", + "* Law of cosines: $x \\cdot y = \\parallel x \\parallel_2 \\parallel y \\parallel_2 \\cos{\\theta}$\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Independence\n", + "Given vectors \n", + "$$\n", + "\\{\\vec{x}_1,\\vec{x}_2,\\dots,\\vec{x}_n\\},\n", + "$$\n", + "a linear combination of these vectors is\n", + "$$\n", + "\\sum_{i=0}^{n}=c_i \\vec{x}_i=\\begin{pmatrix} \n", + "| & | & &|\\\\\n", + "\\vec{x}_1 & \\vec{x}_2 & \\dots &\\ \\vec{x}_n\\\\\n", + "| & | & &|\n", + "\\end{pmatrix}\n", + "\\begin{pmatrix} \n", + "c_1\\\\\n", + "c_2\\\\\n", + "\\vdots\\\\\n", + "c_n\n", + "\\end{pmatrix}\n", + "$$\n", + "where $\\{c_1,c_2,\\dots,c_n\\}$ are a set of coefficients (a single number, not a vector). \n", + "\n", + "A vector $\\vec{y}$ is linearly independent from the set $\\{\\vec{x}_i\\}$ if $\\vec{y}$ cannot be written as a linear combination of $\\{\\vec{x}_i\\}$. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matrix Inverse\n", + "\n", + "[Simple Algorithm For Inverse](http://www.irma-international.org/viewtitle/41011/)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Implementing Matrix Operations" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "def zero_matrix(m,n):\n", + " return [ [0 for _ in range(m)] for _ in range(n)]" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def zero_matrix(m,n):\n", + " out=list()\n", + " for i in range(m):\n", + " row=list()\n", + " for j in range(n):\n", + " row.append(0.)\n", + " out.append(row)\n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zero_matrix(5,10)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def is_matrix(M):\n", + " if isinstance(M,list):\n", + " row_length=len(M[0])\n", + " for row in M:\n", + " if not row_length==len(row):\n", + " return False\n", + " else:\n", + " False\n", + " return True\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "is_matrix(zero_matrix(10,4))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "is_matrix( [[ 2,3],[1,2,3]])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def matrix_shape(M):\n", + " if is_matrix(M):\n", + " m=len(M)\n", + " n=len(M[0])\n", + " return m,n\n", + " else:\n", + " 0,0" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 5)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "matrix_shape(zero_matrix(10,5))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def is_square_matrix(M):\n", + " m,n=matrix_shape(M)\n", + " if m==0 or n==0:\n", + " return False\n", + " return m==n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "is_square_matrix(zero_matrix(10,10))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def matrix_add(M1,M2):\n", + " m1,n1=matrix_shape(M1)\n", + " m2,n2=matrix_shape(M2)\n", + " \n", + " if m1==m2 and n1==n2:\n", + " M3=zero_matrix(m1,n1)\n", + " for i in range(m1):\n", + " for j in range(n1):\n", + " M3[i][j]=M1[i][j]+M2[i][j]\n", + " return M3\n", + " \n", + " return False" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[6, 4, 4], [3, 7, 7]]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A= [ [ 1,2,3],\n", + " [ 2,4,5]]\n", + "\n", + "B= [ [ 5,2,1],\n", + " [ 1,3,2]]\n", + "\n", + "matrix_add(A,B)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def matrix_scalar_multiply(M,a):\n", + " m,n=matrix_shape(M)\n", + " M_out=zero_matrix(m,n)\n", + " for i in range(m):\n", + " for j in range(n):\n", + " M_out[i][j]=a*M[i][j]\n", + " return M_out\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[4, 8, 12], [8, 16, 20]]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "matrix_scalar_multiply(A,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def matrix_neg(M):\n", + " return matrix_scalar_multiply(M,-1)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[-1, -2, -3], [-2, -4, -5]]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "matrix_neg(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def matrix_sub(M1,M2):\n", + " return matrix_add(M1, matrix_neg(M2))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[-4, 0, 2], [1, 1, 3]]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "matrix_sub(A,B)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def matrix_transpose(M):\n", + " m,n=matrix_shape(M)\n", + " M_out=zero_matrix(n,m)\n", + " for i in range(m):\n", + " for j in range(n):\n", + " M_out[j][i]=M[i][j]\n", + " return M_out\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 2], [2, 4], [3, 5]]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "matrix_transpose(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-15/Lecture 15.pdf b/Lectures/Lecture-15/Lecture 15.pdf new file mode 100644 index 0000000..6ba5bc0 Binary files /dev/null and b/Lectures/Lecture-15/Lecture 15.pdf differ diff --git a/Lectures/Lecture-15/Lecture-15.ipynb b/Lectures/Lecture-15/Lecture-15.ipynb new file mode 100644 index 0000000..a3fd364 --- /dev/null +++ b/Lectures/Lecture-15/Lecture-15.ipynb @@ -0,0 +1,783 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 15\n", + "\n", + "* Labs: best way to study. Many didn't complete the assignments. Some had copied other's. \n", + " * New Rule: if you copy, you must site. Ideally link to GitHub in your solution.\n", + " * When you copy, the question is not longer counted in the demoninator of your grade... until 50%.\n", + " * Use this as a means of studying. Turn in Wednesday.\n", + " * Just submit new versions of the previous labs, and it will be regraded. \n", + " \n", + "\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solve some problems together\n", + "\n", + "1. What is the output of the following cell?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 4\n" + ] + } + ], + "source": [ + "my_list=[1,2,3,4,5,4,3,2,1]\n", + "\n", + "def arg_max(d):\n", + " a_max=d[0]\n", + " i_max=0\n", + " for i,e in enumerate(d):\n", + " if e>a_max:\n", + " a_max=e\n", + " i_max=i\n", + " return i_max\n", + "\n", + "print(max(my_list),arg_max(my_list))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 0\n" + ] + } + ], + "source": [ + "def arg_min(d):\n", + " a_min=d[0]\n", + " i_min=0\n", + " for i,e in enumerate(d):\n", + " if e)" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAANkElEQVR4nO3df6zd9V3H8efLlsmPEYH0rFZgliCBECJluVbmjJkwlroZyxJjRnSpkaQzEd0MUTtMdEvUdHEbMdFgOmHtH4xJGASyX9JUEkIymRdWSkuZIOu21kIvQRxowix7+8f9Nl4u5/ae3nt+7NM+H8nNPedzvqfn/Q3Ns9/7vd/DSVUhSWrPj016AEnS0hhwSWqUAZekRhlwSWqUAZekRq0c54utWrWq1q5dO86XlKTmPfbYYy9WVW/++lgDvnbtWqanp8f5kpLUvCTf6bfuKRRJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJatRY34mpk8/aLV+e9Aia58DW9096BI2JR+CS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNWjTgSU5P8o0kTyTZl+QT3fr2JN9Osrv7Wjf6cSVJxwzyfyN8Dbimql5NchrwSJKvdo/9UVXdM7rxJEkLWTTgVVXAq93d07qvGuVQkqTFDXQOPMmKJLuBI8DOqnq0e+gvk+xJcmuSH1/guZuTTCeZnpmZGdLYkqSBAl5Vr1fVOuACYH2SK4CPAZcBPwecB/zJAs/dVlVTVTXV6/WGNLYk6YSuQqmql4GHgA1VdbhmvQZ8Dlg/igElSf0NchVKL8k53e0zgOuAp5Os6dYCXA/sHeWgkqQ3GuQqlDXAjiQrmA3+3VX1pST/nKQHBNgN/O4I55QkzTPIVSh7gKv6rF8zkokkSQPxnZiS1CgDLkmNMuCS1CgDLkmNMuCS1KhBLiOU1JC1W7486RHUx4Gt7x/6n+kRuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMG+VDj05N8I8kTSfYl+US3flGSR5M8m+Qfk7xl9ONKko4Z5Aj8NeCaqroSWAdsSHI18Eng1qr6GeA/gRtHN6Ykab5FA16zXu3untZ9FXANcE+3vgO4fiQTSpL6GugceJIVSXYDR4CdwL8DL1fV0W6Tg8D5Czx3c5LpJNMzMzPDmFmSxIABr6rXq2odcAGwHrhs0Beoqm1VNVVVU71eb4ljSpLmO6GrUKrqZeAh4J3AOUmOfaLPBcChIc8mSTqOQa5C6SU5p7t9BnAdsJ/ZkP96t9km4P5RDSlJerNBPhNzDbAjyQpmg393VX0pyVPAF5L8BfBN4PYRzilJmmfRgFfVHuCqPuvPMXs+XJI0Ac18Kr2ftC1Jb+Rb6SWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUYN8qPGFSR5K8lSSfUk+0q1/PMmhJLu7r/eNflxJ0jGDfKTaUeDmqno8ydnAY0l2do/dWlWfGt14kqSFDPKhxoeBw93tV5LsB84f9WCSpOM7oXPgSdYy+wn1j3ZLNyXZk+SOJOcOeTZJ0nEMHPAkbwW+CHy0qr4P3AZcDKxj9gj90ws8b3OS6STTMzMzQxhZkgQDBjzJaczG+86quhegql6oqter6ofAZ4H1/Z5bVduqaqqqpnq93rDmlqRT3iBXoQS4HdhfVZ+Zs75mzmYfAPYOfzxJ0kIGuQrlXcCHgCeT7O7WbgFuSLIOKOAA8OGRTChJ6muQq1AeAdLnoa8MfxxJ0qB8J6YkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNWqQT6W/MMlDSZ5Ksi/JR7r185LsTPJM9/3c0Y8rSTpmkCPwo8DNVXU5cDXwe0kuB7YAu6rqEmBXd1+SNCaLBryqDlfV493tV4D9wPnARmBHt9kO4PpRDSlJerMTOgeeZC1wFfAosLqqDncPPQ+sXuA5m5NMJ5memZlZxqiSpLkGDniStwJfBD5aVd+f+1hVFVD9nldV26pqqqqmer3esoaVJP2/gQKe5DRm431nVd3bLb+QZE33+BrgyGhGlCT1M8hVKAFuB/ZX1WfmPPQAsKm7vQm4f/jjSZIWsnKAbd4FfAh4Msnubu0WYCtwd5Ibge8AvzGaESVJ/Swa8Kp6BMgCD1873HEkSYPynZiS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNGuRDje9IciTJ3jlrH09yKMnu7ut9ox1TkjTfIEfg24ENfdZvrap13ddXhjuWJGkxiwa8qh4GXhrDLJKkE7Ccc+A3JdnTnWI5d6GNkmxOMp1kemZmZhkvJ0maa6kBvw24GFgHHAY+vdCGVbWtqqaqaqrX6y3x5SRJ8y0p4FX1QlW9XlU/BD4LrB/uWJKkxSwp4EnWzLn7AWDvQttKkkZj5WIbJLkLeDewKslB4M+BdydZBxRwAPjwCGeUJPWxaMCr6oY+y7ePYBZJ0gnwnZiS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNWjTgSe5IciTJ3jlr5yXZmeSZ7vu5ox1TkjTfIEfg24EN89a2ALuq6hJgV3dfkjRGiwa8qh4GXpq3vBHY0d3eAVw/5LkkSYtY6jnw1VV1uLv9PLB6oQ2TbE4ynWR6ZmZmiS8nSZpv2b/ErKoC6jiPb6uqqaqa6vV6y305SVJnqQF/IckagO77keGNJEkaxFID/gCwqbu9Cbh/OONIkgY1yGWEdwFfBy5NcjDJjcBW4LokzwDv6e5LksZo5WIbVNUNCzx07ZBnkSSdAN+JKUmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1KhFP1LteJIcAF4BXgeOVtXUMIaSJC1uWQHv/HJVvTiEP0eSdAI8hSJJjVpuwAt4MMljSTYPYyBJ0mCWewrlF6vqUJK3ATuTPF1VD8/doAv7ZoC3v/3ty3w5SdIxyzoCr6pD3fcjwH3A+j7bbKuqqaqa6vV6y3k5SdIcSw54krOSnH3sNvBeYO+wBpMkHd9yTqGsBu5LcuzP+XxVfW0oU0mSFrXkgFfVc8CVQ5xFknQCvIxQkhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhq1rIAn2ZDkW0meTbJlWENJkha35IAnWQH8HfArwOXADUkuH9ZgkqTjW84R+Hrg2ap6rqp+AHwB2DicsSRJi1m5jOeeD3xvzv2DwM/P3yjJZmBzd/fVJN9axmuO2yrgxUkPMSHu+6npVN33ke93Prmsp/90v8XlBHwgVbUN2Dbq1xmFJNNVNTXpOSbBfXffTyWt7vdyTqEcAi6cc/+Cbk2SNAbLCfi/ApckuSjJW4APAg8MZyxJ0mKWfAqlqo4muQn4J2AFcEdV7RvaZD8amjz1MyTu+6npVN33Jvc7VTXpGSRJS+A7MSWpUQZckhplwBeQ5Jwk9yR5Osn+JO+c9EzjkOQPk+xLsjfJXUlOn/RMo5TkjiRHkuyds3Zekp1Jnum+nzvJGUdhgf3+6+7v+54k9yU5Z5Izjkq/fZ/z2M1JKsmqScx2ogz4wv4G+FpVXQZcCeyf8Dwjl+R84A+Aqaq6gtlfTn9wslON3HZgw7y1LcCuqroE2NXdP9ls5837vRO4oqp+Fvg34GPjHmpMtvPmfSfJhcB7ge+Oe6ClMuB9JPkJ4JeA2wGq6gdV9fJkpxqblcAZSVYCZwL/MeF5RqqqHgZemre8EdjR3d4BXD/Wocag335X1YNVdbS7+y/MvrfjpLPAf3OAW4E/Bpq5ssOA93cRMAN8Lsk3k/xDkrMmPdSoVdUh4FPMHoEcBv6rqh6c7FQTsbqqDne3nwdWT3KYCfkd4KuTHmJckmwEDlXVE5Oe5UQY8P5WAu8Abquqq4D/5uT8MfoNunO9G5n9B+yngLOS/NZkp5qsmr3OtpkjsmFI8qfAUeDOSc8yDknOBG4B/mzSs5woA97fQeBgVT3a3b+H2aCf7N4DfLuqZqrqf4F7gV+Y8EyT8EKSNQDd9yMTnmdskvw28KvAb9ap8yaRi5k9aHkiyQFmTx09nuQnJzrVAAx4H1X1PPC9JJd2S9cCT01wpHH5LnB1kjOThNn9Pul/edvHA8Cm7vYm4P4JzjI2STYwew7416rqfyY9z7hU1ZNV9baqWltVa5k9gHtH14EfaQZ8Yb8P3JlkD7AO+KsJzzNy3U8c9wCPA08y+/ejybcYDyrJXcDXgUuTHExyI7AVuC7JM8z+VLJ1kjOOwgL7/bfA2cDOJLuT/P1EhxyRBfa9Sb6VXpIa5RG4JDXKgEtSowy4JDXKgEtSowy4JDXKgEtSowy4JDXq/wAQQDUORk7LfAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(data,bins=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 2., 5., 11., 11., 13., 23., 20., 10., 3., 2.]),\n", + " array([ 3.61818753, 4.85986717, 6.10154682, 7.34322647, 8.58490612,\n", + " 9.82658576, 11.06826541, 12.30994506, 13.5516247 , 14.79330435,\n", + " 16.034984 ]),\n", + " )" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAL4ElEQVR4nO3df4xlhVmH8ecra6NgYyE7rgisUxuKwUYoGRGtNkXahkrTxX9MiZo1kqwxba2m0Wxrov5l1p/VRFNdC+4mIk2DIES0QlYjManoghSWYqWpW7q4sBCiVk2stK9/zCGOww535t47c+adPJ9kcu89986c92R2nj1z7j1zU1VIkvr5qrEHkCRNx4BLUlMGXJKaMuCS1JQBl6Smdm3lynbv3l2Li4tbuUpJau+hhx56vqoWVi/f0oAvLi5y/PjxrVylJLWX5PNnW+4hFElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWpqS8/ElLarxYP3jrbuk4duGG3d6s09cElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpqYkBT3JJkr9K8ukkjyd5/7D8giT3J3lyuDx/88eVJL1kPXvgLwIfqKrLgWuA9yS5HDgIHKuqS4Fjw21J0haZGPCqOl1VDw/Xvwg8AVwE7AOODg87Cty4WUNKkl5u10YenGQReCPwILCnqk4Pdz0D7Fnjcw4ABwD27t077ZzSjrV48N5R1nvy0A2jrFfzs+4nMZN8HfDHwE9V1b+vvK+qCqizfV5VHa6qpapaWlhYmGlYSdL/WVfAk3w1y/G+raruHBY/m+TC4f4LgTObM6Ik6WzW8yqUALcAT1TVb6y46x5g/3B9P3D3/MeTJK1lPcfA3wT8CPBYkkeGZR8CDgEfT3Iz8HngBzdnREnS2UwMeFX9DZA17r5uvuNIktbLMzElqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMTA57k1iRnkpxYsewXkzyd5JHh4/s3d0xJ0mrr2QM/Alx/luUfrqorh48/m+9YkqRJJga8qh4AXtiCWSRJGzDLMfD3Jnl0OMRy/loPSnIgyfEkx5977rkZVidJWmnagH8EeB1wJXAa+PW1HlhVh6tqqaqWFhYWplydJGm1qQJeVc9W1Zer6ivA7wNXz3csSdIkUwU8yYUrbv4AcGKtx0qSNseuSQ9IcjvwFmB3klPALwBvSXIlUMBJ4Mc3cUZJ0llMDHhV3XSWxbdswiySpA3wTExJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1NTEP2YlbaXFg/eOPYLUhnvgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlO/Is4357jSSXol74JLUlAGXpKYMuCQ1ZcAlqSkDLklNTQx4kluTnElyYsWyC5Lcn+TJ4fL8zR1TkrTaevbAjwDXr1p2EDhWVZcCx4bbkqQtNDHgVfUA8MKqxfuAo8P1o8CNc55LkjTBtCfy7Kmq08P1Z4A9az0wyQHgAMDevXunXJ2keRvzRLGTh24Ybd07ycxPYlZVAfUK9x+uqqWqWlpYWJh1dZKkwbQBfzbJhQDD5Zn5jSRJWo9pA34PsH+4vh+4ez7jSJLWaz0vI7wd+CRwWZJTSW4GDgFvS/Ik8NbhtiRpC018ErOqblrjruvmPIskaQM8E1OSmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNbVrlk9OchL4IvBl4MWqWprHUJKkyWYK+ODaqnp+Dl9HkrQBHkKRpKZm3QMv4L4kBfxeVR1e/YAkB4ADAHv37p1xdeNYPHjv2CNI0svMugf+PVV1FfAO4D1J3rz6AVV1uKqWqmppYWFhxtVJkl4yU8Cr6unh8gxwF3D1PIaSJE02dcCTnJfk1S9dB94OnJjXYJKkVzbLMfA9wF1JXvo6f1RVn5jLVJKkiaYOeFV9DrhijrNIkjbAlxFKUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKbm8Z6YkrQhY73L1clDN4yy3s3iHrgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKbanMgz1gv/Je0cY3ZkM04icg9ckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU3NFPAk1yf5TJLPJjk4r6EkSZNNHfAk5wC/A7wDuBy4Kcnl8xpMkvTKZtkDvxr4bFV9rqq+BHwM2DefsSRJk8zyjjwXAV9YcfsU8J2rH5TkAHBguPkfST4zwzrXYzfw/CavY7O5DduD27A97IhtyC/PtA3ffLaFm/6WalV1GDi82et5SZLjVbW0VevbDG7D9uA2bA9uw9pmOYTyNHDJitsXD8skSVtgloD/PXBpktcmeRXwbuCe+YwlSZpk6kMoVfVikvcCfwGcA9xaVY/PbbLpbdnhmk3kNmwPbsP24DasIVW1GV9XkrTJPBNTkpoy4JLU1I4KeJJzkvxDkj8de5ZpJHlNkjuS/GOSJ5J819gzbVSSn07yeJITSW5P8jVjzzRJkluTnElyYsWyC5Lcn+TJ4fL8MWecZI1t+NXh39KjSe5K8poxZ5zkbNuw4r4PJKkku8eYbb3W2oYk7xu+F48n+ZV5rW9HBRx4P/DE2EPM4LeAT1TVtwJX0GxbklwE/CSwVFVvYPnJ7XePO9W6HAGuX7XsIHCsqi4Fjg23t7MjvHwb7gfeUFXfDvwT8MGtHmqDjvDybSDJJcDbgae2eqApHGHVNiS5luWz1K+oqm8Dfm1eK9sxAU9yMXAD8NGxZ5lGkq8H3gzcAlBVX6qqfx13qqnsAr42yS7gXOBfRp5noqp6AHhh1eJ9wNHh+lHgxi0daoPOtg1VdV9VvTjc/FuWz9XYttb4PgB8GPhZYNu/4mKNbfgJ4FBV/ffwmDPzWt+OCTjwmyx/k78y9iBTei3wHPAHw2GgjyY5b+yhNqKqnmZ57+Ip4DTwb1V137hTTW1PVZ0erj8D7BlzmDn4MeDPxx5io5LsA56uqk+NPcsMXg98b5IHk/x1ku+Y1xfeEQFP8k7gTFU9NPYsM9gFXAV8pKreCPwn2//X9v9nOE68j+X/jL4JOC/JD4871exq+bW2237vby1Jfg54Ebht7Fk2Ism5wIeAnx97lhntAi4ArgF+Bvh4kszjC++IgANvAt6V5CTLfxXx+5L84bgjbdgp4FRVPTjcvoPloHfyVuCfq+q5qvof4E7gu0eeaVrPJrkQYLic26+9WynJjwLvBH6o+p308TqWdwY+NfxsXww8nOQbR51q404Bd9ayv2P5KMFcnozdEQGvqg9W1cVVtcjyk2Z/WVWt9vyq6hngC0kuGxZdB3x6xJGm8RRwTZJzhz2M62j2ROwK9wD7h+v7gbtHnGUqSa5n+bDiu6rqv8aeZ6Oq6rGq+oaqWhx+tk8BVw0/K538CXAtQJLXA69iTn9dcUcEfAd5H3BbkkeBK4FfGnmeDRl+e7gDeBh4jOV/X9v+NOgktwOfBC5LcirJzcAh4G1JnmT5N4tDY844yRrb8NvAq4H7kzyS5HdHHXKCNbahlTW24VbgW4aXFn4M2D+v34Y8lV6SmnIPXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrqfwEqO4x8C7UnxAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(data_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Histogram\n", + "\n", + "In Lab 4 you are asked to write a histogram function:\n", + "\n", + "* User inputs a list of values `x` and optionally `n_bins` which defaults to 10.\n", + "* If not supplied, find the minimum and maximum (`x_min`,`x_max`) of the values in x.\n", + "* Determine the bin size (`bin_size`) by dividing the range of the function by the number of bins.\n", + "* Create an empty list of zeros of size `n_bins`, call it `hist`.\n", + "* Loop over the values in `x`\n", + " * Loop over the values in `hist` with index `i`:\n", + " * If x is between `x_min+i*bin_size` and `x_min+(i+1)*bin_size`, increment `hist[i].` \n", + " * For efficiency, try to use continue to goto the next bin and data point.\n", + "* Return `hist` and the list corresponding of the bin edges (i.e. of `x_min+i*bin_size`). \n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Alternative\n", + "* User inputs a list of values `x` and optionally `n_bins` which defaults to 10.\n", + "* If not supplied, find the minimum and maximum (`x_min`,`x_max`) of the values in x.\n", + "* Create an empty list of zeros of size `n_bins`, call it `hist`.\n", + "* Create a list of `bin_edges` using `arange`.\n", + "* Loop over the values in `x`\n", + " * Loop over the values in `hist` with index `i`:\n", + " * If x is between `bin_edge[i]` and `bin_edge[i+1]`, increment `hist[i].` \n", + " * For efficiency, try to use continue to goto the next bin and data point.\n", + "* Return `hist` and the list corresponding of the bin edges (i.e. of `x_min+i*bin_size`). \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def arange(x_min,x_max,steps=10):\n", + " step_size=(x_max-x_min)/steps\n", + " x=x_min\n", + " out = list()\n", + " for i in range(steps):\n", + " out.append(x)\n", + " x+=step_size\n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def histogram(data, n_bins=10,x_min=None, x_max=None):\n", + " \n", + " return hist,bin_edges" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#histogram(data,10,0,10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-16/Common-Issues.ipynb b/Lectures/Lecture-16/Common-Issues.ipynb new file mode 100644 index 0000000..f374385 --- /dev/null +++ b/Lectures/Lecture-16/Common-Issues.ipynb @@ -0,0 +1,296 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comments from the TA\n", + "\n", + "List of items:\n", + "\n", + "* for loops: i in data\n", + "* if elif, if if\n", + "* using protected keywords (ex: min max) as variables\n", + "* consistent spacing\n", + "* parantheses syntax \n", + "* writing functions, then renaming it and now code that uses old function names don't work \n", + "* submission issues: how to git pull, create new folder, or uploading file to correct directory\n", + "* assignment description: watching out for return vs print\n", + "* list of lists by reference or value? matrix = [[0]*3]*3\n", + "* effective commenting: help me help you\n", + "* infinite loops (getting stuck when it shouldn't)\n", + "* trying to combine different types of data: print(str + int)\n", + "* indexing out of range: for i in range(len(x)): print(x[i+1])\n", + "* Assignment asks for functions, write it in a def function block\n", + "* taking user input when it should just be hard coded test-cases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tips for Getting Full Credit on Assignments\n", + "\n", + "Some common reasons students don't get full-credit:\n", + "\n", + "- Not following directions:\n", + " - Carefully following exercise and submission directions will help you avoid most of the issues students have been running into, including the ones described below.\n", + " - Make sure to re-read and ask for clarification if you feel something may be ambiguous\n", + " - Make sure that you submit the assignments correctly and by the deadline. Check the google group for the submission process. Please contact the GTA if you're unclear on the process.\n", + "- Not returning the right data, or not returning anything at all when asked in exercise\n", + " - Some students will use 'print' instead of return keyword\n", + " - The exercise will ask for a list, and a set is returned, or string is requested and list of words is returned.\n", + "- Not testing solutions thoroughly\n", + " - When the exercise asks you to test your solution in a new cell, you should test your solution on several different input arguments. Just because your code works on one example, does not mean it will work on all perfectly reasonable inputs, which may be used when grading.\n", + " - You should strive to test your code with edgecase inputs (like negative numbers, different sized lists, zero/empty lists, etc). This depends on what your function is supposed to do.\n", + " - Another reason your code may not work is that you have defined variables that you later deleted, but were integral to running the code is your notebook. As long as your continue to run the notebook, the variables are still accessible, but the TA will not be able to run the code when a new instance of the notebook is opened because those variables don't exist anywhere. A good way to combat this is by exiting the notebook/restarting your kernel and clearing all your outputs. Try running all the cells in order now and see if your code runs into any errors.\n", + "- Hard-coding values into their functions\n", + " - The exercise may ask that your function uses arguments to generalize your code (On lab 3, for example, you had to make your create board function allow you to specify N so that it could create it NxN). \n", + " \n", + "- Not attempting the exercise or copy/pasting previous solution attempts\n", + " - Several of the exercises will build on each other but simply copy/pasting a previous solution (which does not address/or solve the current exercise) is not enough to get credit for the problem. Related exercises will of course have similar code so it is reasonable to copy/paste your old function and update it if needed, but you should not try to cheat the grading system by copy/pasting one of your solutions for each problem to get 'partial credit' for attempting them.\n", + "- Copying solutions from others without attribution\n", + " - The purpose of these labs is to help you develop fundamental datascience skills. Knowing how to use the internet to help you solve problems and resolve technical errors is certainly an important skill, and encouraged. That said, copy/pasting solutions from stackoverflow et al., can be counter-productive to your learning if you're not taking the time to understand all the details of the implementation. You should cite solutions by pasting a comment next to the code with a link to the source. \n", + " - You should abide by UTA's honor code and the syllabus by refraining from copying solutions from students in the class.\n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## For Loops\n", + "\n", + "The different between looping over indices, elements \\[of a list\\], or both.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example 1\n", + "0\n", + "323\n", + "1\n", + "34834\n", + "cats\n", + "-2.2\n", + "Example 2\n", + "0\n", + "0\n", + "1\n", + "323\n", + "2\n", + "1\n", + "3\n", + "34834\n", + "4\n", + "cats\n", + "5\n", + "-2.2\n", + "Example 3\n", + "0 0\n", + "1 323\n", + "2 1\n", + "3 34834\n", + "4 cats\n", + "5 -2.2\n" + ] + } + ], + "source": [ + "data = [0, 323, 1, 34834, 'cats', -2.2]\n", + "\n", + "print('Example 1')\n", + "# Prints elements of data, each iteration updates i to next item in list from left to right.\n", + "\n", + "for i in data:\n", + " print(i)\n", + " \n", + "print('Example 2')\n", + " \n", + "for i in range(len(data)):\n", + " print(i)\n", + " print(data[i])\n", + "\n", + "print('Example 3')\n", + "\n", + "for index, element in enumerate(data):\n", + " print(index, element)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Difference between if if else, and if elif else" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "def is_num_bigger(num):\n", + " if num > 10:\n", + " print('Num is bigger than 10')\n", + " if num > 20: \n", + " print('Num is bigger than 20')\n", + " \n", + " if num > 30: \n", + " print('Num is bigger than 30')\n", + " else:\n", + " print('Num is not bigger than 30')\n", + "\n", + "def is_num_bigger_two(num):\n", + " if num > 10:\n", + " print('Num is bigger than 10')\n", + " elif num > 20: \n", + " print('Num is bigger than 20')\n", + " elif num > 30: \n", + " print('Num is bigger than 30')\n", + " else:\n", + " print('Num is not bigger than 30')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "First Function\n", + "Number testing is: 6\n", + "Num is not bigger than 30\n", + "Number testing is: 15\n", + "Num is bigger than 10\n", + "Num is not bigger than 30\n", + "Number testing is: 35\n", + "Num is bigger than 10\n", + "Num is bigger than 20\n", + "Num is bigger than 30\n", + "Number testing is: 22\n", + "Num is bigger than 10\n", + "Num is bigger than 20\n", + "Num is not bigger than 30\n", + "Number testing is: -5\n", + "Num is not bigger than 30\n", + "Second Function\n", + "Number testing is: 6\n", + "Num is not bigger than 30\n", + "Number testing is: 15\n", + "Num is bigger than 10\n", + "Number testing is: 35\n", + "Num is bigger than 10\n", + "Number testing is: 22\n", + "Num is bigger than 10\n", + "Number testing is: -5\n", + "Num is not bigger than 30\n" + ] + } + ], + "source": [ + "numbers = [6, 15, 35, 22, -5]\n", + "\n", + "print('First Function')\n", + "\n", + "for number in numbers:\n", + " print('Number testing is:', number)\n", + " is_num_bigger(number)\n", + " \n", + "print('Second Function')\n", + "\n", + "for number in numbers:\n", + " print('Number testing is:', number)\n", + " is_num_bigger_two(number)\n", + " \n", + "# Illustrate function name changes, but old function persists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assigning to built-in functions" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-5\n", + "-5\n" + ] + }, + { + "ename": "TypeError", + "evalue": "'int' object is not callable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mnew_numbers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m15\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m35\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m22\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_numbers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# be careful about assigning to built-in functions.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;31m# If jupyter highlights the word, good chance it is a built-in/keyword.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: 'int' object is not callable" + ] + } + ], + "source": [ + "numbers = [6, 15, 35, 22, -5]\n", + "print(min(numbers))\n", + "\n", + "min = min(numbers)\n", + "\n", + "print(min)\n", + "\n", + "new_numbers = [-6, -15, -35, -22, 5]\n", + "\n", + "print(min(new_numbers)) # be careful about assigning to built-in functions.\n", + "# If jupyter highlights the word, good chance it is a built-in/keyword." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Lectures/Lecture-16/Lecture 16.ipynb b/Lectures/Lecture-16/Lecture 16.ipynb new file mode 100644 index 0000000..f4e8c86 --- /dev/null +++ b/Lectures/Lecture-16/Lecture 16.ipynb @@ -0,0 +1,739 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the python math and random libraries, implement the Box-Muller transform. This transform generates 2 random variables $Z_0$ and $Z_1$ that are Normal distributed from two uniformly distributed random variables $U_1$ and $U_2$ using the relation:\n", + "\n", + "$$\n", + "Z_0 = \\sqrt{-2 \\log{U_1}}\\cos{(2\\pi U_2)}\\\\\n", + "Z_1 = \\sqrt{-2 \\log{U_1}}\\sin{(2\\pi U_2)}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6128658286207223" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import math\n", + "import random\n", + "\n", + "x=.1\n", + "# Useful functions\n", + "math.pi\n", + "math.sin(x)\n", + "math.cos(x)\n", + "math.log(x)\n", + "math.sqrt(x)\n", + "random.random()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_normal(N,m=0,s=1):\n", + " out = list() \n", + " \n", + " while len(out))" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAOvUlEQVR4nO3df6zddX3H8edrwHCZLsDouq5tdpnrstRFq7lhLPoHk21CMRaXjZQs2jmS+gcmmJgsRZPp/iDBbOpmMlnqINaEiWxKaIRNoSMh/gF4QYaF2lG1hDalvc5fGBO2wnt/nG/nsdz2nHvPvfec88nzkZyc7/fz/X7P93Wbk1e/93u+53tTVUiS2vJz4w4gSVp+lrskNchyl6QGWe6S1CDLXZIadO64AwBcfPHFNTMzM+4YkjRVHnvsse9W1ZqFlk1Euc/MzDA3NzfuGJI0VZI8e6ZlA0/LJNmY5MEkTyd5KsmN3fhHkhxN8kT32Nq3zU1JDiU5mORty/NjSJKGNcyR+0ngA1X1eJLXAI8lub9b9omq+tv+lZNsBrYDrwN+DXggyW9V1UvLGVySdGYDj9yr6lhVPd5NvwAcANafZZNtwJ1V9WJVfQc4BFy6HGElScNZ1NUySWaANwKPdEPvS/JkktuTXNiNrQee69vsCGf/z0CStMyGLvckrwa+ALy/qn4E3Aq8FtgCHAM+tpgdJ9mZZC7J3Pz8/GI2lSQNMFS5JzmPXrHfUVVfBKiq41X1UlW9DHyan556OQps7Nt8Qzf2M6pqd1XNVtXsmjULXskjSVqiYa6WCXAbcKCqPt43vq5vtXcC+7vpvcD2JOcnuQTYBDy6fJElSYMMc7XMm4F3Ad9I8kQ39kHguiRbgAIOA+8FqKqnktwFPE3vSpsbvFJGklbXwHKvqq8CWWDRfWfZ5mbg5hFySZJGMBHfUJUGmdl179j2ffiWq8e2b2mpvHGYJDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJatC54w4gTbqZXfeOZb+Hb7l6LPtVGzxyl6QGeeSuRRnXUaykxRl45J5kY5IHkzyd5KkkN3bjFyW5P8kz3fOF3XiSfDLJoSRPJnnTSv8QkqSfNcxpmZPAB6pqM3AZcEOSzcAuYF9VbQL2dfMAVwGbusdO4NZlTy1JOquB5V5Vx6rq8W76BeAAsB7YBuzpVtsDXNNNbwM+Wz0PAxckWbfsySVJZ7SoD1STzABvBB4B1lbVsW7R88Dabno98FzfZke6sdNfa2eSuSRz8/Pzi4wtSTqbocs9yauBLwDvr6of9S+rqgJqMTuuqt1VNVtVs2vWrFnMppKkAYYq9yTn0Sv2O6rqi93w8VOnW7rnE934UWBj3+YbujFJ0ioZ5mqZALcBB6rq432L9gI7uukdwD194+/urpq5DPhh3+kbSdIqGOY69zcD7wK+keSJbuyDwC3AXUmuB54Fru2W3QdsBQ4BPwHes6yJJUkDDSz3qvoqkDMsvmKB9Qu4YcRckqQRePsBSWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lq0MByT3J7khNJ9veNfSTJ0SRPdI+tfctuSnIoycEkb1up4JKkMxvmyP0zwJULjH+iqrZ0j/sAkmwGtgOv67b5VJJzliusJGk4A8u9qh4Cvjfk620D7qyqF6vqO8Ah4NIR8kmSlmCUc+7vS/Jkd9rmwm5sPfBc3zpHurFXSLIzyVySufn5+RFiSJJOt9RyvxV4LbAFOAZ8bLEvUFW7q2q2qmbXrFmzxBiSpIUsqdyr6nhVvVRVLwOf5qenXo4CG/tW3dCNSZJW0ZLKPcm6vtl3AqeupNkLbE9yfpJLgE3Ao6NFlCQt1rmDVkjyOeBy4OIkR4APA5cn2QIUcBh4L0BVPZXkLuBp4CRwQ1W9tDLRJUlnMrDcq+q6BYZvO8v6NwM3jxJKkjQav6EqSQ2y3CWpQZa7JDXIcpekBg38QFWTZ2bXveOOIGnCeeQuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktSggeWe5PYkJ5Ls7xu7KMn9SZ7pni/sxpPkk0kOJXkyyZtWMrwkaWHDHLl/BrjytLFdwL6q2gTs6+YBrgI2dY+dwK3LE1OStBgDy72qHgK+d9rwNmBPN70HuKZv/LPV8zBwQZJ1yxVWkjScpZ5zX1tVx7rp54G13fR64Lm+9Y50Y6+QZGeSuSRz8/PzS4whSVrIyB+oVlUBtYTtdlfVbFXNrlmzZtQYkqQ+Sy3346dOt3TPJ7rxo8DGvvU2dGOSpFW01HLfC+zopncA9/SNv7u7auYy4Id9p28kSavk3EErJPkccDlwcZIjwIeBW4C7klwPPAtc261+H7AVOAT8BHjPCmSWJA0wsNyr6rozLLpigXULuGHUUJKk0fgNVUlqkOUuSQ2y3CWpQZa7JDVo4AeqksZjZte9Y9nv4VuuHst+tbw8cpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIa5N9QHcG4/salJA3ikbskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQSN9iSnJYeAF4CXgZFXNJrkI+DwwAxwGrq2q748WU5K0GMtx5P77VbWlqma7+V3AvqraBOzr5iVJq2glTstsA/Z003uAa1ZgH5Kksxi13Av4SpLHkuzsxtZW1bFu+nlg7UIbJtmZZC7J3Pz8/IgxJEn9Rr1x2Fuq6miSXwHuT/LN/oVVVUlqoQ2rajewG2B2dnbBdSRJSzPSkXtVHe2eTwB3A5cCx5OsA+ieT4waUpK0OEsu9yS/mOQ1p6aBPwL2A3uBHd1qO4B7Rg0pSVqcUU7LrAXuTnLqdf65qv49ydeAu5JcDzwLXDt6TEnSYiy53Kvq28AbFhj/b+CKUUJJkkbjN1QlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lq0Kh/Q1VSY2Z23Tu2fR++5eqx7bs1HrlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBk39pZDjvGxLkiaVR+6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQVN/KaSkdozr0uYW70bpkbskNchyl6QGWe6S1CDLXZIatGLlnuTKJAeTHEqya6X2I0l6pRUp9yTnAP8AXAVsBq5Lsnkl9iVJeqWVuhTyUuBQVX0bIMmdwDbg6RXanyQtWYt/FHylyn098Fzf/BHgd/tXSLIT2NnN/jjJwb7FFwPfXaFsq2Ga809zdjD/OE1zdhhT/nx0pM1//UwLxvYlpqraDexeaFmSuaqaXeVIy2aa809zdjD/OE1zdpj+/KdbqQ9UjwIb++Y3dGOSpFWwUuX+NWBTkkuS/DywHdi7QvuSJJ1mRU7LVNXJJO8DvgycA9xeVU8t4iUWPF0zRaY5/zRnB/OP0zRnh+nP/zNSVePOIElaZn5DVZIaZLlLUoMmqtyT/E2SbyZ5MsndSS7oW3ZTdyuDg0neNs6cC0nyp0meSvJyktnTlk109lOm7ZYRSW5PciLJ/r6xi5Lcn+SZ7vnCcWY8kyQbkzyY5OnufXNjNz4t+V+V5NEk/9nl/+tu/JIkj3Tvoc93F1RMpCTnJPl6ki9181OTfRgTVe7A/cDvVNXrgf8CbgLobl2wHXgdcCXwqe4WB5NkP/DHwEP9g1OSfVpvGfEZev+m/XYB+6pqE7Cvm59EJ4EPVNVm4DLghu7fe1ryvwi8tareAGwBrkxyGfBR4BNV9ZvA94Hrx5hxkBuBA33z05R9oIkq96r6SlWd7GYfpnd9PPRuXXBnVb1YVd8BDtG7xcHEqKoDVXVwgUUTn73z/7eMqKr/AU7dMmJiVdVDwPdOG94G7Omm9wDXrGqoIVXVsap6vJt+gV7JrGd68ldV/bibPa97FPBW4F+78YnNn2QDcDXwT918mJLsw5qocj/NXwD/1k0vdDuD9aueaGmmJfu05BxkbVUd66afB9aOM8wwkswAbwQeYYryd6c1ngBO0Put+1vAD/oO0Cb5PfR3wF8CL3fzv8z0ZB/Kqt9+IMkDwK8usOhDVXVPt86H6P3aesdqZhtkmOyaHFVVSSb6Wt8krwa+ALy/qn7UO4DsmfT8VfUSsKX7bOxu4LfHHGkoSd4OnKiqx5JcPu48K2XVy72q/uBsy5P8OfB24Ir66UX4E3E7g0HZz2Aisg9hWnIOcjzJuqo6lmQdvaPKiZTkPHrFfkdVfbEbnpr8p1TVD5I8CPwecEGSc7sj4El9D70ZeEeSrcCrgF8C/p7pyD60iTotk+RKer8qvaOqftK3aC+wPcn5SS4BNgGPjiPjEkxL9lZuGbEX2NFN7wAm8jeq7hzvbcCBqvp436Jpyb/m1NVsSX4B+EN6nxs8CPxJt9pE5q+qm6pqQ1XN0Huf/0dV/RlTkH1RqmpiHvQ+bHwOeKJ7/GPfsg/RO6d3ELhq3FkXyP5OeufpXgSOA1+elux9ObfSu0rpW/RONY0904C8nwOOAf/b/dtfT+/c6T7gGeAB4KJx5zxD9rfQ+wDyyb73+9Ypyv964Otd/v3AX3Xjv0Hv4OUQ8C/A+ePOOuDnuBz40jRmH/Tw9gOS1KCJOi0jSVoelrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lq0P8BJ7CUGOJE4S8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(generate_normal(1000,10,10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lab 4\n", + "\n", + "*Exercise 5:* Write a function the applies a booling function (that returns true/false) to every element in data, and return a list of indices of elements where the result was true. Use this function to find the indices of entries greater than 0.5. " + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "def where(mylist,myfunc):\n", + " out= list()\n", + " for i,v in enumerate(mylist):\n", + " if myfunc(v):\n", + " out.append(i)\n", + " \n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[5, 6, 7, 8]" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Test your solution here\n", + "\n", + "def greater_than_five(x):\n", + " return x>5\n", + "\n", + "where(range(1,10),greater_than_five)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[5, 6, 7, 8]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "where(range(1,10),lambda x: x>5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 6:* The inrange(mymin,mymax) function below returns a function that tests if it's input is between the specified values. Write corresponding functions that test:\n", + "* Even\n", + "* Odd\n", + "* Greater than\n", + "* Less than\n", + "* Equal\n", + "* Divisible by" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.007019136039755 14.880151850704772\n" + ] + } + ], + "source": [ + "import random\n", + "data= [ 10*random.random()+5 for _ in range(100) ]\n", + "print(min(data),max(data))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True True False False False\n", + "False False True True False\n", + "Number of Entries passing F1: 56\n", + "Number of Entries passing F2: 44\n" + ] + } + ], + "source": [ + "def in_range(mymin,mymax):\n", + " def testrange(x):\n", + " return x=mymin\n", + " return testrange\n", + "\n", + "# Examples:\n", + "F1=in_range(0,10)\n", + "F2=in_range(10,20)\n", + "\n", + "# Test of in_range\n", + "print (F1(0), F1(1), F1(10), F1(15), F1(20))\n", + "print (F2(0), F2(1), F2(10), F2(15), F2(20))\n", + "\n", + "print (\"Number of Entries passing F1:\", len(where(data,F1)))\n", + "print (\"Number of Entries passing F2:\", len(where(data,F2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "### BEGIN SOLUTION\n", + "\n", + "def even(x):\n", + " return x%2==0\n", + "\n", + "def odd(x):\n", + " return x%2==1\n", + " \n", + "def greater_than(y):\n", + " def func(x):\n", + " return x>y\n", + " return func\n", + " \n", + "def less_than(y):\n", + " def func(x):\n", + " return x10,d)))\n", + "print (\"Number of Entries passing less than 10:\", sum(map(lambda x: x<10,d)))\n", + "print (\"Number of Entries passing equal to 10:\", sum(map(lambda x: x==10,d)))\n", + "print (\"Number of Entries passing divisible by 10:\", sum(map(lambda x: x%10==0,d)))\n", + " \n", + "### END SOLUTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Monte Carlo\n", + "\n", + "*Exercise 7:* Write a \"generator\" function called `generate_function(func,x_min,x_max,N)`, that instead of generating a flat distribution, generates a distribution with functional form coded in `func`. Note that `func` will always be > 0. \n", + "\n", + "Use the test function below and your histogramming functions above to demonstrate that your generator is working properly.\n", + "\n", + "Hint: A simple, but slow, solution is to a draw random number test_x within the specified range and another number p between the min and max of the function (which you will have to determine). If p<=function(test_x), then place test_x on the output. If not, repeat the process, drawing two new numbers. Repeat until you have the specified number of generated numbers, N. For this problem, it's OK to determine the min and max by numerically sampling the function. " + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def arange(x_min,x_max,steps=10):\n", + " step_size=(x_max-x_min)/steps\n", + " x=x_min\n", + " out = list()\n", + " for i in range(steps):\n", + " out.append(x)\n", + " x+=step_size\n", + " return out\n", + "\n", + "def generate_function(func,x_min,x_max,N=1000):\n", + " out = list()\n", + " x_scan = arange(x_min,x_max,100)\n", + " y_scan = list(map(func,x_scan))\n", + " y_min = min(y_scan)\n", + " y_max = max(y_scan)\n", + " \n", + " while len(out)=bin_edges[i] and d)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAPhklEQVR4nO3df4xlZX3H8fenLLYViaBMkV/rmJbQoCkrmaxarUFRCgsR25iWTWuxpRk12GpjYtY20cYmDU2r9gdGssIWbOlqiqKkiwhBEzTBH7PbBZZfhdJVdkF2EQVRE7v67R9zNh3He9mZe+7uHR7er+TmnvOc557nOyeZz5z73HPPpKqQJLXr5yZdgCTp4DLoJalxBr0kNc6gl6TGGfSS1LhVky5gkGOOOaamp6cnXYYkPW1s3br10aqaGrRtRQb99PQ0c3Nzky5Dkp42knxj2DanbiSpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEr8puxkjS9YcvExt55ybkTG/tg8Ixekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY074E3NkmwCzgP2VNVLurZPAqd0XY4CvltVawa8difwPeDHwL6qmhlT3ZKkJVrK3SuvBC4FPr6/oap+d/9ykg8Cjz/F619TVY+OWqAkqZ8DBn1V3ZJketC2JAF+B3jteMuSJI1L3zn63wAeqar7hmwv4MYkW5PMPtWOkswmmUsyt3fv3p5lSZL26xv064HNT7H9VVV1OnAOcHGSVw/rWFUbq2qmqmampqZ6liVJ2m/koE+yCvht4JPD+lTV7u55D3AtsHbU8SRJo+lzRv864J6q2jVoY5Ijkhy5fxk4C9jRYzxJ0ggOGPRJNgO3Aqck2ZXkom7TBSyatklyfJLru9VjgS8nuQ34GrClqm4YX+mSpKVYylU364e0v2VA20PAum75AeC0nvVJknrym7GS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhq3lP8ZuynJniQ7FrT9ZZLdSbZ3j3VDXnt2knuT3J9kwzgLlyQtzVLO6K8Ezh7Q/uGqWtM9rl+8MclhwEeAc4BTgfVJTu1TrCRp+Q4Y9FV1C/DYCPteC9xfVQ9U1Y+ATwDnj7AfSVIPfebo35Hk9m5q5+gB208AHlywvqtrGyjJbJK5JHN79+7tUZYkaaFRg/6jwC8Da4CHgQ/2LaSqNlbVTFXNTE1N9d2dJKkzUtBX1SNV9eOq+gnwMeanaRbbDZy0YP3Erk2SdAiNFPRJjluw+lvAjgHdvg6cnORFSZ4FXABcN8p4kqTRrTpQhySbgTOAY5LsAt4PnJFkDVDATuCtXd/jgcural1V7UvyDuDzwGHApqq686D8FJKkoQ4Y9FW1fkDzFUP6PgSsW7B+PfAzl15Kkg4dvxkrSY0z6CWpcQa9JDXOoJekxhn0ktS4A151I+n/TW/YMukSpGXzjF6SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTtg0CfZlGRPkh0L2v42yT1Jbk9ybZKjhrx2Z5I7kmxPMjfOwiVJS7OUM/orgbMXtd0EvKSqfg34L+C9T/H611TVmqqaGa1ESVIfBwz6qroFeGxR241Vta9b/Qpw4kGoTZI0BuOYo/8j4HNDthVwY5KtSWbHMJYkaZl6/eORJH8B7AOuHtLlVVW1O8kvATcluad7hzBoX7PALMDq1av7lCVJWmDkM/okbwHOA36vqmpQn6ra3T3vAa4F1g7bX1VtrKqZqpqZmpoatSxJ0iIjBX2Ss4H3AG+oqh8M6XNEkiP3LwNnATsG9ZUkHTxLubxyM3ArcEqSXUkuAi4FjmR+OmZ7ksu6vscnub576bHAl5PcBnwN2FJVNxyUn0KSNNQB5+irav2A5iuG9H0IWNctPwCc1qs6SVJvvT6MlaQWTW/YMpFxd15y7kHZr7dAkKTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuCUFfZJNSfYk2bGg7XlJbkpyX/d89JDXXtj1uS/JheMqXJK0NEs9o78SOHtR2wbg5qo6Gbi5W/8pSZ4HvB94GbAWeP+wPwiSpINjSUFfVbcAjy1qPh+4qlu+CnjjgJf+JnBTVT1WVd8BbuJn/2BIkg6iVT1ee2xVPdwtfws4dkCfE4AHF6zv6tp+RpJZYBZg9erVPcrSM8H0hi2TLkF62hjLh7FVVUD13MfGqpqpqpmpqalxlCVJol/QP5LkOIDuec+APruBkxasn9i1SZIOkT5Bfx2w/yqaC4HPDujzeeCsJEd3H8Ke1bVJkg6RpV5euRm4FTglya4kFwGXAK9Pch/wum6dJDNJLgeoqseAvwK+3j0+0LVJkg6RJX0YW1Xrh2w6c0DfOeCPF6xvAjaNVJ0kqTe/GStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEjB32SU5JsX/B4Ism7FvU5I8njC/q8r3/JkqTlWNL/jB2kqu4F1gAkOQzYDVw7oOuXquq8UceRJPUzrqmbM4H/rqpvjGl/kqQxGVfQXwBsHrLtFUluS/K5JC8etoMks0nmkszt3bt3TGVJknoHfZJnAW8A/n3A5m3AC6vqNOCfgM8M209VbayqmaqamZqa6luWJKkzjjP6c4BtVfXI4g1V9URVPdktXw8cnuSYMYwpSVqicQT9eoZM2yR5QZJ0y2u78b49hjElSUs08lU3AEmOAF4PvHVB29sAquoy4E3A25PsA34IXFBV1WdMSdLy9Ar6qvo+8PxFbZctWL4UuLTPGJKkfnoFvZ7ZpjdsmXQJkpbAWyBIUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS43oHfZKdSe5Isj3J3IDtSfKPSe5PcnuS0/uOKUlaunH9K8HXVNWjQ7adA5zcPV4GfLR7liQdAodi6uZ84OM17yvAUUmOOwTjSpIYT9AXcGOSrUlmB2w/AXhwwfquru2nJJlNMpdkbu/evWMoS5IE4wn6V1XV6cxP0Vyc5NWj7KSqNlbVTFXNTE1NjaEsSRKMIeiranf3vAe4Fli7qMtu4KQF6yd2bZKkQ6BX0Cc5IsmR+5eBs4Adi7pdB/xBd/XNy4HHq+rhPuNKkpau71U3xwLXJtm/r3+rqhuSvA2gqi4DrgfWAfcDPwD+sOeYkqRl6BX0VfUAcNqA9ssWLBdwcZ9xJEmj85uxktQ4g16SGmfQS1LjDHpJapxBL0mNG9dNzVaM6Q1bJjLuzkvOnci4knQgntFLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJalxzt0CYlEndekGSDsQzeklq3MhBn+SkJF9McleSO5O8c0CfM5I8nmR793hfv3IlScvVZ+pmH/DuqtqW5Ehga5KbququRf2+VFXn9RhHktTDyGf0VfVwVW3rlr8H3A2cMK7CJEnjMZY5+iTTwEuBrw7Y/IoktyX5XJIXj2M8SdLS9b7qJslzgE8B76qqJxZt3ga8sKqeTLIO+Axw8pD9zAKzAKtXr+5bliSp0+uMPsnhzIf81VX16cXbq+qJqnqyW74eODzJMYP2VVUbq2qmqmampqb6lCVJWqDPVTcBrgDurqoPDenzgq4fSdZ243171DElScvXZ+rmlcCbgTuSbO/a/hxYDVBVlwFvAt6eZB/wQ+CCqqoeY0qSlmnkoK+qLwM5QJ9LgUtHHUOS1J/fjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIa1yvok5yd5N4k9yfZMGD7zyf5ZLf9q0mm+4wnSVq+kYM+yWHAR4BzgFOB9UlOXdTtIuA7VfUrwIeBvxl1PEnSaPqc0a8F7q+qB6rqR8AngPMX9TkfuKpbvgY4M0l6jClJWqZVPV57AvDggvVdwMuG9amqfUkeB54PPLp4Z0lmgdlu9ckk9/ao7VA4hgE/hzwuQ3hchvPYdPLTcx7LPS4vHLahT9CPVVVtBDZOuo6lSjJXVTOTrmOl8bgM5nEZzmMz2DiPS5+pm93ASQvWT+zaBvZJsgp4LvDtHmNKkpapT9B/HTg5yYuSPAu4ALhuUZ/rgAu75TcBX6iq6jGmJGmZRp666ebc3wF8HjgM2FRVdyb5ADBXVdcBVwD/kuR+4DHm/xi04mkzzXSIeVwG87gM57EZbGzHJZ5gS1Lb/GasJDXOoJekxhn0y5DkpCRfTHJXkjuTvHPSNa0kSQ5L8p9J/mPStawkSY5Kck2Se5LcneQVk65pJUjyZ93v0Y4km5P8wqRrmpQkm5LsSbJjQdvzktyU5L7u+ehR92/QL88+4N1VdSrwcuDiAbd9eCZ7J3D3pItYgf4BuKGqfhU4DY8RSU4A/hSYqaqXMH9BR0sXayzXlcDZi9o2ADdX1cnAzd36SAz6Zaiqh6tqW7f8PeZ/YU+YbFUrQ5ITgXOByyddy0qS5LnAq5m/Ao2q+lFVfXeyVa0Yq4Bf7L5j82zgoQnXMzFVdQvzVyYutPAWMlcBbxx1/wb9iLo7cb4U+OpkK1kx/h54D/CTSReywrwI2Av8czetdXmSIyZd1KRV1W7g74BvAg8Dj1fVjZOtasU5tqoe7pa/BRw76o4M+hEkeQ7wKeBdVfXEpOuZtCTnAXuqauuka1mBVgGnAx+tqpcC36fHW/BWdPPN5zP/h/B44Igkvz/Zqlau7oumI18Lb9AvU5LDmQ/5q6vq05OuZ4V4JfCGJDuZv4vpa5P862RLWjF2Abuqav87v2uYD/5nutcB/1NVe6vqf4FPA78+4ZpWmkeSHAfQPe8ZdUcG/TJ0t1i+Ari7qj406XpWiqp6b1WdWFXTzH+g9oWq8uwMqKpvAQ8mOaVrOhO4a4IlrRTfBF6e5Nnd79WZ+CH1YgtvIXMh8NlRd2TQL88rgTczf8a6vXusm3RRWvH+BLg6ye3AGuCvJ1zPxHXvcK4BtgF3MJ9Fz9hbISTZDNwKnJJkV5KLgEuA1ye5j/l3QJeMvH9vgSBJbfOMXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxv0frqHxyklC+XUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(generate_function(test_func,0,10,100))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 8:* Use your function to generate 1000 numbers that are normal distributed, using the `gaussian` function below. Confirm the mean and variance of the data is close to the mean and variance you specify when building the Gaussian. Histogram the data. " + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "\n", + "def gaussian(mean, sigma):\n", + " def f(x):\n", + " return math.exp(-((x-mean)**2)/(2*sigma**2))/math.sqrt(math.pi*sigma)\n", + " return f\n", + "\n", + "# Example Instantiation\n", + "g1=gaussian(0,1)\n", + "g2=gaussian(10,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAPgUlEQVR4nO3df6hfd33H8edradWhjkaahZqE3SLZIIpGCbGj+8PZ2aatGB1MWjbNXCH+0UIFQVKF1SmFDKduMtcRbbCyzlKoYmiyxdgVirBqbl1Wm8aul5qShNhcV+cPCo7qe3/cT8a36b25v76533v9PB/w5XvO+3zOOe9vfrzuyTnne5KqQpLUh98YdQOSpKVj6EtSRwx9SeqIoS9JHTH0JakjF426gfO59NJLa2xsbNRtSNKK8uijj/6oqtZMt2xZh/7Y2Bjj4+OjbkOSVpQkz8y0zNM7ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUkWX9jVxpNmO79o9s38d3Xz+yfUsL5ZG+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6MmvoJ9mQ5KEkTyQ5muTWVv94klNJjrTXdQPr3JZkIsmTSa4ZqG9rtYkkuy7MR5IkzeSiOYx5AfhwVX03yauBR5Mcass+W1V/Mzg4ySbgBuD1wGuBbyb53bb488A7gJPA4ST7quqJYXwQSdLsZg39qjoNnG7TP0tyDFh3nlW2A/dW1S+AHySZALa2ZRNV9TRAknvbWENfkpbIvM7pJxkD3gx8u5VuSfJYkr1JVrfaOuDEwGonW22m+rn72JlkPMn45OTkfNqTJM1izqGf5FXA/cCHquqnwJ3A64DNTP1L4NPDaKiq9lTVlqrasmbNmmFsUpLUzOWcPkkuZirw76mqrwJU1bMDy78APNBmTwEbBlZf32qcpy6tOGO79o9kv8d3Xz+S/erXw1zu3glwF3Csqj4zUL9sYNh7gMfb9D7ghiQvT3I5sBH4DnAY2Jjk8iQvY+pi777hfAxJ0lzM5Uj/SuB9wPeSHGm1jwI3JtkMFHAc+CBAVR1Nch9TF2hfAG6uql8CJLkFOAisAvZW1dEhfhZJ0izmcvfOt4BMs+jAeda5A7hjmvqB860nSbqw/EauJHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktSRWUM/yYYkDyV5IsnRJLe2+muSHEryVHtf3epJ8rkkE0keS/KWgW3taOOfSrLjwn0sSdJ05nKk/wLw4araBFwB3JxkE7ALeLCqNgIPtnmAa4GN7bUTuBOmfkgAtwNvBbYCt5/9QSFJWhqzhn5Vna6q77bpnwHHgHXAduDuNuxu4N1tejvw5ZryCHBJksuAa4BDVfVcVf0YOARsG+qnkSSd17zO6ScZA94MfBtYW1Wn26IfAmvb9DrgxMBqJ1ttprokaYnMOfSTvAq4H/hQVf10cFlVFVDDaCjJziTjScYnJyeHsUlJUjOn0E9yMVOBf09VfbWVn22nbWjvZ1r9FLBhYPX1rTZT/UWqak9VbamqLWvWrJnPZ5EkzWIud+8EuAs4VlWfGVi0Dzh7B84O4OsD9fe3u3iuAH7STgMdBK5OsrpdwL261SRJS+SiOYy5Engf8L0kR1rto8Bu4L4kNwHPAO9tyw4A1wETwPPABwCq6rkknwQOt3GfqKrnhvIpNHJju/aPugVJczBr6FfVt4DMsPiqacYXcPMM29oL7J1Pg5Kk4fEbuZLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SerIrKGfZG+SM0keH6h9PMmpJEfa67qBZbclmUjyZJJrBurbWm0iya7hfxRJ0mzmcqT/JWDbNPXPVtXm9joAkGQTcAPw+rbOPyRZlWQV8HngWmATcGMbK0laQhfNNqCqHk4yNsftbQfurapfAD9IMgFsbcsmquppgCT3trFPzLtjSdKCLeac/i1JHmunf1a32jrgxMCYk602U/0lkuxMMp5kfHJychHtSZLOtdDQvxN4HbAZOA18elgNVdWeqtpSVVvWrFkzrM1KkpjD6Z3pVNWzZ6eTfAF4oM2eAjYMDF3fapynLklaIgs60k9y2cDse4Czd/bsA25I8vIklwMbge8Ah4GNSS5P8jKmLvbuW3jbkqSFmPVIP8lXgLcBlyY5CdwOvC3JZqCA48AHAarqaJL7mLpA+wJwc1X9sm3nFuAgsArYW1VHh/5pJEnnNZe7d26cpnzXecbfAdwxTf0AcGBe3UmShspv5EpSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqyIKesilpdMZ27R/Zvo/vvn5k+9ZweKQvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHZk19JPsTXImyeMDtdckOZTkqfa+utWT5HNJJpI8luQtA+vsaOOfSrLjwnwcSdL5zOVI/0vAtnNqu4AHq2oj8GCbB7gW2NheO4E7YeqHBHA78FZgK3D72R8UkqSlM2voV9XDwHPnlLcDd7fpu4F3D9S/XFMeAS5JchlwDXCoqp6rqh8Dh3jpDxJJ0gW20HP6a6vqdJv+IbC2Ta8DTgyMO9lqM9VfIsnOJONJxicnJxfYniRpOou+kFtVBdQQejm7vT1VtaWqtqxZs2ZYm5UksfDQf7adtqG9n2n1U8CGgXHrW22muiRpCS009PcBZ+/A2QF8faD+/nYXzxXAT9ppoIPA1UlWtwu4V7eaJGkJXTTbgCRfAd4GXJrkJFN34ewG7ktyE/AM8N42/ABwHTABPA98AKCqnkvySeBwG/eJqjr34rAk6QKbNfSr6sYZFl01zdgCbp5hO3uBvfPqTpI0VH4jV5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6sisz97RyjK2a/+oW5C0jHmkL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcWFfpJjif5XpIjScZb7TVJDiV5qr2vbvUk+VySiSSPJXnLMD6AJGnuhnGk/4dVtbmqtrT5XcCDVbUReLDNA1wLbGyvncCdQ9i3JGkeLsTpne3A3W36buDdA/Uv15RHgEuSXHYB9i9JmsFiQ7+AbyR5NMnOVltbVafb9A+BtW16HXBiYN2TrfYiSXYmGU8yPjk5ucj2JEmDFvt/5P5BVZ1K8tvAoSTfH1xYVZWk5rPBqtoD7AHYsmXLvNaVJJ3foo70q+pUez8DfA3YCjx79rRNez/Thp8CNgysvr7VJElLZMGhn+SVSV59dhq4Gngc2AfsaMN2AF9v0/uA97e7eK4AfjJwGkiStAQWc3pnLfC1JGe3889V9a9JDgP3JbkJeAZ4bxt/ALgOmACeBz6wiH1LkhZgwaFfVU8Db5qm/t/AVdPUC7h5ofuTJC2e38iVpI4Y+pLUkcXesimpI2O79o9kv8d3Xz+S/f468khfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXERytfAKN6/KwkzcYjfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOuJ9+pKWvVF+9+X47utHtu8LwSN9SeqIoS9JHVny0ztJtgF/B6wCvlhVuy/UvnwcgiS92JIe6SdZBXweuBbYBNyYZNNS9iBJPVvqI/2twERVPQ2Q5F5gO/DEEvchSXMyqjMGF+oC8lKH/jrgxMD8SeCtgwOS7AR2ttmfJ3lyiXqbi0uBH426iTlYCX3a43CshB5hZfS5rHrMX09bnmuPvzPTgmV3y2ZV7QH2jLqP6SQZr6oto+5jNiuhT3scjpXQI6yMPnvpcanv3jkFbBiYX99qkqQlsNShfxjYmOTyJC8DbgD2LXEPktStJT29U1UvJLkFOMjULZt7q+roUvawSMvytNM0VkKf9jgcK6FHWBl9dtFjqmoYjUiSVgC/kStJHTH0Jakjhv48JflkkseSHEnyjSSvHXVP50ryqSTfb31+Lcklo+5pOkn+JMnRJL9KsqxulUuyLcmTSSaS7Bp1P+dKsjfJmSSPj7qXmSTZkOShJE+03+dbR93TuZK8Isl3kvxn6/GvRt3TTJKsSvIfSR5YzHYM/fn7VFW9sao2Aw8AfznqhqZxCHhDVb0R+C/gthH3M5PHgT8GHh51I4NWyONCvgRsG3UTs3gB+HBVbQKuAG5ehr+OvwDeXlVvAjYD25JcMeKeZnIrcGyxGzH056mqfjow+0pg2V0Jr6pvVNULbfYRpr4PsexU1bGqWk7fuD7r/x8XUlX/C5x9XMiyUVUPA8+Nuo/zqarTVfXdNv0zpgJr3Wi7erGa8vM2e3F7Lbu/00nWA9cDX1zstgz9BUhyR5ITwJ+yPI/0B/0F8C+jbmKFme5xIcsqrFaaJGPAm4Fvj7aTl2qnTY4AZ4BDVbXsegT+FvgI8KvFbsjQn0aSbyZ5fJrXdoCq+lhVbQDuAW5Zjj22MR9j6p/Y94yix7n2qV9vSV4F3A986Jx/KS8LVfXLdrp2PbA1yRtG3dOgJO8EzlTVo8PY3rJ79s5yUFV/NMeh9wAHgNsvYDvTmq3HJH8OvBO4qkb4ZYx5/FouJz4uZEiSXMxU4N9TVV8ddT/nU1X/k+Qhpq6VLKcL5FcC70pyHfAK4LeS/FNV/dlCNuaR/jwl2Tgwux34/qh6mUn7j2o+Aryrqp4fdT8rkI8LGYIkAe4CjlXVZ0bdz3SSrDl7d1uS3wTewTL7O11Vt1XV+qoaY+rP4r8tNPDB0F+I3e30xGPA1UxdUV9u/h54NXCo3Vr6j6NuaDpJ3pPkJPD7wP4kB0fdE0w9LoSp03YHmbr4eN9ye1xIkq8A/w78XpKTSW4adU/TuBJ4H/D29ufwSDtaXU4uAx5qf58PM3VOf1G3RC53PoZBkjrikb4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR35P5jXAxBCagzqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASPUlEQVR4nO3dcYyc9X3n8ffnIMlJSVpMvedzgXZD5EaiVWvQiuOuScQdbQqkCkl1oqAqcRJ0DjqQErWnyk2kJKpUibQlkXLXEjmHBTkRSlrCBV1IGx8XFVU6aBfqOCaQYnNGsWXsLVSQXqq2hm//mGfbYZnxzu7M7uz++n5Jo3me3/N75vny8OjjZ3/zzPOkqpAkteVfTLsASdLkGe6S1CDDXZIaZLhLUoMMd0lq0NnTLgBg69atNTs7O+0yJGlTefTRR/+yqmYGLdsQ4T47O8v8/Py0y5CkTSXJM8OWOSwjSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkN2hC/UJU2stk9X53Kdo/e8s6pbFdt8MxdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGLRvuSS5I8o0k307yeJIPd+3nJtmf5KnufUvXniSfTXI4ycEkl6z1f4Qk6ZVGOXM/DfxKVV0EXAbclOQiYA/wYFXtAB7s5gGuAnZ0r93AbROvWpJ0RsuGe1WdqKrHuunvAU8A5wHXAHd23e4E3t1NXwN8oXoeBs5Jsn3ilUuShlrRmHuSWeBi4BFgW1Wd6BY9C2zrps8Dvtu32rGubeln7U4yn2R+YWFhhWVLks5k5HBP8gbgXuAjVfVi/7KqKqBWsuGq2ltVc1U1NzMzs5JVJUnLGCnck7yGXrDfVVVf7ppPLg63dO+nuvbjwAV9q5/ftUmS1skoV8sEuB14oqo+3bfofmBXN70L+Epf+/u6q2YuA17oG76RJK2DUW75+9PAe4FvJTnQtX0UuAX4UpIbgGeAa7tlDwBXA4eB7wMfmGjF0j8T07rVMHi74RYsG+5V9SdAhiy+YkD/Am4asy5J0hj8haokNchwl6QG+Zg9bQrTHH+WNiPP3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkho0ymP29iU5leRQX9s9SQ50r6OLT2hKMpvkb/qWfW4ti5ckDTbKLX/vAP4b8IXFhqr6xcXpJLcCL/T1P1JVOydVoCRp5UZ5zN5DSWYHLesenn0t8B8mW5YkaRzjjrm/DThZVU/1tb0pyZ8n+eMkbxu2YpLdSeaTzC8sLIxZhiSp37jhfj1wd9/8CeBHqupi4JeBLyb5gUErVtXeqpqrqrmZmZkxy5Ak9Vt1uCc5G/gF4J7Ftqr626p6rpt+FDgC/Ni4RUqSVmacM/efAZ6sqmOLDUlmkpzVTV8I7ACeHq9ESdJKjXIp5N3A/wXekuRYkhu6RdfxyiEZgLcDB7tLI/8AuLGqnp9kwZKk5Y1ytcz1Q9rfP6DtXuDe8cuSJI3DX6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoFEe1rEvyakkh/raPpnkeJID3evqvmW/luRwku8k+bm1KlySNNwoZ+53AFcOaP9MVe3sXg8AJLmI3hOafrxb53cXH7snSVo/y4Z7VT0EjPqovGuA3+selP3/gMPApWPUJ0lahXHG3G9OcrAbttnStZ0HfLevz7Gu7VWS7E4yn2R+YWFhjDIkSUutNtxvA94M7AROALeu9AOqam9VzVXV3MzMzCrLkCQNsqpwr6qTVfVSVb0MfJ5/Gno5DlzQ1/X8rk2StI5WFe5JtvfNvgdYvJLmfuC6JK9L8iZgB/Cn45UoSVqps5frkORu4HJga5JjwCeAy5PsBAo4CnwIoKoeT/Il4NvAaeCmqnppbUqXJA2zbLhX1fUDmm8/Q//fAH5jnKIkSePxF6qS1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYtG+5J9iU5leRQX9tvJXkyycEk9yU5p2ufTfI3SQ50r8+tZfGSpMFGOXO/A7hySdt+4Ceq6ieBvwB+rW/Zkara2b1unEyZkqSVWDbcq+oh4PklbV+vqtPd7MPA+WtQmyRplSYx5v5B4Gt9829K8udJ/jjJ24atlGR3kvkk8wsLCxMoQ5K0aKxwT/Ix4DRwV9d0AviRqroY+GXgi0l+YNC6VbW3quaqam5mZmacMiRJS6w63JO8H/h54JeqqgCq6m+r6rlu+lHgCPBjE6hTkrQCqwr3JFcCvwq8q6q+39c+k+SsbvpCYAfw9CQKlSSN7uzlOiS5G7gc2JrkGPAJelfHvA7YnwTg4e7KmLcDv57k74GXgRur6vmBHyxpw5rd89WpbPfoLe+cynZbtGy4V9X1A5pvH9L3XuDecYuSJI3HX6hKUoMMd0lqkOEuSQ0y3CWpQct+oSr1m9ZVFJJWxjN3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0aKdyT7EtyKsmhvrZzk+xP8lT3vqVrT5LPJjmc5GCSS9aqeEnSYKOeud8BXLmkbQ/wYFXtAB7s5gGuovd4vR3AbuC28cuUJK3ESOFeVQ8BSx+Xdw1wZzd9J/DuvvYvVM/DwDlJtk+iWEnSaMYZc99WVSe66WeBbd30ecB3+/od69peIcnuJPNJ5hcWFsYoQ5K01ES+UK2qAmqF6+ytqrmqmpuZmZlEGZKkzjjhfnJxuKV7P9W1Hwcu6Ot3ftcmSVon44T7/cCubnoX8JW+9vd1V81cBrzQN3wjSVoHIz2JKcndwOXA1iTHgE8AtwBfSnID8Axwbdf9AeBq4DDwfeADE65ZkrSMkcK9qq4fsuiKAX0LuGmcoiRJ4/EXqpLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDVopPu5D5LkLcA9fU0XAh8HzgH+E7D41OuPVtUDq65QkrRiqw73qvoOsBMgyVn0npN6H70nL32mqn57IhVKklZsUsMyVwBHquqZCX2eJGkMkwr364C7++ZvTnIwyb4kWya0DUnSiMYO9ySvBd4F/H7XdBvwZnpDNieAW4estzvJfJL5hYWFQV0kSas0iTP3q4DHquokQFWdrKqXqupl4PPApYNWqqq9VTVXVXMzMzMTKEOStGgS4X49fUMySbb3LXsPcGgC25AkrcCqr5YBSPJ64GeBD/U1/2aSnUABR5cskyStg7HCvar+P/BDS9reO1ZFkqSx+QtVSWqQ4S5JDTLcJalBhrskNchwl6QGjXW1jKZjds9Xp12CpA3OM3dJapDhLkkNMtwlqUGGuyQ1yHCXpAZ5tYykDWNaV4IdveWdU9nuWvLMXZIaZLhLUoMMd0lqkOEuSQ0a+wvVJEeB7wEvAaerai7JucA9wCy9pzFdW1V/Ne62JEmjmdSZ+7+vqp1VNdfN7wEerKodwIPdvCRpnazVsMw1wJ3d9J3Au9doO5KkASYR7gV8PcmjSXZ3bduq6kQ3/SywbelKSXYnmU8yv7CwMIEyJEmLJvEjprdW1fEk/wrYn+TJ/oVVVUlq6UpVtRfYCzA3N/eq5ZKk1Rv7zL2qjnfvp4D7gEuBk0m2A3Tvp8bdjiRpdGOFe5LXJ3nj4jTwDuAQcD+wq+u2C/jKONuRJK3MuMMy24D7kix+1her6g+T/BnwpSQ3AM8A1465HUnSCowV7lX1NPBTA9qfA64Y57MlSavnL1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lq0KrDPckFSb6R5NtJHk/y4a79k0mOJznQva6eXLmSpFGM87CO08CvVNVj3aP2Hk2yv1v2mar67fHLkyStxqrDvapOACe66e8leQI4b1KFSZJWbyJj7klmgYuBR7qmm5McTLIvyZYh6+xOMp9kfmFhYRJlSJI6Y4d7kjcA9wIfqaoXgduANwM76Z3Z3zpovaraW1VzVTU3MzMzbhmSpD5jhXuS19AL9ruq6ssAVXWyql6qqpeBzwOXjl+mJGklxrlaJsDtwBNV9em+9u193d4DHFp9eZKk1RjnapmfBt4LfCvJga7to8D1SXYCBRwFPjRWhZKkFRvnapk/ATJg0QOrL2dzmd3z1WmXIEkD+QtVSWqQ4S5JDRpnzF2SmjDNIdajt7xzTT7XM3dJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDWri9gPenVGSXskzd0lqkOEuSQ1as3BPcmWS7yQ5nGTPWm1HkvRqaxLuSc4Cfge4CriI3qP3LlqLbUmSXm2tztwvBQ5X1dNV9XfA7wHXrNG2JElLrNXVMucB3+2bPwb8m/4OSXYDu7vZv07yHPCXa1TPWtnK5qsZNmfdm7Fm2Jx1b8aaYXPWvTWfGqvmHx22YGqXQlbVXmDv4nyS+aqam1Y9q7EZa4bNWfdmrBk2Z92bsWbYnHWvZc1rNSxzHLigb/78rk2StA7WKtz/DNiR5E1JXgtcB9y/RtuSJC2xJsMyVXU6yc3AHwFnAfuq6vFlVtu7zPKNaDPWDJuz7s1YM2zOujdjzbA5616zmlNVa/XZkqQp8ReqktQgw12SGrSu4b7cLQmSvC7JPd3yR5LMrmd9gyS5IMk3knw7yeNJPjygz+VJXkhyoHt9fBq1LpXkaJJvdTXND1ieJJ/t9vfBJJdMo86+et7Stw8PJHkxyUeW9NkQ+zrJviSnkhzqazs3yf4kT3XvW4asu6vr81SSXVOu+beSPNn9/78vyTlD1j3jsbSWhtT9ySTH+46Dq4esO5XboAyp+Z6+eo8mOTBk3cns66palxe9L1aPABcCrwW+CVy0pM9/Bj7XTV8H3LNe9Z2h7u3AJd30G4G/GFD35cD/mnatA2o/Cmw9w/Krga8BAS4DHpl2zUuOl2eBH92I+xp4O3AJcKiv7TeBPd30HuBTA9Y7F3i6e9/STW+ZYs3vAM7upj81qOZRjqUp1P1J4L+McAydMXPWs+Yly28FPr6W+3o9z9xHuSXBNcCd3fQfAFckyTrW+CpVdaKqHuumvwc8Qe8XuC24BvhC9TwMnJNk+7SL6lwBHKmqZ6ZdyCBV9RDw/JLm/uP3TuDdA1b9OWB/VT1fVX8F7AeuXLNC+wyquaq+XlWnu9mH6f0mZUMZsq9HMbXboJyp5i7TrgXuXssa1jPcB92SYGlI/mOf7oB7AfihdaluBN0w0cXAIwMW/9sk30zytSQ/vq6FDVfA15M82t3uYalR/p9My3UMP/g34r4G2FZVJ7rpZ4FtA/ps5H3+QXp/yQ2y3LE0DTd3w0n7hgyBbdR9/TbgZFU9NWT5RPa1X6iOKMkbgHuBj1TVi0sWP0Zv+OCngP8K/M/1rm+It1bVJfTuznlTkrdPu6BRdD98exfw+wMWb9R9/QrV+/t601xnnORjwGngriFdNtqxdBvwZmAncILeMMdmcT1nPmufyL5ez3Af5ZYE/9gnydnADwLPrUt1Z5DkNfSC/a6q+vLS5VX1YlX9dTf9APCaJFvXucxXqarj3fsp4D56f6b226i3ibgKeKyqTi5dsFH3defk4rBW935qQJ8Nt8+TvB/4eeCXun+UXmWEY2ldVdXJqnqpql4GPj+kno24r88GfgG4Z1ifSe3r9Qz3UW5JcD+wePXAfwT+z7CDbb1042O3A09U1aeH9PnXi98NJLmU3n6d6j9KSV6f5I2L0/S+ODu0pNv9wPu6q2YuA17oG1aYpqFnNhtxX/fpP353AV8Z0OePgHck2dINJbyja5uKJFcCvwq8q6q+P6TPKMfSulry3dB7GFzPRrwNys8AT1bVsUELJ7qv1+Ob475vga+md7XJEeBjXduv0zuwAP4lvT/FDwN/Cly4nvUNqfmt9P68Pggc6F5XAzcCN3Z9bgYep/dt/MPAv9sAdV/Y1fPNrrbF/d1fd+g9VOUI8C1gbgPU/Xp6Yf2DfW0bbl/T+8fnBPD39MZyb6D3/dCDwFPA/wbO7frOAf+9b90Pdsf4YeADU675ML1x6cVje/FqtR8GHjjTsTTluv9Hd8wepBfY25fW3c2/KnOmVXPXfsfisdzXd032tbcfkKQG+YWqJDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkN+ge0iumlI2w9VQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "g1_data=generate_function(g1,-5,5,10000)\n", + "g2_data=generate_function(g2,0,20,1000)\n", + "\n", + "plt.hist(g1_data)\n", + "plt.show()\n", + "plt.hist(g2_data)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.006324680309003644 1.0017820500663661\n", + "9.943126633736021 2.940006543089863\n" + ] + } + ], + "source": [ + "def mean(x):\n", + " return sum(x)/float(len(x))\n", + "\n", + "def variance(x):\n", + " m=mean(x)\n", + " return (sum(map(lambda y: (y-m)**2,x))/float(len(x)-1))\n", + "\n", + "import math\n", + "\n", + "print(mean(g1_data),math.sqrt(variance(g1_data)))\n", + "print(mean(g2_data),math.sqrt(variance(g2_data)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "571 ms ± 27.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%timeit g1_data=generate_function(g1,-50,50,10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8.77 ms ± 69.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + ] + } + ], + "source": [ + "%timeit generate_normal(10000,0,1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Exercise 9:* Combine your `generate_function`, `where`, and `in_range` functions above to create an integrate function. Use your integrate function to show that approximately 68% of Normal distribution is within one variance." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "def integrate(func, x_min, x_max, n_points=1000):\n", + " out = list()\n", + " x_scan = arange(x_min,x_max,100)\n", + " y_scan = list(map(func,x_scan))\n", + " y_min = min(y_scan)\n", + " y_max = max(y_scan)\n", + "\n", + " count=0\n", + " while len(out)\n", + "The student instance: \n" + ] + } + ], + "source": [ + "a_student=student()\n", + "\n", + "print(\"The student class:\", type(student))\n", + "print(\"The student instance:\", type(a_student))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Why would such a construction be helpful? An alternative way of keeping all doing all of the book-keeping for the students would have been to create a bunch of lists for each of the attributes and make sure that the first student's information is always at index 0, second student index 1, and so on. \n", + "\n", + "For exmaple:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "names=list()\n", + "id_numbers=list()\n", + "genders=list()\n", + "years=list()\n", + "grades=list()\n", + "\n", + "# Create an \"instance\" of a student\n", + "\n", + "names.append(str())\n", + "id_numbers.append(int())\n", + "genders.append(str())\n", + "years.append(str())\n", + "grades.append(list())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We could write functions to help make all of this look nicer, but it would be cumbersome to manage and ugly to read. By encapsulating concepts into objects, you ultimately reduce the complexity of your code.\n", + "\n", + "\n", + "## Constructor / Destructor\n", + "\n", + "We created an instance of student in the example above, but we didn't take care to carefully make sure all that the student instance was carefully setup. The first important OO concept are **constructors** and **destructors**. These are optional methods that are called when an object is created or destroyed. Since python manages memory for us, we typically don't need to implement destructors, but constructors are always a good idea. \n", + "\n", + "In python the names of build-in methods of classes typically start and end with 2 underscores. `__init__(self,...)` and `__del__(self)` are class constructor and destructors, respectively. \n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class student:\n", + " def __init__(self, name, id_number, gender, year):\n", + " self.name=name\n", + " self.id_number=id_number\n", + " self.gender=gender\n", + " self.year=year\n", + " self.grades=list()\n", + " \n", + " def add_grade(self,grade):\n", + " self.grades.append(grade)\n", + " \n", + " def average_grade(self):\n", + " return sum(self.grades)/len(self.grades)\n", + " \n", + " def print_grades(self):\n", + " for grade in self.grades:\n", + " print(grade)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now when you instantiate a student you would do:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "85\n", + "90\n", + "Average: 87.5\n" + ] + } + ], + "source": [ + "a_student=student(\"John Doe\", 111, \"Male\", 0)\n", + "\n", + "a_student.add_grade(85)\n", + "a_student.add_grade(90)\n", + "\n", + "a_student.print_grades()\n", + "\n", + "print(\"Average:\", a_student.average_grade())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And you can keep all of the information for all of your students in a list:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Name: John Doe\n", + "Name: Jane Doe\n" + ] + } + ], + "source": [ + "students=list()\n", + "\n", + "students.append(student(\"John Doe\", 111, \"Male\", 0))\n", + "students.append(student(\"Jane Doe\", 112, \"Female\", 0))\n", + "\n", + "for student in students:\n", + " print(\"Name:\", student.name)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are lots of built-in methods for classes, some of which have default implementations that you can **overload**, others that you can optionally implement. For example, if you have objects that you want python to know how to add, you can implement `__add__(self,other)` method." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Object oriented programming allows you to establish and maintain abstractions more effectively. Once an object has been implemented, users of the object don't need to know how the internals work and how it stores data to use it. They simply use the objects methods. It also makes it easier to change implementations. As long as the class maintains the same methods, you can improve and evolve the data and methods as you like without effecting any application that uses your class." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classes and Instances\n", + "\n", + "Consider the following simple class and instances." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, my name is Bob\n", + "Hello, my name is Bill\n" + ] + } + ], + "source": [ + "class person:\n", + " name = \"\"\n", + " \n", + " def __init__(self, name):\n", + " self.name = name\n", + " \n", + " def say_hello(self):\n", + " print(\"Hello, my name is \" + self.name)\n", + " \n", + "# create objects\n", + "bob = person(\"Bob\")\n", + "bill = person(\"Bill\")\n", + " \n", + "# call methods owned by virtual objects\n", + "bob.say_hello()\n", + "bill.say_hello()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "people = [person(\"Jane\"),person(\"John\")]\n", + "Jane = people[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inheritance\n", + "\n", + "A powerful feature of object-oriented programming is inheritance, which allows you to build a hierarchy of classes. For example what if we wanted to keep track of students and faculty at the University. There would be some aspects of students and faculty that would be in common, while other would be different. We can store the common atrributes and methods in a common class called \"person\" that both \"student\" and \"faculty\" **inherit** from. \n", + "\n", + "For example:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class person:\n", + " def __init__(self, name, id_number, gender):\n", + " self.name=name\n", + " self.id_number=id_number\n", + " self.gender=gender\n", + " \n", + " \n", + "class student(person):\n", + " def __init__(self, name, id_number, gender, year):\n", + " super(student,self).__init__(name,id_number,gender)\n", + " self.year=year\n", + " self.grades=list()\n", + " \n", + " def add_grade(self,grade):\n", + " self.grades.append(grade)\n", + " \n", + " def average_grade(self):\n", + " return sum(self.grades)/len(self.grades)\n", + " \n", + " def print_grades(self):\n", + " for grade in self.grades:\n", + " print(grade)\n", + "\n", + " \n", + "class faculty(person):\n", + " def __init__(self, name, id_number, gender):\n", + " super(faculty,self).__init__(name,id_number,gender)\n", + " self.courses=list()\n", + " \n", + " def add_courses(self,course):\n", + " self.grades.append(course)\n", + " \n", + " def print_courses(self):\n", + " for courses in self.courses:\n", + " print(course)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inheritance helps in reducing the need to copy and paste code and to make it easier to use your code by establishing common interface and behaviors between different objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Public and Private Methods\n", + "\n", + "By convention, methods that start with two underscores (`__`) are considered to be private and are meant to be only called by the class." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "updating software\n", + "operate\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'device' object has no attribute '__update'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;31m# This will fail\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0ma_device\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__update\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'device' object has no attribute '__update'" + ] + } + ], + "source": [ + "class device: \n", + " def __init__(self):\n", + " self.__update()\n", + " \n", + " def operate(self):\n", + " print('operate')\n", + " \n", + " def __update(self):\n", + " print('updating software')\n", + " \n", + "a_device= device()\n", + "\n", + "a_device.operate()\n", + "\n", + "# This will fail\n", + "a_device.__update()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Public and Private Data\n", + "\n", + "Usually a class needs to control the data it holds. If an external class or user changes a data member of a class in a unexpected way, then the class can fail.\n", + "\n", + "The way to control the data in your classes is to make the varibles holding the data private and create \"setter\" and \"accessor\" functions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class car:\n", + " __name = \"\"\n", + " __n_doors = 0\n", + " __n_passangers = 0\n", + " __max_passangers = 4\n", + " \n", + " def __init__(self,name=\"Unnamed\",n_doors=4, max_passangers=4):\n", + " self.__name=name\n", + " self.__n_doors=n_doors\n", + " self.__max_passangers=max_passangers\n", + " \n", + " ## Accessors\n", + " def name(self):\n", + " return self.__name\n", + " \n", + " def n_doors(self):\n", + " return self.__n_doors\n", + " \n", + " def n_passangers(self):\n", + " return self.__n_passangers\n", + " \n", + " ## Setter\n", + " def set_name(self,name):\n", + " if isinstance(name,str):\n", + " self.__name=name\n", + " else:\n", + " print (\"Name must be a string.\")\n", + " \n", + " ## Can't change number of doors on a car... so no setter for __n_doors\n", + " \n", + " ## We can only add and remove passangers\n", + " def add_passanger(self,n=1):\n", + " if isinstance(n,(int,float)):\n", + " self.__n_passangers+=n\n", + " if self.__n_passangers>self.__max_passangers:\n", + " self.__n_passangers=self.__max_passangers\n", + " print (\"Car is full. \",n-self.max_passangers,\" passangers were left outside.\")\n", + " else:\n", + " print (\"Number of passangers must be an interger.\")\n", + " \n", + " def remove_passanger(self,n=1):\n", + " if isinstance(n,int):\n", + " self.__n_passangers-=n\n", + " if self.__n_passangers<0:\n", + " self.__n_passangers=0 \n", + " else:\n", + " print(\"Number of passangers must be an interger.\")\n", + "\n", + "\n", + "\n", + "my_car=car()\n", + "print (my_car.name())\n", + "my_car.set_name(\"My Car\")\n", + "print (my_car.name())\n", + "\n", + "my_car.add_passanger()\n", + "print (my_car.n_passangers())\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Method Overloading\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning...\n", + "Teaching...\n" + ] + } + ], + "source": [ + "\n", + "class person:\n", + " __name=\"\"\n", + " __gender=\"\"\n", + " def __init__(self, name,gender):\n", + " self.__name=name\n", + " self.__gender=gender\n", + " \n", + " # This is a virtual method\n", + " def do_work(self):\n", + " raise NotImplementedError\n", + " \n", + "class student(person):\n", + " __year=0\n", + " __grades=list()\n", + " \n", + " def __init__(self, name, gender, year):\n", + " person.__init__(self,name,gender)\n", + " self.__year=year\n", + " \n", + " def add_grade(self,grade):\n", + " self.__grades.append(grade)\n", + " \n", + " def average_grade(self):\n", + " return sum(self.__grades)/len(self.__grades)\n", + " \n", + " def print_grades(self):\n", + " for grade in self.__grades:\n", + " print (grade)\n", + " \n", + " def do_work(self):\n", + " print (\"Learning...\")\n", + "\n", + " \n", + "class faculty(person):\n", + " __courses=list()\n", + " \n", + " def __init__(self, name, gender):\n", + " person.__init__(self,name,gender)\n", + " \n", + " def add_courses(self,course):\n", + " self.__courses.append(course)\n", + " \n", + " def print_courses(self):\n", + " for courses in self.__courses:\n", + " print (course)\n", + "\n", + " def do_work(self):\n", + " print (\"Teaching...\")\n", + "\n", + " \n", + " \n", + "a_student=student(\"Bob\",\"Male\",2)\n", + "a_teacher=faculty(\"Mary\",\"Female\")\n", + "\n", + "a_student.do_work()\n", + "a_teacher.do_work()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Polymorphism\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Learning...\n", + "Teaching...\n" + ] + } + ], + "source": [ + "people= [student(\"Bob\",\"Male\",2), faculty(\"Mary\",\"Female\")]\n", + "\n", + "for person in people:\n", + " person.do_work()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(a_student,student)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0\n" + ] + } + ], + "source": [ + "for person in people:\n", + " if isinstance(person,student):\n", + " person.add_grade(100.)\n", + " if isinstance(person,faculty):\n", + " person.add_courses(\"Data 1401\")\n", + "\n", + "people[0].print_grades()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overloading Built-ins\n", + "\n", + "I found [this](https://realpython.com/operator-function-overloading/) walk through of overloading python operators to be very well done, so lets go through it.\n", + "\n", + "For a complete list of operators, look at the table at the bottom of the [Operator Library referece](https://docs.python.org/3.7/library/operator.html).\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-18/Lecture-18.ipynb b/Lectures/Lecture-18/Lecture-18.ipynb new file mode 100644 index 0000000..dcfd247 --- /dev/null +++ b/Lectures/Lecture-18/Lecture-18.ipynb @@ -0,0 +1,970 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 18" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Drawing Program Example\n", + "\n", + "First two examples are inspired by [Python Practice Book](https://anandology.com/python-practice-book/object_oriented_programming.html).\n", + "\n", + "### Canvas" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "class Canvas:\n", + " def __init__(self, width, height):\n", + " self.width = width\n", + " self.height = height\n", + " self.data = [[' '] * width for i in range(height)]\n", + "\n", + " def set_pixel(self, row, col, char='*'):\n", + " self.data[row][col] = char\n", + "\n", + " def get_pixel(self, row, col):\n", + " return self.data[row][col]\n", + " \n", + " def h_line(self, x, y, w, **kargs):\n", + " for i in range(x,x+w):\n", + " self.set_pixel(i,y, **kargs)\n", + "\n", + " def v_line(self, x, y, h, **kargs):\n", + " for i in range(y,y+h):\n", + " self.set_pixel(x,i, **kargs)\n", + " \n", + " def line(self, x1, y1, x2, y2, **kargs):\n", + " slope = (y2-y1) / (x2-x1)\n", + " for y in range(y1,y2):\n", + " x= int(slope * y)\n", + " self.set_pixel(x,y, **kargs)\n", + " \n", + " def display(self):\n", + " print(\"\\n\".join([\"\".join(row) for row in self.data]))" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** \n", + " ***** \n", + " ** \n", + " * ** \n", + " * ** \n", + " * ** \n", + " * ** \n", + " ** \n", + " ** \n", + " ** \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n" + ] + } + ], + "source": [ + "c1=Canvas(40,20)\n", + "c1.v_line(1,1,5)\n", + "c1.h_line(3,3,4)\n", + "c1.line(0,0,40,20)\n", + "c1.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Shapes" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "class Shape:\n", + " def __init__(self, name=\"\", **kwargs):\n", + " self.name=name\n", + " self.kwargs=kwargs\n", + " \n", + " def paint(self, canvas): pass\n", + "\n", + "class Rectangle(Shape):\n", + " def __init__(self, x, y, w, h, **kwargs):\n", + " Shape.__init__(self, **kwargs)\n", + " self.x = x\n", + " self.y = y\n", + " self.w = w\n", + " self.h = h\n", + "\n", + " def paint(self, canvas):\n", + " canvas.h_line(self.x, self.y, self.w, **self.kwargs)\n", + " canvas.h_line(self.x, self.y + self.h, self.w, **self.kwargs)\n", + " canvas.v_line(self.x, self.y, self.h, **self.kwargs)\n", + " canvas.v_line(self.x + self.w, self.y, self.h, **self.kwargs)\n", + "\n", + "class Square(Rectangle):\n", + " def __init__(self, x, y, size, **kwargs):\n", + " Rectangle.__init__(self, x, y, size, size, **kwargs)\n", + "\n", + "class Line(Shape):\n", + " def __init__(self, x1, y1, x2, y2, **kwargs):\n", + " Shape.__init__(self, **kwargs)\n", + " self.x1=x1\n", + " self.y1=y1\n", + " self.x2=x2\n", + " self.y2=y2\n", + " \n", + " def paint(self, canvas):\n", + " canvas.line(self.x1,self.y1,self.x2,self.y2)\n", + " \n", + "class CompoundShape(Shape):\n", + " def __init__(self, shapes):\n", + " self.shapes = shapes\n", + "\n", + " def paint(self, canvas):\n", + " for s in self.shapes:\n", + " s.paint(canvas)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "c1=Canvas(50,40)\n", + "s1=Square(5,5,20,char=\"^\")\n", + "s1.paint(c1)\n", + "l1=Line(2,2,13,19)\n", + "l1.paint(c1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "c1=Canvas(50,40)\n", + "s1=CompoundShape([Square(5,5,20,char=\"^\"),\n", + " Line(2,2,13,19)])\n", + "s1.paint(c1)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + " \n", + " \n", + " * \n", + " * \n", + " ^^^^^^^^^^^^^^^^^^^^^ \n", + " *^ ^ \n", + " * ^ \n", + " ^ ^ \n", + " ^* ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^^^^^^^^^^^^^^^^^^^^ \n", + " * \n", + " * \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n" + ] + } + ], + "source": [ + "c1.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Drawing" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "class RasterDrawing:\n", + " def __init__(self):\n", + " self.shapes=dict()\n", + " self.shape_names=list()\n", + " \n", + " def add_shape(self,shape):\n", + " if shape.name == \"\":\n", + " shape.name = self.assign_name()\n", + " \n", + " self.shapes[shape.name]=shape\n", + " self.shape_names.append(shape.name)\n", + " \n", + " def paint(self,canvas):\n", + " for shape_name in self.shape_names:\n", + " self.shapes[shape_name].paint(canvas)\n", + " \n", + " def assign_name(self):\n", + " name_base=\"shape\"\n", + " name = name_base+\"_0\"\n", + " \n", + " i=1\n", + " while name in self.shapes:\n", + " name = name_base+\"_\"+str(i)\n", + " \n", + " return name\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + " \n", + " \n", + " * \n", + " * \n", + " ^^^^^^^^^^^^^^^^^^^^^ \n", + " *^ ^ \n", + " * ^ \n", + " ^ ^ \n", + " ^* ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^^^^^^^^^^^^^^^^^^^^ \n", + " * \n", + " * \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n" + ] + } + ], + "source": [ + "c1=Canvas(50,40)\n", + "rd=RasterDrawing()\n", + "\n", + "rd.add_shape(Square(5,5,20,char=\"^\"))\n", + "rd.add_shape(Line(2,2,13,19))\n", + "\n", + "rd.paint(c1)\n", + "\n", + "c1.display()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "rd.shapes[\"shape_0\"].w=10" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + " \n", + " \n", + " * \n", + " * \n", + " ^^^^^^^^^^^^^^^^^^^^^ \n", + " *^ ^ \n", + " * ^ \n", + " ^ ^ \n", + " ^* ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^ * ^ \n", + " ^ * ^ \n", + " ^ ^ \n", + " ^^^^^*^^^^^^^^^^^^^^ \n", + " \n", + " * \n", + " * \n", + " \n", + " * \n", + " * \n", + " \n", + " * \n", + " * \n", + " \n", + " * \n", + " * \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n" + ] + } + ], + "source": [ + "c2=Canvas(40,40)\n", + "rd.paint(c2)\n", + "c2.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Rational Numbers" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "class RationalNumber:\n", + " \"\"\"\n", + " Rational Numbers with support for arthmetic operations.\n", + "\n", + " >>> a = RationalNumber(1, 2)\n", + " >>> b = RationalNumber(1, 3)\n", + " >>> a + b\n", + " 5/6\n", + " >>> a - b\n", + " 1/6\n", + " >>> a * b\n", + " 1/6\n", + " >>> a/b\n", + " 3/2\n", + " \"\"\"\n", + " def __init__(self, numerator, denominator=1):\n", + " self.n = numerator\n", + " self.d = denominator\n", + "\n", + " def __add__(self, other):\n", + " if not isinstance(other, RationalNumber):\n", + " other = RationalNumber(other)\n", + "\n", + " n = self.n * other.d + self.d * other.n\n", + " d = self.d * other.d\n", + " return RationalNumber(n, d)\n", + "\n", + " def __sub__(self, other):\n", + " if not isinstance(other, RationalNumber):\n", + " other = RationalNumber(other)\n", + "\n", + " n1, d1 = self.n, self.d\n", + " n2, d2 = other.n, other.d\n", + " return RationalNumber(n1*d2 - n2*d1, d1*d2)\n", + "\n", + " def __mul__(self, other):\n", + " if not isinstance(other, RationalNumber):\n", + " other = RationalNumber(other)\n", + "\n", + " n1, d1 = self.n, self.d\n", + " n2, d2 = other.n, other.d\n", + " return RationalNumber(n1*n2, d1*d2)\n", + "\n", + " def __div__(self, other):\n", + " if not isinstance(other, RationalNumber):\n", + " other = RationalNumber(other)\n", + "\n", + " n1, d1 = self.n, self.d\n", + " n2, d2 = other.n, other.d\n", + " return RationalNumber(n1*d2, d1*n2)\n", + "\n", + " def __str__(self):\n", + " return \"%s/%s\" % (self.n, self.d)\n", + "\n", + " __repr__ = __str__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Particle Physics Example\n", + "\n", + "Let's try to do something more meaningful and introduce some particle physics basics. In relativistic mechanics, the Energy and Momentum of particles are different in every frame, but obey $m^2=E^2-\\vec{p}^2$ or $E^2=\\vec{p}^2$ for massless particles, where we set the speed of light $c=1$. It is therefore convenient to express the Energy and Momentum of a particle as a 4-vector, for example in Euclidean coordiates: $p= (E,p_{x},p_{y},p_{z}) = (E,\\vec{p})$.\n", + "\n", + "Energy and momentum are concerved with a particle decays into two other particles, for example a $Z$ boson to two electrons, $Z\\rightarrow e^+ e^-$, or a Higgs Boson to two photons, $H\\rightarrow \\gamma\\gamma$. In 4-vectors we can express conservations, for example in the Higgs decay, as $p_H = p_{\\gamma1}+p_{\\gamma2}$. In a two body decay, it's easy to fully solve for the momenta daughter particles in the rest frame of the parent:\n", + "\n", + "$$\n", + "m_H = 125 GeV\\\\\n", + "p_H = (m_{H},0,0,0)\n", + "$$\n", + "\n", + "Momentum conservation tells us that $\\vec{p_{H}} = 0 = \\vec{p_{\\gamma1}} + \\vec{p_{\\gamma2}} \\Rightarrow \\vec{p_{\\gamma1}} = - \\vec{p_{\\gamma2}} = p_\\gamma$, i.e. the daughters travel in opposite directions. The 4-vector of the photons are\n", + "\n", + "$$\n", + "E_H = m_H = E_{\\gamma1}+E_{\\gamma2} = |\\vec{p_{\\gamma1}}| + |\\vec{p_{\\gamma2}}|=2|p_\\gamma|\\\\\n", + "\\Rightarrow p_{\\gamma1}= (m_H/2, \\vec{p_{\\gamma}})\\\\\n", + "\\Rightarrow p_{\\gamma2}= (m_H/2, -\\vec{p_{\\gamma}})\n", + "$$\n", + "\n", + "If we select that direction to be aligned with one of our axes, then we can write:\n", + "$$\n", + "p_{\\gamma1}= (m_H/2, 0,0, m_H/2)\\\\\n", + "p_{\\gamma2}= (m_H/2, 0,0, -m_H/2).\n", + "$$\n", + "\n", + "We can compute these 4-vectors in the case that the parent particle is not at rest by relavistic boosting. \n", + "\n", + "We will begin by representing 4-vectors as python lists. For example the first photon in the rest frame can be written as:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[62.5, 0, 0, 62.5]\n" + ] + } + ], + "source": [ + "m_H= 125.\n", + "p_g1= [m_H/2,0,0,m_H/2]\n", + "print(p_g1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get the second photon, lets write a function that negates 4-vectors:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[62.5, 0, 0, -62.5]\n" + ] + } + ], + "source": [ + "def neg_4v(p):\n", + " return [p[0], -p[1], -p[2] , -p[3]]\n", + "\n", + "p_g2=neg_4v(p_g1)\n", + "print(p_g2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other useful functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sum: [125.0, 0, 0, 0.0]\n", + "Difference: [125.0, 0, 0, 125.0]\n" + ] + } + ], + "source": [ + "def add_v4(p1,p2):\n", + " return [p1[0]+p2[0], p1[1]+p2[1], p1[2]+p2[2] , p1[3]+p2[3]]\n", + "\n", + "def sub_v4(p1,p2):\n", + " return add_v4(p1,neg_4v(p2))\n", + "\n", + "print (\"Sum:\", add_v4(p_g1,p_g2))\n", + "print (\"Difference:\", sub_v4(p_g1,p_g2))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dot: 88.38834764831844\n", + "Gamma Mass: 0.0\n", + "Higgs Mass: 125.0\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "def dot_v4(p1,p2):\n", + " return math.sqrt(sum([p1[0]*p2[0], -p1[1]*p2[1], -p1[2]*p2[2] , -p1[3]*p2[3]]))\n", + "\n", + "def mass_v4(p):\n", + " return dot_v4(p,p)\n", + " \n", + "print (\"Dot:\", dot_v4(p_g1,p_g2))\n", + "print (\"Gamma Mass:\", mass_v4(p_g1))\n", + "print (\"Higgs Mass:\", mass_v4(add_v4(p_g1,p_g2)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are lots of ways to write the same thing, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "zip: [(62.5, 62.5), (0, 0), (0, 0), (62.5, -62.5)]\n", + "Sum: [125.0, 0, 0, 0.0]\n" + ] + } + ], + "source": [ + "def add_v4_1(p1,p2):\n", + " out=list()\n", + " for i in range(4):\n", + " out.append(p1[i]+p2[i])\n", + " return out\n", + "\n", + "def add_v4_2(p1,p2):\n", + " return map(lambda x: x[0]+x[1],zip(p1,p2))\n", + "\n", + "def add_v4_3(p1,p2):\n", + " return [sum(x) for x in zip(p1,p2)]\n", + "\n", + "print (\"zip:\", list(zip(p_g1,p_g2)))\n", + "\n", + "print (\"Sum:\", add_v4_3(p_g1,p_g2))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "def boost_matrix(beta_in):\n", + " Lambda= [[0,0,0,0],\n", + " [0,0,0,0],\n", + " [0,0,0,0],\n", + " [0,0,0,0]]\n", + " \n", + " beta=[0]+beta_in\n", + "\n", + " beta2=sum(x**2 for x in beta)\n", + " gamma=1./math.sqrt(1.-beta2)\n", + " \n", + " for i in range(4):\n", + " for j in range(4):\n", + " if j==0:\n", + " Lambda[i][0]=-gamma*beta[i]\n", + " elif i==0:\n", + " Lambda[0][j]=-gamma*beta[j]\n", + " else:\n", + " Lambda[i][j]= (gamma-1)*beta[i]*beta[j]/beta2 + float(i==j)\n", + "\n", + " Lambda[0][0]=gamma\n", + "\n", + " return Lambda\n", + " \n", + "def boost(p,beta):\n", + " Lambda=boost_matrix(beta)\n", + " out=4*[0.]\n", + " for j in range(4):\n", + " out[j]=sum(map(lambda x: x[0]*x[1],zip(p,Lambda[j])))\n", + " return out\n", + "\n", + "def decay(p):\n", + " m=mass_v4(p)\n", + " p1=[m/2.,0.,0.,m/2.]\n", + " p2=[m/2.,0.,0.,-m/2.]\n", + " # We should now rotate by 2 arbitrary angles...\n", + " beta=[p[1]/p[0],p[2]/p[0],p[3]/p[0]]\n", + " \n", + " p1b=boost(p1,beta)\n", + " p2b=boost(p2,beta)\n", + "\n", + " return p1b,p2b\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Boosted Higgs: [144.33756729740645, 0.0, -72.16878364870323, 0.0]\n", + "Mass of Boosted Higgs: 125.00000000000001\n", + "p1: [72.16878364870324, 0.0, 36.08439182435162, 62.50000000000001]\n", + "p2: [72.16878364870324, 0.0, 36.08439182435162, -62.50000000000001]\n", + "Higgs from daughters: [144.33756729740648, 0.0, 72.16878364870324, 0.0]\n", + "Higgs mass from daughters: 125.00000000000003\n" + ] + } + ], + "source": [ + "# Start with a Higgs at rest\n", + "p_H=[m_H,0.,0.,0.]\n", + "\n", + "# Now boost it (along y for example)\n", + "p_Hb=boost(p_H,[0.,.5,0.])\n", + "print (\"Boosted Higgs:\", p_Hb)\n", + "print (\"Mass of Boosted Higgs:\", mass_v4(p_Hb))\n", + "\n", + "# Decay the boosted Higgs\n", + "p1,p2=decay(p_Hb)\n", + "\n", + "print(\"p1:\",p1)\n", + "print(\"p2:\",p2)\n", + "\n", + "# Make sure the decay products add back to the Higgs\n", + "print (\"Higgs from daughters:\", add_v4(p1,p2))\n", + "print (\"Higgs mass from daughters:\", mass_v4(add_v4(p1,p2)))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets write a function that gives us the 4-vectors of 2 daughter particles given a parent particle 4 vector." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Object Oriented Programming\n", + "\n", + "Lets write a 4-vector class to do the same thing:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "class four_vector(object):\n", + " def __init__(self, p=None):\n", + " if p:\n", + " self.v=p\n", + " else:\n", + " self.v=[0.,0.,0.,0.]\n", + "\n", + " def setval(self,l):\n", + " self.v=l\n", + " \n", + " def __add__(self,other):\n", + " return four_vector([sum(x) for x in zip(self.v,other)])\n", + " \n", + " def neg(self,p):\n", + " return four_vector([p[0], -p[1], -p[2] , -p[3]])\n", + "\n", + " def __sub__(self,other):\n", + " return self.__add__(self.v,self.neg(other))\n", + " \n", + " def __mul__(self,other):\n", + " return math.sqrt(sum([self.v[0]*other[0], \n", + " -self.v[1]*other[1],\n", + " -self.v[2]*other[2],\n", + " -self.v[3]*other[3]]))\n", + "\n", + " def boost(self,beta):\n", + " Lambda=boost_matrix(beta)\n", + " out=4*[0.]\n", + " for j in range(4):\n", + " out[j]=sum(map(lambda x: x[0]*x[1],zip(self.v,Lambda[j])))\n", + " return four_vector(out)\n", + "\n", + " def mass(self):\n", + " return self.__mul__(self.v)\n", + "\n", + " def __getitem__(self,i):\n", + " return self.v[i]\n", + "\n", + " \n", + " def __str__(self):\n", + " return \"({0}, {1}, {2}, {3})\".format(self.v[0],self.v[1],self.v[2],self.v[3])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "def decay(p):\n", + " m=p.mass()\n", + " p1=four_vector([m/2.,0.,0.,m/2.])\n", + " p2=four_vector([m/2.,0.,0.,-m/2.])\n", + " # We should now rotate by 2 arbitrary angles...\n", + " beta=[p[1]/p[0],p[2]/p[0],p[3]/p[0]]\n", + " \n", + " p1b=p1.boost(beta)\n", + " p2b=p2.boost(beta)\n", + "\n", + " return p1b,p2b" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initial Higgs: (125.0, 0.0, 0.0, 0.0)\n", + "Boosted Higgs: (144.33756729740645, 0.0, -72.16878364870323, 0.0)\n", + "Mass of Boosted Higgs: 125.00000000000001\n", + "Higgs from daughters: (144.33756729740648, 0.0, 72.16878364870324, 0.0)\n", + "Higgs mass from daughters: 125.00000000000003\n" + ] + } + ], + "source": [ + "# Start with a Higgs at rest\n", + "p_H=four_vector([m_H,0.,0.,0.])\n", + "print (\"Initial Higgs:\", p_H)\n", + "\n", + "# Now boost it (along y for example)\n", + "p_Hb=p_H.boost([0.,.5,0.])\n", + "print (\"Boosted Higgs:\", p_Hb)\n", + "print (\"Mass of Boosted Higgs:\", p_Hb.mass())\n", + "\n", + "# Decay the boosted Higgs\n", + "p1,p2=decay(p_Hb)\n", + "\n", + "# Make sure the decay products add back to the Higgs\n", + "print (\"Higgs from daughters:\", p1+p2)\n", + "print (\"Higgs mass from daughters:\", (p1+p2).mass())" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "class composite(four_vector):\n", + " def __init__(self,daughters):\n", + " super(composite, self).__init__()\n", + " self.daughters=daughters\n", + "\n", + " tmp=four_vector()\n", + " for d in self.daughters:\n", + " tmp=tmp+d\n", + " \n", + " self.setval(tmp.v)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Composite Higgs: (144.33756729740648, 0.0, 72.16878364870324, 0.0)\n", + "Mass: 125.00000000000003\n" + ] + } + ], + "source": [ + "H_reco=composite([p1,p2])\n", + "print (\"Composite Higgs:\", H_reco)\n", + "print (\"Mass:\", H_reco.mass())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generating Events" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Events=[]\n", + "\n", + "for i in range(1,11):\n", + " p_H=four_vector([m_H,0.,0.,0.])\n", + " my_boost= float(i)/11.\n", + " p_Hb=p_H.boost([0.,my_boost,0.])\n", + " p1,p2=decay(p_Hb)\n", + " \n", + " Event= {\"Higgs\":composite([p1,p2]),\n", + " \"Boost\":my_boost}\n", + " \n", + " Events.append(Event)\n", + " \n", + "# Make sure the decay products add back to the Higgs\n", + "for i,Event in enumerate(Events):\n", + " print (\"Event:\",i)\n", + " print (\"Higgs 4-vector:\",Event[\"Higgs\"])\n", + " print (\"Boost:\",Event[\"Boost\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-19/Lecture-19.ipynb b/Lectures/Lecture-19/Lecture-19.ipynb new file mode 100644 index 0000000..ed19dc4 --- /dev/null +++ b/Lectures/Lecture-19/Lecture-19.ipynb @@ -0,0 +1,3210 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 19\n", + "\n", + "## Reading Data\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lecture-19.ipynb Scores.csv\r\n" + ] + } + ], + "source": [ + "!ls " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l1_n,l1_1,12_n,l2_1,l2_2,l2_3,l2_4,l2_5,l2_6,l2_7,l3_n,l3_1,l3_2,l3_3,l3_4,l3_5,l3_6,l3_7,l3_8,l3_9,l3_10,l3_11,l3_12,l3_13,l3_14,l4_n,l4_1,l4_2,l4_3,l4_4,l4_5,l4_6,l4_7,l4_8,l4_9,l4_10,l4_11,q1_n,q1_1,e1_n,e1_1,e1_2,e1_3,e1_4,e1_5,e1_6,e1_7,e1_8,e1_9,e1_10,e1_11,e1_12,e1_13,e1_14,e1_15\r", + "\r\n", + "1,10,7,10,10,9.5,9,10,10,9.5,14,10,10,10,10,10,10,9,10,3,0,3,3,5,2,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,9,9,10,5,5,0,0,10,10,10,10,0,10,5,10\r", + "\r\n", + "1,10,7,0,10,9.5,0,10,10,0,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,5,3,0,3,10,7,0,1,9.5,15,9,9,10,5,10,0,9,9,9,9,9,10,5,0,0\r", + "\r\n", + "1,10,7,10,10,0,10,10,10,10,14,10,6,10,0,0,0,0,0,0,0,0,0,0,0,11,10,10,0,7,0,0,0,0,0,0,0,1,9.5,15,9,9,10,9,5,9,7,9,10,10,10,5,10,5,0\r", + "\r\n", + "1,10,7,10,10,10,9.5,10,10,9.5,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,3,3,0,0,5,0,0,1,10,15,9,9,10,0,10,0,7,5,9,9,9,0,0,0,0\r", + "\r\n", + "1,10,7,10,10,5,9.5,10,10,9.5,14,5,9,9,10,7,10,10,10,10,7,10,3,5,10,11,0,0,0,0,0,0,0,0,0,0,0,1,10,15,9,9,9,8,7,10,0,9,10,9,10,9,5,0,0\r", + "\r\n", + "1,10,7,10,10,3,7,10,10,9,14,10,10,10,10,0,10,9,10,7,7,3,7,5,8,11,10,10,10,8,5,3,0,0,7,0,0,1,9.5,15,9,9,10,10,7,10,10,10,10,10,10,10,9,8,2\r", + "\r\n", + "1,10,7,10,10,3,9.5,10,10,9.5,14,10,10,10,8,5,10,5,10,3,0,10,3,10,8,11,10,10,10,10,10,10,0,0,10,5,0,1,10,15,9,9,10,9,7,9,0,0,10,10,9,5,10,8,0\r", + "\r\n", + "1,10,7,10,10,0,5,10,10,9.5,14,9.5,10,10,8,10,8,9,0,0,0,0,0,0,0,11,0,10,10,0,0,10,0,0,0,0,0,1,10,15,9,9,10,9,0,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,0,0,0,0,0,0,0,14,9,10,10,10,7,10,3,6,3,3,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,5,15,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,10,10,10,9.5,10,10,9.5,14,5,9.5,9.5,8,10,10,8,10,8,0,5,6,0,0,11,0,10,10,10,0,5,0,0,0,0,0,1,9.5,15,9,9,10,9,9,10,7,0,9,9,9,0,5,0,0\r", + "\r\n", + "1,10,7,10,10,9.5,0,10,10,0,14,9.5,10,10,10,10,10,10,10,0,0,10,5,10,10,11,0,10,10,0,0,5,0,0,0,0,0,1,0,15,9,9,10,0,8,9,7,9,10,10,10,10,10,0,0\r", + "\r\n", + "1,10,7,0,10,10,8,10,10,10,14,9,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,9.5,15,9,9,0,9,8,0,0,0,0,0,0,0,0,0,0\r", + "\r\n", + "1,10,7,10,10,9.5,9.5,10,10,9.5,14,9.5,10,10,10,8,10,8,10,10,7,5,0,0,0,11,10,10,10,10,5,6,0,0,0,0,0,1,10,15,9,9,10,9,8,9,7,9,10,10,10,10,0,0,0\r", + "\r\n", + "1,10,7,10,10,0,0,10,10,7,14,10,10,10,10,7,10,6,3,10,10,10,10,10,10,11,10,10,10,10,10,5,10,10,10,10,10,1,0,15,9,9,9,9,9,10,9,9,10,10,10,10,10,5,10\r", + "\r\n", + "1,10,7,10,10,9.5,0,10,10,0,14,9.5,0,0,10,0,10,5,10,7,0,10,6,10,0,11,10,10,6,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,5,0,7,0,3,3,3,0,3,0,0\r", + "\r\n", + "1,10,7,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\r", + "\r\n" + ] + } + ], + "source": [ + "!cat Scores.csv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comma Separated Values (CSV) File Format\n", + "\n", + "The simplest and most common file format for storing data is called Comma Separated Values (CSV). Generally a CSV file represents a table, with the top row (first line of the file) consisting of the labels of the columns (separated by commas). Generally each column keeps a different feature or field. For example for student data, the first column could be the name, second the ID, third major, etc. After the first line, each row hold the data for one data point or example. In the case of student data, each row could correspond to one student." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reading CSV Files\n", + "\n", + "There are lots of libraries for reading CSV files into memory. Before we start using them, lets write our own. We'll need two things:\n", + "\n", + "* Means of reading and interpreting the file.\n", + "* A representation of the read data in memory.\n", + "\n", + "We have written a simple CSV reader before. Lets recall one of the ways in python to read a file." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l1_n,l1_1,12_n,l2_1,l2_2,l2_3,l2_4,l2_5,l2_6,l2_7,l3_n,l3_1,l3_2,l3_3,l3_4,l3_5,l3_6,l3_7,l3_8,l3_9,l3_10,l3_11,l3_12,l3_13,l3_14,l4_n,l4_1,l4_2,l4_3,l4_4,l4_5,l4_6,l4_7,l4_8,l4_9,l4_10,l4_11,q1_n,q1_1,e1_n,e1_1,e1_2,e1_3,e1_4,e1_5,e1_6,e1_7,e1_8,e1_9,e1_10,e1_11,e1_12,e1_13,e1_14,e1_15\n", + "\n", + "1,10,7,10,10,9.5,9,10,10,9.5,14,10,10,10,10,10,10,9,10,3,0,3,3,5,2,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,9,9,10,5,5,0,0,10,10,10,10,0,10,5,10\n", + "\n", + "1,10,7,0,10,9.5,0,10,10,0,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,5,3,0,3,10,7,0,1,9.5,15,9,9,10,5,10,0,9,9,9,9,9,10,5,0,0\n", + "\n", + "1,10,7,10,10,0,10,10,10,10,14,10,6,10,0,0,0,0,0,0,0,0,0,0,0,11,10,10,0,7,0,0,0,0,0,0,0,1,9.5,15,9,9,10,9,5,9,7,9,10,10,10,5,10,5,0\n", + "\n", + "1,10,7,10,10,10,9.5,10,10,9.5,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,3,3,0,0,5,0,0,1,10,15,9,9,10,0,10,0,7,5,9,9,9,0,0,0,0\n", + "\n", + "1,10,7,10,10,5,9.5,10,10,9.5,14,5,9,9,10,7,10,10,10,10,7,10,3,5,10,11,0,0,0,0,0,0,0,0,0,0,0,1,10,15,9,9,9,8,7,10,0,9,10,9,10,9,5,0,0\n", + "\n", + "1,10,7,10,10,3,7,10,10,9,14,10,10,10,10,0,10,9,10,7,7,3,7,5,8,11,10,10,10,8,5,3,0,0,7,0,0,1,9.5,15,9,9,10,10,7,10,10,10,10,10,10,10,9,8,2\n", + "\n", + "1,10,7,10,10,3,9.5,10,10,9.5,14,10,10,10,8,5,10,5,10,3,0,10,3,10,8,11,10,10,10,10,10,10,0,0,10,5,0,1,10,15,9,9,10,9,7,9,0,0,10,10,9,5,10,8,0\n", + "\n", + "1,10,7,10,10,0,5,10,10,9.5,14,9.5,10,10,8,10,8,9,0,0,0,0,0,0,0,11,0,10,10,0,0,10,0,0,0,0,0,1,10,15,9,9,10,9,0,0,0,0,0,0,0,0,0,0,0\n", + "\n", + "1,10,7,0,0,0,0,0,0,0,14,9,10,10,10,7,10,3,6,3,3,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,5,15,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0\n", + "\n", + "1,10,7,10,10,10,9.5,10,10,9.5,14,5,9.5,9.5,8,10,10,8,10,8,0,5,6,0,0,11,0,10,10,10,0,5,0,0,0,0,0,1,9.5,15,9,9,10,9,9,10,7,0,9,9,9,0,5,0,0\n", + "\n", + "1,10,7,10,10,9.5,0,10,10,0,14,9.5,10,10,10,10,10,10,10,0,0,10,5,10,10,11,0,10,10,0,0,5,0,0,0,0,0,1,0,15,9,9,10,0,8,9,7,9,10,10,10,10,10,0,0\n", + "\n", + "1,10,7,0,10,10,8,10,10,10,14,9,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,9.5,15,9,9,0,9,8,0,0,0,0,0,0,0,0,0,0\n", + "\n", + "1,10,7,10,10,9.5,9.5,10,10,9.5,14,9.5,10,10,10,8,10,8,10,10,7,5,0,0,0,11,10,10,10,10,5,6,0,0,0,0,0,1,10,15,9,9,10,9,8,9,7,9,10,10,10,10,0,0,0\n", + "\n", + "1,10,7,10,10,0,0,10,10,7,14,10,10,10,10,7,10,6,3,10,10,10,10,10,10,11,10,10,10,10,10,5,10,10,10,10,10,1,0,15,9,9,9,9,9,10,9,9,10,10,10,10,10,5,10\n", + "\n", + "1,10,7,10,10,9.5,0,10,10,0,14,9.5,0,0,10,0,10,5,10,7,0,10,6,10,0,11,10,10,6,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,5,0,7,0,3,3,3,0,3,0,0\n", + "\n", + "1,10,7,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n", + "\n" + ] + } + ], + "source": [ + "f=open(\"Scores.csv\",\"r\")\n", + "first_line = f.readline()\n", + "print(first_line)\n", + "line = f.readline()\n", + "while line:\n", + " print(line)\n", + " line = f.readline()\n", + "\n", + "f.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's work on the first line, which is special:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['l1_n', 'l1_1', '12_n', 'l2_1', 'l2_2', 'l2_3', 'l2_4', 'l2_5', 'l2_6', 'l2_7', 'l3_n', 'l3_1', 'l3_2', 'l3_3', 'l3_4', 'l3_5', 'l3_6', 'l3_7', 'l3_8', 'l3_9', 'l3_10', 'l3_11', 'l3_12', 'l3_13', 'l3_14', 'l4_n', 'l4_1', 'l4_2', 'l4_3', 'l4_4', 'l4_5', 'l4_6', 'l4_7', 'l4_8', 'l4_9', 'l4_10', 'l4_11', 'q1_n', 'q1_1', 'e1_n', 'e1_1', 'e1_2', 'e1_3', 'e1_4', 'e1_5', 'e1_6', 'e1_7', 'e1_8', 'e1_9', 'e1_10', 'e1_11', 'e1_12', 'e1_13', 'e1_14', 'e1_15\\n']\n" + ] + } + ], + "source": [ + "f=open(\"Scores.csv\",\"r\")\n", + "first_line = f.readline()\n", + "print(first_line.split(\",\"))\n", + "f.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It appears that each line ends with `\\n`. Here's how we can remove these newlines." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['l1_n', 'l1_1', '12_n', 'l2_1', 'l2_2', 'l2_3', 'l2_4', 'l2_5', 'l2_6', 'l2_7', 'l3_n', 'l3_1', 'l3_2', 'l3_3', 'l3_4', 'l3_5', 'l3_6', 'l3_7', 'l3_8', 'l3_9', 'l3_10', 'l3_11', 'l3_12', 'l3_13', 'l3_14', 'l4_n', 'l4_1', 'l4_2', 'l4_3', 'l4_4', 'l4_5', 'l4_6', 'l4_7', 'l4_8', 'l4_9', 'l4_10', 'l4_11', 'q1_n', 'q1_1', 'e1_n', 'e1_1', 'e1_2', 'e1_3', 'e1_4', 'e1_5', 'e1_6', 'e1_7', 'e1_8', 'e1_9', 'e1_10', 'e1_11', 'e1_12', 'e1_13', 'e1_14', 'e1_15']\n" + ] + } + ], + "source": [ + "f=open(\"Scores.csv\",\"r\")\n", + "first_line = f.readline().rstrip()\n", + "print(first_line.split(\",\"))\n", + "f.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally lets store the first line, which is a list of the column names:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "f=open(\"Scores.csv\",\"r\")\n", + "first_line = f.readline().rstrip()\n", + "fields=first_line.split(\",\")\n", + "f.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "f=open(\"Scores.csv\",\"r\")\n", + "first_line = f.readline().rstrip()\n", + "fields=first_line.split(\",\")\n", + "\n", + "data=list()\n", + "\n", + "line = f.readline().rstrip()\n", + "while line:\n", + " data.append(line.split(\",\"))\n", + " line = f.readline().rstrip()\n", + "\n", + "f.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(data[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fields.index(\"l4_1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "str" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(data[10][fields.index(\"l4_1\")])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a CSV Reader" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have the basics down, but we have more things to consider:\n", + "* We have written some example code, we should now write something that is general and we could use in different instances. \n", + "* The fields can be different types: strings, numbers (integer or floating point). We should store the fields as the correct data type.\n", + "* Still need to figure out how we will store the data in memory.\n", + "\n", + "\n", + "We have some options on how to proceed:\n", + " * We could write a CSV reader function that given the filename of a CSV file, reads the data and returns it as a standard python data object. There are various suitable such representations, so we'll either have to pick one or provide some options to allow for other ones.\n", + " * Instead of a CSV reader function, we could create a CSV reader class. It will be instantiated with a CSV filename, so each instance would be uniquely connected to a specific file. It'll read the data into some representation that is kept private. We provide accessor methods to get to keep retrieve specific parts of the data, or the whole data as standard python data.\n", + " * We can separate the concepts of a CSV reader and how we store the data. In this way, we could write other readers (e.g. Excel file reader) that would still use the same data storage.\n", + " * We might want to also be able to write out CSV files." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "class DataFileHandler:\n", + " def __init__(self,extensions):\n", + " self.__extensions=extensions\n", + " \n", + " def check_extension(self,filename):\n", + " file_extension=filename.split(\".\")[-1]\n", + " return file_extension in self.__extensions\n", + "\n", + " def _readfile(self,filename):\n", + " raise NotImplementedError \n", + " \n", + " def readfile(self,filename,check_extension=True):\n", + " if not check_extension or self.check_extension(filename):\n", + " return self._readfile(filename) \n", + " else:\n", + " print(\"Error: filename {} does not match acceptable extensions.\".format(filename))\n", + " \n", + " def _writefile(self,filename,data):\n", + " raise NotImplementedError\n", + " \n", + " def writefile(self,filename,data):\n", + " return self._writefile(filename,data)\n", + " \n", + " \n", + "class CSVHandler(DataFileHandler):\n", + " def __init__(self):\n", + " #super(CSVHandler,self).__init__([\"csv\",\"CSV\"])\n", + " DataFileHandler.__init__(self,[\"csv\",\"CSV\"])\n", + " \n", + " def _readfile(self,filename):\n", + " f=open(filename,\"r\")\n", + " first_line = f.readline().rstrip()\n", + " fields=first_line.split(\",\")\n", + "\n", + " data=list()\n", + "\n", + " line = f.readline().rstrip()\n", + " while line:\n", + " data.append(line.split(\",\"))\n", + " line = f.readline().rstrip()\n", + "\n", + " f.close()\n", + " \n", + " return fields,data\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "my_handler=CSVHandler()\n", + "fields,data=my_handler.readfile(\"Scores.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Handling Different Types" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "class DataFileHandler:\n", + " def __init__(self,extensions):\n", + " self.__extensions=extensions\n", + " \n", + " def check_extension(self,filename):\n", + " file_extension=filename.split(\".\")[-1]\n", + " return file_extension in self.__extensions\n", + "\n", + " def _readfile(self,filename):\n", + " raise NotImplementedError \n", + " \n", + " def readfile(self,filename,check_extension=True):\n", + " if not check_extension or self.check_extension(filename):\n", + " return self._readfile(filename) \n", + " else:\n", + " print(\"Error: filename {} does not match acceptable extensions.\".format(filename))\n", + " \n", + " def _writefile(self,filename,data):\n", + " raise NotImplementedError\n", + " \n", + " def writefile(self,filename,data):\n", + " return self._writefile(filename,data)\n", + " \n", + " \n", + "class CSVHandler(DataFileHandler):\n", + " def __init__(self):\n", + " #super(CSVHandler,self).__init__([\"csv\",\"CSV\"])\n", + " DataFileHandler.__init__(self,[\"csv\",\"CSV\"])\n", + " \n", + " def _readfile(self,filename):\n", + " f=open(filename,\"r\")\n", + " first_line = f.readline().rstrip()\n", + " fields=first_line.split(\",\")\n", + "\n", + " data=list()\n", + "\n", + " line = f.readline().rstrip()\n", + " while line:\n", + " items=line.split(\",\")\n", + " \n", + " row=list()\n", + " for item in items:\n", + " try:\n", + " d=float(item)\n", + " except ValueError:\n", + " d=item\n", + " row.append(d)\n", + " \n", + " data.append(row)\n", + " \n", + " line = f.readline().rstrip()\n", + "\n", + " f.close()\n", + " \n", + " return fields,data\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "my_handler=CSVHandler()\n", + "fields,data=my_handler.readfile(\"Scores.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[0][0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Representation" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "float" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[10][fields.index(\"l4_1\")]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'L1': 1, 'L2': 2}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "foo=dict()\n", + "foo[\"L1\"]=1\n", + "foo[\"L2\"]=2\n", + "\n", + "foo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "foo[\"L1\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'L1': 1, 'L2': 2}" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dict([ (\"L1\",1), (\"L2\",2) ] )" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "first_row=dict(list(zip(fields,data[0])))" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "first_row[\"l4_1\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "new_data=list()\n", + "\n", + "for row in data:\n", + " new_data.append(dict(list(zip(fields,row))))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 9.5,\n", + " 'l2_4': 9.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 10.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 9.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 3.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 3.0,\n", + " 'l3_12': 3.0,\n", + " 'l3_13': 5.0,\n", + " 'l3_14': 2.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 0.0,\n", + " 'l4_3': 0.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 0.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 5.0,\n", + " 'e1_5': 5.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 10.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 10.0,\n", + " 'e1_14': 5.0,\n", + " 'e1_15': 10.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 0.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 9.5,\n", + " 'l2_4': 0.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 0.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 0.0,\n", + " 'l3_7': 0.0,\n", + " 'l3_8': 0.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 10.0,\n", + " 'l4_5': 5.0,\n", + " 'l4_6': 3.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 3.0,\n", + " 'l4_9': 10.0,\n", + " 'l4_10': 7.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 9.5,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 5.0,\n", + " 'e1_5': 10.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 9.0,\n", + " 'e1_8': 9.0,\n", + " 'e1_9': 9.0,\n", + " 'e1_10': 9.0,\n", + " 'e1_11': 9.0,\n", + " 'e1_12': 10.0,\n", + " 'e1_13': 5.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 0.0,\n", + " 'l2_4': 10.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 10.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 6.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 0.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 0.0,\n", + " 'l3_7': 0.0,\n", + " 'l3_8': 0.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 0.0,\n", + " 'l4_4': 7.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 9.5,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 5.0,\n", + " 'e1_6': 9.0,\n", + " 'e1_7': 7.0,\n", + " 'e1_8': 9.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 5.0,\n", + " 'e1_13': 10.0,\n", + " 'e1_14': 5.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 10.0,\n", + " 'l2_4': 9.5,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 0.0,\n", + " 'l3_7': 0.0,\n", + " 'l3_8': 0.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 10.0,\n", + " 'l4_5': 3.0,\n", + " 'l4_6': 3.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 5.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 10.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 0.0,\n", + " 'e1_5': 10.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 7.0,\n", + " 'e1_8': 5.0,\n", + " 'e1_9': 9.0,\n", + " 'e1_10': 9.0,\n", + " 'e1_11': 9.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 0.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 5.0,\n", + " 'l2_4': 9.5,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 5.0,\n", + " 'l3_2': 9.0,\n", + " 'l3_3': 9.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 7.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 10.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 10.0,\n", + " 'l3_10': 7.0,\n", + " 'l3_11': 10.0,\n", + " 'l3_12': 3.0,\n", + " 'l3_13': 5.0,\n", + " 'l3_14': 10.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 0.0,\n", + " 'l4_3': 0.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 10.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 9.0,\n", + " 'e1_4': 8.0,\n", + " 'e1_5': 7.0,\n", + " 'e1_6': 10.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 9.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 9.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 9.0,\n", + " 'e1_13': 5.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 3.0,\n", + " 'l2_4': 7.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 9.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 7.0,\n", + " 'l3_10': 7.0,\n", + " 'l3_11': 3.0,\n", + " 'l3_12': 7.0,\n", + " 'l3_13': 5.0,\n", + " 'l3_14': 8.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 8.0,\n", + " 'l4_5': 5.0,\n", + " 'l4_6': 3.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 7.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 9.5,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 10.0,\n", + " 'e1_5': 7.0,\n", + " 'e1_6': 10.0,\n", + " 'e1_7': 10.0,\n", + " 'e1_8': 10.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 10.0,\n", + " 'e1_13': 9.0,\n", + " 'e1_14': 8.0,\n", + " 'e1_15': 2.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 3.0,\n", + " 'l2_4': 9.5,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 8.0,\n", + " 'l3_5': 5.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 5.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 3.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 10.0,\n", + " 'l3_12': 3.0,\n", + " 'l3_13': 10.0,\n", + " 'l3_14': 8.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 10.0,\n", + " 'l4_5': 10.0,\n", + " 'l4_6': 10.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 10.0,\n", + " 'l4_10': 5.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 10.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 7.0,\n", + " 'e1_6': 9.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 9.0,\n", + " 'e1_12': 5.0,\n", + " 'e1_13': 10.0,\n", + " 'e1_14': 8.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 0.0,\n", + " 'l2_4': 5.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 9.5,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 8.0,\n", + " 'l3_5': 10.0,\n", + " 'l3_6': 8.0,\n", + " 'l3_7': 9.0,\n", + " 'l3_8': 0.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 10.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 10.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 0.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 0.0,\n", + " 'e1_10': 0.0,\n", + " 'e1_11': 0.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 0.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 0.0,\n", + " 'l2_2': 0.0,\n", + " 'l2_3': 0.0,\n", + " 'l2_4': 0.0,\n", + " 'l2_5': 0.0,\n", + " 'l2_6': 0.0,\n", + " 'l2_7': 0.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 9.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 7.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 3.0,\n", + " 'l3_8': 6.0,\n", + " 'l3_9': 3.0,\n", + " 'l3_10': 3.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 0.0,\n", + " 'l4_3': 0.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 5.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 5.0,\n", + " 'e1_2': 5.0,\n", + " 'e1_3': 5.0,\n", + " 'e1_4': 5.0,\n", + " 'e1_5': 0.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 0.0,\n", + " 'e1_10': 0.0,\n", + " 'e1_11': 0.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 0.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 10.0,\n", + " 'l2_4': 9.5,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 5.0,\n", + " 'l3_2': 9.5,\n", + " 'l3_3': 9.5,\n", + " 'l3_4': 8.0,\n", + " 'l3_5': 10.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 8.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 8.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 5.0,\n", + " 'l3_12': 6.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 10.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 5.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 9.5,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 9.0,\n", + " 'e1_6': 10.0,\n", + " 'e1_7': 7.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 9.0,\n", + " 'e1_10': 9.0,\n", + " 'e1_11': 9.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 5.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 9.5,\n", + " 'l2_4': 0.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 0.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 9.5,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 10.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 10.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 10.0,\n", + " 'l3_12': 5.0,\n", + " 'l3_13': 10.0,\n", + " 'l3_14': 10.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 5.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 0.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 0.0,\n", + " 'e1_5': 8.0,\n", + " 'e1_6': 9.0,\n", + " 'e1_7': 7.0,\n", + " 'e1_8': 9.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 10.0,\n", + " 'e1_13': 10.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 0.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 10.0,\n", + " 'l2_4': 8.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 10.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 9.0,\n", + " 'l3_2': 0.0,\n", + " 'l3_3': 0.0,\n", + " 'l3_4': 0.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 0.0,\n", + " 'l3_7': 0.0,\n", + " 'l3_8': 0.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 0.0,\n", + " 'l4_3': 0.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 9.5,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 0.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 8.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 0.0,\n", + " 'e1_10': 0.0,\n", + " 'e1_11': 0.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 0.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 9.5,\n", + " 'l2_4': 9.5,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 9.5,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 9.5,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 8.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 8.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 10.0,\n", + " 'l3_10': 7.0,\n", + " 'l3_11': 5.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 10.0,\n", + " 'l4_5': 5.0,\n", + " 'l4_6': 6.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 10.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 10.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 8.0,\n", + " 'e1_6': 9.0,\n", + " 'e1_7': 7.0,\n", + " 'e1_8': 9.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 10.0,\n", + " 'e1_13': 0.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 0.0,\n", + " 'l2_4': 0.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 7.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 10.0,\n", + " 'l3_2': 10.0,\n", + " 'l3_3': 10.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 7.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 6.0,\n", + " 'l3_8': 3.0,\n", + " 'l3_9': 10.0,\n", + " 'l3_10': 10.0,\n", + " 'l3_11': 10.0,\n", + " 'l3_12': 10.0,\n", + " 'l3_13': 10.0,\n", + " 'l3_14': 10.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 10.0,\n", + " 'l4_4': 10.0,\n", + " 'l4_5': 10.0,\n", + " 'l4_6': 5.0,\n", + " 'l4_7': 10.0,\n", + " 'l4_8': 10.0,\n", + " 'l4_9': 10.0,\n", + " 'l4_10': 10.0,\n", + " 'l4_11': 10.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 0.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 9.0,\n", + " 'e1_2': 9.0,\n", + " 'e1_3': 9.0,\n", + " 'e1_4': 9.0,\n", + " 'e1_5': 9.0,\n", + " 'e1_6': 10.0,\n", + " 'e1_7': 9.0,\n", + " 'e1_8': 9.0,\n", + " 'e1_9': 10.0,\n", + " 'e1_10': 10.0,\n", + " 'e1_11': 10.0,\n", + " 'e1_12': 10.0,\n", + " 'e1_13': 10.0,\n", + " 'e1_14': 5.0,\n", + " 'e1_15': 10.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 10.0,\n", + " 'l2_2': 10.0,\n", + " 'l2_3': 9.5,\n", + " 'l2_4': 0.0,\n", + " 'l2_5': 10.0,\n", + " 'l2_6': 10.0,\n", + " 'l2_7': 0.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 9.5,\n", + " 'l3_2': 0.0,\n", + " 'l3_3': 0.0,\n", + " 'l3_4': 10.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 10.0,\n", + " 'l3_7': 5.0,\n", + " 'l3_8': 10.0,\n", + " 'l3_9': 7.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 10.0,\n", + " 'l3_12': 6.0,\n", + " 'l3_13': 10.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 10.0,\n", + " 'l4_2': 10.0,\n", + " 'l4_3': 6.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 0.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 0.0,\n", + " 'e1_2': 0.0,\n", + " 'e1_3': 0.0,\n", + " 'e1_4': 0.0,\n", + " 'e1_5': 5.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 7.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 3.0,\n", + " 'e1_10': 3.0,\n", + " 'e1_11': 3.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 3.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0},\n", + " {'l1_n': 1.0,\n", + " 'l1_1': 10.0,\n", + " '12_n': 7.0,\n", + " 'l2_1': 0.0,\n", + " 'l2_2': 0.0,\n", + " 'l2_3': 0.0,\n", + " 'l2_4': 0.0,\n", + " 'l2_5': 0.0,\n", + " 'l2_6': 0.0,\n", + " 'l2_7': 0.0,\n", + " 'l3_n': 14.0,\n", + " 'l3_1': 0.0,\n", + " 'l3_2': 0.0,\n", + " 'l3_3': 0.0,\n", + " 'l3_4': 0.0,\n", + " 'l3_5': 0.0,\n", + " 'l3_6': 0.0,\n", + " 'l3_7': 0.0,\n", + " 'l3_8': 0.0,\n", + " 'l3_9': 0.0,\n", + " 'l3_10': 0.0,\n", + " 'l3_11': 0.0,\n", + " 'l3_12': 0.0,\n", + " 'l3_13': 0.0,\n", + " 'l3_14': 0.0,\n", + " 'l4_n': 11.0,\n", + " 'l4_1': 0.0,\n", + " 'l4_2': 0.0,\n", + " 'l4_3': 0.0,\n", + " 'l4_4': 0.0,\n", + " 'l4_5': 0.0,\n", + " 'l4_6': 0.0,\n", + " 'l4_7': 0.0,\n", + " 'l4_8': 0.0,\n", + " 'l4_9': 0.0,\n", + " 'l4_10': 0.0,\n", + " 'l4_11': 0.0,\n", + " 'q1_n': 1.0,\n", + " 'q1_1': 0.0,\n", + " 'e1_n': 15.0,\n", + " 'e1_1': 0.0,\n", + " 'e1_2': 0.0,\n", + " 'e1_3': 0.0,\n", + " 'e1_4': 0.0,\n", + " 'e1_5': 0.0,\n", + " 'e1_6': 0.0,\n", + " 'e1_7': 0.0,\n", + " 'e1_8': 0.0,\n", + " 'e1_9': 0.0,\n", + " 'e1_10': 0.0,\n", + " 'e1_11': 0.0,\n", + " 'e1_12': 0.0,\n", + " 'e1_13': 0.0,\n", + " 'e1_14': 0.0,\n", + " 'e1_15': 0.0}]" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_data" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "class DataRow:\n", + " def __init__(self,fields,data):\n", + " self.__fields=fields\n", + " self.__data=data\n", + " \n", + " def __getitem__(self,key):\n", + " return self.__data[self.__fields.index(key)]\n", + "\n", + "\n", + "class Data:\n", + " def __init__(self):\n", + " self.__fields=list()\n", + " self.__data=list()\n", + " \n", + " def set_fields(self,fields):\n", + " self.__fields=fields\n", + " \n", + " def add_data_point(self,data_point):\n", + " if isinstance(data_point,list):\n", + " if len(data_point) == len(self.__fields):\n", + " self.__data.append(DataRow(self.__fields,data_point))\n", + " else:\n", + " print(\"Expected {} fields, got {} fields.\".format(len(self.__fields),len(fields)))\n", + " else:\n", + " print(\"Data Point must be given as a list.\")\n", + "\n", + " def add_data_points(self,data_points):\n", + " for data_point in data_points:\n", + " self.add_data_point(data_point)\n", + " \n", + " def fields(self):\n", + " return self.__fields\n", + " \n", + " def __getitem__(self,key):\n", + " return self.__data[key]\n", + "\n", + " def __str__(self):\n", + " return self.__fields" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "my_data=Data()\n", + "my_data.set_fields(fields)\n", + "my_data.add_data_points(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_data[10][\"l4_1\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "class DataFileHandler:\n", + " def __init__(self,extensions):\n", + " self.__extensions=extensions\n", + " \n", + " def check_extension(self,filename):\n", + " file_extension=filename.split(\".\")[-1]\n", + " return file_extension in self.__extensions\n", + "\n", + " def _readfile(self,filename):\n", + " raise NotImplementedError \n", + " \n", + " def readfile(self,filename,check_extension=True):\n", + " if not check_extension or self.check_extension(filename):\n", + " return self._readfile(filename) \n", + " else:\n", + " print(\"Error: filename {} does not match acceptable extensions.\".format(filename))\n", + " \n", + " def _writefile(self,filename,data):\n", + " raise NotImplementedError\n", + " \n", + " def writefile(self,filename,data):\n", + " return self._writefile(filename,data)\n", + " \n", + " \n", + "class CSVHandler(DataFileHandler):\n", + " def __init__(self):\n", + " #super(CSVHandler,self).__init__([\"csv\",\"CSV\"])\n", + " DataFileHandler.__init__(self,[\"csv\",\"CSV\"])\n", + " \n", + " def _readfile(self,filename):\n", + " f=open(filename,\"r\")\n", + " first_line = f.readline().rstrip()\n", + " fields=first_line.split(\",\")\n", + "\n", + " data=list()\n", + "\n", + " line = f.readline().rstrip()\n", + " while line:\n", + " items=line.split(\",\")\n", + " \n", + " row=list()\n", + " for item in items:\n", + " try:\n", + " d=float(item)\n", + " except ValueError:\n", + " d=item\n", + " row.append(d)\n", + " \n", + " data.append(row)\n", + " \n", + " line = f.readline().rstrip()\n", + "\n", + " f.close()\n", + " \n", + " my_data=Data()\n", + " my_data.set_fields(fields)\n", + " my_data.add_data_points(data)\n", + " \n", + " return my_data\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "my_handler=CSVHandler()\n", + "my_data=my_handler.readfile(\"Scores.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_data[10][\"l4_1\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "Data=pd.read_csv(\"Scores.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(Data)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
l1_nl1_112_nl2_1l2_2l2_3l2_4l2_5l2_6l2_7...e1_6e1_7e1_8e1_9e1_10e1_11e1_12e1_13e1_14e1_15
0110710109.59.010109.5...0010101010010510
111070109.50.010100.0...09999910500
2110710100.010.0101010.0...97910101051050
31107101010.09.510109.5...0759990000
4110710105.09.510109.5...1009109109500
5110710103.07.010109.0...10101010101010982
6110710103.09.510109.5...9001010951080
7110710100.05.010109.5...0000000000
81107000.00.0000.0...0000000000
91107101010.09.510109.5...10709990500
10110710109.50.010100.0...979101010101000
11110701010.08.0101010.0...0000000000
12110710109.59.510109.5...97910101010000
13110710100.00.010107.0...10991010101010510
14110710109.50.010100.0...0703330300
151107000.00.0000.0...0000000000
\n", + "

16 rows Ă— 55 columns

\n", + "
" + ], + "text/plain": [ + " l1_n l1_1 12_n l2_1 l2_2 l2_3 l2_4 l2_5 l2_6 l2_7 ... e1_6 \\\n", + "0 1 10 7 10 10 9.5 9.0 10 10 9.5 ... 0 \n", + "1 1 10 7 0 10 9.5 0.0 10 10 0.0 ... 0 \n", + "2 1 10 7 10 10 0.0 10.0 10 10 10.0 ... 9 \n", + "3 1 10 7 10 10 10.0 9.5 10 10 9.5 ... 0 \n", + "4 1 10 7 10 10 5.0 9.5 10 10 9.5 ... 10 \n", + "5 1 10 7 10 10 3.0 7.0 10 10 9.0 ... 10 \n", + "6 1 10 7 10 10 3.0 9.5 10 10 9.5 ... 9 \n", + "7 1 10 7 10 10 0.0 5.0 10 10 9.5 ... 0 \n", + "8 1 10 7 0 0 0.0 0.0 0 0 0.0 ... 0 \n", + "9 1 10 7 10 10 10.0 9.5 10 10 9.5 ... 10 \n", + "10 1 10 7 10 10 9.5 0.0 10 10 0.0 ... 9 \n", + "11 1 10 7 0 10 10.0 8.0 10 10 10.0 ... 0 \n", + "12 1 10 7 10 10 9.5 9.5 10 10 9.5 ... 9 \n", + "13 1 10 7 10 10 0.0 0.0 10 10 7.0 ... 10 \n", + "14 1 10 7 10 10 9.5 0.0 10 10 0.0 ... 0 \n", + "15 1 10 7 0 0 0.0 0.0 0 0 0.0 ... 0 \n", + "\n", + " e1_7 e1_8 e1_9 e1_10 e1_11 e1_12 e1_13 e1_14 e1_15 \n", + "0 0 10 10 10 10 0 10 5 10 \n", + "1 9 9 9 9 9 10 5 0 0 \n", + "2 7 9 10 10 10 5 10 5 0 \n", + "3 7 5 9 9 9 0 0 0 0 \n", + "4 0 9 10 9 10 9 5 0 0 \n", + "5 10 10 10 10 10 10 9 8 2 \n", + "6 0 0 10 10 9 5 10 8 0 \n", + "7 0 0 0 0 0 0 0 0 0 \n", + "8 0 0 0 0 0 0 0 0 0 \n", + "9 7 0 9 9 9 0 5 0 0 \n", + "10 7 9 10 10 10 10 10 0 0 \n", + "11 0 0 0 0 0 0 0 0 0 \n", + "12 7 9 10 10 10 10 0 0 0 \n", + "13 9 9 10 10 10 10 10 5 10 \n", + "14 7 0 3 3 3 0 3 0 0 \n", + "15 0 0 0 0 0 0 0 0 0 \n", + "\n", + "[16 rows x 55 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Data" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['T',\n", + " '_AXIS_ALIASES',\n", + " '_AXIS_IALIASES',\n", + " '_AXIS_LEN',\n", + " '_AXIS_NAMES',\n", + " '_AXIS_NUMBERS',\n", + " '_AXIS_ORDERS',\n", + " '_AXIS_REVERSED',\n", + " '__abs__',\n", + " '__add__',\n", + " '__and__',\n", + " '__annotations__',\n", + " '__array__',\n", + " '__array_priority__',\n", + " '__array_wrap__',\n", + " '__bool__',\n", + " '__class__',\n", + " '__contains__',\n", + " '__copy__',\n", + " '__deepcopy__',\n", + " '__delattr__',\n", + " '__delitem__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__div__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__finalize__',\n", + " '__floordiv__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattr__',\n", + " '__getattribute__',\n", + " '__getitem__',\n", + " '__getstate__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__iadd__',\n", + " '__iand__',\n", + " '__ifloordiv__',\n", + " '__imod__',\n", + " '__imul__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__invert__',\n", + " '__ior__',\n", + " '__ipow__',\n", + " '__isub__',\n", + " '__iter__',\n", + " '__itruediv__',\n", + " '__ixor__',\n", + " '__le__',\n", + " '__len__',\n", + " '__lt__',\n", + " '__matmul__',\n", + " '__mod__',\n", + " '__module__',\n", + " '__mul__',\n", + " '__ne__',\n", + " '__neg__',\n", + " '__new__',\n", + " '__nonzero__',\n", + " '__or__',\n", + " '__pos__',\n", + " '__pow__',\n", + " '__radd__',\n", + " '__rand__',\n", + " '__rdiv__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__rfloordiv__',\n", + " '__rmatmul__',\n", + " '__rmod__',\n", + " '__rmul__',\n", + " '__ror__',\n", + " '__round__',\n", + " '__rpow__',\n", + " '__rsub__',\n", + " '__rtruediv__',\n", + " '__rxor__',\n", + " '__setattr__',\n", + " '__setitem__',\n", + " '__setstate__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__sub__',\n", + " '__subclasshook__',\n", + " '__truediv__',\n", + " '__weakref__',\n", + " '__xor__',\n", + " '_accessors',\n", + " '_add_numeric_operations',\n", + " '_add_series_or_dataframe_operations',\n", + " '_agg_by_level',\n", + " '_agg_examples_doc',\n", + " '_agg_summary_and_see_also_doc',\n", + " '_aggregate',\n", + " '_aggregate_multiple_funcs',\n", + " '_align_frame',\n", + " '_align_series',\n", + " '_box_col_values',\n", + " '_box_item_values',\n", + " '_builtin_table',\n", + " '_check_inplace_setting',\n", + " '_check_is_chained_assignment_possible',\n", + " '_check_label_or_level_ambiguity',\n", + " '_check_setitem_copy',\n", + " '_clear_item_cache',\n", + " '_clip_with_one_bound',\n", + " '_clip_with_scalar',\n", + " '_combine_frame',\n", + " '_combine_match_index',\n", + " '_consolidate',\n", + " '_consolidate_inplace',\n", + " '_construct_axes_dict',\n", + " '_construct_axes_dict_from',\n", + " '_construct_axes_from_arguments',\n", + " '_construct_result',\n", + " '_constructor',\n", + " '_constructor_expanddim',\n", + " '_constructor_sliced',\n", + " '_convert',\n", + " '_count_level',\n", + " '_create_indexer',\n", + " '_cython_table',\n", + " '_deprecations',\n", + " '_dir_additions',\n", + " '_dir_deletions',\n", + " '_drop_axis',\n", + " '_drop_labels_or_levels',\n", + " '_ensure_valid_index',\n", + " '_find_valid_index',\n", + " '_from_arrays',\n", + " '_from_axes',\n", + " '_get_agg_axis',\n", + " '_get_axis',\n", + " '_get_axis_name',\n", + " '_get_axis_number',\n", + " '_get_axis_resolvers',\n", + " '_get_block_manager_axis',\n", + " '_get_bool_data',\n", + " '_get_cacher',\n", + " '_get_cleaned_column_resolvers',\n", + " '_get_cython_func',\n", + " '_get_index_resolvers',\n", + " '_get_item_cache',\n", + " '_get_label_or_level_values',\n", + " '_get_numeric_data',\n", + " '_get_value',\n", + " '_get_values',\n", + " '_getitem_bool_array',\n", + " '_getitem_multilevel',\n", + " '_gotitem',\n", + " '_iget_item_cache',\n", + " '_indexed_same',\n", + " '_info_axis',\n", + " '_info_axis_name',\n", + " '_info_axis_number',\n", + " '_info_repr',\n", + " '_init_mgr',\n", + " '_internal_get_values',\n", + " '_internal_names',\n", + " '_internal_names_set',\n", + " '_is_builtin_func',\n", + " '_is_cached',\n", + " '_is_copy',\n", + " '_is_datelike_mixed_type',\n", + " '_is_homogeneous_type',\n", + " '_is_label_or_level_reference',\n", + " '_is_label_reference',\n", + " '_is_level_reference',\n", + " '_is_mixed_type',\n", + " '_is_numeric_mixed_type',\n", + " '_is_view',\n", + " '_ix',\n", + " '_ixs',\n", + " '_join_compat',\n", + " '_maybe_cache_changed',\n", + " '_maybe_update_cacher',\n", + " '_metadata',\n", + " '_needs_reindex_multi',\n", + " '_obj_with_exclusions',\n", + " '_protect_consolidate',\n", + " '_reduce',\n", + " '_reindex_axes',\n", + " '_reindex_columns',\n", + " '_reindex_index',\n", + " '_reindex_multi',\n", + " '_reindex_with_indexers',\n", + " '_repr_data_resource_',\n", + " '_repr_fits_horizontal_',\n", + " '_repr_fits_vertical_',\n", + " '_repr_html_',\n", + " '_repr_latex_',\n", + " '_reset_cache',\n", + " '_reset_cacher',\n", + " '_sanitize_column',\n", + " '_selected_obj',\n", + " '_selection',\n", + " '_selection_list',\n", + " '_selection_name',\n", + " '_series',\n", + " '_set_as_cached',\n", + " '_set_axis',\n", + " '_set_axis_name',\n", + " '_set_is_copy',\n", + " '_set_item',\n", + " '_set_value',\n", + " '_setitem_array',\n", + " '_setitem_frame',\n", + " '_setitem_slice',\n", + " '_setup_axes',\n", + " '_slice',\n", + " '_stat_axis',\n", + " '_stat_axis_name',\n", + " '_stat_axis_number',\n", + " '_take_with_is_copy',\n", + " '_to_dict_of_blocks',\n", + " '_try_aggregate_string_function',\n", + " '_typ',\n", + " '_update_inplace',\n", + " '_validate_dtype',\n", + " '_values',\n", + " '_where',\n", + " '_xs',\n", + " 'abs',\n", + " 'add',\n", + " 'add_prefix',\n", + " 'add_suffix',\n", + " 'agg',\n", + " 'aggregate',\n", + " 'align',\n", + " 'all',\n", + " 'any',\n", + " 'append',\n", + " 'apply',\n", + " 'applymap',\n", + " 'asfreq',\n", + " 'asof',\n", + " 'assign',\n", + " 'astype',\n", + " 'at',\n", + " 'at_time',\n", + " 'attrs',\n", + " 'axes',\n", + " 'between_time',\n", + " 'bfill',\n", + " 'bool',\n", + " 'boxplot',\n", + " 'clip',\n", + " 'columns',\n", + " 'combine',\n", + " 'combine_first',\n", + " 'convert_dtypes',\n", + " 'copy',\n", + " 'corr',\n", + " 'corrwith',\n", + " 'count',\n", + " 'cov',\n", + " 'cummax',\n", + " 'cummin',\n", + " 'cumprod',\n", + " 'cumsum',\n", + " 'describe',\n", + " 'diff',\n", + " 'div',\n", + " 'divide',\n", + " 'dot',\n", + " 'drop',\n", + " 'drop_duplicates',\n", + " 'droplevel',\n", + " 'dropna',\n", + " 'dtypes',\n", + " 'duplicated',\n", + " 'e1_1',\n", + " 'e1_10',\n", + " 'e1_11',\n", + " 'e1_12',\n", + " 'e1_13',\n", + " 'e1_14',\n", + " 'e1_15',\n", + " 'e1_2',\n", + " 'e1_3',\n", + " 'e1_4',\n", + " 'e1_5',\n", + " 'e1_6',\n", + " 'e1_7',\n", + " 'e1_8',\n", + " 'e1_9',\n", + " 'e1_n',\n", + " 'empty',\n", + " 'eq',\n", + " 'equals',\n", + " 'eval',\n", + " 'ewm',\n", + " 'expanding',\n", + " 'explode',\n", + " 'ffill',\n", + " 'fillna',\n", + " 'filter',\n", + " 'first',\n", + " 'first_valid_index',\n", + " 'floordiv',\n", + " 'from_dict',\n", + " 'from_records',\n", + " 'ge',\n", + " 'get',\n", + " 'groupby',\n", + " 'gt',\n", + " 'head',\n", + " 'hist',\n", + " 'iat',\n", + " 'idxmax',\n", + " 'idxmin',\n", + " 'iloc',\n", + " 'index',\n", + " 'infer_objects',\n", + " 'info',\n", + " 'insert',\n", + " 'interpolate',\n", + " 'isin',\n", + " 'isna',\n", + " 'isnull',\n", + " 'items',\n", + " 'iteritems',\n", + " 'iterrows',\n", + " 'itertuples',\n", + " 'join',\n", + " 'keys',\n", + " 'kurt',\n", + " 'kurtosis',\n", + " 'l1_1',\n", + " 'l1_n',\n", + " 'l2_1',\n", + " 'l2_2',\n", + " 'l2_3',\n", + " 'l2_4',\n", + " 'l2_5',\n", + " 'l2_6',\n", + " 'l2_7',\n", + " 'l3_1',\n", + " 'l3_10',\n", + " 'l3_11',\n", + " 'l3_12',\n", + " 'l3_13',\n", + " 'l3_14',\n", + " 'l3_2',\n", + " 'l3_3',\n", + " 'l3_4',\n", + " 'l3_5',\n", + " 'l3_6',\n", + " 'l3_7',\n", + " 'l3_8',\n", + " 'l3_9',\n", + " 'l3_n',\n", + " 'l4_1',\n", + " 'l4_10',\n", + " 'l4_11',\n", + " 'l4_2',\n", + " 'l4_3',\n", + " 'l4_4',\n", + " 'l4_5',\n", + " 'l4_6',\n", + " 'l4_7',\n", + " 'l4_8',\n", + " 'l4_9',\n", + " 'l4_n',\n", + " 'last',\n", + " 'last_valid_index',\n", + " 'le',\n", + " 'loc',\n", + " 'lookup',\n", + " 'lt',\n", + " 'mad',\n", + " 'mask',\n", + " 'max',\n", + " 'mean',\n", + " 'median',\n", + " 'melt',\n", + " 'memory_usage',\n", + " 'merge',\n", + " 'min',\n", + " 'mod',\n", + " 'mode',\n", + " 'mul',\n", + " 'multiply',\n", + " 'ndim',\n", + " 'ne',\n", + " 'nlargest',\n", + " 'notna',\n", + " 'notnull',\n", + " 'nsmallest',\n", + " 'nunique',\n", + " 'pct_change',\n", + " 'pipe',\n", + " 'pivot',\n", + " 'pivot_table',\n", + " 'plot',\n", + " 'pop',\n", + " 'pow',\n", + " 'prod',\n", + " 'product',\n", + " 'q1_1',\n", + " 'q1_n',\n", + " 'quantile',\n", + " 'query',\n", + " 'radd',\n", + " 'rank',\n", + " 'rdiv',\n", + " 'reindex',\n", + " 'reindex_like',\n", + " 'rename',\n", + " 'rename_axis',\n", + " 'reorder_levels',\n", + " 'replace',\n", + " 'resample',\n", + " 'reset_index',\n", + " 'rfloordiv',\n", + " 'rmod',\n", + " 'rmul',\n", + " 'rolling',\n", + " 'round',\n", + " 'rpow',\n", + " 'rsub',\n", + " 'rtruediv',\n", + " 'sample',\n", + " 'select_dtypes',\n", + " 'sem',\n", + " 'set_axis',\n", + " 'set_index',\n", + " 'shape',\n", + " 'shift',\n", + " 'size',\n", + " 'skew',\n", + " 'slice_shift',\n", + " 'sort_index',\n", + " 'sort_values',\n", + " 'squeeze',\n", + " 'stack',\n", + " 'std',\n", + " 'style',\n", + " 'sub',\n", + " 'subtract',\n", + " 'sum',\n", + " 'swapaxes',\n", + " 'swaplevel',\n", + " 'tail',\n", + " 'take',\n", + " 'to_clipboard',\n", + " 'to_csv',\n", + " 'to_dict',\n", + " 'to_excel',\n", + " 'to_feather',\n", + " 'to_gbq',\n", + " 'to_hdf',\n", + " 'to_html',\n", + " 'to_json',\n", + " 'to_latex',\n", + " 'to_markdown',\n", + " 'to_numpy',\n", + " 'to_parquet',\n", + " 'to_period',\n", + " 'to_pickle',\n", + " 'to_records',\n", + " 'to_sql',\n", + " 'to_stata',\n", + " 'to_string',\n", + " 'to_timestamp',\n", + " 'to_xarray',\n", + " 'transform',\n", + " 'transpose',\n", + " 'truediv',\n", + " 'truncate',\n", + " 'tshift',\n", + " 'tz_convert',\n", + " 'tz_localize',\n", + " 'unstack',\n", + " 'update',\n", + " 'values',\n", + " 'var',\n", + " 'where',\n", + " 'xs']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(Data)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
l1_nl1_112_nl2_1l2_2l2_3l2_4l2_5l2_6l2_7...e1_6e1_7e1_8e1_9e1_10e1_11e1_12e1_13e1_14e1_15
111070109.50.010100.0...09999910500
2110710100.010.0101010.0...97910101051050
31107101010.09.510109.5...0759990000
5110710103.07.010109.0...10101010101010982
6110710103.09.510109.5...9001010951080
7110710100.05.010109.5...0000000000
91107101010.09.510109.5...10709990500
10110710109.50.010100.0...979101010101000
12110710109.59.510109.5...97910101010000
13110710100.00.010107.0...10991010101010510
14110710109.50.010100.0...0703330300
\n", + "

11 rows Ă— 55 columns

\n", + "
" + ], + "text/plain": [ + " l1_n l1_1 12_n l2_1 l2_2 l2_3 l2_4 l2_5 l2_6 l2_7 ... e1_6 \\\n", + "1 1 10 7 0 10 9.5 0.0 10 10 0.0 ... 0 \n", + "2 1 10 7 10 10 0.0 10.0 10 10 10.0 ... 9 \n", + "3 1 10 7 10 10 10.0 9.5 10 10 9.5 ... 0 \n", + "5 1 10 7 10 10 3.0 7.0 10 10 9.0 ... 10 \n", + "6 1 10 7 10 10 3.0 9.5 10 10 9.5 ... 9 \n", + "7 1 10 7 10 10 0.0 5.0 10 10 9.5 ... 0 \n", + "9 1 10 7 10 10 10.0 9.5 10 10 9.5 ... 10 \n", + "10 1 10 7 10 10 9.5 0.0 10 10 0.0 ... 9 \n", + "12 1 10 7 10 10 9.5 9.5 10 10 9.5 ... 9 \n", + "13 1 10 7 10 10 0.0 0.0 10 10 7.0 ... 10 \n", + "14 1 10 7 10 10 9.5 0.0 10 10 0.0 ... 0 \n", + "\n", + " e1_7 e1_8 e1_9 e1_10 e1_11 e1_12 e1_13 e1_14 e1_15 \n", + "1 9 9 9 9 9 10 5 0 0 \n", + "2 7 9 10 10 10 5 10 5 0 \n", + "3 7 5 9 9 9 0 0 0 0 \n", + "5 10 10 10 10 10 10 9 8 2 \n", + "6 0 0 10 10 9 5 10 8 0 \n", + "7 0 0 0 0 0 0 0 0 0 \n", + "9 7 0 9 9 9 0 5 0 0 \n", + "10 7 9 10 10 10 10 10 0 0 \n", + "12 7 9 10 10 10 10 0 0 0 \n", + "13 9 9 10 10 10 10 10 5 10 \n", + "14 7 0 3 3 3 0 3 0 0 \n", + "\n", + "[11 rows x 55 columns]" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Data[Data[\"l4_2\"]==10]" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['l1_n', 'l1_1', '12_n', 'l2_1', 'l2_2', 'l2_3', 'l2_4', 'l2_5', 'l2_6',\n", + " 'l2_7', 'l3_n', 'l3_1', 'l3_2', 'l3_3', 'l3_4', 'l3_5', 'l3_6', 'l3_7',\n", + " 'l3_8', 'l3_9', 'l3_10', 'l3_11', 'l3_12', 'l3_13', 'l3_14', 'l4_n',\n", + " 'l4_1', 'l4_2', 'l4_3', 'l4_4', 'l4_5', 'l4_6', 'l4_7', 'l4_8', 'l4_9',\n", + " 'l4_10', 'l4_11', 'q1_n', 'q1_1', 'e1_n', 'e1_1', 'e1_2', 'e1_3',\n", + " 'e1_4', 'e1_5', 'e1_6', 'e1_7', 'e1_8', 'e1_9', 'e1_10', 'e1_11',\n", + " 'e1_12', 'e1_13', 'e1_14', 'e1_15'],\n", + " dtype='object')" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Data.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-19/Scores.csv b/Lectures/Lecture-19/Scores.csv new file mode 100644 index 0000000..170d081 --- /dev/null +++ b/Lectures/Lecture-19/Scores.csv @@ -0,0 +1,17 @@ +l1_n,l1_1,12_n,l2_1,l2_2,l2_3,l2_4,l2_5,l2_6,l2_7,l3_n,l3_1,l3_2,l3_3,l3_4,l3_5,l3_6,l3_7,l3_8,l3_9,l3_10,l3_11,l3_12,l3_13,l3_14,l4_n,l4_1,l4_2,l4_3,l4_4,l4_5,l4_6,l4_7,l4_8,l4_9,l4_10,l4_11,q1_n,q1_1,e1_n,e1_1,e1_2,e1_3,e1_4,e1_5,e1_6,e1_7,e1_8,e1_9,e1_10,e1_11,e1_12,e1_13,e1_14,e1_15 +1,10,7,10,10,9.5,9,10,10,9.5,14,10,10,10,10,10,10,9,10,3,0,3,3,5,2,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,9,9,10,5,5,0,0,10,10,10,10,0,10,5,10 +1,10,7,0,10,9.5,0,10,10,0,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,5,3,0,3,10,7,0,1,9.5,15,9,9,10,5,10,0,9,9,9,9,9,10,5,0,0 +1,10,7,10,10,0,10,10,10,10,14,10,6,10,0,0,0,0,0,0,0,0,0,0,0,11,10,10,0,7,0,0,0,0,0,0,0,1,9.5,15,9,9,10,9,5,9,7,9,10,10,10,5,10,5,0 +1,10,7,10,10,10,9.5,10,10,9.5,14,10,10,10,10,0,0,0,0,0,0,0,0,0,0,11,10,10,10,10,3,3,0,0,5,0,0,1,10,15,9,9,10,0,10,0,7,5,9,9,9,0,0,0,0 +1,10,7,10,10,5,9.5,10,10,9.5,14,5,9,9,10,7,10,10,10,10,7,10,3,5,10,11,0,0,0,0,0,0,0,0,0,0,0,1,10,15,9,9,9,8,7,10,0,9,10,9,10,9,5,0,0 +1,10,7,10,10,3,7,10,10,9,14,10,10,10,10,0,10,9,10,7,7,3,7,5,8,11,10,10,10,8,5,3,0,0,7,0,0,1,9.5,15,9,9,10,10,7,10,10,10,10,10,10,10,9,8,2 +1,10,7,10,10,3,9.5,10,10,9.5,14,10,10,10,8,5,10,5,10,3,0,10,3,10,8,11,10,10,10,10,10,10,0,0,10,5,0,1,10,15,9,9,10,9,7,9,0,0,10,10,9,5,10,8,0 +1,10,7,10,10,0,5,10,10,9.5,14,9.5,10,10,8,10,8,9,0,0,0,0,0,0,0,11,0,10,10,0,0,10,0,0,0,0,0,1,10,15,9,9,10,9,0,0,0,0,0,0,0,0,0,0,0 +1,10,7,0,0,0,0,0,0,0,14,9,10,10,10,7,10,3,6,3,3,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,5,15,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0 +1,10,7,10,10,10,9.5,10,10,9.5,14,5,9.5,9.5,8,10,10,8,10,8,0,5,6,0,0,11,0,10,10,10,0,5,0,0,0,0,0,1,9.5,15,9,9,10,9,9,10,7,0,9,9,9,0,5,0,0 +1,10,7,10,10,9.5,0,10,10,0,14,9.5,10,10,10,10,10,10,10,0,0,10,5,10,10,11,0,10,10,0,0,5,0,0,0,0,0,1,0,15,9,9,10,0,8,9,7,9,10,10,10,10,10,0,0 +1,10,7,0,10,10,8,10,10,10,14,9,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,9.5,15,9,9,0,9,8,0,0,0,0,0,0,0,0,0,0 +1,10,7,10,10,9.5,9.5,10,10,9.5,14,9.5,10,10,10,8,10,8,10,10,7,5,0,0,0,11,10,10,10,10,5,6,0,0,0,0,0,1,10,15,9,9,10,9,8,9,7,9,10,10,10,10,0,0,0 +1,10,7,10,10,0,0,10,10,7,14,10,10,10,10,7,10,6,3,10,10,10,10,10,10,11,10,10,10,10,10,5,10,10,10,10,10,1,0,15,9,9,9,9,9,10,9,9,10,10,10,10,10,5,10 +1,10,7,10,10,9.5,0,10,10,0,14,9.5,0,0,10,0,10,5,10,7,0,10,6,10,0,11,10,10,6,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,5,0,7,0,3,3,3,0,3,0,0 +1,10,7,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/Lectures/Lecture-20/Lecture-20.ipynb b/Lectures/Lecture-20/Lecture-20.ipynb new file mode 100644 index 0000000..48e5829 --- /dev/null +++ b/Lectures/Lecture-20/Lecture-20.ipynb @@ -0,0 +1,4816 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 20\n", + "\n", + "Use pandas to read in the data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data-1401-Grades-Fixed.csv Data-1401-Grades.csv\r\n", + "Data-1401-Grades-Fixed.csv~ Lecture-20.ipynb\r\n" + ] + } + ], + "source": [ + "!ls" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Grade Key,No attempt/wrong: -5,\"No attempt: -5, wrong: -2\",\"No attempt: -10, wrong: -1..-7, bonus: 0..10\",\"No attempt: -10, wrong: -1 ..-8. no bonus\",\"No attempt: -20, wrong: -1..-15, bonus: 0..20\",,,\r", + "\r\n", + "Student ID,Lab 1,Lab 2,Lab 3,Lab 4,Exam 1,Lab 5,Lab 6,Lab 7\r", + "\r\n", + "1000954113,100,81,25,35,0,,,\r", + "\r\n", + ",Stopped at ex 5,\"-ex1: functions print not return even/odd bool\r\n", + "-ex3: does not solve problem posed in ex.\r\n", + "-ex8: no solution\r\n", + "-ex9: no solution\r\n", + "-ex10: no solution\",\"-ex2: index errors, code ostensibly only checks for 3x3 case: -5 pts\r\n", + "-ex3: board doesn't draw top/bottom borders, hard coded inputs: -5 pts\r\n", + "-ex4: Not attempted: -10 pts\r\n", + "-ex5: Does not work (no test output provided): -5 pts\r\n", + "-ex6 - ex10: Not attempted: -50 pts\r\n", + "-ex11: Not attempted: +0 pts\r\n", + "\r\n", + "\",\"-ex2b: calculates the mean every time functions is called. logic is correct but instead of recomputing the mean every time it loops over, you could store the mean in another variable (which is only calculated once). correct though. no points deducted.\r\n", + "-ex3: does not run: -5pts\r\n", + "-ex4 - ex9: not attempted: -60pts\",- did not submit exam,,,\r", + "\r\n", + "1000625629,95,87,0,88,120,,,\r", + "\r\n", + ",\"- Did not do ex 4 - count lines of 'w'\r\n", + "\",\"-ex2: does not return list, prints\r\n", + "-ex3: does not solve problem. just takes max of list and gets all other nums less than that.\r\n", + "-ex7: flipped condition on rocks and scissors\r\n", + "-ex9: uses list of words, not string of words\r\n", + "-ex10: did not attempt \",- did not submit lab 3,\"-ex2: enhancement: could have just called mean() function from earlier instead of re-writting. \r\n", + "-ex4: does not normalize (what happens to the plot if you input 2000 data points?): -4pts\r\n", + "-ex6: funcs should return funcs, odd/even not really important but should have implemented for others: -3pts\r\n", + "-ex9: supposed to use previous functions, trapezoidal is good approach but not what assignment requests: -5pts \r\n", + "\",\"- excellent\r\n", + "-q6: +20pts bonus\",,,\r", + "\r\n", + "1000847686,100,0,0,0,90,,,\r", + "\r\n", + ",Stopped at ex 5,- did not submit lab 2,- did not submit lab 3,- did not submit lab 4,\"-submitted in wrong folder: -5pts\r\n", + "-q4: does not attribute lecture 15 code: -5pts\r\n", + "-q6: not correct: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001108137,90,96,0,35,90,,,\r", + "\r\n", + ",\"-ex1: did not echo $SHELL\r\n", + "-ex4: did not count passwd\",\"-ex3: does not return function, using additional argument\r\n", + "-ex8: outputs fib of n+1 and not n.\r\n", + "ACADEMIC DISHONESTY. Matches with 1001428148 \",- did not submit lab 3,\"-ex1: does not normalize between x_min and x_max: -5pts\r\n", + "-ex3: doesn't work: -5pts\r\n", + "-ex4: doesn't work: -5pts\r\n", + "-ex5 - ex9: not attempted: -50pts \",\"-q2: incorrect output: -15pts\r\n", + "-q6: incomplete: +5pts\",,,\r", + "\r\n", + "1000999851,95,94,43,0,100,,,\r", + "\r\n", + ",-ex4: did not count passwd,\"-ex3: does not return function, using additional argument\r\n", + "-ex5: does not check for duplicates when appending intersection\r\n", + "-ex7: does not loop when p1 and p2 draw\r\n", + "\",\"-ex1: Each row is referenced to each other: -5 pts\r\n", + "-ex2: Does not return -1 if incomplete: -2 pts\r\n", + "-ex6 - ex10: Not attemped: -50 pts \r\n", + "-ex11: Not attempted: +0 pts\",- did not submit lab 4,-q6: not attempted: +0pts,,,\r", + "\r\n", + "1001214491,80,82,30,0,90,,,\r", + "\r\n", + ",did not complete any assignment correctly,\"-ex1: prints not return\r\n", + "-ex2: not a function, just block of code\r\n", + "-ex3: not a function, does not return a function, does not return anything for that matter\r\n", + "-ex4: not a function, logic correct\r\n", + "-ex5: not a function, logic correct\r\n", + "-ex6: not a function, logic correct\r\n", + "-ex7: not a function, logic correct\r\n", + "-ex8: not a function, logic correct\r\n", + "-ex9: not a function, logic NOT correct. uses list not string\r\n", + "\",\"-ex1: Not a function: -5 pts\r\n", + "-ex2: Not a function. Hard-code prints for 3x3: -5 pts\r\n", + "-ex4: Same code as ex3, does not solve problem: -5 pts\r\n", + "-ex5: Does not work, takes user input but does not cast it to use it for indexing: -5 pts\r\n", + "-ex6 - ex10: Not attempted. -50 pts\r\n", + "-ex11: Not attempted: +0 pts\r\n", + "\",- did not submit lab 4,\"-q4: Does not work: -10pts\r\n", + "-q6: Not attempted: 0pts\",,,\r", + "\r\n", + "1001428148,80,90,24,0,80,,,\r", + "\r\n", + ",\"Did not do assignment.\r\n", + "\r\n", + "EDIT: He did the git stuff\r\n", + " which was not part of the grading.\r\n", + "\r\n", + "- did not do ex1-ex4. \",\"-ex3: does not return function, using additional argument\r\n", + "-ex5: doesn't return common elements, prints\r\n", + "-ex8: outputs fib of n+1 and not n.\r\n", + "-ex9: reverses entire string, not words\r\n", + "-ex10: wrote a guessing game where human guesses computers number.\r\n", + "ACADEMIC DISHONESTY. Matches with 1001108137 \",\"-ex2: did not attempt: -10pts\r\n", + "-ex3: hard-coded prints: -7pts\r\n", + "-ex4: does not solve problem: -7pts\r\n", + "-ex5: Did not do problem: -7pts\r\n", + "-ex6: Code does not run, several flow issues: -5pts\r\n", + "-ex7 - ex10: Did not attempt: -40pts\r\n", + "\",- did not submit lab 4,\"- Submitted in wrong folder: -5pts\r\n", + "-q2: does not run: -10pts\r\n", + "-q4: only works for matrixes of size 5x5: -5pts\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001397199,100,94,87,12,105,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: does not return a function\r\n", + "-ex8: returns fib value at n, not the list til n, pretty obvious that user is copying recursive code off the internet without understanding what it does\r\n", + "-ex9: takes a list as input, not string\r\n", + "\",\"-ex2: hard coded for 3x3 boards: -2pts\r\n", + "-ex3: breakes for boards, i.e 6x3: -2pts\r\n", + "-ex4: does not handle NxN boards: -2pts\r\n", + "-ex5: does not handle NxN boards: -2pts\r\n", + "-ex9: good!\r\n", + "-ex10: does not work: -5pts\r\n", + "-ex11: did not attempt: +0pts\r\n", + "\",\"-ex2b: not supposed to use other package: -8pts\r\n", + "-ex3 -ex9: not attempted: -80pts\r\n", + "\",\"-q6: Incorrect output. Does not use previous functions or provided code: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001372854,100,70,17,35,20,,,\r", + "\r\n", + ",stopped at ex5,- did not attempt exercise 4-10,\"-ex2: does not handle NxN boards: -3pts\r\n", + "-ex3 - ex10: did not attempt: -80pts\r\n", + "-ex11: did not attempt: +0pts\",\"-ex2b: could have just called mean function instead of copy/pasting the code into variance\r\n", + "-ex3: hard codes bin, not correct, should be appending bin_edges to list: -5pts\r\n", + "-ex4 - ex9: -60pts\",\"-q1: should only return one state, not a list of states\r\n", + "-q2 -q5: not attempted: -20*4pts\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001558073,95,86,0,0,84,,,\r", + "\r\n", + ",-ex4: did not use wc to count,\"-ex3: did not return a function\r\n", + "-ex4: not a function, logic correct\r\n", + "-ex5: not a function, user input for both lists.\r\n", + "-ex6: not a function, logic correct\r\n", + "-ex7: not a function, exits if draw\r\n", + "-ex9: not a function, logic correct\r\n", + "-ex10: Reversed: Instead of the computer guessing the user is guessing.\",- did not submit lab 3,- did not submit lab 4,\"-q2: should return, not print, does not provide correct output: -3pts\r\n", + "-q3: should sort everything using q2, not sorted (you used python's sorted function in one of your first cells, i think that confused your output since list of states was sorted after that, if you remove the sorted you'll see that these functions aren't doing what is asked for in questions): -10pts\r\n", + "-q4: your numbers are correct, but it should be returned in a list of size MxN (2d matrix), not a list that is (N+M)x1 (1d list): -5pts\r\n", + "-q6: Not complete: +2pts\",,,\r", + "\r\n", + "1001593219,100,96,96,85,120,,,\r", + "\r\n", + ",-excellent. completed everything.,\"-ex1: prints, doesn't return\r\n", + "-ex3: doesn't exactly mimic ex2 as it instead takes user input.\r\n", + "\r\n", + "\",\"-ex2: should use sample input as provided: -3pts\r\n", + "-ex4: Does not draw board in correct format: -1pts (edit, I see you did this later on so I changed this from -5 to -1 for being incorrectly placed).\r\n", + "-ex11: did not attempt: +0pts\",\"-ex3: should only update xmin and xmax if none provided (someone might want to discard outliers with this function, for ex): -2pts\r\n", + "you only really need to keep track of the counts for the histogram, but won't count off points for this.\r\n", + "-ex4: looks good but didn't normalize number of '#' to 20 max (several arguments were removed from drawhist function): -4pts\r\n", + "-ex5: should pass check is an argument to 'truth' function: -2pts\r\n", + "-ex6: not using nested functions, see GTA example solutions: -5pts\r\n", + "-ex9: should not have to redefine functions to do integration: -2pts\",\"-excellent. full credit +20pts for q6 bonus.\r\n", + "-note: q1-q3: you didn't need to use alphabet to compare letters if you wanted to make strings upper or lower, you could use entry.lower().\r\n", + "\",,,\r", + "\r\n", + "1001596311,90,92,71,57,100,,,\r", + "\r\n", + ",\"-ex2: did not attempt\r\n", + "-ex4: did not count passwd\",\"-ex2: returns numbers less than or equal, and not strictly less than\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex5: does not check for duplicates\r\n", + "-ex7: does not handle draw case\r\n", + "\",\"-ex2: tie when it should have been incomplete. only works for 3x3: -2pts\r\n", + "-ex3: Does not work for boards of size: ex. 6x8: -5pts\r\n", + "-ex4: Incorrect print with sizes 4x4 for example: -2pts\r\n", + "-ex5: Logic looks okay but could not reproduce results when running cells: -5pts\r\n", + "-ex6: Logic looks okay but running the code gave errors: placeInput() missing player: -5pts\r\n", + "-ex10: Did not attempt: -10pts\r\n", + "-ex11: Did not attempt: +0pts\",\"-ex3: should check x_min and x_max seperately, won't deduct for this though. bin_edges not updated correctly: -3pts\r\n", + "-ex5: look at common-issues.ipynb, you are providing the element as index, incorrect: -5pts\r\n", + "-ex6: should be func returning func like example: -5pts\r\n", + "-ex7 -ex9: not attempted: -30pts\r\n", + "\r\n", + " \",\"-q1: should have returned 'Alabama': -5pts\r\n", + "-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: Does not calculate x90 using functions: +10pts\r\n", + "\",,,\r", + "\r\n", + "1001608680,100,94,36,61,95,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex6: not a function, logic incomplete and not correct\r\n", + "-ex9: reverses string, not words in string\r\n", + "\",\"-ex2: Does not work on most of included examples: -5pts\r\n", + "-ex3: Did not construct board: -7pts\r\n", + "-ex4: Does not construct board: -7pts\r\n", + "-ex5: Did not return or place board: -5pts\r\n", + "-ex6: Hard-coded: -5pts\r\n", + "-ex7: Errors when ran, demonstrate to TA: -5pts\r\n", + "-ex8 - ex10: Did not attempt (copying and pasting ex7 does not count): -30pts\r\n", + "-ex11: Did not attempt: +0pts\r\n", + "\",\"-ex2b: should not use numpy functions: -8pts\r\n", + "-ex4: did not attempt (copied q3): -10pts\r\n", + "-ex5: supposed to pass in function, not a value, supposed to give index, not value: -6pts\r\n", + "-ex6: supposed to have func that returns func (like provided example), see gta solutions: -5pts\r\n", + "-ex8: should be returning values up to length N, instead returns one zero: -5pts\r\n", + "-ex9: does not work: -5pts\",\"-q2: does not return correct index (states[24] == montana): -5pts\r\n", + "-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: incomplete: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001618032,100,96,97,86,110,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: uses argument instead of return function\r\n", + "-ex9: input is list not string\r\n", + "\",\"-ex2: output 0 should be -1: -1pts\r\n", + "-ex3: size should be n x m: -2pts\r\n", + "-ex6: does not use pretty print with border: -5pts\r\n", + "-ex7: does not use \"\"A3\"\" notation: -5pts\r\n", + "-ex11: +10pts\",\"-ex3: should check x_min and x_max seperately, won't deduct for this though.\r\n", + "-ex4: should be normalizing by max_character_per_line: -4pts\r\n", + "-ex6: should have funcs that return funcs, see GTA example solutions: -5pts\r\n", + "-ex9: should have completed solution using generate_function, where, and in_range: -5pts\r\n", + "\",\"-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: Nice output and plot: +20pts\",,,\r", + "\r\n", + "1001652624,100,90,0,0,0,,,\r", + "\r\n", + ",stopped at ex5,\"- in general, well commented\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex5: does not check for duplicates\r\n", + "-ex7: did not attempt\r\n", + "-ex9: uses list as input, not string\r\n", + "-ex10: did not attempt\r\n", + "\",- ACADEMIC DISHONESTY. Matches with 1001496565. I suspect this student copied off of 1001496565 since the other student had the solutions on github for several days before the deadline. This student did not have a working solution during the last lab period and 1001496565's solution is unique.,- did not submit lab 4,- did not submit exam,no longer on canvas,,\r", + "\r\n", + "1001658617,100,94,96,92,100,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: pretty close on finishing correctly. returns called function\r\n", + "-ex6: prints, doesn't return true/false if palindrome\r\n", + "-ex7: does not call again if draw\r\n", + "-ex10: logic is there but automated, user inputs number and random guessing ensues by itself. i'd count this as a correct solution though different since it doesn't allow user to explic indicate higher/lower.\r\n", + "\",\"-ex2: draw condition should be 0: -1pts\r\n", + "-ex3: output incorrect for larger boards: eg 6x8: -3pts\r\n", + "-overall: excellent!\",-ex4: not correct: -8pts,\"-excellent\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001663166,95,94,38,0,82,,,\r", + "\r\n", + ",-ex2: did not complete,\"-ex3: uses argument instead of return function\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex9: returns a list not a string, though input is correct in being a string\r\n", + "\r\n", + "\",\"-ex2: does not return 2,1,0,-1, just prints, not checked against other states: -5pts\r\n", + "-ex3: does not print board (copied ex1): -10pts\r\n", + "-ex4: could not test. demonstrate to TA: -5pts\r\n", + "-ex5: does not place block: -7pts\r\n", + "-ex6: not complete: -7pts\r\n", + "-ex7: not complete: -7pts\r\n", + "-ex8: not complete: -7pts\r\n", + "-ex9: does not run, demonstrate to TA: -7pts\r\n", + "-ex10: does not run, demonstrate to TA: -7pts\",- did not submit lab 4,\"-q4: should not be using numpy for this (to use built-in functions), also does not work for lists with >3 elements: -15pts\r\n", + "-q5: does not return value: -3pts\r\n", + "-q6: not attempted: +0pts\r\n", + " \",,,\r", + "\r\n", + "1001674179,95,90,23,0,0,,,\r", + "\r\n", + ",\"-ex4: incorrect solution, did not grep for w, just counted all lines\",\"-ex2: used lambda function, not defined\r\n", + "-ex3: not correctly implemented, harcoded list\r\n", + "-ex7: does not handle tie/draw correctly\r\n", + "-ex9: incorrect, reverses full string and not the words\r\n", + "-ex10: does not work\",\"-ex1: does not return board: -3pts\r\n", + "-ex2: did not attempt: -10pts\r\n", + "-ex3: does not print correctly: -7pts\r\n", + "-ex4: does not print correctly: -7pts\r\n", + "-ex6 - ex10: not attempted: -50pts\r\n", + " \r\n", + "\",- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001722244,95,100,0,0,0,,,\r", + "\r\n", + ",\"-ex4: incorrect solution, did not grep for w, just counted all lines\",-perfect. all correct.,- did not submit lab 3,- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001543608,100,96,19,51,111,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex10: incorrect, reversed\",\"-ex1: not a function, does not work: -7pts\r\n", + "-ex2: does not work: -5pts\r\n", + "-ex3: does not print correctly: -5pts\r\n", + "-ex4: does not run, logic not correct: -7pts\r\n", + "-ex5: gives errors, demonstrate to TA for credit: -7pts\r\n", + "-ex6 - ex10: not attempted: -50pts\",\"-ex4: does not normalize based num_chars: -4pts\r\n", + "-ex5: myfunc should be an arg to where, not written in: -5pts\r\n", + "-ex6 -ex9: not attempted: -40pts\",\"-q1-q3: should return the value, not print: -9pts\r\n", + "-q6: nicely done: +20pts\",,,\r", + "\r\n", + "1001547659,100,94,86,75,100,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: incorrect\r\n", + "-ex4: print instead of return list\r\n", + "-ex5: does not handle dupes, prints\r\n", + "-ex9: just reveses entire string\r\n", + "\",\"-ex2: incorrect output on examples (no_winner)): -2pts\r\n", + "-ex6: hard-coded size (1 to 3): -2pts\r\n", + " -ex10: not attempted: -10pts\r\n", + "- well done overall!\",\"-ex3: not caclulating bin edges correctly: should be n_bins+1 in length: -5pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: nicely done\r\n", + "-ex9: not attempted: -10pts\",\"-q6: close but output is not correct: +10pts \r\n", + "-late: -10pts\",,,\r", + "\r\n", + "1001458157,85,88,21,37,50,,,\r", + "\r\n", + ",\"-ex2: did not create any dirs\r\n", + "-ex3: did not show work\r\n", + "-ex4: did not attempt\r\n", + "\",\"-ex3: incorrect\r\n", + "-ex4: not a function\r\n", + "-ex5: not a function, incorrect\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex8: not a function\r\n", + "-ex10: does not allow user input to specify h/l\r\n", + "\r\n", + "\",\"-ex1: not a function, not attempted: -5pts\r\n", + "-ex2: not a function, hard-coded for 3x3: -7pts\r\n", + "-ex3: should be n x m, only n x n: -2pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: does not run: -5pts\r\n", + "-ex6 - ex10: not attempted: -50pts\",\"-ex2b: not supposed to use statistics functions: -8pts\r\n", + "-ex3: does not work: -5pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: supposed to take a function as argument to where: -5pts\r\n", + "-ex6: incomplete: -5pts\r\n", + "-ex7-ex9: not attempted: -30pts \r\n", + "\",\"- did not submit exam (found something in lab 4, but it was empty). Resubmitted correct format. Re-graded on 4/17/2020\r\n", + "\r\n", + "-q1: Used sort, not supposed to use sort: -15pts\r\n", + "-q2: You're supposed to find the index based on the list, not hardcoding it: -15pts\r\n", + "-q3: Again, not supposed to use built in sort function: -15pts\r\n", + "-q4: Should attribute source code: https://stackoverflow.com/a/57337824: -5pts\r\n", + "-q6: Not attempted: +0pts\",,,\r", + "\r\n", + "1001496565,100,98,100,100,120,,,\r", + "\r\n", + ",-excellent. completed everything.,\"-ex5: does not handle duplicates\r\n", + "\r\n", + "code is clean and refreshing to read\",\"-excellent.\r\n", + "\r\n", + "- SOLUTION MATCHES WITH ANOTHER STUDENT.\",-excellent.,\"- broke my grader assistant: please make sure you perform a pull request, autograder searches for dr. farbin's committed version of the exam/lab and since your submission's exam dir only had your solution (with the same name as his) it got flagged as not submitted.\r\n", + "- excellent\r\n", + "-q6: +20pts\",,,\r", + "\r\n", + "1001519928,100,94,85,50,115,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex8: recursive function that returns fib(n) not a list up to n.\r\n", + "-ex9: reverses full string, incorrect\r\n", + "\",\"-ex2: doesn't handle NxN: -2pts\r\n", + "-ex4: should print 'X', 'O': -3pts\r\n", + "-ex6: nice use of ascii increment!\r\n", + "-ex10: did not attempt: -10pts\",\"-ex2b: should not be using statistics function: -8pts\r\n", + "-ex4: should be normalizing, not clipping: -2pts\r\n", + "-ex5: should be a simple booling function, where should do the logic check with the data: -5pts\r\n", + "-ex6: should be returning func (func returns func): -5pts\r\n", + "-ex7 - ex9: not attempted: -30pts\r\n", + "\r\n", + "\",\"-excellent\r\n", + "-q6: close, incorrect outputs: +15pts\r\n", + "\",,,\r", + "\r\n", + "1001774305,100,94,20,79,120,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex7: draws don't auto replay, though in infinite look with prompts after each game. \r\n", + "-ex9: uses list of strings instead of string\r\n", + "-ex10: incorrect\",-ex3 - ex10: not attempted: -80pts,\"-ex3: should only update xmin and xmax if none provided (someone might want to discard outliers with this function, for ex): -2pts\r\n", + "-ex4: doesn't normalize to char_per_line in function args: -4pts\r\n", + "-ex7 - ex9: copies without attribution: -15pts\",\"-excellent\r\n", + "\",,,\r", + "\r\n", + "1001696890,0,96,0,40,100,,,\r", + "\r\n", + ",- did not submit lab 1,\"-ex5: does not handle dupes\r\n", + "-ex7: nice approach with dicts but doens't handle draw correctly\r\n", + "\",- did not submit lab 3,-ex4-ex9: not attempted: -60pts,\"-excellent\r\n", + "-q6: not attempted: +0pts\r\n", + "\",,,\r", + "\r\n", + "1001232602,80,94,79,60,90,,,\r", + "\r\n", + ",- submitted late: 2/24/2020 ,\"-ex3: uses argument instead of return function\r\n", + "-ex8: multiple fibs by n, not give fibs to n\r\n", + "-ex10: not fully correct, doesn't respect 'halving property'\",\"-ex1: not a function: -5pts\r\n", + "-ex3: does not handle n x m, ex: 3x6: -2pts\r\n", + "-ex4: does not handle nxn: -2pts\r\n", + "-ex6: does not handle nxn; -2pts\r\n", + "-ex10: did not attempt: -10pts\",\"-ex3: wrong number of bin edges: -5pts\r\n", + "-ex4: should normalize, not clip max_characters_per_line, should use bin edges, not recompute: -5pts\r\n", + "-ex5: should append indices, not values: -3pts\r\n", + "-ex6: should be a func returning a func, don't harcode values: -5pts\r\n", + "-ex7: not attempted: -8pts\r\n", + "-ex8: does not confirm mean/var: -4pts\r\n", + "-ex9: not attempted: -10pts\",\"-q1-q5: Should return, not print: -15pts\r\n", + "q6: attempted but does not run: +5pts\",,,\r", + "\r\n", + "1001464999,95,94,0,0,105,,,\r", + "\r\n", + ",- submitted lab 1 in wrong folder,\"-ex3: uses argument instead of return function\r\n", + "-ex7: does not handle draw\r\n", + "-ex10: incorrect\",- did not submit lab 3,- did not submit lab 4,\"-submitted in wrong folder: -5pts\r\n", + "-q6: not correct: +10pts\",,,\r", + "\r\n", + "1001644554,80,80,10,0,0,,,\r", + "\r\n", + ",- submitted late: 2/21/2020,\"- submitted late: 2/21/2020\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex4: not a function\r\n", + "-ex5: doesn't handle duplicates\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex10: does not allow user to indicate higher/lower\",\"-ex1: not a function, also copies rows by reference: -6pts\r\n", + "-ex2: bruteforce, does not work: -7pts\r\n", + "-ex3: hard-coded, output is error: -7pts\r\n", + "-ex4 - ex10: did not attempt: -70pts\",- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001684648,0,0,0,0,0,,,\r", + "\r\n", + ",- did not submit lab 1,- did not submit lab 2,- did not submit lab 3,- did not submit lab 4,- did not submit exam,,," + ] + } + ], + "source": [ + "!cat Data-1401-Grades.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"Data-1401-Grades.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Grade KeyNo attempt/wrong: -5No attempt: -5, wrong: -2No attempt: -10, wrong: -1..-7, bonus: 0..10No attempt: -10, wrong: -1 ..-8. no bonusNo attempt: -20, wrong: -1..-15, bonus: 0..20Unnamed: 6Unnamed: 7Unnamed: 8
0Student IDLab 1Lab 2Lab 3Lab 4Exam 1Lab 5Lab 6Lab 7
110009541131008125350NaNNaNNaN
2NaNStopped at ex 5-ex1: functions print not return even/odd bool...-ex2: index errors, code ostensibly only check...-ex2b: calculates the mean every time function...- did not submit examNaNNaNNaN
310006256299587088120NaNNaNNaN
4NaN- Did not do ex 4 - count lines of 'w'\\n-ex2: does not return list, prints\\n-ex3: does...- did not submit lab 3-ex2: enhancement: could have just called mean...- excellent\\n-q6: +20pts bonusNaNNaNNaN
..............................
56NaN- submitted lab 1 in wrong folder-ex3: uses argument instead of return function...- did not submit lab 3- did not submit lab 4-submitted in wrong folder: -5pts\\n-q6: not c...NaNNaNNaN
57100164455480801000NaNNaNNaN
58NaN- submitted late: 2/21/2020- submitted late: 2/21/2020\\n-ex3: uses argume...-ex1: not a function, also copies rows by refe...- did not submit lab 4- did not submit examNaNNaNNaN
59100168464800000NaNNaNNaN
60NaN- did not submit lab 1- did not submit lab 2- did not submit lab 3- did not submit lab 4- did not submit examNaNNaNNaN
\n", + "

61 rows Ă— 9 columns

\n", + "
" + ], + "text/plain": [ + " Grade Key No attempt/wrong: -5 \\\n", + "0 Student ID Lab 1 \n", + "1 1000954113 100 \n", + "2 NaN Stopped at ex 5 \n", + "3 1000625629 95 \n", + "4 NaN - Did not do ex 4 - count lines of 'w'\\n \n", + ".. ... ... \n", + "56 NaN - submitted lab 1 in wrong folder \n", + "57 1001644554 80 \n", + "58 NaN - submitted late: 2/21/2020 \n", + "59 1001684648 0 \n", + "60 NaN - did not submit lab 1 \n", + "\n", + " No attempt: -5, wrong: -2 \\\n", + "0 Lab 2 \n", + "1 81 \n", + "2 -ex1: functions print not return even/odd bool... \n", + "3 87 \n", + "4 -ex2: does not return list, prints\\n-ex3: does... \n", + ".. ... \n", + "56 -ex3: uses argument instead of return function... \n", + "57 80 \n", + "58 - submitted late: 2/21/2020\\n-ex3: uses argume... \n", + "59 0 \n", + "60 - did not submit lab 2 \n", + "\n", + " No attempt: -10, wrong: -1..-7, bonus: 0..10 \\\n", + "0 Lab 3 \n", + "1 25 \n", + "2 -ex2: index errors, code ostensibly only check... \n", + "3 0 \n", + "4 - did not submit lab 3 \n", + ".. ... \n", + "56 - did not submit lab 3 \n", + "57 10 \n", + "58 -ex1: not a function, also copies rows by refe... \n", + "59 0 \n", + "60 - did not submit lab 3 \n", + "\n", + " No attempt: -10, wrong: -1 ..-8. no bonus \\\n", + "0 Lab 4 \n", + "1 35 \n", + "2 -ex2b: calculates the mean every time function... \n", + "3 88 \n", + "4 -ex2: enhancement: could have just called mean... \n", + ".. ... \n", + "56 - did not submit lab 4 \n", + "57 0 \n", + "58 - did not submit lab 4 \n", + "59 0 \n", + "60 - did not submit lab 4 \n", + "\n", + " No attempt: -20, wrong: -1..-15, bonus: 0..20 Unnamed: 6 Unnamed: 7 \\\n", + "0 Exam 1 Lab 5 Lab 6 \n", + "1 0 NaN NaN \n", + "2 - did not submit exam NaN NaN \n", + "3 120 NaN NaN \n", + "4 - excellent\\n-q6: +20pts bonus NaN NaN \n", + ".. ... ... ... \n", + "56 -submitted in wrong folder: -5pts\\n-q6: not c... NaN NaN \n", + "57 0 NaN NaN \n", + "58 - did not submit exam NaN NaN \n", + "59 0 NaN NaN \n", + "60 - did not submit exam NaN NaN \n", + "\n", + " Unnamed: 8 \n", + "0 Lab 7 \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + ".. ... \n", + "56 NaN \n", + "57 NaN \n", + "58 NaN \n", + "59 NaN \n", + "60 NaN \n", + "\n", + "[61 rows x 9 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 363 Data-1401-Grades.csv\r\n" + ] + } + ], + "source": [ + "!wc -l Data-1401-Grades.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Student ID,Lab 1,Lab 2,Lab 3,Lab 4,Exam 1,Lab 5,Lab 6,Lab 7\r", + "\r\n", + "1000954113,100,81,25,35,0,,,\r", + "\r\n", + ",Stopped at ex 5,\"-ex1: functions print not return even/odd bool\r\n", + "-ex3: does not solve problem posed in ex.\r\n", + "-ex8: no solution\r\n", + "-ex9: no solution\r\n", + "-ex10: no solution\",\"-ex2: index errors, code ostensibly only checks for 3x3 case: -5 pts\r\n", + "-ex3: board doesn't draw top/bottom borders, hard coded inputs: -5 pts\r\n", + "-ex4: Not attempted: -10 pts\r\n", + "-ex5: Does not work (no test output provided): -5 pts\r\n", + "-ex6 - ex10: Not attempted: -50 pts\r\n", + "-ex11: Not attempted: +0 pts\r\n", + "\r\n", + "\",\"-ex2b: calculates the mean every time functions is called. logic is correct but instead of recomputing the mean every time it loops over, you could store the mean in another variable (which is only calculated once). correct though. no points deducted.\r\n", + "-ex3: does not run: -5pts\r\n", + "-ex4 - ex9: not attempted: -60pts\",- did not submit exam,,,\r", + "\r\n", + "1000625629,95,87,0,88,120,,,\r", + "\r\n", + ",\"- Did not do ex 4 - count lines of 'w'\r\n", + "\",\"-ex2: does not return list, prints\r\n", + "-ex3: does not solve problem. just takes max of list and gets all other nums less than that.\r\n", + "-ex7: flipped condition on rocks and scissors\r\n", + "-ex9: uses list of words, not string of words\r\n", + "-ex10: did not attempt \",- did not submit lab 3,\"-ex2: enhancement: could have just called mean() function from earlier instead of re-writting. \r\n", + "-ex4: does not normalize (what happens to the plot if you input 2000 data points?): -4pts\r\n", + "-ex6: funcs should return funcs, odd/even not really important but should have implemented for others: -3pts\r\n", + "-ex9: supposed to use previous functions, trapezoidal is good approach but not what assignment requests: -5pts \r\n", + "\",\"- excellent\r\n", + "-q6: +20pts bonus\",,,\r", + "\r\n", + "1000847686,100,0,0,0,90,,,\r", + "\r\n", + ",Stopped at ex 5,- did not submit lab 2,- did not submit lab 3,- did not submit lab 4,\"-submitted in wrong folder: -5pts\r\n", + "-q4: does not attribute lecture 15 code: -5pts\r\n", + "-q6: not correct: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001108137,90,96,0,35,90,,,\r", + "\r\n", + ",\"-ex1: did not echo $SHELL\r\n", + "-ex4: did not count passwd\",\"-ex3: does not return function, using additional argument\r\n", + "-ex8: outputs fib of n+1 and not n.\r\n", + "ACADEMIC DISHONESTY. Matches with 1001428148 \",- did not submit lab 3,\"-ex1: does not normalize between x_min and x_max: -5pts\r\n", + "-ex3: doesn't work: -5pts\r\n", + "-ex4: doesn't work: -5pts\r\n", + "-ex5 - ex9: not attempted: -50pts \",\"-q2: incorrect output: -15pts\r\n", + "-q6: incomplete: +5pts\",,,\r", + "\r\n", + "1000999851,95,94,43,0,100,,,\r", + "\r\n", + ",-ex4: did not count passwd,\"-ex3: does not return function, using additional argument\r\n", + "-ex5: does not check for duplicates when appending intersection\r\n", + "-ex7: does not loop when p1 and p2 draw\r\n", + "\",\"-ex1: Each row is referenced to each other: -5 pts\r\n", + "-ex2: Does not return -1 if incomplete: -2 pts\r\n", + "-ex6 - ex10: Not attemped: -50 pts \r\n", + "-ex11: Not attempted: +0 pts\",- did not submit lab 4,-q6: not attempted: +0pts,,,\r", + "\r\n", + "1001214491,80,82,30,0,90,,,\r", + "\r\n", + ",did not complete any assignment correctly,\"-ex1: prints not return\r\n", + "-ex2: not a function, just block of code\r\n", + "-ex3: not a function, does not return a function, does not return anything for that matter\r\n", + "-ex4: not a function, logic correct\r\n", + "-ex5: not a function, logic correct\r\n", + "-ex6: not a function, logic correct\r\n", + "-ex7: not a function, logic correct\r\n", + "-ex8: not a function, logic correct\r\n", + "-ex9: not a function, logic NOT correct. uses list not string\r\n", + "\",\"-ex1: Not a function: -5 pts\r\n", + "-ex2: Not a function. Hard-code prints for 3x3: -5 pts\r\n", + "-ex4: Same code as ex3, does not solve problem: -5 pts\r\n", + "-ex5: Does not work, takes user input but does not cast it to use it for indexing: -5 pts\r\n", + "-ex6 - ex10: Not attempted. -50 pts\r\n", + "-ex11: Not attempted: +0 pts\r\n", + "\",- did not submit lab 4,\"-q4: Does not work: -10pts\r\n", + "-q6: Not attempted: 0pts\",,,\r", + "\r\n", + "1001428148,80,90,24,0,80,,,\r", + "\r\n", + ",\"Did not do assignment.\r\n", + "\r\n", + "EDIT: He did the git stuff\r\n", + " which was not part of the grading.\r\n", + "\r\n", + "- did not do ex1-ex4. \",\"-ex3: does not return function, using additional argument\r\n", + "-ex5: doesn't return common elements, prints\r\n", + "-ex8: outputs fib of n+1 and not n.\r\n", + "-ex9: reverses entire string, not words\r\n", + "-ex10: wrote a guessing game where human guesses computers number.\r\n", + "ACADEMIC DISHONESTY. Matches with 1001108137 \",\"-ex2: did not attempt: -10pts\r\n", + "-ex3: hard-coded prints: -7pts\r\n", + "-ex4: does not solve problem: -7pts\r\n", + "-ex5: Did not do problem: -7pts\r\n", + "-ex6: Code does not run, several flow issues: -5pts\r\n", + "-ex7 - ex10: Did not attempt: -40pts\r\n", + "\",- did not submit lab 4,\"- Submitted in wrong folder: -5pts\r\n", + "-q2: does not run: -10pts\r\n", + "-q4: only works for matrixes of size 5x5: -5pts\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001397199,100,94,87,12,105,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: does not return a function\r\n", + "-ex8: returns fib value at n, not the list til n, pretty obvious that user is copying recursive code off the internet without understanding what it does\r\n", + "-ex9: takes a list as input, not string\r\n", + "\",\"-ex2: hard coded for 3x3 boards: -2pts\r\n", + "-ex3: breakes for boards, i.e 6x3: -2pts\r\n", + "-ex4: does not handle NxN boards: -2pts\r\n", + "-ex5: does not handle NxN boards: -2pts\r\n", + "-ex9: good!\r\n", + "-ex10: does not work: -5pts\r\n", + "-ex11: did not attempt: +0pts\r\n", + "\",\"-ex2b: not supposed to use other package: -8pts\r\n", + "-ex3 -ex9: not attempted: -80pts\r\n", + "\",\"-q6: Incorrect output. Does not use previous functions or provided code: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001372854,100,70,17,35,20,,,\r", + "\r\n", + ",stopped at ex5,- did not attempt exercise 4-10,\"-ex2: does not handle NxN boards: -3pts\r\n", + "-ex3 - ex10: did not attempt: -80pts\r\n", + "-ex11: did not attempt: +0pts\",\"-ex2b: could have just called mean function instead of copy/pasting the code into variance\r\n", + "-ex3: hard codes bin, not correct, should be appending bin_edges to list: -5pts\r\n", + "-ex4 - ex9: -60pts\",\"-q1: should only return one state, not a list of states\r\n", + "-q2 -q5: not attempted: -20*4pts\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001558073,95,86,0,0,84,,,\r", + "\r\n", + ",-ex4: did not use wc to count,\"-ex3: did not return a function\r\n", + "-ex4: not a function, logic correct\r\n", + "-ex5: not a function, user input for both lists.\r\n", + "-ex6: not a function, logic correct\r\n", + "-ex7: not a function, exits if draw\r\n", + "-ex9: not a function, logic correct\r\n", + "-ex10: Reversed: Instead of the computer guessing the user is guessing.\",- did not submit lab 3,- did not submit lab 4,\"-q2: should return, not print, does not provide correct output: -3pts\r\n", + "-q3: should sort everything using q2, not sorted (you used python's sorted function in one of your first cells, i think that confused your output since list of states was sorted after that, if you remove the sorted you'll see that these functions aren't doing what is asked for in questions): -10pts\r\n", + "-q4: your numbers are correct, but it should be returned in a list of size MxN (2d matrix), not a list that is (N+M)x1 (1d list): -5pts\r\n", + "-q6: Not complete: +2pts\",,,\r", + "\r\n", + "1001593219,100,96,96,85,120,,,\r", + "\r\n", + ",-excellent. completed everything.,\"-ex1: prints, doesn't return\r\n", + "-ex3: doesn't exactly mimic ex2 as it instead takes user input.\r\n", + "\r\n", + "\",\"-ex2: should use sample input as provided: -3pts\r\n", + "-ex4: Does not draw board in correct format: -1pts (edit, I see you did this later on so I changed this from -5 to -1 for being incorrectly placed).\r\n", + "-ex11: did not attempt: +0pts\",\"-ex3: should only update xmin and xmax if none provided (someone might want to discard outliers with this function, for ex): -2pts\r\n", + "you only really need to keep track of the counts for the histogram, but won't count off points for this.\r\n", + "-ex4: looks good but didn't normalize number of '#' to 20 max (several arguments were removed from drawhist function): -4pts\r\n", + "-ex5: should pass check is an argument to 'truth' function: -2pts\r\n", + "-ex6: not using nested functions, see GTA example solutions: -5pts\r\n", + "-ex9: should not have to redefine functions to do integration: -2pts\",\"-excellent. full credit +20pts for q6 bonus.\r\n", + "-note: q1-q3: you didn't need to use alphabet to compare letters if you wanted to make strings upper or lower, you could use entry.lower().\r\n", + "\",,,\r", + "\r\n", + "1001596311,90,92,71,57,100,,,\r", + "\r\n", + ",\"-ex2: did not attempt\r\n", + "-ex4: did not count passwd\",\"-ex2: returns numbers less than or equal, and not strictly less than\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex5: does not check for duplicates\r\n", + "-ex7: does not handle draw case\r\n", + "\",\"-ex2: tie when it should have been incomplete. only works for 3x3: -2pts\r\n", + "-ex3: Does not work for boards of size: ex. 6x8: -5pts\r\n", + "-ex4: Incorrect print with sizes 4x4 for example: -2pts\r\n", + "-ex5: Logic looks okay but could not reproduce results when running cells: -5pts\r\n", + "-ex6: Logic looks okay but running the code gave errors: placeInput() missing player: -5pts\r\n", + "-ex10: Did not attempt: -10pts\r\n", + "-ex11: Did not attempt: +0pts\",\"-ex3: should check x_min and x_max seperately, won't deduct for this though. bin_edges not updated correctly: -3pts\r\n", + "-ex5: look at common-issues.ipynb, you are providing the element as index, incorrect: -5pts\r\n", + "-ex6: should be func returning func like example: -5pts\r\n", + "-ex7 -ex9: not attempted: -30pts\r\n", + "\r\n", + " \",\"-q1: should have returned 'Alabama': -5pts\r\n", + "-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: Does not calculate x90 using functions: +10pts\r\n", + "\",,,\r", + "\r\n", + "1001608680,100,94,36,61,95,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex6: not a function, logic incomplete and not correct\r\n", + "-ex9: reverses string, not words in string\r\n", + "\",\"-ex2: Does not work on most of included examples: -5pts\r\n", + "-ex3: Did not construct board: -7pts\r\n", + "-ex4: Does not construct board: -7pts\r\n", + "-ex5: Did not return or place board: -5pts\r\n", + "-ex6: Hard-coded: -5pts\r\n", + "-ex7: Errors when ran, demonstrate to TA: -5pts\r\n", + "-ex8 - ex10: Did not attempt (copying and pasting ex7 does not count): -30pts\r\n", + "-ex11: Did not attempt: +0pts\r\n", + "\",\"-ex2b: should not use numpy functions: -8pts\r\n", + "-ex4: did not attempt (copied q3): -10pts\r\n", + "-ex5: supposed to pass in function, not a value, supposed to give index, not value: -6pts\r\n", + "-ex6: supposed to have func that returns func (like provided example), see gta solutions: -5pts\r\n", + "-ex8: should be returning values up to length N, instead returns one zero: -5pts\r\n", + "-ex9: does not work: -5pts\",\"-q2: does not return correct index (states[24] == montana): -5pts\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: incomplete: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001618032,100,96,97,86,110,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: uses argument instead of return function\r\n", + "-ex9: input is list not string\r\n", + "\",\"-ex2: output 0 should be -1: -1pts\r\n", + "-ex3: size should be n x m: -2pts\r\n", + "-ex6: does not use pretty print with border: -5pts\r\n", + "-ex7: does not use \"\"A3\"\" notation: -5pts\r\n", + "-ex11: +10pts\",\"-ex3: should check x_min and x_max seperately, won't deduct for this though.\r\n", + "-ex4: should be normalizing by max_character_per_line: -4pts\r\n", + "-ex6: should have funcs that return funcs, see GTA example solutions: -5pts\r\n", + "-ex9: should have completed solution using generate_function, where, and in_range: -5pts\r\n", + "\",\"-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: Nice output and plot: +20pts\",,,\r", + "\r\n", + "1001652624,100,90,0,0,0,,,\r", + "\r\n", + ",stopped at ex5,\"- in general, well commented\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex5: does not check for duplicates\r\n", + "-ex7: did not attempt\r\n", + "-ex9: uses list as input, not string\r\n", + "-ex10: did not attempt\r\n", + "\",- ACADEMIC DISHONESTY. Matches with 1001496565. I suspect this student copied off of 1001496565 since the other student had the solutions on github for several days before the deadline. This student did not have a working solution during the last lab period and 1001496565's solution is unique.,- did not submit lab 4,- did not submit exam,no longer on canvas,,\r", + "\r\n", + "1001658617,100,94,96,92,100,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: pretty close on finishing correctly. returns called function\r\n", + "-ex6: prints, doesn't return true/false if palindrome\r\n", + "-ex7: does not call again if draw\r\n", + "-ex10: logic is there but automated, user inputs number and random guessing ensues by itself. i'd count this as a correct solution though different since it doesn't allow user to explic indicate higher/lower.\r\n", + "\",\"-ex2: draw condition should be 0: -1pts\r\n", + "-ex3: output incorrect for larger boards: eg 6x8: -3pts\r\n", + "-overall: excellent!\",-ex4: not correct: -8pts,\"-excellent\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001663166,95,94,38,0,82,,,\r", + "\r\n", + ",-ex2: did not complete,\"-ex3: uses argument instead of return function\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex9: returns a list not a string, though input is correct in being a string\r\n", + "\r\n", + "\",\"-ex2: does not return 2,1,0,-1, just prints, not checked against other states: -5pts\r\n", + "-ex3: does not print board (copied ex1): -10pts\r\n", + "-ex4: could not test. demonstrate to TA: -5pts\r\n", + "-ex5: does not place block: -7pts\r\n", + "-ex6: not complete: -7pts\r\n", + "-ex7: not complete: -7pts\r\n", + "-ex8: not complete: -7pts\r\n", + "-ex9: does not run, demonstrate to TA: -7pts\r\n", + "-ex10: does not run, demonstrate to TA: -7pts\",- did not submit lab 4,\"-q4: should not be using numpy for this (to use built-in functions), also does not work for lists with >3 elements: -15pts\r\n", + "-q5: does not return value: -3pts\r\n", + "-q6: not attempted: +0pts\r\n", + " \",,,\r", + "\r\n", + "1001674179,95,90,23,0,0,,,\r", + "\r\n", + ",\"-ex4: incorrect solution, did not grep for w, just counted all lines\",\"-ex2: used lambda function, not defined\r\n", + "-ex3: not correctly implemented, harcoded list\r\n", + "-ex7: does not handle tie/draw correctly\r\n", + "-ex9: incorrect, reverses full string and not the words\r\n", + "-ex10: does not work\",\"-ex1: does not return board: -3pts\r\n", + "-ex2: did not attempt: -10pts\r\n", + "-ex3: does not print correctly: -7pts\r\n", + "-ex4: does not print correctly: -7pts\r\n", + "-ex6 - ex10: not attempted: -50pts\r\n", + " \r\n", + "\",- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001722244,95,100,0,0,0,,,\r", + "\r\n", + ",\"-ex4: incorrect solution, did not grep for w, just counted all lines\",-perfect. all correct.,- did not submit lab 3,- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001543608,100,96,19,51,111,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex10: incorrect, reversed\",\"-ex1: not a function, does not work: -7pts\r\n", + "-ex2: does not work: -5pts\r\n", + "-ex3: does not print correctly: -5pts\r\n", + "-ex4: does not run, logic not correct: -7pts\r\n", + "-ex5: gives errors, demonstrate to TA for credit: -7pts\r\n", + "-ex6 - ex10: not attempted: -50pts\",\"-ex4: does not normalize based num_chars: -4pts\r\n", + "-ex5: myfunc should be an arg to where, not written in: -5pts\r\n", + "-ex6 -ex9: not attempted: -40pts\",\"-q1-q3: should return the value, not print: -9pts\r\n", + "-q6: nicely done: +20pts\",,,\r", + "\r\n", + "1001547659,100,94,86,75,100,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: incorrect\r\n", + "-ex4: print instead of return list\r\n", + "-ex5: does not handle dupes, prints\r\n", + "-ex9: just reveses entire string\r\n", + "\",\"-ex2: incorrect output on examples (no_winner)): -2pts\r\n", + "-ex6: hard-coded size (1 to 3): -2pts\r\n", + " -ex10: not attempted: -10pts\r\n", + "- well done overall!\",\"-ex3: not caclulating bin edges correctly: should be n_bins+1 in length: -5pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: nicely done\r\n", + "-ex9: not attempted: -10pts\",\"-q6: close but output is not correct: +10pts \r\n", + "-late: -10pts\",,,\r", + "\r\n", + "1001458157,85,88,21,37,50,,,\r", + "\r\n", + ",\"-ex2: did not create any dirs\r\n", + "-ex3: did not show work\r\n", + "-ex4: did not attempt\r\n", + "\",\"-ex3: incorrect\r\n", + "-ex4: not a function\r\n", + "-ex5: not a function, incorrect\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex8: not a function\r\n", + "-ex10: does not allow user input to specify h/l\r\n", + "\r\n", + "\",\"-ex1: not a function, not attempted: -5pts\r\n", + "-ex2: not a function, hard-coded for 3x3: -7pts\r\n", + "-ex3: should be n x m, only n x n: -2pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: does not run: -5pts\r\n", + "-ex6 - ex10: not attempted: -50pts\",\"-ex2b: not supposed to use statistics functions: -8pts\r\n", + "-ex3: does not work: -5pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: supposed to take a function as argument to where: -5pts\r\n", + "-ex6: incomplete: -5pts\r\n", + "-ex7-ex9: not attempted: -30pts \r\n", + "\",\"- did not submit exam (found something in lab 4, but it was empty). Resubmitted correct format. Re-graded on 4/17/2020\r\n", + "\r\n", + "-q1: Used sort, not supposed to use sort: -15pts\r\n", + "-q2: You're supposed to find the index based on the list, not hardcoding it: -15pts\r\n", + "-q3: Again, not supposed to use built in sort function: -15pts\r\n", + "-q4: Should attribute source code: https://stackoverflow.com/a/57337824: -5pts\r\n", + "-q6: Not attempted: +0pts\",,,\r", + "\r\n", + "1001496565,100,98,100,100,120,,,\r", + "\r\n", + ",-excellent. completed everything.,\"-ex5: does not handle duplicates\r\n", + "\r\n", + "code is clean and refreshing to read\",\"-excellent.\r\n", + "\r\n", + "- SOLUTION MATCHES WITH ANOTHER STUDENT.\",-excellent.,\"- broke my grader assistant: please make sure you perform a pull request, autograder searches for dr. farbin's committed version of the exam/lab and since your submission's exam dir only had your solution (with the same name as his) it got flagged as not submitted.\r\n", + "- excellent\r\n", + "-q6: +20pts\",,,\r", + "\r\n", + "1001519928,100,94,85,50,115,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex8: recursive function that returns fib(n) not a list up to n.\r\n", + "-ex9: reverses full string, incorrect\r\n", + "\",\"-ex2: doesn't handle NxN: -2pts\r\n", + "-ex4: should print 'X', 'O': -3pts\r\n", + "-ex6: nice use of ascii increment!\r\n", + "-ex10: did not attempt: -10pts\",\"-ex2b: should not be using statistics function: -8pts\r\n", + "-ex4: should be normalizing, not clipping: -2pts\r\n", + "-ex5: should be a simple booling function, where should do the logic check with the data: -5pts\r\n", + "-ex6: should be returning func (func returns func): -5pts\r\n", + "-ex7 - ex9: not attempted: -30pts\r\n", + "\r\n", + "\",\"-excellent\r\n", + "-q6: close, incorrect outputs: +15pts\r\n", + "\",,,\r", + "\r\n", + "1001774305,100,94,20,79,120,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex7: draws don't auto replay, though in infinite look with prompts after each game. \r\n", + "-ex9: uses list of strings instead of string\r\n", + "-ex10: incorrect\",-ex3 - ex10: not attempted: -80pts,\"-ex3: should only update xmin and xmax if none provided (someone might want to discard outliers with this function, for ex): -2pts\r\n", + "-ex4: doesn't normalize to char_per_line in function args: -4pts\r\n", + "-ex7 - ex9: copies without attribution: -15pts\",\"-excellent\r\n", + "\",,,\r", + "\r\n", + "1001696890,0,96,0,40,100,,,\r", + "\r\n", + ",- did not submit lab 1,\"-ex5: does not handle dupes\r\n", + "-ex7: nice approach with dicts but doens't handle draw correctly\r\n", + "\",- did not submit lab 3,-ex4-ex9: not attempted: -60pts,\"-excellent\r\n", + "-q6: not attempted: +0pts\r\n", + "\",,,\r", + "\r\n", + "1001232602,80,94,79,60,90,,,\r", + "\r\n", + ",- submitted late: 2/24/2020 ,\"-ex3: uses argument instead of return function\r\n", + "-ex8: multiple fibs by n, not give fibs to n\r\n", + "-ex10: not fully correct, doesn't respect 'halving property'\",\"-ex1: not a function: -5pts\r\n", + "-ex3: does not handle n x m, ex: 3x6: -2pts\r\n", + "-ex4: does not handle nxn: -2pts\r\n", + "-ex6: does not handle nxn; -2pts\r\n", + "-ex10: did not attempt: -10pts\",\"-ex3: wrong number of bin edges: -5pts\r\n", + "-ex4: should normalize, not clip max_characters_per_line, should use bin edges, not recompute: -5pts\r\n", + "-ex5: should append indices, not values: -3pts\r\n", + "-ex6: should be a func returning a func, don't harcode values: -5pts\r\n", + "-ex7: not attempted: -8pts\r\n", + "-ex8: does not confirm mean/var: -4pts\r\n", + "-ex9: not attempted: -10pts\",\"-q1-q5: Should return, not print: -15pts\r\n", + "q6: attempted but does not run: +5pts\",,,\r", + "\r\n", + "1001464999,95,94,0,0,105,,,\r", + "\r\n", + ",- submitted lab 1 in wrong folder,\"-ex3: uses argument instead of return function\r\n", + "-ex7: does not handle draw\r\n", + "-ex10: incorrect\",- did not submit lab 3,- did not submit lab 4,\"-submitted in wrong folder: -5pts\r\n", + "-q6: not correct: +10pts\",,,\r", + "\r\n", + "1001644554,80,80,10,0,0,,,\r", + "\r\n", + ",- submitted late: 2/21/2020,\"- submitted late: 2/21/2020\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex4: not a function\r\n", + "-ex5: doesn't handle duplicates\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex10: does not allow user to indicate higher/lower\",\"-ex1: not a function, also copies rows by reference: -6pts\r\n", + "-ex2: bruteforce, does not work: -7pts\r\n", + "-ex3: hard-coded, output is error: -7pts\r\n", + "-ex4 - ex10: did not attempt: -70pts\",- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001684648,0,0,0,0,0,,,\r", + "\r\n", + ",- did not submit lab 1,- did not submit lab 2,- did not submit lab 3,- did not submit lab 4,- did not submit exam,,," + ] + } + ], + "source": [ + "!tail -363 Data-1401-Grades.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "!tail -363 Data-1401-Grades.csv > Data-1401-Grades-Fixed.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Student ID,Lab 1,Lab 2,Lab 3,Lab 4,Exam 1,Lab 5,Lab 6,Lab 7\r", + "\r\n", + "1000954113,100,81,25,35,0,,,\r", + "\r\n", + ",Stopped at ex 5,\"-ex1: functions print not return even/odd bool\r\n", + "-ex3: does not solve problem posed in ex.\r\n", + "-ex8: no solution\r\n", + "-ex9: no solution\r\n", + "-ex10: no solution\",\"-ex2: index errors, code ostensibly only checks for 3x3 case: -5 pts\r\n", + "-ex3: board doesn't draw top/bottom borders, hard coded inputs: -5 pts\r\n", + "-ex4: Not attempted: -10 pts\r\n", + "-ex5: Does not work (no test output provided): -5 pts\r\n", + "-ex6 - ex10: Not attempted: -50 pts\r\n", + "-ex11: Not attempted: +0 pts\r\n", + "\r\n", + "\",\"-ex2b: calculates the mean every time functions is called. logic is correct but instead of recomputing the mean every time it loops over, you could store the mean in another variable (which is only calculated once). correct though. no points deducted.\r\n", + "-ex3: does not run: -5pts\r\n", + "-ex4 - ex9: not attempted: -60pts\",- did not submit exam,,,\r", + "\r\n", + "1000625629,95,87,0,88,120,,,\r", + "\r\n", + ",\"- Did not do ex 4 - count lines of 'w'\r\n", + "\",\"-ex2: does not return list, prints\r\n", + "-ex3: does not solve problem. just takes max of list and gets all other nums less than that.\r\n", + "-ex7: flipped condition on rocks and scissors\r\n", + "-ex9: uses list of words, not string of words\r\n", + "-ex10: did not attempt \",- did not submit lab 3,\"-ex2: enhancement: could have just called mean() function from earlier instead of re-writting. \r\n", + "-ex4: does not normalize (what happens to the plot if you input 2000 data points?): -4pts\r\n", + "-ex6: funcs should return funcs, odd/even not really important but should have implemented for others: -3pts\r\n", + "-ex9: supposed to use previous functions, trapezoidal is good approach but not what assignment requests: -5pts \r\n", + "\",\"- excellent\r\n", + "-q6: +20pts bonus\",,,\r", + "\r\n", + "1000847686,100,0,0,0,90,,,\r", + "\r\n", + ",Stopped at ex 5,- did not submit lab 2,- did not submit lab 3,- did not submit lab 4,\"-submitted in wrong folder: -5pts\r\n", + "-q4: does not attribute lecture 15 code: -5pts\r\n", + "-q6: not correct: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001108137,90,96,0,35,90,,,\r", + "\r\n", + ",\"-ex1: did not echo $SHELL\r\n", + "-ex4: did not count passwd\",\"-ex3: does not return function, using additional argument\r\n", + "-ex8: outputs fib of n+1 and not n.\r\n", + "ACADEMIC DISHONESTY. Matches with 1001428148 \",- did not submit lab 3,\"-ex1: does not normalize between x_min and x_max: -5pts\r\n", + "-ex3: doesn't work: -5pts\r\n", + "-ex4: doesn't work: -5pts\r\n", + "-ex5 - ex9: not attempted: -50pts \",\"-q2: incorrect output: -15pts\r\n", + "-q6: incomplete: +5pts\",,,\r", + "\r\n", + "1000999851,95,94,43,0,100,,,\r", + "\r\n", + ",-ex4: did not count passwd,\"-ex3: does not return function, using additional argument\r\n", + "-ex5: does not check for duplicates when appending intersection\r\n", + "-ex7: does not loop when p1 and p2 draw\r\n", + "\",\"-ex1: Each row is referenced to each other: -5 pts\r\n", + "-ex2: Does not return -1 if incomplete: -2 pts\r\n", + "-ex6 - ex10: Not attemped: -50 pts \r\n", + "-ex11: Not attempted: +0 pts\",- did not submit lab 4,-q6: not attempted: +0pts,,,\r", + "\r\n", + "1001214491,80,82,30,0,90,,,\r", + "\r\n", + ",did not complete any assignment correctly,\"-ex1: prints not return\r\n", + "-ex2: not a function, just block of code\r\n", + "-ex3: not a function, does not return a function, does not return anything for that matter\r\n", + "-ex4: not a function, logic correct\r\n", + "-ex5: not a function, logic correct\r\n", + "-ex6: not a function, logic correct\r\n", + "-ex7: not a function, logic correct\r\n", + "-ex8: not a function, logic correct\r\n", + "-ex9: not a function, logic NOT correct. uses list not string\r\n", + "\",\"-ex1: Not a function: -5 pts\r\n", + "-ex2: Not a function. Hard-code prints for 3x3: -5 pts\r\n", + "-ex4: Same code as ex3, does not solve problem: -5 pts\r\n", + "-ex5: Does not work, takes user input but does not cast it to use it for indexing: -5 pts\r\n", + "-ex6 - ex10: Not attempted. -50 pts\r\n", + "-ex11: Not attempted: +0 pts\r\n", + "\",- did not submit lab 4,\"-q4: Does not work: -10pts\r\n", + "-q6: Not attempted: 0pts\",,,\r", + "\r\n", + "1001428148,80,90,24,0,80,,,\r", + "\r\n", + ",\"Did not do assignment.\r\n", + "\r\n", + "EDIT: He did the git stuff\r\n", + " which was not part of the grading.\r\n", + "\r\n", + "- did not do ex1-ex4. \",\"-ex3: does not return function, using additional argument\r\n", + "-ex5: doesn't return common elements, prints\r\n", + "-ex8: outputs fib of n+1 and not n.\r\n", + "-ex9: reverses entire string, not words\r\n", + "-ex10: wrote a guessing game where human guesses computers number.\r\n", + "ACADEMIC DISHONESTY. Matches with 1001108137 \",\"-ex2: did not attempt: -10pts\r\n", + "-ex3: hard-coded prints: -7pts\r\n", + "-ex4: does not solve problem: -7pts\r\n", + "-ex5: Did not do problem: -7pts\r\n", + "-ex6: Code does not run, several flow issues: -5pts\r\n", + "-ex7 - ex10: Did not attempt: -40pts\r\n", + "\",- did not submit lab 4,\"- Submitted in wrong folder: -5pts\r\n", + "-q2: does not run: -10pts\r\n", + "-q4: only works for matrixes of size 5x5: -5pts\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001397199,100,94,87,12,105,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: does not return a function\r\n", + "-ex8: returns fib value at n, not the list til n, pretty obvious that user is copying recursive code off the internet without understanding what it does\r\n", + "-ex9: takes a list as input, not string\r\n", + "\",\"-ex2: hard coded for 3x3 boards: -2pts\r\n", + "-ex3: breakes for boards, i.e 6x3: -2pts\r\n", + "-ex4: does not handle NxN boards: -2pts\r\n", + "-ex5: does not handle NxN boards: -2pts\r\n", + "-ex9: good!\r\n", + "-ex10: does not work: -5pts\r\n", + "-ex11: did not attempt: +0pts\r\n", + "\",\"-ex2b: not supposed to use other package: -8pts\r\n", + "-ex3 -ex9: not attempted: -80pts\r\n", + "\",\"-q6: Incorrect output. Does not use previous functions or provided code: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001372854,100,70,17,35,20,,,\r", + "\r\n", + ",stopped at ex5,- did not attempt exercise 4-10,\"-ex2: does not handle NxN boards: -3pts\r\n", + "-ex3 - ex10: did not attempt: -80pts\r\n", + "-ex11: did not attempt: +0pts\",\"-ex2b: could have just called mean function instead of copy/pasting the code into variance\r\n", + "-ex3: hard codes bin, not correct, should be appending bin_edges to list: -5pts\r\n", + "-ex4 - ex9: -60pts\",\"-q1: should only return one state, not a list of states\r\n", + "-q2 -q5: not attempted: -20*4pts\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001558073,95,86,0,0,84,,,\r", + "\r\n", + ",-ex4: did not use wc to count,\"-ex3: did not return a function\r\n", + "-ex4: not a function, logic correct\r\n", + "-ex5: not a function, user input for both lists.\r\n", + "-ex6: not a function, logic correct\r\n", + "-ex7: not a function, exits if draw\r\n", + "-ex9: not a function, logic correct\r\n", + "-ex10: Reversed: Instead of the computer guessing the user is guessing.\",- did not submit lab 3,- did not submit lab 4,\"-q2: should return, not print, does not provide correct output: -3pts\r\n", + "-q3: should sort everything using q2, not sorted (you used python's sorted function in one of your first cells, i think that confused your output since list of states was sorted after that, if you remove the sorted you'll see that these functions aren't doing what is asked for in questions): -10pts\r\n", + "-q4: your numbers are correct, but it should be returned in a list of size MxN (2d matrix), not a list that is (N+M)x1 (1d list): -5pts\r\n", + "-q6: Not complete: +2pts\",,,\r", + "\r\n", + "1001593219,100,96,96,85,120,,,\r", + "\r\n", + ",-excellent. completed everything.,\"-ex1: prints, doesn't return\r\n", + "-ex3: doesn't exactly mimic ex2 as it instead takes user input.\r\n", + "\r\n", + "\",\"-ex2: should use sample input as provided: -3pts\r\n", + "-ex4: Does not draw board in correct format: -1pts (edit, I see you did this later on so I changed this from -5 to -1 for being incorrectly placed).\r\n", + "-ex11: did not attempt: +0pts\",\"-ex3: should only update xmin and xmax if none provided (someone might want to discard outliers with this function, for ex): -2pts\r\n", + "you only really need to keep track of the counts for the histogram, but won't count off points for this.\r\n", + "-ex4: looks good but didn't normalize number of '#' to 20 max (several arguments were removed from drawhist function): -4pts\r\n", + "-ex5: should pass check is an argument to 'truth' function: -2pts\r\n", + "-ex6: not using nested functions, see GTA example solutions: -5pts\r\n", + "-ex9: should not have to redefine functions to do integration: -2pts\",\"-excellent. full credit +20pts for q6 bonus.\r\n", + "-note: q1-q3: you didn't need to use alphabet to compare letters if you wanted to make strings upper or lower, you could use entry.lower().\r\n", + "\",,,\r", + "\r\n", + "1001596311,90,92,71,57,100,,,\r", + "\r\n", + ",\"-ex2: did not attempt\r\n", + "-ex4: did not count passwd\",\"-ex2: returns numbers less than or equal, and not strictly less than\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex5: does not check for duplicates\r\n", + "-ex7: does not handle draw case\r\n", + "\",\"-ex2: tie when it should have been incomplete. only works for 3x3: -2pts\r\n", + "-ex3: Does not work for boards of size: ex. 6x8: -5pts\r\n", + "-ex4: Incorrect print with sizes 4x4 for example: -2pts\r\n", + "-ex5: Logic looks okay but could not reproduce results when running cells: -5pts\r\n", + "-ex6: Logic looks okay but running the code gave errors: placeInput() missing player: -5pts\r\n", + "-ex10: Did not attempt: -10pts\r\n", + "-ex11: Did not attempt: +0pts\",\"-ex3: should check x_min and x_max seperately, won't deduct for this though. bin_edges not updated correctly: -3pts\r\n", + "-ex5: look at common-issues.ipynb, you are providing the element as index, incorrect: -5pts\r\n", + "-ex6: should be func returning func like example: -5pts\r\n", + "-ex7 -ex9: not attempted: -30pts\r\n", + "\r\n", + " \",\"-q1: should have returned 'Alabama': -5pts\r\n", + "-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: Does not calculate x90 using functions: +10pts\r\n", + "\",,,\r", + "\r\n", + "1001608680,100,94,36,61,95,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex6: not a function, logic incomplete and not correct\r\n", + "-ex9: reverses string, not words in string\r\n", + "\",\"-ex2: Does not work on most of included examples: -5pts\r\n", + "-ex3: Did not construct board: -7pts\r\n", + "-ex4: Does not construct board: -7pts\r\n", + "-ex5: Did not return or place board: -5pts\r\n", + "-ex6: Hard-coded: -5pts\r\n", + "-ex7: Errors when ran, demonstrate to TA: -5pts\r\n", + "-ex8 - ex10: Did not attempt (copying and pasting ex7 does not count): -30pts\r\n", + "-ex11: Did not attempt: +0pts\r\n", + "\",\"-ex2b: should not use numpy functions: -8pts\r\n", + "-ex4: did not attempt (copied q3): -10pts\r\n", + "-ex5: supposed to pass in function, not a value, supposed to give index, not value: -6pts\r\n", + "-ex6: supposed to have func that returns func (like provided example), see gta solutions: -5pts\r\n", + "-ex8: should be returning values up to length N, instead returns one zero: -5pts\r\n", + "-ex9: does not work: -5pts\",\"-q2: does not return correct index (states[24] == montana): -5pts\r\n", + "-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: incomplete: +5pts\r\n", + "\",,,\r", + "\r\n", + "1001618032,100,96,97,86,110,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: uses argument instead of return function\r\n", + "-ex9: input is list not string\r\n", + "\",\"-ex2: output 0 should be -1: -1pts\r\n", + "-ex3: size should be n x m: -2pts\r\n", + "-ex6: does not use pretty print with border: -5pts\r\n", + "-ex7: does not use \"\"A3\"\" notation: -5pts\r\n", + "-ex11: +10pts\",\"-ex3: should check x_min and x_max seperately, won't deduct for this though.\r\n", + "-ex4: should be normalizing by max_character_per_line: -4pts\r\n", + "-ex6: should have funcs that return funcs, see GTA example solutions: -5pts\r\n", + "-ex9: should have completed solution using generate_function, where, and in_range: -5pts\r\n", + "\",\"-q4: not attributing lecture 15 for code: -5pts\r\n", + "-q6: Nice output and plot: +20pts\",,,\r", + "\r\n", + "1001652624,100,90,0,0,0,,,\r", + "\r\n", + ",stopped at ex5,\"- in general, well commented\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex5: does not check for duplicates\r\n", + "-ex7: did not attempt\r\n", + "-ex9: uses list as input, not string\r\n", + "-ex10: did not attempt\r\n", + "\",- ACADEMIC DISHONESTY. Matches with 1001496565. I suspect this student copied off of 1001496565 since the other student had the solutions on github for several days before the deadline. This student did not have a working solution during the last lab period and 1001496565's solution is unique.,- did not submit lab 4,- did not submit exam,no longer on canvas,,\r", + "\r\n", + "1001658617,100,94,96,92,100,,,\r", + "\r\n", + ",stopped at ex5,\"-ex3: pretty close on finishing correctly. returns called function\r\n", + "-ex6: prints, doesn't return true/false if palindrome\r\n", + "-ex7: does not call again if draw\r\n", + "-ex10: logic is there but automated, user inputs number and random guessing ensues by itself. i'd count this as a correct solution though different since it doesn't allow user to explic indicate higher/lower.\r\n", + "\",\"-ex2: draw condition should be 0: -1pts\r\n", + "-ex3: output incorrect for larger boards: eg 6x8: -3pts\r\n", + "-overall: excellent!\",-ex4: not correct: -8pts,\"-excellent\r\n", + "-q6: not attempted: +0pts\",,,\r", + "\r\n", + "1001663166,95,94,38,0,82,,,\r", + "\r\n", + ",-ex2: did not complete,\"-ex3: uses argument instead of return function\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex9: returns a list not a string, though input is correct in being a string\r\n", + "\r\n", + "\",\"-ex2: does not return 2,1,0,-1, just prints, not checked against other states: -5pts\r\n", + "-ex3: does not print board (copied ex1): -10pts\r\n", + "-ex4: could not test. demonstrate to TA: -5pts\r\n", + "-ex5: does not place block: -7pts\r\n", + "-ex6: not complete: -7pts\r\n", + "-ex7: not complete: -7pts\r\n", + "-ex8: not complete: -7pts\r\n", + "-ex9: does not run, demonstrate to TA: -7pts\r\n", + "-ex10: does not run, demonstrate to TA: -7pts\",- did not submit lab 4,\"-q4: should not be using numpy for this (to use built-in functions), also does not work for lists with >3 elements: -15pts\r\n", + "-q5: does not return value: -3pts\r\n", + "-q6: not attempted: +0pts\r\n", + " \",,,\r", + "\r\n", + "1001674179,95,90,23,0,0,,,\r", + "\r\n", + ",\"-ex4: incorrect solution, did not grep for w, just counted all lines\",\"-ex2: used lambda function, not defined\r\n", + "-ex3: not correctly implemented, harcoded list\r\n", + "-ex7: does not handle tie/draw correctly\r\n", + "-ex9: incorrect, reverses full string and not the words\r\n", + "-ex10: does not work\",\"-ex1: does not return board: -3pts\r\n", + "-ex2: did not attempt: -10pts\r\n", + "-ex3: does not print correctly: -7pts\r\n", + "-ex4: does not print correctly: -7pts\r\n", + "-ex6 - ex10: not attempted: -50pts\r\n", + " \r\n", + "\",- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001722244,95,100,0,0,0,,,\r", + "\r\n", + ",\"-ex4: incorrect solution, did not grep for w, just counted all lines\",-perfect. all correct.,- did not submit lab 3,- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001543608,100,96,19,51,111,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex10: incorrect, reversed\",\"-ex1: not a function, does not work: -7pts\r\n", + "-ex2: does not work: -5pts\r\n", + "-ex3: does not print correctly: -5pts\r\n", + "-ex4: does not run, logic not correct: -7pts\r\n", + "-ex5: gives errors, demonstrate to TA for credit: -7pts\r\n", + "-ex6 - ex10: not attempted: -50pts\",\"-ex4: does not normalize based num_chars: -4pts\r\n", + "-ex5: myfunc should be an arg to where, not written in: -5pts\r\n", + "-ex6 -ex9: not attempted: -40pts\",\"-q1-q3: should return the value, not print: -9pts\r\n", + "-q6: nicely done: +20pts\",,,\r", + "\r\n", + "1001547659,100,94,86,75,100,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: incorrect\r\n", + "-ex4: print instead of return list\r\n", + "-ex5: does not handle dupes, prints\r\n", + "-ex9: just reveses entire string\r\n", + "\",\"-ex2: incorrect output on examples (no_winner)): -2pts\r\n", + "-ex6: hard-coded size (1 to 3): -2pts\r\n", + " -ex10: not attempted: -10pts\r\n", + "- well done overall!\",\"-ex3: not caclulating bin edges correctly: should be n_bins+1 in length: -5pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: nicely done\r\n", + "-ex9: not attempted: -10pts\",\"-q6: close but output is not correct: +10pts \r\n", + "-late: -10pts\",,,\r", + "\r\n", + "1001458157,85,88,21,37,50,,,\r", + "\r\n", + ",\"-ex2: did not create any dirs\r\n", + "-ex3: did not show work\r\n", + "-ex4: did not attempt\r\n", + "\",\"-ex3: incorrect\r\n", + "-ex4: not a function\r\n", + "-ex5: not a function, incorrect\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex8: not a function\r\n", + "-ex10: does not allow user input to specify h/l\r\n", + "\r\n", + "\",\"-ex1: not a function, not attempted: -5pts\r\n", + "-ex2: not a function, hard-coded for 3x3: -7pts\r\n", + "-ex3: should be n x m, only n x n: -2pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: does not run: -5pts\r\n", + "-ex6 - ex10: not attempted: -50pts\",\"-ex2b: not supposed to use statistics functions: -8pts\r\n", + "-ex3: does not work: -5pts\r\n", + "-ex4: not attempted: -10pts\r\n", + "-ex5: supposed to take a function as argument to where: -5pts\r\n", + "-ex6: incomplete: -5pts\r\n", + "-ex7-ex9: not attempted: -30pts \r\n", + "\",\"- did not submit exam (found something in lab 4, but it was empty). Resubmitted correct format. Re-graded on 4/17/2020\r\n", + "\r\n", + "-q1: Used sort, not supposed to use sort: -15pts\r\n", + "-q2: You're supposed to find the index based on the list, not hardcoding it: -15pts\r\n", + "-q3: Again, not supposed to use built in sort function: -15pts\r\n", + "-q4: Should attribute source code: https://stackoverflow.com/a/57337824: -5pts\r\n", + "-q6: Not attempted: +0pts\",,,\r", + "\r\n", + "1001496565,100,98,100,100,120,,,\r", + "\r\n", + ",-excellent. completed everything.,\"-ex5: does not handle duplicates\r\n", + "\r\n", + "code is clean and refreshing to read\",\"-excellent.\r\n", + "\r\n", + "- SOLUTION MATCHES WITH ANOTHER STUDENT.\",-excellent.,\"- broke my grader assistant: please make sure you perform a pull request, autograder searches for dr. farbin's committed version of the exam/lab and since your submission's exam dir only had your solution (with the same name as his) it got flagged as not submitted.\r\n", + "- excellent\r\n", + "-q6: +20pts\",,,\r", + "\r\n", + "1001519928,100,94,85,50,115,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex8: recursive function that returns fib(n) not a list up to n.\r\n", + "-ex9: reverses full string, incorrect\r\n", + "\",\"-ex2: doesn't handle NxN: -2pts\r\n", + "-ex4: should print 'X', 'O': -3pts\r\n", + "-ex6: nice use of ascii increment!\r\n", + "-ex10: did not attempt: -10pts\",\"-ex2b: should not be using statistics function: -8pts\r\n", + "-ex4: should be normalizing, not clipping: -2pts\r\n", + "-ex5: should be a simple booling function, where should do the logic check with the data: -5pts\r\n", + "-ex6: should be returning func (func returns func): -5pts\r\n", + "-ex7 - ex9: not attempted: -30pts\r\n", + "\r\n", + "\",\"-excellent\r\n", + "-q6: close, incorrect outputs: +15pts\r\n", + "\",,,\r", + "\r\n", + "1001774305,100,94,20,79,120,,,\r", + "\r\n", + ",\"-attempted ex5, completed everything before\",\"-ex3: uses argument instead of return function\r\n", + "-ex7: draws don't auto replay, though in infinite look with prompts after each game. \r\n", + "-ex9: uses list of strings instead of string\r\n", + "-ex10: incorrect\",-ex3 - ex10: not attempted: -80pts,\"-ex3: should only update xmin and xmax if none provided (someone might want to discard outliers with this function, for ex): -2pts\r\n", + "-ex4: doesn't normalize to char_per_line in function args: -4pts\r\n", + "-ex7 - ex9: copies without attribution: -15pts\",\"-excellent\r\n", + "\",,,\r", + "\r\n", + "1001696890,0,96,0,40,100,,,\r", + "\r\n", + ",- did not submit lab 1,\"-ex5: does not handle dupes\r\n", + "-ex7: nice approach with dicts but doens't handle draw correctly\r\n", + "\",- did not submit lab 3,-ex4-ex9: not attempted: -60pts,\"-excellent\r\n", + "-q6: not attempted: +0pts\r\n", + "\",,,\r", + "\r\n", + "1001232602,80,94,79,60,90,,,\r", + "\r\n", + ",- submitted late: 2/24/2020 ,\"-ex3: uses argument instead of return function\r\n", + "-ex8: multiple fibs by n, not give fibs to n\r\n", + "-ex10: not fully correct, doesn't respect 'halving property'\",\"-ex1: not a function: -5pts\r\n", + "-ex3: does not handle n x m, ex: 3x6: -2pts\r\n", + "-ex4: does not handle nxn: -2pts\r\n", + "-ex6: does not handle nxn; -2pts\r\n", + "-ex10: did not attempt: -10pts\",\"-ex3: wrong number of bin edges: -5pts\r\n", + "-ex4: should normalize, not clip max_characters_per_line, should use bin edges, not recompute: -5pts\r\n", + "-ex5: should append indices, not values: -3pts\r\n", + "-ex6: should be a func returning a func, don't harcode values: -5pts\r\n", + "-ex7: not attempted: -8pts\r\n", + "-ex8: does not confirm mean/var: -4pts\r\n", + "-ex9: not attempted: -10pts\",\"-q1-q5: Should return, not print: -15pts\r\n", + "q6: attempted but does not run: +5pts\",,,\r", + "\r\n", + "1001464999,95,94,0,0,105,,,\r", + "\r\n", + ",- submitted lab 1 in wrong folder,\"-ex3: uses argument instead of return function\r\n", + "-ex7: does not handle draw\r\n", + "-ex10: incorrect\",- did not submit lab 3,- did not submit lab 4,\"-submitted in wrong folder: -5pts\r\n", + "-q6: not correct: +10pts\",,,\r", + "\r\n", + "1001644554,80,80,10,0,0,,,\r", + "\r\n", + ",- submitted late: 2/21/2020,\"- submitted late: 2/21/2020\r\n", + "-ex3: uses argument instead of return function\r\n", + "-ex4: not a function\r\n", + "-ex5: doesn't handle duplicates\r\n", + "-ex7: does not handle draw correctly\r\n", + "-ex10: does not allow user to indicate higher/lower\",\"-ex1: not a function, also copies rows by reference: -6pts\r\n", + "-ex2: bruteforce, does not work: -7pts\r\n", + "-ex3: hard-coded, output is error: -7pts\r\n", + "-ex4 - ex10: did not attempt: -70pts\",- did not submit lab 4,- did not submit exam,,,\r", + "\r\n", + "1001684648,0,0,0,0,0,,,\r", + "\r\n", + ",- did not submit lab 1,- did not submit lab 2,- did not submit lab 3,- did not submit lab 4,- did not submit exam,,," + ] + } + ], + "source": [ + "!cat Data-1401-Grades-Fixed.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"Data-1401-Grades-Fixed.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Student IDLab 1Lab 2Lab 3Lab 4Exam 1Lab 5Lab 6Lab 7
01.000954e+091008125350NaNNaNNaN
1NaNStopped at ex 5-ex1: functions print not return even/odd bool...-ex2: index errors, code ostensibly only check...-ex2b: calculates the mean every time function...- did not submit examNaNNaNNaN
21.000626e+099587088120NaNNaNNaN
3NaN- Did not do ex 4 - count lines of 'w'\\n-ex2: does not return list, prints\\n-ex3: does...- did not submit lab 3-ex2: enhancement: could have just called mean...- excellent\\n-q6: +20pts bonusNaNNaNNaN
41.000848e+0910000090NaNNaNNaN
5NaNStopped at ex 5- did not submit lab 2- did not submit lab 3- did not submit lab 4-submitted in wrong folder: -5pts\\n-q4: does n...NaNNaNNaN
61.001108e+09909603590NaNNaNNaN
7NaN-ex1: did not echo $SHELL\\n-ex4: did not count...-ex3: does not return function, using addition...- did not submit lab 3-ex1: does not normalize between x_min and x_m...-q2: incorrect output: -15pts\\n-q6: incomplete...NaNNaNNaN
81.001000e+099594430100NaNNaNNaN
9NaN-ex4: did not count passwd-ex3: does not return function, using addition...-ex1: Each row is referenced to each other: -5...- did not submit lab 4-q6: not attempted: +0ptsNaNNaNNaN
101.001214e+09808230090NaNNaNNaN
11NaNdid not complete any assignment correctly-ex1: prints not return\\n-ex2: not a function,...-ex1: Not a function: -5 pts\\n-ex2: Not a func...- did not submit lab 4-q4: Does not work: -10pts\\n-q6: Not attempted...NaNNaNNaN
121.001428e+09809024080NaNNaNNaN
13NaNDid not do assignment.\\n\\nEDIT: He did the git...-ex3: does not return function, using addition...-ex2: did not attempt: -10pts\\n-ex3: hard-code...- did not submit lab 4- Submitted in wrong folder: -5pts\\n-q2: does ...NaNNaNNaN
141.001397e+09100948712105NaNNaNNaN
15NaNstopped at ex5-ex3: does not return a function\\n-ex8: return...-ex2: hard coded for 3x3 boards: -2pts\\n-ex3: ...-ex2b: not supposed to use other package: -8pt...-q6: Incorrect output. Does not use previous f...NaNNaNNaN
161.001373e+0910070173520NaNNaNNaN
17NaNstopped at ex5- did not attempt exercise 4-10-ex2: does not handle NxN boards: -3pts\\n-ex3 ...-ex2b: could have just called mean function in...-q1: should only return one state, not a list ...NaNNaNNaN
181.001558e+0995860084NaNNaNNaN
19NaN-ex4: did not use wc to count-ex3: did not return a function\\n-ex4: not a f...- did not submit lab 3- did not submit lab 4-q2: should return, not print, does not provid...NaNNaNNaN
201.001593e+09100969685120NaNNaNNaN
21NaN-excellent. completed everything.-ex1: prints, doesn't return\\n-ex3: doesn't ex...-ex2: should use sample input as provided: -3p...-ex3: should only update xmin and xmax if none...-excellent. full credit +20pts for q6 bonus.\\n...NaNNaNNaN
221.001596e+0990927157100NaNNaNNaN
23NaN-ex2: did not attempt\\n-ex4: did not count passwd-ex2: returns numbers less than or equal, and ...-ex2: tie when it should have been incomplete....-ex3: should check x_min and x_max seperately,...-q1: should have returned 'Alabama': -5pts\\n-q...NaNNaNNaN
241.001609e+0910094366195NaNNaNNaN
25NaN-attempted ex5, completed everything before-ex3: uses argument instead of return function...-ex2: Does not work on most of included exampl...-ex2b: should not use numpy functions: -8pts\\n...-q2: does not return correct index (states[24]...NaNNaNNaN
261.001618e+09100969786110NaNNaNNaN
27NaNstopped at ex5-ex3: uses argument instead of return function...-ex2: output 0 should be -1: -1pts\\n-ex3: size...-ex3: should check x_min and x_max seperately,...-q4: not attributing lecture 15 for code: -5pt...NaNNaNNaN
281.001653e+0910090000NaNNaNNaN
29NaNstopped at ex5- in general, well commented\\n-ex3: uses argum...- ACADEMIC DISHONESTY. Matches with 1001496565...- did not submit lab 4- did not submit examno longer on canvasNaNNaN
301.001659e+09100949692100NaNNaNNaN
31NaNstopped at ex5-ex3: pretty close on finishing correctly. ret...-ex2: draw condition should be 0: -1pts\\n-ex3:...-ex4: not correct: -8pts-excellent\\n-q6: not attempted: +0ptsNaNNaNNaN
321.001663e+09959438082NaNNaNNaN
33NaN-ex2: did not complete-ex3: uses argument instead of return function...-ex2: does not return 2,1,0,-1, just prints, n...- did not submit lab 4-q4: should not be using numpy for this (to us...NaNNaNNaN
341.001674e+0995902300NaNNaNNaN
35NaN-ex4: incorrect solution, did not grep for w, ...-ex2: used lambda function, not defined\\n-ex3:...-ex1: does not return board: -3pts\\n-ex2: did ...- did not submit lab 4- did not submit examNaNNaNNaN
361.001722e+0995100000NaNNaNNaN
37NaN-ex4: incorrect solution, did not grep for w, ...-perfect. all correct.- did not submit lab 3- did not submit lab 4- did not submit examNaNNaNNaN
381.001544e+09100961951111NaNNaNNaN
39NaN-attempted ex5, completed everything before-ex3: uses argument instead of return function...-ex1: not a function, does not work: -7pts\\n-e...-ex4: does not normalize based num_chars: -4pt...-q1-q3: should return the value, not print: -9...NaNNaNNaN
401.001548e+09100948675100NaNNaNNaN
41NaN-attempted ex5, completed everything before-ex3: incorrect\\n-ex4: print instead of return...-ex2: incorrect output on examples (no_winner)...-ex3: not caclulating bin edges correctly: sho...-q6: close but output is not correct: +10pts \\...NaNNaNNaN
421.001458e+098588213750NaNNaNNaN
43NaN-ex2: did not create any dirs\\n-ex3: did not s...-ex3: incorrect\\n-ex4: not a function\\n-ex5: n...-ex1: not a function, not attempted: -5pts\\n-e...-ex2b: not supposed to use statistics function...- did not submit exam (found something in lab ...NaNNaNNaN
441.001497e+0910098100100120NaNNaNNaN
45NaN-excellent. completed everything.-ex5: does not handle duplicates\\n\\ncode is cl...-excellent.\\n\\n- SOLUTION MATCHES WITH ANOTHER...-excellent.- broke my grader assistant: please make sure ...NaNNaNNaN
461.001520e+09100948550115NaNNaNNaN
47NaN-attempted ex5, completed everything before-ex3: uses argument instead of return function...-ex2: doesn't handle NxN: -2pts\\n-ex4: should ...-ex2b: should not be using statistics function...-excellent\\n-q6: close, incorrect outputs: +15...NaNNaNNaN
481.001774e+09100942079120NaNNaNNaN
49NaN-attempted ex5, completed everything before-ex3: uses argument instead of return function...-ex3 - ex10: not attempted: -80pts-ex3: should only update xmin and xmax if none...-excellent\\nNaNNaNNaN
501.001697e+09096040100NaNNaNNaN
51NaN- did not submit lab 1-ex5: does not handle dupes\\n-ex7: nice approa...- did not submit lab 3-ex4-ex9: not attempted: -60pts-excellent\\n-q6: not attempted: +0pts\\nNaNNaNNaN
521.001233e+098094796090NaNNaNNaN
53NaN- submitted late: 2/24/2020-ex3: uses argument instead of return function...-ex1: not a function: -5pts\\n-ex3: does not ha...-ex3: wrong number of bin edges: -5pts\\n-ex4: ...-q1-q5: Should return, not print: -15pts\\nq6: ...NaNNaNNaN
541.001465e+09959400105NaNNaNNaN
55NaN- submitted lab 1 in wrong folder-ex3: uses argument instead of return function...- did not submit lab 3- did not submit lab 4-submitted in wrong folder: -5pts\\n-q6: not c...NaNNaNNaN
561.001645e+0980801000NaNNaNNaN
57NaN- submitted late: 2/21/2020- submitted late: 2/21/2020\\n-ex3: uses argume...-ex1: not a function, also copies rows by refe...- did not submit lab 4- did not submit examNaNNaNNaN
581.001685e+0900000NaNNaNNaN
59NaN- did not submit lab 1- did not submit lab 2- did not submit lab 3- did not submit lab 4- did not submit examNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " Student ID Lab 1 \\\n", + "0 1.000954e+09 100 \n", + "1 NaN Stopped at ex 5 \n", + "2 1.000626e+09 95 \n", + "3 NaN - Did not do ex 4 - count lines of 'w'\\n \n", + "4 1.000848e+09 100 \n", + "5 NaN Stopped at ex 5 \n", + "6 1.001108e+09 90 \n", + "7 NaN -ex1: did not echo $SHELL\\n-ex4: did not count... \n", + "8 1.001000e+09 95 \n", + "9 NaN -ex4: did not count passwd \n", + "10 1.001214e+09 80 \n", + "11 NaN did not complete any assignment correctly \n", + "12 1.001428e+09 80 \n", + "13 NaN Did not do assignment.\\n\\nEDIT: He did the git... \n", + "14 1.001397e+09 100 \n", + "15 NaN stopped at ex5 \n", + "16 1.001373e+09 100 \n", + "17 NaN stopped at ex5 \n", + "18 1.001558e+09 95 \n", + "19 NaN -ex4: did not use wc to count \n", + "20 1.001593e+09 100 \n", + "21 NaN -excellent. completed everything. \n", + "22 1.001596e+09 90 \n", + "23 NaN -ex2: did not attempt\\n-ex4: did not count passwd \n", + "24 1.001609e+09 100 \n", + "25 NaN -attempted ex5, completed everything before \n", + "26 1.001618e+09 100 \n", + "27 NaN stopped at ex5 \n", + "28 1.001653e+09 100 \n", + "29 NaN stopped at ex5 \n", + "30 1.001659e+09 100 \n", + "31 NaN stopped at ex5 \n", + "32 1.001663e+09 95 \n", + "33 NaN -ex2: did not complete \n", + "34 1.001674e+09 95 \n", + "35 NaN -ex4: incorrect solution, did not grep for w, ... \n", + "36 1.001722e+09 95 \n", + "37 NaN -ex4: incorrect solution, did not grep for w, ... \n", + "38 1.001544e+09 100 \n", + "39 NaN -attempted ex5, completed everything before \n", + "40 1.001548e+09 100 \n", + "41 NaN -attempted ex5, completed everything before \n", + "42 1.001458e+09 85 \n", + "43 NaN -ex2: did not create any dirs\\n-ex3: did not s... \n", + "44 1.001497e+09 100 \n", + "45 NaN -excellent. completed everything. \n", + "46 1.001520e+09 100 \n", + "47 NaN -attempted ex5, completed everything before \n", + "48 1.001774e+09 100 \n", + "49 NaN -attempted ex5, completed everything before \n", + "50 1.001697e+09 0 \n", + "51 NaN - did not submit lab 1 \n", + "52 1.001233e+09 80 \n", + "53 NaN - submitted late: 2/24/2020 \n", + "54 1.001465e+09 95 \n", + "55 NaN - submitted lab 1 in wrong folder \n", + "56 1.001645e+09 80 \n", + "57 NaN - submitted late: 2/21/2020 \n", + "58 1.001685e+09 0 \n", + "59 NaN - did not submit lab 1 \n", + "\n", + " Lab 2 \\\n", + "0 81 \n", + "1 -ex1: functions print not return even/odd bool... \n", + "2 87 \n", + "3 -ex2: does not return list, prints\\n-ex3: does... \n", + "4 0 \n", + "5 - did not submit lab 2 \n", + "6 96 \n", + "7 -ex3: does not return function, using addition... \n", + "8 94 \n", + "9 -ex3: does not return function, using addition... \n", + "10 82 \n", + "11 -ex1: prints not return\\n-ex2: not a function,... \n", + "12 90 \n", + "13 -ex3: does not return function, using addition... \n", + "14 94 \n", + "15 -ex3: does not return a function\\n-ex8: return... \n", + "16 70 \n", + "17 - did not attempt exercise 4-10 \n", + "18 86 \n", + "19 -ex3: did not return a function\\n-ex4: not a f... \n", + "20 96 \n", + "21 -ex1: prints, doesn't return\\n-ex3: doesn't ex... \n", + "22 92 \n", + "23 -ex2: returns numbers less than or equal, and ... \n", + "24 94 \n", + "25 -ex3: uses argument instead of return function... \n", + "26 96 \n", + "27 -ex3: uses argument instead of return function... \n", + "28 90 \n", + "29 - in general, well commented\\n-ex3: uses argum... \n", + "30 94 \n", + "31 -ex3: pretty close on finishing correctly. ret... \n", + "32 94 \n", + "33 -ex3: uses argument instead of return function... \n", + "34 90 \n", + "35 -ex2: used lambda function, not defined\\n-ex3:... \n", + "36 100 \n", + "37 -perfect. all correct. \n", + "38 96 \n", + "39 -ex3: uses argument instead of return function... \n", + "40 94 \n", + "41 -ex3: incorrect\\n-ex4: print instead of return... \n", + "42 88 \n", + "43 -ex3: incorrect\\n-ex4: not a function\\n-ex5: n... \n", + "44 98 \n", + "45 -ex5: does not handle duplicates\\n\\ncode is cl... \n", + "46 94 \n", + "47 -ex3: uses argument instead of return function... \n", + "48 94 \n", + "49 -ex3: uses argument instead of return function... \n", + "50 96 \n", + "51 -ex5: does not handle dupes\\n-ex7: nice approa... \n", + "52 94 \n", + "53 -ex3: uses argument instead of return function... \n", + "54 94 \n", + "55 -ex3: uses argument instead of return function... \n", + "56 80 \n", + "57 - submitted late: 2/21/2020\\n-ex3: uses argume... \n", + "58 0 \n", + "59 - did not submit lab 2 \n", + "\n", + " Lab 3 \\\n", + "0 25 \n", + "1 -ex2: index errors, code ostensibly only check... \n", + "2 0 \n", + "3 - did not submit lab 3 \n", + "4 0 \n", + "5 - did not submit lab 3 \n", + "6 0 \n", + "7 - did not submit lab 3 \n", + "8 43 \n", + "9 -ex1: Each row is referenced to each other: -5... \n", + "10 30 \n", + "11 -ex1: Not a function: -5 pts\\n-ex2: Not a func... \n", + "12 24 \n", + "13 -ex2: did not attempt: -10pts\\n-ex3: hard-code... \n", + "14 87 \n", + "15 -ex2: hard coded for 3x3 boards: -2pts\\n-ex3: ... \n", + "16 17 \n", + "17 -ex2: does not handle NxN boards: -3pts\\n-ex3 ... \n", + "18 0 \n", + "19 - did not submit lab 3 \n", + "20 96 \n", + "21 -ex2: should use sample input as provided: -3p... \n", + "22 71 \n", + "23 -ex2: tie when it should have been incomplete.... \n", + "24 36 \n", + "25 -ex2: Does not work on most of included exampl... \n", + "26 97 \n", + "27 -ex2: output 0 should be -1: -1pts\\n-ex3: size... \n", + "28 0 \n", + "29 - ACADEMIC DISHONESTY. Matches with 1001496565... \n", + "30 96 \n", + "31 -ex2: draw condition should be 0: -1pts\\n-ex3:... \n", + "32 38 \n", + "33 -ex2: does not return 2,1,0,-1, just prints, n... \n", + "34 23 \n", + "35 -ex1: does not return board: -3pts\\n-ex2: did ... \n", + "36 0 \n", + "37 - did not submit lab 3 \n", + "38 19 \n", + "39 -ex1: not a function, does not work: -7pts\\n-e... \n", + "40 86 \n", + "41 -ex2: incorrect output on examples (no_winner)... \n", + "42 21 \n", + "43 -ex1: not a function, not attempted: -5pts\\n-e... \n", + "44 100 \n", + "45 -excellent.\\n\\n- SOLUTION MATCHES WITH ANOTHER... \n", + "46 85 \n", + "47 -ex2: doesn't handle NxN: -2pts\\n-ex4: should ... \n", + "48 20 \n", + "49 -ex3 - ex10: not attempted: -80pts \n", + "50 0 \n", + "51 - did not submit lab 3 \n", + "52 79 \n", + "53 -ex1: not a function: -5pts\\n-ex3: does not ha... \n", + "54 0 \n", + "55 - did not submit lab 3 \n", + "56 10 \n", + "57 -ex1: not a function, also copies rows by refe... \n", + "58 0 \n", + "59 - did not submit lab 3 \n", + "\n", + " Lab 4 \\\n", + "0 35 \n", + "1 -ex2b: calculates the mean every time function... \n", + "2 88 \n", + "3 -ex2: enhancement: could have just called mean... \n", + "4 0 \n", + "5 - did not submit lab 4 \n", + "6 35 \n", + "7 -ex1: does not normalize between x_min and x_m... \n", + "8 0 \n", + "9 - did not submit lab 4 \n", + "10 0 \n", + "11 - did not submit lab 4 \n", + "12 0 \n", + "13 - did not submit lab 4 \n", + "14 12 \n", + "15 -ex2b: not supposed to use other package: -8pt... \n", + "16 35 \n", + "17 -ex2b: could have just called mean function in... \n", + "18 0 \n", + "19 - did not submit lab 4 \n", + "20 85 \n", + "21 -ex3: should only update xmin and xmax if none... \n", + "22 57 \n", + "23 -ex3: should check x_min and x_max seperately,... \n", + "24 61 \n", + "25 -ex2b: should not use numpy functions: -8pts\\n... \n", + "26 86 \n", + "27 -ex3: should check x_min and x_max seperately,... \n", + "28 0 \n", + "29 - did not submit lab 4 \n", + "30 92 \n", + "31 -ex4: not correct: -8pts \n", + "32 0 \n", + "33 - did not submit lab 4 \n", + "34 0 \n", + "35 - did not submit lab 4 \n", + "36 0 \n", + "37 - did not submit lab 4 \n", + "38 51 \n", + "39 -ex4: does not normalize based num_chars: -4pt... \n", + "40 75 \n", + "41 -ex3: not caclulating bin edges correctly: sho... \n", + "42 37 \n", + "43 -ex2b: not supposed to use statistics function... \n", + "44 100 \n", + "45 -excellent. \n", + "46 50 \n", + "47 -ex2b: should not be using statistics function... \n", + "48 79 \n", + "49 -ex3: should only update xmin and xmax if none... \n", + "50 40 \n", + "51 -ex4-ex9: not attempted: -60pts \n", + "52 60 \n", + "53 -ex3: wrong number of bin edges: -5pts\\n-ex4: ... \n", + "54 0 \n", + "55 - did not submit lab 4 \n", + "56 0 \n", + "57 - did not submit lab 4 \n", + "58 0 \n", + "59 - did not submit lab 4 \n", + "\n", + " Exam 1 Lab 5 \\\n", + "0 0 NaN \n", + "1 - did not submit exam NaN \n", + "2 120 NaN \n", + "3 - excellent\\n-q6: +20pts bonus NaN \n", + "4 90 NaN \n", + "5 -submitted in wrong folder: -5pts\\n-q4: does n... NaN \n", + "6 90 NaN \n", + "7 -q2: incorrect output: -15pts\\n-q6: incomplete... NaN \n", + "8 100 NaN \n", + "9 -q6: not attempted: +0pts NaN \n", + "10 90 NaN \n", + "11 -q4: Does not work: -10pts\\n-q6: Not attempted... NaN \n", + "12 80 NaN \n", + "13 - Submitted in wrong folder: -5pts\\n-q2: does ... NaN \n", + "14 105 NaN \n", + "15 -q6: Incorrect output. Does not use previous f... NaN \n", + "16 20 NaN \n", + "17 -q1: should only return one state, not a list ... NaN \n", + "18 84 NaN \n", + "19 -q2: should return, not print, does not provid... NaN \n", + "20 120 NaN \n", + "21 -excellent. full credit +20pts for q6 bonus.\\n... NaN \n", + "22 100 NaN \n", + "23 -q1: should have returned 'Alabama': -5pts\\n-q... NaN \n", + "24 95 NaN \n", + "25 -q2: does not return correct index (states[24]... NaN \n", + "26 110 NaN \n", + "27 -q4: not attributing lecture 15 for code: -5pt... NaN \n", + "28 0 NaN \n", + "29 - did not submit exam no longer on canvas \n", + "30 100 NaN \n", + "31 -excellent\\n-q6: not attempted: +0pts NaN \n", + "32 82 NaN \n", + "33 -q4: should not be using numpy for this (to us... NaN \n", + "34 0 NaN \n", + "35 - did not submit exam NaN \n", + "36 0 NaN \n", + "37 - did not submit exam NaN \n", + "38 111 NaN \n", + "39 -q1-q3: should return the value, not print: -9... NaN \n", + "40 100 NaN \n", + "41 -q6: close but output is not correct: +10pts \\... NaN \n", + "42 50 NaN \n", + "43 - did not submit exam (found something in lab ... NaN \n", + "44 120 NaN \n", + "45 - broke my grader assistant: please make sure ... NaN \n", + "46 115 NaN \n", + "47 -excellent\\n-q6: close, incorrect outputs: +15... NaN \n", + "48 120 NaN \n", + "49 -excellent\\n NaN \n", + "50 100 NaN \n", + "51 -excellent\\n-q6: not attempted: +0pts\\n NaN \n", + "52 90 NaN \n", + "53 -q1-q5: Should return, not print: -15pts\\nq6: ... NaN \n", + "54 105 NaN \n", + "55 -submitted in wrong folder: -5pts\\n-q6: not c... NaN \n", + "56 0 NaN \n", + "57 - did not submit exam NaN \n", + "58 0 NaN \n", + "59 - did not submit exam NaN \n", + "\n", + " Lab 6 Lab 7 \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + "5 NaN NaN \n", + "6 NaN NaN \n", + "7 NaN NaN \n", + "8 NaN NaN \n", + "9 NaN NaN \n", + "10 NaN NaN \n", + "11 NaN NaN \n", + "12 NaN NaN \n", + "13 NaN NaN \n", + "14 NaN NaN \n", + "15 NaN NaN \n", + "16 NaN NaN \n", + "17 NaN NaN \n", + "18 NaN NaN \n", + "19 NaN NaN \n", + "20 NaN NaN \n", + "21 NaN NaN \n", + "22 NaN NaN \n", + "23 NaN NaN \n", + "24 NaN NaN \n", + "25 NaN NaN \n", + "26 NaN NaN \n", + "27 NaN NaN \n", + "28 NaN NaN \n", + "29 NaN NaN \n", + "30 NaN NaN \n", + "31 NaN NaN \n", + "32 NaN NaN \n", + "33 NaN NaN \n", + "34 NaN NaN \n", + "35 NaN NaN \n", + "36 NaN NaN \n", + "37 NaN NaN \n", + "38 NaN NaN \n", + "39 NaN NaN \n", + "40 NaN NaN \n", + "41 NaN NaN \n", + "42 NaN NaN \n", + "43 NaN NaN \n", + "44 NaN NaN \n", + "45 NaN NaN \n", + "46 NaN NaN \n", + "47 NaN NaN \n", + "48 NaN NaN \n", + "49 NaN NaN \n", + "50 NaN NaN \n", + "51 NaN NaN \n", + "52 NaN NaN \n", + "53 NaN NaN \n", + "54 NaN NaN \n", + "55 NaN NaN \n", + "56 NaN NaN \n", + "57 NaN NaN \n", + "58 NaN NaN \n", + "59 NaN NaN " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1.000954e+09\n", + "1 NaN\n", + "2 1.000626e+09\n", + "3 NaN\n", + "4 1.000848e+09\n", + "5 NaN\n", + "6 1.001108e+09\n", + "7 NaN\n", + "8 1.001000e+09\n", + "9 NaN\n", + "10 1.001214e+09\n", + "11 NaN\n", + "12 1.001428e+09\n", + "13 NaN\n", + "14 1.001397e+09\n", + "15 NaN\n", + "16 1.001373e+09\n", + "17 NaN\n", + "18 1.001558e+09\n", + "19 NaN\n", + "20 1.001593e+09\n", + "21 NaN\n", + "22 1.001596e+09\n", + "23 NaN\n", + "24 1.001609e+09\n", + "25 NaN\n", + "26 1.001618e+09\n", + "27 NaN\n", + "28 1.001653e+09\n", + "29 NaN\n", + "30 1.001659e+09\n", + "31 NaN\n", + "32 1.001663e+09\n", + "33 NaN\n", + "34 1.001674e+09\n", + "35 NaN\n", + "36 1.001722e+09\n", + "37 NaN\n", + "38 1.001544e+09\n", + "39 NaN\n", + "40 1.001548e+09\n", + "41 NaN\n", + "42 1.001458e+09\n", + "43 NaN\n", + "44 1.001497e+09\n", + "45 NaN\n", + "46 1.001520e+09\n", + "47 NaN\n", + "48 1.001774e+09\n", + "49 NaN\n", + "50 1.001697e+09\n", + "51 NaN\n", + "52 1.001233e+09\n", + "53 NaN\n", + "54 1.001465e+09\n", + "55 NaN\n", + "56 1.001645e+09\n", + "57 NaN\n", + "58 1.001685e+09\n", + "59 NaN\n", + "Name: Student ID, dtype: float64" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"Student ID\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 False\n", + "1 True\n", + "2 False\n", + "3 True\n", + "4 False\n", + "5 True\n", + "6 False\n", + "7 True\n", + "8 False\n", + "9 True\n", + "10 False\n", + "11 True\n", + "12 False\n", + "13 True\n", + "14 False\n", + "15 True\n", + "16 False\n", + "17 True\n", + "18 False\n", + "19 True\n", + "20 False\n", + "21 True\n", + "22 False\n", + "23 True\n", + "24 False\n", + "25 True\n", + "26 False\n", + "27 True\n", + "28 False\n", + "29 True\n", + "30 False\n", + "31 True\n", + "32 False\n", + "33 True\n", + "34 False\n", + "35 True\n", + "36 False\n", + "37 True\n", + "38 False\n", + "39 True\n", + "40 False\n", + "41 True\n", + "42 False\n", + "43 True\n", + "44 False\n", + "45 True\n", + "46 False\n", + "47 True\n", + "48 False\n", + "49 True\n", + "50 False\n", + "51 True\n", + "52 False\n", + "53 True\n", + "54 False\n", + "55 True\n", + "56 False\n", + "57 True\n", + "58 False\n", + "59 True\n", + "Name: Student ID, dtype: bool" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.isnan(df[\"Student ID\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0 True\n", + "1 False\n", + "2 True\n", + "3 False\n", + "4 True\n", + "5 False\n", + "6 True\n", + "7 False\n", + "8 True\n", + "9 False\n", + "10 True\n", + "11 False\n", + "12 True\n", + "13 False\n", + "14 True\n", + "15 False\n", + "16 True\n", + "17 False\n", + "18 True\n", + "19 False\n", + "20 True\n", + "21 False\n", + "22 True\n", + "23 False\n", + "24 True\n", + "25 False\n", + "26 True\n", + "27 False\n", + "28 True\n", + "29 False\n", + "30 True\n", + "31 False\n", + "32 True\n", + "33 False\n", + "34 True\n", + "35 False\n", + "36 True\n", + "37 False\n", + "38 True\n", + "39 False\n", + "40 True\n", + "41 False\n", + "42 True\n", + "43 False\n", + "44 True\n", + "45 False\n", + "46 True\n", + "47 False\n", + "48 True\n", + "49 False\n", + "50 True\n", + "51 False\n", + "52 True\n", + "53 False\n", + "54 True\n", + "55 False\n", + "56 True\n", + "57 False\n", + "58 True\n", + "59 False\n", + "Name: Student ID, dtype: bool" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.logical_not(np.isnan(df[\"Student ID\"]))" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Student IDLab 1Lab 2Lab 3Lab 4Exam 1Lab 5Lab 6Lab 7
01.000954e+091008125350NaNNaNNaN
21.000626e+099587088120NaNNaNNaN
41.000848e+0910000090NaNNaNNaN
61.001108e+09909603590NaNNaNNaN
81.001000e+099594430100NaNNaNNaN
101.001214e+09808230090NaNNaNNaN
121.001428e+09809024080NaNNaNNaN
141.001397e+09100948712105NaNNaNNaN
161.001373e+0910070173520NaNNaNNaN
181.001558e+0995860084NaNNaNNaN
201.001593e+09100969685120NaNNaNNaN
221.001596e+0990927157100NaNNaNNaN
241.001609e+0910094366195NaNNaNNaN
261.001618e+09100969786110NaNNaNNaN
281.001653e+0910090000NaNNaNNaN
301.001659e+09100949692100NaNNaNNaN
321.001663e+09959438082NaNNaNNaN
341.001674e+0995902300NaNNaNNaN
361.001722e+0995100000NaNNaNNaN
381.001544e+09100961951111NaNNaNNaN
401.001548e+09100948675100NaNNaNNaN
421.001458e+098588213750NaNNaNNaN
441.001497e+0910098100100120NaNNaNNaN
461.001520e+09100948550115NaNNaNNaN
481.001774e+09100942079120NaNNaNNaN
501.001697e+09096040100NaNNaNNaN
521.001233e+098094796090NaNNaNNaN
541.001465e+09959400105NaNNaNNaN
561.001645e+0980801000NaNNaNNaN
581.001685e+0900000NaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " Student ID Lab 1 Lab 2 Lab 3 Lab 4 Exam 1 Lab 5 Lab 6 Lab 7\n", + "0 1.000954e+09 100 81 25 35 0 NaN NaN NaN\n", + "2 1.000626e+09 95 87 0 88 120 NaN NaN NaN\n", + "4 1.000848e+09 100 0 0 0 90 NaN NaN NaN\n", + "6 1.001108e+09 90 96 0 35 90 NaN NaN NaN\n", + "8 1.001000e+09 95 94 43 0 100 NaN NaN NaN\n", + "10 1.001214e+09 80 82 30 0 90 NaN NaN NaN\n", + "12 1.001428e+09 80 90 24 0 80 NaN NaN NaN\n", + "14 1.001397e+09 100 94 87 12 105 NaN NaN NaN\n", + "16 1.001373e+09 100 70 17 35 20 NaN NaN NaN\n", + "18 1.001558e+09 95 86 0 0 84 NaN NaN NaN\n", + "20 1.001593e+09 100 96 96 85 120 NaN NaN NaN\n", + "22 1.001596e+09 90 92 71 57 100 NaN NaN NaN\n", + "24 1.001609e+09 100 94 36 61 95 NaN NaN NaN\n", + "26 1.001618e+09 100 96 97 86 110 NaN NaN NaN\n", + "28 1.001653e+09 100 90 0 0 0 NaN NaN NaN\n", + "30 1.001659e+09 100 94 96 92 100 NaN NaN NaN\n", + "32 1.001663e+09 95 94 38 0 82 NaN NaN NaN\n", + "34 1.001674e+09 95 90 23 0 0 NaN NaN NaN\n", + "36 1.001722e+09 95 100 0 0 0 NaN NaN NaN\n", + "38 1.001544e+09 100 96 19 51 111 NaN NaN NaN\n", + "40 1.001548e+09 100 94 86 75 100 NaN NaN NaN\n", + "42 1.001458e+09 85 88 21 37 50 NaN NaN NaN\n", + "44 1.001497e+09 100 98 100 100 120 NaN NaN NaN\n", + "46 1.001520e+09 100 94 85 50 115 NaN NaN NaN\n", + "48 1.001774e+09 100 94 20 79 120 NaN NaN NaN\n", + "50 1.001697e+09 0 96 0 40 100 NaN NaN NaN\n", + "52 1.001233e+09 80 94 79 60 90 NaN NaN NaN\n", + "54 1.001465e+09 95 94 0 0 105 NaN NaN NaN\n", + "56 1.001645e+09 80 80 10 0 0 NaN NaN NaN\n", + "58 1.001685e+09 0 0 0 0 0 NaN NaN NaN" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[np.logical_not(np.isnan(df[\"Student ID\"]))]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "df_0=df[np.logical_not(np.isnan(df[\"Student ID\"]))]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([10., 4., 5., 3., 1., 1., 2., 1., 1., 2.]),\n", + " array([ 0. , 1.3, 2.6, 3.9, 5.2, 6.5, 7.8, 9.1, 10.4, 11.7, 13. ]),\n", + "
)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAPBklEQVR4nO3dfbBtdV3H8fcnrqgXKVBOiMj1QBIjOVPQGUNRxgFNBBMtncEJhbK5UxOFVuNcxxkf/sM0pkzTuSlFhlABJuMjZCA6k9S9PF64ICQ3BK9w1VLRQtFvf6xFHQ/nYZ+91rmHn75fM2fO3muv/f19Z+3f/py919rr7FQVkqT2/MR6NyBJmo4BLkmNMsAlqVEGuCQ1ygCXpEZt2JuDHXTQQTU7O7s3h5Sk5m3fvv2rVTWzcPleDfDZ2Vm2bdu2N4eUpOYl+Y/FlrsLRZIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDVqxQBPcn6S+5PsmLfsiUmuTHJH//vAtW1TkrTQJK/A/xo4ecGyLcCnq+pI4NP9dUnSXrRigFfVNcDXFyw+Dbigv3wB8LKR+5IkrWDaMzEPrqrd/eWvAAcvtWKSzcBmgE2bNk05HMxu+djU9x1i17mnrsu4krSSwQcxq/tKnyW/1qeqtlbVXFXNzcw84lR+SdKUpg3w+5IcAtD/vn+8liRJk5g2wC8Hzuwvnwl8ZJx2JEmTmuRjhBcB/wIcleSeJK8FzgVemOQO4AX9dUnSXrTiQcyqetUSN500ci+SpFXwTExJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowYFeJLXJ7klyY4kFyV53FiNSZKWN3WAJzkU+H1grqqeCewDnD5WY5Kk5Q3dhbIBeHySDcBG4MvDW5IkTWLqAK+qe4F3AncDu4FvVNUVC9dLsjnJtiTb9uzZM32nkqQfMmQXyoHAacDhwFOA/ZKcsXC9qtpaVXNVNTczMzN9p5KkHzJkF8oLgLuqak9VfQ+4DHjOOG1JklYyJMDvBo5LsjFJgJOAneO0JUlayZB94NcClwDXATf3tbaO1JckaQUbhty5qt4CvGWkXiRJq+CZmJLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGDQrwJAckuSTJbUl2Jnn2WI1Jkpa3YeD9/wz4ZFW9Ism+wMYRepIkTWDqAE/yU8AJwFkAVfVd4LvjtCVJWsmQXSiHA3uAv0pyfZL3J9lvpL4kSSsYEuAbgGOB91bVMcC3gS0LV0qyOcm2JNv27NkzYDhJ0nxDAvwe4J6qura/fgldoP+QqtpaVXNVNTczMzNgOEnSfFMHeFV9BfhSkqP6RScBt47SlSRpRUM/hfJ7wIX9J1C+CPzG8JYkSZMYFOBVdQMwN1IvkqRV8ExMSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGjX0Cx20hma3fGxdxt117qnrMq6k1fEVuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDVqcIAn2SfJ9Uk+OkZDkqTJjPEK/Bxg5wh1JEmrMCjAkzwVOBV4/zjtSJImNfRLjf8UeAOw/1IrJNkMbAbYtGnTwOH2vvX6YmFJWsnUr8CTvAS4v6q2L7deVW2tqrmqmpuZmZl2OEnSAkN2oRwPvDTJLuBi4MQkfztKV5KkFU0d4FX1xqp6alXNAqcD/1xVZ4zWmSRpWX4OXJIaNfQgJgBVdTVw9Ri1JEmT8RW4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjRrl/4HrR8t6fpHzrnNPXbexpdb4ClySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1KipAzzJYUmuSnJrkluSnDNmY5Kk5Q35Rp6HgD+squuS7A9sT3JlVd06Um+SpGVM/Qq8qnZX1XX95W8BO4FDx2pMkrS8Ub4TM8kscAxw7SK3bQY2A2zatGmM4aQfKev1HaQ/jt8/+qO2rQcfxEzyBOBS4HVV9c2Ft1fV1qqaq6q5mZmZocNJknqDAjzJY+jC+8KqumycliRJkxjyKZQAHwB2VtV547UkSZrEkFfgxwOvBk5MckP/c8pIfUmSVjD1Qcyq+hyQEXuRJK2CZ2JKUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqFG+1Fgay3p96eyPI7d1+3wFLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0aFOBJTk5ye5I7k2wZqylJ0sqmDvAk+wDvAV4MHA28KsnRYzUmSVrekFfgzwLurKovVtV3gYuB08ZpS5K0kiFfanwo8KV51+8BfmnhSkk2A5v7qw8kuX3K8Q4Cvjrlfdez9lrXt/f1qd9q7bWub++LyNsH137aYgvX/Fvpq2orsHVonSTbqmpuhJb2au21rm/v61O/1dprXd/e927tIbtQ7gUOm3f9qf0ySdJeMCTA/w04MsnhSfYFTgcuH6ctSdJKpt6FUlUPJTkb+BSwD3B+Vd0yWmePNHg3zDrVXuv69r4+9Vutvdb17X0v1k5VrUVdSdIa80xMSWqUAS5JjWoiwIeesp/k/CT3J9kxb9k7ktyW5KYkH05ywLzb3tiPdXuSF61yrHOS7EhyS5LX9cuemOTKJHf0vw8c2Pui9dJ5V9/7TUmOXWXvr+/73pHkoiSP6w9SX9vX/Lv+gPVa9P78JN9IckP/8+ZVjHNYkquS3Nr3f85yY63WYttl3m3vSvLANHXn1Vhszrw1yb3ztscpE9ZabJu/sq/9gyRzC9YfMtcXmy8X9rV29L08ZhX1Ju49yZP6x/yBJO9eTd/9/Xclubnfttv6ZWM/T5fqfTbJf897bN+32v7/T1U9qn/oDpD+O3AEsC9wI3D0KmucABwL7Ji37JeBDf3ltwNv7y8f3Y/xWODwfux9JhznmcAOYCPdAeJ/Ap4O/DGwpV9ny8NjDeh90XrAKcAngADHAdeuYpxDgbuAx/fX/x44q/99er/sfcDvrFHvzwc+OuUcOQQ4tr+8P/CF/nGceruvtF36y3PAB4EHBszvpebMW4E/mqLeYtv8GcBRwNXA3LzlQ+b6UvPllH7+BbhohPmyVO/7Ac8Ffht49xTbaRdw0IJlYz9Pl+p9dv56Q35aeAU++JT9qroG+PqCZVdU1UP91c/TfY6dvvbFVfVgVd0F3Nn3MIln0IXmd/ranwF+ta95Qb/OBcDLhvS+TL3TgL+pzueBA5IcMulYdAHy+CQb6AJlN3AicMle6H1qVbW7qq7rL38L2EkXMGONtXC7fDnd/wJ6B/CGIb2z9JyZyhJzfWdVLXYG9JC5Dotsl6r6eD//CvhX/v95NWrvVfXtqvoc8D+r6Hcloz5Pl9nuo2khwBc7Zf/Qkcf4TbpXrkPH2wE8r397t5Hu1chhwMFVtbtf5yvAwQP7Xare1L1X1b3AO4G76YL7G8B24L/m/aEbY9svty2eneTGJJ9I8nPTFE8yCxwDXLvCWBNZbLtU1RXA2cDl8+pPa6k5A3B2vyvs/Gl3/6xg1PnSbxcA+l0nrwY+OVq34yrgiiTb0/27Dxj/ebqcw5Ncn+QzSZ43bZEWAnxNJXkT8BBw4dBaVbWTbnfMFXQT9wbg+wvWKbrJM4qx6vUBcRrdW+mn0L1FPXlo3eUs6P064GlV9fPAnwP/uNp6SZ4AXAq8rqq+ucxYq6n5iO2S5DXAK/s+B1lmzrwX+BngF+gC8k+GjjWmJbbLGfNW+Qvgmqr67Hr0N4HnVtWxdP9N9XeTnDD/xrGfpwvsBjZV1THAHwAfSvKT0xRqIcDX7JT9JGcBLwF+vX/ABo9XVR+oql+sqhOA/6TbH3vfw7sy+t/3D2x9qXpDen8BcFdV7amq7wGXAcfT7YZ5+ISvMbb9or1X1Ter6oH+8seBxyQ5aNKi/Su+S4ELq+qy5cZapcW2y9vo9lPfmWQXsDHJnVPUBhafM1V1X1V9v6p+APwlq9u1Mamx58tzAJK8BZihC6dHpf4dBFV1P/Bhuu079vN0qbEfrKqv9Ze30x17+NlparUQ4Gtyyn6Sk+n2X760qr4z76bLgdOTPDbJ4cCRdPvyJq370/3vTXT7Mj/U1zyzX+VM4CMD21+q3uXAa9I5ju5t7aRv8e8GjkuyMUmAk4BbgauAV6x170me3I9LkmfRzc2vTVKwv98HgJ1Vdd5KY63SYtvlvKp6clXNVtUs8J2qevoUtR/u/xFzZsGxi5fT7WoZ25C5vth22Znkt4AXAa/q//g86iTZL8n+D1+m+0DDDsZ/ni41/kx/DIUkR9Bt9y9OVWyMI6Fr/UO3X/ALdH+p3jTF/S+ie9vyPbr9fK+lO2DzJbq3rDcA75u3/pv6sW4HXrzKsT5LF3w3Aif1y54EfBq4g+5TBk8c2Pui9eiO/L+n7/1m5h35nnCstwG30U3mD9J9OuEIuif1ncA/AI9do97PBm7pt9vngeesYpzn0r3dvWne43nKkO2+0nZZcPvUn0JZZs58sH8Mb6ILlkMGbPOX95cfBO4DPjXSXF9svjzU13v4cXjzwPmyXO+76A4cPtCvM9Gn0/o5fWP/cwt9pgyZL6vpHfi1ftwb6HYd/sq0c8dT6SWpUS3sQpEkLcIAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY36Xyw/4tWjszwuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "plt.hist(df_0[\"Exam 1\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "2 120\n", + "4 90\n", + "6 90\n", + "8 100\n", + "10 90\n", + "12 80\n", + "14 105\n", + "16 20\n", + "18 84\n", + "20 120\n", + "22 100\n", + "24 95\n", + "26 110\n", + "28 0\n", + "30 100\n", + "32 82\n", + "34 0\n", + "36 0\n", + "38 111\n", + "40 100\n", + "42 50\n", + "44 120\n", + "46 115\n", + "48 120\n", + "50 100\n", + "52 90\n", + "54 105\n", + "56 0\n", + "58 0\n", + "Name: Exam 1, dtype: object" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_0[\"Exam 1\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'0'" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_0[\"Exam 1\"][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "2 120\n", + "4 90\n", + "6 90\n", + "8 100\n", + "10 90\n", + "12 80\n", + "14 105\n", + "16 20\n", + "18 84\n", + "20 120\n", + "22 100\n", + "24 95\n", + "26 110\n", + "28 0\n", + "30 100\n", + "32 82\n", + "34 0\n", + "36 0\n", + "38 111\n", + "40 100\n", + "42 50\n", + "44 120\n", + "46 115\n", + "48 120\n", + "50 100\n", + "52 90\n", + "54 105\n", + "56 0\n", + "58 0\n", + "Name: Exam 1, dtype: int32" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_0[\"Exam 1\"].astype('int32')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([6., 1., 0., 0., 1., 0., 2., 6., 7., 7.]),\n", + " array([ 0., 12., 24., 36., 48., 60., 72., 84., 96., 108., 120.]),\n", + " )" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAANSElEQVR4nO3db4xl9V3H8ffHXaCFNt22TEhlGQcjwSCRP5kgDQ1RsAqFgA/6YEnVVknmSVUwTZolPOoziKa2JorZAAUVQUtBCaRYpDRNE9m6SxGBBQt0LUugO6RS/piU0n59cM/AdJnpnNmdM/d3Z9+vZLL3z9k73x9n9s2dM+dkUlVIktr1c+MeQJL0sxlqSWqcoZakxhlqSWqcoZakxm0e4kWPPfbYmpmZGeKlJWlD2r1794tVNbXUc4OEemZmhl27dg3x0pK0ISX5n+We89CHJDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS41YMdZKTkzy86OPlJFeux3CSpB7nUVfVk8DpAEk2Ac8Bdw48lySps9pDH+cDT1fVsidmS5LW1mqvTNwG3LrUE0nmgDmA6enpQxxL0qSb2X7PuEdYd3uvuWiQ1+39jjrJkcAlwBeXer6qdlTVbFXNTk0tebm6JOkgrObQx4XAQ1X1vaGGkSS93WpCfRnLHPaQJA2nV6iTHAN8GLhj2HEkSQfq9cPEqnoNeP/As0iSluCViZLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY3r+1vItyS5PckTSfYk+eDQg0mSRnr9FnLg88C9VfXRJEcCRw84kyRpkRVDneQ9wLnAJwCq6nXg9WHHkiQt6POO+kRgHvhCktOA3cAVVfXa4o2SzAFzANPT0wc90Mz2ew767x6KvddcNJbPKw1tXP+mtHb6HKPeDJwJXFdVZwCvAdsP3KiqdlTVbFXNTk1NrfGYknT46hPqfcC+qtrZ3b+dUbglSetgxVBX1QvAs0lO7h46H3h80KkkSW/qe9bHHwO3dGd8PAP8wXAjSZIW6xXqqnoYmB14FknSErwyUZIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIa1+u3kCfZC7wC/Bh4o6r8jeSStE56hbrzG1X14mCTSJKW5KEPSWpc31AX8JUku5PMLbVBkrkku5Lsmp+fX7sJJekw1zfUH6qqM4ELgU8mOffADapqR1XNVtXs1NTUmg4pSYezXqGuque6P/cDdwJnDTmUJOktK4Y6yTFJ3r1wG/gt4NGhB5MkjfQ56+M44M4kC9v/Q1XdO+hUkqQ3rRjqqnoGOG0dZpEkLcHT8ySpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhrXO9RJNiX5VpK7hxxIkvTTVvOO+gpgz1CDSJKW1ivUSbYCFwHXDzuOJOlAfd9Rfw74NPCT5TZIMpdkV5Jd8/PzazKcJKlHqJNcDOyvqt0/a7uq2lFVs1U1OzU1tWYDStLhrs876nOAS5LsBW4Dzkvy94NOJUl604qhrqqrqmprVc0A24CvVtXvDj6ZJAnwPGpJat7m1WxcVV8DvjbIJJKkJfmOWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIat2Kok7wjyTeT/GeSx5J8Zj0GkySNbO6xzQ+B86rq1SRHAN9I8uWqenDg2SRJ9Ah1VRXwanf3iO6jhhxKkvSWXseok2xK8jCwH7ivqnYusc1ckl1Jds3Pz6/1nJJ02OoV6qr6cVWdDmwFzkpy6hLb7Kiq2aqanZqaWus5JemwtaqzPqrqJeAB4IJhxpEkHajPWR9TSbZ0t98JfBh4YujBJEkjfc76+ABwc5JNjML+T1V197BjSZIW9Dnr4xHgjHWYRZK0BK9MlKTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJatyKoU5yQpIHkjye5LEkV6zHYJKkkRV/CznwBvCpqnooybuB3Unuq6rHB55NkkSPd9RV9XxVPdTdfgXYAxw/9GCSpJFVHaNOMgOcAewcYhhJ0tv1OfQBQJJ3AV8Crqyql5d4fg6YA5ienl6zAaWNYGb7PeMeQROs1zvqJEcwivQtVXXHUttU1Y6qmq2q2ampqbWcUZIOa33O+ghwA7Cnqj47/EiSpMX6vKM+B/g94LwkD3cfHxl4LklSZ8Vj1FX1DSDrMIskaQlemShJjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjVsx1EluTLI/yaPrMZAk6af1eUd9E3DBwHNIkpaxYqir6uvA99dhFknSEjav1QslmQPmAKanp9fqZdfNzPZ7xva5915z0dg+97iM67/34fjfWpNvzX6YWFU7qmq2qmanpqbW6mUl6bDnWR+S1DhDLUmN63N63q3AvwMnJ9mX5PLhx5IkLVjxh4lVddl6DCJJWpqHPiSpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcb1CneSCJE8meSrJ9qGHkiS9ZcVQJ9kE/BVwIXAKcFmSU4YeTJI00ucd9VnAU1X1TFW9DtwGXDrsWJKkBZt7bHM88Oyi+/uAXztwoyRzwFx399UkTx7kTMcCLx7k321Nr7Xk2nWY5NBsmH2SazfOWtg4+2WjrONQv75+Ybkn+oS6l6raAew41NdJsquqZtdgpLHbKGvZKOsA19KijbIOGG4tfQ59PAecsOj+1u4xSdI66BPq/wBOSnJikiOBbcBdw44lSVqw4qGPqnojyR8B/wpsAm6sqscGnOmQD580ZKOsZaOsA1xLizbKOmCgtaSqhnhdSdIa8cpESWqcoZakxjUT6km+TD3JCUkeSPJ4kseSXNE9/r4k9yX5dvfne8c9ax9JNiX5VpK7u/snJtnZ7Zt/7H6o3LwkW5LcnuSJJHuSfHCC98mfdl9bjya5Nck7JmW/JLkxyf4kjy56bMn9kJG/7Nb0SJIzxzf52y2zlj/rvsYeSXJnki2LnruqW8uTSX77YD9vE6HeAJepvwF8qqpOAc4GPtnNvx24v6pOAu7v7k+CK4A9i+5fC/xFVf0S8L/A5WOZavU+D9xbVb8MnMZoTRO3T5IcD/wJMFtVpzL6of42Jme/3ARccMBjy+2HC4GTuo854Lp1mrGvm3j7Wu4DTq2qXwX+G7gKoGvANuBXur/z113rVq2JUDPhl6lX1fNV9VB3+xVGQTie0Rpu7ja7Gfid8UzYX5KtwEXA9d39AOcBt3ebTMo63gOcC9wAUFWvV9VLTOA+6WwG3plkM3A08DwTsl+q6uvA9w94eLn9cCnwtzXyILAlyQfWZ9KVLbWWqvpKVb3R3X2Q0bUmMFrLbVX1w6r6DvAUo9atWiuhXuoy9ePHNMshSTIDnAHsBI6rque7p14AjhvTWKvxOeDTwE+6++8HXlr0hTgp++ZEYB74QncY5/okxzCB+6SqngP+HPguo0D/ANjNZO6XBcvth0lvwR8CX+5ur9laWgn1hpDkXcCXgCur6uXFz9XoPMimz4VMcjGwv6p2j3uWNbAZOBO4rqrOAF7jgMMck7BPALrjt5cy+p/PzwPH8PZvvyfWpOyHlSS5mtFh0FvW+rVbCfXEX6ae5AhGkb6lqu7oHv7ewrdt3Z/7xzVfT+cAlyTZy+jw03mMjvNu6b7lhsnZN/uAfVW1s7t/O6NwT9o+AfhN4DtVNV9VPwLuYLSvJnG/LFhuP0xkC5J8ArgY+Fi9dXHKmq2llVBP9GXq3XHcG4A9VfXZRU/dBXy8u/1x4F/We7bVqKqrqmprVc0w2gdfraqPAQ8AH+02a34dAFX1AvBskpO7h84HHmfC9knnu8DZSY7uvtYW1jJx+2WR5fbDXcDvd2d/nA38YNEhkiYluYDR4cJLqur/Fj11F7AtyVFJTmT0A9JvHtQnqaomPoCPMPqJ6dPA1eOeZ5Wzf4jRt26PAA93Hx9hdHz3fuDbwL8B7xv3rKtY068Dd3e3f7H7AnsK+CJw1Ljn67mG04Fd3X75Z+C9k7pPgM8ATwCPAn8HHDUp+wW4ldGx9R8x+k7n8uX2AxBGZ4A9DfwXozNdxr6GFdbyFKNj0Qv/9v9m0fZXd2t5ErjwYD+vl5BLUuNaOfQhSVqGoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWrc/wNDEbtdBEfeCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(df_0[\"Exam 1\"].astype('int32'))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "exam_1=df_0[\"Exam 1\"].astype('int32').to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0,\n", + " 120,\n", + " 90,\n", + " 90,\n", + " 100,\n", + " 90,\n", + " 80,\n", + " 105,\n", + " 20,\n", + " 84,\n", + " 120,\n", + " 100,\n", + " 95,\n", + " 110,\n", + " 0,\n", + " 100,\n", + " 82,\n", + " 0,\n", + " 0,\n", + " 111,\n", + " 100,\n", + " 50,\n", + " 120,\n", + " 115,\n", + " 120,\n", + " 100,\n", + " 90,\n", + " 105,\n", + " 0,\n", + " 0]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exam_1" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 76.56666666666666\n", + "Std: 43.17690998155792\n" + ] + } + ], + "source": [ + "print(\"Mean:\",np.mean(exam_1))\n", + "print(\"Std:\",np.std(exam_1))" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "min_exam_1=60\n", + "exam_1_df=df_0[\"Exam 1\"].astype('int32')\n", + "exam_1=exam_1_df[exam_1_df>min_exam_1].to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 False\n", + "2 True\n", + "4 True\n", + "6 True\n", + "8 True\n", + "10 True\n", + "12 True\n", + "14 True\n", + "16 False\n", + "18 True\n", + "20 True\n", + "22 True\n", + "24 True\n", + "26 True\n", + "28 False\n", + "30 True\n", + "32 True\n", + "34 False\n", + "36 False\n", + "38 True\n", + "40 True\n", + "42 False\n", + "44 True\n", + "46 True\n", + "48 True\n", + "50 True\n", + "52 True\n", + "54 True\n", + "56 False\n", + "58 False\n", + "Name: Exam 1, dtype: bool" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exam_1_df>60" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([2., 1., 4., 1., 0., 5., 2., 2., 1., 4.]),\n", + " array([ 80., 84., 88., 92., 96., 100., 104., 108., 112., 116., 120.]),\n", + " )" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAM1UlEQVR4nO3cfYxldX3H8fe3OxRBaSjulFJhHLTWSk0EOqW0VGKxtQuroq1NMLXV1GSSpiTYh9glJo3+0QT6nDamdK0UqgLaVioBUWgFrUnB7uKCuyzULWwtdMuC1gdiQ1389o9zBi6TOzN3du855yvzfiU3cx/OnPuZ39z7mXN/55yJzESSVNd3DR1AkrQ6i1qSirOoJak4i1qSirOoJam4mS5Wunnz5pyfn+9i1ZL0rLRz587HMnN23GOdFPX8/Dw7duzoYtWS9KwUEf+x0mNOfUhScRa1JBVnUUtScRa1JBVnUUtScRa1JBU30eF5EbEf+AbwJHAoMxe6DCVJetp6jqP+6cx8rLMkkqSxnPqQpOIm3aJO4JaISOAvM3P78gUiYhFYBJibm5teQmmK5rfdNMjz7r9s6yDPq2eHSbeofyozzwTOB349Is5dvkBmbs/MhcxcmJ0de7q6JOkwTFTUmflw+/UgcD1wVpehJElPW7OoI+K5EXHc0nXgNcDuroNJkhqTzFGfCFwfEUvLX5OZn+g0lSTpKWsWdWY+ALyihyySpDE8PE+SirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJam4iYs6IjZFxOcj4sYuA0mSnmk9W9SXAHu7CiJJGm+ioo6Ik4GtwF91G0eStNzMhMv9KfBO4LiVFoiIRWARYG5u7siTbSDz224a5Hn3X7Z1kOeVuvZse0+tuUUdEa8FDmbmztWWy8ztmbmQmQuzs7NTCyhJG90kUx/nAK+PiP3AdcB5EfHBTlNJkp6yZlFn5qWZeXJmzgMXAZ/KzLd0nkySBHgctSSVN+nORAAy83bg9k6SSJLGcotakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpuDWLOiKeExGfi4i7I2JPRLynj2CSpMbMBMs8AZyXmY9HxFHAZyPi5sy8o+NskiQmKOrMTODx9uZR7SW7DCVJetpEc9QRsSkidgEHgVsz885uY0mSlkxU1Jn5ZGaeDpwMnBURL1++TEQsRsSOiNjx6KOPTjunJG1Y6zrqIzO/CtwGbBnz2PbMXMjMhdnZ2Wnlk6QNb5KjPmYj4vj2+jHAzwL3dR1MktSY5KiPk4CrI2ITTbF/JDNv7DaWJGnJJEd93AOc0UMWSdIYnpkoScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScWtWdQRcUpE3BYR90bEnoi4pI9gkqTGzATLHAJ+KzPviojjgJ0RcWtm3ttxNkkSE2xRZ+aBzLyrvf4NYC/wgq6DSZIak2xRPyUi5oEzgDvHPLYILALMzc0ddqD5bTcd9vceif2XbR3kebUxDPW6HpLvqemZeGdiRDwP+HvgHZn59eWPZ+b2zFzIzIXZ2dlpZpSkDW2ioo6Io2hK+kOZ+dFuI0mSRk1y1EcA7wf2ZuYfdx9JkjRqki3qc4BfBs6LiF3t5YKOc0mSWmvuTMzMzwLRQxZJ0hiemShJxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklTcmkUdEVdGxMGI2N1HIEnSM02yRX0VsKXjHJKkFaxZ1Jn5GeArPWSRJI0xM60VRcQisAgwNzc3rdX2Zn7bTUNH6N2QP/P+y7YO9tzqx0Z8T3VlajsTM3N7Zi5k5sLs7Oy0VitJG55HfUhScRa1JBU3yeF51wL/Arw0Ih6KiLd3H0uStGTNnYmZ+eY+gkiSxnPqQ5KKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKm6ioI2JLRNwfEfsiYlvXoSRJT1uzqCNiE/Be4HzgNODNEXFa18EkSY1JtqjPAvZl5gOZ+X/AdcCF3caSJC2ZmWCZFwD/OXL7IeDHly8UEYvAYnvz8Yi4/zAzbQYeO8zv7ZK51mfVXHF5j0me6TtyvAZkrnWIy48o1wtXemCSop5IZm4Hth/peiJiR2YuTCHSVJlrfcy1PuZan42Wa5Kpj4eBU0Zun9zeJ0nqwSRF/a/ASyLi1Ij4buAi4IZuY0mSlqw59ZGZhyLiYuCTwCbgyszc02GmI54+6Yi51sdc62Ou9dlQuSIzu1ivJGlKPDNRkoqzqCWpuEGLOiJ+IyL2RMTuiLg2Ip7T7rS8sz1d/cPtDswKua6KiAcjYld7OX2AXJe0mfZExDva+06IiFsj4ovt1+8tkuvdEfHwyHhd0FOWKyPiYETsHrlv7BhF48/a19o9EXFmkVyvioivjYzd7/ac6xfb3+W3I2Jh2fKXtuN1f0T8XIVcETEfEf87Ml5X9JzrDyLivvY1dH1EHD/y2HTGKzMHudCcSPMgcEx7+yPA29qvF7X3XQH8WpFcVwFvGnC8Xg7sBo6l2Qn8j8APAr8PbGuX2QZcXiTXu4HfHmCczgXOBHaP3Dd2jIALgJuBAM4G7iyS61XAjQOO18uAlwK3Awsj958G3A0cDZwK/DuwqUCu+dHlBhiv1wAz7fXLR36PUxuvoac+ZoBjImKG5o1+ADgP+Lv28auBNxTI9V8DZFjuZTRF8s3MPAR8Gvh5mtP5r26XGWK8Vso1iMz8DPCVZXevNEYXAn+TjTuA4yPipAK5ejMuV2buzcxxZxZfCFyXmU9k5oPAPpp/MTF0rt6skOuW9rUPcAfNuSYwxfEarKgz82HgD4Ev0RT014CdwFdHfuiHaLZwB82Vmbe0D/9e+/HmTyLi6D5z0Wy1vjIinh8Rx9JsDZ4CnJiZB9pl/hs4sUgugIvb8bpyiCmZESuN0bh/j9Dn6221391PRMTdEXFzRPxIj5lWM/R4rebUiPh8RHw6Il45YI5fpfmUBlMcr8GKun3jXkjzkeAHgOcCW4bKs2Rcroh4C3Ap8MPAjwEnAL/TZ67M3EvzseoW4BPALuDJZcsk0Ovxlqvk+gvgxcDpNH/w/qjPXCsZYowmsSzXXcALM/MVwJ8D/zBYsO8MB4C5zDwD+E3gmoj4nr5DRMS7gEPAh6a97iGnPn4GeDAzH83MbwEfBc6h+fi5dCLOEKerj8v1k5l5oP2I/ATw13T0kW81mfn+zPzRzDwX+B/g34BHlj6ut18PVsiVmY9k5pOZ+W3gfQwwXiNWGqOh/z3C2FyZ+fXMfLy9/nHgqIjY3GOulQw9XmO1Uwtfbq/vpJkL/qE+M0TE24DXAr/U/tGFKY7XkEX9JeDsiDg2IgJ4NXAvcBvwpnaZtwIfK5Br78gbKmjmEnevso5ORMT3tV/naOaBr6E5nf+t7SJDjNfYXMvmet/IAOM1YqUxugH4lfboj7NpprkOjFtBn7ki4vvb1xkRcRbN+/TLPeZayQ3ARRFxdEScCrwE+NzAmYiI2Wj+bz4R8SKaXA/0+PxbgHcCr8/Mb448NL3x6mNP6Sp7UN8D3EfzJv4Azd7RF7U/zD7gb4Gji+T6FPCF9r4PAs8bINc/0/wxuxt4dXvf84F/Ar5Ic8TFCUVyfaAdr3vaF+xJPWW5luaj8Ldo5gTfvtIY0Rzt8V6aLbAvMHIkwcC5Lgb2tON5B80nuj5zvbG9/gTwCPDJkeXf1Y7X/cD5FXIBv9CO1y6aaaPX9ZxrH81c9K72csW0x8tTyCWpuKEPz5MkrcGilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKu7/Af72pNdEJwJaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(exam_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 101.22727272727273\n", + "Std: 12.555085236240183\n" + ] + } + ], + "source": [ + "print(\"Mean:\",np.mean(exam_1))\n", + "print(\"Std:\",np.std(exam_1))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(exam_1_df>100)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([8, 0, 3, 5, 8]), array([ 0, 60, 80, 90, 100, 110]))" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.histogram(exam_1_df,bins=[0,60,80,90,100,110])" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([8., 0., 3., 5., 8.]),\n", + " array([ 0, 60, 80, 90, 100, 110]),\n", + " )" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAANCklEQVR4nO3dYYxldX2H8efrLoigEZAbgizboZHQEBKBTCgUY1qQFtDAG19AamsbknljKxgTs6QvjO9KYqw2IcQJok1LsRWhJUuKWMQ0Ju3aWaC4sFAREJaCO6RVhDQF9NcX9wwM4x3m7O6cmf/MPp/khrn3npn8Tv7Ls3fPnrMnVYUkqV1vW+8BJElvzVBLUuMMtSQ1zlBLUuMMtSQ1busQP/SEE06oqampIX60JG1Ku3fvfqGqRpPeGyTUU1NTzM3NDfGjJWlTSvLj5d7z0IckNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjeoU6yaeSPJxkT5Jbkxw19GCSpLEVQ53kZOCTwHRVnQlsAa4cejBJ0ljfQx9bgXck2QocDfzXcCNJkhZb8crEqno2yeeBp4H/Be6pqnuWbpdkBpgB2L59+0EPNLXjroP+XmkoT/35h9d7BB2Ete7JUL9O+hz6OA64AjgVeC9wTJKPLd2uqmararqqpkejiZerS5IOQp9DHx8Cnqyq+ap6Fbgd+K1hx5IkLegT6qeB85IcnSTARcDeYceSJC1YMdRVtQu4Dbgf+EH3PbMDzyVJ6vT6Z06r6rPAZweeRZI0gVcmSlLjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNa7PzW1PT/LgoseLSa5di+EkST3u8FJVjwFnASTZAjwL3DHwXJKkzoEe+rgI+FFV/XiIYSRJv+pAQ30lcOsQg0iSJusd6iRHApcD31jm/Zkkc0nm5ufnV2s+STrsHcgn6kuB+6vqJ5PerKrZqpququnRaLQ600mSDijUV+FhD0lac71CneQY4GLg9mHHkSQtteLpeQBV9TLwnoFnkSRN4JWJktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktS4vrfiOjbJbUkeTbI3yflDDyZJGut1Ky7gS8DdVfXRJEcCRw84kyRpkRVDneTdwAeBPwKoqleAV4YdS5K0oM+hj1OBeeCrSR5IclN3V/I3STKTZC7J3Pz8/KoPKkmHqz6h3gqcA9xYVWcDLwM7lm5UVbNVNV1V06PRaJXHlKTDV59Q7wP2VdWu7vltjMMtSVoDK4a6qp4HnklyevfSRcAjg04lSXpd37M+/hS4pTvj4wngj4cbSZK0WK9QV9WDwPTAs0iSJvDKRElqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqnKGWpMYZaklqXK87vCR5Cvg58Avgtarybi+StEb63jMR4Heq6oXBJpEkTeShD0lqXN9P1AXck6SAL1fV7NINkswAMwDbt29fvQklbSpTO+5a7xE2nL6fqD9QVecAlwKfSPLBpRtU1WxVTVfV9Gg0WtUhJelw1ivUVfVs99/9wB3AuUMOJUl6w4qhTnJMknctfA38LrBn6MEkSWN9jlGfCNyRZGH7v62quwedSpL0uhVDXVVPAO9fg1kkSRN4ep4kNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNa53qJNsSfJAkp1DDiRJerMD+UR9DbB3qEEkSZP1CnWSbcCHgZuGHUeStFTfT9RfBD4D/HK5DZLMJJlLMjc/P78qw0mSeoQ6yUeA/VW1+622q6rZqpququnRaLRqA0rS4a7PJ+oLgMuTPAV8Hbgwyd8MOpUk6XUrhrqqrquqbVU1BVwJfKeqPjb4ZJIkwPOoJal5Ww9k46r6LvDdQSaRJE3kJ2pJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJalyfu5AfleT7Sf4jycNJPrcWg0mSxvrciuv/gAur6qUkRwDfS/JPVfVvA88mSaJHqKuqgJe6p0d0jxpyKEnSG3rd3DbJFmA38D7ghqraNWGbGWAGYPv27as5o6QBTe24a71H0Ap6/WViVf2iqs4CtgHnJjlzwjazVTVdVdOj0Wi155Skw9YBnfVRVT8F7gMuGWYcSdJSfc76GCU5tvv6HcDFwKNDDyZJGutzjPok4K+649RvA/6+qnYOO5YkaUGfsz4eAs5eg1kkSRN4ZaIkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNc5QS1LjDLUkNa7PPRNPSXJfkkeSPJzkmrUYTJI01ueeia8Bn66q+5O8C9id5NtV9cjAs0mS6PGJuqqeq6r7u69/DuwFTh56MEnS2AEdo04yxfhGt7smvDeTZC7J3Pz8/OpMJ0nqH+ok7wS+CVxbVS8ufb+qZqtquqqmR6PRas4oSYe1XqFOcgTjSN9SVbcPO5IkabE+Z30E+Aqwt6q+MPxIkqTF+nyivgD4A+DCJA92j8sGnkuS1Fnx9Lyq+h6QNZhFkjSBVyZKUuMMtSQ1zlBLUuMMtSQ1zlBLUuMMtSQ1zlBLUuMMtSQ1zlBLUuMMtSQ1zlBLUuMMtSQ1zlBLUuMMtSQ1zlBLUuMMtSQ1zlBLUuP63DPx5iT7k+xZi4EkSW/W5xP114BLBp5DkrSMFUNdVf8C/PcazCJJmmDVjlEnmUkyl2Rufn5+tX6sJB32Vi3UVTVbVdNVNT0ajVbrx0rSYc+zPiSpcYZakhrX5/S8W4F/BU5Psi/J1cOPJUlasHWlDarqqrUYRJI0mYc+JKlxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxhlqSGmeoJalxvUKd5JIkjyV5PMmOoYeSJL2hzz0TtwA3AJcCZwBXJTlj6MEkSWN9PlGfCzxeVU9U1SvA14Erhh1LkrRgxZvbAicDzyx6vg/4zaUbJZkBZrqnLyV57CBnOgF44SC/t3Xu2waV6zf1/rlvqyTXH9K3/9pyb/QJdS9VNQvMHurPSTJXVdOrMFJz3LeNazPvn/vWvj6HPp4FTln0fFv3miRpDfQJ9b8DpyU5NcmRwJXAncOOJUlasOKhj6p6LcmfAN8CtgA3V9XDA850yIdPGua+bVybef/ct8alqtZ7BknSW/DKRElqnKGWpMY1E+rNdpl6klOS3JfkkSQPJ7mme/34JN9O8sPuv8et96wHK8mWJA8k2dk9PzXJrm4N/677y+cNJ8mxSW5L8miSvUnO32Tr9qnu1+SeJLcmOWqjrl2Sm5PsT7Jn0WsT1ypjf9nt40NJzlm/yQ9ME6HepJepvwZ8uqrOAM4DPtHt0w7g3qo6Dbi3e75RXQPsXfT8euAvqup9wP8AV6/LVIfuS8DdVfUbwPsZ7+OmWLckJwOfBKar6kzGJwhcycZdu68Blyx5bbm1uhQ4rXvMADeu0YyHrqrW/QGcD3xr0fPrgOvWe65V3sd/BC4GHgNO6l47CXhsvWc7yP3Zxvh/gguBnUAYXwG2ddKabpQH8G7gSbq/aF/0+mZZt4UrjY9nfNbXTuD3NvLaAVPAnpXWCvgycNWk7Vp/NPGJmsmXqZ+8TrOsuiRTwNnALuDEqnque+t54MR1GutQfRH4DPDL7vl7gJ9W1Wvd8426hqcC88BXu8M6NyU5hk2yblX1LPB54GngOeBnwG42x9otWG6tNmxnWgn1ppXkncA3gWur6sXF79X4t/UNd35kko8A+6tq93rPMoCtwDnAjVV1NvAySw5zbNR1A+iO117B+Dek9wLH8KuHDjaNjbxWi7US6k15mXqSIxhH+paqur17+SdJTurePwnYv17zHYILgMuTPMX4X1O8kPFx3WOTLFxEtVHXcB+wr6p2dc9vYxzuzbBuAB8Cnqyq+ap6Fbid8XpuhrVbsNxabdjOtBLqTXeZepIAXwH2VtUXFr11J/Dx7uuPMz52vaFU1XVVta2qphiv1Xeq6veB+4CPdptt1H17HngmyendSxcBj7AJ1q3zNHBekqO7X6ML+7fh126R5dbqTuAPu7M/zgN+tugQSdvW+yD5ogP7lwH/CfwI+LP1nmcV9ucDjP/I9RDwYPe4jPGx3HuBHwL/DBy/3rMe4n7+NrCz+/rXge8DjwPfAN6+3vMd5D6dBcx1a/cPwHGbad2AzwGPAnuAvwbevlHXDriV8bH2Vxn/aejq5daK8V9439A15geMz3xZ933o8/AScklqXCuHPiRJyzDUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1Jjft/8lddQbSPZpIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(exam_1_df,bins=[0,60,80,90,100,110])" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "grades_0={\"A+\":100,\n", + " \"A\":90,\n", + " \"B\":80, \n", + " \"C\":70,\n", + " \"D\":60,\n", + " \"F\":0 }" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'A+': 100, 'A': 90, 'B': 80, 'C': 70, 'D': 60, 'F': 0}" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades_0" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "grades_inverse=dict(zip(grades_0.values(),grades_0.keys()))" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{100: 'A+', 90: 'A', 80: 'B', 70: 'C', 60: 'D', 0: 'F'}" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades_inverse" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import OrderedDict " + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "grades_inverse=OrderedDict(zip(list(grades_0.values())[::-1],\n", + " list(grades_0.keys())[::-1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([(0, 'F'),\n", + " (60, 'D'),\n", + " (70, 'C'),\n", + " (80, 'B'),\n", + " (90, 'A'),\n", + " (100, 'A+')])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades_inverse" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "grades=OrderedDict(zip(list(grades_0.keys())[::-1],\n", + " list(grades_0.values())[::-1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('F', 0),\n", + " ('D', 60),\n", + " ('C', 70),\n", + " ('B', 80),\n", + " ('A', 90),\n", + " ('A+', 100)])" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 8, 0, 0, 3, 10]), array([ 0, 60, 70, 80, 90, 100]))" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.histogram(exam_1_df,bins=list(grades.values()))" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 8., 0., 0., 3., 10.]),\n", + " array([ 0, 60, 70, 80, 90, 100]),\n", + " )" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAALzUlEQVR4nO3db4hl9X3H8fenu/m3psS1DpKsbmdLxSKBVhlaU0soasFoiHmQB4aktUXYJ21jQiBs6IPQZwZCmhSKsKiJbcWUbqQRhTTWGEKh3XRWJdFdU01ida1mJ6T501BQybcP7lmYjLs7s/ee2fF79/2CYe49c+ee7+G3vrlz5h4nVYUkqZ9f2uoBJEnTMeCS1JQBl6SmDLgkNWXAJamp7WdyZ+eff34tLi6eyV1KUnuHDh36QVUtrN1+RgO+uLjI8vLymdylJLWX5L9OtN1TKJLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJamrdgCe5M8mxJI+v2nZekgeTPDV83rm5Y0qS1trIK/DPA9eu2bYPeKiqLgYeGu5Lks6gdQNeVV8Hfrhm8w3AXcPtu4D3jjyXJGkd016JeUFVvTDcfhG44GQPTLIX2Auwe/fuKXcnSbNb3PfAluz3mVuv35TnnfmXmDX5kz4n/bM+VbW/qpaqamlh4VWX8kuSpjRtwL+f5K0Aw+dj440kSdqIaQN+H3DTcPsm4EvjjCNJ2qiNvI3wHuDfgEuSHE1yM3Ar8AdJngKuGe5Lks6gdX+JWVXvP8mXrh55FknSafBKTElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTc0U8CQfSfJEkseT3JPkjWMNJkk6takDnmQX8CFgqareDmwDbhxrMEnSqc16CmU78KYk24EdwH/PPpIkaSO2T/uNVfV8kk8BzwL/B3ylqr6y9nFJ9gJ7AXbv3j3t7ljc98DU3yu9lj1z6/VbPYKamuUUyk7gBmAP8DbgnCQfXPu4qtpfVUtVtbSwsDD9pJKkXzDLKZRrgO9V1UpVvQzcC/zuOGNJktYzS8CfBa5IsiNJgKuBI+OMJUlaz9QBr6qDwAHgEeBbw3PtH2kuSdI6pv4lJkBVfQL4xEizSJJOg1diSlJTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqaqaAJzk3yYEkTyY5kuQdYw0mSTq17TN+/2eBL1fV+5K8HtgxwkySpA2YOuBJ3gK8E/hjgKp6CXhpnLEkSeuZ5RTKHmAF+FySR5PcnuSckeaSJK1jloBvBy4Hbquqy4CfAfvWPijJ3iTLSZZXVlZm2J0kabVZAn4UOFpVB4f7B5gE/RdU1f6qWqqqpYWFhRl2J0labeqAV9WLwHNJLhk2XQ0cHmUqSdK6Zn0Xyp8Ddw/vQPku8CezjyRJ2oiZAl5VjwFLI80iSToNXokpSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTc0c8CTbkjya5P4xBpIkbcwYr8BvAY6M8DySpNMwU8CTXAhcD9w+zjiSpI2a9RX4Z4CPAT8/2QOS7E2ynGR5ZWVlxt1Jko6bOuBJ3g0cq6pDp3pcVe2vqqWqWlpYWJh2d5KkNWZ5BX4l8J4kzwBfAK5K8vejTCVJWtfUAa+qj1fVhVW1CNwIfLWqPjjaZJKkU/J94JLU1PYxnqSqvgZ8bYznkiRtjK/AJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpkb5/4FL0ulY3PfAVo8wF3wFLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJampqQOe5KIkDyc5nOSJJLeMOZgk6dRm+Ys8rwAfrapHkvwycCjJg1V1eKTZJEmnMPUr8Kp6oaoeGW7/FDgC7BprMEnSqY1yDjzJInAZcPAEX9ubZDnJ8srKyhi7kyQxQsCTvBn4IvDhqvrJ2q9X1f6qWqqqpYWFhVl3J0kazBTwJK9jEu+7q+recUaSJG3ELO9CCXAHcKSqPj3eSJKkjZjlFfiVwB8CVyV5bPi4bqS5JEnrmPpthFX1r0BGnEWSdBq8ElOSmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKamingSa5N8u0kTyfZN9ZQkqT1TR3wJNuAvwHeBVwKvD/JpWMNJkk6tVlegf828HRVfbeqXgK+ANwwzliSpPVsn+F7dwHPrbp/FPidtQ9KshfYO9z93yTfnnJ/5wM/mPJ7u/KYzwL55Nl3zJxl6zzCGv/qiTbOEvANqar9wP5ZnyfJclUtjTBSGx7z2cFjnn+bdbyznEJ5Hrho1f0Lh22SpDNgloD/B3Bxkj1JXg/cCNw3zliSpPVMfQqlql5J8mfAPwPbgDur6onRJnu1mU/DNOQxnx085vm3KcebqtqM55UkbTKvxJSkpgy4JDXVIuDzfsl+kouSPJzkcJInktwybD8vyYNJnho+79zqWceWZFuSR5PcP9zfk+TgsNb/MPyCfG4kOTfJgSRPJjmS5B3zvs5JPjL8u348yT1J3jhv65zkziTHkjy+atsJ1zUTfz0c+zeTXD7tfl/zAT9LLtl/BfhoVV0KXAH86XCM+4CHqupi4KHh/ry5BTiy6v4ngb+qql8H/ge4eUum2jyfBb5cVb8B/CaTY5/bdU6yC/gQsFRVb2fyhocbmb91/jxw7ZptJ1vXdwEXDx97gdum3elrPuCcBZfsV9ULVfXIcPunTP6j3sXkOO8aHnYX8N6tmXBzJLkQuB64fbgf4CrgwPCQuTrmJG8B3gncAVBVL1XVj5jzdWbybrc3JdkO7ABeYM7Wuaq+DvxwzeaTresNwN/WxL8D5yZ56zT77RDwE12yv2uLZtl0SRaBy4CDwAVV9cLwpReBC7ZorM3yGeBjwM+H+78C/KiqXhnuz9ta7wFWgM8Np41uT3IOc7zOVfU88CngWSbh/jFwiPle5+NOtq6jNa1DwM8aSd4MfBH4cFX9ZPXXavJ+z7l5z2eSdwPHqurQVs9yBm0HLgduq6rLgJ+x5nTJHK7zTiavOPcAbwPO4dWnGubeZq1rh4CfFZfsJ3kdk3jfXVX3Dpu/f/xHq+Hzsa2abxNcCbwnyTNMTotdxeT88LnDj9owf2t9FDhaVQeH+weYBH2e1/ka4HtVtVJVLwP3Mln7eV7n4062rqM1rUPA5/6S/eHc7x3Akar69Kov3QfcNNy+CfjSmZ5ts1TVx6vqwqpaZLKmX62qDwAPA+8bHjZvx/wi8FySS4ZNVwOHmeN1ZnLq5IokO4Z/58ePeW7XeZWTret9wB8N70a5AvjxqlMtp6eqXvMfwHXAfwLfAf5iq+fZhOP7PSY/Xn0TeGz4uI7JOeGHgKeAfwHO2+pZN+n4fx+4f7j9a8A3gKeBfwTesNXzjXysvwUsD2v9T8DOeV9n4C+BJ4HHgb8D3jBv6wzcw+Qc/8tMftK6+WTrCoTJO+u+A3yLyTt0ptqvl9JLUlMdTqFIkk7AgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqan/B3YzXdvQwFloAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(exam_1_df,bins=list(grades.values()))" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([6., 1., 0., 0., 1., 0., 2., 6., 7., 7.]),\n", + " array([ 0., 12., 24., 36., 48., 60., 72., 84., 96., 108., 120.]),\n", + " )" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAANSElEQVR4nO3db4xl9V3H8ffHXaCFNt22TEhlGQcjwSCRP5kgDQ1RsAqFgA/6YEnVVknmSVUwTZolPOoziKa2JorZAAUVQUtBCaRYpDRNE9m6SxGBBQt0LUugO6RS/piU0n59cM/AdJnpnNmdM/d3Z9+vZLL3z9k73x9n9s2dM+dkUlVIktr1c+MeQJL0sxlqSWqcoZakxhlqSWqcoZakxm0e4kWPPfbYmpmZGeKlJWlD2r1794tVNbXUc4OEemZmhl27dg3x0pK0ISX5n+We89CHJDXOUEtS4wy1JDXOUEtS4wy1JDXOUEtS41YMdZKTkzy86OPlJFeux3CSpB7nUVfVk8DpAEk2Ac8Bdw48lySps9pDH+cDT1fVsidmS5LW1mqvTNwG3LrUE0nmgDmA6enpQxxL0qSb2X7PuEdYd3uvuWiQ1+39jjrJkcAlwBeXer6qdlTVbFXNTk0tebm6JOkgrObQx4XAQ1X1vaGGkSS93WpCfRnLHPaQJA2nV6iTHAN8GLhj2HEkSQfq9cPEqnoNeP/As0iSluCViZLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY0z1JLUOEMtSY3r+1vItyS5PckTSfYk+eDQg0mSRnr9FnLg88C9VfXRJEcCRw84kyRpkRVDneQ9wLnAJwCq6nXg9WHHkiQt6POO+kRgHvhCktOA3cAVVfXa4o2SzAFzANPT0wc90Mz2ew767x6KvddcNJbPKw1tXP+mtHb6HKPeDJwJXFdVZwCvAdsP3KiqdlTVbFXNTk1NrfGYknT46hPqfcC+qtrZ3b+dUbglSetgxVBX1QvAs0lO7h46H3h80KkkSW/qe9bHHwO3dGd8PAP8wXAjSZIW6xXqqnoYmB14FknSErwyUZIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIa1+u3kCfZC7wC/Bh4o6r8jeSStE56hbrzG1X14mCTSJKW5KEPSWpc31AX8JUku5PMLbVBkrkku5Lsmp+fX7sJJekw1zfUH6qqM4ELgU8mOffADapqR1XNVtXs1NTUmg4pSYezXqGuque6P/cDdwJnDTmUJOktK4Y6yTFJ3r1wG/gt4NGhB5MkjfQ56+M44M4kC9v/Q1XdO+hUkqQ3rRjqqnoGOG0dZpEkLcHT8ySpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhrXO9RJNiX5VpK7hxxIkvTTVvOO+gpgz1CDSJKW1ivUSbYCFwHXDzuOJOlAfd9Rfw74NPCT5TZIMpdkV5Jd8/PzazKcJKlHqJNcDOyvqt0/a7uq2lFVs1U1OzU1tWYDStLhrs876nOAS5LsBW4Dzkvy94NOJUl604qhrqqrqmprVc0A24CvVtXvDj6ZJAnwPGpJat7m1WxcVV8DvjbIJJKkJfmOWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIaZ6glqXGGWpIat2Kok7wjyTeT/GeSx5J8Zj0GkySNbO6xzQ+B86rq1SRHAN9I8uWqenDg2SRJ9Ah1VRXwanf3iO6jhhxKkvSWXseok2xK8jCwH7ivqnYusc1ckl1Jds3Pz6/1nJJ02OoV6qr6cVWdDmwFzkpy6hLb7Kiq2aqanZqaWus5JemwtaqzPqrqJeAB4IJhxpEkHajPWR9TSbZ0t98JfBh4YujBJEkjfc76+ABwc5JNjML+T1V197BjSZIW9Dnr4xHgjHWYRZK0BK9MlKTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJapyhlqTGGWpJatyKoU5yQpIHkjye5LEkV6zHYJKkkRV/CznwBvCpqnooybuB3Unuq6rHB55NkkSPd9RV9XxVPdTdfgXYAxw/9GCSpJFVHaNOMgOcAewcYhhJ0tv1OfQBQJJ3AV8Crqyql5d4fg6YA5ienl6zAaWNYGb7PeMeQROs1zvqJEcwivQtVXXHUttU1Y6qmq2q2ampqbWcUZIOa33O+ghwA7Cnqj47/EiSpMX6vKM+B/g94LwkD3cfHxl4LklSZ8Vj1FX1DSDrMIskaQlemShJjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjTPUktQ4Qy1JjVsx1EluTLI/yaPrMZAk6af1eUd9E3DBwHNIkpaxYqir6uvA99dhFknSEjav1QslmQPmAKanp9fqZdfNzPZ7xva5915z0dg+97iM67/34fjfWpNvzX6YWFU7qmq2qmanpqbW6mUl6bDnWR+S1DhDLUmN63N63q3AvwMnJ9mX5PLhx5IkLVjxh4lVddl6DCJJWpqHPiSpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcYZakhpnqCWpcb1CneSCJE8meSrJ9qGHkiS9ZcVQJ9kE/BVwIXAKcFmSU4YeTJI00ucd9VnAU1X1TFW9DtwGXDrsWJKkBZt7bHM88Oyi+/uAXztwoyRzwFx399UkTx7kTMcCLx7k321Nr7Xk2nWY5NBsmH2SazfOWtg4+2WjrONQv75+Ybkn+oS6l6raAew41NdJsquqZtdgpLHbKGvZKOsA19KijbIOGG4tfQ59PAecsOj+1u4xSdI66BPq/wBOSnJikiOBbcBdw44lSVqw4qGPqnojyR8B/wpsAm6sqscGnOmQD580ZKOsZaOsA1xLizbKOmCgtaSqhnhdSdIa8cpESWqcoZakxjUT6km+TD3JCUkeSPJ4kseSXNE9/r4k9yX5dvfne8c9ax9JNiX5VpK7u/snJtnZ7Zt/7H6o3LwkW5LcnuSJJHuSfHCC98mfdl9bjya5Nck7JmW/JLkxyf4kjy56bMn9kJG/7Nb0SJIzxzf52y2zlj/rvsYeSXJnki2LnruqW8uTSX77YD9vE6HeAJepvwF8qqpOAc4GPtnNvx24v6pOAu7v7k+CK4A9i+5fC/xFVf0S8L/A5WOZavU+D9xbVb8MnMZoTRO3T5IcD/wJMFtVpzL6of42Jme/3ARccMBjy+2HC4GTuo854Lp1mrGvm3j7Wu4DTq2qXwX+G7gKoGvANuBXur/z113rVq2JUDPhl6lX1fNV9VB3+xVGQTie0Rpu7ja7Gfid8UzYX5KtwEXA9d39AOcBt3ebTMo63gOcC9wAUFWvV9VLTOA+6WwG3plkM3A08DwTsl+q6uvA9w94eLn9cCnwtzXyILAlyQfWZ9KVLbWWqvpKVb3R3X2Q0bUmMFrLbVX1w6r6DvAUo9atWiuhXuoy9ePHNMshSTIDnAHsBI6rque7p14AjhvTWKvxOeDTwE+6++8HXlr0hTgp++ZEYB74QncY5/okxzCB+6SqngP+HPguo0D/ANjNZO6XBcvth0lvwR8CX+5ur9laWgn1hpDkXcCXgCur6uXFz9XoPMimz4VMcjGwv6p2j3uWNbAZOBO4rqrOAF7jgMMck7BPALrjt5cy+p/PzwPH8PZvvyfWpOyHlSS5mtFh0FvW+rVbCfXEX6ae5AhGkb6lqu7oHv7ewrdt3Z/7xzVfT+cAlyTZy+jw03mMjvNu6b7lhsnZN/uAfVW1s7t/O6NwT9o+AfhN4DtVNV9VPwLuYLSvJnG/LFhuP0xkC5J8ArgY+Fi9dXHKmq2llVBP9GXq3XHcG4A9VfXZRU/dBXy8u/1x4F/We7bVqKqrqmprVc0w2gdfraqPAQ8AH+02a34dAFX1AvBskpO7h84HHmfC9knnu8DZSY7uvtYW1jJx+2WR5fbDXcDvd2d/nA38YNEhkiYluYDR4cJLqur/Fj11F7AtyVFJTmT0A9JvHtQnqaomPoCPMPqJ6dPA1eOeZ5Wzf4jRt26PAA93Hx9hdHz3fuDbwL8B7xv3rKtY068Dd3e3f7H7AnsK+CJw1Ljn67mG04Fd3X75Z+C9k7pPgM8ATwCPAn8HHDUp+wW4ldGx9R8x+k7n8uX2AxBGZ4A9DfwXozNdxr6GFdbyFKNj0Qv/9v9m0fZXd2t5ErjwYD+vl5BLUuNaOfQhSVqGoZakxhlqSWqcoZakxhlqSWqcoZakxhlqSWrc/wNDEbtdBEfeCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(exam_1_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "def grade_summary(df_0,grades,min_grade=0.):\n", + " df=df_0[df_0>min_grade]\n", + " N_total=sum(df>min_grade)\n", + " hist,bins=np.histogram(df,bins=list(grades.values()))\n", + "\n", + " print(\"Mean:\",np.mean(df))\n", + " print(\"Std:\",np.std(df))\n", + " \n", + " for grade_letter,bin_count in zip(grades.keys(),hist):\n", + " print(grade_letter+\": \"+str(bin_count),\n", + " float(bin_count/N_total) )\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 95.70833333333333\n", + "Std: 22.322408708639745\n", + "F: 2 0.08333333333333333\n", + "D: 0 0.0\n", + "C: 0 0.0\n", + "B: 3 0.125\n", + "A: 10 0.4166666666666667\n" + ] + } + ], + "source": [ + "grade_summary(exam_1_df,grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 101.22727272727273\n", + "Std: 12.555085236240183\n", + "F: 0 0.0\n", + "D: 0 0.0\n", + "C: 0 0.0\n", + "B: 3 0.13636363636363635\n", + "A: 10 0.45454545454545453\n" + ] + } + ], + "source": [ + "grade_summary(exam_1_df,grades,60)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "def compute_curve(df_0, min_grade=None):\n", + "\n", + " if min_grade:\n", + " pass\n", + " else:\n", + " min_grade=np.max(df_0)/2.\n", + " \n", + " print(\"Min grade:\",min_grade)\n", + "\n", + " df=df_0[df_0>min_grade]\n", + " N_total=sum(df_0>min_grade)\n", + " \n", + " print(\"N Total (post cut):\",N_total)\n", + " print(\"N Total (pre cut):\",df_0.shape)\n", + " \n", + " mean=np.mean(df)\n", + " std=np.std(df)\n", + "\n", + " print(\"Mean:\",mean)\n", + " print(\"Std:\",std)\n", + " \n", + " grade_def=[(\"A+\",np.max(df)),\n", + " (\"A\", min(np.max(df),mean+std)),\n", + " (\"B\",mean), \n", + " (\"C\",mean-std),\n", + " (\"D\",mean-2*std),\n", + " (\"F\",0.)]\n", + " \n", + " grade_def.reverse()\n", + " grades=OrderedDict( grade_def )\n", + " \n", + " \n", + " hist,bins=np.histogram(df,bins=list(grades.values()))\n", + " \n", + " _=plt.hist(df)\n", + " plt.show()\n", + " \n", + " for grade_letter,bin_count,min_grade in zip(grades.keys(),hist,grades.values()):\n", + " print(\"{:2.2f}\".format(min_grade),\n", + " grade_letter+\": \"+str(bin_count),\n", + " \"{:2.2f}%\".format(100.*float(bin_count/N_total)) )\n", + " return grades\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min grade: 60\n", + "N Total (post cut): 22\n", + "N Total (pre cut): (30,)\n", + "Mean: 101.22727272727273\n", + "Std: 12.555085236240183\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAM1UlEQVR4nO3cfYxldX3H8fe3OxRBaSjulFJhHLTWSk0EOqW0VGKxtQuroq1NMLXV1GSSpiTYh9glJo3+0QT6nDamdK0UqgLaVioBUWgFrUnB7uKCuyzULWwtdMuC1gdiQ1389o9zBi6TOzN3du855yvzfiU3cx/OnPuZ39z7mXN/55yJzESSVNd3DR1AkrQ6i1qSirOoJak4i1qSirOoJam4mS5Wunnz5pyfn+9i1ZL0rLRz587HMnN23GOdFPX8/Dw7duzoYtWS9KwUEf+x0mNOfUhScRa1JBVnUUtScRa1JBVnUUtScRa1JBU30eF5EbEf+AbwJHAoMxe6DCVJetp6jqP+6cx8rLMkkqSxnPqQpOIm3aJO4JaISOAvM3P78gUiYhFYBJibm5teQmmK5rfdNMjz7r9s6yDPq2eHSbeofyozzwTOB349Is5dvkBmbs/MhcxcmJ0de7q6JOkwTFTUmflw+/UgcD1wVpehJElPW7OoI+K5EXHc0nXgNcDuroNJkhqTzFGfCFwfEUvLX5OZn+g0lSTpKWsWdWY+ALyihyySpDE8PE+SirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJam4iYs6IjZFxOcj4sYuA0mSnmk9W9SXAHu7CiJJGm+ioo6Ik4GtwF91G0eStNzMhMv9KfBO4LiVFoiIRWARYG5u7siTbSDz224a5Hn3X7Z1kOeVuvZse0+tuUUdEa8FDmbmztWWy8ztmbmQmQuzs7NTCyhJG90kUx/nAK+PiP3AdcB5EfHBTlNJkp6yZlFn5qWZeXJmzgMXAZ/KzLd0nkySBHgctSSVN+nORAAy83bg9k6SSJLGcotakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpuDWLOiKeExGfi4i7I2JPRLynj2CSpMbMBMs8AZyXmY9HxFHAZyPi5sy8o+NskiQmKOrMTODx9uZR7SW7DCVJetpEc9QRsSkidgEHgVsz885uY0mSlkxU1Jn5ZGaeDpwMnBURL1++TEQsRsSOiNjx6KOPTjunJG1Y6zrqIzO/CtwGbBnz2PbMXMjMhdnZ2Wnlk6QNb5KjPmYj4vj2+jHAzwL3dR1MktSY5KiPk4CrI2ITTbF/JDNv7DaWJGnJJEd93AOc0UMWSdIYnpkoScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScWtWdQRcUpE3BYR90bEnoi4pI9gkqTGzATLHAJ+KzPviojjgJ0RcWtm3ttxNkkSE2xRZ+aBzLyrvf4NYC/wgq6DSZIak2xRPyUi5oEzgDvHPLYILALMzc0ddqD5bTcd9vceif2XbR3kebUxDPW6HpLvqemZeGdiRDwP+HvgHZn59eWPZ+b2zFzIzIXZ2dlpZpSkDW2ioo6Io2hK+kOZ+dFuI0mSRk1y1EcA7wf2ZuYfdx9JkjRqki3qc4BfBs6LiF3t5YKOc0mSWmvuTMzMzwLRQxZJ0hiemShJxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklTcmkUdEVdGxMGI2N1HIEnSM02yRX0VsKXjHJKkFaxZ1Jn5GeArPWSRJI0xM60VRcQisAgwNzc3rdX2Zn7bTUNH6N2QP/P+y7YO9tzqx0Z8T3VlajsTM3N7Zi5k5sLs7Oy0VitJG55HfUhScRa1JBU3yeF51wL/Arw0Ih6KiLd3H0uStGTNnYmZ+eY+gkiSxnPqQ5KKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKm6ioI2JLRNwfEfsiYlvXoSRJT1uzqCNiE/Be4HzgNODNEXFa18EkSY1JtqjPAvZl5gOZ+X/AdcCF3caSJC2ZmWCZFwD/OXL7IeDHly8UEYvAYnvz8Yi4/zAzbQYeO8zv7ZK51mfVXHF5j0me6TtyvAZkrnWIy48o1wtXemCSop5IZm4Hth/peiJiR2YuTCHSVJlrfcy1PuZan42Wa5Kpj4eBU0Zun9zeJ0nqwSRF/a/ASyLi1Ij4buAi4IZuY0mSlqw59ZGZhyLiYuCTwCbgyszc02GmI54+6Yi51sdc62Ou9dlQuSIzu1ivJGlKPDNRkoqzqCWpuEGLOiJ+IyL2RMTuiLg2Ip7T7rS8sz1d/cPtDswKua6KiAcjYld7OX2AXJe0mfZExDva+06IiFsj4ovt1+8tkuvdEfHwyHhd0FOWKyPiYETsHrlv7BhF48/a19o9EXFmkVyvioivjYzd7/ac6xfb3+W3I2Jh2fKXtuN1f0T8XIVcETEfEf87Ml5X9JzrDyLivvY1dH1EHD/y2HTGKzMHudCcSPMgcEx7+yPA29qvF7X3XQH8WpFcVwFvGnC8Xg7sBo6l2Qn8j8APAr8PbGuX2QZcXiTXu4HfHmCczgXOBHaP3Dd2jIALgJuBAM4G7iyS61XAjQOO18uAlwK3Awsj958G3A0cDZwK/DuwqUCu+dHlBhiv1wAz7fXLR36PUxuvoac+ZoBjImKG5o1+ADgP+Lv28auBNxTI9V8DZFjuZTRF8s3MPAR8Gvh5mtP5r26XGWK8Vso1iMz8DPCVZXevNEYXAn+TjTuA4yPipAK5ejMuV2buzcxxZxZfCFyXmU9k5oPAPpp/MTF0rt6skOuW9rUPcAfNuSYwxfEarKgz82HgD4Ev0RT014CdwFdHfuiHaLZwB82Vmbe0D/9e+/HmTyLi6D5z0Wy1vjIinh8Rx9JsDZ4CnJiZB9pl/hs4sUgugIvb8bpyiCmZESuN0bh/j9Dn6221391PRMTdEXFzRPxIj5lWM/R4rebUiPh8RHw6Il45YI5fpfmUBlMcr8GKun3jXkjzkeAHgOcCW4bKs2Rcroh4C3Ap8MPAjwEnAL/TZ67M3EvzseoW4BPALuDJZcsk0Ovxlqvk+gvgxcDpNH/w/qjPXCsZYowmsSzXXcALM/MVwJ8D/zBYsO8MB4C5zDwD+E3gmoj4nr5DRMS7gEPAh6a97iGnPn4GeDAzH83MbwEfBc6h+fi5dCLOEKerj8v1k5l5oP2I/ATw13T0kW81mfn+zPzRzDwX+B/g34BHlj6ut18PVsiVmY9k5pOZ+W3gfQwwXiNWGqOh/z3C2FyZ+fXMfLy9/nHgqIjY3GOulQw9XmO1Uwtfbq/vpJkL/qE+M0TE24DXAr/U/tGFKY7XkEX9JeDsiDg2IgJ4NXAvcBvwpnaZtwIfK5Br78gbKmjmEnevso5ORMT3tV/naOaBr6E5nf+t7SJDjNfYXMvmet/IAOM1YqUxugH4lfboj7NpprkOjFtBn7ki4vvb1xkRcRbN+/TLPeZayQ3ARRFxdEScCrwE+NzAmYiI2Wj+bz4R8SKaXA/0+PxbgHcCr8/Mb448NL3x6mNP6Sp7UN8D3EfzJv4Azd7RF7U/zD7gb4Gji+T6FPCF9r4PAs8bINc/0/wxuxt4dXvf84F/Ar5Ic8TFCUVyfaAdr3vaF+xJPWW5luaj8Ldo5gTfvtIY0Rzt8V6aLbAvMHIkwcC5Lgb2tON5B80nuj5zvbG9/gTwCPDJkeXf1Y7X/cD5FXIBv9CO1y6aaaPX9ZxrH81c9K72csW0x8tTyCWpuKEPz5MkrcGilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKu7/Af72pNdEJwJaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.00 F: 0 0.00%\n", + "76.12 D: 3 13.64%\n", + "88.67 C: 10 45.45%\n", + "101.23 B: 4 18.18%\n", + "113.78 A: 5 22.73%\n" + ] + }, + { + "data": { + "text/plain": [ + "OrderedDict([('F', 0.0),\n", + " ('D', 76.11710225479237),\n", + " ('C', 88.67218749103255),\n", + " ('B', 101.22727272727273),\n", + " ('A', 113.78235796351292),\n", + " ('A+', 120)])" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "compute_curve(exam_1_df,60)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lab 1\n", + "Min grade: 50.0\n", + "N Total (post cut): 28\n", + "N Total (pre cut): (30,)\n", + "Mean: 94.64285714285714\n", + "Std: 7.06204283331614\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAQQElEQVR4nO3df6xkZX3H8fenrKKgLYtcqQLrojW0xDSKty2VShuxuoJxbUMaaFVQzKZNbdXa0KUkaps0warVNraarSKoFG1RKxF/sEUpNhHaBRdYfgnCFsGVvQarbU1V9Ns/5mxzvczcO3fmzL08zfuVTO6cM88zz5fnnvnsuc/MGVJVSJLa82PrXYAkaTIGuCQ1ygCXpEYZ4JLUKANckhq1YS0HO+KII2rz5s1rOaQkNe/666//RlXNLd2/pgG+efNmdu3atZZDSlLzkvz7sP0uoUhSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGrRjgSS5Msj/JniGPvSFJJTliNuVJkkYZ5wz8ImDL0p1JjgFeANzbc02SpDGsGOBVdQ3w4JCH3gGcC/iF4pK0Dia6EjPJVuD+qroxyUpttwHbADZt2jTJcJLUi83br1i3sfdecFrvz7nqNzGTHAL8MfDGcdpX1Y6qmq+q+bm5h13KL0ma0CSfQnkacCxwY5K9wNHADUl+ss/CJEnLW/USSlXdDDzxwHYX4vNV9Y0e65IkrWCcjxFeCnwROC7JfUnOmX1ZkqSVrHgGXlVnrvD45t6qkSSNzSsxJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqHH+r/QXJtmfZM+ifW9NcnuSm5J8PMlhsy1TkrTUOGfgFwFbluzbCTyjqn4W+DJwXs91SZJWsGKAV9U1wINL9l1ZVQ91m9cCR8+gNknSMvpYA38V8OlRDybZlmRXkl0LCws9DCdJgikDPMn5wEPAJaPaVNWOqpqvqvm5ublphpMkLbJh0o5JzgZeDJxSVdVbRZKksUwU4Em2AOcCv1xV3+m3JEnSOMb5GOGlwBeB45Lcl+Qc4F3A44GdSXYnec+M65QkLbHiGXhVnTlk9/tmUIskaRW8ElOSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUSsGeJILk+xPsmfRvsOT7ExyZ/dz42zLlCQtNc4Z+EXAliX7tgNXVdXTgau6bUnSGloxwKvqGuDBJbu3Ahd39y8GXtpzXZKkFUy6Bn5kVe3r7n8dOHJUwyTbkuxKsmthYWHC4SRJS039JmZVFVDLPL6jquaran5ubm7a4SRJnUkD/IEkTwLofu7vryRJ0jgmDfDLgbO6+2cBn+inHEnSuMb5GOGlwBeB45Lcl+Qc4ALgV5PcCTy/25YkraENKzWoqjNHPHRKz7VIklbBKzElqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktSoqQI8yeuT3JJkT5JLkzymr8IkScubOMCTHAX8PjBfVc8ADgLO6KswSdLypl1C2QA8NskG4BDga9OXJEkax8QBXlX3A28D7gX2Ad+qqiuXtkuyLcmuJLsWFhYmr1SS9COmWULZCGwFjgWeDBya5GVL21XVjqqar6r5ubm5ySuVJP2IaZZQng/cU1ULVfV94GPAc/opS5K0kmkC/F7gxCSHJAlwCnBbP2VJklYyzRr4dcBlwA3Azd1z7eipLknSCjZM07mq3gS8qadaJEmr4JWYktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqKmuxJTUrs3br1i3sfdecNq6jf3/iWfgktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSo6YK8CSHJbksye1Jbkvyi30VJkla3rRfZvWXwGeq6vQkjwYO6aEmSdIYJg7wJD8BnAycDVBV3wO+109ZkqSVTLOEciywALw/yZeSvDfJoUsbJdmWZFeSXQsLC1MMJ0labJoA3wCcALy7qp4F/DewfWmjqtpRVfNVNT83NzfFcJKkxaYJ8PuA+6rqum77MgaBLklaAxMHeFV9HfhqkuO6XacAt/ZSlSRpRdN+CuX3gEu6T6DcDbxy+pIkSeOYKsCrajcw31MtkqRV8EpMSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1auoAT3JQki8l+WQfBUmSxtPHGfhrgdt6eB5J0ipMFeBJjgZOA97bTzmSpHFNewb+TuBc4Ic91CJJWoUNk3ZM8mJgf1Vdn+RXlmm3DdgGsGnTpkmHY/P2KybuO629F5y2bmNL0ijTnIGfBLwkyV7gw8DzknxoaaOq2lFV81U1Pzc3N8VwkqTFJg7wqjqvqo6uqs3AGcDnquplvVUmSVqWnwOXpEZNvAa+WFVdDVzdx3NJksbjGbgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSoyYO8CTHJPl8kluT3JLktX0WJkla3oYp+j4EvKGqbkjyeOD6JDur6taeapMkLWPiM/Cq2ldVN3T3/xO4DTiqr8IkScub5gz8/yTZDDwLuG7IY9uAbQCbNm3qYzipd5u3X7FuY++94LR1G1ttm/pNzCSPAz4KvK6qvr308araUVXzVTU/Nzc37XCSpM5UAZ7kUQzC+5Kq+lg/JUmSxjHNp1ACvA+4rar+or+SJEnjmOYM/CTg5cDzkuzubqf2VJckaQUTv4lZVf8CpMdaJEmr4JWYktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqF6+TlazsV5fcerXm0pt8AxckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElq1FQBnmRLkjuS3JVke19FSZJWNnGAJzkI+GvgRcDxwJlJju+rMEnS8qY5A/954K6quruqvgd8GNjaT1mSpJWkqibrmJwObKmqV3fbLwd+oapes6TdNmBbt3kccMeEtR4BfGPCvrNkXatjXatjXavzSK0LpqvtKVU1t3TnzL8PvKp2ADumfZ4ku6pqvoeSemVdq2Ndq2Ndq/NIrQtmU9s0Syj3A8cs2j662ydJWgPTBPi/AU9PcmySRwNnAJf3U5YkaSUTL6FU1UNJXgN8FjgIuLCqbumtsoebehlmRqxrdaxrdaxrdR6pdcEMapv4TUxJ0vrySkxJapQBLkmNekQEeJLXJ7klyZ4klyZ5TPfm6HXdZfof6d4oHdb3vK7NHUleuAZ1XdKNtSfJhUkeNaLvD5Ls7m69vrk7oq6LktyzaMxnjuh7VpI7u9tZa1DXFxbV9LUk/zii7yzn67VdTbckeV237/AkO7t52Jlk44i+s5yvYXW9NcntSW5K8vEkh43ouzfJzd187VqDut6c5P5Fv6NTR/Sd2ddrjKjrI4tq2ptk94i+vc1X97rfn2TPon1Dj6cM/FU3HzclOWHEcz67q++urn3GKqaq1vUGHAXcAzy22/574Ozu5xndvvcAvzOk7/HAjcDBwLHAV4CDZlzXqUC626XD6ura/9caz9dFwOkr9D0cuLv7ubG7v3GWdS1p81HgFWs8X88A9gCHMHjT/p+AnwL+HNjetdkOvGWN52tUXS8ANnRt3jKsru6xvcARazhfbwb+cIW+B3WvwacCj+5em8fPsq4lbd4OvHHW8wWcDJwA7Fm0b+jx1OXFp7u8OBG4bsRz/mv3eLr2LxqnlkfEGTiDX8hjk2xg8AvaBzwPuKx7/GLgpUP6bQU+XFXfrap7gLsYXOI/q7q+VlWfqg6DST+6x/EmrmvMfi8EdlbVg1X1TWAnsGUt6kry4wx+p0PPwGfoZxi8aL5TVQ8B/wz8OoNj5+Kuzajja5bzNbSuqrqy2wa4lrU/vkbN1zhm+fUay9bVnbH+BoOTqpmqqmuAB5fsHnU8bQU+0EXGtcBhSZ60uGO3/eNVdW2XKx9g+PH4MOse4FV1P/A24F4Gwf0t4HrgPxYdyPcxOMNb6ijgq4u2R7Xrpa6quvLA493SycuBz4x4isck2ZXk2iRj/TJ6qOvPuj/T3pHk4CHd122+GByQV1XVt0c8xUzmi8FZ23OTPCHJIQzOiI4BjqyqfV2brwNHDuk7s/lapq7FXsXgbGyYAq5Mcn0GX1fRl+Xqek13fF04YslpPefrucADVXXniP6zmq8DRh1P48zJUd3+5doMte4B3h0IWxksgTwZOJR+zwonMqyuJC9b1ORvgGuq6gsjnuIpNbhs9jeBdyZ52ozrOg/4aeDnGPzJ/0d9jNdDXQecyfJnRzOZr6q6jcFSxJUM/rHdDfxgSZti8AJfMyvVleR84CHgkhFP8UtVdQKDbwP93SQnz7iudwNPA57J4B/ot/cxXg91HbDS8TWT+RpR65odT+se4MDzgXuqaqGqvg98DDiJwZ8aBy40GnWZ/iwv5x9W13MAkrwJmAP+YFTn7oyUqrobuBp41izrqqp93Z9p3wXez/ClpPWaryO6eq4Y1XmG80VVva+qnl1VJwPfBL4MPHDgT9nu5/4hXWf6dREj6iLJ2cCLgd/qwmBY3wPztR/4OD0uHQ6rq6oeqKofVNUPgb8dMd56zdcGBsspH1mm78zmqzPqeBpnTu7nR5fKxp63R0KA3wucmOSQbh3rFOBW4PPA6V2bs4BPDOl7OXBGkoOTHAs8ncG69Kzqui3JqxmsjZ7ZHcwPk2TjgSWMLrxO6v6bZlnXgYMnDJYr9gzp+1ngBV19Gxm8YfbZWdbVPXY68Mmq+p9hHWc8XyR5YvdzE4MX+t8xOHYOfKpk1PE1y/kaWleSLcC5wEuq6jsj+h2a5PEH7nd1Dft991nX4nXbXxsx3ky/XmPE7xEGJw+3V9V9I/rNdL46o46ny4FXdJ9GOZHB0uK+xR277W8nObF77byC4cfjw43zTuesb8CfALczmNQPMvhUyVMZhPFdwD8AB3dtXwL86aK+5zN45/sOxnzndsq6HurG293d3ti1nQfe291/DnAzg3fhbwbOWYO6PteNtQf4EPC4pXV126/q5vQu4JWzrqvbfzWDrx5e3HYt5+sLDP5BuBE4pdv3BOAq4E4Gn2g4fB3ma1hddzFYMz1wfL2n2/9k4FPd/ad2fW4EbgHOX4O6Ptj9bm5iEEpPWlpXt30qgzPjr6xFXd3+i4DfXtJ2ZvPFYKlmH/B9BuvV5yxzPIXB//jmK938zS96nt1LXg97unbvortKfqWbl9JLUqMeCUsokqQJGOCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUf8LRsqXrj7wds8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.00 F: 4 14.29%\n", + "80.52 D: 1 3.57%\n", + "87.58 C: 2 7.14%\n", + "94.64 B: 7 25.00%\n", + "100.00 A: 14 50.00%\n", + "Lab 2\n", + "Min grade: 50.0\n", + "N Total (post cut): 28\n", + "N Total (pre cut): (30,)\n", + "Mean: 91.21428571428571\n", + "Std: 6.3827733720043165\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAN20lEQVR4nO3df4xl5V3H8fdH1loWG/k1xRZYF2uDNsS0OCqWiA2gWaHpVkMUEhQqZtWkCrUGF/2D+ocJaLVqatqsZQsqLiqiJRIqiK1oQomzsG0Xti21LHTpwg5BqZVE2PbrH/esmR3nx517z8ydZ/N+JZN77zln7vN99uzzybnPPedMqgpJUnu+adIFSJJGY4BLUqMMcElqlAEuSY0ywCWpURvWsrFTTz21Nm/evJZNSlLzdu/e/XxVTc1fvqYBvnnzZmZmZtaySUlqXpKnFlruFIokNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDVqTa/ElCSAzdvvmUi7+2+6dCLtrhaPwCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVHLBniSnUkOJdm7wLr3Jqkkp65OeZKkxQxzBH4rsGX+wiRnAj8GPN1zTZKkISwb4FX1IPDCAqs+AFwPVN9FSZKWN9IceJKtwDNV9eme65EkDWnFdyNMshH4DQbTJ8Nsvw3YBrBp06aVNidJWsQoR+BvAM4CPp1kP3AG8EiSb19o46raUVXTVTU9NTU1eqWSpKOs+Ai8qj4LvPbI6y7Ep6vq+R7rkiQtY5jTCHcBDwFnJzmQ5JrVL0uStJxlj8Cr6opl1m/urRpJ0tC8ElOSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElq1DB/1HhnkkNJ9s5Z9rtJPpfkM0n+NsmJq1umJGm+YY7AbwW2zFt2P3BOVX0v8AXghp7rkiQtY9kAr6oHgRfmLbuvqg53Lz8FnLEKtUmSltDHHPjPAfcutjLJtiQzSWZmZ2d7aE6SBGMGeJLfBA4Dty+2TVXtqKrpqpqempoapzlJ0hwbRv3FJFcDbwcuqqrqrSJJ0lBGCvAkW4DrgR+pqpf6LUmSNIxhTiPcBTwEnJ3kQJJrgA8CrwHuT7InyYdXuU5J0jzLHoFX1RULLL5lFWqRJK2AV2JKUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjRrmjxrvTHIoyd45y05Ocn+SJ7rHk1a3TEnSfMMcgd8KbJm3bDvwQFW9EXigey1JWkPLBnhVPQi8MG/xVuC27vltwDt7rkuStIxR58BPq6qD3fNngdMW2zDJtiQzSWZmZ2dHbE6SNN/YX2JWVQG1xPodVTVdVdNTU1PjNidJ6owa4M8leR1A93iov5IkScMYNcDvBq7qnl8FfKyfciRJwxrmNMJdwEPA2UkOJLkGuAn40SRPABd3ryVJa2jDchtU1RWLrLqo51okSSvglZiS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckho1VoAneU+Sx5LsTbIryav7KkyStLSRAzzJ6cCvANNVdQ5wHHB5X4VJkpY27hTKBuD4JBuAjcBXxi9JkjSMkQO8qp4B3g88DRwEXqyq++Zvl2RbkpkkM7Ozs6NXKkk6yjhTKCcBW4GzgNcDJyS5cv52VbWjqqaranpqamr0SiVJRxlnCuVi4Mmqmq2qV4C7gLf2U5YkaTnjBPjTwHlJNiYJcBGwr5+yJEnLGWcO/GHgTuAR4LPde+3oqS5J0jI2jPPLVXUjcGNPtUiSVsArMSWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGjRXgSU5McmeSzyXZl+SH+ipMkrS0sf6oMfCHwMer6rIkrwI29lCTJGkIIwd4km8DLgCuBqiql4GX+ylLkrSccaZQzgJmgY8meTTJR5KcMH+jJNuSzCSZmZ2dHaM5SdJc4wT4BuBc4ENV9Rbgv4Ht8zeqqh1VNV1V01NTU2M0J0maa5wAPwAcqKqHu9d3Mgh0SdIaGDnAq+pZ4MtJzu4WXQQ83ktVkqRljXsWyi8Dt3dnoHwJeNf4JUmShjFWgFfVHmC6p1okSSvglZiS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckho1doAnOS7Jo0n+vo+CJEnD6eMI/FpgXw/vI0lagbECPMkZwKXAR/opR5I0rHGPwP8AuB74Rg+1SJJWYMOov5jk7cChqtqd5G1LbLcN2AawadOmUZuTjlmbt98zkXb333TpRNpVf8Y5Aj8feEeS/cAdwIVJ/nz+RlW1o6qmq2p6ampqjOYkSXONHOBVdUNVnVFVm4HLgX+qqit7q0yStCTPA5ekRo08Bz5XVX0S+GQf7yVJGo5H4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjRg7wJGcm+USSx5M8luTaPguTJC1tnD9qfBh4b1U9kuQ1wO4k91fV4z3VJklawshH4FV1sKoe6Z7/F7APOL2vwiRJSxvnCPz/JNkMvAV4eIF124BtAJs2beqjOa2yzdvvmVjb+2+6dCLtTrLPWjvH2v/tsb/ETPKtwN8A11XVV+evr6odVTVdVdNTU1PjNidJ6owV4Em+mUF4315Vd/VTkiRpGOOchRLgFmBfVf1+fyVJkoYxzhH4+cDPABcm2dP9XNJTXZKkZYz8JWZV/SuQHmuRJK2AV2JKUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGtXL3QjXwrF2FzEtzLsCrh3/rdvnEbgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRo0V4Em2JPl8ki8m2d5XUZKk5Y0c4EmOA/4Y+HHgTcAVSd7UV2GSpKWNcwT+A8AXq+pLVfUycAewtZ+yJEnLGeduhKcDX57z+gDwg/M3SrIN2Na9/FqSz4/Y3qnA8yP+7lhyc+9vObG+rIJjpS/HSj/AvqxLuXmsvnzHQgtX/XayVbUD2DHu+ySZqarpHkqaOPuy/hwr/QD7sl6tRl/GmUJ5BjhzzuszumWSpDUwToD/G/DGJGcleRVwOXB3P2VJkpYz8hRKVR1O8m7gH4DjgJ1V9Vhvlf1/Y0/DrCP2Zf05VvoB9mW96r0vqaq+31OStAa8ElOSGmWAS1Kj1mWAJzk7yZ45P19Ncl2Sk5Pcn+SJ7vGkSde6lCX68b4kz8xZfsmkax1GkvckeSzJ3iS7kry6+xL74e52Cn/ZfaG97i3Sl1uTPDlnv7x50nUuJ8m1XR8eS3Jdt6ypcXLEIn1pYqwk2ZnkUJK9c5YtuB8y8EfdmPlMknNHbriq1vUPgy9In2VwIvvvANu75duBmydd34j9eB/wa5OuaYX1nw48CRzfvf4r4Oru8fJu2YeBX5p0rWP05VbgsknXt4J+nAPsBTYyOCHhH4HvanGcLNGXJsYKcAFwLrB3zrIF9wNwCXAvEOA84OFR212XR+DzXAT8e1U9xeBS/du65bcB75xYVSs3tx+t2gAcn2QDg4F2ELgQuLNb39I+md+Xr0y4nlF8D4PB/1JVHQb+GfhJ2hwni/WlCVX1IPDCvMWL7YetwJ/WwKeAE5O8bpR2Wwjwy4Fd3fPTqupg9/xZ4LTJlDSSuf0AeHf38WlnCx9xq+oZ4P3A0wyC+0VgN/Cf3YCDwe0UTp9MhcNbqC9VdV+3+re7/fKBJN8ysSKHsxf44SSnJNnI4MjuTNocJ4v1BRobK3Msth8Wug3JSONmXQd4N5/6DuCv56+rwWeRJs6BXKAfHwLeALyZQYD83oRKG1o3cLYCZwGvB04Atky0qBEt1JckVwI3AN8NfD9wMvDrEytyCFW1D7gZuA/4OLAH+Pq8bZoYJ0v0pbmxspDV2g/rOsAZ3Kr2kap6rnv93JGPGt3joYlVtjJH9aOqnquqr1fVN4A/YXBnx/XuYuDJqpqtqleAu4DzGXz8O3JBWCu3U1ioL2+tqoPdx9r/AT5KA/ulqm6pqu+rqguA/wC+QKPjZKG+NDpWjlhsP/R2G5L1HuBXcPS0w93AVd3zq4CPrXlFozmqH/Pmu36CwcfH9e5p4LwkG5OEwZz+48AngMu6bVrZJwv1Zd+cwRYG85Xrfr8keW33uInBnPFf0Og4WagvjY6VIxbbD3cDP9udjXIegym8gwu9wXLW7ZWYSU5gMNC+s6pe7JadwuCMgU3AU8BPVdX8Lw7WlUX68WcMPhIWsB/4hVF34FpK8lvATwOHgUeBn2cwd3cHgymHR4EruyPYdW2RvtwLTDE4O2AP8ItV9bWJFTmEJP8CnAK8AvxqVT3Q4jiBRfvSxFhJsgt4G4Pb3z4H3Aj8HQvsh+4A4YMMpiBfAt5VVTMjtbteA1yStLT1PoUiSVqEAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIa9b/Zh0NY5HqRxAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.00 F: 1 3.57%\n", + "78.45 D: 3 10.71%\n", + "84.83 C: 6 21.43%\n", + "91.21 B: 16 57.14%\n", + "97.60 A: 2 7.14%\n", + "Lab 3\n", + "Min grade: 50.0\n", + "N Total (post cut): 9\n", + "N Total (pre cut): (30,)\n", + "Mean: 88.55555555555556\n", + "Std: 9.032178414622923\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAPIElEQVR4nO3da4xcd3nH8e+P2FwCiJR4C6ljs7SJ2gIqIbghFBVFpEhJQLiXtHUkrgK5RUQlLZVqeBEuUiVStSBBEJFL0lxEQygg6pakkJaowAtc1sYEOy6tC4HYNYlJwCEKBUyfvpgTtJnOeGZ3Zz2ev74fabTn8vec59HJ+enMmTMnqSokSbPvMdMuQJI0GQa6JDXCQJekRhjoktQIA12SGrFmWhtet25dzc/PT2vzkjSTdu3a9Z2qmhu0bmqBPj8/z8LCwrQ2L0kzKck3h63zkoskNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxMhAT/L4JP+W5CtJ9iV554Axj0tyS5IDSXYmmV+NYiVJw41zhv5D4CVV9VzgHOCiJOf3jXk98N2qOgt4L3DVZMuUJI0yMtCr56Fudm336n+I+mbghm76Y8CFSTKxKiVJI431S9EkpwC7gLOAD1TVzr4h64F7AKrqWJKjwOnAd/reZyuwFWDjxo0rq1xSE+a3fWoq27373S+bynZX01hfilbVT6rqHOBM4Lwkz1nOxqpqe1VtqqpNc3MDH0UgSVqmJd3lUlXfA+4ALupbdQjYAJBkDfAU4P5JFChJGs84d7nMJTmtm34C8FLg3/uG7QBe001fCny2/J+VStIJNc419DOAG7rr6I8BPlpV/5jkXcBCVe0ArgVuSnIAeADYsmoVS5IGGhnoVXUn8LwBy69cNP0/wO9OtjRJ0lL4S1FJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJasTIQE+yIckdSe5Ksi/JmweMuSDJ0SR7uteVq1OuJGmYNWOMOQa8pap2J3kysCvJ7VV1V9+4z1fVyydfoiRpHCPP0KvqcFXt7qa/D+wH1q92YZKkpVnSNfQk88DzgJ0DVr8wyVeS3Jbk2UP+/dYkC0kWjhw5suRiJUnDjR3oSZ4EfBy4oqoe7Fu9G3hGVT0XeD/wyUHvUVXbq2pTVW2am5tbbs2SpAHGCvQka+mF+Yer6hP966vqwap6qJu+FVibZN1EK5UkHdc4d7kEuBbYX1XvGTLm6d04kpzXve/9kyxUknR849zl8iLgVcBXk+zplr0N2AhQVdcAlwJvTHIM+AGwpapqFeqVJA0xMtCr6gtARoy5Grh6UkVJkpbOX4pKUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxMhAT7IhyR1J7kqyL8mbB4xJkvclOZDkziTnrk65kqRh1owx5hjwlqraneTJwK4kt1fVXYvGXAyc3b1eAHyw+ytJOkFGnqFX1eGq2t1Nfx/YD6zvG7YZuLF6vgicluSMiVcrSRpqnDP0n0oyDzwP2Nm3aj1wz6L5g92yw33/fiuwFWDjxo1Lq1Q6gea3fWoq27373S+bynbVhrG/FE3yJODjwBVV9eByNlZV26tqU1VtmpubW85bSJKGGCvQk6ylF+YfrqpPDBhyCNiwaP7Mbpkk6QQZ5y6XANcC+6vqPUOG7QBe3d3tcj5wtKoODxkrSVoF41xDfxHwKuCrSfZ0y94GbASoqmuAW4FLgAPAw8DrJl+qJOl4RgZ6VX0ByIgxBbxpUkVJkpbOX4pKUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiNGBnqS65Lcl2TvkPUXJDmaZE/3unLyZUqSRlkzxpjrgauBG48z5vNV9fKJVCRJWpaRZ+hV9TnggRNQiyRpBSZ1Df2FSb6S5LYkzx42KMnWJAtJFo4cOTKhTUuSYDKBvht4RlU9F3g/8MlhA6tqe1VtqqpNc3NzE9i0JOkRKw70qnqwqh7qpm8F1iZZt+LKJElLsuJAT/L0JOmmz+ve8/6Vvq8kaWlG3uWS5GbgAmBdkoPA24G1AFV1DXAp8MYkx4AfAFuqqlatYknSQCMDvaouG7H+anq3NUqSpshfikpSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWrEyEBPcl2S+5LsHbI+Sd6X5ECSO5OcO/kyJUmjjHOGfj1w0XHWXwyc3b22Ah9ceVmSpKUaGehV9TnggeMM2QzcWD1fBE5LcsakCpQkjWfNBN5jPXDPovmD3bLD/QOTbKV3Fs/GjRuXvcH5bZ9a9r9dqbvf/bKpbNeepclq8Zg6oV+KVtX2qtpUVZvm5uZO5KYlqXmTCPRDwIZF82d2yyRJJ9AkAn0H8OrubpfzgaNV9f8ut0iSVtfIa+hJbgYuANYlOQi8HVgLUFXXALcClwAHgIeB161WsZKk4UYGelVdNmJ9AW+aWEWSpGXxl6KS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1IixAj3JRUm+luRAkm0D1r82yZEke7rXGyZfqiTpeNaMGpDkFOADwEuBg8CXkuyoqrv6ht5SVZevQo2SpDGMc4Z+HnCgqr5eVT8CPgJsXt2yJElLNU6grwfuWTR/sFvW73eS3JnkY0k2DHqjJFuTLCRZOHLkyDLKlSQNM6kvRf8BmK+qXwFuB24YNKiqtlfVpqraNDc3N6FNS5JgvEA/BCw+4z6zW/ZTVXV/Vf2wm/0Q8PzJlCdJGtc4gf4l4Owkz0zyWGALsGPxgCRnLJp9BbB/ciVKksYx8i6XqjqW5HLg08ApwHVVtS/Ju4CFqtoB/FGSVwDHgAeA165izZKkAUYGOkBV3Qrc2rfsykXTbwXeOtnSJElL4S9FJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNWKsQE9yUZKvJTmQZNuA9Y9Lcku3fmeS+UkXKkk6vpGBnuQU4APAxcCzgMuSPKtv2OuB71bVWcB7gasmXagk6fjGOUM/DzhQVV+vqh8BHwE2943ZDNzQTX8MuDBJJlemJGmUNWOMWQ/cs2j+IPCCYWOq6liSo8DpwHcWD0qyFdjazT6U5Gt977Ou/9+cbLK0zx4nfT/j6Ou5iZ4WOan6WeJ/X8OcVD1NQGv9kKtW1NMzhq0YJ9Anpqq2A9uHrU+yUFWbTmBJq6q1fqC9nlrrB9rrqbV+YPV6GueSyyFgw6L5M7tlA8ckWQM8Bbh/EgVKksYzTqB/CTg7yTOTPBbYAuzoG7MDeE03fSnw2aqqyZUpSRpl5CWX7pr45cCngVOA66pqX5J3AQtVtQO4FrgpyQHgAXqhvxxDL8fMqNb6gfZ6aq0faK+n1vqBVeopnkhLUhv8pagkNcJAl6RGTCXQk/xikj2LXg8muSLJU5PcnuQ/u78/M436luM4Pb0jyaFFyy+Zdq3jSvLHSfYl2Zvk5iSP774c39k95uGW7ovymTGkp+uTfGPRPjpn2nWOK8mbu172JbmiWzazxxEM7WlmjqMk1yW5L8neRcsG7pP0vK87nu5Mcu6KNl5VU33R+6L12/Rulv8LYFu3fBtw1bTrm0BP7wD+dNo1LaOH9cA3gCd08x8FXtv93dItuwZ447RrnUBP1wOXTru+ZfTzHGAvcCq9Gxz+GThrlo+j4/Q0M8cR8GLgXGDvomUD9wlwCXAbEOB8YOdKtn0yXHK5EPivqvomj36EwA3Ab06tqpVZ3NMsWwM8ofttwanAYeAl9B7vALO5j/p7+u8p17MSv0wvAB6uqmPAvwK/zWwfR8N6mhlV9Tl6d/stNmyfbAZurJ4vAqclOWO52z4ZAn0LcHM3/bSqOtxNfxt42nRKWrHFPQFc3n2cum5WPv5W1SHgL4Fv0Qvyo8Au4HvdgQa9x0Csn06FSzeop6r6TLf6z7t99N4kj5takUuzF/j1JKcnOZXe2d4GZvs4GtYTzOBxtMiwfTLo0SrLPqamGujd9ddXAH/Xv656n0dm7p7KAT19EPgF4Bx6IfJXUyptSboDZjPwTODngCcCF021qBUa1FOSVwJvBX4J+FXgqcCfTa3IJaiq/fSebPoZ4J+APcBP+sbM1HF0nJ5m8jgaZDX3ybTP0C8GdlfVvd38vY983Oj+3je1ypbvUT1V1b1V9ZOq+l/gr+k9vXIW/Abwjao6UlU/Bj4BvIjeR8JHfpA26DEQJ7NBPf1aVR3uPvL+EPgbZmcfUVXXVtXzq+rFwHeB/2DGj6NBPc3wcfSIYftknEerjG3agX4Zj740sfgRAq8B/v6EV7Ryj+qp73rYb9H7SDkLvgWcn+TU7lHIFwJ3AXfQe7wDzN4+GtTT/kUHWuhd25yVfUSSn+3+bqR3rflvmfHjaFBPM3wcPWLYPtkBvLq72+V8epcBDw96g3FM7ZeiSZ5I7wD7+ao62i07nd6dBxuBbwK/V1X9Xy6ctIb0dBO9j4kF3A38wUp22ImU5J3A7wPHgC8Db6B3fe8j9C5NfBl4ZXdmOxOG9HQbMEfvToM9wB9W1UNTK3IJknye3qOqfwz8SVX9SwPH0aCeZuY4SnIzcAG9x/7eC7wd+CQD9kl3EnE1vcuZDwOvq6qFZW97WoEuSZqsaV9ykSRNiIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGvF/ToH6s8kd1xcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.00 F: 0 0.00%\n", + "70.49 D: 2 22.22%\n", + "79.52 C: 3 33.33%\n", + "88.56 B: 3 33.33%\n", + "97.59 A: 1 11.11%\n", + "Lab 4\n", + "Min grade: 50.0\n", + "N Total (post cut): 11\n", + "N Total (pre cut): (30,)\n", + "Mean: 75.81818181818181\n", + "Std: 15.473250712222878\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAS3klEQVR4nO3df7Ddd13n8efLtIWhMpCSC9vNj6ZoRqlg03InwIBSRkhTdBt13TVZlcrAZsahq6jjTlnH1i2zM7DuyC5SKRnIVneWFK1Us2ugzQBaFYu5gW7pDwLZUGkylVxJLWoZaup7/zjfrIfbe3O+uffc3ORzn4+ZM/f7/Xw+33M+n/m2r/PN53x/pKqQJLXr25a6A5KkxWXQS1LjDHpJapxBL0mNM+glqXHnLXUHZrNq1apav379UndDks4ZBw4c+Ouqmpit7qwM+vXr1zM1NbXU3ZCkc0aSv5yrzqkbSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LiRQZ9kbZJPJXkoyYNJfm6WNkny3iSHktyf5MqhuuuSfKl7XTfuAUiSTq3PefQngF+sqs8meS5wIMm+qnpoqM01wIbu9Qrg/cArklwE3ARMAtVtu6eqHh/rKCRJcxp5RF9Vj1XVZ7vlvwUeBlbPaLYV+O0auBd4fpKLgauBfVV1vAv3fcCWsY5AknRKp3VlbJL1wBXAZ2ZUrQYeHVo/0pXNVT7be+8AdgCsW7fudLp1Vlh/wx8u2Wc/8q4fXLLPVvuW6r9t/7sen94/xib5duD3gLdX1dfH3ZGq2llVk1U1OTEx6+0aJEnz0Cvok5zPIOT/Z1V9dJYmR4G1Q+trurK5yiVJZ0ifs24CfAh4uKp+fY5me4A3dWffvBJ4oqoeA+4CNidZmWQlsLkrkySdIX3m6F8N/BTw+ST3dWX/AVgHUFW3AnuBNwKHgCeBN3d1x5O8E9jfbXdzVR0fX/clSaOMDPqq+lMgI9oU8LY56nYBu+bVO0nSgnllrCQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcSMfPJJkF/BDwLGqeuks9b8E/MTQ+70EmOieLvUI8LfA08CJqpocV8clSf30OaK/DdgyV2VV/VpVbayqjcA7gD+e8bjA13X1hrwkLYGRQV9V9wB9n/O6Hdi9oB5JksZqbHP0SZ7D4Mj/94aKC7g7yYEkO8b1WZKk/kbO0Z+GfwH82Yxpm9dU1dEkLwT2JflC9y+EZ+i+CHYArFu3bozdkqTlbZxn3WxjxrRNVR3t/h4D7gQ2zbVxVe2sqsmqmpyYmBhjtyRpeRtL0Cd5HvBa4A+Gyi5M8tyTy8Bm4IFxfJ4kqb8+p1fuBq4CViU5AtwEnA9QVbd2zX4EuLuq/n5o0xcBdyY5+TkfrqqPj6/rkqQ+RgZ9VW3v0eY2BqdhDpcdBi6fb8ckSePhlbGS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuJFBn2RXkmNJZn3ea5KrkjyR5L7udeNQ3ZYkB5McSnLDODsuSeqnzxH9bcCWEW3+pKo2dq+bAZKsAG4BrgEuA7YnuWwhnZUknb6RQV9V9wDH5/Hem4BDVXW4qp4Cbge2zuN9JEkLMK45+lcl+T9JPpbke7qy1cCjQ22OdGWzSrIjyVSSqenp6TF1S5I0jqD/LHBJVV0O/Abw+/N5k6raWVWTVTU5MTExhm5JkmAMQV9VX6+qv+uW9wLnJ1kFHAXWDjVd05VJks6gBQd9kn+WJN3ypu49vwbsBzYkuTTJBcA2YM9CP0+SdHrOG9UgyW7gKmBVkiPATcD5AFV1K/BjwM8kOQF8A9hWVQWcSHI9cBewAthVVQ8uyigkSXMaGfRVtX1E/fuA981RtxfYO7+uSZLGwStjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEjgz7JriTHkjwwR/1PJLk/yeeTfDrJ5UN1j3Tl9yWZGmfHJUn99Dmivw3Ycor6LwOvraqXAe8Eds6of11Vbayqyfl1UZK0EH2eGXtPkvWnqP/00Oq9wJqFd0uSNC7jnqN/C/CxofUC7k5yIMmOU22YZEeSqSRT09PTY+6WJC1fI4/o+0ryOgZB/5qh4tdU1dEkLwT2JflCVd0z2/ZVtZNu2mdycrLG1S9JWu7GckSf5HuBDwJbq+prJ8ur6mj39xhwJ7BpHJ8nSepvwUGfZB3wUeCnquqLQ+UXJnnuyWVgMzDrmTuSpMUzcuomyW7gKmBVkiPATcD5AFV1K3Aj8ALgN5MAnOjOsHkRcGdXdh7w4ar6+CKMQZJ0Cn3Outk+ov6twFtnKT8MXP7MLSRJZ5JXxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjegV9kl1JjiWZ9ZmvGXhvkkNJ7k9y5VDddUm+1L2uG1fHJUn99D2ivw3Ycor6a4AN3WsH8H6AJBcxeMbsK4BNwE1JVs63s5Kk09cr6KvqHuD4KZpsBX67Bu4Fnp/kYuBqYF9VHa+qx4F9nPoLQ5I0ZiMfDt7TauDRofUjXdlc5c+QZAeDfw2wbt26eXdk/Q1/OO9tz1VLNeZH3vWDS/K5sDz383KzHPfxYv0/ddb8GFtVO6tqsqomJyYmlro7ktSMcQX9UWDt0PqarmyucknSGTKuoN8DvKk7++aVwBNV9RhwF7A5ycruR9jNXZkk6QzpNUefZDdwFbAqyREGZ9KcD1BVtwJ7gTcCh4AngTd3dceTvBPY373VzVV1qh91JUlj1ivoq2r7iPoC3jZH3S5g1+l3TZI0DmfNj7GSpMVh0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGtcr6JNsSXIwyaEkN8xS/54k93WvLyb5m6G6p4fq9oyz85Kk0UY+SjDJCuAW4A3AEWB/kj1V9dDJNlX180Pt/x1wxdBbfKOqNo6vy5Kk09HniH4TcKiqDlfVU8DtwNZTtN8O7B5H5yRJC9cn6FcDjw6tH+nKniHJJcClwCeHip+dZCrJvUl+eK4PSbKjazc1PT3do1uSpD7G/WPsNuCOqnp6qOySqpoE/g3wX5N8x2wbVtXOqpqsqsmJiYkxd0uSlq8+QX8UWDu0vqYrm802ZkzbVNXR7u9h4I/41vl7SdIi6xP0+4ENSS5NcgGDMH/G2TNJvhtYCfz5UNnKJM/qllcBrwYemrmtJGnxjDzrpqpOJLkeuAtYAeyqqgeT3AxMVdXJ0N8G3F5VNbT5S4APJPlHBl8q7xo+W0eStPhGBj1AVe0F9s4ou3HG+q/Ost2ngZctoH+SpAXyylhJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqXK+gT7IlycEkh5LcMEv9TyeZTnJf93rrUN11Sb7Uva4bZ+clSaONfJRgkhXALcAbgCPA/iR7Znn260eq6voZ214E3ARMAgUc6LZ9fCy9lySN1OeIfhNwqKoOV9VTwO3A1p7vfzWwr6qOd+G+D9gyv65KkuajT9CvBh4dWj/Slc30L5Pcn+SOJGtPc1uS7EgylWRqenq6R7ckSX2M68fY/wWsr6rvZXDU/lun+wZVtbOqJqtqcmJiYkzdkiT1CfqjwNqh9TVd2f9XVV+rqm92qx8EXt53W0nS4uoT9PuBDUkuTXIBsA3YM9wgycVDq9cCD3fLdwGbk6xMshLY3JVJks6QkWfdVNWJJNczCOgVwK6qejDJzcBUVe0BfjbJtcAJ4Djw0922x5O8k8GXBcDNVXV8EcYhSZrDyKAHqKq9wN4ZZTcOLb8DeMcc2+4Cdi2gj5KkBfDKWElqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWpcr6BPsiXJwSSHktwwS/0vJHkoyf1JPpHkkqG6p5Pc1732zNxWkrS4Rj5KMMkK4BbgDcARYH+SPVX10FCzzwGTVfVkkp8B/jPw413dN6pq45j7LUnqqc8R/SbgUFUdrqqngNuBrcMNqupTVfVkt3ovsGa83ZQkzVefoF8NPDq0fqQrm8tbgI8NrT87yVSSe5P88FwbJdnRtZuanp7u0S1JUh8jp25OR5KfBCaB1w4VX1JVR5O8GPhkks9X1f+duW1V7QR2AkxOTtY4+yVJy1mfI/qjwNqh9TVd2bdI8nrgl4Frq+qbJ8ur6mj39zDwR8AVC+ivJOk09Qn6/cCGJJcmuQDYBnzL2TNJrgA+wCDkjw2Vr0zyrG55FfBqYPhHXEnSIhs5dVNVJ5JcD9wFrAB2VdWDSW4GpqpqD/BrwLcDv5sE4CtVdS3wEuADSf6RwZfKu2acrSNJWmS95uirai+wd0bZjUPLr59ju08DL1tIByVJC+OVsZLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4XkGfZEuSg0kOJblhlvpnJflIV/+ZJOuH6t7RlR9McvX4ui5J6mNk0CdZAdwCXANcBmxPctmMZm8BHq+q7wTeA7y72/YyBg8T/x5gC/Cb3ftJks6QPkf0m4BDVXW4qp4Cbge2zmizFfitbvkO4AcyeEr4VuD2qvpmVX0ZONS9nyTpDOnzcPDVwKND60eAV8zVpqpOJHkCeEFXfu+MbVfP9iFJdgA7utW/S3JwRL9WAX/do/+tOWvGnXef0Y87a8Z9hjnuZSTvXtC4L5mrok/QnxFVtRPY2bd9kqmqmlzELp2VHPfy4riXl8Uad5+pm6PA2qH1NV3ZrG2SnAc8D/haz20lSYuoT9DvBzYkuTTJBQx+XN0zo80e4Lpu+ceAT1ZVdeXburNyLgU2AH8xnq5LkvoYOXXTzblfD9wFrAB2VdWDSW4GpqpqD/Ah4H8kOQQcZ/BlQNfud4CHgBPA26rq6TH1vfc0T2Mc9/LiuJeXRRl3BgfekqRWeWWsJDXOoJekxp0TQZ/kkSSfT3Jfkqmu7KIk+5J8qfu7cqn7OW5Jnp/kjiRfSPJwkle1Pu4k39Xt55Ovryd5e+vjBkjy80keTPJAkt1Jnt2dBPGZ7jYiH+lOiGhKkp/rxvxgkrd3ZU3u7yS7khxL8sBQ2axjzcB7u31/f5Ir5/u550TQd15XVRuHzjG9AfhEVW0APtGtt+a/AR+vqu8GLgcepvFxV9XBbj9vBF4OPAncSePjTrIa+FlgsqpeyuDEh20Mbifynu72Io8zuN1IM5K8FPi3DK6Yvxz4oSTfSbv7+zYGt4MZNtdYr2FwpuIGBheTvn/en1pVZ/0LeARYNaPsIHBxt3wxcHCp+znmMT8P+DLdD+bLZdwzxroZ+LPlMG7+6eryixicDfe/gasZXCV5XtfmVcBdS93XMY/7XwEfGlr/FeDft7y/gfXAA0Prs44V+ACwfbZ2p/s6V47oC7g7yYHuVgkAL6qqx7rlvwJetDRdWzSXAtPAf0/yuSQfTHIh7Y972DZgd7fc9Lir6ijwX4CvAI8BTwAHgL+pqhNdszlvIXIOewD4viQvSPIc4I0MLrJsen/PMNdYZ7v9zLz2/7kS9K+pqisZ/FPmbUm+f7iyBl93rZ0neh5wJfD+qroC+Htm/PO10XED0M1FXwv87sy6FsfdzctuZfAF/8+BC3nmP/GbU1UPM5ieuhv4OHAf8PSMNs3t77ks1ljPiaDvjnaoqmMM5ms3AV9NcjFA9/fY0vVwURwBjlTVZ7r1OxgEf+vjPuka4LNV9dVuvfVxvx74clVNV9U/AB8FXg08v7utCDR6C5Gq+lBVvbyqvp/B7xBfpP39PWyusY7tFjJnfdAnuTDJc08uM5i3fYBvve3CdcAfLE0PF0dV/RXwaJLv6op+gMEVxk2Pe8h2/mnaBtof91eAVyZ5TneL75P7+1MMbisCbY6bJC/s/q4DfhT4MO3v72FzjXUP8Kbu7JtXAk8MTfGclrP+ytgkL2ZwFA+D6YwPV9V/SvIC4HeAdcBfAv+6qo4vUTcXRZKNwAeBC4DDwJsZfDm3Pu4LGQTfi6vqia5sOezv/wj8OIPbhXwOeCuDOdnbGfxI+zngJ6vqm0vWyUWQ5E8Y3Nb8H4BfqKpPtLq/k+wGrmJwG+avAjcBv88sY+2+8N/HYArvSeDNVTU1r88924NekrQwZ/3UjSRpYQx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1Lj/B1oIr3GZjeJNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.00 F: 0 0.00%\n", + "44.87 D: 3 27.27%\n", + "60.34 C: 2 18.18%\n", + "75.82 B: 4 36.36%\n", + "91.29 A: 2 18.18%\n" + ] + } + ], + "source": [ + "for name in [\"Lab 1\",\"Lab 2\",\"Lab 3\",\"Lab 4\"]:\n", + " df=df_0[name].astype('int32')\n", + " print(name)\n", + " compute_curve(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "120\n", + "90\n", + "90\n", + "100\n", + "90\n", + "80\n", + "105\n", + "20\n", + "84\n", + "120\n", + "100\n", + "95\n", + "110\n", + "0\n", + "100\n", + "82\n", + "0\n", + "0\n", + "111\n", + "100\n", + "50\n", + "120\n", + "115\n", + "120\n", + "100\n", + "90\n", + "105\n", + "0\n", + "0\n" + ] + } + ], + "source": [ + "for item in df_0[\"Exam 1\"].astype('int32'):\n", + " print(item)" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [], + "source": [ + "def assign_grade(numeric,grades):\n", + " previous_grade=\"F\"\n", + " for grade_letter,grade_boundry in grades.items():\n", + " #print(numeric, grade_letter,grade_boundry)\n", + " if numeric < grade_boundry:\n", + " return previous_grade\n", + " break\n", + " else:\n", + " previous_grade=grade_letter\n", + " return previous_grade\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 F\n", + "120 A+\n", + "90 A\n", + "90 A\n", + "100 A+\n", + "90 A\n", + "80 B\n", + "105 A+\n", + "20 F\n", + "84 B\n", + "120 A+\n", + "100 A+\n", + "95 A\n", + "110 A+\n", + "0 F\n", + "100 A+\n", + "82 B\n", + "0 F\n", + "0 F\n", + "111 A+\n", + "100 A+\n", + "50 F\n", + "120 A+\n", + "115 A+\n", + "120 A+\n", + "100 A+\n", + "90 A\n", + "105 A+\n", + "0 F\n", + "0 F\n" + ] + } + ], + "source": [ + "for item in df_0[\"Exam 1\"].astype('int32'):\n", + " print(item,assign_grade(item, grades))" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'A'" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "assign_grade(90,grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [], + "source": [ + "def assign_grades(name,grades):\n", + " letter_grades=list()\n", + " for item in df_0[name].astype('int32'):\n", + " letter_grades.append(assign_grade(item, grades))\n", + " return letter_grades" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['F',\n", + " 'A+',\n", + " 'A',\n", + " 'A',\n", + " 'A+',\n", + " 'A',\n", + " 'B',\n", + " 'A+',\n", + " 'F',\n", + " 'B',\n", + " 'A+',\n", + " 'A+',\n", + " 'A',\n", + " 'A+',\n", + " 'F',\n", + " 'A+',\n", + " 'B',\n", + " 'F',\n", + " 'F',\n", + " 'A+',\n", + " 'A+',\n", + " 'F',\n", + " 'A+',\n", + " 'A+',\n", + " 'A+',\n", + " 'A+',\n", + " 'A',\n", + " 'A+',\n", + " 'F',\n", + " 'F']" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "assign_grades(\"Exam 1\",grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [], + "source": [ + "letter_grades=dict()\n", + "for name in [\"Lab 1\",\"Lab 2\",\"Lab 3\",\"Lab 4\"]:\n", + " letter_grades[name]=assign_grades(name,grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['F',\n", + " 'F',\n", + " 'F',\n", + " 'F',\n", + " 'F',\n", + " 'F',\n", + " 'F',\n", + " 'B',\n", + " 'F',\n", + " 'F',\n", + " 'A',\n", + " 'C',\n", + " 'F',\n", + " 'A',\n", + " 'F',\n", + " 'A',\n", + " 'F',\n", + " 'F',\n", + " 'F',\n", + " 'F',\n", + " 'B',\n", + " 'F',\n", + " 'A+',\n", + " 'B',\n", + " 'F',\n", + " 'F',\n", + " 'C',\n", + " 'F',\n", + " 'F',\n", + " 'F']" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "letter_grades[\"Lab 3\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-21/Lecture-21.ipynb b/Lectures/Lecture-21/Lecture-21.ipynb new file mode 100644 index 0000000..cb01816 --- /dev/null +++ b/Lectures/Lecture-21/Lecture-21.ipynb @@ -0,0 +1,1425 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 21\n", + "\n", + "From previous lecture:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import libraries we will use\n", + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "from collections import OrderedDict" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Read Data into a Pandas DataFrame\n", + "df = pd.read_csv(\"Data-1401-Grades-Fixed.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df_0=df[np.logical_not(np.isnan(df[\"Student ID\"]))]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Student IDLab 1Lab 2Lab 3Lab 4Exam 1Lab 5Lab 6Lab 7
01.000954e+091008125350NaNNaNNaN
21.000626e+099587088120NaNNaNNaN
41.000848e+0910000090NaNNaNNaN
61.001108e+09909603590NaNNaNNaN
81.001000e+099594430100NaNNaNNaN
101.001214e+09808230090NaNNaNNaN
121.001428e+09809024080NaNNaNNaN
141.001397e+09100948712105NaNNaNNaN
161.001373e+0910070173520NaNNaNNaN
181.001558e+0995860084NaNNaNNaN
201.001593e+09100969685120NaNNaNNaN
221.001596e+0990927157100NaNNaNNaN
241.001609e+0910094366195NaNNaNNaN
261.001618e+09100969786110NaNNaNNaN
281.001653e+0910090000NaNNaNNaN
301.001659e+09100949692100NaNNaNNaN
321.001663e+09959438082NaNNaNNaN
341.001674e+0995902300NaNNaNNaN
361.001722e+0995100000NaNNaNNaN
381.001544e+09100961951111NaNNaNNaN
401.001548e+09100948675100NaNNaNNaN
421.001458e+098588213750NaNNaNNaN
441.001497e+0910098100100120NaNNaNNaN
461.001520e+09100948550115NaNNaNNaN
481.001774e+09100942079120NaNNaNNaN
501.001697e+09096040100NaNNaNNaN
521.001233e+098094796090NaNNaNNaN
541.001465e+09959400105NaNNaNNaN
561.001645e+0980801000NaNNaNNaN
581.001685e+0900000NaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " Student ID Lab 1 Lab 2 Lab 3 Lab 4 Exam 1 Lab 5 Lab 6 Lab 7\n", + "0 1.000954e+09 100 81 25 35 0 NaN NaN NaN\n", + "2 1.000626e+09 95 87 0 88 120 NaN NaN NaN\n", + "4 1.000848e+09 100 0 0 0 90 NaN NaN NaN\n", + "6 1.001108e+09 90 96 0 35 90 NaN NaN NaN\n", + "8 1.001000e+09 95 94 43 0 100 NaN NaN NaN\n", + "10 1.001214e+09 80 82 30 0 90 NaN NaN NaN\n", + "12 1.001428e+09 80 90 24 0 80 NaN NaN NaN\n", + "14 1.001397e+09 100 94 87 12 105 NaN NaN NaN\n", + "16 1.001373e+09 100 70 17 35 20 NaN NaN NaN\n", + "18 1.001558e+09 95 86 0 0 84 NaN NaN NaN\n", + "20 1.001593e+09 100 96 96 85 120 NaN NaN NaN\n", + "22 1.001596e+09 90 92 71 57 100 NaN NaN NaN\n", + "24 1.001609e+09 100 94 36 61 95 NaN NaN NaN\n", + "26 1.001618e+09 100 96 97 86 110 NaN NaN NaN\n", + "28 1.001653e+09 100 90 0 0 0 NaN NaN NaN\n", + "30 1.001659e+09 100 94 96 92 100 NaN NaN NaN\n", + "32 1.001663e+09 95 94 38 0 82 NaN NaN NaN\n", + "34 1.001674e+09 95 90 23 0 0 NaN NaN NaN\n", + "36 1.001722e+09 95 100 0 0 0 NaN NaN NaN\n", + "38 1.001544e+09 100 96 19 51 111 NaN NaN NaN\n", + "40 1.001548e+09 100 94 86 75 100 NaN NaN NaN\n", + "42 1.001458e+09 85 88 21 37 50 NaN NaN NaN\n", + "44 1.001497e+09 100 98 100 100 120 NaN NaN NaN\n", + "46 1.001520e+09 100 94 85 50 115 NaN NaN NaN\n", + "48 1.001774e+09 100 94 20 79 120 NaN NaN NaN\n", + "50 1.001697e+09 0 96 0 40 100 NaN NaN NaN\n", + "52 1.001233e+09 80 94 79 60 90 NaN NaN NaN\n", + "54 1.001465e+09 95 94 0 0 105 NaN NaN NaN\n", + "56 1.001645e+09 80 80 10 0 0 NaN NaN NaN\n", + "58 1.001685e+09 0 0 0 0 0 NaN NaN NaN" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_0" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "exam_1_df=df_0[\"Exam 1\"].astype('int32')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "grade_def = [(\"A+\",100),\n", + " (\"A\",90),\n", + " (\"B\",80), \n", + " (\"C\",70),\n", + " (\"D\",60),\n", + " (\"F\",0) ]\n", + "\n", + "grades=OrderedDict(grade_def[::-1])\n", + "\n", + "grades_inverse=OrderedDict(zip(list(grades.values())[::-1],\n", + " list(grades.keys())[::-1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grades[\"F\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def grade_summary(df_0,grades,min_grade=0.):\n", + " df=df_0[df_0>min_grade]\n", + " N_total=sum(df>min_grade)\n", + " hist,bins=np.histogram(df,bins=list(grades.values()))\n", + "\n", + " print(\"Mean:\",np.mean(df))\n", + " print(\"Std:\",np.std(df))\n", + " \n", + " for grade_letter,bin_count in zip(grades.keys(),hist):\n", + " print(grade_letter+\": \"+str(bin_count),\n", + " float(bin_count/N_total) )\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 95.70833333333333\n", + "Std: 22.322408708639745\n", + "F: 2 0.08333333333333333\n", + "D: 0 0.0\n", + "C: 0 0.0\n", + "B: 3 0.125\n", + "A: 10 0.4166666666666667\n" + ] + } + ], + "source": [ + "grade_summary(exam_1_df,grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def compute_curve(df_0, min_grade=None):\n", + "\n", + " if min_grade:\n", + " pass\n", + " else:\n", + " min_grade=np.max(df_0)/2.\n", + " \n", + " print(\"Min grade:\",min_grade)\n", + "\n", + " df=df_0[df_0>min_grade]\n", + " N_total=sum(df_0>min_grade)\n", + " \n", + " print(\"N Total (post cut):\",N_total)\n", + " print(\"N Total (pre cut):\",df_0.shape)\n", + " \n", + " mean=np.mean(df)\n", + " std=np.std(df)\n", + "\n", + " print(\"Mean:\",mean)\n", + " print(\"Std:\",std)\n", + " \n", + " grade_def=[(\"A+\",np.max(df)),\n", + " (\"A\", min(np.max(df),mean+std)),\n", + " (\"B\",mean), \n", + " (\"C\",mean-std),\n", + " (\"D\",mean-2*std),\n", + " (\"F\",0.)]\n", + " \n", + " grade_def.reverse()\n", + " grades=OrderedDict( grade_def )\n", + " \n", + " \n", + " hist,bins=np.histogram(df,bins=list(grades.values()))\n", + " \n", + " _=plt.hist(df)\n", + " plt.show()\n", + " \n", + " for grade_letter,bin_count,min_grade in zip(grades.keys(),hist,grades.values()):\n", + " print(\"{:2.2f}\".format(min_grade),\n", + " grade_letter+\": \"+str(bin_count),\n", + " \"{:2.2f}%\".format(100.*float(bin_count/N_total)) )\n", + " return grades\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min grade: 60\n", + "N Total (post cut): 22\n", + "N Total (pre cut): (30,)\n", + "Mean: 101.22727272727273\n", + "Std: 12.555085236240183\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAM1UlEQVR4nO3cfYxldX3H8fe3OxRBaSjulFJhHLTWSk0EOqW0VGKxtQuroq1NMLXV1GSSpiTYh9glJo3+0QT6nDamdK0UqgLaVioBUWgFrUnB7uKCuyzULWwtdMuC1gdiQ1389o9zBi6TOzN3du855yvzfiU3cx/OnPuZ39z7mXN/55yJzESSVNd3DR1AkrQ6i1qSirOoJak4i1qSirOoJam4mS5Wunnz5pyfn+9i1ZL0rLRz587HMnN23GOdFPX8/Dw7duzoYtWS9KwUEf+x0mNOfUhScRa1JBVnUUtScRa1JBVnUUtScRa1JBU30eF5EbEf+AbwJHAoMxe6DCVJetp6jqP+6cx8rLMkkqSxnPqQpOIm3aJO4JaISOAvM3P78gUiYhFYBJibm5teQmmK5rfdNMjz7r9s6yDPq2eHSbeofyozzwTOB349Is5dvkBmbs/MhcxcmJ0de7q6JOkwTFTUmflw+/UgcD1wVpehJElPW7OoI+K5EXHc0nXgNcDuroNJkhqTzFGfCFwfEUvLX5OZn+g0lSTpKWsWdWY+ALyihyySpDE8PE+SirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJak4i1qSirOoJam4iYs6IjZFxOcj4sYuA0mSnmk9W9SXAHu7CiJJGm+ioo6Ik4GtwF91G0eStNzMhMv9KfBO4LiVFoiIRWARYG5u7siTbSDz224a5Hn3X7Z1kOeVuvZse0+tuUUdEa8FDmbmztWWy8ztmbmQmQuzs7NTCyhJG90kUx/nAK+PiP3AdcB5EfHBTlNJkp6yZlFn5qWZeXJmzgMXAZ/KzLd0nkySBHgctSSVN+nORAAy83bg9k6SSJLGcotakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpOItakoqzqCWpuDWLOiKeExGfi4i7I2JPRLynj2CSpMbMBMs8AZyXmY9HxFHAZyPi5sy8o+NskiQmKOrMTODx9uZR7SW7DCVJetpEc9QRsSkidgEHgVsz885uY0mSlkxU1Jn5ZGaeDpwMnBURL1++TEQsRsSOiNjx6KOPTjunJG1Y6zrqIzO/CtwGbBnz2PbMXMjMhdnZ2Wnlk6QNb5KjPmYj4vj2+jHAzwL3dR1MktSY5KiPk4CrI2ITTbF/JDNv7DaWJGnJJEd93AOc0UMWSdIYnpkoScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScVZ1JJUnEUtScWtWdQRcUpE3BYR90bEnoi4pI9gkqTGzATLHAJ+KzPviojjgJ0RcWtm3ttxNkkSE2xRZ+aBzLyrvf4NYC/wgq6DSZIak2xRPyUi5oEzgDvHPLYILALMzc0ddqD5bTcd9vceif2XbR3kebUxDPW6HpLvqemZeGdiRDwP+HvgHZn59eWPZ+b2zFzIzIXZ2dlpZpSkDW2ioo6Io2hK+kOZ+dFuI0mSRk1y1EcA7wf2ZuYfdx9JkjRqki3qc4BfBs6LiF3t5YKOc0mSWmvuTMzMzwLRQxZJ0hiemShJxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklScRS1JxVnUklTcmkUdEVdGxMGI2N1HIEnSM02yRX0VsKXjHJKkFaxZ1Jn5GeArPWSRJI0xM60VRcQisAgwNzc3rdX2Zn7bTUNH6N2QP/P+y7YO9tzqx0Z8T3VlajsTM3N7Zi5k5sLs7Oy0VitJG55HfUhScRa1JBU3yeF51wL/Arw0Ih6KiLd3H0uStGTNnYmZ+eY+gkiSxnPqQ5KKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKs6glqTiLWpKKm6ioI2JLRNwfEfsiYlvXoSRJT1uzqCNiE/Be4HzgNODNEXFa18EkSY1JtqjPAvZl5gOZ+X/AdcCF3caSJC2ZmWCZFwD/OXL7IeDHly8UEYvAYnvz8Yi4/zAzbQYeO8zv7ZK51mfVXHF5j0me6TtyvAZkrnWIy48o1wtXemCSop5IZm4Hth/peiJiR2YuTCHSVJlrfcy1PuZan42Wa5Kpj4eBU0Zun9zeJ0nqwSRF/a/ASyLi1Ij4buAi4IZuY0mSlqw59ZGZhyLiYuCTwCbgyszc02GmI54+6Yi51sdc62Ou9dlQuSIzu1ivJGlKPDNRkoqzqCWpuEGLOiJ+IyL2RMTuiLg2Ip7T7rS8sz1d/cPtDswKua6KiAcjYld7OX2AXJe0mfZExDva+06IiFsj4ovt1+8tkuvdEfHwyHhd0FOWKyPiYETsHrlv7BhF48/a19o9EXFmkVyvioivjYzd7/ac6xfb3+W3I2Jh2fKXtuN1f0T8XIVcETEfEf87Ml5X9JzrDyLivvY1dH1EHD/y2HTGKzMHudCcSPMgcEx7+yPA29qvF7X3XQH8WpFcVwFvGnC8Xg7sBo6l2Qn8j8APAr8PbGuX2QZcXiTXu4HfHmCczgXOBHaP3Dd2jIALgJuBAM4G7iyS61XAjQOO18uAlwK3Awsj958G3A0cDZwK/DuwqUCu+dHlBhiv1wAz7fXLR36PUxuvoac+ZoBjImKG5o1+ADgP+Lv28auBNxTI9V8DZFjuZTRF8s3MPAR8Gvh5mtP5r26XGWK8Vso1iMz8DPCVZXevNEYXAn+TjTuA4yPipAK5ejMuV2buzcxxZxZfCFyXmU9k5oPAPpp/MTF0rt6skOuW9rUPcAfNuSYwxfEarKgz82HgD4Ev0RT014CdwFdHfuiHaLZwB82Vmbe0D/9e+/HmTyLi6D5z0Wy1vjIinh8Rx9JsDZ4CnJiZB9pl/hs4sUgugIvb8bpyiCmZESuN0bh/j9Dn6221391PRMTdEXFzRPxIj5lWM/R4rebUiPh8RHw6Il45YI5fpfmUBlMcr8GKun3jXkjzkeAHgOcCW4bKs2Rcroh4C3Ap8MPAjwEnAL/TZ67M3EvzseoW4BPALuDJZcsk0Ovxlqvk+gvgxcDpNH/w/qjPXCsZYowmsSzXXcALM/MVwJ8D/zBYsO8MB4C5zDwD+E3gmoj4nr5DRMS7gEPAh6a97iGnPn4GeDAzH83MbwEfBc6h+fi5dCLOEKerj8v1k5l5oP2I/ATw13T0kW81mfn+zPzRzDwX+B/g34BHlj6ut18PVsiVmY9k5pOZ+W3gfQwwXiNWGqOh/z3C2FyZ+fXMfLy9/nHgqIjY3GOulQw9XmO1Uwtfbq/vpJkL/qE+M0TE24DXAr/U/tGFKY7XkEX9JeDsiDg2IgJ4NXAvcBvwpnaZtwIfK5Br78gbKmjmEnevso5ORMT3tV/naOaBr6E5nf+t7SJDjNfYXMvmet/IAOM1YqUxugH4lfboj7NpprkOjFtBn7ki4vvb1xkRcRbN+/TLPeZayQ3ARRFxdEScCrwE+NzAmYiI2Wj+bz4R8SKaXA/0+PxbgHcCr8/Mb448NL3x6mNP6Sp7UN8D3EfzJv4Azd7RF7U/zD7gb4Gji+T6FPCF9r4PAs8bINc/0/wxuxt4dXvf84F/Ar5Ic8TFCUVyfaAdr3vaF+xJPWW5luaj8Ldo5gTfvtIY0Rzt8V6aLbAvMHIkwcC5Lgb2tON5B80nuj5zvbG9/gTwCPDJkeXf1Y7X/cD5FXIBv9CO1y6aaaPX9ZxrH81c9K72csW0x8tTyCWpuKEPz5MkrcGilqTiLGpJKs6ilqTiLGpJKs6ilqTiLGpJKu7/Af72pNdEJwJaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.00 F: 0 0.00%\n", + "76.12 D: 3 13.64%\n", + "88.67 C: 10 45.45%\n", + "101.23 B: 4 18.18%\n", + "113.78 A: 5 22.73%\n" + ] + }, + { + "data": { + "text/plain": [ + "OrderedDict([('F', 0.0),\n", + " ('D', 76.11710225479237),\n", + " ('C', 88.67218749103255),\n", + " ('B', 101.22727272727273),\n", + " ('A', 113.78235796351292),\n", + " ('A+', 120)])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "compute_curve(exam_1_df,60)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grading Strategies\n", + "\n", + "Thinking about what we did, we noticed that we have 2 grading strategies:\n", + "1. \"Standard\": 70, 80, 90 scheme.\n", + "2. \"Curved\": Using mean and standard deviation.\n", + "\n", + "There is a third strategy that I often apply when the grade distribution doesn't look like a normal distribution. When we curve the letter grades mean the following, based on the fact that 68% of normal distribution lies between -1 and 1 $\\sigma$ of the mean.\n", + "\n", + "* B and C: comprise of the 68% of the students withing 1 $\\sigma$ of the mean, with the top 34% subset assigned a B and the bottom 34% assigned a C. Nearly all of the remaining 32% of the students will be within 2 $\\sigma$ of the mean.\n", + "* A: The approximately 16% that are more than 1 $\\sigma$ above the mean are assigned an A.\n", + "* D: The approximately 16% that are more are between 1 $\\sigma$ and 2 $\\sigma$ below the mean are assigned a D.\n", + "\n", + "All of this assume a normal distribution. If the grade distribution isn't normal, we can still assign grades in a way that we could interpret in the same way as the curved grades by simply assigning the top 16% an A, next 32% B, then assign C to the 32% and D to the the 16% after.\n", + "\n", + "\n", + "## Disecting the Task at Hand\n", + "\n", + "We can also note that all the stragegies are defined by the boundries between letter grades. Therefore we can factorize the operation of assigning a letter grade into several steps:\n", + "* Perform statistical analysis of the grades to obtain basic parameters.\n", + " * Minimum cut-off\n", + " * Mean / Sigma\n", + "* Establish grade boundries.\n", + " * Potentially apply several strategies.\n", + " * Select a strategy appropriate for given distribution of grades.\n", + "* Use grade boundries to assign grades.\n", + "* Validate the assigned grades.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Organizing Our Code\n", + "\n", + "It is possible to perform the steps above without any (or with minimal) generalization or abstraction (ie using functions). We could work out a grade with a series of steps... then copy and paste for the other grades. The benefits would be that without generalization, we could fine tune every grade easily. But it could become tedious and our results would be error prone.\n", + "\n", + "Alternatively, we can recognize that each of the steps above can be done with a set of functions that have the same inputs and outputs:\n", + "\n", + "* Statistical Analysis Functions: Input list of grades. Output mean, standard deviation, and minium grade.\n", + "* Grade Boundries Functions: Input stats (and list of grades). Output boundries.\n", + "* Assign Grades Function: Input boundries and list grades. Output corresponding list of assigned letter grades.\n", + "* Validate Function: Input assigned letter grades, output percentage of each grade.\n", + "\n", + "In addition, we will need to do a weighted sum of the grades to assign a class grade. \n", + "\n", + "We also have to note that beyond the procedural steps, we will have to make choices about how we represent the input/output data of each step. For example, previously we represented grade boundries as an `OrderedDict`. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a System\n", + "\n", + "We are starting to recognize that depending on the context, we may choose different levels of sophistication for our code to solve a problem:\n", + "\n", + "* Quickly solve a problem once: Cut and paste can be sufficient.\n", + "* Scale or solve the problem on many data points: Implement functions that perform tasks.\n", + "* Solve the same problem with different data: Identify tasks and generalize functions with defined input/outputs\n", + "* Enable others to use your code to solve the same problem.\n", + "* Build a production system or service that solves the problem.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## An Object Oriented Approach\n", + "\n", + "Object Oriented programming is not required to solve problems. But in many cases, OO can greatly simplify the development process and ability to further add functionality to the code. Even within OO, there are many approaches to solving the same problem, and while some may have advatanges, often it takes several iterations and revisions to approach optimality... and even then, there are stylistic and historical choices.\n", + "\n", + "Lets explore one OO approach to building a Grade Book system.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Base Classes" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Create some virtual classes\n", + "\n", + "class base:\n", + " __name=\"\"\n", + " \n", + " def __init__(self,name):\n", + " self.__name=name\n", + "\n", + " def name(self):\n", + " return self.__name\n", + " \n", + "\n", + "class data(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n", + " \n", + "class alg(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Hello'" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a=alg(\"Hello\")\n", + "a.name()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " '_base__name',\n", + " 'name']" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Representation\n", + "\n", + "We note that we have two types of grades: numerical and letter. We have a choice of how to represent grades. Below is one. What might be another way?" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "class grade(data):\n", + " __letter_grades=[\"F-\",\"F\",\"F+\",\"D-\",\"D\",\"D+\",\"C-\",\"C\",\"C+\",\"B-\",\"B\",\"B+\",\"A-\",\"A\",\"A+\"]\n", + " \n", + " def __init__(self,name,numerical=True,value=None):\n", + " self.__value=value\n", + " self.__numerical=numerical\n", + " self.__gradebook_name=str()\n", + " \n", + " if value:\n", + " if isinstance(value,(int,float)):\n", + " self.__numerical=True\n", + " elif isinstance(value,str):\n", + " self.__numerical=False\n", + " self.set(value)\n", + " else: \n", + " self.__numerical=numerical\n", + " self.__gradebook_name=name\n", + " data.__init__(self,name+\" Grade Data Object\") \n", + "\n", + " def set(self,value):\n", + " if isinstance(value,(int,float)) and self.__numerical:\n", + " self.__value=value\n", + " elif isinstance(value,str) and not self.__numerical:\n", + " if value in self.__letter_grades:\n", + " self.__value=value\n", + " else:\n", + " print( self.name()+\" Error: Bad Grade.\")\n", + " raise Exception\n", + " \n", + " def value(self):\n", + " return self.__value\n", + " \n", + " def numerical(self):\n", + " return self.__numerical\n", + " \n", + " def gradebook_name(self):\n", + " return self.__gradebook_name\n", + " \n", + " def __str__(self):\n", + " return self.__gradebook_name+\": \"+str(self.__value)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Student Representation" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "class student(data):\n", + " \n", + " def __init__(self, first_name, last_name, id_number):\n", + " self.__grades=dict()\n", + " self.__id_number=id_number\n", + " data.__init__(self,first_name+\" \"+last_name+\" Student Data\")\n", + "\n", + " def add_grade(self,a_grade,overwrite=False):\n", + " if overwrite or not a_grade.gradebook_name() in self.__grades:\n", + " self.__grades[a_grade.gradebook_name()]=a_grade\n", + " else:\n", + " print (self.name()+\" Error Adding Grade \"+a_grade.name()+\". Grade already exists.\")\n", + " raise Exception\n", + "\n", + " def id_number(self):\n", + " return __id_number\n", + " \n", + " def __getitem__(self,key):\n", + " return self.__grades[key]\n", + " \n", + " def print_grades(self):\n", + " for grade in self.__grades:\n", + " print (self.__grades[grade])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exam 1: 95\n", + "Exam 1 Letter: A\n" + ] + } + ], + "source": [ + "a_student=student(\"John\",\"Doe\",111)\n", + "\n", + "a_student.add_grade(grade(\"Exam 1\",value=95))\n", + "a_student.add_grade(grade(\"Exam 1 Letter\",value=\"A\"))\n", + "\n", + "a_student.print_grades()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Calculator" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_calculator(alg): \n", + " def __init__(self,name,stats):\n", + " self.__stats=stats\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade):\n", + " raise NotImplementedError\n", + " \n", + "\n", + "class uncurved_letter_grade_percent(grade_calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__grade_name=grade_name\n", + " grade_calculator.__init__(self,\n", + " \"Uncurved Percent Based Grade Calculator \"+self.__grade_name+\" Max=\"+str(self.__max_grade),\n", + " False)\n", + " \n", + "\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + "\n", + " percent=a_grade.value()/self.__max_grade\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exam 1 Test Grade: A\n" + ] + } + ], + "source": [ + "a_grader=uncurved_letter_grade_percent(grade_name=\"Exam 1 Test Grade\")\n", + "print(a_grader.apply(a_student[\"Exam 1\"]))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exam 1 Test Grade: B-\n" + ] + } + ], + "source": [ + "print(a_grader.apply(grade(\"Test Grade\",value=81.)))" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "class curved_letter_grade(grade_calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,mean,std,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__mean=mean\n", + " self.__std=std\n", + " self.__grade_name=grade_name\n", + " grade_calculator.__init__(self,\n", + " \"Curved Percent Based Grade Calculator \"+self.__grade_name+ \\\n", + " \" Mean=\"+str(self.__mean)+\\\n", + " \" STD=\"+str(self.__std)+\\\n", + " \" Max=\"+str(self.__max_grade),\n", + " False)\n", + " \n", + "\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exam 1: 70\n", + "Exam 1 Letter: A\n" + ] + } + ], + "source": [ + "a_student=student(\"John\",\"Doe\",111)\n", + "\n", + "a_student.print_grades()\n", + "\n", + "a_student.add_grade(grade(\"Exam 1\",value=70))\n", + "a_student.add_grade(grade(\"Exam 1 Letter\",value=\"A\"))\n", + "\n", + "a_student.print_grades()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exam 1 Test Grade: A+\n" + ] + } + ], + "source": [ + "a_grader=curved_letter_grade(grade_name=\"Exam 1 Test Grade\",mean=50.,std=10.)\n", + "print( a_grader.apply(a_student[\"Exam 1\"]))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exam 1 Test Grade: A+\n" + ] + } + ], + "source": [ + "print( a_grader.apply(grade(\"Test Grade\",value=75.)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stats Computation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import math\n", + "\n", + "class statistics_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,grades):\n", + " raise NotImplementedError\n", + " \n", + "class mean_std_calculator(statistics_calculator):\n", + " def __init__(self):\n", + " statistics_calculator.__init__(self,\"Mean and Standard Deviation Calculator\")\n", + " \n", + " def apply(self,grades):\n", + " return np.mean(grades),math.sqrt(np.var(grades))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Summing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class summary_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_student):\n", + " raise NotImplementedError\n", + " \n", + "class grade_summer(summary_calculator):\n", + " def __init__(self,prefix,n):\n", + " self.__prefix=prefix\n", + " self.__n=n\n", + " statistics_calculator.__init__(self,\"Sum Grades\")\n", + " \n", + " def apply(self,a_student):\n", + " labels=[prefix+str(x) for x in range(1,n)]\n", + " \n", + " grade_sum=0.\n", + " for label in labels:\n", + " grade_sum+=a_student[label]\n", + " \n", + " a_student.add_grade(grade(prefix+\"sum\",value=grade_sum))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gradebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_book(data):\n", + " \n", + " def __init__(self,name):\n", + " data.__init__(self,name+\" Course Grade Book\")\n", + " self.__students=dict()\n", + " \n", + " def add_student(self,a_student):\n", + " self.__students[a_student.id_number]=a_student\n", + " \n", + " def assign_grade(self,key,a_grade):\n", + " the_student=None\n", + " try:\n", + " the_student=self.__students[key]\n", + " except:\n", + " for id in self.__students:\n", + " if key == self.__students[id].name():\n", + " the_student=self.__students[id]\n", + " break\n", + " if the_student:\n", + " the_student.add_grade(a_grade)\n", + " else:\n", + " print (self.name()+\" Error: Did not find student.\")\n", + " \n", + " def apply_grader(self,a_grader,grade_name):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student[grade_name]))\n", + " \n", + " def apply_stats(self,a_stat_comp,grade_name):\n", + " grades=list()\n", + " for k,a_student in self.__students.iteritems():\n", + " grades.append(a_student[grade_name].value())\n", + " \n", + " return a_stat_comp.apply(grades)\n", + " \n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a Gradebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_0.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for d in df_0.iterrows():\n", + " print(type(d))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_0[\"Lab 1\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book=grade_book(\"Data 1401\")\n", + "\n", + "for student_i in range(df_0.shape[0]):\n", + " a_student_0=student(\"Student\",str(student_i),student_i)\n", + "\n", + " for k in df_0.keys():\n", + " a_student_0.add_grade(grade(k,value=df_0[k][student_i]))\n", + "\n", + " a_grade_book.add_student(a_student_0)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_stats(mean_std_calculator(),\"l2_3\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-22/Lecture-22.ipynb b/Lectures/Lecture-22/Lecture-22.ipynb new file mode 100644 index 0000000..c654782 --- /dev/null +++ b/Lectures/Lecture-22/Lecture-22.ipynb @@ -0,0 +1,4000 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 22\n", + "\n", + "From previous lecture:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import libraries we will use\n", + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "from collections import OrderedDict" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Base Classes" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Create some virtual classes\n", + "class base:\n", + " __name=\"\"\n", + " \n", + " def __init__(self,name):\n", + " self.__name=name\n", + "\n", + " def name(self):\n", + " return self.__name\n", + "\n", + "class data(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n", + " \n", + "class alg(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Representation\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "class grade(data):\n", + " __letter_grades=[\"F-\",\"F\",\"F+\",\"D-\",\"D\",\"D+\",\"C-\",\"C\",\"C+\",\"B-\",\"B\",\"B+\",\"A-\",\"A\",\"A+\"]\n", + " \n", + " def __init__(self,name,numerical=True,value=None):\n", + " self.__value=value\n", + " self.__numerical=numerical\n", + " self.__gradebook_name=str()\n", + " \n", + " if value:\n", + " if isinstance(value,(int,float)):\n", + " self.__numerical=True\n", + " elif isinstance(value,str):\n", + " self.__numerical=False\n", + " self.set(value)\n", + " else: \n", + " self.__numerical=numerical\n", + " self.__gradebook_name=name\n", + " data.__init__(self,name+\" Grade Data Object\") \n", + "\n", + " def set(self,value):\n", + " if isinstance(value,(int,float)) and self.__numerical:\n", + " self.__value=value\n", + " elif isinstance(value,str) and not self.__numerical:\n", + " if value in self.__letter_grades:\n", + " self.__value=value\n", + " else:\n", + " print( self.name()+\" Error: Bad Grade.\")\n", + " raise Exception\n", + " \n", + " def value(self):\n", + " return self.__value\n", + " \n", + " def numerical(self):\n", + " return self.__numerical\n", + " \n", + " def gradebook_name(self):\n", + " return self.__gradebook_name\n", + " \n", + " def __str__(self):\n", + " return self.__gradebook_name+\": \"+str(self.__value)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Student Representation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class student(data):\n", + " def __init__(self, first_name, last_name, id_number):\n", + " self.__grades=dict()\n", + " self.__id_number=id_number\n", + " data.__init__(self,first_name+\" \"+last_name+\" Student Data\")\n", + "\n", + " def add_grade(self,a_grade,overwrite=False):\n", + " if overwrite or not a_grade.gradebook_name() in self.__grades:\n", + " self.__grades[a_grade.gradebook_name()]=a_grade\n", + " else:\n", + " print (self.name()+\" Error Adding Grade \"+a_grade.name()+\". Grade already exists.\")\n", + " raise Exception\n", + "\n", + " def id_number(self):\n", + " return self.__id_number\n", + " \n", + " def grade_names(self):\n", + " return self.__grades.keys()\n", + " \n", + " def grades(self):\n", + " return self.__grades\n", + " \n", + " def __getitem__(self,key):\n", + " return self.__grades[key]\n", + " \n", + " def print_grades(self):\n", + " for grade in self.__grades:\n", + " print (self.__grades[grade])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Calculator" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_calculator(alg): \n", + " def __init__(self,name,stats):\n", + " self.__stats=stats\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade):\n", + " raise NotImplementedError\n", + " \n", + "\n", + "class uncurved_letter_grade_percent(grade_calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__grade_name=grade_name\n", + " grade_calculator.__init__(self,\n", + " \"Uncurved Percent Based Grade Calculator \"+self.__grade_name+\" Max=\"+str(self.__max_grade),\n", + " False)\n", + " \n", + "\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + "\n", + " percent=a_grade.value()/self.__max_grade\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "class curved_letter_grade(grade_calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,mean,std,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__mean=mean\n", + " self.__std=std\n", + " self.__grade_name=grade_name\n", + " grade_calculator.__init__(self,\n", + " \"Curved Percent Based Grade Calculator \"+self.__grade_name+ \\\n", + " \" Mean=\"+str(self.__mean)+\\\n", + " \" STD=\"+str(self.__std)+\\\n", + " \" Max=\"+str(self.__max_grade),\n", + " False)\n", + " \n", + "\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stats Computation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import math\n", + "\n", + "class statistics_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,grades):\n", + " raise NotImplementedError\n", + " \n", + "class mean_std_calculator(statistics_calculator):\n", + " def __init__(self):\n", + " statistics_calculator.__init__(self,\"Mean and Standard Deviation Calculator\")\n", + " \n", + " def apply(self,grades):\n", + " return np.mean(grades),math.sqrt(np.var(grades))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grade Summing" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "class summary_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_student):\n", + " raise NotImplementedError\n", + " \n", + "class grade_summer(summary_calculator):\n", + " def __init__(self,prefix,n):\n", + " self.__prefix=prefix\n", + " self.__n=n\n", + " statistics_calculator.__init__(self,\"Sum Grades\")\n", + " \n", + " def apply(self,a_student):\n", + " labels=[self.__prefix+str(x) for x in range(1,self.__n)]\n", + " \n", + " grade_sum=0.\n", + " for label in labels:\n", + " grade_sum+=a_student[label].value()\n", + " \n", + " return grade(self.__prefix+\"sum\",value=grade_sum)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gradebook" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_book(data):\n", + " # New member class to hold arbitrary data associated with the class \n", + " def __init__(self,name):\n", + " data.__init__(self,name+\" Course Grade Book\")\n", + " self.__students=dict() \n", + " \n", + " # New method to add data \n", + " def add_student(self,a_student):\n", + " self.__students[a_student.id_number()]=a_student\n", + "\n", + " # New method to allow iterating over students\n", + " def get_students(self):\n", + " return self.__students\n", + " \n", + " def assign_grade(self,key,a_grade):\n", + " the_student=None\n", + " try:\n", + " the_student=self.__students[key]\n", + " except:\n", + " for id in self.__students:\n", + " if key == self.__students[id].name():\n", + " the_student=self.__students[id]\n", + " break\n", + " if the_student:\n", + " the_student.add_grade(a_grade)\n", + " else:\n", + " print (self.name()+\" Error: Did not find student.\")\n", + " \n", + " def apply_summary(self,a_grader):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student))\n", + " \n", + " def apply_grader(self,a_grader,grade_name):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student[grade_name]))\n", + " \n", + " def apply_stats(self,a_stat_comp,grade_name):\n", + " grades=list()\n", + " for k,a_student in self.__students.items():\n", + " grades.append(a_student[grade_name].value())\n", + " return a_stat_comp.apply(grades)\n", + " \n", + " def students(self):\n", + " return self.__students\n", + " \n", + " def print_grades(self,grade_name):\n", + " if isinstance(grade_name,str):\n", + " grade_names=list()\n", + " grade_names.append(grade_name)\n", + " else:\n", + " grade_names=grade_name\n", + " \n", + " for k,a_student in self.__students.items():\n", + " print (a_student.name(),end=\"\")\n", + " for a_grade_name in grade_names:\n", + " print (a_student[a_grade_name],end=\"\")\n", + " print()\n", + " \n", + " def print_students(self): \n", + " for k,a_student in self.__students.items():\n", + " print (k, a_student.name())\n", + " a_student.print_grades()\n", + " print (\"_______________________________________\")\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a Gradebook" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Read Data into a Pandas DataFrame\n", + "df = pd.read_csv(\"Data-1401-Grades-Fixed.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "df_0=df[np.logical_not(np.isnan(df[\"Student ID\"]))]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Student ID', 'Lab 1', 'Lab 2', 'Lab 3', 'Lab 4', 'Exam 1', 'Lab 5',\n", + " 'Lab 6', 'Lab 7'],\n", + " dtype='object')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_0.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Student ID 1000954113.0\n", + "Lab 1 100\n", + "Lab 2 81\n", + "Lab 3 25\n", + "Lab 4 35\n", + "Exam 1 0\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1000625629.0\n", + "Lab 1 95\n", + "Lab 2 87\n", + "Lab 3 0\n", + "Lab 4 88\n", + "Exam 1 120\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1000847686.0\n", + "Lab 1 100\n", + "Lab 2 0\n", + "Lab 3 0\n", + "Lab 4 0\n", + "Exam 1 90\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001108137.0\n", + "Lab 1 90\n", + "Lab 2 96\n", + "Lab 3 0\n", + "Lab 4 35\n", + "Exam 1 90\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1000999851.0\n", + "Lab 1 95\n", + "Lab 2 94\n", + "Lab 3 43\n", + "Lab 4 0\n", + "Exam 1 100\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001214491.0\n", + "Lab 1 80\n", + "Lab 2 82\n", + "Lab 3 30\n", + "Lab 4 0\n", + "Exam 1 90\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001428148.0\n", + "Lab 1 80\n", + "Lab 2 90\n", + "Lab 3 24\n", + "Lab 4 0\n", + "Exam 1 80\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001397199.0\n", + "Lab 1 100\n", + "Lab 2 94\n", + "Lab 3 87\n", + "Lab 4 12\n", + "Exam 1 105\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001372854.0\n", + "Lab 1 100\n", + "Lab 2 70\n", + "Lab 3 17\n", + "Lab 4 35\n", + "Exam 1 20\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001558073.0\n", + "Lab 1 95\n", + "Lab 2 86\n", + "Lab 3 0\n", + "Lab 4 0\n", + "Exam 1 84\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001593219.0\n", + "Lab 1 100\n", + "Lab 2 96\n", + "Lab 3 96\n", + "Lab 4 85\n", + "Exam 1 120\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001596311.0\n", + "Lab 1 90\n", + "Lab 2 92\n", + "Lab 3 71\n", + "Lab 4 57\n", + "Exam 1 100\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001608680.0\n", + "Lab 1 100\n", + "Lab 2 94\n", + "Lab 3 36\n", + "Lab 4 61\n", + "Exam 1 95\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001618032.0\n", + "Lab 1 100\n", + "Lab 2 96\n", + "Lab 3 97\n", + "Lab 4 86\n", + "Exam 1 110\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001652624.0\n", + "Lab 1 100\n", + "Lab 2 90\n", + "Lab 3 0\n", + "Lab 4 0\n", + "Exam 1 0\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001658617.0\n", + "Lab 1 100\n", + "Lab 2 94\n", + "Lab 3 96\n", + "Lab 4 92\n", + "Exam 1 100\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001663166.0\n", + "Lab 1 95\n", + "Lab 2 94\n", + "Lab 3 38\n", + "Lab 4 0\n", + "Exam 1 82\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001674179.0\n", + "Lab 1 95\n", + "Lab 2 90\n", + "Lab 3 23\n", + "Lab 4 0\n", + "Exam 1 0\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001722244.0\n", + "Lab 1 95\n", + "Lab 2 100\n", + "Lab 3 0\n", + "Lab 4 0\n", + "Exam 1 0\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001543608.0\n", + "Lab 1 100\n", + "Lab 2 96\n", + "Lab 3 19\n", + "Lab 4 51\n", + "Exam 1 111\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001547659.0\n", + "Lab 1 100\n", + "Lab 2 94\n", + "Lab 3 86\n", + "Lab 4 75\n", + "Exam 1 100\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001458157.0\n", + "Lab 1 85\n", + "Lab 2 88\n", + "Lab 3 21\n", + "Lab 4 37\n", + "Exam 1 50\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001496565.0\n", + "Lab 1 100\n", + "Lab 2 98\n", + "Lab 3 100\n", + "Lab 4 100\n", + "Exam 1 120\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001519928.0\n", + "Lab 1 100\n", + "Lab 2 94\n", + "Lab 3 85\n", + "Lab 4 50\n", + "Exam 1 115\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001774305.0\n", + "Lab 1 100\n", + "Lab 2 94\n", + "Lab 3 20\n", + "Lab 4 79\n", + "Exam 1 120\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001696890.0\n", + "Lab 1 0\n", + "Lab 2 96\n", + "Lab 3 0\n", + "Lab 4 40\n", + "Exam 1 100\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001232602.0\n", + "Lab 1 80\n", + "Lab 2 94\n", + "Lab 3 79\n", + "Lab 4 60\n", + "Exam 1 90\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001464999.0\n", + "Lab 1 95\n", + "Lab 2 94\n", + "Lab 3 0\n", + "Lab 4 0\n", + "Exam 1 105\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001644554.0\n", + "Lab 1 80\n", + "Lab 2 80\n", + "Lab 3 10\n", + "Lab 4 0\n", + "Exam 1 0\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n", + "Student ID 1001684648.0\n", + "Lab 1 0\n", + "Lab 2 0\n", + "Lab 3 0\n", + "Lab 4 0\n", + "Exam 1 0\n", + "Lab 5 nan\n", + "Lab 6 nan\n", + "Lab 7 nan\n" + ] + } + ], + "source": [ + "for d in df_0.iterrows():\n", + " for x in d[1].iteritems():\n", + " print(x[0],x[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book=grade_book(\"Data 1401\")\n", + "\n", + "for student_i, d in enumerate(df_0.iterrows()):\n", + " a_student_0=student(\"Student\",str(student_i),int(d[1][\"Student ID\"]))\n", + "\n", + " for k,v in d[1].iteritems():\n", + " a_student_0.add_grade(grade(k,value=float(v)))\n", + "\n", + " a_grade_book.add_student(a_student_0)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(85.13333333333334, 23.57361990776036)\n" + ] + } + ], + "source": [ + "Lab_2_stats=a_grade_book.apply_stats(mean_std_calculator(),\"Lab 2\")\n", + "print(Lab_2_stats)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_grader(curved_letter_grade(\"Lab 2 Letter\",Lab_2_stats[0],Lab_2_stats[1]), \"Lab 2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C+\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C+\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C+\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_summary(grade_summer(\"Lab \",5))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C+\n", + "Lab sum: 241.0\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 270.0\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "Lab sum: 100.0\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 221.0\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 232.0\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C+\n", + "Lab sum: 192.0\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 194.0\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 293.0\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C\n", + "Lab sum: 222.0\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 181.0\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 377.0\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 310.0\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 291.0\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 379.0\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 190.0\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 382.0\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 227.0\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 208.0\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 195.0\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 266.0\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 355.0\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab sum: 231.0\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 398.0\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 329.0\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 293.0\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 136.0\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 313.0\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab sum: 189.0\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C+\n", + "Lab sum: 170.0\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "Lab sum: 0.0\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Algorithms\n", + "\n", + "So far, we ended up with three different types of algorithms:\n", + "\n", + "* `grade_calcuator` algorithms: Take grade from the student and return another grade. We use this for assigning letter grades and curving.\n", + "* `statistics_calculator` algorithms: Take a set of grades for all students and return numbers associated with the class. We used these to compute the mean and standard deviation for a class.\n", + "* `summary_calculator` algorithms: Take many grades from a student and return a another grade. We used these to sum grades of a student.\n", + "\n", + "Here are the base classes:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_calculator(alg): \n", + " def __init__(self,name, stats):\n", + " self.__stats=stats\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade):\n", + " raise NotImplementedError\n", + " # Returns a grade\n", + " \n", + "class statistics_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,grades):\n", + " raise NotImplementedError\n", + " # returns numbers\n", + " \n", + "class summary_calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_student):\n", + " raise NotImplementedError\n", + " # returns a grade\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While this approach works, users will need to be aware of how to use each type of algorithm and it would be difficult to create a system that would automate tasks, like curving a grade, that would require running several algorithms. We may be able to find a more general implementation that can unify all of these types of algorithms. There are several issues to consider:\n", + "\n", + "* **Input**: Each of these algorithms take different inputs, either a single grade, all grades of a specific type for all students, or different grades for the same student.\n", + "* **Output**: Some of these algorithms generate new grades for each student, while others provide compute over the whole class.\n", + "* **Information storage**: While we can store grades with students, other information like means and standard deviation have to do with the class and not any individual student. \n", + "\n", + "Lets first address the information storage issue. We simply need a mechanism to store information that has to do with a class instead of a student. The gradebook is what holds all of the students in the class, so we just add new data members to keep additional information. The only type of information that we are holding for now are specific exam means and standard deviations. We could choose to create new data objects for such information. Or we could simply stuff the information into a dictionary. The latter is easier and may suffice, so let's try it.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_book(data):\n", + " # New member class to hold arbitrary data associated with the class \n", + " def __init__(self,name):\n", + " data.__init__(self,name+\" Course Grade Book\")\n", + " self.__students=dict()\n", + " self.__data=dict()\n", + " \n", + " # New method to access data\n", + " def __getitem__(self,key):\n", + " return self.__data[key]\n", + " \n", + " # New method to add data\n", + " def __setitem__(self, key, value):\n", + " self.__data[key] = value\n", + " \n", + " def add_student(self,a_student):\n", + " self.__students[a_student.id_number()]=a_student\n", + "\n", + " def get_students(self):\n", + " return self.__students\n", + " \n", + " def assign_grade(self,key,a_grade):\n", + " the_student=None\n", + " try:\n", + " the_student=self.__students[key]\n", + " except:\n", + " for id in self.__students:\n", + " if key == self.__students[id].name():\n", + " the_student=self.__students[id]\n", + " break\n", + " if the_student:\n", + " the_student.add_grade(a_grade)\n", + " else:\n", + " print (self.name()+\" Error: Did not find student.\")\n", + " \n", + " def apply_summary(self,a_grader):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student))\n", + " \n", + " def apply_grader(self,a_grader,grade_name):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student[grade_name]))\n", + " \n", + " def apply_stats(self,a_stat_comp,grade_name):\n", + " grades=list()\n", + " for k,a_student in self.__students.items():\n", + " grades.append(a_student[grade_name].value())\n", + " return a_stat_comp.apply(grades)\n", + "\n", + " # Accessors\n", + " \n", + " def data(self):\n", + " return self.__data\n", + "\n", + " def students(self):\n", + " return self.__students\n", + " \n", + " \n", + " def get_data(self,key=None):\n", + " a_data=dict()\n", + " for k,v in self.__data.items():\n", + " if key:\n", + " if key in k:\n", + " a_data[k]=v\n", + " else:\n", + " a_data[k]=v\n", + "\n", + " return a_data\n", + " \n", + " # Print functions\n", + " def print_data(self):\n", + " for k,v in self.__data.items():\n", + " print (k,\":\",v)\n", + " \n", + " def print_grades(self,grade_name):\n", + " if isinstance(grade_name,str):\n", + " grade_names=list()\n", + " grade_names.append(grade_name)\n", + " else:\n", + " grade_names=grade_name\n", + " \n", + " for k,a_student in self.__students.items():\n", + " print (a_student.name(),end=\"\")\n", + " for a_grade_name in grade_names:\n", + " print (a_student[a_grade_name],end=\"\")\n", + " print()\n", + " \n", + " def print_students(self): \n", + " for k,a_student in self.__students.items():\n", + " print (k, a_student.name())\n", + " a_student.print_grades()\n", + " print (\"_______________________________________\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100\n" + ] + } + ], + "source": [ + "a_grade_book=grade_book(\"Test Gradebook\")\n", + "a_grade_book[\"Example Data\"]=100\n", + "print (a_grade_book[\"Example Data\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now lets address the input/output issue. We have several options:\n", + "\n", + "1. Keep things the same. We keep 3 different types of algorithms. Note that necessarily needed to create separate apply methods in the `grade_book` class (`apply_grader`, `apply_stats`, ...) for each type of algorithm with a different method name. Here the user has to know what type of algorithm he/she is applying and then use the right apply method.\n", + "\n", + "2. Keep the 3 differnt types of algorithms, but create a general apply method to `grade_book` that checks the type of the algorithm and then uses the right apply method.\n", + "\n", + "3. Unify the 3 types of algorithms, pass into them the `grade_book` instance and let them decide what to do.\n", + "\n", + "Option 2 is a reasonable solution, but let's try option 3 because it provides more flexibility for future algorithms that may take other input/output combinations. \n", + "\n", + "First turn our three different `calculator` algorithm base classes into one:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "class calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade_book):\n", + " raise NotImplementedError\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, lets combine the `apply` methods in the `grade_book` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_book(data):\n", + " # New member class to hold arbitrary data associated with the class \n", + " def __init__(self,name):\n", + " data.__init__(self,name+\" Course Grade Book\")\n", + " self.__students=dict()\n", + " self.__data=dict()\n", + " \n", + " # New method to access data\n", + " def __getitem__(self,key):\n", + " return self.__data[key]\n", + " \n", + " # New method to add data\n", + " def __setitem__(self, key, value):\n", + " self.__data[key] = value\n", + " \n", + " def add_student(self,a_student):\n", + " self.__students[a_student.id_number()]=a_student\n", + "\n", + " def get_students(self):\n", + " return self.__students\n", + " \n", + " def assign_grade(self,key,a_grade):\n", + " the_student=None\n", + " try:\n", + " the_student=self.__students[key]\n", + " except:\n", + " for id in self.__students:\n", + " if key == self.__students[id].name():\n", + " the_student=self.__students[id]\n", + " break\n", + " if the_student:\n", + " the_student.add_grade(a_grade)\n", + " else:\n", + " print (self.name()+\" Error: Did not find student.\")\n", + " \n", + "\n", + " # Accessors\n", + " def data(self):\n", + " return self.__data\n", + "\n", + " def students(self):\n", + " return self.__students\n", + " \n", + " \n", + " def get_data(self,key=None):\n", + " a_data=dict()\n", + " for k,v in self.__data.items():\n", + " if key:\n", + " if key in k:\n", + " a_data[k]=v\n", + " else:\n", + " a_data[k]=v\n", + "\n", + " return a_data\n", + " \n", + " # Print functions\n", + " def print_data(self):\n", + " for k,v in self.__data.items():\n", + " print (k,\":\",v)\n", + " \n", + " def print_grades(self,grade_name):\n", + " if isinstance(grade_name,str):\n", + " grade_names=list()\n", + " grade_names.append(grade_name)\n", + " else:\n", + " grade_names=grade_name\n", + " \n", + " for k,a_student in self.__students.items():\n", + " print (a_student.name(),end=\"\")\n", + " for a_grade_name in grade_names:\n", + " print (a_student[a_grade_name],end=\"\")\n", + " print()\n", + " \n", + " def print_students(self): \n", + " for k,a_student in self.__students.items():\n", + " print (k, a_student.name())\n", + " a_student.print_grades()\n", + " print (\"_______________________________________\")\n", + " \n", + " \n", + " def apply_calculator(self,a_calculator,**kwargs):\n", + " a_calculator.apply(self,**kwargs)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have to move the logic of what each calculator algorithm uses into the algorithm. For example: " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "class uncurved_letter_grade_percent(calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__grade_name=grade_name\n", + " calculator.__init__(self,\n", + " \"Uncurved Percent Based Grade Calculator \"+self.__grade_name+\" Max=\"+str(self.__max_grade))\n", + " \n", + " def apply(self,a_grade_book,grade_name=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " \n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade=a_student[grade_name]\n", + "\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " percent=a_grade.value()/self.__max_grade\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if percent>=v[0]:\n", + " break\n", + " \n", + " a_student.add_grade(grade(grade_name+\" Letter\",value=self.__grades_definition[i][1]))\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's test with our class data:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book=grade_book(\"Data 1401\")\n", + "\n", + "for student_i, d in enumerate(df_0.iterrows()):\n", + " a_student_0=student(\"Student\",str(student_i),int(d[1][\"Student ID\"]))\n", + "\n", + " for k,v in d[1].iteritems():\n", + " a_student_0.add_grade(grade(k,value=float(v)))\n", + "\n", + " a_grade_book.add_student(a_student_0)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Lab 2: 81.0 Lab 2 Letter: B-\n", + "1000625629 Lab 2: 87.0 Lab 2 Letter: B+\n", + "1000847686 Lab 2: 0.0 Lab 2 Letter: F-\n", + "1001108137 Lab 2: 96.0 Lab 2 Letter: A\n", + "1000999851 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001214491 Lab 2: 82.0 Lab 2 Letter: B-\n", + "1001428148 Lab 2: 90.0 Lab 2 Letter: A-\n", + "1001397199 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001372854 Lab 2: 70.0 Lab 2 Letter: C-\n", + "1001558073 Lab 2: 86.0 Lab 2 Letter: B\n", + "1001593219 Lab 2: 96.0 Lab 2 Letter: A\n", + "1001596311 Lab 2: 92.0 Lab 2 Letter: A-\n", + "1001608680 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001618032 Lab 2: 96.0 Lab 2 Letter: A\n", + "1001652624 Lab 2: 90.0 Lab 2 Letter: A-\n", + "1001658617 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001663166 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001674179 Lab 2: 90.0 Lab 2 Letter: A-\n", + "1001722244 Lab 2: 100.0 Lab 2 Letter: A+\n", + "1001543608 Lab 2: 96.0 Lab 2 Letter: A\n", + "1001547659 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001458157 Lab 2: 88.0 Lab 2 Letter: B+\n", + "1001496565 Lab 2: 98.0 Lab 2 Letter: A+\n", + "1001519928 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001774305 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001696890 Lab 2: 96.0 Lab 2 Letter: A\n", + "1001232602 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001464999 Lab 2: 94.0 Lab 2 Letter: A\n", + "1001644554 Lab 2: 80.0 Lab 2 Letter: B-\n", + "1001684648 Lab 2: 0.0 Lab 2 Letter: F-\n" + ] + } + ], + "source": [ + "a_grade_book.apply_calculator(uncurved_letter_grade_percent(\"Lab 2\",max_grade=100))\n", + "for k,a_student in a_grade_book.get_students().items():\n", + " print (a_student.id_number(),a_student[\"Lab 2\"],a_student[\"Lab 2 Letter\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C-\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stats Computation" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "class mean_std_calculator(calculator):\n", + " def __init__(self):\n", + " calculator.__init__(self,\"Mean and Standard Deviation Calculator\")\n", + " \n", + " def apply(self,a_grade_book,grade_name,**kwargs):\n", + " grades=list()\n", + " for k,a_student in a_grade_book.get_students().items():\n", + " grades.append(a_student[grade_name].value())\n", + " \n", + " a_grade_book[grade_name+\" Mean\"] = np.mean(grades)\n", + " a_grade_book[grade_name+\" STD\"] = math.sqrt(np.var(grades))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "36.766666666666666\n", + "36.31774895128949\n" + ] + } + ], + "source": [ + "a_grade_book.apply_calculator(mean_std_calculator(),grade_name=\"Lab 3\")\n", + "print (a_grade_book[\"Lab 3 Mean\"])\n", + "print (a_grade_book[\"Lab 3 STD\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Next Steps\n", + "\n", + "* Migrate `grade_summer` and `curved_letter_grade`\n", + "* remove n requirement from `grade_summer`\n", + "* Update `mean_std_calculator`, adding cut_off and grade_name to constructor\n", + "* Use `**kwargs` for passing overwrite\n", + "* Add to grade_book\n", + " * get data\n", + " * print grades\n", + " * print data\n", + "* Add curve function to gradebook\n", + "* Create Letter Grade Counter Calculator\n", + "* Create bell curve grade distributor" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "class mean_std_calculator(calculator):\n", + " def __init__(self,grade_name,cut_off=None):\n", + " self.__grade_name=grade_name\n", + " self.__cut_off=cut_off\n", + " calculator.__init__(self,\"Mean and Standard Deviation Calculator\")\n", + " \n", + " def apply(self,a_grade_book,grade_name=None,cut_off=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " if cut_off:\n", + " pass\n", + " else:\n", + " cut_off=self.__cut_off\n", + " \n", + " grades=list()\n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade_val=a_student[grade_name].value()\n", + " if cut_off:\n", + " if a_grade_val>cut_off:\n", + " grades.append(a_student[grade_name].value())\n", + " else:\n", + " grades.append(a_student[grade_name].value())\n", + " \n", + " a_grade_book[grade_name+\" Mean\"] = np.mean(grades)\n", + " a_grade_book[grade_name+\" STD\"] = math.sqrt(np.var(grades))\n", + " a_grade_book[grade_name+\" Max\"] = max(grades)\n", + " a_grade_book[grade_name+\" Min\"] = min(grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_summer(calculator):\n", + " def __init__(self,prefix,n=None):\n", + " self.__prefix=prefix\n", + " self.__n=n\n", + " calculator.__init__(self,\"Sum Grades\")\n", + " \n", + " def apply(self,a_gradebook,**kwargs):\n", + " first=True\n", + " \n", + " for k,a_student in a_grade_book.get_students().items():\n", + " if first:\n", + " first=False \n", + " if self.__n:\n", + " labels=[self.__prefix+str(x) for x in range(1,self.__n)]\n", + " else:\n", + " labels=list()\n", + " for i in range(1,1000):\n", + " label=self.__prefix+str(i)\n", + " try:\n", + " a_grade=a_student[label]\n", + " labels.append(label)\n", + " except:\n", + " break \n", + "\n", + " grade_sum=0.\n", + " for label in labels:\n", + " grade_sum+=a_student[label].value()\n", + "\n", + " a_student.add_grade(grade(self.__prefix+\"sum\",value=grade_sum),**kwargs)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "class curved_letter_grade(calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,mean,std,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__mean=mean\n", + " self.__std=std\n", + " self.__grade_name=grade_name\n", + " calculator.__init__(self,\n", + " \"Curved Percent Based Grade Calculator \"+self.__grade_name+ \\\n", + " \" Mean=\"+str(self.__mean)+\\\n", + " \" STD=\"+str(self.__std)+\\\n", + " \" Max=\"+str(self.__max_grade))\n", + "\n", + "\n", + " def apply(self,a_grade_book,grade_name=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + "\n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade=a_student[grade_name]\n", + "\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + "\n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + "\n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " a_student.add_grade(grade(grade_name+\" Letter\",value=self.__grades_definition[i][1]),**kwargs)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_calculator(curved_letter_grade(\"Lab 3\",a_grade_book[\"Lab 3 Mean\"],a_grade_book[\"Lab 3 STD\"]),overwrite=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: B-\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C-\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: B+\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: B-\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "Lab 3 Letter: A+\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A-\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab 3 Letter: C-\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "algs=[grade_summer(\"Lab \",n=5),\n", + " mean_std_calculator(\"Lab sum\",300)]\n", + "\n", + "# curved_letter_grade(\"Lab sum\",\n", + "# a_grade_book[\"Lab sum Mean\"],\n", + "# a_grade_book[\"Lab sum STD\"]) ]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[None, None]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(map(lambda x: a_grade_book.apply_calculator(x,overwrite=True), algs))" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_calculator(curved_letter_grade(\"Lab sum\",\n", + " a_grade_book[\"Lab sum Mean\"],\n", + " a_grade_book[\"Lab sum STD\"]) )" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab 3 Letter: C\n", + "Lab sum: 241.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "Lab 3 Letter: C+\n", + "Lab sum: 270.0\n", + "Lab sum Letter: F\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "Lab 3 Letter: C+\n", + "Lab sum: 100.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "Lab sum: 221.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: B-\n", + "Lab sum: 232.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab 3 Letter: C+\n", + "Lab sum: 192.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: C\n", + "Lab sum: 194.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "Lab sum: 293.0\n", + "Lab sum Letter: C-\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C-\n", + "Lab 3 Letter: C\n", + "Lab sum: 222.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "Lab 3 Letter: C+\n", + "Lab sum: 181.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "Lab sum: 377.0\n", + "Lab sum Letter: B\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: B+\n", + "Lab sum: 310.0\n", + "Lab sum Letter: C\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "Lab sum: 291.0\n", + "Lab sum Letter: F+\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "Lab sum: 379.0\n", + "Lab sum Letter: B+\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: C+\n", + "Lab sum: 190.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "Lab sum: 382.0\n", + "Lab sum Letter: B+\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: B-\n", + "Lab sum: 227.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "Lab 3 Letter: C\n", + "Lab sum: 208.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "Lab 3 Letter: C+\n", + "Lab sum: 195.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C\n", + "Lab sum: 266.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "Lab sum: 355.0\n", + "Lab sum Letter: C+\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "Lab 3 Letter: C\n", + "Lab sum: 231.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "Lab 3 Letter: A+\n", + "Lab sum: 398.0\n", + "Lab sum Letter: A\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A\n", + "Lab sum: 329.0\n", + "Lab sum Letter: C-\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C\n", + "Lab sum: 293.0\n", + "Lab sum Letter: C-\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "Lab sum: 136.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: A-\n", + "Lab sum: 313.0\n", + "Lab sum Letter: C\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "Lab 3 Letter: C+\n", + "Lab sum: 189.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "Lab 3 Letter: C-\n", + "Lab sum: 170.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "Lab 3 Letter: C+\n", + "Lab sum: 0.0\n", + "Lab sum Letter: F-\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Student 0 Student DataLab 3 Letter: C\n", + "Student 1 Student DataLab 3 Letter: C+\n", + "Student 2 Student DataLab 3 Letter: C+\n", + "Student 3 Student DataLab 3 Letter: C+\n", + "Student 4 Student DataLab 3 Letter: B-\n", + "Student 5 Student DataLab 3 Letter: C+\n", + "Student 6 Student DataLab 3 Letter: C\n", + "Student 7 Student DataLab 3 Letter: A\n", + "Student 8 Student DataLab 3 Letter: C\n", + "Student 9 Student DataLab 3 Letter: C+\n", + "Student 10 Student DataLab 3 Letter: A\n", + "Student 11 Student DataLab 3 Letter: B+\n", + "Student 12 Student DataLab 3 Letter: C+\n", + "Student 13 Student DataLab 3 Letter: A\n", + "Student 14 Student DataLab 3 Letter: C+\n", + "Student 15 Student DataLab 3 Letter: A\n", + "Student 16 Student DataLab 3 Letter: B-\n", + "Student 17 Student DataLab 3 Letter: C\n", + "Student 18 Student DataLab 3 Letter: C+\n", + "Student 19 Student DataLab 3 Letter: C\n", + "Student 20 Student DataLab 3 Letter: A\n", + "Student 21 Student DataLab 3 Letter: C\n", + "Student 22 Student DataLab 3 Letter: A+\n", + "Student 23 Student DataLab 3 Letter: A\n", + "Student 24 Student DataLab 3 Letter: C\n", + "Student 25 Student DataLab 3 Letter: C+\n", + "Student 26 Student DataLab 3 Letter: A-\n", + "Student 27 Student DataLab 3 Letter: C+\n", + "Student 28 Student DataLab 3 Letter: C-\n", + "Student 29 Student DataLab 3 Letter: C+\n" + ] + } + ], + "source": [ + "a_grade_book.print_grades(\"Lab 3 Letter\")" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lab 3 Mean : 36.766666666666666\n", + "Lab 3 STD : 36.31774895128949\n", + "Lab sum Mean : 355.375\n", + "Lab sum STD : 31.823487788110214\n", + "Lab sum Max : 398.0\n", + "Lab sum Min : 310.0\n" + ] + } + ], + "source": [ + "a_grade_book.print_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-23/Lecture-23.ipynb b/Lectures/Lecture-23/Lecture-23.ipynb new file mode 100644 index 0000000..df7a74d --- /dev/null +++ b/Lectures/Lecture-23/Lecture-23.ipynb @@ -0,0 +1,1628 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 23\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github//afarbin/DATA1401-Spring-2020/blob/master/Lectures/Lecture-23/Lecture-23.ipynb)\n", + "\n", + "\n", + "From previous lecture:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import libraries we will use\n", + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "from collections import OrderedDict\n", + "import math" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Create some virtual classes\n", + "class base:\n", + " __name=\"\"\n", + " \n", + " def __init__(self,name):\n", + " self.__name=name\n", + "\n", + " def name(self):\n", + " return self.__name\n", + "\n", + "class data(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n", + " \n", + "class alg(base):\n", + " def __init__(self,name):\n", + " base.__init__(self,name)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Classes" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "class grade(data):\n", + " __letter_grades=[\"F-\",\"F\",\"F+\",\"D-\",\"D\",\"D+\",\"C-\",\"C\",\"C+\",\"B-\",\"B\",\"B+\",\"A-\",\"A\",\"A+\"]\n", + " \n", + " def __init__(self,name,numerical=True,value=None):\n", + " self.__value=value\n", + " self.__numerical=numerical\n", + " self.__gradebook_name=str()\n", + " \n", + " if value:\n", + " if isinstance(value,(int,float)):\n", + " self.__numerical=True\n", + " elif isinstance(value,str):\n", + " self.__numerical=False\n", + " self.set(value)\n", + " else: \n", + " self.__numerical=numerical\n", + " self.__gradebook_name=name\n", + " data.__init__(self,name+\" Grade Data Object\") \n", + "\n", + " def set(self,value):\n", + " if isinstance(value,(int,float)) and self.__numerical:\n", + " self.__value=value\n", + " elif isinstance(value,str) and not self.__numerical:\n", + " if value in self.__letter_grades:\n", + " self.__value=value\n", + " else:\n", + " print( self.name()+\" Error: Bad Grade.\")\n", + " raise Exception\n", + " \n", + " def value(self):\n", + " return self.__value\n", + " \n", + " def numerical(self):\n", + " return self.__numerical\n", + " \n", + " def gradebook_name(self):\n", + " return self.__gradebook_name\n", + " \n", + " def __str__(self):\n", + " return self.__gradebook_name+\": \"+str(self.__value)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class student(data):\n", + " def __init__(self, first_name, last_name, id_number):\n", + " self.__grades=dict()\n", + " self.__id_number=id_number\n", + " data.__init__(self,first_name+\" \"+last_name+\" Student Data\")\n", + "\n", + " def add_grade(self,a_grade,overwrite=False):\n", + " if overwrite or not a_grade.gradebook_name() in self.__grades:\n", + " self.__grades[a_grade.gradebook_name()]=a_grade\n", + " else:\n", + " print (self.name()+\" Error Adding Grade \"+a_grade.name()+\". Grade already exists.\")\n", + " raise Exception\n", + "\n", + " def id_number(self):\n", + " return self.__id_number\n", + " \n", + " def grade_names(self):\n", + " return self.__grades.keys()\n", + " \n", + " def grades(self):\n", + " return self.__grades\n", + " \n", + " def __getitem__(self,key):\n", + " return self.__grades[key]\n", + " \n", + " def print_grades(self):\n", + " for grade in self.__grades:\n", + " print (self.__grades[grade])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_book(data):\n", + " # New member class to hold arbitrary data associated with the class \n", + " def __init__(self,name):\n", + " data.__init__(self,name+\" Course Grade Book\")\n", + " self.__students=dict()\n", + " self.__data=dict()\n", + " \n", + " # New method to access data\n", + " def __getitem__(self,key):\n", + " return self.__data[key]\n", + " \n", + " # New method to add data\n", + " def __setitem__(self, key, value):\n", + " self.__data[key] = value\n", + " \n", + " def add_student(self,a_student):\n", + " self.__students[a_student.id_number()]=a_student\n", + "\n", + " def get_students(self):\n", + " return self.__students\n", + " \n", + " def assign_grade(self,key,a_grade):\n", + " the_student=None\n", + " try:\n", + " the_student=self.__students[key]\n", + " except:\n", + " for id in self.__students:\n", + " if key == self.__students[id].name():\n", + " the_student=self.__students[id]\n", + " break\n", + " if the_student:\n", + " the_student.add_grade(a_grade)\n", + " else:\n", + " print (self.name()+\" Error: Did not find student.\")\n", + " \n", + "\n", + " # Accessors\n", + " def data(self):\n", + " return self.__data\n", + "\n", + " def students(self):\n", + " return self.__students\n", + " \n", + " \n", + " def get_data(self,key=None):\n", + " a_data=dict()\n", + " for k,v in self.__data.items():\n", + " if key:\n", + " if key in k:\n", + " a_data[k]=v\n", + " else:\n", + " a_data[k]=v\n", + "\n", + " return a_data\n", + " \n", + " # Print functions\n", + " def print_data(self):\n", + " for k,v in self.__data.items():\n", + " print (k,\":\",v)\n", + " \n", + " def print_grades(self,grade_name):\n", + " if isinstance(grade_name,str):\n", + " grade_names=list()\n", + " grade_names.append(grade_name)\n", + " else:\n", + " grade_names=grade_name\n", + " \n", + " for k,a_student in self.__students.items():\n", + " print (a_student.name(),end=\"\")\n", + " for a_grade_name in grade_names:\n", + " print (a_student[a_grade_name],end=\"\")\n", + " print()\n", + " \n", + " def print_students(self): \n", + " for k,a_student in self.__students.items():\n", + " print (k, a_student.name())\n", + " a_student.print_grades()\n", + " print (\"_______________________________________\")\n", + " \n", + " \n", + " def apply_calculator(self,a_calculator,**kwargs):\n", + " a_calculator.apply(self,**kwargs)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a Gradebook" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Read Data into a Pandas DataFrame\n", + "df = pd.read_csv(\"Data-1401-Grades-Fixed.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df_0=df[np.logical_not(np.isnan(df[\"Student ID\"]))]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Algorithm Classes\n", + "### Migrating Algorithms\n", + "\n", + "We have redesigned the calculator part of our Grade Book framework. We now have to migrate the existing calculator algorithms to work with this redesign. The main thing to notice is that previously the `apply_xxx` methods\n", + "\n", + "* found the data they needed in the grade book\n", + "* looped over that data\n", + "* applied the algorithm\n", + "* placed the results back into grade book\n", + "\n", + "here are the methods of the old implementation:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + " def apply_summary(self,a_grader):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student))\n", + " \n", + " def apply_grader(self,a_grader,grade_name):\n", + " for k,a_student in self.__students.items():\n", + " a_student.add_grade(a_grader.apply(a_student[grade_name]))\n", + " \n", + " def apply_stats(self,a_stat_comp,grade_name):\n", + " grades=list()\n", + " for k,a_student in self.__students.items():\n", + " grades.append(a_student[grade_name].value())\n", + " return a_stat_comp.apply(grades)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "which were replaced with:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + " def apply_calculator(self,a_calculator,**kwargs):\n", + " a_calculator.apply(self,**kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, what ever was in the different `apply_xxx` functions of the old `grade_book` implementation have to be moved into the `apply` function of the calculators. \n", + "\n", + "For example compare the apply methods of the old and new implementation of this `grader` algorithm: " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + " # Old implementation\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + " # migrated implementation\n", + " def apply(self,a_grade_book,grade_name=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade=a_student[grade_name]\n", + "\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " percent=a_grade.value()/self.__max_grade\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if percent>=v[0]:\n", + " break\n", + " \n", + " a_student.add_grade(grade(grade_name+\" Letter\",value=self.__grades_definition[i][1]))\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's test with our class data:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book=grade_book(\"Data 1401\")\n", + "\n", + "for student_i, d in enumerate(df_0.iterrows()):\n", + " a_student_0=student(\"Student\",str(student_i),int(d[1][\"Student ID\"]))\n", + "\n", + " for k,v in d[1].iteritems():\n", + " a_student_0.add_grade(grade(k,value=float(v)))\n", + "\n", + " a_grade_book.add_student(a_student_0)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "class calculator(alg): \n", + " def __init__(self,name):\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade_book):\n", + " raise NotImplementedError\n", + "\n", + "class uncurved_letter_grade_percent(calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__grade_name=grade_name\n", + " calculator.__init__(self,\n", + " \"Uncurved Percent Based Grade Calculator \"+self.__grade_name+\" Max=\"+str(self.__max_grade))\n", + " \n", + " def apply(self,a_grade_book,grade_name=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " \n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade=a_student[grade_name]\n", + "\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " percent=a_grade.value()/self.__max_grade\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if percent>=v[0]:\n", + " break\n", + " \n", + " a_student.add_grade(grade(grade_name+\" Letter\",value=self.__grades_definition[i][1]))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_calculator(uncurved_letter_grade_percent(\"Lab 2\",max_grade=100))\n", + "# for k,a_student in a_grade_book.get_students().items():\n", + "# print (a_student.id_number(),a_student[\"Lab 2\"],a_student[\"Lab 2 Letter\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: C-\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A-\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B+\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A+\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: A\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: B-\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 2 Letter: F-\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Examples of other types of calculators" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "class mean_std_calculator(calculator):\n", + " def __init__(self,grade_name,cut_off=None):\n", + " self.__grade_name=grade_name\n", + " self.__cut_off=cut_off\n", + " calculator.__init__(self,\"Mean and Standard Deviation Calculator\")\n", + " \n", + " def apply(self,a_grade_book,grade_name=None,cut_off=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " if cut_off:\n", + " pass\n", + " else:\n", + " cut_off=self.__cut_off\n", + " \n", + " grades=list()\n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade_val=a_student[grade_name].value()\n", + " if cut_off:\n", + " if a_grade_val>cut_off:\n", + " grades.append(a_student[grade_name].value())\n", + " else:\n", + " grades.append(a_student[grade_name].value())\n", + " \n", + " a_grade_book[grade_name+\" Mean\"] = np.mean(grades)\n", + " a_grade_book[grade_name+\" STD\"] = math.sqrt(np.var(grades))\n", + " a_grade_book[grade_name+\" Max\"] = max(grades)\n", + " a_grade_book[grade_name+\" Min\"] = min(grades)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_summer(calculator):\n", + " def __init__(self,prefix,n=None):\n", + " self.__prefix=prefix\n", + " self.__n=n\n", + " calculator.__init__(self,\"Sum Grades\")\n", + " \n", + " def apply(self,a_gradebook,**kwargs):\n", + " first=True\n", + " \n", + " for k,a_student in a_grade_book.get_students().items():\n", + " if first:\n", + " first=False \n", + " if self.__n:\n", + " labels=[self.__prefix+str(x) for x in range(1,self.__n)]\n", + " else:\n", + " labels=list()\n", + " for i in range(1,1000):\n", + " label=self.__prefix+str(i)\n", + " try:\n", + " a_grade=a_student[label]\n", + " labels.append(label)\n", + " except:\n", + " break \n", + "\n", + " grade_sum=0.\n", + " for label in labels:\n", + " grade_sum+=a_student[label].value()\n", + "\n", + " a_student.add_grade(grade(self.__prefix+\"sum\",value=grade_sum),**kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Migration Exercise\n", + "\n", + "Migrate the following algorithm from old to new calculator implementation. Use the example above to guide you. You will have to:\n", + "\n", + "* Change the arguments of the apply function\n", + "* Insert loop over students (copy it from the analgous place above)\n", + "* Instead of returning the result, update the data within the grade book." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "class grade_calculator(alg): \n", + " def __init__(self,name, stats):\n", + " self.__stats=stats\n", + " alg.__init__(self,name)\n", + "\n", + " def apply(self,a_grade):\n", + " raise NotImplementedError\n", + " # Returns a grade\n", + " \n", + "class curved_letter_grade(grade_calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,mean,std,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__mean=mean\n", + " self.__std=std\n", + " self.__grade_name=grade_name\n", + " grade_calculator.__init__(self,\n", + " \"Curved Percent Based Grade Calculator \"+self.__grade_name+ \\\n", + " \" Mean=\"+str(self.__mean)+\\\n", + " \" STD=\"+str(self.__std)+\\\n", + " \" Max=\"+str(self.__max_grade))\n", + " \n", + "\n", + " def apply(self,a_grade):\n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + " \n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + " \n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " return grade(self.__grade_name,value=self.__grades_definition[i][1])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# Solution here\n", + " \n", + "class curved_letter_grade(calculator):\n", + " __grades_definition=[ (.97,\"A+\"),\n", + " (.93,\"A\"),\n", + " (.9,\"A-\"),\n", + " (.87,\"B+\"),\n", + " (.83,\"B\"),\n", + " (.8,\"B-\"),\n", + " (.77,\"C+\"),\n", + " (.73,\"C\"),\n", + " (.7,\"C-\"),\n", + " (.67,\"C+\"),\n", + " (.63,\"C\"),\n", + " (.6,\"C-\"),\n", + " (.57,\"F+\"),\n", + " (.53,\"F\"),\n", + " (0.,\"F-\")]\n", + " __max_grade=100.\n", + " __grade_name=str()\n", + " \n", + " def __init__(self,grade_name,mean,std,max_grade=100.):\n", + " self.__max_grade=max_grade\n", + " self.__mean=mean\n", + " self.__std=std\n", + " self.__grade_name=grade_name\n", + " calculator.__init__(self,\n", + " \"Curved Percent Based Grade Calculator \"+self.__grade_name+ \\\n", + " \" Mean=\"+str(self.__mean)+\\\n", + " \" STD=\"+str(self.__std)+\\\n", + " \" Max=\"+str(self.__max_grade))\n", + " \n", + "\n", + " def apply(self,a_grade_book,grade_name=None,\n", + " overwrite=False,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade=a_student[grade_name]\n", + " \n", + " if not isinstance(a_grade,grade):\n", + " print (self.name()+ \" Error: Did not get an proper grade as input.\")\n", + " raise Exception\n", + " if not a_grade.numerical():\n", + " print (self.name()+ \" Error: Did not get a numerical grade as input.\")\n", + " raise Exception\n", + "\n", + " # Rescale the grade\n", + " percent=a_grade.value()/self.__max_grade\n", + " shift_to_zero=percent-(self.__mean/self.__max_grade)\n", + " scale_std=0.1*shift_to_zero/(self.__std/self.__max_grade)\n", + " scaled_percent=scale_std+0.8\n", + "\n", + " for i,v in enumerate(self.__grades_definition):\n", + " if scaled_percent>=v[0]:\n", + " break\n", + " \n", + " #a_student.add_grade(grade(grade_name+\" Letter\",value=self.__grades_definition[i][1]))\n", + " \n", + " a_student.add_grade(grade(self.__grade_name+\" Letter\",value=self.__grades_definition[i][1]),\n", + " overwrite=overwrite)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_calculator(mean_std_calculator(grade_name=\"Lab 3\"))\n", + "a_grade_book.apply_calculator(curved_letter_grade(\"Lab 3\",\n", + " a_grade_book[\"Lab 3 Mean\"],\n", + " a_grade_book[\"Lab 3 STD\"]),\n", + " overwrite=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000954113 Student 0 Student Data\n", + "Student ID: 1000954113.0\n", + "Lab 1: 100.0\n", + "Lab 2: 81.0\n", + "Lab 3: 25.0\n", + "Lab 4: 35.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1000625629 Student 1 Student Data\n", + "Student ID: 1000625629.0\n", + "Lab 1: 95.0\n", + "Lab 2: 87.0\n", + "Lab 3: 0.0\n", + "Lab 4: 88.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1000847686 Student 2 Student Data\n", + "Student ID: 1000847686.0\n", + "Lab 1: 100.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001108137 Student 3 Student Data\n", + "Student ID: 1001108137.0\n", + "Lab 1: 90.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 35.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1000999851 Student 4 Student Data\n", + "Student ID: 1000999851.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 43.0\n", + "Lab 4: 0.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: B-\n", + "_______________________________________\n", + "1001214491 Student 5 Student Data\n", + "Student ID: 1001214491.0\n", + "Lab 1: 80.0\n", + "Lab 2: 82.0\n", + "Lab 3: 30.0\n", + "Lab 4: 0.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001428148 Student 6 Student Data\n", + "Student ID: 1001428148.0\n", + "Lab 1: 80.0\n", + "Lab 2: 90.0\n", + "Lab 3: 24.0\n", + "Lab 4: 0.0\n", + "Exam 1: 80.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001397199 Student 7 Student Data\n", + "Student ID: 1001397199.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 87.0\n", + "Lab 4: 12.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001372854 Student 8 Student Data\n", + "Student ID: 1001372854.0\n", + "Lab 1: 100.0\n", + "Lab 2: 70.0\n", + "Lab 3: 17.0\n", + "Lab 4: 35.0\n", + "Exam 1: 20.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001558073 Student 9 Student Data\n", + "Student ID: 1001558073.0\n", + "Lab 1: 95.0\n", + "Lab 2: 86.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 84.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001593219 Student 10 Student Data\n", + "Student ID: 1001593219.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 96.0\n", + "Lab 4: 85.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001596311 Student 11 Student Data\n", + "Student ID: 1001596311.0\n", + "Lab 1: 90.0\n", + "Lab 2: 92.0\n", + "Lab 3: 71.0\n", + "Lab 4: 57.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: B+\n", + "_______________________________________\n", + "1001608680 Student 12 Student Data\n", + "Student ID: 1001608680.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 36.0\n", + "Lab 4: 61.0\n", + "Exam 1: 95.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001618032 Student 13 Student Data\n", + "Student ID: 1001618032.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 97.0\n", + "Lab 4: 86.0\n", + "Exam 1: 110.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001652624 Student 14 Student Data\n", + "Student ID: 1001652624.0\n", + "Lab 1: 100.0\n", + "Lab 2: 90.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001658617 Student 15 Student Data\n", + "Student ID: 1001658617.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 96.0\n", + "Lab 4: 92.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001663166 Student 16 Student Data\n", + "Student ID: 1001663166.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 38.0\n", + "Lab 4: 0.0\n", + "Exam 1: 82.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: B-\n", + "_______________________________________\n", + "1001674179 Student 17 Student Data\n", + "Student ID: 1001674179.0\n", + "Lab 1: 95.0\n", + "Lab 2: 90.0\n", + "Lab 3: 23.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001722244 Student 18 Student Data\n", + "Student ID: 1001722244.0\n", + "Lab 1: 95.0\n", + "Lab 2: 100.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001543608 Student 19 Student Data\n", + "Student ID: 1001543608.0\n", + "Lab 1: 100.0\n", + "Lab 2: 96.0\n", + "Lab 3: 19.0\n", + "Lab 4: 51.0\n", + "Exam 1: 111.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001547659 Student 20 Student Data\n", + "Student ID: 1001547659.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 86.0\n", + "Lab 4: 75.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001458157 Student 21 Student Data\n", + "Student ID: 1001458157.0\n", + "Lab 1: 85.0\n", + "Lab 2: 88.0\n", + "Lab 3: 21.0\n", + "Lab 4: 37.0\n", + "Exam 1: 50.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001496565 Student 22 Student Data\n", + "Student ID: 1001496565.0\n", + "Lab 1: 100.0\n", + "Lab 2: 98.0\n", + "Lab 3: 100.0\n", + "Lab 4: 100.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A+\n", + "_______________________________________\n", + "1001519928 Student 23 Student Data\n", + "Student ID: 1001519928.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 85.0\n", + "Lab 4: 50.0\n", + "Exam 1: 115.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A\n", + "_______________________________________\n", + "1001774305 Student 24 Student Data\n", + "Student ID: 1001774305.0\n", + "Lab 1: 100.0\n", + "Lab 2: 94.0\n", + "Lab 3: 20.0\n", + "Lab 4: 79.0\n", + "Exam 1: 120.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C\n", + "_______________________________________\n", + "1001696890 Student 25 Student Data\n", + "Student ID: 1001696890.0\n", + "Lab 1: 0.0\n", + "Lab 2: 96.0\n", + "Lab 3: 0.0\n", + "Lab 4: 40.0\n", + "Exam 1: 100.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001232602 Student 26 Student Data\n", + "Student ID: 1001232602.0\n", + "Lab 1: 80.0\n", + "Lab 2: 94.0\n", + "Lab 3: 79.0\n", + "Lab 4: 60.0\n", + "Exam 1: 90.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: A-\n", + "_______________________________________\n", + "1001464999 Student 27 Student Data\n", + "Student ID: 1001464999.0\n", + "Lab 1: 95.0\n", + "Lab 2: 94.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 105.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n", + "1001644554 Student 28 Student Data\n", + "Student ID: 1001644554.0\n", + "Lab 1: 80.0\n", + "Lab 2: 80.0\n", + "Lab 3: 10.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C-\n", + "_______________________________________\n", + "1001684648 Student 29 Student Data\n", + "Student ID: 1001684648.0\n", + "Lab 1: 0.0\n", + "Lab 2: 0.0\n", + "Lab 3: 0.0\n", + "Lab 4: 0.0\n", + "Exam 1: 0.0\n", + "Lab 5: nan\n", + "Lab 6: nan\n", + "Lab 7: nan\n", + "Lab 3 Letter: C+\n", + "_______________________________________\n" + ] + } + ], + "source": [ + "a_grade_book.print_students()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More Exercises\n", + "\n", + "* Write an algorithm that removes grades that are less than a value (default 50% of max possible grade), and distributes grades as follows:\n", + " * 16% A\n", + " * 34% B\n", + " * 34% C\n", + " * 16% D\n", + "\n", + "* Write new algorithms:\n", + " * Write an algorithm that uses the grade boundries to assign grades, including +/-. \n", + " * Write an algorithm that sums up a provided list of grades, dropping the lowest $n$.\n", + "\n", + " For each:\n", + " * Determine what type of algorithm.\n", + " * Copy paste analogous algorithm.\n", + " * Change name.\n", + " * Remove code.\n", + " * Add new code.\n", + " * Test.\n", + " \n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "class forced_curve(calculator):\n", + " def __init__(self,grade_name,cut_off=None):\n", + " self.__grade_name=grade_name\n", + " self.__cut_off=cut_off\n", + " calculator.__init__(self,\"Forced Curve Boundry Statistical Calculator\")\n", + " \n", + " def apply(self,a_grade_book,grade_name=None,cut_off=None,**kwargs):\n", + " if grade_name:\n", + " pass\n", + " else:\n", + " grade_name=self.__grade_name\n", + " \n", + " if cut_off:\n", + " pass\n", + " else:\n", + " cut_off=self.__cut_off\n", + " \n", + " grades=list()\n", + " for k,a_student in a_grade_book.get_students().items():\n", + " a_grade_val=a_student[grade_name].value()\n", + " if cut_off:\n", + " if a_grade_val>cut_off:\n", + " grades.append(a_student[grade_name].value())\n", + " else:\n", + " grades.append(a_student[grade_name].value())\n", + " \n", + " # Possible Algorithm Logic\n", + " # Sort the grades\n", + " # Top 16% -> A\n", + " # How many is 16%? Count all students (after min grade cut) -> .16 * n\n", + "\n", + " grades = sorted(grades)[::-1]\n", + " n_students = len(grades)\n", + " \n", + " n_16 = int(0.16 * float(n_students))\n", + " n_34 = int(0.34 * float(n_students))\n", + " \n", + " boundries= dict()\n", + " boundries[\"A\"]=grades[n_16-1]\n", + " boundries[\"B\"]=grades[n_16+n_34-1]\n", + " boundries[\"C\"]=grades[n_16+n_34+n_34-1]\n", + " boundries[\"D\"]=grades[min(n_students-1,n_16+n_34+n_34+n_16-1)]\n", + " \n", + " a_grade_book[grade_name+\" Boundries\"] = boundries\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "a_grade_book.apply_calculator(forced_curve(grade_name=\"Exam 1\"))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lab 3 Mean : 36.766666666666666\n", + "Lab 3 STD : 36.31774895128949\n", + "Lab 3 Max : 100.0\n", + "Lab 3 Min : 0.0\n", + "Lab 3 Boundries : {'A': 96.0, 'B': 25.0, 'C': 0.0, 'D': 0.0}\n", + "Exam 1 Boundries : {'A': 120.0, 'B': 100.0, 'C': 20.0, 'D': 0.0}\n" + ] + } + ], + "source": [ + "a_grade_book.print_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-24/2012_Workplace_Fatalities_by_State.csv b/Lectures/Lecture-24/2012_Workplace_Fatalities_by_State.csv new file mode 100644 index 0000000..b216157 --- /dev/null +++ b/Lectures/Lecture-24/2012_Workplace_Fatalities_by_State.csv @@ -0,0 +1,105 @@ +State,"Number of Fatalities, 2012","Rate of Fatalities, 2012","State Rank, Fatalities 2012",Number of Injuries/Illnesses 2012,Injuries/Illnesses 2012 Rate,Penalties FY 2013 (Average $),Penalties FY 2013 (Rank),Inspectors,Years to Inspect Each Workplace Once,State or Federal Program +"South Carolina +(33.99882060100049, -81.04536765699964)",63,3.5,25,36200,3,492,49,24,111,State +"West Virginia +(38.665511497000466, -80.71263935099967)",49,6.9,46,19800,4.1,1798,27,7,173,Federal +"Massachusetts +(42.27687306500047, -72.08268985899963)",44,1.4,1,69700,3.1,1929,21,33,123,Federal +"Tennessee +(35.680943063000484, -85.77448642199965)",101,3.8,30,65100,3.5,727,45,30,82,State +"Oklahoma +(35.472034350000456, -97.52106845499969)",97,6.1,42,39000,3.6,1872,24,19,131,Federal +"Illinois +(40.48501278700047, -88.99770813999965)",146,2.5,10,124900,3.2,1876,23,74,137,Federal +"Nebraska +(41.64104043900045, -99.36571864599966)",48,5.2,38,24300,3.9,2565,5,9,128,Federal +"Delaware +(39.00883351400046, -75.57773943699965)",14,3.1,18,7900,2.8,2406,6,5,175,Federal +"Hawaii +(21.30485166200043, -157.85774691599974)",20,3.4,22,13700,3.8,964,39,20,79,State +"Iowa +(42.469404401000475, -93.81648936699969)",97,6.6,44,45600,4.5,790,43,26,98,State +"Arizona +(34.865973091000455, -111.76380949799972)",60,2.3,6,54400,3.2,891,40,30,126,State +"Florida +(28.932042899000464, -81.92895558499964)",218,2.7,15,,,1821,25,60,238,Federal +"Virginia +(37.54268075100049, -78.45788924199968)",149,3.8,30,66200,2.7,726,46,48,82,State +"Missouri +(38.63579372300046, -92.56629737199967)",88,3.3,21,60300,3.3,1931,20,26,118,Federal +"Michigan +(44.66131575600048, -84.71438724399968)",137,3.4,22,105500,4,542,48,63,45,State +"Indiana +(39.76691364600049, -86.14995579899966)",115,4.2,33,77900,3.9,1054,34,39,104,State +"North Carolina +(35.46622388600048, -79.15924924699965)",146,3.5,25,75900,2.9,996,38,104,60,State +"New Hampshire +(43.6559537330005, -71.50035726399966)",14,2.2,4,,,2243,8,7,119,Federal +"New Mexico +(34.52088247800049, -106.24057768899968)",39,4.8,35,19900,3.9,998,37,9,191,State +"Pennsylvania +(40.79373106100047, -77.86069775999965)",194,3.4,22,155300,3.9,1916,22,57,125,Federal +"South Dakota +(44.35313342000046, -100.37352811899967)",31,6.7,45,,,2346,7,,521,Federal +"New York +(42.82700023900048, -75.54396639699968)",202,2.4,8,146300,2.5,2016,17,105,184,Federal +"Utah +(39.36070374600047, -111.5871285339997)",39,3,17,27700,3.4,1053,35,22,81,State +"Maine +(45.254228663000504, -68.98502952999962)",19,3.2,20,21200,5.6,2083,14,8,80,Federal +"Montana +(47.066526051000494, -109.42441687999968)",34,7.3,47,13300,5,1983,18,7,135,Federal +"Vermont +(43.62538292400046, -72.51763944499965)",11,3.5,25,9900,5,1008,36,9,68,State +"Arkansas +(34.748651751000466, -92.27448794899965)",63,5.4,39,26600,3.2,2569,4,9,237,Federal +"Nevada +(39.49324126500045, -117.07183978499972)",42,3.6,29,32400,4.1,2133,13,44,49,State +"Kentucky +(37.645973909000475, -84.77496612599964)",91,4.9,37,48900,4.1,3254,2,39,124,State +"Maryland +(39.2905806980005, -76.60925970899967)",72,2.6,12,51900,3.1,685,47,48,108,State +"Alabama +(32.84057327200048, -86.63185803899967)",84,4.3,34,41200,3.3,1803,26,24,94,Federal +"Connecticut +(41.56266394200048, -72.64983753699966)",36,2.1,3,43800,3.9,1735,30,24,107,Federal +"Oregon +(44.567446178000466, -120.15502977999972)",43,2.6,12,42900,3.9,363,50,75,31,State +"Colorado +(38.84384047000049, -106.13360888799969)",82,3.5,25,,,1649,31,28,122,Federal +"Ohio +(40.06021029700048, -82.40425685299965)",161,3.1,18,113600,3.2,2156,11,53,112,Federal +"Wyoming +(43.23554147100049, -108.10982744299969)",35,12.2,49,6500,3.5,1777,28,9,101,State +"Minnesota +(46.35564867700049, -94.79419697699967)",70,2.6,12,67500,3.8,768,44,58,57,State +"Kansas +(38.34774033400049, -98.20077655499966)",76,5.7,41,33400,3.6,1971,19,16,110,Federal +"Idaho +(43.682630058000484, -114.3637261449997)",19,2.7,15,,,1449,33,9,108,Federal +"Washington +(47.522287905000496, -120.47002746299972)",67,2.2,4,89300,4.8,791,42,111,50,State +"Wisconsin +(44.3931903350005, -89.81636715299965)",114,4,32,72900,4,2207,9,36,104,Federal +"Mississippi +(32.74551123200047, -89.53802764499966)",63,5.5,40,,,1515,32,14,112,Federal +"Louisiana +(31.312662564000448, -92.44567554599968)",116,6.4,43,30600,2.3,1765,29,16,206,Federal +"Georgia +(32.83968004200045, -83.62757601199968)",101,2.5,10,74800,2.8,2061,15,49,138,Federal +"Rhode Island +(41.70828281900049, -71.52246918099962)",8,1.7,2,,,2023,16,7,103,Federal +"Alaska +(64.84507923900048, -147.72205669099972)",31,8.9,48,9700,4.6,889,41,11,58,State +"New Jersey +(40.1305700530005, -74.27368565099965)",92,2.4,8,80900,3.1,2151,12,67,123,Federal +"North Dakota +(47.47531738700047, -100.11842599699969)",65,17.7,50,,,3045,3,8,111,Federal +"Texas +(31.827243635000457, -99.4267664729997)",536,4.8,35,203200,2.7,2187,10,98,136,Federal +"California +(37.638640488000476, -120.99999889499969)",375,2.3,6,345400,3.5,6422,1,216,179,State +,,,,,,,,,, +,,,,,,,,,, +,,,,,,,,,, +"Total or National, Average",4628,3.4,,,3.4,,,,, diff --git a/Lectures/Lecture-24/Lecture-24-Part-II.ipynb b/Lectures/Lecture-24/Lecture-24-Part-II.ipynb new file mode 100644 index 0000000..9fefb43 --- /dev/null +++ b/Lectures/Lecture-24/Lecture-24-Part-II.ipynb @@ -0,0 +1,2277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 24\n", + "\n", + "## Basic Data Manipulation\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Workplace Fatalities by State Data\n", + "\n", + "Lets look at some workforce data from [source](https://opendata.socrata.com/Government/2012-Workplace-Fatalities-by-State/vcx3-xxtb)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2012_Workplace_Fatalities_by_State.csv random-matrix.csv\r\n", + "Lecture-24-Part-II.ipynb random-matrix.npy\r\n", + "Lecture-24.ipynb stockholm_td_adj.dat\r\n", + "heart.csv\r\n" + ] + } + ], + "source": [ + "!ls" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State,\"Number of Fatalities, 2012\",\"Rate of Fatalities, 2012\",\"State Rank, Fatalities 2012\",Number of Injuries/Illnesses 2012,Injuries/Illnesses 2012 Rate,Penalties FY 2013 (Average $),Penalties FY 2013 (Rank),Inspectors,Years to Inspect Each Workplace Once,State or Federal Program\r\n", + "\"South Carolina\r\n", + "(33.99882060100049, -81.04536765699964)\",63,3.5,25,36200,3,492,49,24,111,State\r\n", + "\"West Virginia\r\n", + "(38.665511497000466, -80.71263935099967)\",49,6.9,46,19800,4.1,1798,27,7,173,Federal\r\n", + "\"Massachusetts\r\n", + "(42.27687306500047, -72.08268985899963)\",44,1.4,1,69700,3.1,1929,21,33,123,Federal\r\n", + "\"Tennessee\r\n", + "(35.680943063000484, -85.77448642199965)\",101,3.8,30,65100,3.5,727,45,30,82,State\r\n", + "\"Oklahoma\r\n" + ] + } + ], + "source": [ + "!head 2012_Workplace_Fatalities_by_State.csv " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "df=pd.read_csv(\"2012_Workplace_Fatalities_by_State.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StateNumber of Fatalities, 2012Rate of Fatalities, 2012State Rank, Fatalities 2012Number of Injuries/Illnesses 2012Injuries/Illnesses 2012 RatePenalties FY 2013 (Average $)Penalties FY 2013 (Rank)InspectorsYears to Inspect Each Workplace OnceState or Federal Program
0South Carolina\\n(33.99882060100049, -81.045367...63.03.525.036200.03.0492.049.024.0111.0State
1West Virginia\\n(38.665511497000466, -80.712639...49.06.946.019800.04.11798.027.07.0173.0Federal
2Massachusetts\\n(42.27687306500047, -72.0826898...44.01.41.069700.03.11929.021.033.0123.0Federal
3Tennessee\\n(35.680943063000484, -85.7744864219...101.03.830.065100.03.5727.045.030.082.0State
4Oklahoma\\n(35.472034350000456, -97.52106845499...97.06.142.039000.03.61872.024.019.0131.0Federal
5Illinois\\n(40.48501278700047, -88.99770813999965)146.02.510.0124900.03.21876.023.074.0137.0Federal
6Nebraska\\n(41.64104043900045, -99.36571864599966)48.05.238.024300.03.92565.05.09.0128.0Federal
7Delaware\\n(39.00883351400046, -75.57773943699965)14.03.118.07900.02.82406.06.05.0175.0Federal
8Hawaii\\n(21.30485166200043, -157.85774691599974)20.03.422.013700.03.8964.039.020.079.0State
9Iowa\\n(42.469404401000475, -93.81648936699969)97.06.644.045600.04.5790.043.026.098.0State
10Arizona\\n(34.865973091000455, -111.76380949799...60.02.36.054400.03.2891.040.030.0126.0State
11Florida\\n(28.932042899000464, -81.92895558499964)218.02.715.0NaNNaN1821.025.060.0238.0Federal
12Virginia\\n(37.54268075100049, -78.45788924199968)149.03.830.066200.02.7726.046.048.082.0State
13Missouri\\n(38.63579372300046, -92.56629737199967)88.03.321.060300.03.31931.020.026.0118.0Federal
14Michigan\\n(44.66131575600048, -84.71438724399968)137.03.422.0105500.04.0542.048.063.045.0State
15Indiana\\n(39.76691364600049, -86.14995579899966)115.04.233.077900.03.91054.034.039.0104.0State
16North Carolina\\n(35.46622388600048, -79.159249...146.03.525.075900.02.9996.038.0104.060.0State
17New Hampshire\\n(43.6559537330005, -71.50035726...14.02.24.0NaNNaN2243.08.07.0119.0Federal
18New Mexico\\n(34.52088247800049, -106.240577688...39.04.835.019900.03.9998.037.09.0191.0State
19Pennsylvania\\n(40.79373106100047, -77.86069775...194.03.422.0155300.03.91916.022.057.0125.0Federal
20South Dakota\\n(44.35313342000046, -100.3735281...31.06.745.0NaNNaN2346.07.0NaN521.0Federal
21New York\\n(42.82700023900048, -75.54396639699968)202.02.48.0146300.02.52016.017.0105.0184.0Federal
22Utah\\n(39.36070374600047, -111.5871285339997)39.03.017.027700.03.41053.035.022.081.0State
23Maine\\n(45.254228663000504, -68.98502952999962)19.03.220.021200.05.62083.014.08.080.0Federal
24Montana\\n(47.066526051000494, -109.42441687999...34.07.347.013300.05.01983.018.07.0135.0Federal
25Vermont\\n(43.62538292400046, -72.51763944499965)11.03.525.09900.05.01008.036.09.068.0State
26Arkansas\\n(34.748651751000466, -92.27448794899...63.05.439.026600.03.22569.04.09.0237.0Federal
27Nevada\\n(39.49324126500045, -117.07183978499972)42.03.629.032400.04.12133.013.044.049.0State
28Kentucky\\n(37.645973909000475, -84.77496612599...91.04.937.048900.04.13254.02.039.0124.0State
29Maryland\\n(39.2905806980005, -76.60925970899967)72.02.612.051900.03.1685.047.048.0108.0State
30Alabama\\n(32.84057327200048, -86.63185803899967)84.04.334.041200.03.31803.026.024.094.0Federal
31Connecticut\\n(41.56266394200048, -72.649837536...36.02.13.043800.03.91735.030.024.0107.0Federal
32Oregon\\n(44.567446178000466, -120.15502977999972)43.02.612.042900.03.9363.050.075.031.0State
33Colorado\\n(38.84384047000049, -106.13360888799...82.03.525.0NaNNaN1649.031.028.0122.0Federal
34Ohio\\n(40.06021029700048, -82.40425685299965)161.03.118.0113600.03.22156.011.053.0112.0Federal
35Wyoming\\n(43.23554147100049, -108.10982744299969)35.012.249.06500.03.51777.028.09.0101.0State
36Minnesota\\n(46.35564867700049, -94.79419697699...70.02.612.067500.03.8768.044.058.057.0State
37Kansas\\n(38.34774033400049, -98.20077655499966)76.05.741.033400.03.61971.019.016.0110.0Federal
38Idaho\\n(43.682630058000484, -114.3637261449997)19.02.715.0NaNNaN1449.033.09.0108.0Federal
39Washington\\n(47.522287905000496, -120.47002746...67.02.24.089300.04.8791.042.0111.050.0State
40Wisconsin\\n(44.3931903350005, -89.81636715299965)114.04.032.072900.04.02207.09.036.0104.0Federal
41Mississippi\\n(32.74551123200047, -89.538027644...63.05.540.0NaNNaN1515.032.014.0112.0Federal
42Louisiana\\n(31.312662564000448, -92.4456755459...116.06.443.030600.02.31765.029.016.0206.0Federal
43Georgia\\n(32.83968004200045, -83.62757601199968)101.02.510.074800.02.82061.015.049.0138.0Federal
44Rhode Island\\n(41.70828281900049, -71.52246918...8.01.72.0NaNNaN2023.016.07.0103.0Federal
45Alaska\\n(64.84507923900048, -147.72205669099972)31.08.948.09700.04.6889.041.011.058.0State
46New Jersey\\n(40.1305700530005, -74.27368565099...92.02.48.080900.03.12151.012.067.0123.0Federal
47North Dakota\\n(47.47531738700047, -100.1184259...65.017.750.0NaNNaN3045.03.08.0111.0Federal
48Texas\\n(31.827243635000457, -99.4267664729997)536.04.835.0203200.02.72187.010.098.0136.0Federal
49California\\n(37.638640488000476, -120.99999889...375.02.36.0345400.03.56422.01.0216.0179.0State
50NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
51NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
52NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
53Total or National, Average4628.03.4NaNNaN3.4NaNNaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " State \\\n", + "0 South Carolina\\n(33.99882060100049, -81.045367... \n", + "1 West Virginia\\n(38.665511497000466, -80.712639... \n", + "2 Massachusetts\\n(42.27687306500047, -72.0826898... \n", + "3 Tennessee\\n(35.680943063000484, -85.7744864219... \n", + "4 Oklahoma\\n(35.472034350000456, -97.52106845499... \n", + "5 Illinois\\n(40.48501278700047, -88.99770813999965) \n", + "6 Nebraska\\n(41.64104043900045, -99.36571864599966) \n", + "7 Delaware\\n(39.00883351400046, -75.57773943699965) \n", + "8 Hawaii\\n(21.30485166200043, -157.85774691599974) \n", + "9 Iowa\\n(42.469404401000475, -93.81648936699969) \n", + "10 Arizona\\n(34.865973091000455, -111.76380949799... \n", + "11 Florida\\n(28.932042899000464, -81.92895558499964) \n", + "12 Virginia\\n(37.54268075100049, -78.45788924199968) \n", + "13 Missouri\\n(38.63579372300046, -92.56629737199967) \n", + "14 Michigan\\n(44.66131575600048, -84.71438724399968) \n", + "15 Indiana\\n(39.76691364600049, -86.14995579899966) \n", + "16 North Carolina\\n(35.46622388600048, -79.159249... \n", + "17 New Hampshire\\n(43.6559537330005, -71.50035726... \n", + "18 New Mexico\\n(34.52088247800049, -106.240577688... \n", + "19 Pennsylvania\\n(40.79373106100047, -77.86069775... \n", + "20 South Dakota\\n(44.35313342000046, -100.3735281... \n", + "21 New York\\n(42.82700023900048, -75.54396639699968) \n", + "22 Utah\\n(39.36070374600047, -111.5871285339997) \n", + "23 Maine\\n(45.254228663000504, -68.98502952999962) \n", + "24 Montana\\n(47.066526051000494, -109.42441687999... \n", + "25 Vermont\\n(43.62538292400046, -72.51763944499965) \n", + "26 Arkansas\\n(34.748651751000466, -92.27448794899... \n", + "27 Nevada\\n(39.49324126500045, -117.07183978499972) \n", + "28 Kentucky\\n(37.645973909000475, -84.77496612599... \n", + "29 Maryland\\n(39.2905806980005, -76.60925970899967) \n", + "30 Alabama\\n(32.84057327200048, -86.63185803899967) \n", + "31 Connecticut\\n(41.56266394200048, -72.649837536... \n", + "32 Oregon\\n(44.567446178000466, -120.15502977999972) \n", + "33 Colorado\\n(38.84384047000049, -106.13360888799... \n", + "34 Ohio\\n(40.06021029700048, -82.40425685299965) \n", + "35 Wyoming\\n(43.23554147100049, -108.10982744299969) \n", + "36 Minnesota\\n(46.35564867700049, -94.79419697699... \n", + "37 Kansas\\n(38.34774033400049, -98.20077655499966) \n", + "38 Idaho\\n(43.682630058000484, -114.3637261449997) \n", + "39 Washington\\n(47.522287905000496, -120.47002746... \n", + "40 Wisconsin\\n(44.3931903350005, -89.81636715299965) \n", + "41 Mississippi\\n(32.74551123200047, -89.538027644... \n", + "42 Louisiana\\n(31.312662564000448, -92.4456755459... \n", + "43 Georgia\\n(32.83968004200045, -83.62757601199968) \n", + "44 Rhode Island\\n(41.70828281900049, -71.52246918... \n", + "45 Alaska\\n(64.84507923900048, -147.72205669099972) \n", + "46 New Jersey\\n(40.1305700530005, -74.27368565099... \n", + "47 North Dakota\\n(47.47531738700047, -100.1184259... \n", + "48 Texas\\n(31.827243635000457, -99.4267664729997) \n", + "49 California\\n(37.638640488000476, -120.99999889... \n", + "50 NaN \n", + "51 NaN \n", + "52 NaN \n", + "53 Total or National, Average \n", + "\n", + " Number of Fatalities, 2012 Rate of Fatalities, 2012 \\\n", + "0 63.0 3.5 \n", + "1 49.0 6.9 \n", + "2 44.0 1.4 \n", + "3 101.0 3.8 \n", + "4 97.0 6.1 \n", + "5 146.0 2.5 \n", + "6 48.0 5.2 \n", + "7 14.0 3.1 \n", + "8 20.0 3.4 \n", + "9 97.0 6.6 \n", + "10 60.0 2.3 \n", + "11 218.0 2.7 \n", + "12 149.0 3.8 \n", + "13 88.0 3.3 \n", + "14 137.0 3.4 \n", + "15 115.0 4.2 \n", + "16 146.0 3.5 \n", + "17 14.0 2.2 \n", + "18 39.0 4.8 \n", + "19 194.0 3.4 \n", + "20 31.0 6.7 \n", + "21 202.0 2.4 \n", + "22 39.0 3.0 \n", + "23 19.0 3.2 \n", + "24 34.0 7.3 \n", + "25 11.0 3.5 \n", + "26 63.0 5.4 \n", + "27 42.0 3.6 \n", + "28 91.0 4.9 \n", + "29 72.0 2.6 \n", + "30 84.0 4.3 \n", + "31 36.0 2.1 \n", + "32 43.0 2.6 \n", + "33 82.0 3.5 \n", + "34 161.0 3.1 \n", + "35 35.0 12.2 \n", + "36 70.0 2.6 \n", + "37 76.0 5.7 \n", + "38 19.0 2.7 \n", + "39 67.0 2.2 \n", + "40 114.0 4.0 \n", + "41 63.0 5.5 \n", + "42 116.0 6.4 \n", + "43 101.0 2.5 \n", + "44 8.0 1.7 \n", + "45 31.0 8.9 \n", + "46 92.0 2.4 \n", + "47 65.0 17.7 \n", + "48 536.0 4.8 \n", + "49 375.0 2.3 \n", + "50 NaN NaN \n", + "51 NaN NaN \n", + "52 NaN NaN \n", + "53 4628.0 3.4 \n", + "\n", + " State Rank, Fatalities 2012 Number of Injuries/Illnesses 2012 \\\n", + "0 25.0 36200.0 \n", + "1 46.0 19800.0 \n", + "2 1.0 69700.0 \n", + "3 30.0 65100.0 \n", + "4 42.0 39000.0 \n", + "5 10.0 124900.0 \n", + "6 38.0 24300.0 \n", + "7 18.0 7900.0 \n", + "8 22.0 13700.0 \n", + "9 44.0 45600.0 \n", + "10 6.0 54400.0 \n", + "11 15.0 NaN \n", + "12 30.0 66200.0 \n", + "13 21.0 60300.0 \n", + "14 22.0 105500.0 \n", + "15 33.0 77900.0 \n", + "16 25.0 75900.0 \n", + "17 4.0 NaN \n", + "18 35.0 19900.0 \n", + "19 22.0 155300.0 \n", + "20 45.0 NaN \n", + "21 8.0 146300.0 \n", + "22 17.0 27700.0 \n", + "23 20.0 21200.0 \n", + "24 47.0 13300.0 \n", + "25 25.0 9900.0 \n", + "26 39.0 26600.0 \n", + "27 29.0 32400.0 \n", + "28 37.0 48900.0 \n", + "29 12.0 51900.0 \n", + "30 34.0 41200.0 \n", + "31 3.0 43800.0 \n", + "32 12.0 42900.0 \n", + "33 25.0 NaN \n", + "34 18.0 113600.0 \n", + "35 49.0 6500.0 \n", + "36 12.0 67500.0 \n", + "37 41.0 33400.0 \n", + "38 15.0 NaN \n", + "39 4.0 89300.0 \n", + "40 32.0 72900.0 \n", + "41 40.0 NaN \n", + "42 43.0 30600.0 \n", + "43 10.0 74800.0 \n", + "44 2.0 NaN \n", + "45 48.0 9700.0 \n", + "46 8.0 80900.0 \n", + "47 50.0 NaN \n", + "48 35.0 203200.0 \n", + "49 6.0 345400.0 \n", + "50 NaN NaN \n", + "51 NaN NaN \n", + "52 NaN NaN \n", + "53 NaN NaN \n", + "\n", + " Injuries/Illnesses 2012 Rate Penalties FY 2013 (Average $) \\\n", + "0 3.0 492.0 \n", + "1 4.1 1798.0 \n", + "2 3.1 1929.0 \n", + "3 3.5 727.0 \n", + "4 3.6 1872.0 \n", + "5 3.2 1876.0 \n", + "6 3.9 2565.0 \n", + "7 2.8 2406.0 \n", + "8 3.8 964.0 \n", + "9 4.5 790.0 \n", + "10 3.2 891.0 \n", + "11 NaN 1821.0 \n", + "12 2.7 726.0 \n", + "13 3.3 1931.0 \n", + "14 4.0 542.0 \n", + "15 3.9 1054.0 \n", + "16 2.9 996.0 \n", + "17 NaN 2243.0 \n", + "18 3.9 998.0 \n", + "19 3.9 1916.0 \n", + "20 NaN 2346.0 \n", + "21 2.5 2016.0 \n", + "22 3.4 1053.0 \n", + "23 5.6 2083.0 \n", + "24 5.0 1983.0 \n", + "25 5.0 1008.0 \n", + "26 3.2 2569.0 \n", + "27 4.1 2133.0 \n", + "28 4.1 3254.0 \n", + "29 3.1 685.0 \n", + "30 3.3 1803.0 \n", + "31 3.9 1735.0 \n", + "32 3.9 363.0 \n", + "33 NaN 1649.0 \n", + "34 3.2 2156.0 \n", + "35 3.5 1777.0 \n", + "36 3.8 768.0 \n", + "37 3.6 1971.0 \n", + "38 NaN 1449.0 \n", + "39 4.8 791.0 \n", + "40 4.0 2207.0 \n", + "41 NaN 1515.0 \n", + "42 2.3 1765.0 \n", + "43 2.8 2061.0 \n", + "44 NaN 2023.0 \n", + "45 4.6 889.0 \n", + "46 3.1 2151.0 \n", + "47 NaN 3045.0 \n", + "48 2.7 2187.0 \n", + "49 3.5 6422.0 \n", + "50 NaN NaN \n", + "51 NaN NaN \n", + "52 NaN NaN \n", + "53 3.4 NaN \n", + "\n", + " Penalties FY 2013 (Rank) Inspectors \\\n", + "0 49.0 24.0 \n", + "1 27.0 7.0 \n", + "2 21.0 33.0 \n", + "3 45.0 30.0 \n", + "4 24.0 19.0 \n", + "5 23.0 74.0 \n", + "6 5.0 9.0 \n", + "7 6.0 5.0 \n", + "8 39.0 20.0 \n", + "9 43.0 26.0 \n", + "10 40.0 30.0 \n", + "11 25.0 60.0 \n", + "12 46.0 48.0 \n", + "13 20.0 26.0 \n", + "14 48.0 63.0 \n", + "15 34.0 39.0 \n", + "16 38.0 104.0 \n", + "17 8.0 7.0 \n", + "18 37.0 9.0 \n", + "19 22.0 57.0 \n", + "20 7.0 NaN \n", + "21 17.0 105.0 \n", + "22 35.0 22.0 \n", + "23 14.0 8.0 \n", + "24 18.0 7.0 \n", + "25 36.0 9.0 \n", + "26 4.0 9.0 \n", + "27 13.0 44.0 \n", + "28 2.0 39.0 \n", + "29 47.0 48.0 \n", + "30 26.0 24.0 \n", + "31 30.0 24.0 \n", + "32 50.0 75.0 \n", + "33 31.0 28.0 \n", + "34 11.0 53.0 \n", + "35 28.0 9.0 \n", + "36 44.0 58.0 \n", + "37 19.0 16.0 \n", + "38 33.0 9.0 \n", + "39 42.0 111.0 \n", + "40 9.0 36.0 \n", + "41 32.0 14.0 \n", + "42 29.0 16.0 \n", + "43 15.0 49.0 \n", + "44 16.0 7.0 \n", + "45 41.0 11.0 \n", + "46 12.0 67.0 \n", + "47 3.0 8.0 \n", + "48 10.0 98.0 \n", + "49 1.0 216.0 \n", + "50 NaN NaN \n", + "51 NaN NaN \n", + "52 NaN NaN \n", + "53 NaN NaN \n", + "\n", + " Years to Inspect Each Workplace Once State or Federal Program \n", + "0 111.0 State \n", + "1 173.0 Federal \n", + "2 123.0 Federal \n", + "3 82.0 State \n", + "4 131.0 Federal \n", + "5 137.0 Federal \n", + "6 128.0 Federal \n", + "7 175.0 Federal \n", + "8 79.0 State \n", + "9 98.0 State \n", + "10 126.0 State \n", + "11 238.0 Federal \n", + "12 82.0 State \n", + "13 118.0 Federal \n", + "14 45.0 State \n", + "15 104.0 State \n", + "16 60.0 State \n", + "17 119.0 Federal \n", + "18 191.0 State \n", + "19 125.0 Federal \n", + "20 521.0 Federal \n", + "21 184.0 Federal \n", + "22 81.0 State \n", + "23 80.0 Federal \n", + "24 135.0 Federal \n", + "25 68.0 State \n", + "26 237.0 Federal \n", + "27 49.0 State \n", + "28 124.0 State \n", + "29 108.0 State \n", + "30 94.0 Federal \n", + "31 107.0 Federal \n", + "32 31.0 State \n", + "33 122.0 Federal \n", + "34 112.0 Federal \n", + "35 101.0 State \n", + "36 57.0 State \n", + "37 110.0 Federal \n", + "38 108.0 Federal \n", + "39 50.0 State \n", + "40 104.0 Federal \n", + "41 112.0 Federal \n", + "42 206.0 Federal \n", + "43 138.0 Federal \n", + "44 103.0 Federal \n", + "45 58.0 State \n", + "46 123.0 Federal \n", + "47 111.0 Federal \n", + "48 136.0 Federal \n", + "49 179.0 State \n", + "50 NaN NaN \n", + "51 NaN NaN \n", + "52 NaN NaN \n", + "53 NaN NaN " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 63.0\n", + "1 49.0\n", + "2 44.0\n", + "3 101.0\n", + "4 97.0\n", + "5 146.0\n", + "6 48.0\n", + "7 14.0\n", + "8 20.0\n", + "9 97.0\n", + "10 60.0\n", + "11 218.0\n", + "12 149.0\n", + "13 88.0\n", + "14 137.0\n", + "15 115.0\n", + "16 146.0\n", + "17 14.0\n", + "18 39.0\n", + "19 194.0\n", + "20 31.0\n", + "21 202.0\n", + "22 39.0\n", + "23 19.0\n", + "24 34.0\n", + "25 11.0\n", + "26 63.0\n", + "27 42.0\n", + "28 91.0\n", + "29 72.0\n", + "30 84.0\n", + "31 36.0\n", + "32 43.0\n", + "33 82.0\n", + "34 161.0\n", + "35 35.0\n", + "36 70.0\n", + "37 76.0\n", + "38 19.0\n", + "39 67.0\n", + "40 114.0\n", + "41 63.0\n", + "42 116.0\n", + "43 101.0\n", + "44 8.0\n", + "45 31.0\n", + "46 92.0\n", + "47 65.0\n", + "48 536.0\n", + "49 375.0\n", + "Name: Number of Fatalities, 2012, dtype: float64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# To access a column\n", + "df[df.columns[1]][:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "536.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Max of a column\n", + "# Note that the last 4 rows are not states\n", + "np.max(df[df.columns[1]][0:50])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/numpy/core/fromnumeric.py:61: FutureWarning: \n", + "The current behaviour of 'Series.argmax' is deprecated, use 'idxmax'\n", + "instead.\n", + "The behavior of 'argmax' will be corrected to return the positional\n", + "maximum in the future. For now, use 'series.values.argmax' or\n", + "'np.argmax(np.array(values))' to get the position of the maximum\n", + "row.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "data": { + "text/plain": [ + "48" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# What was the index of the max?\n", + "np.argmax(df[df.columns[1]][0:50])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Texas\\n(31.827243635000457, -99.4267664729997)'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# What was the state?\n", + "df[df.columns[0]][np.argmax(df[df.columns[1]][0:50])]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 South Carolina\\n(33.99882060100049, -81.045367...\n", + "1 West Virginia\\n(38.665511497000466, -80.712639...\n", + "2 Massachusetts\\n(42.27687306500047, -72.0826898...\n", + "3 Tennessee\\n(35.680943063000484, -85.7744864219...\n", + "4 Oklahoma\\n(35.472034350000456, -97.52106845499...\n", + "5 Illinois\\n(40.48501278700047, -88.99770813999965)\n", + "6 Nebraska\\n(41.64104043900045, -99.36571864599966)\n", + "7 Delaware\\n(39.00883351400046, -75.57773943699965)\n", + "8 Hawaii\\n(21.30485166200043, -157.85774691599974)\n", + "9 Iowa\\n(42.469404401000475, -93.81648936699969)\n", + "10 Arizona\\n(34.865973091000455, -111.76380949799...\n", + "11 Florida\\n(28.932042899000464, -81.92895558499964)\n", + "12 Virginia\\n(37.54268075100049, -78.45788924199968)\n", + "13 Missouri\\n(38.63579372300046, -92.56629737199967)\n", + "14 Michigan\\n(44.66131575600048, -84.71438724399968)\n", + "15 Indiana\\n(39.76691364600049, -86.14995579899966)\n", + "16 North Carolina\\n(35.46622388600048, -79.159249...\n", + "17 New Hampshire\\n(43.6559537330005, -71.50035726...\n", + "18 New Mexico\\n(34.52088247800049, -106.240577688...\n", + "19 Pennsylvania\\n(40.79373106100047, -77.86069775...\n", + "20 South Dakota\\n(44.35313342000046, -100.3735281...\n", + "21 New York\\n(42.82700023900048, -75.54396639699968)\n", + "22 Utah\\n(39.36070374600047, -111.5871285339997)\n", + "23 Maine\\n(45.254228663000504, -68.98502952999962)\n", + "24 Montana\\n(47.066526051000494, -109.42441687999...\n", + "25 Vermont\\n(43.62538292400046, -72.51763944499965)\n", + "26 Arkansas\\n(34.748651751000466, -92.27448794899...\n", + "27 Nevada\\n(39.49324126500045, -117.07183978499972)\n", + "28 Kentucky\\n(37.645973909000475, -84.77496612599...\n", + "29 Maryland\\n(39.2905806980005, -76.60925970899967)\n", + "30 Alabama\\n(32.84057327200048, -86.63185803899967)\n", + "31 Connecticut\\n(41.56266394200048, -72.649837536...\n", + "32 Oregon\\n(44.567446178000466, -120.15502977999972)\n", + "33 Colorado\\n(38.84384047000049, -106.13360888799...\n", + "34 Ohio\\n(40.06021029700048, -82.40425685299965)\n", + "35 Wyoming\\n(43.23554147100049, -108.10982744299969)\n", + "36 Minnesota\\n(46.35564867700049, -94.79419697699...\n", + "37 Kansas\\n(38.34774033400049, -98.20077655499966)\n", + "38 Idaho\\n(43.682630058000484, -114.3637261449997)\n", + "39 Washington\\n(47.522287905000496, -120.47002746...\n", + "40 Wisconsin\\n(44.3931903350005, -89.81636715299965)\n", + "41 Mississippi\\n(32.74551123200047, -89.538027644...\n", + "42 Louisiana\\n(31.312662564000448, -92.4456755459...\n", + "43 Georgia\\n(32.83968004200045, -83.62757601199968)\n", + "44 Rhode Island\\n(41.70828281900049, -71.52246918...\n", + "45 Alaska\\n(64.84507923900048, -147.72205669099972)\n", + "46 New Jersey\\n(40.1305700530005, -74.27368565099...\n", + "47 North Dakota\\n(47.47531738700047, -100.1184259...\n", + "48 Texas\\n(31.827243635000457, -99.4267664729997)\n", + "49 California\\n(37.638640488000476, -120.99999889...\n", + "Name: State, dtype: object" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# State names:\n", + "df[df.columns[0]][0:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Clean it up\n", + "state_names=list(map(lambda x: x.split(\"\\n\")[0],df[df.columns[0]][0:50]))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['South Carolina',\n", + " 'West Virginia',\n", + " 'Massachusetts',\n", + " 'Tennessee',\n", + " 'Oklahoma',\n", + " 'Illinois',\n", + " 'Nebraska',\n", + " 'Delaware',\n", + " 'Hawaii',\n", + " 'Iowa',\n", + " 'Arizona',\n", + " 'Florida',\n", + " 'Virginia',\n", + " 'Missouri',\n", + " 'Michigan',\n", + " 'Indiana',\n", + " 'North Carolina',\n", + " 'New Hampshire',\n", + " 'New Mexico',\n", + " 'Pennsylvania',\n", + " 'South Dakota',\n", + " 'New York',\n", + " 'Utah',\n", + " 'Maine',\n", + " 'Montana',\n", + " 'Vermont',\n", + " 'Arkansas',\n", + " 'Nevada',\n", + " 'Kentucky',\n", + " 'Maryland',\n", + " 'Alabama',\n", + " 'Connecticut',\n", + " 'Oregon',\n", + " 'Colorado',\n", + " 'Ohio',\n", + " 'Wyoming',\n", + " 'Minnesota',\n", + " 'Kansas',\n", + " 'Idaho',\n", + " 'Washington',\n", + " 'Wisconsin',\n", + " 'Mississippi',\n", + " 'Louisiana',\n", + " 'Georgia',\n", + " 'Rhode Island',\n", + " 'Alaska',\n", + " 'New Jersey',\n", + " 'North Dakota',\n", + " 'Texas',\n", + " 'California']" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "state_names" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAKECAYAAADFU3Q7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd7gkVbX38d9ihiCSYRzJA4IgBoKDgHIlXQNBUJLygnIBBe8L3DEiXPWCGEhXEQwoCggKKhIkK0iUzJAlyUgQeJGgiEhQgfX+sXbNqVO9u7v6zJ45hznfz/P0c05V767U1VWrdjR3FwAAAGbdPKO9AQAAAHMLAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQiaO9gZI0lJLLeVTpkwZ7c0AAADo68Ybb3zS3Sfl3hsTgdWUKVM0ffr00d4MAACAvszswW7vURQIAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUMnG0NwAAAIxvU/Y/r2+aBw7dcg5syawjxwoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQloFVmb2gJndbma3mNn0NG8JM7vIzO5NfxdP883MjjazGWZ2m5mtMzt3AAAAYKwYJMdqE3dfy92npun9JV3s7qtKujhNS9LmklZNrz0lHVNqYwEAAMayWSkK3EbSien/EyW9vzb/JA/XSlrMzJaehfUAAAC8IrQNrFzShWZ2o5ntmeZNdvdH0/9/kjQ5/b+spIdqn304zQMAAJirTWyZbkN3f8TMXiPpIjO7u/6mu7uZ+SArTgHanpK0wgorDPJRAACAMalVjpW7P5L+Pi7pTElvk/RYVcSX/j6ekj8iafnax5dL85rLPNbdp7r71EmTJo18DwAAAMaIvoGVmb3azBau/pf0bkm/k3S2pF1Tsl0lnZX+P1vSR1LrwPUlPV0rMgQAAJhrtSkKnCzpTDOr0p/i7r8ysxsknWpme0h6UNKOKf35kraQNEPSc5J2K77VAAAAY1DfwMrd75O0Zmb+nyVtlpnvkvYusnUAAACvIPS8DgAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIW0DqzMbIKZ3Wxm56bplczsOjObYWY/N7P50vz50/SM9P6U2bPpAAAAY8sgOVbTJN1Vmz5M0pHuvoqkpyTtkebvIempNP/IlA4AAGCu1yqwMrPlJG0p6Ydp2iRtKum0lORESe9P/2+TppXe3yylBwAAmKu1zbH6pqT9JL2cppeU9Fd3fzFNPyxp2fT/spIekqT0/tMpPQAAwFytb2BlZltJetzdbyy5YjPb08ymm9n0J554ouSiAQAARkWbHKt3SNrazB6Q9DNFEeBRkhYzs4kpzXKSHkn/PyJpeUlK7y8q6c/Nhbr7se4+1d2nTpo0aZZ2AgAAYCzoG1i5+wHuvpy7T5H0IUmXuPvOki6VtH1Ktquks9L/Z6dppfcvcXcvutUAAABj0Kz0Y/U5SZ8ysxmKOlTHpfnHSVoyzf+UpP1nbRMBAABeGSb2TzLE3S+TdFn6/z5Jb8ukeUHSDgW2DQAA4BWFntcBAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoJCJo70BAAAAbU3Z/7ye7z9w6JZzaEvyyLECAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAArpG1iZ2QJmdr2Z3Wpmd5jZl9L8lczsOjObYWY/N7P50vz50/SM9P6U2bsLAAAAY0ObHKt/SNrU3deUtJak95rZ+pIOk3Sku68i6SlJe6T0e0h6Ks0/MqUDAACY6/UNrDz8PU3Om14uaVNJp6X5J0p6f/p/mzSt9P5mZmbFthgAAGCMalXHyswmmNktkh6XdJGkP0j6q7u/mJI8LGnZ9P+ykh6SpPT+05KWLLnRAAAAY1GrwMrdX3L3tSQtJ+ltklaf1RWb2Z5mNt3Mpj/xxBOzujgAAIBRN1CrQHf/q6RLJW0gaTEzm5jeWk7SI+n/RyQtL0np/UUl/TmzrGPdfaq7T500adIINx8AAGDsaNMqcJKZLZb+f5Wkd0m6SxFgbZ+S7SrprPT/2Wla6f1L3N1LbjQAAMBYNLF/Ei0t6UQzm6AIxE5193PN7E5JPzOzr0i6WdJxKf1xkn5sZjMk/UXSh2bDdgMAAIw5fQMrd79N0tqZ+fcp6ls1578gaYciWwcAAPAKQs/rAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFDJxtDcAaGPK/uf1TfPAoVvOgS0BAKA7cqwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAK6RtYmdnyZnapmd1pZneY2bQ0fwkzu8jM7k1/F0/zzcyONrMZZnabma0zu3cCAABgLGiTY/WipE+7+xqS1pe0t5mtIWl/SRe7+6qSLk7TkrS5pFXTa09JxxTfagAAgDFoYr8E7v6opEfT/8+Y2V2SlpW0jaSNU7ITJV0m6XNp/knu7pKuNbPFzGzptBwAc5Ep+5/X8/0HDt1yDm0JAIwNA9WxMrMpktaWdJ2kybVg6U+SJqf/l5X0UO1jD6d5zWXtaWbTzWz6E088MeBmAwAAjD2tAyszW0jS6ZI+4e5/q7+Xcqd8kBW7+7HuPtXdp06aNGmQjwIAAIxJrQIrM5tXEVSd7O5npNmPmdnS6f2lJT2e5j8iafnax5dL8wAAAOZqbVoFmqTjJN3l7t+ovXW2pF3T/7tKOqs2/yOpdeD6kp6mfhUAABgP+lZel/QOSR+WdLuZ3ZLm/bekQyWdamZ7SHpQ0o7pvfMlbSFphqTnJO1WdIsBAADGqDatAq+UZF3e3iyT3iXtPYvbBQAA8IrTJscKwFyC7hEAYPZiSBsAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKGTiaG8AAGDuMWX/83q+/8ChW86hLQFGBzlWAAAAhRBYAQAAFEJgBQAAUAiBFQAAQCEEVgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCGMFYq7DWGUAgNFCjhUAAEAhBFYAAACFUBT4CtSvqEuiuGss4/sDgLkXOVYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAj9WAF9MEQOAKAtcqwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEImjvYGAACAIVP2P6/n+w8cuuUc2hKMBIEVUAgXQwAAgRUAALOAhyrUUccKAACgEAIrAACAQgisAAAACiGwAgAAKITACgAAoBACKwAAgEIIrAAAAAohsAIAACikb2BlZseb2eNm9rvavCXM7CIzuzf9XTzNNzM72sxmmNltZrbO7Nx4AACAsaRNjtWPJL23MW9/SRe7+6qSLk7TkrS5pFXTa09Jx5TZTAAAgLGvb2Dl7ldI+ktj9jaSTkz/nyjp/bX5J3m4VtJiZrZ0qY0FAAAYy0Y6VuBkd380/f8nSZPT/8tKeqiW7uE071GNY4wjBQAord+9ReL+MhpmufK6u7skH/RzZranmU03s+lPPPHErG4GAADAqBtpYPVYVcSX/j6e5j8iaflauuXSvA7ufqy7T3X3qZMmTRrhZgAAAIwdIw2szpa0a/p/V0ln1eZ/JLUOXF/S07UiQwAAgLla3zpWZvZTSRtLWsrMHpZ0oKRDJZ1qZntIelDSjin5+ZK2kDRD0nOSdpsN2zzXmpvqYs1N+wIAQFt9Ayt336nLW5tl0rqkvWd1owAAAF6J6HkdAACgEAIrAACAQgisAAAAChlpB6EAAGCcooFSdwRWADCbcPMBxh+KAgEAAAohsAIAACiEokCMWxTTAABKI8cKAACgEAIrAACAQgisAAAACqGOFQC8QlAvEBj7CKwAAH0R1AHtUBQIAABQCIEVAABAIQRWAAAAhRBYAQAAFEJgBQAAUAitAgEAr3i0WsRYQY4VAABAIQRWAAAAhRBYAQAAFEIdKwAYZdQPAuYe5FgBAAAUQo4VAGDMIjcPrzTkWAEAABRCYAUAAFAIRYEAAGRQDImRIMcKAACgEHKsAADAbDEec/3IsQIAAChk3ORY9YuapbkzcgbQznh8ssacxTk2PpBjBQAAUAiBFQAAQCHjpigQYxNZ4wCAuQk5VgAAAIUQWAEAABRCYAUAAFAIgRUAAEAhBFYAAACFEFgBAAAUQmAFAABQCIEVAABAIQRWAAAAhdDzega9gQMAgJEgsJrLESQCADDnUBQIAABQCIEVAABAIQRWAAAAhVDHahZQfwkAANQRWAHAONXv4VDiAREYFIEVAAyAYARAL9SxAgAAKITACgAAoBCKAoG5wCuhIcUrYRsBYFaRYwUAAFAIgRUAAEAhFAUCwFyGYldg9BBYAQDmOII/zK0IrAC8InFjBjAWUccKAACgEAIrAACAQigKBNCBYjZgfOK3P+vIsQIAACiEwAoAAKAQAisAAIBCCKwAAAAKIbACAAAohMAKAACgEAIrAACAQgisAAAACiGwAgAAKISe1zEQeuUFAKA7AisAYwrBO2Y3zjHMThQFAgAAFEJgBQAAUAiBFQAAQCEEVgAAAIVQeR2SqMw5VvG9AMArCzlWAAAAhRBYAQAAFEJRIIC5GsWpAOYkcqwAAAAKIbACAAAohKJAAADmchSJzznkWAEAABRCYAUAAFAIgRUAAEAhsyWwMrP3mtk9ZjbDzPafHesAAAAYa4oHVmY2QdJ3JG0uaQ1JO5nZGqXXAwAAMNbMjhyrt0ma4e73ufs/Jf1M0jazYT0AAABjyuwIrJaV9FBt+uE0DwAAYK5m7l52gWbbS3qvu380TX9Y0nruvk8j3Z6S9kyTq0m6p+iGtLOUpCfHUbrRXDf7MuvpRnPd7MvYXDf7POvpRnPd7Muspxs0bSkruvuk7DvuXvQlaQNJv65NHyDpgNLrKbSt08dTulfCNo7HfRmP+/xK2MbxuC/jcZ9fCds4HvdlduzznHrNjqLAGyStamYrmdl8kj4k6ezZsB4AAIAxpfiQNu7+opntI+nXkiZIOt7d7yi9HgAAgLFmtowV6O7nSzp/diy7sGPHWbrRXDf7MuvpRnPd7MvYXDf7POvpRnPd7Muspxs07WxXvPI6AADAeMWQNgAAAIUQWAEAABQyW+pYjWVmtqWkN0paoJrn7gfPgfXOJ2kFd58xu9eFsa/teWhmJmlnSSu7+8FmtoKk17r79Zm0kyWtmyavd/fHZ2H7Jkn6nGJYqvo2btpIt5a739KYt7m7XzDSdc9tzGyCu7802tsx3pjZPJIWcve/jfa2zI3M7EZJx0s6xd2f6pGu7bVkH0knufvfzOz7ktZWdNV08ezY/tlpXAVWZvY9SQtK2kTSDyVtLyl3g1pV0iHqPBFWzqR9naSH3f0fZraxpLcoTo6/1tJsKekbkuaTtJKZrSXpQHf/QGZ5bU/CvuttpH9TZpknNdJMlvQ1Scu4++ZpjMcN3P249P433f0TZnaOpI7Kee6+dWa9i0tatbHeK2rvLyBpD3UGGbvn9qPUMs1sF3f/iZl9KrcOd/9GZr3LSlpRtd9Nfb0DbF+r8zD5rqSXJW0q6WBJz0g6XUMBVLXMHSUdIekySSbpW2b2WXc/LbfQFufDyZJ+LmlLSR+XtKukJzKLOj4dyzvTcneQtJ+kWQqs2gaULb/rH7v7hxufy817taTn3f1lM3u9pNUlXeDu/+qxnT2/6+ReMztd0gnVcWos41vK/J5qy/uvzGde01jnHzNpprn7Uf3mtWVmi0o6SNK/pVmXSzrY3Z/OpF2zlu637n5rJs0SmdU8kzveA1wXT1Gcry8puv5ZxMyOcvcjuuzTfJJenybvaa47rfdjkqZo+O9+90a6+SVtl0l3cC3NQNfPQa6NvR7UzOz23Ppq6d6Sm9/iHPugpN0k3WBm0yWdIOlC76y43fZasqe7f9vM3i1psuK4Hy/prd22fcwa7Y605uRL0m2NvwspfvTNdFdK2kzSbYob6UGKC0humbcofkirSPq94uZ2fiPNjZIWk3Rzbd7tXZZ3oeLHdJekjRQn1mEjWW8t7YGSLpX0mOLk/5Ok0zLpLpC0o6Rb0/TE+nZKemv6u1HulVneRyXdLumptP7nJV3SSPMLSV+W9AfFD+5CSUf1+A6LLFPSXrVj0/HKrPcwSQ8oWruek15nj3D7Wp2H6b2b0t/6uXNrJt2tkl5Tm56US9f2fJB0Y30b0/83ZJa1iqSbFDen3SRdJWnxLut9h6SL0vl6n6T7Jd3XJe0xisHc70rTi3dZf5vv+qbG9ARJd2aWdaMi4F02fde/kHTyrJyLKd3CipvE1ZKuVYw4sUjt/V3T61jFtWff9LpC0vcay9pa0r2Snk3H72VJd/Q6dxrzbs7Ma/W9KAL6L0laOb0OlHRGJt00Sb9TPAgcnI7Rvpl0DygCoCcl/Tn9/0g6n97aSNv6upj+7izp65LmrZ/DjbQbS3pQESBekfb7nY00Vyt++zsqAqftJG2XWdavFMHDfpI+Xb0aaQa9fra6Nkr6nqSTFEPJHZiO93G191dMr8PT683pdaikQzPLa32OpfTzpM88IumP6RxZYgTXkuq+883qGOfO1zR/fUXg/HdJ/0znzt+6beOcfo36BszRnZWuS3+vlbSMpPkVA0Y301Unwu3NeZm01Y3vs0oXj+bJIOna5vweP/a2J2Hf9dbS3p5O/urEnSzpoky6GzLbecssHO/bFU881cVudTUuxNW6NBRkzFsdr9m9TMUN9pMt9+UeSfMX2udW52GVNm1n9X1Pyn3PagTq6fvuFrz3PR9q5+yvFU+aa0v6Q5flrS7pTsXNecEex+ZuSZtLeo2kJatXl7RtA8qu37Vi1IdnJL0o6W/p9YziJn5Ij3XuK2m/fud/m+8685mNFDegZyWdKGmV+jGXNLE23XHeKgLoJWv7vYlqN9E0bydF4P+UonPm6nWppItH+r3kjkWXebdJenVt+tXKXO8k/UDSe2rT75b0fcVN87pG2rbXxTvScfuFUrCSO2+qZUparTb9ejWu872+/0a637VJV0s/n6KU4c2S5uuSpu11rG2GQe66kQu++55jtbRvkXSk4vp4tKT1FEHlLbU0ra4liuDwfEkzFA84C+W2L6Wdrniou1lxfdxNmd/0aL3GVVGgpHPNbDFF7s5NiuzRH2bS/SOVz9+byn0fUXzJOf8ys50UTxTvS/PmbaS5KxXVzGNmK0n6L8VFNLu89PfRlL37/yTlsszbrLdSFW+8aGaLSHpc0vKZdM+a2ZJK2cZmtr6kmdn8Znaqu+/YLWvZO7OUX3D3F8xMZja/u99tZqt12d+/puKpPyku8N0UW6a7v5SO4ZE91le5T3F8/9EnXZvta3seSnGxOlPSa8zsq4piwy9k0v3KzH4t6adp+oPqXhzX5nz4Sir6+bSkb0laRNInqjfN7GYNPwcWS3+vNDO5+zqZ9T7t7ete/cvMJmjoXJykeHLuSJf+dnzX7n6IpEPM7BB3P6DFOs3MNlDkduyR5k3okb7Nd620H1sqLv5TFDkpJyuKys7XUFHU4orj/Jc0vVCaN2x/3f3PZjaPmc3j7pea2Tcbaa6W9Khi/LSv1+Y/owh6mtp+L8+b2YbufmXar3cocumaTJGDUHkpzWta390/Vk24+4Vm9r/uvlcqWqtre138viIn7FZJV5jZioqAOmded585Rq27/97MmtfQc81sC4++GXu52sze7O6390lXFdt9T5ETZYrqIXtlvoO218bqO3jOzJZRPDgsnV+1vcPdr0oTb1e+AVubc6yqY/VXScdJ2t/dq2vjdencqPS8ltTspij2m+Huz5nZUhr6HXZw9xk2VH/xhHRNavM7n+3GVWDl7l9O/55uZudKWsAz9QMUWdkLKgKgLyvqt+zaZbG7KcqNv+ru96fA6ceNNPtI+h/FjeEMReT++S7Ly52EnxzheivT0438B4qntL9LuiaT7lOKJ9vXmdlVityR7WvvT0t/t+qynqaH03p/KekiM3tKkfVed2yqp/LFtO6FFMdqTi3zKjP7tiIb/9lqprvf1Ej3nKRbzOxi1YIr76z/0nf7BjgP5e4npwvYZoqL8Pvd/a5Mus+a2baSNqyOgbuf2WWf25wPT6VtelrxxKrGxXJ7tWRmVZB1qZkdofgN1I9h81hL7QPKvt+1ux9g7erHTVNcmM909zvMbGVFLk83bc5FKYpVLpV0hLtfXZt/mpm9szZ9qKSbzexSxXf9TkU1hLq/mtlCiqKrk83scdXO27RfD6bt2KDHtte1/V7+U9KJ6fpkigDwPzLLO0Fxc63Ov/crbr5Nj5rZ5yT9LE1/UNJjKRBtBtGtbs7ufrTi3Kk8aGabZNYtxe/gh5J+kqZ3VuSE1E2T9N9m9k8NBTru7os00m0o6T/M7H7FMbSULld/6euSNvHUkMmivo/Mr1cAACAASURBVOx56nwQansda/ugtoeiTmT1/T0lKVeXte85luzg7vdl5svdt61N9ruWVJ95yczuUdx/Vs8tt+Y5i/pxt5jZ4YoHiTHTy8G46yA0RelTNPwCe1LXD/RfXusKoumptl+Ox2xlZlMU9Ttua8yfR5EFf72k1RQ/vI7KnLOw3o0kLSrpV+7+z7GyzHQTa3LvrBSbDazd/cSRbF+b8zDdYO5w934XGaXA+lF3fyFNv0rSZHd/oM/npih/PtzUzHVqzkvbd5u7v7HPOnoFJx3Huva51TUUUF6cCyjbMLNDFWOW3qmhnBT3TGOLkerzXS/n7g835q3k7vdnlvNaRXGKFMVhf2q8/2pJLyiOyc5pnSe7+58zy3pGQ7mK8ylyXJ9tBgVtfwO19IukBF1b26Vgugryf+vuN2fSLKWoE1Slu0pRP+dpNVpQ13Naes1L89u2uJ1f0t717ZT03ZFco1POWIcU5DbT3uDu69amTdGKd91m2hFsx/zq8aCW0iyati2bJp1jzysCleoc+4m7/6WRrmdjp1q6vteSNG93ReC8rKKYfV1FMeLGmW1cUZHTPq8i42FRxXc3Jlrdj6vAysx+LOl1iorf9Qvsf6X3R9LqLXeC3Ozua9em11M8QSzq7itYtJj5qLvvm1neSoo6HlM0/Ka7dXq/W3Fc1yckMzvY3f+nNj1B0YJw517b3Y1FEeG3JL1BccGeoPwF+8uKp56r3T33xNOqNU1Kl8v2n8nd/2IjaOk3O6TjO1nD9+ePtfd7noeNZZ2lqEPX0eqrkW66pLdXN/X0NHdV4wK+ukdxVa6YTu5+k0VR2NsVuQH1ItJFJH3A3ddsrPccSR9390d6bd9I9DuOKU2b1lj3SHpLvxumRXHjfuq8KTeD7L7nYiP9VZI2rwKRdAM61d3flNmGti1PF2mk+UszTSO9SdpGUfy2f6+0mc9mf0+1dX+j2iaPpvLZ49NvG/tsQ9ubc7bFrbt3LVJqse6tFbmHknSZu59be2/gfTazYxTf8amKa/gOikrfv0mfOSOl63lum9mm7n6JRU51bt1nNNbb9lrb0V2KmX3c3b/XmHeBInfy8+6+pplNVNTLenN6f9Brye2S3ibpGndfy8zeqGg0tl1u/8aycVUUKGmqpDW8ezRZFaX9b78FWdTN+T+K8vGza28trKE6EpWjFMVnv5Qkd7+1R/b0LxXZ5ucoX6dk0OI4SVrezA5w90PSj+tURaW/povNbDtFBdxeEfe3FTkAv1Ac049oqJ5I3X2KirRHp6fn30q6wt3PqqU5S/GEeqN611+6UXERMkkrKLKxTVG354+SVlJUkpXiO2jFzLJFhJmLTasuOMxsX8VT+GMa+v5cUcmz0u88rFtc0h1mdr2GF1U2g/yJ9ZwSd/9nCq7qPqVokfZ1dXJFkfd8iiKHiRp+HP+mfPHfQoo6hNc0ti97sR8gN6F+HKs6Os3jKLU7f9rWj6uahW+l3s3C25yLdV+TdE7a99UUlXR3bqSRmR2mKA67Q8PPnXpXHXspcnVeSGmq49LRFUxdOtd+aWYHShoWWKUcjAM1FDw0u1GozoPVFLkI1fXufRreTcgpimNXHZ+Zq8hto0WXFp9R541+01qa6uY8qRHgLaJ8/be3u/tbzOw2d/+SmX1dXeoaWhRHHaTOQHblWppD0z6fnGZNSzllVV2e5j7X65J1+14WUJzXG6XpJyS9SnE8XVEkK/U/tzeSdImG6tjW1ZdTaXut/aKZ/cPdL5EkM/us4trwvUa6pdz9VDM7QJLc/UUzq9etG/Ra8oK7P29RZ3E+j+L4YXUWe2QsKG1DtuuIOc7HQA36OfVSBAJLF1rWiormutdoeLPZdVRr2ZPSXp/+9mzhlOZfN8A2TFb8qLdSral9Jp0pLgAHKJrsZlvCKSq3vqxovlq1oOpowippevpbb6GTbZGY3nutor7aHxX91NTfG7Q1zQ8kbVGb3lzS92fhe/x07fX59H0en0nXqgsORYuWbEu3kZyHat80+yJJW9emt1GmBdgg53f6u5Cik8Vu6TbLvbqk7dksfNDj2Pb8UXQTMENRsbmqg3N0Jl2rlmcjORcV9YyuTvv8+i5p+rY8VdTXWqrld7ht7bW9og7XNV2OT5tuFK6QtHBtemHFg9JIz7FbFfW23qaotPxWdXazsFHankc1vEuUT0laNbPMQVrc9m0Nqfi9z1Obroq/R7TPAx6fga6NpZanaPRwraJxxVfT+dHRclHRZ96SGmpNu76kyzPpVkx/+11LzlY8nHxZUSfxdEXRej3N0tUyc6858b20eY23HKulJN2Znv7rlTSbHbM1n2SqYraVa595UFEx8gp3v7zx+cMUndlVHjKzt0nyVLyxr6LPmJyj0lPlhepRkdRadAjZKPI5SnFjuUrS5Wa2TnOZ7t42p6dVxUGLiqFrKJ7Ofqu4uDcrxLZuTZM0WxJdkLahvt5WnfqlecNyb8zsfxWNC5pe5e4Xm5ml7/4gi0rlzRyvh1RrSdlFq/Mwzbu8Oa+Ljysqmn5bcT48pMhJzLL+dbwWtmhls0RK/6SkXd39d43tu9iirszUNGu6uz/ZZbWtcxPU7jhK7c6fqruBftq2PKv0PBets+PPRRUtwfaxaDnZLPptk7P2B0VDijbqORkvKlrLbZNJ9zofXtzyJTO7JZNusuKhq/LPNK9DyyLNF939mK5br5nn/+Vm9iN3f9CiUrXc/e9dPjJIi9u2rSEX01ApxKK5BOmecYu7P2tmuygesL/p+Y5bV1Zcj9dP23eN4mG3WRG81bWxS1Ht04oHhfr32Gp57v5kKv78jSJ3a3tP0UxDv8ZOlbbXkur690Uz20xxrM9rpHk0/c01Ehkzxlsdq41y8zOB0d2KCnE3qtZs2PMVRHPl/Ld5LUvSogfboyX9e5r1G0n75G5AZnaIpA8rLqAziwO8s57HrZLe5WnYkhRM/MZr5dY2gkrD1qInaYuKg48psnq7Vhy0aBW0jKLS8OWKp9v7GmnuVPRHcr/6t6aRRZcCv9XwljzvdPf31NJcndI0v7/TuxyL5v7f4O6rNOZfrajkepoi+/0RRed6zazq4xRFJudpeND0jVqavuehmV3p7hva8ArI0tDxabZKqj7X78bTqo5X2t/Pu/ulaXpjSV9z97c3lrWdov7Eb9O2vV1xk+hokWhm17n7emZ2rSIX5c+KyvmrZNL2PY4pXavzx/r0sJ3SbJX2Y3kNtTz7krtng7J+56J1afBQ25dhDR8semdfU1LXlqdmtrZSq7tuaQaVinE/68O7Ufhfd9+gke7zio4y6639TnX3rzXSVUWaPRsLmNlBigrIZzb2JVcv6U2KqhpVoJu9OTc+k63IXXvg3FGRA9W1NaRFlY9DFTkoVUvNA9z9Z6oxs9sU391bJP1IEczt6O4dv/V0/n9HQ12jfEhRj3K9Rrq25/Ypigebc9KsrRQ5bVMk/cLdD2+zvNq1piq6nU8RkLu6XHMs6lX1bOw0wLVkY3e/rDFvZ3c/WQ0W9coOU+Q2Wm1fstfFOW1cBVZtVTeAPmn+U9L/Vdyg6gHFwopKw7uMcN0zFPVverZyM7PbPVUSTNNVh49v7vGxfuv+qKIO13KKm+76iqKDZlC3maJCeq4Pm9xy3yDpPYogbIK7L1d7b8XcZ7o9kVhUEq3XB7lCcfP7Sy3NLe6+Vsttq5fVT1A8dR3s7t9upFtX0etzlVW9qKTD3f3aRroDu+zPl9psz6BsZEPz3KU+dbzM7FbvrFyanSfp3e7+WJqerBjWYli69N4XFQHLZoobi0v6obt/MZO21XFsc/6kC/mJihwbUwROu2ZyUAbS5lxM6V6tqD/yUpqeoCjye66RLhuI1QOwlMt5paJI8eVcmlraEyVN8zTMVXpo+Lp3DseyluL4DOtGwfPD0LxVQ63orvB8a7+2jQXuz+9uduiwtjfnHRTFR8+Y2RcUOUdfrm/noA+cZra0ho/B+afmh6oHbIs6m4+4+3G5h+6UdtiDd5qX+221ujaa2RWKIum/p+mFFA8k71XkWq0xyPLa6nKsv+KdpSttryVXKXIZ91MUGx6riFHen1n3DEnv8xG2FJ7tfAyUR87ul6Qr099nNNQDc686RIcqspI3UJws60hap5FmUcUTwU81vJx3iczyDlE8/U5UFDM9Jun/dNnWX6pHfalauiPSsv4jvS5QZoiHlHZaWr8pnqRuUtwMm+la9SStuAj/XlEOf4SiyKFjGBPFk9NhiqzuuxRP2rtn0q2p6OtrH0lrFvi+v6Ja3Zc+aevf3bJq1I8bzfOw9rkJipy/FapX7b2BhuZJafvW8VLkInwxneNTFH1InZk7ZxrT1pxXe2/++v/pN9S3N/uWx/Y1ueOT3uvbw3aaf3j6ncyryDV6QtIuBbbtWtXqlihuGlePcFld6zK2Sdvr82nfF2mx3K7HOr1/gXrUpRnhfmeHccrMq3of31BRTWJLDVBvNbO8XE/1uXmXK+qw/l5Rp7TXyAeHKRoQTEnXnf0U94gllL9/9Dvedys6O62m55d0d49zoN/y3qHUc76kXRTj3ObS1Y/1pd2O9QDXknnScblbUZfwwz2+l6tKnl+lX+OijpW7b5j+tq1DVOVWTa3Nc0XLiGqZVYdnO5nZhoqKlCeY2VLW2UfN5h6dFL5fUR9pJ8WJeEpm3YtJutvMblCP+jceHUJup/gRSL07hNzd3Y8ys/coKht+WJGtfmEjXauepN19V0my6OV3e0XuwzLqbGX6XkVRyVHu/v9yG2Zm0xT1oaoWLD8xs2Pd/VuNdIN0hVF16vcPRb2ZrtnEHvU26gPGXqFM79Rd1vu0okPB7/tQ/1Fdm+yP4DyU9Wll6O7fT387csSss1VgpU0dr90VFZrPSOv7rfKdCV5oZudpeLFGro6aFAH2Omld/1CMcHBTNS9t86AD1W6taOW4jKJYaUVFEF/vW6tND9tSPGzsZ2YfUORubas4H36SSdvzu24kXcBrRbPu/nczWzCzvDYtTy8wsz0VxT49i88UIz0s7u5PpeUvoUxL8GZup5lJmTo6mWO9guIm+Mb0flWnrGdnujZgNwHJfSnHs2q5vYuiTlpTVfS4peKaeJ6ZfSW3nrQt2VaqFgMgLyhpqZTTV7X2W0TxANb0QUUr8T3c/U8Wg4ZnB35WFEFK0l6N+R9SrSVhy3NbihaL11l0zSLFg+4pKad05qDfAyzvGElrpuvipxUP4z/WUCvGSv1Y/6DHsW57LVlE8ZD9cNrGyWZmniKphulm9nNFRkT9HMudO3PcuAisbMB+Z9y9W1cIuWUfqAjAVlPkyMynuBDXe5atjvMWijoJfzGzbsUw2SKQLtt9uqLlRN/NrK3/JI9mrLkhJlr1JG1ROfPfFONcPanofuG3me3bJxUNrWtRr+F6T3XCavaQtJ6nfq4s6mdcoygyqmvdFcaAgUszsDs5F9gpLuKTNHzImGcUuR8/UASrUo8m+4Oeh8k0RW5LR/2+xn5cpii+eSBNr6u4IHYUyamzN++cxbxRbyct84ZGus8o+uGpiodOVNRDq3/utYqb0atseIOKRRQ3r7rW33PyZUWR9W/cfW2LbkyaxfBtetiWhn6nWyrqpjyd/5nM1LZ7hmet1lgkFaflitFPUPz+j1T0w7SbOhuF7JT+1ofumHkzbvi6pGvM7BeKa8D2ilZeTVOVr6PzcTObWUdH/Y91dUzvVOQWuaKOTnNfN9Jg3QRIw2/OUgS8uZvzI2b2fUnvknSYRT2rbI/c1qXPq/T2Xor+l5bR8AY3f1Nc74ZvdBQPfqM2/UdFC9jOHXRvdsfRTZtzW+7+ZYs+pap7zsfdvfou6t16tFqeolGBm9k2kr7tUayZ6wes7bFuey25XlG379gUFB6huK9sqE6LKAL4d9fmdTt35rzRzjKbEy+l0drT3+brvlq6XdLfT+VeXZZ9i+Ki1XWAZcUJ8jtF8+J5FTkGXbOn1aIbBcXT9L2KJ8uexUmKC/aFKf2Cinpg2UGla5/ZSDFiea6Z7ZOKyrO7SZrSYxk7KAKzExUXmfsVLUzqaW5XPNFX0wuoexb6BEUv093Wt3r6u07u1eUzbQeMzQ34Wg1afUdtXtcm+23Pw8Y6LlWL4klFHba7FfX+vqq4GWT3ueVv5iZJy9am36nhg5IfoxbFRintrmk/nlHcUKvXWZK2Hek2pmVXXX/cqtQsXo0iIkXRyKcUF90zFHX9OoogFVUA7lb08TavIpDu9TttOzDwuorGKL9V1I+aoUa3Ao3l9R38fYDjs4aGitnX6JLmCnUWVV6u6FvpzrbHOh2zwxXXhxvTOfSk4vo376zsR2N7J3Q79xTXt22VumJQjJnXUe2h/r2px+DFSgPct9imvtdjSZvW0na8RnhuT1Aq9ivxW0nzWhVrtj3W6nMtqc2fkpm3aZfvP9tl0Fh5jYscK2//hDBwB5OS/unuXuVApUi7uf7PWozF9RePTtSeV5yQHaxFNwrJ4WpfeW8PSWspbt7PWQy0vFtm3fWe0rs283f3pSx6xX2npK+mIox73P3DjaRfkLSuN1ouaniOxgnqHFfs+C7rfcnMVrToPC5Xub9NB5hNpnYDxi5kZit4aj6dsvqrgbnr29K1yf4A52G9eOY+SZel4raurePc/ddm9nFFf1ZPSlrbM5Vs07Lb9Jy/l6JDyfcpAtNDFDmelfsk3WhmB7p7rki7bilJ56aXFN/FE4o6Z/fnPtCyWExqN3bePxS5CT173nf3/S26S3g6nWvPKt89QaVV9wzufoPF8DxVsXq3oaJaDf5u0UKueVxOqr1f7w38T6pVOTCzJbwzZ/Q1Gt7Fw78UwyE9n4rTK/2O9eFpe1dy92eqbVHkPh6hxth+KXf8I+rs9iM3AsEpilzBlxQ5HYuY2VHuPqy4LV3fzlIUI62QZt/dXF7SZvDiRzJFlk8rAoN67nub6/GgOXVtzu2XzOye+rWph7ZjAPYt1rRogHGT14bb8ugK4dHM8vpdS6rPP2BmH1J0//FVM1temS5X0j7vpOG9uY8p465VoPUYnmCEy/uMonuCdylOmN0lneK1oqT0w7zIo/XE/oqT62s+vI+RKm3fbhTS/KvcvWMgyx7b2aYbhd0URXwbKJ64cj2lVxfLdyguFP+m1KGcp7pXtXStWi5ai3HFamlPUgQEZ2t4T98jGq4mBTC7KipYVsN+/Mjdv9lIt4UaI9Ircocuk/SxKr21bLLf7zy0Lq3iKt7ZOu6LirobeyrqX31S0qfd/bzmZy2Gv+noOd+HepOu0m2g6PvsBUlbuvsTjfeXVQQrSylysOqt1M6opcvtyxKKXLaDvNF0PX3mSg0Vi71PqVjMa0MzpXR9xzVL38mX1dkvXa75eOuxRAf4rrP9iTWXay1anqZjubEisDpf0cHlle6+fS3Nue6+lUWru/oFvqM/vpT+i5I+oMhBlOJ4n614QDnW09BXXY71zHEKzexexXnkjeVXuSqrNuZfrajY36aF4y0ew5zsrLh+7q/IzWu2rsvWSWymq+13z1aq6YFmAw0Nxr2xIjduJUXr4R+ndANdj9uwluNCWrQKXFtRlNZ1dIa2yxtg+1oNt5XS9ryWpDTfVuR6vtPd35AeDH7tmTEUzezIlPbnGr7PzX4SR8W4Cqysc3iCnRRZ9//dSHd05uNPK7JSz2q+YWbvUpT1muJEuKjx/m0eHSO+XVHc8HVFXyjrZ5bVNhg5SpFN27fynrXsRqGW/rWKm/RnFK39Fm68f5uiSONKReD1cOdSpJRL9xYNr5d0m7t/rpbmOEnf8uGVZA9y94O6LDMbcNQDjcwTppR/yqzStwrsLOoQVE9o93iqsD6otudh5nPzKIpsOga/NbNvKs6p59P0ioqbxLsyaae7+1SrNfu2NE6kdVYaX0PxFPqUlL1Yf0RR9HiJht/IcvVfmtuxhOKhIdck/UZ3f2v991DNa6Q7rH4+5eZZNM3eVvH9d73g2QBjOKb0k3I3iEy6en29BRQ38pvqwVBbFt2DrKmoerCmRR3Gn+S+5wGXO1VDdXSu8qE6OtX7ExTfVdf6p2b2e3fPDW2Vfc+6dEfQ5fN3KHLdT1HU+7nc8k32ZyjqbA4ULFj3Pq8uVLROq3cncpLiN3uFp/EeB7weT1Pk1D+jqJ+5jqT93b3ZmKjttm+Um+/tOxduLi+Xo/13d1+0ka5nQDeCa0nVZcXMMWtz33Gaf2lznjJdZYyWcVEUWLOFpLXc/WVJsujn5WZJzRvaAoob6C/S9HaKejBrmtkm7j4zSzs9BVzi7hdZtKBbzczm9eFZ/dVFeitFC7KzLDrHy/mVRceD9WDk/Ey6QSrvTdPQSOGbWBRLfK2ZyNr1lK7c01+Ot2u5+B5JU83s67Un+K3VpYJ1FUBZ744w91CXp0yLAamrCtIys9cp6kjdZFGZ89/M7H4f6vunWwum11n0nn1GSrefux9unb1tV9tdvzm3PQ8HKQL5REq/oLs/59E3Tbebba+e81tVGrcoCj5GUfz1Nk89Ig/CoxFHt9rhrYrFFPv4uca8zRvzHlIM59HvKXKQMRwl6Soze0Dx1HyGp9Z3Td4YbN2iCOxntelsC8ja5+s3oOfd/WUze9Ei5/hxRY5ZBzO72N036zcvWUBRJ+gEM5tkjZbNHsUvL5vZos3go+ZOM/uId+bE7aJ8cdyPzexjiiLifi0cv69oqXmrpCvSg0PHA4Za9Njf5cGreq8ZDC1XBVXJ45KWT+du/Ro/yPW4ZyttG7Bz4BRkTtbwvrZmPkBaZ8efPZen9mPBdvQ/19C2AUrlX+k3X1WrWVL58XLVK8AfC8ZbYCW1GJ5AkcvyDh/q0O8YDbVOaA4HcIXiZry4pF8pWsZ8UMNbYzxqZt9RdD8wNd3Usi1VWgYjcveOOlI9tOpGQfEjnyDpr4pj9KS7v9hMZO2bmcv7t1x8XNEq5ydmtp4iCOzaFMsaPTBbDI/wEXe/o5ZsoqQ3ZJ4y11N8Xz+upT1d8Z2soijqO1vxVFzVAWhbL6KqW5FrbZbT5jyU4kb/N4sikAuUikDUWedhA8Xg3QtJWsGiqfRe7v5/M8v8sOL820dRZLi84uFhkKfc0xSdT47oKTtt8yZKT68Z0xSVY/9LUSy2qaLItvps1UHvyhY5qJWFFcM21e0n6Xwzu1w96qkpGpi8Vvl6Ih3c/fUWQ1V9SNLnLXq2/pm7Z7tnqHlWGjZQ8yA3oOkpMPuB4jz4u6IV7Uw2YFcB1tmyeV51tmxWWtftZnaRhudQVA8Ne0s6w8x2T9umtNxXKYoam/6pOI8/r6EbvivTwtHdqzEeKw9afiD7NnUSq9/yaxQjBVySpjdRjOdYD4YuM7NzNfwh+7L0QP3X2vIHuR73bKXtA3bLYn3q5bZdTp27zzCzCekeeILFkDQHNNJcngLcVd39NxZdiEyov99y+yem+8x3FNfjSWb2JUWpSbZjZes/cPjo8jFQg35OvRTZtw8qhhw4UZEL9cFMunskLVqbXlRR9CM1OlzT0ACU+0raL/1/SyPNQoqTpGq1toyib6uR7EO1jm+pNqCsugwsm9KeqbiRH6QILM6SdH6PdbxBUdH0QUkPZ96/UJErdJci8Dhetc5J1dkBZteOMDW8NeVBiuLFbAu5lOZqSZvUpjdWo7NF1VoypWmr5vX4/vZTagHUTDNa52FKe4fiRvcLpcGXlW/Jc50iQKofz+ygq4pisX6D/a6vyCH7u+IG+FL9u+v3+cayble0vqy/HlYUIaw+wmM4SAe9Fypull9Sj85TFTmcTyn64arGFzy75fYspQjeX8q8d05teecqbv4dnfkqbvjztFlfSj9F0cN5c/40DQ1bUm+FeqtiKK1m+r4tm9O8XXOvTLpNFdfDfdVlQO6U7j61H1B6suLB4YI0vYaicnUz3YG5V5dlXqhaR7mKiuu/bqSpuqk4Mr22V6pC00i3nOI6+3h6na7I7cqt9wS1aKWtKJaeP/2/seIhY7FMultVaz2uaM2au0a0Xd4ViiLAkxSV8j/ZZXkfU1wj/pCmV1W+89R+15Kbav+/MZ2/n5D0ph7nQ6uBw0frNW5yrNITwZWKL7nKMv2c51tOHa4oJrlMmjk+1NfSU8pvMoveQJFDVfX1MaGewKNDwD8qRnG/W3HBu0MZ1n8MpEFzRuTu1dPiQalselFF7lpz3VspKqO/UxGIXaJM/1SKEeCPM7NpPjRI6sw+SXywJ6SZFX3d/SCLgY0/2SP9qz0Na5E+Uz091rV6ykz+ZdHC5CMaepLt6DzSog7Gduqs2Hxwer9Vcc6A56HUvghE7v5Qo2TtpVw6xX4eaVFH4ueKYSmaOZM9iwO8z3AlDVs1N1XSnz31XVZnZj0HS66Oow/voHeC4sY7UdF6cyEfXqF2GU91Yfo4qEWa+rYuosiJ+ZDipnWm4jfeVM+RelHSg56vl/hBSd+0GDPweHfPtmZL14gNFcfxSjU6tHX3oxSDue/rnf2x5fRt2ZyWe6K1GHPR3avuNPqZofYDSv9IEZB8Pk3/XnHuHtdY9yBDRy3vw4uwH1N0elpfnityZ5utsptOUOR075Cmd0nzcsXxzVbaSyjTSlvDc9OPVTwQ13PTK/P48Lqjf1a+RKTt8j6suId15Gg37K0436+TJHe/12Jc3KZ+RYv13Lo71OXe2NB24PBRMW4Cq3ThON+jImzXi3e68V2oqNdUXST/24d6Dv9s4yOfUGSRnumRpbuyhur2VMv8giJb/XWKp4AFFCd0ruOzns123f2c9Lej5UyX/ZmgqEO0evpcr+zZvj2lJ62ambfh7gc2ps/RUEeFOW16YN5bkStTHd+TJJ2eLpLN4oPdFHWYvuru95vZShpeVFg5S6k3ag1vml6pbp7bKoqTquKgnRQX7Gr/Wp2HtfRti0Aesmgc4Ra9ik/TUBDeXOZuKc3mafu+Y2YXuftHG+n6Fge04YONRbaBop7MNj6gPAAAIABJREFUTxUX7J49dFrUvzpIXXqmT843s3d7n2LLPr+NnFsVlZUPdvdreqTbwvtUsE/r3yUFaztJ+lEKdE6Q9FMf6r7gu4qBdKs6mHuZ2b+7+96Z9b5sZov58LECd3L37zbSnWrR0eNiFnWedlcUNQ5jmTEXzWxXH/mYi88qHmAvVf8BpZdy91PN7ICU5kUz63hwGKSagqSLrbM+67AH5xYPupVJ7n5CbfpHZvYJ5W2gKNV41qL+2TqSjsqkeznt5wcUDXy+lX6DTbl6uReMdHm13+vz6lIUl/zD3f9ZPcxZDMicfbjscy2ZZF3GOk2fzbX4ft7MNvThA4e3Grt2jhjtLLM5+VJcFNZtkS7bQeUsrLdVVnua33MMJA0vVuh4dfnMWcqM9TQL+7OVItfrTYog8kZJWw+4jJGOm7e4ItC4Kb2OUm2cQsWT1qUj3K/FlSlaSe9li9Uy6ab3m9f2PExpl6zt741pf5fMpFtK0crwMUVRxE9y6RqfmVeRe3WGoj5d/b22xQGbSXpVwXNrgiLAryr0f0XSG3ukn9FiP59RBF3P9zrH1KfIIpO+alW9YJ/135SZl/39177zTygCmAsURUZVMfXd1XrT9DyS7uqynFsy87LF3IqclSMUDwjv6pKm1ZiLA3zXrYoWU9rL0nGpiu7Xl3R5Jl3PagqZ9NtqqJjvA13Orze02JeLFQ95E9JrF2WKxarvXnE/WDOd43t32ZfrFEH27yStlOb1Kt6v+mrr2I82y1O+yL565X77hysa3Nydzp8zFQ+ozXQ9ryWKOo3/o8GKcddUPNg8kF43q8u1ezReo74Bc3Rn4wR4UdEX0W3ViZRJN8iN71IN7036EkUrwWEndPpbXRQWbK5XQz3wHqXI4t5JmV5508Wi66vLNl6huJlcrB5BmAa8sYzVV9rPRVumvUxRqXcJRT2U6yR9I5PuWElvbrG8uyStXJteSY0bX9vzMKW9SNH6ZqX0+oKi2fusHJ/NFUUrD6S/W6jRu7uivtIC6dgcqLhgr9Llt9J3QO4Rbuf8igHGn1CmblBKc2lz2xvvm1o+VCiK11dRXKQnKHIzD+mRfgPF8C1/TNNrSvpu7f3/TN/tsxp+k7pf0UVCc3nbKG5Otytyxl+T5i8o6YH0/7mSVmx8T+d02b7bNTwIq3Kv1Zh3acvjk7tWdg0QWy5zPsUD2pvUo3d2Ra7OVYpc46vSOZerX9aqN/wBtq/VYL/pezg7nauPK3Iys+edhu4D/6NUT0z54HsNxUPVTml6JUW1gW7r//fa+bLwoMvT8LqK1WuKonpIR51cRVD/MUUR32np/1z9s57Xkty+9zjO09Lfd6S/rQYOn9Ov8daP1Yq5+d4oqjCzuxUX2AcVF8Uq+zfXyVy9X50FFGXRL7r7frU0n1OU3b9X8QS+h6TTvNYJpZmd0GPT3Vv0C9SNteznxPp0HGlduhKoLS/b30+P7RpWTNknbesm6RYd162tCEpyrZfqy636b/qoos7FgTa8f6fb03onKipn3qcotsieE2b2XkUQdl9Ks6Kidd6va2lanYcp7e+8UT/IhvftlOtzrb7M3D7/VBG8X+A96kqlYhV5u76aqgG5P6Oo0zTiagapPtuWioeLKYob1vHu/kgm7XGK1mxdW4FZo2+4Huvt2r9Xl/TXKfb5bB/qd2fm95VaLi2u6Dh4/9pHn/FMlwJm9qO0nx1Fa2Z2jeKmvaiibt71ivNyPUXz+o0znzlCcf59P83aS9JD7v7pRrqLFQ9v/bopOF6R81cfc3HCSK9NuaJFRY5VtmgxFTWtltJm63eZ2bXuvn4qGjtaUU3hNHd/XS1NsxuDmW+pUcxnA/RP1ZZF69RfKQL3dyoCsY6+CgdY3scUHQMv4e6vsxi14Hue71aj7TLXVvS+voPiQeB0d+8YI3GA5XW9lvT6jWXSVh3Ftu4DbTSMmzpW0tCNK1WwW6BH0vcMsMwbG7OuMrPrG2kOM7PNFblAayqySy9opGnVXLd2o++2PR3Bn0ez2Ncq6oy54gkuW1nae5eF1yvMVy2sRswHG45hkCbp1ZhwbUw0s6UVrTY////bO/OoSaoq2/9OMRaNoDRCCyoFDTwRZBSQAoUupJcKioIoBUiLglNrlcqjbVtEEJW2GaSbSRBEUIbHoIJiIzSCjIIWAlVMMgmoqAwyPEFkOP3HvlEZGRkReSO/yG/Ku9fKVZURN2/czC/ixo1z9tm7ZH+ReF0Ld784TGzZYvGO4uKlwXkIcInJ5uGc8P7dqGotw0dQaP8cdBOp5SSF48+t2hc4hl9AxNUZYdPziJPxxZL2UYbcsTAp62+AOI6HuPuiPh95ILyWDq8y3Ghmm7t70fS1iDp9r1J4TcGANyDYh/1rVC0q6F6YxeIzaDH10fD+UmQ2XEQ/GYUMH0Vpq2z7VUCRr9UERyJvuTsBzGxdxBParKL9FnSKRzY1aU4VVfG/FBa0+9NRw+/iOnmz4poofSqTFt187+azHVmx6Ky1jDGzc9z9PVVzfckcX0sij71nhN9/bng9gh6+zAuaUX36exZF4g9D0dmYuaTJAvB2k8L/atYts1IZ/JgIjFrE6h3oYl4NPSWsgdI064f9eY+tHlQ8ZebbzkCTwn+5e5lOVMwYl0URrSL58gNhf2m0I9euLOqxLwo7/wSdgNsiwu03C+2uBN6MJt/foxvL+71c+Tb6KaMOVq7e6+6+c6FdzOJrkOPvhlJtV7v7x0zFB4d7d8UJJjXiW73bA209d7++pM9aW5R+52Ghr6eQh2VGzJ5B7ndC4fzd0GT9PJoMz8sm+JK+ap/UA4n0rcCHPAhEht/kBFQ92OXPZdIRuwdpgF3u7r8u6T8aZvZi4fv1jLHic5WCsbER6HBt/QEt0D6FokPHu/vdFcc8D6U1jkWRo/nA691990K7UoJ9yfGjIkdNYGYzUUrqzpo2H0XnqqNz6JkwwKgCmTGM7ZaS36BnW9heq4pvZq9y9wcrjrOTj9G6rB/K5sNB50gze4W7PxQb2Taz6919y1z0fUmUXssWTFH3jHDtXYUWfHeHbfd6rwVSXX9Logejg1ERUPRcEosQJPgxEpIu/S4TDp8E+cjxeiGy298SCJyoQuyU3P4fhn/vo1v/5T4qtJUKbe9C5MltCm12RtybSufzXNtzkSDiPYjMeQmq0hvL976THME3/AZ3lrRbA4n51fJqQtvovHifseU5YtuhRc6tdcdDYemyvs4J/5aSMMc4zl/SSxou40V8G2ltHY+emI+hoC/W7zwcwxhfiVJxv0M2HIN+zx5tIaSNU0V8Xh9FM85AC+Rvt3FuRI53gzDm+8NrAQWyO+XckTVK+tqsZNtONceOKhgggmAf2l2Aom+nUKFNRwMeJLrx3AncF95vTI5biW6C/4GiEwtQgcQjKHqyVK5dHal54OsKEctPDtf9dqgS8ZsVbW/PX38l++8AZpVs34egs9RwbI30AsM1nS+iWYlCERQDFuxEjDWKRB7RzzuRI8CD4W+xfXbuDNDXIQwwl0yX10ilAoHn3P1RM5thZjPc/XKTxxoA7r5T+HfN6i66Edn2SFSpUVRtL8Pa7r6bme3s0o05k1xqpQk/IIdH0cWb4amwrQseX2bbGlxpymI+/+slTfP5lh5l5oD/b2bbIAJ1bSjWmlnQgCZ1z+1/MTwZFhFji1J7HpaMdUN6I2DFVMSmKIS/A6okK6ao822PRAu520p2L+XujxQ3uvvDJomGYl8rIP5gRnRdkQobiiHhJODTHrTNAm/nG0hRG9B5Hc6LdTxYtlBuj/MNkyXLotDX7ihyVRrtCL/TnmX7CuhrsxIQk8KOtRsBPRxtgQo0cPebTHIiGQ5H4pRrenck9oiwL0uhNUqHN0CT1GI/VfxPo7T5ju5+F4BJmmEP9NDWFE31Ao8ErjOzc2GxqOiX8w28uaJ6fq5fGlXx/rlkjv9XlOVYiLhWF7l7Wcq3Fu7+feD7Jh2zndHffxWT88j3vIHLgourumuTuSQGNWnSSZUKHLWF1eMhZXAlcIaZ/ZEcp8BkSXEmcKa7F7WRKtEv9QP8IXJRBR2NqMdN9i2/RxoqWb/R/ADraIPcDVxvInU7umhuybWLzcHnL/TlzCwTqqxN01SMLSqfnx9Gxf/zuBndEF6BOEdneYWhMs0nznvNbB4KY4PsVMrOkRhblNrzMA8TYXhDJJqX12nKPAq/iIjet6Onzc96iQ1RAbejRcSSdHSSshv/X2s+V7bv6tzrWK8w5B4i+grGWrxly7uB88xsD8Qb25tubk3W30E143F3P7SwLcZmBY9MvXm8vthz7v6EdXPA8tfOTqg4Jf/A8GRIDd5BWFjlHriwGk+6AfCPwNHF36ECKyMvwhvo/g0zwdgfmdmzwH+b2TuBfdGi8k1e4eFYB2+oF+jup5uKfzK9rF0qHlww+ZP+xt2fDQ8CGyJrm670fX6uN/0Rd0YRy2zbzkjd/Th0Pe+HokGbmdnjHixtmsIl3HsmcKaJK7Yb4us1ta9qOpfEYH74d1iL/VYwahyrv0HRmBnoSXNF4AwPTugmf7XdEZH5UUSk/H9eI5bZL/cf2hyNTvhiZUmPQGTgQ52PLrZT0ZP1Qe5eFsXp931ryeXeMTRuzNsaK2Lz+bn2L9Dhx8yko9hcVsmzBvo77h7anoUWD78aw3hXQWmAOejmdBnwyeKNxSR2uDFKifXcAEKb2vOw0N9t7v7amnG9iKJ82e+RXdB9n+BMfpH7oMXtNSjS8z+UL/IMWNbdS580LZg/Vx1rWDCz76EUVl4wdjPvuA1gUmTeBKVus+q9Ki7Puug6fQBFmXtEB81s/+I2xIP7IEr5LV9oX3odekEl3FT0cBgqi8/zK9fKtWnCgzwFnaf/iqqV56GI5EfC/l+5e2m0q2yf9XrSvRFY7EnXFGb2HSRZUas0H9qWRp28t7L5jSgVdi3wHnf/yyBjy/W3Lkqvz6L7wXlOoV3UYim0vQkt9GehIo0LUPq6qIBeNp5f5s7ha4DdPXDLQr9z0D3jVC+pCrQIzl0szGx7ZCdWKsyZm7N7dlEzl0wHjMTCyiThv6q7X1PYvg3wkLvfU/KZNyBC8K6I73Smu5epEd9On9RPWHwV4e6+d7NvMjbE3Pys21RzJtIIeqruMwOO5Z1o4bM1Kj0+GzjZG6RhI4+zCeJybOjuS+S2R1mnDHC8yhvAgOfhKai6qOrpd6BFsakKbSe0sHoVivBtg1INu5d9pqKfxebP7t7P/Ll1hCfqQ+io7F8FHJyPUpjZDe6+hYUS7bCwvc57JTUyrIJSd89CeaVtru+XoKfoD6Lf8MiqKE6/68/Mrkbpu6+hdPY+yK7koFybNRCfayn6EOxNprifQ5EhQ4TfQ7PFhpl9H/mrnV743F5oUfKOwvabkXjoH8P7lyNNtZ5FXSysozS/D/obZBHURnNOLppuSP/sOfSg2ziaXuj3ZkRNWEB3xeeCQrv8YukiJBFSuljKnYcHAH/xoIDuveT3XXJvZ4T+t3X3rcL+n7v75rn2x7r7x8P/f+bubyj093aU5l3a3dc0s41REdOgc91paGH8GLrurkQ8ssYRwgbHHIQKM/7wSUD0GvYLcSR6xB1RiXipuF6uzXaIhPdsxf5zyRl5jmGMn657jbHvWiHDXLsoU82W/zZ/g3gQP0BPNyegEuyx9LkkujGdgZ7qzwZ2LrR5GEU6DkBaMnkS/ba5do1Nr9s8D8N4nkAk5Fox0Qbj+BoqtDgR2KKwr6eooU9f0ebPE/VCEYcTUUpuP+A6gpJ52F9KbqeC5B4+sxLSpLsPVUBViqI2uP4yccuFxW1D+l1WD3+/KxBH6EjgpyjaunpJ+yIZe0Zx24DjqFSaz7XZJWzvWwDU8m8U9fvTwMydSEV1tMjMXt9Ai+S82fLdNePpIeyjxeGKhWu1jb/faiga+gDScBzq32QqvEaFY7Wql3Cc3H2hmc0qbjezzdGJvyuaOE+kY+ibtckEK19CTe4/tF0Z+W/Nojuc/KFcl020VZriaKTNdWE47s1m9qaSdrGmmq3B28vnY2Y7oL/b29DN4WxU6lsWjv47RPSeixZ2F6En5aIBaBQXK/JJqtF5GHAKMkVdSHuk8FuAAyt+lzIT4Vp4vPlza4iJOJrZcSjSfEQ4N55EPKuD3P3SXNv7rZlY7eHoRp+p8fdIPBQQe/09a2YzgLtMEg2/JZDsS6Jqha9bmgqsTWO5BFe3NLM5qLITpLB9WcVxyjzpflTRti8CR+j9SArjdLTI/2OItN2GHmYy1Hqotg3ryOj8wMw+htKL+fm9KL0TZeYeEOVP6v21Da83s/28kEkxsw+j+a+Ifpy7RrCWNewGHEOXFqAPQZJnEIzKwuqlNftmZv8xs6+gyeIxdFPe2qvJuE0EKy9Alh9XU3HT8Q7faaXiRWvdlTwDIfLmF22qOQy4Qsgnhdcg+CxapO3vfcLRLuLvxehmsQxaYF1hZod4TmHYI0msHldUEHUeFvCwl3DxxojFXDPLmcC6+/3eXEMp2vy5ZcSYNf8KOMIkAHsOWmSVFjN4M7Ha/dFN9kDgc7nrqjIdEXn9zUd2JPOQ5MocJLkC5WTdTK28yhj7XJTGOrnieNnYMiuuUuRS2AeE9FSWdr0ORYUbwWROfC16iDrK3btuxu7+tJl9sPCxP4zXoipgAZ3UIiiyncHprUyOWiwBuNL6mf7Wy5D9zFeL7czslWhxmRVZXIVESLN70qdQFd8eKPoO0lFcBkknFHFraLuEic83D/0dBsXRtKhh1wRWoQVI5wFhYjHRIbPxeKHJd7+S7fsicnr2/iDEL2rS95qIiJe9n0lBT4USM9Sa/q4h530ErMcYUyvIx2k2uviWQk+xZ5e0a0UPZaq80AS0C7oB/RxpaK1eaFNpeE2F6fVYz8PCvuPRYrHUOzLXLtoMmUgT2Mi+Gps/t/S3izZrRpPuZ0K7OxCPad2SdmWemhe0MNao669Bf5sgEvmvkVdilY9iK2lExkClqOjvCHRD/xNKPX4FLRxXqvlMrYfqVHoR7096KVqwLRle7wcuLWk3B/hEeM2pOe5ySALi5ygC/2Vy964Bv8uEaNgxJC3Atl6jQl5fFS0S/kpH3+f1SBvkXV5h7xLZ9y+A2e7+1/B+aWTcmScVHoZW9H3TW2a2I8rT74jSFqcDe7r7TWMY48poYnozuqFegp58Hi20m4FIuHmy68k+DU8S67ZOOdsrrFPM7GFqIiNeqErqc8zG56GVe0i6F6wymhBJc+TZg4DfuvspVvDeCpGJryIitzHZyKE55CKOhyMbnEpPs6pihrAvX3iQVb3t7iWK+A3HV3b9zfMQmY5Ma5bJk/xfd68sXjCzg9Fit18aq9/4u0jShX1RPowVn10anf+z0bm7FfC4l1TBxl4HbcPkzHCxuz9lZgei6O6hHiKfNoCukvXxJ821u8ndN+63baIQCg+2RjzQN6KHrJ+5+z8V2rU+l1jH1/NmYBOXruDNPoZCijYxEgurDGb2D+hmCuJTVIa/G/RZdvJ3/YHN7E+INPg0uqlmJ1apdY6pYu5fEO9qVx+DTEBTWAPj3akMi7ROCdybjIu1IdVcrCbHbv08zPXd1wzZIkxgzexuajgt1lzLqXVYpFlzSGm/FVWhbo8iBme5+wUlfRbFar/r7scU20WOL8pmJWbxbg3lScL++0o2e91nKvq5y93Xqdh3t7uv3aS/3GdXRIuprcO/L0Vk6ijf1PFAtuAxVe5+CS3eD3L3LcP+z6II52N0NAgXw8stxhaih9fTgM+5+88rFlaXEaokw6a5wD7e0FzZGhjYN+z3Fjoadld6BW2m31wy4LH/B6U7D0MLuj8Cm7v77NoPjhNGhWMFgEtI8PKWu33YzN7hgQcTCJlFtdmV+3Vi3QrghhZi9wAfN5mNFpXA+yL25mfWY7yLSYOk1Hh3OsDda811c+2iuFgNjx19Hlof78hcuyZE0loT2IB+nJYy4vtiLSfEERoaLMKs2SKLGSqiQXVitbG41Mze4gXuiZntg/hZmaJ7TCHFLmhheLmZZfIktYbb3p50yS8qSNL7UqPwXwUzOwmdz0+hheS1KBVWFl1t6pDQNjJu2o7ASe5+kZl9Kbf/bxHX6DWowOQa9H2urYkMfhFlA64Oi6q1UMVjER9AHKuvoe9+LUoHNkXGB94FnWvfCe/nohT+QPCOXEk/GZ/W+HEZ3w+JpT6DeGZ7onT/J9o4RhsYqYhVLMzssuJTQdm2sP3vUX55NTTRPQjs7QVdGZM9xlru/pVASlzVc1ooZpaFT2fSWfCOyRDVIoUMraHx7qghNjIypGOfi3hBe6AJeU9k2Dy/0K4VM2TraOdsiybhoqhtj+WKNdByagsxEUcz+wnip51fdtMu9NUoGhQ5xrehm26Zzcpby57w+6U1rWM3Mhdxa06nxm7E+rtCxHyPVqkUYWG4MpIbuBaR4Bd5yc3IzN7u7j/IzY9dGGRebDjWH6LqzB1QGvAZpDi/UaFddFpzjOP5pLtX2l/1+ewv3P31/bY16K9Ww26QuSTimD9E7hILC9tfB3zF3d9e/snxRVpY5RCiA8uhaMJ2dJ4IV0ALjMpSbJNFCV5Sem1mxyLS6pvcfT1TKe+PvZuHtRQiE34A6YGAPNhOBf7N3XvCzA2/W+XNz2SJsYMXfJ1CWvASH8ChfbrAIrlYQzx+xsfIUhJLAVd5QfwvtF0fpfa2QRpkd7r7+0raVXIerJzLksHzkbJwHn8aLfZOQ5WFQxMHHBZsiGK1JnXqE1HaIrNZ2bH4Ow2yeLeOPMl7Kx76+rpCNPwuraWwQ5R8fbQQmR36fQwJt35h0H7bhkn64S0oRXmXqcL0dcWFbExas43om5k94O6vHvC73I7OvXvD+zWRvMZ6A/Z3PaIdXOgdNfhF7r5B+H/0XNLgmEPh+7WNkUoFRuDDSKhuNfRkli2snkSplVKYCOfrA8taKKkupNBmu8jCvwz7HgtPOHn8B9Ks6WeI2gglN79NS25+jYx3Rwx7ocjIfGCeRZTWt4xa78jFg2lmhlypCZTdCMxsa+9ViN869/+mWk6TFt6i+WxJ35eF1N8VKDozxws2KzFpzYq++8mTxBiCR6NJCjuiLwcWmdnjSPTzCVQZuAWiJQBgQ3JIaDDOp4HvmtkqIWUOiiBn44tOa9Lcn7QMtenfPvgUojHcG/pZA5k2DwyvkRGJnUsaYhDJmvGHT4LSxPF6EaneS0H1t0+fX0fh+AfRhLCQQtknuuBm0FHnXVwmmmtzFyGCWNi+BHDXgN/3cJQe+gwK11a1u3GQfek13PMwtN0XeBkKp9+LSJofKWl3C5Jm2AMZs9Yd/5qIMfb83fPb0KLtmWzsude4KGKPw9/oZeimM7DzQO63eQql0f5c9huF3/Kptn9LWnKFGMJvOw9FBR8I89O3Ucn+RsjCJ982yiFhiGN9R7hW/4yKGV5A0bps/8VoofStcL68rmweb3E8D4zx88uE33kjYJkx9hUr41M7lzQ8ZmPJmol4jVQq0CKrE6y8xPZL7n5jSdssRZP9uzzw3+7+RjNb0t2fN7O9gXehJ8hvIpPnQ9z97Fw/jQxRI7/viyin/Tz1lW8ja5Y5EYg9DwfsO8YP8j+p4DwE3sRsFLXJc+tWQHyaSVHOnNAfFmEIPhEws6MIJG93f6hP29arcpvAVM4/B3kibhLSoXu5+wdzbaLSmrHRN6t3cZjpJZW+kd9lKbSAzVT/rwBO9AFpJtZHxmcYc0nbfL9hYdRSgbHVCZ9393NNJbZvRpGfE4AtS9pmzt5Pm0rdHwVeEbbdgFJvp5vZAjon4G7eG+6/zcz29nJD1ErX9zp4fOXbEv1bJbSIvudhKCiohLsfVWi/mEgK9DNDXgFJf/xjvkvgu2iCWh7NDXk1+ScRnyJh6uDgiR5AGdy99twutG29KrchnnP3R81shpnNcPfLzayLPO6KTvRNaxLnFoDHuTgMghNQZOn48P59Ydu+g3Tmoo/sWdOk9bnE3f8AzC7w/S7yFiVr2sBIRKyaVifkCMOHIQLimVbiPh7afh6VxG4PHIduUCe7++erPlMxxtXRje0ZulfiM9FKfOgVaAnDRZPz0MzyE/KHEQGaXNtDCn3XEkkHGOsaXqLBkzC1EJ7wM7LvDT7kas1hYBBif4vHzvSS/h1ROLr0ksxsHp1I1XMEqYXwWujuL+b6mvDoWzFKVLYtop9oDbvwnc9x912bjXZqY1QWVo2qEyyyxLbkOMug1NkT4f1vgKOq2hejDuEzeUPU27zaEDVhimHQKpmYBbqZXe/uW+bbVk2apmrP/egtw89X/F1OeeXSnLpxJEwemNl7ULT9ClisJH+Au583keNqApugqlzr+BnehqK7M1B0ZkXgjFy6KzqtWeg/2i2gLZjZjShbck94vxZwnuccFyL7iZLxybW/zt23GnDYUxIjsbDKUFWdULItqsQ2tK20PDCzh1CotSrke0jZ9oTpjdjzMLfvxn6Tn5mdhxbxx6KU9Xzg9e6+e0nba5Fu0wK6q3jOz7XZLPeRZYFdgefd/V/6fL2ESYLAD9rBO7IqL0dcoSnDk7NIh4QhHPcIFIVqIvwZ0+9ERt+2R/I9+arAfVzVnoP22VfDLlTXro6KKRZzeYuZoumEUVtY9dygqm5agV+1jrufGiak5T2IZxbaVVoexNwQE0YPTc7DfvtybaL8IEPbgfzGzOwGd9+i6ecSJgZW0PUxeYF2WRcl1MNaFP6cqOhbYQzLIA9akM7ds3Xta/qJ1rCriNRXRuinA0aCvJ6rTnh5gRS8ApIzKLb/ArqY/g9a4S+FbADKtDfqLA/GojmSMM3Q5Dy0blPXtU2+XNB5Uu/yFYsgkubxQzN7m7v/qGaseR/LGcBmKA2SMHVwsZn9mI7X3HvRTT0hHjPR9blieP0ORbAGwURr4oGu41no3r+xyS6tqRJ/Iw07n0Tej+M73hFmAAAH80lEQVSFkVhY0bw64V3AJkifA3f/XQh5luG3ZnYi4mN9NTwRZNV4jcwyE6Y9mpyHO8V02IRImsN84N/M7K90m4LnJ/YFaGFnSK7jPhTuT5jksOCn5u4HhIKJbcKu65D9VkIfWDPhzyjEVmkPC1ahxI90GJtgf1R0cyDwuX4LRJOF2zF0AhNXoWh6qWnzdMCopQKjKp2ylEeWgjEpMl9XjBKEttF8rISEtqtkmhJJE6Y/bIr4qU1mWAM/w6kCk6VNa0r8DY57KfLs/HbYtBewp7vvMJ7jGE+MSsQqw7fMLKbS6ZwQhXqpme2H/Pu+UfxcwCuQjsazZrYdKqNt+gSQMCJw9xdMemdt9Xdk9v8ckXQfpGx9ZNlnTI+YewJruvuhZvYqpNB9Q65Nq2KCCeOKVYuLKgB3X2hms8Z/OFMP7v6WcJ1kwp/7AxuY2aTzM2yARUjmJbp6sSW83N3zPKtvharLaYtRi1hFVzqZ2Q5IQNGQYfKlFX3ehPhYsxB/4QJgfXd/W7ujT5guaLtKpgmRNHf8F5Fv3XomM99LvNsU/GTELTwtbHof8IK7DyQmmDB+MLO73H2din13u/va4z2mqYyQytoaLbB2QpHgOs+6SQUz+wFK+b2ECVDiN7PLEFc54/rNRdWI05YqM1IRK3dfUNh0jZnln9Iz7ZIbw0KqdDFVwIsu25pdgGPc/RgLZssJCRVYFin05yOlmfJ5F0KJ9LXu/kxxX9g/iBnylt5tCv4n6zUF37xQlv+TUL6fMPnxCzPbz927ouxmti8d8eGEGli18Oc3GZy8PlE4YoKP/wHEsfoamueuRVH1aYuRWlhFVDq9EjgaeE2oyorRLnnOzOYCewMZdyF56yVUomGVzN7ACSEFcRVwJXB1LiLViEga8Fzgejks1jd6sdDmBTP7+4KY4AskTAV8Evieme1JiZ/ahI1qamEWiih/yhsIf05GuPtPy7YH+Y2543D8+5GZ9chg1FKB99Fb6fRFd7+60C5au8TMXgt8BOXdzzKzNYH3uPtXh/plEqYsBqmSCbysdyMH+dV8QCPW0NeeqPR+U5TqezdwoLufm2vTuphgwvjCuv3UbvVJ5qeWMD4wsxWAf0b0gwtRJuaf0Vxys7vvPKTjDlKxPC0wUgurWJjZimgxtXX496Wo6m9ahy8TxgdNqmRMJtxvBF4HPAJcDVzl7teNcQyvQXIgBlzmJabQbYkJJiQkTBzM7ALgT6iycXtgFXTdz3f3m4Z43JGtWB6phVW/SqcS7ZKfAT/rQwReBzgMeC3izgDg7msN4SskTAOUKZ9XqaGb2SPAPcDXgcvd/ddjOO6yKLq6NuKJnOLuzxfabA486O6/D+/3RkUe9wMH16TEExISJiHyCvyBAvAQ8Gp3/8s4jqGv9c10woQKlk0ATkC8quPDa7OwLcOrgWWA3yMT5t8Aj/fp89TQx/PAPyCphe+0OuqE6YZHzWwvM1sivPZCZPYeuPvKiPy5LPBlM7shCP0NgtNQinsh8FbKSa0nItFQzOxNwL+jc/oJRJBPSEiYWlgskeLuLwC/Ga9FlZmtFJxIbkGc7k3d/TPTeVEFoxexurlQ6dSzraBdMhtxFCq1S8xsgbtvVngqWODumxXbJiSAhGoRx2orOlUy89z9gZK2K6CU9LYoJbgyiqL+0wDHzZ+jSwI3eK9n4eLrwcyOAx5294PD+4E8BhMSEiYOZvYCHVkXQzY9TzNkK51CxfJxkRXL0wIjVRVIRKVTUKVdZGaPo6f0J5B2yRZAmSjcs6G64i4z+ziKdE3b3HHC2NGwSubq3OvYMdpA5J9cn89VEOaxhJktGVKE2wMfyu0btfkiIWHKw917/HDHCYNULE8LjNpEeQBwuZl1VTplOwfULpkPLAfMAw5F2kSNowkJ0x+DVMlkNkpmtpy7Pz3GIWxkZk9mwwFmhvf5ie4s4KeB2/UMqljM/OeeGOPxExISRgQ+wd6IE4mRSgVCfaWTmR1F0K6a6tolCZMPg1TJmNlWwCnA8u7+ajPbCPiwu39siON8A7JqusTd/xy2rRvGcOOwjpuQkJAwHTASC6thVDqZ2YV1+4dtE5AwtRFbJWNm1yOdqQvdfZOwbZG7b1Bsm5CQkJAw8RiVVOCJwJuhq9LpE8g36SR042qKrYAHUerkepROSUioRYmv36Z1ch4A7v5ggQ+VFNATEhISJilGZWG1RC4q9V7gJHc/Hzg/mCgPgr8DdkCWAHsAFwFnufutYx5twrTEgL5+D5rZbMCDDtt8oEfMMyEhISFhcmBUUoGLgI1DJdQdwIfc/cps31jTKoG3NRc4HDjE3Y8d86ATph3M7EVUJfM8wacv20VFlYyZrQz8J4q4GnAJUkwu1b1KSEhISJhYjErEaiiVTmFBtSNaVM0C/gv43lgHmzA9MUiVjLs/gtKGCQkJCQlTACMRsYL2K53M7HQkHvoj4Gx3X9TmeBNGG6NsYJqQkJAwlTEyC6u2EdI6mZptVFonISEWo2xgmpCQkDCVkRZWCQmTHKNmYJqQkJAwlTEqHKuEhCmHQaQZEhISEhImFmlhlZAwCTGgNENCQkJCwgQjpQITEiYhBpFmSEhISEiYeKSFVUJCQkJCQkJCSxhZ9+mEhISEhISEhLaRFlYJCQkJCQkJCS0hLawSEhISEhISElpCWlglJCQkJCQkJLSEtLBKSEhISEhISGgJaWGVkJCQkJCQkNAS/hc0TLESGy88uwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax= plt.subplots(1,1,figsize=(10,10))\n", + "\n", + "ax.bar(range(50),df[df.columns[1]][0:50])\n", + "ax.set_xticks(range(50))\n", + "_=ax.set_xticklabels(state_names, rotation='vertical', fontsize=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAKECAYAAAA0WC+2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde7xtc73/8ffH3i7lzt4pwlZJ6ULaSDkhpVy6ScWhJIXzi6PLyeF0ISriqJROUoiSSohCkbDdwt677U52LiG5RG4pbT6/Pz7fYY015nfOOdaa67vX2nu/no/HfKw1x/zOMcYc8zvH+Izv1dxdAAAAGFuLjfcOAAAALIwIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKmDzeO5AzZcoUnzZt2njvBgAAQF+zZs160N2nNpdPyCBr2rRpmjlz5njvBgAAQF9mdmduOdWFAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAZPHewcAAMCiYdr+Z/d8/Y7Dtp1PezJ/UJIFAABQQN+SLDM7XtJ2ku5391emZT+RtE5KsoKkv7n7+pn33iHpMUlPS5rn7tPHaL8BAAAmtDbVhd+XdLSkk6oF7v7+6n8zO1LSIz3ev4W7PzjaHQQAAFgQ9Q2y3H2GmU3LvWZmJul9kt40trsFAACwYBu0Tda/SbrP3W/t8rpLOs/MZpnZHgNuCwAAYIExaO/CnSSd0uP1Td39HjN7nqTzzexmd5+RS5iCsD0kaY011hhwtwAAAMbXqEuyzGyypO0l/aRbGne/J/29X9IZkjbqkfZYd5/u7tOnTp062t0CAACYEAapLnyzpJvd/e7ci2a2tJktW/0vaStJ1w+wPQAAgAVG3yDLzE6RdIWkdczsbjPbPb20oxpVhWa2qpmdk56uIulSM7tG0lWSznb3X43drgMAAExcbXoX7tRl+Ycyy/4saZv0/22S1htw/wAAABZIjPgOAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFNA3yDKz483sfjO7vrbsIDO7x8zmpMc2Xd77NjO7xczmmtn+Y7njAAAAE1mbkqzvS3pbZvnX3H399Din+aKZTZL0LUlbS1pX0k5mtu4gOwsAALCg6BtkufsMSQ+NYt0bSZrr7re5+1OSfizpnaNYDwAAwAJnkDZZe5vZtak6ccXM66tJuqv2/O60DAAAYKE32iDr25JeLGl9SfdKOnLQHTGzPcxsppnNfOCBBwZdHQAAwLgaVZDl7ve5+9Pu/oyk7yqqBpvukbR67fkL07Ju6zzW3ae7+/SpU6eOZrcAAAAmjFEFWWb2gtrTd0u6PpPsaklrm9laZraEpB0lnTWa7QEAACxoJvdLYGanSNpc0hQzu1vSgZI2N7P1JbmkOyTtmdKuKul77r6Nu88zs70l/VrSJEnHu/sNRT4FAADABNM3yHL3nTKLj+uS9s+Stqk9P0dSx/AOAAAACztGfAcAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAK6BtkmdnxZna/mV1fW3aEmd1sZtea2RlmtkKX995hZteZ2RwzmzmWOw4AADCRtSnJ+r6ktzWWnS/ple7+akl/kHRAj/dv4e7ru/v00e0iAADAgqdvkOXuMyQ91Fh2nrvPS09/J+mFBfYNAABggTUWbbI+LOncLq+5pPPMbJaZ7TEG2wIAAFggTB7kzWb2GUnzJJ3cJcmm7n6PmT1P0vlmdnMqGcutaw9Je0jSGmusMchuAQAAjLtRl2SZ2YckbSdpZ3f3XBp3vyf9vV/SGZI26rY+dz/W3ae7+/SpU6eOdrcAAAAmhFEFWWb2Nkn7SXqHu/+9S5qlzWzZ6n9JW0m6PpcWAABgYdNmCIdTJF0haR0zu9vMdpd0tKRlFVWAc8zsmJR2VTM7J711FUmXmtk1kq6SdLa7/6rIpwAAAJhg+rbJcvedMouP65L2z5K2Sf/fJmm9gfYOAABgAcWI7wAAAAUQZAEAABRAkAUAAFAAQRYAAEABAw1GCgDAoKbtf3bfNHcctu182BNgbFGSBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABbQKsszseDO738yury1byczON7Nb098Vu7x315TmVjPbdax2HAAAYCJrW5L1fUlvayzbX9IF7r62pAvS82HMbCVJB0raWNJGkg7sFowBAAAsTFoFWe4+Q9JDjcXvlHRi+v9ESe/KvPWtks5394fc/WFJ56szWAMAAFjoDNImaxV3vzf9/xdJq2TSrCbprtrzu9MyAACAhdqYNHx3d5fkg6zDzPYws5lmNvOBBx4Yi90CAAAYN4MEWfeZ2QskKf29P5PmHkmr156/MC3r4O7Huvt0d58+derUAXYLAABg/A0SZJ0lqeotuKukMzNpfi1pKzNbMTV43yotAwAAWKi1HcLhFElXSFrHzO42s90lHSbpLWZ2q6Q3p+cys+lm9j1JcveHJB0i6er0ODgtAwAAWKhNbpPI3Xfq8tKWmbQzJX2k9vx4ScePau8AAAAWUIz4DgAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAVMHu8dAAAAE8+0/c/u+fodh207n/ZkwUVJFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUMCogywzW8fM5tQej5rZxxtpNjezR2ppPj/4LgMAAEx8k0f7Rne/RdL6kmRmkyTdI+mMTNJL3H270W4HAABgQTRW1YVbSvqju985RusDAABYoI1VkLWjpFO6vLaJmV1jZuea2SvGaHsAAAAT2sBBlpktIekdkk7NvDxb0pruvp6kb0r6eY/17GFmM81s5gMPPDDobgEAAIyrsSjJ2lrSbHe/r/mCuz/q7o+n/8+RtLiZTcmtxN2Pdffp7j596tSpY7BbAAAA42csgqyd1KWq0Myeb2aW/t8obe+vY7BNAACACW3UvQslycyWlvQWSXvWlu0lSe5+jKQdJP2Hmc2T9KSkHd3dB9kmAADAgmCgIMvdn5C0cmPZMbX/j5Z09CDbAAAAWBAx4jsAAEABA5VkAcBEMG3/s/umueOwbefDngDAEEqyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAOYu7KPfnGjMhwYAAHIoyQIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogN6FAPqily0AjBwlWQAAAAUQZAEAABRAdSHmC6qbAACLGkqyAAAACiDIAgAAKIAgCwAAoACCLAAAgAJo+A4AwARGx6EFFyVZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABDEY6gTEAHQAACy5KsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoADmLgQALHSY+xUTASVZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAXQuxAAgHFAD8iFHyVZAAAABRBkAQAAFEB1IQBkUJUDYFCUZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQO/CRQi9pQAAmH8oyQIAAChg4CDLzO4ws+vMbI6Zzcy8bmb2DTOba2bXmtkGg24TAABgohur6sIt3P3BLq9tLWnt9NhY0rfTXwAAgIXW/KgufKekkzz8TtIKZvaC+bBdAACAcTMWQZZLOs/MZpnZHpnXV5N0V+353WnZMGa2h5nNNLOZDzzwwBjsFgAAwPgZiyBrU3ffQFEt+DEze+NoVuLux7r7dHefPnXq1DHYLQAAgPEzcJDl7vekv/dLOkPSRo0k90havfb8hWkZAADAQmughu9mtrSkxdz9sfT/VpIObiQ7S9LeZvZjRYP3R9z93kG2CwALGsapAxY9g/YuXEXSGWZWretH7v4rM9tLktz9GEnnSNpG0lxJf5e024DbBAAAmPAGCrLc/TZJ62WWH1P73yV9bJDtAAAALGiYVgdYyFAtBWBBt7Ccx5hWBwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAIIsAACAAgiyAAAACiDIAgAAKIAgCwAAoACCLAAAgAImj/cOAABGZ9r+Z/d8/Y7Dtp1PewIgh5IsAACAAgiyAAAACqC6ECiEqhwAWLRRkgUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAL0LAQAYI/16FUv0LF6UUJIFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUAC9C+czep7MX8wfCAAYL5RkAQAAFECQBQAAUABBFgAAQAEEWQAAAAXQ8B0ABkDnCgDdUJIFAABQAEEWAABAAYtsdSFF/JgoyIvzF8d7cBxDoB1KsgAAAAogyAIAAChgka0uxOAW1SmCFpaqkkX1+wOA+YWSLAAAgAIIsgAAAAqguhAQVWcAgLFHSRYAAEABBFkAAAAFUF0IYMJaWHpyAlg0UZIFAABQAEEWAABAAVQXogNVNADGAucSLOooyQIAACiAIAsAAKAAqgsBzHdUIwFYFFCSBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUwGCkWCAxmCWAscC5BCVRkgUAAFDAqIMsM1vdzC40sxvN7AYz2zeTZnMze8TM5qTH5wfbXQAAgAXDINWF8yR9yt1nm9mykmaZ2fnufmMj3SXuvt0A2wGARcZ4Vl8tCFVnC8I+ApVRl2S5+73uPjv9/5ikmyStNlY7BgAAsCAbkzZZZjZN0mskXZl5eRMzu8bMzjWzV4zF9gAAACa6gXsXmtkykk6T9HF3f7Tx8mxJa7r742a2jaSfS1q7y3r2kLSHJK2xxhqD7tYiheJzAADXgolnoJIsM1tcEWCd7O6nN19390fd/fH0/zmSFjezKbl1ufux7j7d3adPnTp1kN0CAAAYd6MuyTIzk3ScpJvc/atd0jxf0n3u7ma2kSKo++totwlgYuNOGlg08dvPG6S68A2SPiDpOjObk5b9j6Q1JMndj5G0g6T/MLN5kp6UtKO7+wDbBAAAWCCMOshy90slWZ80R0s6erTbAAAAWFAxrQ4mFIqcAQBtTfRrBtPqAAAAFECQBQAAUADVhcACYqIXiwMLM35/GA1KsgAAAAogyAIAACiA6kIAWMhR1QWMD0qyAAAACiDIAgAAKIAgCwAAoACCLAAAgAIIsgAAAAogyAIAACiAIAsAAKAAgiwAAIACCLIAAAAKIMgCAAAogCALAACgAOYuBABgEcJclvMPJVkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEMRjpGGNwNAADUUZIFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUQJAFAABQAEEWAABAAQRZAAAABRBkAQAAFECQBQAAUABBFgAAQAEEWQAAAAUQZAEAABRAkAUAAFAAQRYAAEABBFkAAAAFEGQBAAAUMFCQZWZvM7NbzGyume2feX1JM/tJev1KM5s2yPYAAAAWFKMOssxskqRvSdpa0rqSdjKzdRvJdpf0sLu/RNLXJH1ltNsDAABYkAxSkrWRpLnufpu7PyXpx5Le2UjzTkknpv9/JmlLM7MBtgkAALBAGCTIWk3SXbXnd6dl2TTuPk/SI5JWHmCbAAAACwRz99G90WwHSW9z94+k5x+QtLG7711Lc31Kc3d6/seU5sHM+vaQtEd6uo6kW0a1Y6M3RVLHfs2HdOO5bT7L4OnGc9t8lsHTjee2+SwTc9t85sHTjee2R7KPY2lNd5/asdTdR/WQtImkX9eeHyDpgEaaX0vaJP0/WfHBbbTbLPmQNHM80o3ntvksfOaJsm0+M59lomybz7xofJb59RikuvBqSWub2VpmtoSkHSWd1UhzlqRd0/87SPqtp6MAAACwMJs82je6+zwz21tRWjVJ0vHufoOZHayIJM+SdJykH5jZXEkPKQIxAACAhd6ogyxJcvdzJJ3TWPb52v//kPTeQbYxHx07TunGc9t8lsHTjee2+SyDpxvPbfNZJua2+cyDpxvPbY9kH4sbdcN3AAAAdMe0OgAAAAUQZAEAABQwUJusBZ2ZbSvpFZKWqpa5+8HzYbtLSFrD3eeW3hYWDG3yYpotYWdJL3L3g81sDUnPd/erMutbRdKG6elV7n7/gPs3VdJ/K6bQqu/jmxrp1nf3OY1lW7v7uYNsf2FhZpPc/enx3o9FkZktJmkZd390vPdlYWRmsyQdL+lH7v5wj3RtzyV7SzrJ3R81s+9Ieo1imKgLSux/KYtskGVmx0h6rqQtJH1PMcRE7mK1tqRD1ZkhXpRJ+2JJd7v7P81sc0mvVmSSv9XSbCvpq5KWkLSWma0v6UB3f3dmfa0yY9tt19K+MrPOkxppVpH0ZUmruvvWaV7KTdz9uFqar7v7x83sF5I6Gve5+zsy215R0tqNbc+ovb6UYs7LZsDx4ea6xmp9ZraLu//QzD6Z24a7f7XLtleTtKZqv6P6tkewj63yoqT/k/SMpDdJOljSY5JO01AwVa3vfZKOkHSRJJP0TTP7tLv/LPc50nv65YmTJf1E0raS9lIMzfJAZlXHp+N5Y1rveyXtJ2nUQVbb4LJt3jGzH7j7B1osW1rSk+7+jJm9VNLLJJ3r7v/qsp89v+fkVjM7TdIJ1TFqrOObyvyWauv7zy7bfl5ju39qvL6vux/Vb9lImNnykg6S9G9p0cWSDnb3RzJp16ulu8Tdr8mkWSmzmcdyx3sEF+ofKfLr04phh5Yzs6Pc/YjMOpeQ9NL09JYe2/2opGka/rtv5rElJb0nk+7gWpoRnT9Hcm7sdtNmZtfltlVL8+rc8n75K3m/pN0kXW1mMyWdIOm8zLBNbc8le7j70Wa2laRVFMf9eEmv7bb/E9J4D9Q1Xg9J1zb+LqP48TfTXSppS0nXKi6oBylOJLl1zlH8oF4i6Q+KC905jTSzJK0g6fe1Zdd1Wd95ih/VTZI2U2Swr4x22yndgZIulHSf4kfwF0k/y6Q7V9L7JF2Tnk9u7qek16a/m+UemXV+RNJ1kh5O+/CkYuy0eppTJR0i6Y+KH995ko7q8pnHZH2S9qwdm45Hl21/RdIdit61v0iPs0a5j23z4uz0t553rsmku0bS82rPp+bSjSRPSJpV38f0/9WZdb1E0mzFxWo3SZdJWrHLdt8g6fyUX2+TdLuk2zLpvq2YjP6m9HzFLttulXeq41h7PknSjZl0sxTB72rpuz5V0smjzYsp3bKKi8Xlkn6nmOViudrru6bHsYpzzz7pMUPSMZn1vUPSrZKeSMfvGUk39PvMzXw00u8kpT1N0hckvSg9DpR0eibdvpKuV9wYHJyO0z6ZdHcogqEHJf01/X9Pyk+vbaRtdW6UNCf93VnSkZIWr+fhWrrNJd2pCBRnpM/9xky6yxW//fcpgqj3SHpPJt2vFIHEfpI+VT0aaUZ6/mybv4+RdJJiSrsD0/E+Lr22Znocnh6vSo/DJB022vzVeM9i6X33SPpTyiMrjeJcUl17vl4d41yeTctfpwiiH5f0VMo7j/baz/n1GPcdGLcPLl2Z/v5O0qqSllRMeN1MV2WI65rLMmmri+CnlU4izUwh6XfN5bkffWPbPTNj221XnyP9CKoMvIqk8zPprs7s55wBj/l1iruh6sT3MjVOytX2NBRwLF4ds5LrU1xoPzGCz3KLpCXH6DO3zYtXpv2svuup3b7jxvPFmstGmidq+fbXijvQ10j6Y5f1vUzSjYqL9XN7bPdmSVtLep5iTtOVJa3cI2/3Cy57fteKWSkekzRP0qPp8Zjign5oj+3uI2m/Xr+BNt9z5j2bKS5ET0g6UdJL6sdb0uTa82759pp03KrPvoXSBTU930lxA/CwYnDo6nGhpAtG+510OxZdll0raena86WVD3S+K+mttedbSfqO4gJ6ZSNt2wv1DenYnaoUuHTJO7MkrVN7/lJlzvPdvv9MuuvbpKulX0JR+/AqSUt0SdP2XNb3pk3580YuEO+ZvzLpXy3pa4rz4zckbawIMOfU0rQ6lygCxXMkzVXc7CyT28eUdqbiBu/3inPkbsr8psfjschWF0r6pZmtoCjxma0oQv1eJt0/U13+ramO+B7Fl53zLzPbSXGX8fa0bPFGmptSdc5iZraWpP9UnFCz60t/703Fv3+WlCtSb7ttaaj6Y56ZLSfpfkmrZ9I9YWYrKxUtm9nrFBN8P8vMfuru7+tWBO2dRc//cPd/mJnMbEl3v9nM1unymf+WqrD+ojjh54zZ+tz96XT8vtZlW023KY7vP/uka7OPbfPiNySdIel5ZvYlRbXiZzPpfmVmv5Z0Snr+fvWurmuTJ76Yqoc+JembkpaT9PHqRTP7vYbngRXS30vNTO6+QWa7j3i7tlr/MrNJGsqLUxV31B3p0t/sd+3uh0o61MwOdfcDWmzXzGwTRSnI7mnZpC5p23zPSp9jW8VFYJqidOVkRVXaORqqrlpRcYwfSs+XScs6PrO7/9XMFjOzxdz9QjP7eu31yyXdq5jP7cja8scUwU9T2+9Ekp40s03d/dL02d6gKMFrMkXJQuXptKzpde7+0eqJu59nZv/r7num6re6tufG7yhKyK6RNMPM1lQE102Lu/uz8+W6+x/MLHf+/KWZbeMxRmQvl5vZq9z9uj7pqqq9YxQlVKZoRrJn5ntoe26svoO/m9mqipuIF3Ru1t7g7pelJ69XviNcv/xVX+EsSX9TDEK+v7tX58YrU96o9DyX1OymqBqc6+5/N7MpGvoddnD3uczelQoAACAASURBVDbU5vGEdE5q8zsvapENstz9kPTvaWb2S0lLeaYtgaKo+7mKYOgQRXuYXbusdjdFHfOX3P32FET9oJFmb0mfV1wkTldE85/psr5cZvzEANuWpJnpgv5dxd3b45KuyKT7pOKO98Vmdpmi1GSHRpp909/tuuxT091p2z+XdL6ZPawooq87NrVt+Vza/jKK4zU/1neZmR2tKOZ/olro7rMzaf8uaY6ZXaBaoOWdbWb67mPbvOjuJ6cT2ZaKk/G73P2mTLpPm9n2kjatjoG7n9HlM0vt8sTDaZ8eUdzNqnHibOaNrsysCrguNLMjFL+D+jFsHu+2wWWr79rdD7B27en2VZykz/CYzeJFihKgnDZ5UYqqlwslHeHul9eW/8zM3lh7fpik35vZhYrv+o2KpgpNfzOzZRRVXCeb2f0annfvTPuxSZf9bmr7nUjSf0g6MZ2jTBEQfiiT7gTFhbbKg+9SXIib7jWz/5b04/T8/ZLuS4FpM6hudaF2928o8k/lTjPbIrPtmWb2PUk/TM93VpSONO0r6X/M7CkNBT3u7ss10m0q6UNmdrviOFpKl2vzdKSkLTx1hLJoX3u2Om+M2p7L2ty07a5oP1l9dw9LyrV77Zm/Gt7r7rflXnD37WtP+51Lqvc8bWa3KK5BL+uyzcrfLdrUzTGzwxU3FhNi9IRFejDSFL1P0/AT7Uld39B/fa0bl6a73X6lIEWZ2TRFe5BrG8sXUxTRXyVpHcWPMNsQdIBtbyZpeUm/cvenJsL60gWtyT3f0SAbaLv7iaPZx355MV1obnD3ficbpQD7Xo8ZF2Rmz5G0irvf0eK905TPE7ObpVHNZWkfr3X3V/TZRrdARep+vF+moeDyglxw2ZaZHaaY4utGDZWwuGc6aoxy/b2+5xe6+92NZWu5++2Z9TxfUd0iRXXZXzJplpb0D8Vx2Tlt92R3/2sj3WMaKmlcQlEK+0QzOBjJb6D2nuVSoq699lJgXQX9l7j77zNppijaEFXpLlO053lEjd7Y9VKYXsvS8jY9d5eU9LH6Pkr6v9Geo1OJWYcU9DbTXu3uG9aem6JH8IbNtKPYjyXVvQCh6rygHq8vrSgZW0xD+euH7v5QJm3fzlIpXd9zSVr2YUUQvZqiOn5DRVXj5pltr6kogV9cURCxvOL7G/ce/ItskGVmP5D0YkWD8fqJ9j/T66PpOZfLKL9399fUnm+suKtY3t3XsOh18xF33yezvrUU7UGmafjF9x21NN2q7LJ3TmZ2sNemPkoXxpPcfede+92LRVXiNyW9XHECn6T8CfwQxR3R5e6evRuydr1yulWZVmkfslH2GCwhHeNVNPzz/Kn2es+8WEt3pqK9Xa5nTz3dTEmvry7w6Q7vsuZJ28xe5lGtlavKk7vPtqgue72ilKBelbqcpHe7+3qNdf5C0l7ufk+vfRypfscwpembd1K6WyS9ut8F1KJacj91XqDfVEvTNy821nmZpK2rgCRdiH7q7q/MbL9V79WUdrlGuo6LYC2tSXqnonpu/1773+X92d9UbdtfrfbJo/t99hj12scW+9D2Qp3tuevuXaudWmz7HYqSRUm6yN1/WXttxJ/ZzL6t+J5/qjiHv1fRYPw36T2np3Q987eZvcndf2tRip3b9um1bbb9rXQMv2Jme7n7MZnPca6i1PIz7r6emU1WtOV6VXp9pOeS6yRtJOkKd1/fzF6h6HT2ntznm6gW2epCSdMlrevdo8yqqu1/+63Ioi3Pvyvq0s+qvbSshtpUVI5SVK/9XJLc/ZouxddKaY5TNFzNtUGRRl5lt7qZHeDuh6Yf2k8VjQWbLjCz9yga7/aLxI9WlAycqjiuH9RQ25K62xQNcb+R7qwvkTTD3c+spTlTcec6S93bO81SnIxM0hqKom5TtAP6k6S1FI1rpfgOWjGzbDVi88ST0rYa2sPM9lHcnd+noe/QFQ1EK/3yYmVFSTeY2VUaXiXUDPgn10tQ3P2pFGg1fVLRu+3IzGuuqBpfQlEtMVnDj+WjylcRLqNod3hFYx+zJ/6WpQz1Y1i152keQ6ld3pHat6eruppvp+5dzdvkxbovS/pF+tzrKBr37txIIzP7iqK67AYNzzczGun2VJT2/COlq45NxxAzlZTPfm5mB0oaFmSlko0DNRRE5IZlqPLBOorSheqc93YNH3rkR4pjVx2jZzeT20eLYTL+S50X/npQW12opzaCveWUby/3end/tZld6+5fMLMjlWmfaFFddZA6g9rmPh6WPvPJadG+qQStavvT/Mz1tmfdvpelFHl7s/T8AUnPURxPV1TdSv3z92aSfquhNrl19fW0WVflc2b2T3f/rSSZ2acV54WOIEvSFHf/qZkdIEnuPs/M6m3xRnou+Ye7P2nRznEJjyr7Ye0cexQyKO1DdkiK+conQOv78XgoAoIXjNG61lR0Ab5Cw7vhbqBaD6GU9qr0t2dPqbT8yhHuxyqKH/h2qnXhb6QxxYngAEUX4GyPOkXD2GcU3WGrXljZLrGSZqa/9Z4+2a626bXnK9q4/UkxDk79tda9chRtiLapPd9a0ncG+B4/VXt8Jn2fx3dJ22poD0XPmGzvrJHmRbXv6n2+pHfUnr9TmZ5kI83j6e8yigEdu6XbMvfokrZrV/ORHsOR5B3F0ANzFY2iqzY738ikG0nv3tZ5UdEm6fL0eV/aJU3b3qu3Ki5u/dJtX3vsoGjzdUWXY9N3WIaUdoakZWvPl1XcNI02j12jaOe1kaLB82vVOXTDZmmf7tXwoVY+KWntzDrb9txt29P1WkmL1Z5XVeSj/m2N4PiMqMfiWKxL0WHid4qOGV9K+aNb78eL0nGreuW+TtLFmXRrpr/9ziVnKW5WDlG0YzxNUQVfT/OCap25x/z4Xvo9FuWSrCmSbkylAvUGns0B4Jp3OFU13Itq77lT0aByhrtf3Hj/VxSD5lXuMrONJHmqAtlHMSZNzlHpbvM89WmEan0GoGxUCR2luMBcJuliM9uguU53b10CpJaNDi0alq6ruGu7RHGyb36W1r1y1Nkb6dy0/fo2Ww0emJYNK9Exs/9VdEzIeY67X2Bmlr7/gywapTdLw+5So1dmRqu82MxbPeylaKR6tCIv3KUoXezK+rdPXNait85KKf2DknZ19+sb+3iBRdua6WnRTHd/sMtmW5UyqN0xlNrnnWoYg35G0ru3Z160zkFGl1f0Jtvbovdls8NE29K2Pyo6YfRTL92Yp+hx985Muhf78OqYL5jZnEw6KW7q6m3OnkrLOrSs+pzn7t/usq3qPRcrzlnfd/c7LRply90f7/KWtj13R9KrcgUN1VAsn0uQrhtz3P0JM9tFccP9dc9U9Vt0qDhKEZS44ubuE97ZiLxV/u5SnfuI4qah+i5brcvdH0zVo79RlHrt4CmqyWjTWUpqfy6pzn+fM7MtFcf67Eaae9PfXCeTCWFRbpO1WW55Jki6WdGQbpZq3ZC90bA0pc21CbjWa0WWFiPnfkPSm9Oi30jaO3chMrNDJX1AcSJ9tsrA8w2Dr5H0Fk/Tp6Tg4jee6rltdI2N24xgXTU6vE9RHNy10aFF76JVFQ2OL1bc9d7WSHOjYryT29WnV47FMAWXaHiPoDe6+1traS5PaZrf32ldjkXz81/t7i/JvHa5opHszxRF9PcoBvNrFmcfp6hWOVvDA6iv1tL0zItmdqm7b2rDGy9LQ8em2bOpWm+/C1CVrm+bsPR5P+PuF6bnm0v6sru/vrGu9yjaW1yS9u/1igtGR+9GM7vS3Tc2s98pSlj+qmjc/5JGur7HMKUbSd5pM7r3dulzrK6hHmxfcPeOAK1fXrQuHSVqn2VYhwmLUeHXk9Sz96qZvUap916vdG2lat5P+/BhGf7X3Tt6J5rZZxSDctZ7Df7U3b/cSFdVffbsaGBmBykaL5/R+Cy5dkyvVDTpqILe7IW68Z6ORuC1m8/3KUqlevaqtGgacpiiZKXq9XmAu/+4ke5axff3aknfVwR273P3jt96yv/f0tCQKzsq2l5u3EjXKn9bjHI/XdHMRIqajWsVN1Gnuvvh/dZVO9dUVbtLKIJzV+9zzmT16Sw1gnPJ5u5+UWPZzu5+shos2qF9RVESabXPk93P+WmRDbLaqi4EfdL8h6T/p7hQ1QOLZRUNjncZ5bbnKtrq9O0tZ2bXeWpgmJ5Xg0u+qsfbeq3vI4r2Xi9UXHxfp6heyAVjWyoas+fGyMmt++WS3qoIyCa5+wtrr62Ze0/uTsWicWm9/cgMxUXwoVqaOe6+fsv9qtfrT1LciR3s7kdn0m6oGG26Ks5eXtLh7v67RroDu3yeL7TZp5Gw0U8PdJP6tAkzs2u8s2Fqdpmkrdz9vvR8FcXUGsPSpdc+pwhetlRcZFzS99z9c410rY5h27yTTuonKkpzTBFE7Zq7gWirTV5M6ZZWtDV5Oj2fpKgW/HsjXTYoywRjVymqrq9Trd1mJt2Jkvb1NM1WuoE40jung1lfcWyGDcvgmWlwUvrXaqhH3gzP9xps29Hg9sxi9/wUZm0v1O9VVDE9ZmafVZQoHVLt5yhvPl+g4fOC5np9znb3DSzaed7j7sflbsJT2mE34mlZ7rfVNn/PUFRdP56eL6O4QXmbojRr3ZGcZ9vqcqy/mAlU255LLlOUPu6nqFo8VhGzvCuz7bmS3u4D9DouxidAneX8fEi6NP19TEOjPndtc6S4azlCMc7MBtWjkWZ5xV3CKRpeJ7xSZn2HKu6IJyuqou6T9O9d9vXn6tK2KpP2iLS+D6XHucpPM7Fv2r4p7q5mKy6KzXStR7BWnJT/oKi7P0JRNdExlYrijuoriuLwmxR34B/OpFtPMZ7Y3pLWG/D7/qJqbWX6pK1/d6up0Z5uvPNiSjtJURq4RvWovTbi6YFS+r5twhSlC59L+XyaYpyqM3L5pvHcmstqry1Z/z/9jvq2Q2pxXJ+XOz6119uO7n14+q0srihRekDSLgPu2+9Ua4eiuHhcPsD6urZ97Jeu13vT516u5br7He9z1aPtzSg/d3Y6qcyyatTzTRVNKbbVCNu6NtaXGyU/t+xiRbvXPyjaoHaddUFxTtw//a7WVAQVhypK6XLXkH7H+2bF4KrV8yUl3Zz7zlus6w1Ko/VL2kUx725HusyxvrDbsR7BuWSxdFxuVrQ9/ECP7+WyscxfY/lY5Npkufum6W/bNkdVKdb02jJX9LCo1lkNrLaTmW2qaIB5gplNsc4xcLb2GAzxXYq2SzspMuSPMtteQdLNZna1erTVScs+napqqkHdug1A+WF3P8rM3qpopPgBRbH7eY10rUawTtveVZIsRhfeQVEqsao6e6++TVGlcpS7/zm3LjPbV9GGquoJ80MzO9bdv1lLM5LhNarBA/+paGPTtRjZo41HfSLbGcqPiq0u235EMYDhd3xojKquwwCMNC9an56K7v6d9LejlMzyvQsrbdqEfVjRIPr0tM1LlB+88DwzO1vDqz66tWu7QnHTIo9Sjn+a2exq2Qi/Z1m0HTlSkffuV1ywblIc+7q2o3tv5e77mdm7FaVe2yvyxA+bCXt9z42kS3mt+tbdHzez52bW13Zi+nPNbA9F1VCvKrbFzGxFd384rX8lZXqXN0tBzUzqbM9TvdY83msoLoivSK9X7dB6DtxrIxh6oOa2VBJa9QLfRdGOramqntxWcU4828y+mNuO9ejpajE583MlTUmlgFWvweUUN2RN71f0ON/d3f9iMal5x6TUyfvS3z0by3dUrUfiCPL3yYrBX6te22+X9KNUinrjCNf1bUnrpfPipxQ35j/QUE/Iuvqx/m6PY932XLKc4ob77rSfq5iZeYqqGmaa2U8UBRP1PJbLO/PVIhdk2QjHtXH3bsMr5NZ9oCIYW0dRSrOE4oRcH822OubbKNovPGRm3appstUk3Xi0M+rX1qg6OWyjGB/rBktn0oa2I1jLomHnvynm3XpQMaTDJZn92ztVH21o0RbiKk9tyGp2l7Sxp3G0LNpzXKGoVqq0Hl5jBMF0LsA7uRng1dymqE6sT13zmKJU5LuK4FXqMQzASPOiImBcxzPtARuf4yJFFc8d6fmGipNjR5VdclCv9SUreGd7oA0Vk7LW/ZdinJ+qCulERbu1+vuer7gwPceGd8hYTnEhq7T+npNDFNXav3H311gMjZKrqm87unf1W91W0ZblkfxPRVK74R6kmK7q2Y4mqbotV81+guL3/zXFGE+7KT+C9U7pb336kGcvzDVHSrrCzE5VnAN2UPQWa5qufHuevczsVHevdyzpd7yrY3qjohTJFe16mp93M7UfeqBSv1BLEfzmLtT3mNl3JL1F0lcs2mXlOuVkx9OqJdlTMb7TqhreWedRxflu+E5HFeJXa8//pOhJ2/kB3ZvDfHTTKn+7+yEWY1ZV15293L36LqrhQtr+Vua5u5vZOyUd7VHt2W2MsVbHWu3PJVcp2gMemwLEIxTXlU3VaTlFML9VbVm3vDN/jXdR2vx+KM0qn/42H7fV0u2S/n4y9+iy7jmKE1jXyZ8VGeV6RXflxRWlCF2Lr9ViWIaUbntFkeoj6l39eYKi1OpWxUllWXWZ8Lr2ns0Us6p367r7oKLh7W6SpvVYz3sVgdqJihPO7YreKvU01ynu9qvnSylTzK6oNju5x7Zelv5ukHt0eU+riWzTa7nJaKtJtW+oLes6DEDbvFh734VqUYWpaO92s6Kd4JcUF4XsZx7B72a2pNVqz9+o4ZOmf1vtq5d2TZ/lMcXFtXqcKWn7AfaxGkrkGqVu9spXIS2p+B2fnh6fUKaaUtFU4GbFOHKLK4Lq7G+11/fcSLehoiPLJYq2VHPVGKagsb6+E9OP4Pisq6Fq+HW7pJmhzurMixXjNt04kuOdjtnhivPDrJSHHlScAxcf5LM09mNSt7ynOMdtrzS8g2IOv1zziL6TKqfl+7Tcp77nY0lvqqXteIwmf6djcfMY/lZGUu3Z9lj3PJfUlk/LLHtTl+8/OxTRRHgsciVZ3v6uYcSDWUp6yt29KplK0Xdz+5+2mBvsIY/B2p5UZMwO1mdYhobD1a7h3+6S1ldcxP9uMQn0bplt10dn7zl0gLtPsRiN942SvpSqOm5x9w80kn5W0obe6AGp4SUdJ6hznrPjM9t82szWtBikLtcxoM1Am02mdhPZStIyZraGpy7ZqTqgmji8vj9dhwFomxdrVTi3SbooVcd17WXn7r82s70U42U9KOk1nmmcW1t/mxH791QMYPl2RaB6qKI0tHKbpFlmdqC756q+66ZI+mV6SPF9PKBoo3Z7M/EIqs5azbPmUTX5VdVKGnLcfX+LYRgeSfntCeWHPZBaDvfg7ldbTBFUVb13m66q9cT0Fj3tmsfmpPRafQTyv6jWLMHMVvLO0tLnafiwEf9STMn0ZKpyr+t3vA9P+7yWuz9W7Y+iZPIINeYaTCXnH1TnUCIdPSUtetDtpfiNXi1pOTM7yt2HVcmlc9yZiqqmNdLim5vrU7tJlaUorWmerx9RBAn1Uvk25+ORluD1zd8pn95SPzd10XZOwlbVnhYdOGZ7bdovj+EV7s2ss9+5pHr/HWa2o2JYkS+Z2erKDOWSPvNOGj6K/ISxSPcutB7TI4xyff+lGPLgLYqM82FJP/Lh7Ym2l3S+Rw+M/RWZ7MveaO+Q0vYclqGR9jJ375hks8t+9h2awcx2U1QBbqK4C8uNzl6lXU5RNL1Zes8UxRxTuzbSteoBaS3mOUvpTlIEBmdp+Ojio5oyJwUzuyoaZlZTj3zf3TtmnTezbRSDaf4xpV1LUXJ0kaSPVu+xlsMA9MqL1qV3XcU7e9l9TtHOYw9Fe61PSPqUu5+debsspuHpGLHfh0axrtJtohhf7R+StnX3Bxqvr6YIXKYoSrbqvd3qU3rkPs9KihK4g7yzO/ylGqo6e7tS1ZnXpodK6VrNs5a+k0PUOfZdRzs9azm/6Qi+5+x4Zc112sh6r26uCLLOUQyoeam775Be/6W7b2fRc69+su8Y7y+l/5ykdytKFaU43mcpblaO9dr0W12O97PzJprZrYp8NOwiky7IN7v72o3llys6BvTsKZnSzvGYamVnxTl0f0VJX7OXXrYdYyZd256uZyvOiRemRZsrSunWUvRE/kFK1/p83Ja1n6dyhqTXKKrbsjNDtF3XCPev1bRfKW3Pc0lKc7SiNPSN7v7ydKPwa8/M6WhmX0tpf6Lhn7ljTMn5bZENsqxzeoSdFMX7/9NI943M2x9RFLfmAo63KOqFTZEhzm+8fq3HAIyvV1RHHKkYZ+V1mXW1HpbBzI5SFOf2bPhnIxiaIaV/vuKC/V+KHoMdJXsWY8Jcmh4zvDEBbi3dEYqLfr0d07Xu/t+1NMdJ+mY96DSzg9z9oMz6ssFHPejI3HVK+TvPKn2rAC+lXVLR61KKEol/dEvbS9u82HjPYopqnY5Jec3s64o89WR6vqbigvGWLuua6e7TrdaV3NLcldbZ6Hxdxd3pw1K28fkHFVWUv9Xwi1quvUxzP1ZS3EQ0x5qb5e6vrf8eqmWNdF+p56Uey+YqSo+vawYAjXSt5pRMaafmLhSZdPX2fUspLuqzq6BopCyGHVlP0URhPYs2jz/s9l23XOd0DbXnucyH2vPU00xSfFdd26ya2R/cPTe9VvY16zLEQZf336Aokf+Roq3QxZYfBmCuoo1n6+DBekyqbGbnKXq51YcoOUnxm53haQ7KtufjlHZfRQn+Y4r2nBtI2t/dm52R2u7/Zrnl3n4w4/q6cqXcj7t7xyCs/YK7UZxLqmEwnp1HN/cdp+UXNpepyxAc89siV11Ys42k9d39GUmyGEfm95KaF7alFBfSU9Pz9yjazKxnZlu4+7NF3unu4Lfufr5FT7x1zGxxH14dUJ2st1P0QjvTYhC+nF9ZDHJYD0rO6ZK2bcO/fTU0m/kWFlUXX26kkbUbnT020nJ+KG/XA/Ktkqab2ZG1u/t3KNM4uwqmrPegm7ury52nxWTZVeNqmdmLFe2pZls0BP03M7vd09hCKU23nlAvthi5+/SUbj+PQf+aI31X+16/ULfKi9a+iuTjKf1z3f3vHmPf9Lro9hqxv1Wjc4vq4m8rqsk28jQS80h4dALJVc+2rTp7i4bPriBFyU5z2V2KaUX63WG2nVNSki4zszsUd9Kne+rF1+SNieAtqsh+XHue7UlZe3+zZ/GT7v6Mmc2zKFG+X1GaNoyZXeDuW/ZbliylaD90gplNtc4e0lUVzTNmtnwuGEluNLMPemcp3S7KV9n9wMw+qqhG7jkYqaIU5A5Fm6IZ6Uai44ZDfWYL6HITVr2WC4peWAVYyf2SVk95t36eH0lD7J49vm2EgxGngHMVDR/Lq6oNaQ4y2nNdaj8vrRTDMvTStgNL5V/pd181v1lZXebw7RXsj7dFOciSWkyPoCh5eYMPDR74bQ31cGhOSTBDcWFeUdKvFL1r3q/hE8Dea2bfUgxnMD1d3HI9MNoGJVXajnZVXbQdmmFlxV3L3xTH6EF3n5dbobXvvi7v3wPyfkUPnx+a2caKoDDbLsoaoz5bTM/wQXe/oZZssqSXZ+48N1Z8Xz+opT1N8Z28RFEVeJbiTrneXqBtO4qqLUau11pOm7y4rkf7mp0VYw/trwgYhwVZFkXxxykCkTUsul/v6e7/r8t6P6DIg3srqhZXV9xMjOTu92eKwS5Hdfed9nsLpbvahn0VjWr/U1F19iZFtW71vmow4BdZlKpWllVMHdW0n6RzzOxi9Wjbpuig8nzl25UM4+4vtZgua0dJn7EYUfvH7t4x3EPDE9KwSaRHeiGamQK17yrywuOK3riSJBvh0APW2UN6cXX2kK48Luk6Mztfw0suqhuIj0k63cw+nPZNad3PUVRJNj2lyMuf0VAA4MpMquzu1ZyTlTtT/mnq146x+h0/TzE7wW/T8y0U80s2g6KLzOyXGn7TfVG6wX72ZmwE52NJvXt8+8iHeunalrftOurcfa6ZTUrXwBMspsQ5IJPu4hTsru3uv7EYmmRS/fWW+z85XWu+pTgnTzWzLyhqVLKDOFu7ic3Hh0+A1vfj8VAU796pmPLgREXp1Psz6W6RtHzt+fKKqiGpc2C3amLMfSTtl/6f00izjCKzVL3fVlWMnTXaz1Ft55uqTXar7pPenqG4oB+kCDLOlHROj/W/XNFA9U5Jd3dJc56ixOgmRRByvGoDoapzsM2ug25qeM/MgxRVkB097dLrl0vaovZ8czUGdlRnjyirlvX4/vZT6kXUTDPOefEGxUXvVKWJoZXvEXSlIlCqH8uuE8Iqqs56DgKqqFa+WnFhfUpRmvZo7fXWg4gqbk6ubTzuVlQzvGwUx6/1YMC1/Hq64oR9oLoM1qoo/XxYMc5XNd/hWS32Z4oikH8689ovauv6pSIIyA0a/HbVJiJueRymKUZWry/bV0NTp9R7sl6jmM6ruY6+PaRry3fNPTLp3qQ4J+6jLpOFp3S3qcVk1yntKoobiXPT83UVjbOb6Q7MPbrkiRfUnr9A0dyjma4a/uJr6bGDUrObRroXKs6196fHaYpSsNxnOUEtenwrqq6XTP9vrrjpWCGT7hrVeqIresU2eyG2XdcMRTXhSYrG/J9orquW9qOKc8Qf0/O1lR+otd+5ZHbt/1ekPPxxSa/skR9aT2w+vx+LZElWuku4VPFlV0Wq/+35HliHK6pRLpKenavqy+nO5TeZVW+iKLmqxhKZVE/gMfjgnxQzzd+sOPndoAxrNx/TiEpM3L26gzwo1WMvryh1a257O0Uj9jcqgrLfKjP2VbKyx/gp+/rQBK7PjnniI7t7erahsLsfZDHp8ie6pF3a07QaKX11R1nX6s4z+ZdFL5UPaugONzdIZdVu4z3qbBRdDV7YqtpnhHmxbRWJ3P2uRs3b07l0ydslfc2iTcVPFFNjNEste1YbeJ8pUxq2a+6upL96GhutYmY91NM8pwAAIABJREFUJ3GujqEPHwx4kuICPFnRA3QZ72yIu6qntjN9HNQiTbWvyylKZ3ZUXMDOUPzGm+olVfMk3en5Nozvl/R1izkMj3f3XPVate3tFSXrrshLz5bmuftRionm9/H8eG9NfXtI19Z9orWYA9LdqyE6+pmrdpNdS3FDcoKi1EuKIQZ+ogi86ttuO33V6j68ivs+xeCqw3hc0X+mxthvGScoSsHfm57vkpblqu2bPb5XUqbHt4aXtB+ruEFulrRLEZzX25v+VZ21JW3X9QHFNayjlDvjY4o8f6UkufutFnP1NvWrgqyX4t2gLtfHhpFMbD5fLZJBVjqJnOPRiLbriTxdAM9TtIOqTpj/40OjlX+68ZaPK4pRz/Ao8n2RhtoCVev8rKLo/cWKu4OlFJk7N8Ba327A7v6L9LejB07m80xStDl6WXpPr+LbvqOz17Tqvt6Gux/YeP4LDQ2M2NRm1OePKUpqquN7kqTT0smyWb2wm6LN05fc/XYzW0vDqxPrzlQaCVvDu7xXqovp9ooqp6raaCfFCbz6fK3yYkrbtorkLouOFW4xkvm+GgrGc+vdLaXbOu3ft8zsfHf/SCNdq2qDfrz9/GibKNrUnKI4cXcdCVSSLNprHaQuI+LXnGNmW3mfqs0+v4+maxSNnA929yt6pNvGWzTOd/ddUuC2k6Tvp6DnBEmneBoOIb33/xQT/VbtNvc0sze7+8ca233GzFbw4XMX7uTu/9dI91OLASVXsGgf9WFFVWQHy8wBaWa7+ujngHxCcUN7ofpPdj3F3X9qZgekNPPMrONGYgRNGS6wzvavzZvotje+kjTV3U+oPf++mX1ceZsoajyesGivtoGkozLpnkmf892KzkHfTL/Bplxb3nNHs67ab/VJdamqq/mnuz9V3dxZTBadvdHscy6Zal3mX03vzfUef9LMNvXhE5u3mku3uPEuShuvh+LksGGLdNmB1wbY7kiK4/vOx6Th1Q8dj0z6M9Vl7qkBPtN2ihKxVyqCylmS3jHCdYxmHr8VFUHH7PQ4SrU5ExV3YBeO8jOtqEbVS+P1rtVvjXQz+y0bQV5cufZ5Z6XPu3Im3RRFT8X7FFUVP8yly7xvcUWp1umKNnj111pVGyh6yz1njPLVJEWwX3UE+KKkV/RIP7fl53xMEYQ92SuPqU+1RiNt1VP7uX22PTuzLPv7r33nH1cEMucqqpT2qb1+c7Xt9HwxSTdl1jMnsyxbFa4obTlCcaPwlh771moOyBF8362qH1Pai9Kxqar4Xyfp4ky6nk0ZGmm311A14Lt75LGXt/gsFyhu+ialxy7KVJ1V37/imrBeyucf6/JZrlQE3ddLWisty56H0mepxoLr+Cz91qV8lX716FZdeLiis87NKQ+dobhhbabreS5RtIH8vEYwB2s6dtek38kd6Th2PX/Pz8e478C4ffDICPMU4xxdW2WqTLpWF8CU9kINH8H6t4rehsMyd/pbnRye29yuhkb9PUpRBL6TuowEnE4cXR+ZfZyhuKhcoN7BWOsLzER+pM+5fMu0FykaBK+kaLdypaSvdkl7rKRXtVjnTZJeVHu+lhoXwRHkxfMVPXjWSo/PKrrRD3qMtlZUv9yR/m6jxsjyijZOS6Xjc6Di5P2SLr+XvpOFj2Ifl1RMfP6AMm2JUpoLm/v9/9v79rjbxnr7Mbbtsh1REocuexOdRK4hd4f0I0qRspFzhKRTdpE6HRLp5IhdTm6RSymXn0vlViIRtlttYe9ccguVcsvlh2Qzfn+MZ77vXHPNOdcz17vWe1vP+HzW533XnM965jPXmpdnfr/jO0ZJGyLyIQNOwa8MX7AXgiOdR1a03RC2j3k4vF8TwIm59fuF3/V5tN6wHoQlF4r97QDfpObBEfNlw/LFAfwh1+5SANMLv9MlJf3NQ+tkLItqo7Ds6ga/SdkxWjlhjOxzEfhhbXXUqMLD0Z45cDR5Tjjm2m6qiFTibzC+KCPi8DtcHI7Xx+AoZ5WxcnYvOBSBV4byyfg74IesmeH9ijC1oGr778kdM69p0hdauY3ZawZMISnl8MIT/H3gNOAF4f8yvlrttaRs32u+51nh78bhb7Sx+Wi9Blkna3rZchVSGSTvhi+0D8EXyCw83CZbQPuQZVgMzl0vkPSFXJsvwrn+beAn870AXKCc4CXJM2qGLkVoDlWBkRoqjBCoZIU8Qa7PsjB/3dha0pk17aLL3GmBvLXhCUpZBVS+30wbam+Yo/EV5rSjQpt5YdtTYWLnA3Bqo/S4ILkNPCF7ILSZDlf6/TzXJvZYnK8Cl4it2lFlmm75/kp/D5LnwJP5n6mGWxVSL1CcHlRmFv55mAPVFTUhcN+2gx80ZsA3rtMl/amk7WlwVVytIj4L+nM1267UDytpezO8vxdrWNNn6PcK1U+vg0WK/zP30edUIlFA8nthP9tSbyS3gqNbgiPI68FFA4KrZm+RtEXhM0fDx97JYdG+AB6RdGCh3VXwg1zHqiySp8MRwbwH5ELdXp/K0o9wJKs0/RjSUf8S2pbywUjeJOndIX32bZjKcIGkt4b1RVmEoY+iJA3IBvpXsaCrXC+HJ/GbwZOyUj3EyP72gYWIl5b0Vtox4Tsql+uI6W9tWPV9Z/ih4EJJbX6NDfusvJZUnWMV/WSitNEaa6ONgeRkAcM3sEDMW6ym6f9p0OfcwqI5JG8ptDmK5LZwdGhNOJz6s0Kb6PLf3E2/akxrFN7/ihYYXT987teqsFxRZw5OnmyfVWp1DcVbQjQpc8/86WIwleTycPXnwRVtiqTtWki6PFzksonj3cWJTINj8QraZuK88P7DcOVbhk/C4f/z4JtJLYcpt/2ZVesCL/ErMPF1Sli0AOZxfLWkfZRZeAxoRf/VYU7k4ZLmd/jIw+G1SHhV4VaS60kqGtIWUacf1gbVFBuoATk/rJ9eNbmQdFX4DZrgi/DEar/w/krYCLmITrIMeewHp7ayddcBKHK8mmA27HV3DwCQfBvMK1q3ov36GC48WYfWtSqq8X8tTHAPxLAS/xA3Ss0lDaL0r2itu1lq5cDNrpiA1lrXkDxP0keqrvUlD/yVBPTY+0X47meG1xPwQxhVokfVoc+X4Aj9kXDkNuZa0mQyeBftLLACW+VbKoMho41BjmR9AD6pV4CfHKbDaZzVwvq851cbKp4+822nwBeHb0sq06GKGeNicKSrSNr8eK5NaRQk17YYDdkbDkv/Ej4QN4fJuqcX2l0L4D3whfgv8A3m31WithvaRz991IHlqsGStEOuTadJWLfb3hlOx10v6VN04cLRaq1aydq+G4665T3ZVpV0c0nbWmuWTsdirt1zsKdmRuqegtx3BIf8d4Yv2gvgC+MFyomplvRX+xQfCKjbAviEgiBl+F5OgqsQW/zCaK2y+2Gdsasl/aFs2zEg+Wph/9rGV/G5OnHa6Oh0OLf+Ck/YPgdHjU6UdF9JnxfAaY/j4WjSLADvkrRLoV0pOb9k29ERpViQnAanrO6pabMffJwKPoZeDAPsWFjTg/HdUfI9tC0Ly2vV+Em+WdIjFdvZXiO0UOuEsutht9dIkstLerRBxPtmSRvkIvNT4RTcGrH3i3DuXQdP/O4Lyx5Qu19op3vQVPhB6TC4iCj6WhKLEDT4OSxaXbo/YwqNg5zlWLxgktzrEcifcKXZabn1l4a/D6JVX+ZBVOs25dveC5MuNym02QHm6VS6s+fang+LL94Pk0CvgKv9RrLf9yBHDg7fwT0l7abDooG1HJxc++g8eofx5TllW8CTniJ3JK+jcmFFP+eFv6UEzh6M87doJxyX8Sh+AOt5nQg/SR+Hgn5Zp2Oxy/G9CU7V/Rm2ARnJfrZpF8HaO1XE6dXgKMdZ8GT5B704NiLGunoY70PhNRclRHmU802ml7Rbt2TZ9hXbjio2QDw5/yI4Knca6nXvoriT8A3oHgAPhvdrIcfFhG+G34CjFnPh4oon4IjKwoW+6kjRXZ9bMCn91HDebwFXNZ5e0fau/PlXsv5uADNKlu+JoOPUcGxN9QhvR2sRztIoFFGhi2KfyLFGEdA79PFB2IngkfA7bJUdO12O6XB0cS2ZDK+BTRcCeFnSkySnkJwi6Wra8w0AIGn78HfF6i5aEdl2NlztUVSLL8PKknYmuYOsSXM2CqmXppwCWDPludz758KyFqhZ6W7PIKczixyA7xSa5XMybU9WAf+P5CYw8bo2XMtmFjhDH1O4QoQ2r4YnxiJirFlqj8XCWNdAe1SsmKpYBw7zbw1XpBXT2MU+Z8OTujtLVi8s6YniQkmP07IPxb6WhDmHGVF2KVRYYfQBpwA4QEE7jeb4fBdW8h6CpIfCsbGKgnUMym16vkvbwswP/e0CR7TaoiDhO9qtuLwEtTYvOcSmuWNtT74Cp5CuAQBJt9ESJRmOhkUwV1RrdPaYsC4vP9AoZd4ATdKPndT4D4DT69tJuhcAaLmHXeEHuKZo6uAwG8CNJM8HhgRM/zvfQM2V3PPX+kXgauDnS67x/wlnQObB3KzLJJWlhish6ScAfkLrpO0A//7L0o4nP1ZDZweZ37pTk2tJDGpSqeMmXTjIk6ynQ1rhWgBnkXwMOQ4CbYtxNoCzJRW1lyrRKTUE4K+REyxgWH/qadpC5i+wPssQGpygme7IfQBupgnhgk+gO3LtojlehZN+cZKZMGZtOqdifNEcgML4qsZ6O3xzWB7mKJ2jarPnphdQwBpd+8OhbsC2LmXHSYw1S+2xmIEmGq8Bi/PldaAyv8SvwiTxu+Cn0C+pwgqpgLvgCcVUDGsxZROBf9R8rmzd9bnX8aowC+8TYsRpwXjrmA8DuIDkrjDPbA+0cnFA8tCa8UjSEYVlnWxesvfR6TnF6Ze9LOkZtnLG8ufO9nBhS/7B4dmQPrwbrTymoRQMKzzyusR7ARxb/C4qsAzsjXgLWr/HTKD2pyRfAvAzkh8EsDc8ydxMFb6SdVADPcLQ7ky6eCjT49qx4iEGtGfqHyW9FB4M1oDtdVrS/PlrPf1D7gBHMrNlO8Cq8ifA5/M+cJRoXZJPS+okoFq2H88j3AdpXtnOML+vG/uspteSGMwKf/s18R8xBpmT9U9wlGYK/AS6FICzFNzaab+3XWAS9JMwAfP/qkaYsxNPILQ5Fj7wi9UpbUKUgT91IXzSnQE/bR8qqRjZidnfWlK6hs2WG3G8eoWGHIBXMMylmYZhlei2yV3Yn13Caxr8O54j6fcjHO+ycKpgS/hmdRWAzxZvMrSw4lpw2qztZhDa1B6LuXZ3SnpHzZhehSN/2feRndxRT3W0h+We8ER3DhwF+gVKJnyhz8UkVSniLy4pVr27JyD5YzjNlRenXVfDLgdZu9tg3t+tGq4ErOL+vA0+Vx+GI9AvFtYfWPwMzJvbC04LLlFoX3oeqqBMThdLHAmX2uf5mCsV2kVxJ+nKy6vgKMdOcLRoYUmfDOt/L6nU+LdqHds98jYFcFA3N/PQ3w9hKYwYlfvSaJTaq6Q3hdNlNwD4iKS/dzO2XH9vg9PwM9D6IL1loV3UxCm0vQ2e9M+AizwugtPcRfX1svH8NncMzwGwiwIXLfS7JXzfOEPtBuEdOXpNQFe93lA8R3Lrs+t22yrUXEsmOgZukkXbCCwnaU5h+SYAHpV0f8ln3g2TiXeC+VFnS2pTQSZ5FzqkhsJErAhJ2qPZnowMMTdBtpp9ToM1iJ6r+8wIxvNBeCK0MVzOfC6AU9UgXRuxjbVh3scakhbKLY+yb+lym5U3g6bHYrhRzq55Iu56gkxXtG0PT7LeDEf/NoHTEbtUfa6knyFzakkx5tQ9Q3jSPhzD6v7XATisGLkgeYuk9RnKvsMk90YNV1YVo7nLwim+l4DSaq6s39fAT9Z7wd/f7KrITqfzj+T1cIrvW3DKe0/YLuXQQrvpMAdsYdSQ82mz3oPhaBFhovAR2aSD5E9gr7czC5/bHZ6ctJ0DJG+HxUofC+/fAOu2lRbHxIDDKvd7wr9BFlltdN3JRdkJa6y9DD/4No6yF/q9HaYvzEVr9ejcQrv8xOkyWHqkdOKUOw4PAvB3BfV1tRPnd8y9nRL631zShmH9ryWtl2t/vKRPh/9vkpSPer0fTgUvImlFkmvBBVAjudZ9H54kPwWfe9fCvLPGkcMG22xKlxl9aBwQw0bzBfMp2kQk4ZLzNhG/QpstYPLeSxXrz0fOZHQEYzyg7jXCvmtFE3Ptosw++/D7/BPMm7gEfuo5CS7r7ra/qfBN6iz4Sf9cADsU2jwOR0AOgnVq8uT7zQttGxFge3kshvE8AxOYK0VLu/iOvgUXapwMYP3CuraiiA59NTKnHosXHIk4GU7d7QPgRrSqqJcS41FNkF8a1rx7EK6iqhRfbXD+ZSKa84rL+vSdvDH8dtfAfKLZAH4FR2DfWPGZIpF7SnFZl2OpVbkPbXYMyzsWEPX4e4r6DdDAbB6RSu7whDN7fReeNOeNoO+rGc/9xf2AJ+T587Qn7iZwlfT+cPR3Qb9/k/H+GkRO1nIq4URJmkdyRnE5yfXgE2An+CJ6MobNhrM2mTjma1DDEwhtl4H9wGagNdz8iVyXTbVbmuBYWPvr4rDd20luVtIu1uyzp1CPOAAkt4Z/t/fBN4pz4dLhsnD1P8Mk8ZnwBO8y+Om5zJg0ir8V+YTV6FiEI0QfgydXvSST3wHgkIrvpszkuBZqZk49YsRGIkmeAEehjwnHx7MwL+tQSVfm2j/EeGHco+EbfuYAUCobkUPs+fcSySkA7qVlH/6EHDm/JNpW2OW2dGFtmksWd92A5JZwdShgZe+ravalzCPvpzXtaxE4Rf8Oy2ucCU/4HwtRuDvhB5sMHX1dewkOy/NcQvJTcAoyf40vSvpEm80j0jNVnfUTbya5jwpZFpL7wtfAlvGpnqPXGOyhRt4IxtCiNag+SP00xSBOsl5bs25a9g/Jr8MXjafgG/TGqibxNhHHvAi2HLkeFTcfDfOjli6evGytCOoKkTfBaLPPfkEOM58SXk3xJXiydqA6hKtlwvDl8E1jUXiydQ3Jw1VQNlYkAVZxBQlRx2IOj6uEu9cDDPHTmDOolfSQmus0NTKn7hFijaR/D+AYWnD2PHjCVVoMoXhh3APhm+0hAA7OnVeV6YrI828WbIeyPyzjsiUs45KhjOibqaSXmXafD6e5Tq3YXja2zA6sErk090EhhZWlZ2+EI8aNQBsn3wA/UH1TUsuNWdILJPcqfOyvozXBCpiL4fQj4Kh3BqG9yjlq4gQAcvo/0/d6HWyBc1SxHck3wRPNrEDjOljwNLsvfQ6uCNwVjswD1mpcFJZkyON3od1CNP9vf/g3GAmORY808pqCFVqDGH5gGDMMIifrHNhPsDjb3xvmF3w0vD8Ujmbc26DvFWEuTcZzmAZfjP6Qa3ObpLUi+5sDYFtJz4b3qwI4XwVrlSZgvGjiNwA8DT+JfQaunrtTUpUS+oQGI+1besnfij0Wc8tPhCdml6DG0oMdCKgl47gDTlutAXsXngrzcBqXuodI7f/CZGzCEchZKpD4e4kQdcoikWugPhIZXQzBCGHcLsYadf417LOj7QnJuZKqlNObbu9SuHJ1XmH5OwF8XdL7yz9Z2d8xsMzGqnBUdQ58w7+hJEKUfabn9jZjBZLXwDpmU+HJ3GOwR+IBhXZXwg+O+cKO3SRtXWiXj0b+Lkyci9us5eiNYF9WgykXm8AUk3skfWwkfUZu93b4QeQXsgDrvwLYXVJxcj7qGMRJ1nJwqPcfGNYPehesO/IhVVjMRPb9GwAbSfpHeL8IfLLkyYhHwrP8jukvktvBOf3t4LTGmfBJddsIxhh1Ewypir3QehKeqkl4wLDVvuVc1di3kHwcNVETFaqbOmy30bHIck9LqWDV0ZSAmiPeHgrgT5JOY8ELLEQsjoJJ4MR4IpbmkItEHg1b8dR6rLGiGCKsy08ys+q5XVRQ4m84vrLzb/9sMtEg9VkmefJ5SaXFDyQPg2/endJcMfvQQrAurIvyhaz47CLw8b8RfPxuCOBplVTUxp4LvQbtCnG5pOdIHgJHfY/IIqLsQreJEZ6poV3bA3qTh/Z+gy5a2Bjmjm4Ky2zcJOnfCu16fi3hsM/o7QDWlnULb9cIijB6hYGbZGUIM90sIlQ62++iz7KToOWHJvk3mHD4AnxzzQ6wUvseuuruCzBPa6fi03Y/wQaGwBMZbGDf0jRqErn9nh+Lod8ok2ZGGNSSvA81HBg214vqKWIjkaHtVNjeYxdYyfoa+De8qKRtMUr0I0nHFdtFjC/K5iV2Es8Gkidh3YMli1XVvsO+3CtplYp190lauWmf4bNLwROrjcPf18Jk7Ggv134jm/zQFcBfgyfzh0raIKz/EiyV8RSGdQ6HoJIK3zAhey9sjn2wpF9XTLKuQqi2DItmAthTDYyfOcwfLkWTSHxJ33dgWCPvWlXQazpdS7rc9i/glOiR8OTuMQDrSdqo9oOjgEHkZAEAZNHCqzs2bIbHSX5AgTdDEzmLCrfLdOqErcrjhCdl9wP4NG2CWqZA3qnPqJsg2WYIDFrfpNQQeDJAUqXpb0nbaP5Wgz6jjkVGeFmGdk0JqLUGtQGdODBlpPkhvSiYV9QXMNJImpHFEBVRoiph3FhcSXIbFXgqJPeE+VyZinxsEcaO8CTxapKZ5EmlIbh6KIUC4DcsJ1jvjQ7uAmUgeQp8TD8HTyxvgLlZbZFXdufO0EtkfLbtAJwi6TKSX8utfz3MTXo7XKDSMfUJ4KtwpuD6MMFaCa6cLOLjMCfrW/C+3wAXCjRBxh/eET7Wfhjez4QtobqGhiVQOskD9YxPx8APhIVZX4R5abvBnKzP9GIbI8XARrJiQfKq4pNC2bKw/K0w8XMF+IL3CIA91K5ZswuAlSR9nSYzLqeczgrJLLw6DcMT4RGZtTJSNJENDYEHEU2iJj3e7vmw+vau8IV5N9hIelahXS9NmjNtns0RyYFhA72oXiA2EknylzCn5cKq1Gmuv+goUeQY3wfffMtsXrYte+qPSX1y2PZkJsxJORMVtifs7EYRuy89pVyESeIysITBDTCBfr5Kbk4k3y/pktw1sgXdXBsbjvVSuNJzazhV+CKsdF+s5oxOfY5wPJ+VVGrB1eFzv5H0rk7LGvZZq5HXzbUkYps95Qf2A2mSVYEQNVgcjjBsgeGnxCXhyUZlaTdtkQKVlHOTPB4u5d1M0qp0afDP1crbWhj2ufo4rDUC2A/uDAD/JaktDN1w3ypvgrQlx9YqeEyF1OEV6sJFfjKBDfhbfdh2xt3IUhYLA7hOOZHBXNtoAmodR4Ll3JcMykfRwrF8ADz5+z5codg3IcJ+gX0SxqULEk6G0xqZzct2xe+o20k8hyVPPlryYNjRjaKL/elZmjtE0FeDJyUbhX6fgkViS1XyxwI0YXwbOI15L12p+s7ipDYm9dmLqBzJhyW9pYv9uAs+9h4I71eEJTtWbdpXrs+bYXrCxRpWoZ+vUKjV5FrSYJt94Qf2EgObLozAvrAg3grw01o2yXoWTr+UgiarrwZgMYYy7UKabSOZZPzbsO6p8NSTxzdgTZwYs9ZolNwE1ym5CTYyBB5A7A5HTWYB2J8RJfs9REcvS2DoWGli0lypOZTdFEhurHZl+o1z/zfVixq3UI/NcXP9XhXSg9fAEZstVajmik19VvRfJ3kSY1TeCLFp7si+BGA+yadhgdFnYJmK9WH6AgCAfXRniBznCwB+RHLZkFYHHF3Oxhed+kR3nqlFVKaIO+BzMM3hgdDHdNhMekRQjTxJ7LWkIZrK4Iw+NA4UUcfihUjFYBSUhjv0+R04XP8IfGGYB+C0QpubYa5Tpgj8ehSUgMO4WNL/QgDu7XJ/j4ZTSF+Ew7lV7W7tZl16jcqxuDeA18Hh9gdgcucnS9rdAeBEOBX1pojtz4lo0/bb55fBk7gXs7HnXqOixD0Kv9Hr4JtQV64Hue/lOTjN9nzZ9xO+x+d6/T2iR24Uffpu94ejhQ+Ha9QPAOwHy4pMKbSNdmfo01g/EM7V5+FCiFfgKF62/nJ40vS9cLy8s+xa3sPxPDyCzy4avuM1ASzag7FcAEchb4WzNZ+Ho/3FdrXXkobbPAfAPiXL94a9hsf8+B7YdCEjKxxYXrL7NUm3lrTN0jjZ3yUA/EzSpiSnSlpAcg8AH4KfLE+HDagPl3Rurp/GZq0R+/sqnP9egHreykCaeI4lYo/FLvqNMmlmjeZQ4FlsBEdz8ny8JWH+zZiXSCd0BiOMyscKJL+JQBCX9GiHtj2v7m0CRugxxaY+Y6NyrHePmKaKquEO+7EwPJHN3AauAXCyRkBFYQd5oH5cS3rND+wHBjldGFvh8GVJ59Mlu++BI0InwUKCRWTijy/Q5fNPAlg+LLsFTs+dSXIuhg/EndWeEriT5B4qN2utdKavgyIr6FTQCkoYFdQei6EYoRKSvlloP0RABRBj0rwkLCny3ny3AH4EX6yWgK8VeRX7Z2H+RcLEwGFjPYAqqCC62aFtz6t7G+JlSU+SnEJyiqSrSbYQz+XIRcfUJyKdChTnHtEUJ8HRphPD+4+FZXt326FMM9mtpknPryWS/gpgowI/8DL1SAanFxi4SFbTCocc2fhImLh4Nksc0kPbL8MltlsBOAG+UZ0q6ctVn6kY4xvhG9yLaJ2dT4Nn532tYksYHcQeiyTzF+Z9YfI0cu0OL/RbS0DtcqzTVaLxkzBxEJ76M5LwLepjxWc/0W1hQI+2nekx/Q9M9WjRYyK5P4YjWC8jyDeE1zxJr+b6GrOoHEuEOsuWRfYVrZEX9vk8STs13c5ExSBOshpVODCyZLdkO4vC6bVnwvs/wnYaVRtuW8dWe4Q7VW/WmjDB0E21TcxkneTNkjbIt627gNKVo/ugvbw/Xzl4NcoroLasG0vC+ADJj8BR+GuAIfX6gyRdMJbjagqOUXUvh/0V74SjvlPgqM1SAM7KpcRb2Hu+AAAJkUlEQVSiU5+F/hs5FYwUJG+Fsyj3h/crAbhAOZeHBn1FyQPl2t8oacMuhj0hMXCTrAxVFQ4ly6JKdkPbSssFko/C4diqkPDhZcsTJj9ij8Ww/NZOF0I29McjeQOsCzUXrdVAF+ba5H3vFgOwE4AFkr7QYfcSxgECl2hrDUu1vAHmFU0oTh0buDP0eLuZv2ITkdGYfsdKc28rWBIoX124p1wxOpJ+O2rkhSrdN8LFGEP832IWabJgkCdZbTerqhtY4GOtIumMcHFaQkGos9Cu0nIh5uaYMJhoeCzGTLIamTSzS/8zkrdIWr/p5xJGHyxoBtHepC3WSQmdwR6KjI5VVC63/UVhT1zAOnov1bXv0Fe0Rl5FBL80cj8ZMHDE91yFwxsKhOIlYYmEYvuvwCfVv8Az/4VhK4IyXY86y4Vu9UwSJilij0W2ms2uTHuEAcNP7y0eZxEE1CIuJfk+ST+tGWveW3MKgHXhVEnCxMDlJH+OYd+7j8I394RmmAafn0uF15/hyFY3GEvNPcDn8Ax4HrAWbdnWjQNAI408jSMvytHAwE2y0LzC4UMA1oa1PyDpzyEkWoY/kTwZ5m8dFZ4Usqq+aBPPhIFB7LG4fUxnTQioBcwC8F8k/4FW0/L8RX4uPNEjLAPyIJwSSBjHYPB2k3RQKLTYJKy6EbYAS4gAm4mMRiG24rsfYIUDAKzz2BQHwgU7hwA4uNNkkbaSOw7DgYrr4Eh7qaH0RMcgpwujqqWylEiWpqFVoG8sRg9C22j+VkIC0Ntqm6YE1ITJD04Ab7eJADbwV5wIoG11euoA0GDbV8Ieoj8Ii3YHsJukrUd7LKOBQYxkZfgeyZhqqfNCdOq1JPeB/QS/W/xcwPKwRsdLJLeAy3K7eTJIGBBIeoXWVOtFX7Oz/3ME1D1hNe3ZVZ+jHz13A7CipCNIvhlWB78l16bn4oUJo4LlihMsAJA0j+SM0R/OxISkbcJ5komMHghgdZLjzl8xEvNh2ZjoCsge4g2S8rys74XqzUmJQY5kRVdLkdwaFmokbOZ8ZUWft8H8rRkw3+EiAKtJel9vR58wmdDLapsmBNTC9l+FvfRWpY2Gr1CrafmpMB/x+2HRxwC8Iqlr8cKE/oPkvZJWqVh3n6SVR3tMEx0h3bUxPNnaHo4S13nojRuQvAROC74GY+QAQPIqmN+c8QNnwpWNk5JSM7CRLElzC4vmkMw/uWe6KLeGSVXpxKqAV2XrnB0BHCfpOAYj6ISEGiwGuwPko6iZ4voQQtn1DZJeRAmaElBz2ECtpuV/Y7tp+XqFcv9fBlmAhPGN35DcR1JL9J3k3hgWOk7oAFaLjJ6O7onvY4FjxnoAcDboONhaR/D3OGnJ8AM7yYqolnoTgGMBvD1Ud8XoorxMciaAPQBkXIfk9ZdQiwbVNnsAOCmkKK4DcC2A63ORqkYE1BxeDtwwAUMaSq8W2rxC8q0F8cJXkDDe8VkAPya5G0q83cZsVBMPM+BI8+fUQGR0vEHSr8qWB0mPmaM0hodgo+2BwCCnCx9Ee7XUVyVdX2gXrYtC8h0APgnn6M8huSKAj0g6qq87kzCh0bTaJnC4Pgy73K+gLgxiC/3tBpf0rwOnAz8M4BBJ5+fa9EW8MGF0wFZvt99pHHm7JYweSC4J4D9gesLFcIbmP+Brye2Sdujjtrutfp7QGNhJVixILgVPrDYOf18LVw9O2vBmwugittqGNgjfFMA7ATwB4HoA10m6sQdjeDssM0IAV6nEsLqX4oUJCQmjD5IXAfgbXB25FYBl4XN+lqTb+rztgax+HthJVqdqqRJdlJsA3FRHIia5CoAjAbwD5tkAACSt1IddSJgkKFNcr1j2BID7AXwHwNWS/jDC7S4GR15Xhnklp0laUGizHoBHJP0lvN8DLhJ5CMBhNanzhISEcYa88n+gCDwK4C2S/j7K4+hovzNZMGZiaOMAJ8E8rBPDa92wLMNbACwK4C+wQfQfATzdoc8zQh8LAPwrLN/ww56OOmEy4kmSu5NcKLx2h4nwLZC0DEwaXQzAf5O8JYgKdovvw6nweQC2RTkp9mRYoBQkNwPwP/Bx/QxMsE9ISJg4GJJckfQKgD+O5gSL5NLBBeUOmBO+jqQvTtYJFjDYkazbC9VSbcsKuigbwZyGSl0UknMlrVt4Wpgrad1i24SEDCSnw5ysDTFcbbO/pIcL7ZaE09abw2nDZeDo6r91ud38cToVwC1q91AcOidIngDgcUmHhfddeR4mJCSMDUi+gmGZGMI2QS9gFKx8CtXPJzSofp7QGNjqQkRUSwU13Pkkn4af3J+BdVHWB1AmPvdSqNK4l+Sn4QjYpMwzJ/QODaptrs+9ju+BDUX+qXZBrhoxj4VITg1pxK0AfCK3bpCvHwkJEw6S2vx5RxHdVj9PaAzyRfIgAFeTbKmWylZ2qYsyC8DiAPYHcASse9RVlCFh8qNptU1m5URycUkv9GAIa5J8NhsOgGnhff6idw6AXwU+2Itw5WPmifdMD8aQkJAwANAYejWOJQY2XQjUV0uR/CaCNtZE1kVJGL9oWm1DckMApwFYQtJbSK4JYF9Jn+rzON8NW0ZdIen5sOxtYRy39nPbCQkJCRMZAzfJ6ke1FMmL69aPhlVBwsRGTLUNyZthDauLJa0dls2XtHqxv4SEhISEsccgpgtPBvAeoKVa6jOwj9Mp8E2sKTYE8AicWrkZTrckJHREidfgOnUyIZIeKXCnkup6QkJCwjjFIE6yFspFqz4K4BRJFwK4MBg8d4N/BrA1bEuwK4DLAJwj6XcjHm3CpEUXXoOPkNwIgILO2ywAbaKhCQkJCQnjA4OYLpwPYK1QTXU3gE9IujZbN9LUS+B5zQRwNIDDJR0/4kEnTEqQfBWutlmA4BuYrUJJtQ3JZQD8LxyJJYArYKXmNk2thISEhISxxyBGsvpSLRUmV9vBE6wZAL4N4McjHWzC5EXTahtJT8BpxYSEhISECYCBi2QBva+WInkmLFT6UwDnSprfy/EmDDYG1Vg1ISEhYaJjICdZvUZI+2Qquh3TPgkJTTCoxqoJCQkJEx1pkpWQMIEwSMaqCQkJCRMdg8jJSkiYcGgq9ZCQkJCQMPZIk6yEhHGOLqQeEhISEhLGAVK6MCFhnKOp1ENCQkJCwvhAmmQlJCQkJCQkJPQBA+mKnZCQkJCQkJDQb6RJVkJCQkJCQkJCH5AmWQkJCQkJCQkJfUCaZCUkJCQkJCQk9AFpkpWQkJCQkJCQ0AekSVZCQkJCQkJCQh/w/wFdMRgdc+S3wQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax= plt.subplots(1,1,figsize=(10,10))\n", + "\n", + "ax.bar(range(50),df[df.columns[2]][0:50])\n", + "ax.set_xticks(range(50))\n", + "_=ax.set_xticklabels(state_names, rotation='vertical', fontsize=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAKECAYAAAA0WC+2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebgkZX33//eXGcAFQYVRI4uDissY9wF3cPmpIAqJgoIbLgn6JBgStwyPURE3cN+IikGCoA/iFomMIq4ouDAgS4YljogyxCgIIqiIyPf3x13N1KlTfbrOzNwzZ2ber+vq65yuvru7uru6+lP3VpGZSJIkae3abH2vgCRJ0sbIkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVzF/fK9C13Xbb5cKFC9f3akiSJE10zjnnXJ2ZC/pum3Mha+HChSxbtmx9r4YkSdJEEfGzcbfZXChJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqYJBISsi9oyISyNiRUQs6bl994g4NyJujoj9OrftFBFfjYiLI+KiiFi4dlZdkiRp7poYsiJiHnA0sBewCDgwIhZ1iv0ceBHwqZ6H+ATwzsy8P7Ab8Ks1WWFJkqQNwfwBZXYDVmTmZQARcRKwL3DRqEBmXt7cdkv7jk0Ym5+Zpzflblg7qy1JkjS3DWku3B64onV9ZbNsiPsAv4mIz0fEjyLinU3NmCRJ0katdsf3+cDjgFcDuwL3pDQrThERB0fEsohYdtVVV1VeJUmSpPqGhKwrgR1b13dolg2xEjgvMy/LzJuB/wAe1i2Umcdk5uLMXLxgwYKBDy1JkjR3DemTdTawS0TsTAlXBwDPHfj4ZwN3jIgFmXkV8ERg2WqtqSRJ2qAtXHLqjLdffuTe62hN1o2JNVlNDdQhwGnAxcDJmbk8Io6IiH0AImLXiFgJ7A98NCKWN/f9M6Wp8OsRcSEQwMfqvBRJkqS5Y0hNFpm5FFjaWfaG1v9nU5oR++57OvCgNVhHSZKkDY4zvkuSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKpi/vldAkiTNPQuXnDrj7Zcfufc6WpMNlzVZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFg0JWROwZEZdGxIqIWNJz++4RcW5E3BwR+/XcvnVErIyID62NlZYkSZrrJoasiJgHHA3sBSwCDoyIRZ1iPwdeBHxqzMO8GThj9VdTkiRpwzKkJms3YEVmXpaZNwEnAfu2C2Tm5Zl5AXBL984R8XDgrsBX18L6SpIkbRCGhKztgSta11c2yyaKiM2AdwOvnv2qSZIkbbhqd3z/O2BpZq6cqVBEHBwRyyJi2VVXXVV5lSRJkuqbP6DMlcCOres7NMuGeBTwuIj4O2ArYIuIuCEzp3Sez8xjgGMAFi9enAMfW5Ikac4aErLOBnaJiJ0p4eoA4LlDHjwznzf6PyJeBCzuBixJkqSN0cTmwsy8GTgEOA24GDg5M5dHxBERsQ9AROwaESuB/YGPRsTymistSZI01w2pySIzlwJLO8ve0Pr/bEoz4kyP8e/Av896DSVJkjZAzvguSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqmBQyIqIPSPi0ohYERFLem7fPSLOjYibI2K/1vKHRMT3ImJ5RFwQEc9ZmysvSZI0V00MWRExDzga2AtYBBwYEYs6xX4OvAj4VGf574EXZuYDgD2B90XEHdd0pSVJkua6+QPK7AasyMzLACLiJGBf4KJRgcy8vLntlvYdM/O/W///T0T8ClgA/GaN11yStFFYuOTUGW+//Mi919GaSGvXkObC7YErWtdXNstmJSJ2A7YAfjLb+0qSJG1o1knH94j4C+AE4MWZeUvP7QdHxLKIWHbVVVeti1WSJEmqakjIuhLYsXV9h2bZIBGxNXAq8LrM/H5fmcw8JjMXZ+biBQsWDH1oSZKkOWtIyDob2CUido6ILYADgFOGPHhT/gvAJzLzs6u/mpIkSRuWiSErM28GDgFOAy4GTs7M5RFxRETsAxARu0bESmB/4KMRsby5+7OB3YEXRcR5zeUhVV6JJEnSHDJkdCGZuRRY2ln2htb/Z1OaEbv3OxE4cQ3XUZIkaYPjjO+SJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgaFrIjYMyIujYgVEbGk5/bdI+LciLg5Ivbr3HZQRPy4uRy0tlZckiRpLpsYsiJiHnA0sBewCDgwIhZ1iv0ceBHwqc597wy8EXgEsBvwxoi405qvtiRJ0tw2pCZrN2BFZl6WmTcBJwH7tgtk5uWZeQFwS+e+TwVOz8xrMvNa4HRgz7Ww3pIkSXPakJC1PXBF6/rKZtkQa3JfSZKkDdac6PgeEQdHxLKIWHbVVVet79WRJElaY0NC1pXAjq3rOzTLhhh038w8JjMXZ+biBQsWDHxoSZKkuWtIyDob2CUido6ILYADgFMGPv5pwFMi4k5Nh/enNMskSZI2ahNDVmbeDBxCCUcXAydn5vKIOCIi9gGIiF0jYiWwP/DRiFje3Pca4M2UoHY2cESzTJIkaaM2f0ihzFwKLO0se0Pr/7MpTYF99/048PE1WEdJkqQNzpzo+C5JkrSxMWRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQK5q/vFZAkzQ0Ll5w64+2XH7n3OloTaeNgTZYkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpgkEhKyL2jIhLI2JFRCzpuX3LiPh0c/sPImJhs3zziDg+Ii6MiIsj4rC1u/qSJElz08SQFRHzgKOBvYBFwIERsahT7KXAtZl5b+C9wFHN8v2BLTPzgcDDgZeNApgkSdLGbEhN1m7Aisy8LDNvAk4C9u2U2Rc4vvn/s8CTIiKABG4fEfOB2wI3Ab9dK2suSZI0hw0JWdsDV7Sur2yW9ZbJzJuB64BtKYHrd8AvgJ8D78rMa9ZwnSVJkua82h3fdwP+DNwd2Bl4VUTcs1soIg6OiGURseyqq66qvEqSJEn1DQlZVwI7tq7v0CzrLdM0DW4D/Bp4LvCVzPxTZv4KOBNY3H2CzDwmMxdn5uIFCxbM/lVIkiTNMUNC1tnALhGxc0RsARwAnNIpcwpwUPP/fsA3MjMpTYRPBIiI2wOPBC5ZGysuSZI0l00MWU0fq0OA04CLgZMzc3lEHBER+zTFjgW2jYgVwCuB0TQPRwNbRcRySlg7LjMvWNsvQpIkaa6ZP6RQZi4FlnaWvaH1/42U6Rq697uhb7kkSdLGzhnfJUmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkioYNOO7pGLhklMnlrn8yL3XwZpIkuY6a7IkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBU7hIElrYNK0Hk7pIW26rMmSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKmC+et7BbTxW7jk1IllLj9y73WwJpIkrTvWZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVMGgkBURe0bEpRGxIiKW9Ny+ZUR8urn9BxGxsHXbgyLiexGxPCIujIjbrL3VlyRJmpsmhqyImAccDewFLAIOjIhFnWIvBa7NzHsD7wWOau47HzgReHlmPgB4PPCntbb2kiRJc9SQmqzdgBWZeVlm3gScBOzbKbMvcHzz/2eBJ0VEAE8BLsjM8wEy89eZ+ee1s+qSJElz15CQtT1wRev6ymZZb5nMvBm4DtgWuA+QEXFaRJwbEa9d81WWJEma++avg8d/LLAr8Hvg6xFxTmZ+vV0oIg4GDgbYaaedKq+SJElSfUNqsq4Edmxd36FZ1lum6Ye1DfBrSq3XGZl5dWb+HlgKPKz7BJl5TGYuzszFCxYsmP2rkCRJmmOGhKyzgV0iYueI2AI4ADilU+YU4KDm//2Ab2RmAqcBD4yI2zXhaw/gorWz6pIkSXPXxObCzLw5Ig6hBKZ5wMczc3lEHAEsy8xTgGOBEyJiBXANJYiRmddGxHsoQS2BpZl5aqXXIkmSNGcM6pOVmUspTX3tZW9o/X8jsP+Y+55ImcZBkiRpk1G747ukCRYumbly9/Ij915HayJJWps8rY4kSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVTB/fa+AJK2phUtOnfH2y4/cex2tiSStYk2WJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsApHCRJGx2n9dBcYE2WJElSBdZkSdpkTKrdAGs4JK091mRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCpzCQZKkdczpRDYN1mRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFThP1hw2aR4V51CRJGnuMmStY05At24ZVCVJ64vNhZIkSRVYkyVJGyBrxaW5z5AlSdpg2AVAGxKbCyVJkiowZEmSJFVgyJIkSarAkCVJklSBHd8lSZrADvdaHdZkSZIkVWDIkiRJqsDmQq02q88lSRrPmixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqYFDIiog9I+LSiFgREUt6bt8yIj7d3P6DiFjYuX2niLghIl69dlZbkiRpbpsYsiJiHnA0sBewCDgwIhZ1ir0UuDYz7w28Fziqc/t7gC+v+epKkiRtGIbMk7UbsCIzLwOIiJOAfYGLWmX2BQ5v/v8s8KGIiMzMiPgr4KfA79baWmu1OK+VJEnrzpCQtT1wRev6SuAR48pk5s0RcR2wbUTcCPwz8GTApkJtUgy1krRpqz3j++HAezPzhogYWygiDgYOBthpp50qr9Ls+EMprT9+/yRtyIaErCuBHVvXd2iW9ZVZGRHzgW2AX1NqvPaLiHcAdwRuiYgbM/ND7Ttn5jHAMQCLFy/O1XkhkjSXGRilTc+QkHU2sEtE7EwJUwcAz+2UOQU4CPgesB/wjcxM4HGjAhFxOHBDN2BJkiRtjCaGrKaP1SHAacA84OOZuTwijgCWZeYpwLHACRGxAriGEsQkSZI2WYP6ZGXmUmBpZ9kbWv/fCOw/4TEOX431kyRJ2iDV7vguSdImw753avO0OpIkSRUYsiRJkiowZEmSJFVgnyxJ65z9ViRtCqzJkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAocXShJkuaUjWUEsjVZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFWwyZ67cGM5L5IkSZqbrMmSJEmqYJOtyZIkaUNgy8uGy5osSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQLnyZIkzYrzNknDWJMlSZJUgTVZEh6ZS5LWPkOWJKkKD160qTNkSZuoST+A4I+gJK0J+2RJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCpzCQdrIODeRJM0NhixJ0ibLgxLVZHOhJElSBYYsSZKkCmwulKQ5xOYraeNhTZYkSVIFhixJkqQKDFmSJEkV2CdLknrYN0rSmrImS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUMClkRsWdEXBoRKyJiSc/tW0bEp5vbfxARC5vlT46IcyLiwubvE9fu6kuSJM1NE0NWRMwDjgb2AhYBB0bEok6xlwLXZua9gfcCRzXLrwaekZkPBA4CTlhbKy5JkjSXDanJ2g1YkZmXZeZNwEnAvp0y+wLHN/9/FnhSRERm/igz/6dZvhy4bURsuTZWXJIkaS4bErK2B65oXV/ZLOstk5k3A9cB23bKPAs4NzP/uHqrKkmStOFYJ5ORRsQDKE2ITxlz+8HAwQA77bTTulglSZKkqoaErCuBHVvXd2iW9ZVZGRHzgW2AXwNExA7AF4AXZuZP+p4gM48BjgFYvHhxzuYFSJJm5uz1qmnS9gWb7jY2pLnwbGCXiNg5IrYADgBO6ZQ5hdKxHWA/4BuZmRFxR+BUYElmnrm2VlqSJGmumxiymj5WhwCnARcDJ2fm8og4IiL2aYodC2wbESuAVwKjaR4OAe4NvCEizmsud1nrr0KSJGmOGdQnKzOXAks7y97Q+v9GYP+e+70FeMsarqMkSdIGZ510fFddG1N/i43ptaxtvjeStGExZEmStBHwQGzuMWRpGr+okiStOU8QLUmSVIEhS5IkqQJDliRJUgX2yZIkaRNiv9t1x5osSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRV4Wh1Ja42n65CkVQxZkiYyPEmai+b6vsnmQkmSpAoMWZIkSRUYsiRJkiowZEmSJFVgx/e1ZK53vtvY+H5LkuY6a7IkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFRiyJEmSKjBkSZIkVWDIkiRJqsCQJUmSVIEhS5IkqQJDliRJUgWGLEmSpAoMWZIkSRUYsiRJkiowZEmSJFVgyJIkSarAkCVJklSBIUuSJKkCQ5YkSVIFhixJkqQKDFmSJEkVGLIkSZIqMGRJkiRVYMiSJEmqwJAlSZJUgSFLkiSpAkOWJElSBYYsSZKkCgxZkiRJFQwKWRGxZ0RcGhErImJJz+1bRsSnm9t/EBELW7cd1iy/NCKeuvZWXZIkae6aGLIiYh5wNLAXsAg4MCIWdYq9FLg2M+8NvBc4qrnvIuAA4AHAnsC/No8nSZK0URtSk7UbsCIzL8vMm4CTgH07ZfYFjm/+/yzwpIiIZvlJmfnHzPwpsKJ5PEmSpI3akJC1PXBF6/rKZllvmcy8GbgO2HbgfSVJkjY6kZkzF4jYD9gzM/+muf4C4BGZeUirzH81ZVY2138CPAI4HPh+Zp7YLD8W+HJmfrbzHAcDBzdX7wtcuuYvbda2A66ew+XW53P7Wta83Pp8bl/L3HxuX/Oal1ufz+1rWfNy6/u515Z7ZOaC3lsyc8YL8CjgtNb1w4DDOmVOAx7V/D+f8gKjW7Zdbq5dgGVzudyGsI6b4mvZFF/zhrCOm+Jr2RRf84awjpvia9kQXvO6ugxpLjwb2CUido6ILSgd2U/plDkFOKj5fz/gG1le7SnAAc3ow52BXYAfDnhOSZKkDdr8SQUy8+aIOIRSCzUP+HhmLo+IIyiJ8RTgWOCEiFgBXEMJYjTlTgYuAm4G/j4z/1zptUiSJM0ZE0MWQGYuBZZ2lr2h9f+NwP5j7vtW4K1rsI7ryjFzvNz6fG5fy5qXW5/P7WuZm8/ta17zcuvzuX0ta15ufT93dRM7vkuSJGn2PK2OJElSBYYsSZKkCgb1ydpYRcTelFP+3Ga0LDOPWAfPuwWwU2auqP1c2jAM2Rabsyg8D7hnZh4RETsBd8vMaSN2I+KuwK7N1R9m5q/WcP0WAP9MObVWex2f2Cn3kMw8r7Nsr8z88po8/8YiIuY5+Gf9iIjNgK0y87fre102NhFxDvBx4FOZee2EskP3JYcAn8jM30bER4GHUqaE+vraXv+aNtmQFREfAW4HPAH4N8rUE30/VrsAb2f6BnHPnrL3AlZm5h8j4vHAgygbyW9aZfYG3gNsAewcEQ8B3piZf93zeIM2xqHP3Sr7lz2P+YlOmbsCbwPunpl7NeehfFRmHtvc/r7M/MeI+E9gWse+zNynu6y5350oU3m0n/uM1u23oZwLsxs4XlLr8SLi+Zl5YkS8su85MvM9Pc+7PXAPWt+h9vPOch0HbYvAvwK3AE8EjgCuBz7HqjA1erxnA+8EvkWZr+6DEfGa7EwC3Co/cXsAPgl8GtgbeDllypareh7u4837eVHz2PsDrwVWO2QNDZdDt52IOCEzXzBg2e2BP2TmLRFxH+B+lMmU/zRmPWf8nBs/jojPAceN3qPOY3yQnu9T6/H+Ycxz36XzvD/v3H5oZr5/0rLZiIhtKBNOP65Z9G3giMy8rqfsg1vlvpOZ5/eUuXPP01zf937P4of6U5Tt9c+U6Yi2joj3Z+Y7ex5zC+A+zdVLu8/bPOffAguZ+r2ftm+KiC2BZ/WUPaJVZlb70Fls32MP2CLiwr7napV7UN/ySdsX8BzgxcDZEbEMOA74avZ3+h66Lzk4Mz8UEU8B7kp57z8OPHzc+s9J63uirvV1AS7o/N2K8uXvlvsu8CTgAsqP6uGUHUnfY55H+ULdG/hvyg/d0k6Zc4A7Aj9qLbtwzON9lfKluhjYg7KBHbW6z92UeyPwTeCXlC/C/wKf7Sn3ZeDZwPnN9fnt9QQe3vzdo+8yZh3/BrgQuLZZhz9Q5lRrl/kM8GbgJ5Qv31eB99d8POBlrfdm2qXneY8CLqeMuP3P5nLKGqzj0G3x3OZve9s5v6fc+cBdWtcX9JWb5fZwTnsdm//P7il3b+Bcyo/Vi4EzgTuNee7HAKc32+tlwE+By3rKfZhykvqLm+t3GvPcg7ad0fvYuj4PuKjvNVPC7/bN5/0Z4JOr+zk35e5A+bE4C/g+5UwXW7duP6i5HEPZ97yiuZwBfKTn8fYBfgz8rnn/bgGWT3rN3e1otp9JU/ZzwJuAezaXNwKf7yl3KPBflAODI5r36RU95S6nhKGrgV83/1/ZbE8P75QdtG8Ezmv+Pg94N7B5extulXs88DNKUDyjed27d8qcRfnuP5sSoJ4FPGvMe/MVSpB4LfCq0aVTZlb7UIbtyz4CfIJyOrs3Nu/1sa3b79Fc3tFcHthcjgSOXN3tq1V+s+Y+VwI/b7aPO6/mvmT02/O+0fvct802yx9JCdE3ADc1285vx63nurys9xVYby8cftD8/T5wd2BLyomwu+VGG8SF3WU9ZUc/gq+h2Yl0NwrKaYamLO/70neee8aNcehzj15H80UYbcB3BU7vKXd2z3qet4bv+YWUo6HRju9+dHbKo+djVeDYfPSe1Xw8yg/tPw18HZcCW67F1zx0W/xBs56jz3rBuM+4c32z7rLV2B5G2+1plCPQhwI/GfOY96PMjXc6cLsZ3ptLgL2Au1DOdbotsO0M2/akcG8rngYAACAASURBVDnjZ005A8X1lDn7fttcrqf8oL99hud9BfDamb4DQz7nnvvsQfkx+h1wPHDv9vsNzG9dH7fdnt+8b6PX/gSm/qgeSDkIuJYyOfTo8k3g66v7mYx7L8YsuwC4fev67ekPOh8Dntq6/hTgo5Qf0B90yg79oV7evHefoQkuY7adc4D7tq7fh85+ftxnP+a9+a+hZZvyW1BaHx4IbDGmzMR9GcMP2Pr2G31BfMbtq1P2QcB7KfvHD1BOrfeq7vvGwH0JJSwuBVZQDna26lvHpuwyygHejyj7yBfT851eH5dNtrkQ+FJE3JFS43MupQr133rK/bFpy/9x00Z8JeXD7vOniDiQcpTxjGbZ5p0yFzfNOZs1s+D/A2WH2vt4zd9fNFXA/wP0VakPfW5Y1fxxc0RsDfwK2LGn3O8iYluaquWIeCTlxN8010/OzGePq37O/mrnGzPzxoggIrbMzEsi4r5jXvNvmmas/6Xs8PustcfLzD837997xzxX22WU9/aPA8oOWceh2+IHgC8Ad4mIt1KaFf+lp9xXIuI04P8115/D+Oa6odvDW5rmoVcBHwS2Bv5xdGNE/Iip28Edm7/fjQgy82E9j3ldDuur9aeImMeqbXEB5Yh6Wrnmb+9nnZlvB94eEW/PzMMGPG9ExKMotSAvbZbNG1N2yOdM8zr2pvwILKTUrnyS0pS2lFXNVXeivMfXNNe3apZNe82Z+euI2CwiNsvMb0bE+1q3nwX8gnI+t3e3ll9PCT9dQz8TgD9ExGMz87vNa3sMpQavKyg1CyN/bpZ1PTIz/3Z0JTO/GhHvysyXNc1vbUP3jR+l1JCdD5wREfeghOuuzTPz1nPmZuZ/R0R3//mliHhalnkjJzkrIh6YmRdOKtis/0coNVRB6Ubysp7PYci+bPT+/z4i7k45gPiL/qeNx2Tmmc2VR9M/EG7S9jV6sHOA31AmJl+SmaN94w+a7aJtxn1Jy4spTYMrMvP3EbEdq76H02TmiljV5/G4Zp805Hte1SYbsjLzzc2/n4uILwG3yZ6+BJSq7ttRwtCbKf1hDhrzsC+mtDG/NTN/2oSoEzplDgHeQPmR+Dwlzb9uzOP1bYz/tAbPDbCs+UH/GOXo7Qbgez3lXkk54r1XRJxJqTXZr3X7oc3fp49Znz4rm+f+D+D0iLiWUkXfdkzTt+X1zfNvRXm/1sXjnRkRH6JU8/9utDAzz+2U+z1wXkR8nVbQyv7+MhPXcei2mJmfbHZmT6LsjP8qMy/uKfeaiHgm8NjRe5CZXxjzmoduD9c263Qd5WiWzs5zv5779IqIUeD6ZkS8k/I9aL+P3fd7aLgc9Fln5mExrE/doZSd9BeynL3inpQaoD5DtkUoTS/fBN6ZmWe1ln82InZvXT8S+FFEfJPyWe9O6arQ9ZuI2IrSxPXJiPgVU7fdnzXr8agx69019DMB+D/A8c0+KiiB8EU95Y6j/NiOtsG/ovwYd/0iIv4ZOKm5/hzgl00w7YbqQT/UmfkByvYz8rOIeELPcy+LiH8DTmyuP49SO9J2KPB/I+ImVgWezMytex7vscCLIuKnlPcxmrJ9B5/vBp6QzUCoKP1rT2X6gdGQ7XvoAdtLKf0nR5/dtUBfv9cZt6+W/TPzsp7lZOYzO4sm7UtG9/tzRFxK+Q26X99jt/w+Sp+68yLiHZQDizkxe8ImPRlpk94XMnVH2+3wO5vHG9y5tDnaHVITUk1ELKT0B7mgs3wzShX9D4H7Ur6E0zqCruFz7wFsA3wlM2+aC4/X/KB1ZU7vTNsbsjPz+NVdx0nbYvNDszwzJ+1saAL2L7KciYGIuC1w18y8fML9FtKzPTS3ndutjeoua9bxgsx8wITnGRdUoOf9bu5zP1aFy6/3hcuhIuJIyqm/LmJVDUvmmMEaq/H4M33OO2Tmys6ynTPzpz2PczdKkwuU5rL/7Slze+BGyvvyvOZ5P5mZv+6Uu55VNY1bUGpif9cNCEO/A537bN0UGjtqrwnWo9D/ncz8UU+Z7Sj9iEblzqT06bmOzmjsdi3MTMua5UNG7m4J/H17HYF/Xd19dFNjNk0Tertlz87MXVvXgzIieNdu2Vmuw5aMrzwYldmmWa/eMs329QdKYBltXydm5jWdcjMOlOqUnbgvaZa9hBKit6c0x+9KaWp8fM9j3oNSC785pSJiG8rnt95H8G+yISsiTgDuRekw3t7R/kNz+6xHz43ZUH6UmQ9tXX8E5chim8zcKcqom7/JzFf0PN7OlP4gC5n647tPq8y4ZrveI6eIOCJbp0Rqfhg/kZnPm2m9x4nSjPhB4P6Unfc8enbeTdk3U46IzsrMvqOhoaNyxjWZjspeE6sxYrCW5j2+K1Nfz89bt8+4LbbKfZHS3647sqf7fMuAR49+4JsjvDM7O/L7ZWnS6mvGu7XmIkpz2aMptQTtptStgb/OzAd3nvs/gZdn5pUzreNsTXoPmzITt52m3KXAgyb9gEZplnwt03+gn9gqM3Fb7DzmmcBeo0DS/BidnJl/2fP8sxnBunWn3DV95ZqyAexLaZ5bMtP6j7l/73eq9dzvGa1TluH3ve/RTOs4YB2G/lD3jtzNzLHNThOedx9KrSLAtzLzS53bZ/2aI+LDlM/5ZMo+fH9Kp/GvNff5fFNu7PYdEU/MzG9EqcHue97Pd55z6Hdl2vQrEfHyzPxIZ9mXKTWWr8vMB0fEfEo/rge2ysx2X3IhsBvwvcx8SEQ8gDLo7Fl9r3Gu2mSbC4HFwKIcnzJHTW3vmvRAUfryPJfSln5K66Y7sKpPxcj7KU1s/wGQmeePqb6mKXMspeNqXx8UmH2z3Y4RcVhmvr35op1M6SzY9fWIeBal8+5MSfxDlFqBz1De0xeyql9J12WUjrgfaI6svwOckZlfbJX5IuXI9RzG93k6h7IzCmAnSlV3UPoB/RzYmdK5FspnMEhE9DYj9ux4ZjOtxysoR+e/ZNVnmJROoiOTtsWROwHLI+KHTG0S6gb++e0alMy8qQlaba+kjGx7N9MlpVkcSnDeirKvaL+Xv6W/iXArSr/D73XWsXfnP7CWof0ejvrzdN9DGLbtwPA+daOh5k9n/FDzIdti29uA/2xe930pnXuf1ylDRBxFaS5bztTt5oxOuZdRantubMqN3ptp2+JIs539R0S8EZgSspqajTeyKkj0Tcsw2g7uS6ldGO3znsHUqUc+RXnvRu/RrU/Tt45Rpsl4NdN/+NuhdvRDvaAT9ramv7/cozPzQRFxQWa+KSLeTU//xCjNVYczPdTes1XmyOb1frJZdGhTe9bu99N9ze2+Z+M+l9tQtu09mutXAbelvJ9JabqFmbfvPYBvsKo/blv7MUaGfldeHxF/zMxvAETEayj7ho90ym2XmSdHxGEAmXlzRHTng5vtvuTGzPxDlH6OW2Rpsp/Sz3GGSgaa9eidkmKdyjnQ+359XCih4C/W0mPdgzIE+HtMHYb7MFojhJqyP2z+zjhSqln+g1mux10pX/Cn0xrC3ykTlB3BYZQhwL0j6igdY2+hDIcdjcKaNiQWWNb8bY/y6R1m27r9bpQ+bj+nzIPTvm3wqBxKP6Knta7vBXx0DT7HV7Uur2s+z4/3lJvNtB4rGDM6a7bbIsOHep8O7NO6vi89I8lmu403f7eiTOg4rtyT+i5jys443Hw27+Fsth3K1AMrKJ2iR312PtBTbjajewdvi5Q+SWc1r/c+Y8oMGsFK6eO13YByz2xd9qP0+fremPdm4rQMTdkzgDu0rt+BctC0utvY+ZR+XrtROjw/nOlTN+zRrNMvmDrVyiuBXXoec+jI3YmjKinf981a10fN46v9vZrl+zOrEYtr47EoAya+TxmY8dZm+5g2+pEyJ9+2rBqR+0jg22Me8x7N30n7klMoBytvpvRj/BylCb5d5i9Gj9l3WVefzUyXTbkmazvgoqZWoN3BszsBXPcIZ9QMd8/WfX5G6VB5RmZ+u3P/oyiT5o1cERG7Adk0gbyCMidNn/c3R5tfZUIn1JgwAWWnWej9lB+YM4FvR8TDuo+ZmUNrgAZ3OIzSsXQR5ajtO5Sdffe1DB6Vw/TRSF9u1qH9nIMnEMzMKbU6EfEuysCErttm5tcjIprP/vAoHdL7asKuoDUqc4xB22J325rByymdVD9E2RauoNQw9ophfRPvEGW0zp2b+1wNHJSZ/9VZx69H6VuzuFm0LDOvHvPUg2oZGPYewvBtZzSNwSSzGd0747YY0ycZ3YYymuyQKKMvu4Mmhta2/YQyEGOSdg3HzZQRd/v2lLtXTm2OeVNEnNdTDspBXbvP2U3NsmkGNn3enJkfHvNco/t8m7LP+vfM/FmUTtlk5g1j7jK0I/jQUZV3ZFXrxDbjCjW/G+dl5u8i4vmUA+73ZU9Tf5QBFe+nBJOkHNz9U07vSD5x+x7TlHsd5YCh/TkO+q5k5tVNE+nXKLVe+2WTajomDZRqG7ovGe3/Xh8RT6K836d2yvyi+ds3yGRO2JT7ZO3Rt7wnJF1C6Uh3Dq1hyNnpWNqU7esTcEG2qiyjzJz7AeD/axZ9DTik74coIt4OvICyI721ySD7OwafDzw5m9OnNOHia9m0c8fqdTaeOIN1lA6Hv6RUBc/Y4TDK6KK7Uzocf5ty1HtZp8xFlPlOfsqEUTlRpin4DlNHBO2emU9tlTmrKdP9/D435r3ovv6zM/PeneVnUTrIfpZSRX8lZSK/viH7x1KaVU5laoB6T6vMjNtiRHw3Mx8bUzsvw6r3pm90EwN+gGbTH+wsSn+LbzbXHw+8LTMf3Sn3LEp/i+806/doyg/GtNGNEfGDzHxERHyfUsPya0rn/u77PfE9bMrNZtuZcXbvpszTm9exI6tGsL0pM6cFtEnbYowZLNF6LVMGTUSZFf7BwIwjWCPioTSj92YqN1TTzPuanDotw7syc9roxIh4HWVizvaowZMz822dcqOmzxkHGkTE4ZTOy1/ovJa+fkx/SenSMQq9vT/UnftM6wjeOvh8NqVmauyoyijdQo6k1KqMRnwelpmj0ZDt57qA8vk9CPh3SrB7dmZO+6432//RrJpy5QBK38tHdMpN3L6jzHC/mNLFBEqrxgWUg6jPZOY7hjxWa18zatrdghLOkzH7nCj9sCYOlJrFvuTxmfmtzrLnZeYn6YjSF+0oSk1ktF5P775xXdpkQ9ZQox+CCWX+D/B3lB+rdri4A6XD8fNX87lXUPrqTBwtFxEX5tROhqMJJh84w91mery/ofT32oHyA/xISvNCd6Tdkygd2fvmxxn32PcHnkoJZfMyc4fWbffou0/fkUqUzqXt/iNnUH4Er2mVOS8zHzJwvdrt+vMoR2NHZOaHOuV2pcw0ParK3gZ4R2ZOm++sqYnsez1vGrJOsxGrd3qgixnQHywizs/pHVN7lwFPycxfNtfvSjm9xpRyzW2vp4SXJ1F+ZBL4t8x8fafcoPdw6LbT7NSPp9TmBCVEHdRTszLYkG2xKXd7Sl+TPzfX51GaBX/fKdcbynrC2A8pzdcX0uq32VPueODQbE6z1RxAvDunn5LlIZT3Zsq0DNlzGpym/MNZNSLvjOwfNTh0oMFPexZn9vd1HPpDvT+lien6iPgXSo3Sm0frOduDz4j4C6aeE3TaiM+m3LmZ+bAo/TyvzMxj+w7Cm7JTDsSbZX3frYnbd0ScQWm2vqG5vhXl4GRPSm3WoqGPNRtj3ue3ZH+ry9B9yZmU2sfXUpoWj6Fklr/qecwVwDNyDUYdV5NzoM1yXV6A7zZ/r2fVrM8z9Tk6klLV/CjKhvMw4GGdMttQjhT+H1PbhO/c83hvpxwRz6c0Rf0SeO6Ydf0PxvSt6in7zubxXtRcvkz/aSYObZ4/KEdX51J+FLvlBs1gTdkh/zel3f6dlGaJcadReTrlaON7lJByHPCSnnIPpswndgjw4DX8vN9Cq6/MhLLtz257Ov3p1ve22JSdR6kN3Gl0ad02q9MDNWWH9gf7AmV+noXN5V8o80dN224616O7rHXblu3/m+/RoJn0J6zrXfren9btE2f3bpa/o/mubE6pUboKeP4artv3afVDofx4nLUGjzdj/8eZys103+Z1bz3wsSe9319mhr43q/m6e08n1bNsNPP5YyldKfZmln1dW4/VN0N+b19HSk39YZR9492Y+awLR1EGICxs9j2vpfxO3Jn+35Cx7zelb9nmretbApfMsA1M+uweQzNbP/B8ynl3+8q13+dvzvQ+z2JfslnzvlxC6Xv4ghk+mzPX5va1Ni+bXJ+szHxs83don6NRLdbi1rJk1egrctXEagdGxGMpHTCPi4jtYvocOHtlmQzxryj9lw6kbJSf6nnuOwKXRMTZzNBXp1n2mqapZjSp27gJKF+Sme+PiKdSOiq+gFLt/tVOuUEzWGfmQQBRZhfej1IjcXf6R67uSWlSeX9m/k/P7UTEoZQ+VKPRMCdGxDGZ+cFWmdlMrzGaQPCPlD42Y6uRs/TxaJ/I9gx6ZsUe87zXUSYv/Gg281M1ZcdOAzDbbTEmjFTMzI82f6fVksX00YUjg/qDUSYqfBPlc0nK59g3eeFXI+JUpjZ99PVrgxK2H9Y83x8pZ1c4d7Rslp8zUfqOvJuy/f2K8oN1MeW9bxsyuzeUg4/XRsRfU2q9nknZJk7sFpzpc+4UvU22mm8z84aIuF3P4w0dwfrliDiY0jw0UxPbZhFxp8y8tnn8O9PzHe3WgkYE9Pfp6Xu/d6L8ID6guX3UD23GyXtjltMPNC5rakJHo8CfT+nH1jVqntybsk88NSLe0vc8MWaka5QTM98O2K6pARyNGNyacjDW5zmUEecvzcz/jXJS82knpW48u/n7ss7yA2iNSBy4fX+SMvHraMT2M4BPNTWot56QfBbflQ8DD272i6+iHJifwKqRkCPt9/ljM73PDN+XbE054F7ZrOddIyKySVUdyyLi05SKifY21rftrFObXMiKWc5rk5njplfoe+w3UsLYfSm1NFtQdsjt2WxH7/nTKP0XromIcU01vc0k42TpZzSpr9FoB/E0yvxYy6PZk3YMmsE6SqfOx1HOuXU1ZUqH74xZv0Oa5qNdo/SF+GE2fchaXgo8Ipt5tKL05/gepVlpZPD0GrMI030B75PdgNe4jNKU2D5tzfWUGpGPUYLryNhpAGa7LVIC432zpz9g53V8i9LEc3lzfVfKznFakx39s4j3uWNO7w+0K+WkrG2vpszzM2pCOp7Sd619v7tRfpxuG1MHZGxN+TEbGfw5N95Madb+WmY+NMrUKH1N9UNm94ZV39W9Kf1Zruv/qgDDpnuAcrqqWweaNM1tfU3tx1G+/++lzPH0YvoHlBzY/G1PI3DrD3PLu4HvRcRnKPuA/SijxboW09+n5+URcWufnsak93v0nl5EqUVKSr+e7uvdg9lNPwBTf6ihhN++H+orI+KjwJOBo6L0y5r2PsaY+bSam19Gmdvp7kwdqPNbyv5u+kqXZsT3tK7/nDKStq9sd5qPcSZu35n55ihzVo1+c16emaPPoT1VyNDvys2ZmRGxL/ChLM2efXOMDXqfG0P3JT+k9Ac8pgmJ76T8tjyW6bamhPmntJaN23bWrfVdlbauLzRnlW/+di+Xtco9v/n7yr7LmMc+j7IDG3vyZ8qG8l+U4cqbU2oSxlZfM2BahqbcMylVqtcxc/PncZRaqx9Tdip3YMwJr1v32YNyZvW+obtXUzrdvhhYOOFx9qcEteMpO5yfUkartMtcSDnaH12/DT3V7JRms0/O8Fz3a/4+rO8y5j5DT2TbdyLa0Qm1l3eWj50GYOi22LrfNxnQhEnp73YJpZ/gWyk/DL2veRbfm3OB7VvXd2fqSdM/zPDmpYOa13I95cd1dPki8Mw1WMfRdCLn0wy1p78JaUvK9/jzzeWf6GmmpHQVuIQyj9zmlGA9rglk6AmLd6UMZPkOpS/VCjrTFHQeb+KJ6Wfx/ixiVTP8ojFlzmB6c+a3KfM2XTSb97t5z95B2Uec02xDV1P2gZuvyWvprMe8cdseZR/3TJrpHSjn8evrHjHxxMqUzuhD12ni/hh4YqvstMtst+/mfbhkLX9XBjV7Dn2fm9tm3Je0li/sWfbEMZ9/71REc+GyydVk5fCjhllPZgnclJk5qplq0nf3+V8T5dxg12SZsO0PlI1zmpgwLUPHOxjW8e+lwEMoP+K/j3IS6Bf3PHd7dvaxUwdk5nZRZuLdHXhr08xxaWa+oKf4vwC7ZmcEJFNrOo5j+nnOPt7zvH+OiHtEmaSub2DA0Mk224JhJ7LdKiJ2ymY4dtMUMDppeHddxk4DMHRbbDXhXAZ8q2mOGzvKLjNPi4iXU+bLuhp4aI7voDt0xv6XUSawfAYlqL6dUhs6chlwTkS8MTP7mr7btgO+1FygfB5XUfqo/bRbeBZNZ4POs5alafI9tGoa+mTmkijTMFzXbG+/o3/aAxg43UNmnh3lFEGjpvdxo7AGn5g+yki77nvziea29gzk/0urW0JE3Dmn15behanTRvyJckqmPzRN7m2T3u93NOu8c2ZeP1ofSs3kO+mca7CpOX8h06cTmTZSMsooupdTvqNnA1tHxPszc0qTXLOP+yKlqWmnZvEl3cdj2ImVr+xp0ryOEhC6NfJD9sezrcGbdJ7KP0fEpe190wyGnpNwYrNnlMEb52brlF9Zplb4xZjnnrQvGT3G5RFxAGVakbdGxI70TOXSvO4DmTqL/JyxSY8ujAmnSFiNx3s1ZcqDJ1M2nJcAn8qp/YmeCZyeZRTGEspG9rbs9Hdoys44LUOn7JmZOe0km2PWc8jUDC+mNAM+inIU1jc7+2in+RjKDuNxNJPXZdNXq1N20AjIGHCes6bcJyjh4BSm7mxW65Q5TZg5iNIxc3TqkX/PzPd1yj2NMpHmT5pyO1Nqjb4F/G27fAycBmCmbTHGjK4byemj7F5P6edxMKW/1j8Br8rMU7v3jXIKnmkz9ufUWaxHZR9FmV/tRmDvzLyqc/v2lOCyHaVmqz3a7fOtcn2v586UGrjDszMkPiK+y6qms2fQNJ1l6/RQTbmh51l7OqW55B5Mnfuub1j6oPObzuJz7p2vrPuYMXAEa/NePp4SspZSJtT8bmbu19z+pcx8epSRe+2d/bT5/pryrwf+mlKrCOX9PoVysHJMtk6/Neb9vvW8iRHxY8q2NOVHpvlRviQzd+ksP4syMGDGkZJN2fOynGrleZR96BJKTV93lF5vP8aechNHujYHN49i1UnCH0+poduZMgr5hFbZwfvjoWLAeSqjjC58KKWpbexZIYY81izXbdApv1rlZ9yXNGU+RKkN3T0z798cKJyWPed0jIj3NmU/zdTXPW1047q2yYasmH6KhAMp1fv/t1PuAz13v45S3frF7g0R8WRKu3BQNojTO7dfkGUCxkdTmiPeTZlr5ZE9jzV4WoaIeD+lOnfGjn8xcGqGVvm7UX6wX00ZNXiHzu0XUJo9vksJYSunP8qtZd9J+dFv92W6IDP/uVXmWOCD7dAZEYdn5uE9j9cbPtqho+fIE8Yffc4m4G1JGXEJpTbixr5yQwzdFjv32YzSrDPtpLwR8T7KNvWH5vo9KD8YT+4puywzF0drGHm0zlsZ0zudL6IcoV4LvTvvF1KaKL/B1B+1vv4y3XW5M+UgojvX3DmZ+fD292G0rFPuqPa2NMOyFZTa4wu7AaBTbtAcYk3ZBX0/FD3l2v37bkP5UT93FIpmK8q0Iw+mdFF4cJQ+jyf2fdazeMzFrOrTc2au6tPTLjOP8lmN7bMaEf+dmb2n2Oq7LcZMcTDm/sspNfKfovQV+nb0TwOwgtLHc3B4iDEnVo6Ir1JGuLWnJ/kE5ft6RrbOPzl0f9yUPZRSg389pU/nw4AlmdkdjDRk3ffoW57DJzLuPl5fTfcNmblNp9zEcLca+5LRNBjt/dG0z7hZ/s3uMnqm4FgfNrnmwpanAQ/JzFsAoswj8yOg+8N2G8qP6Wea68+i9Jl5cEQ8ITNvrfJujg6+kZmnRxmJd9+I2DynNgeMdtZPp4xE+2KUSfj6fCXKJIftULJ0TNmhHf8OZdXZzJ8QpenibZ0yxLDZ2ekeEc4kh42AfCqwOCLe3Tq634eeDtqjMBUzT7r5UsYcfUY5WXb76PNelD5V50bpCPq4iPhprppbaNwoqHtFmbW7XVvz2sx8R0yf6Xu07u0f6kHbYgxvIvnHpvztMvP3Wea+GfejO2nG/kGdzqM0GX+Y0ky2WzYzMc9GlkEgfc2zQ5vOnszUsytAqdnpLruCclqRSUeYQ88pCXBmRFxOOZL+fDaj+LqycyL4KE1kJ7Wu946kbN2/O+rzD5l5S0TcHKVW+VeU2rQpIuLrmfmkScsat6H0HzouIhbE9BHSoyaaWyJim24YabkoIl6Y02vpnk9/k90JEfG3lGbkGScjpdSCXE7pU3RGcyAx7YCDCWcLGHMQNrqtG4p2GAWsxq+AHZvtttvkO5uO2DOO+I5ZTEbchM27MnUur1sPJmP6JKNjH6sx9Ny0r+9Z1jV0AMvIn5rv/aj7zbaMOYfvTGF/fduUQxYMO0XCg4DH5KrJAz/MqhEO3VMSnEH5Yb4T8BXK6JrnMHVUxy8i4mjKdAaLmx+43lEYA0PJqOy0flVjDJqagfJlnwf8hvIeXZ2ZN3cLxfCh66Plk0ZA/ooywufEiHgEJRT2DumKzqzPUU7P8MLMXN4qNh+4f8/R5yMon9cJrbKfo3wm96Y0B55COVIe9ReYTR+KUV+MvlFrfYZsi4uy9K95HmXuoSWUwNjtI/EoyonFtwJ2ijL8+mWZ+Xc9j/kCyvZ3CKVZcUfKgUR5UcOPgD9Lmexy1kffrfV+As1RbcehlI61/0BpOnsipVl3dL/RZMD3jFKzOnIHyqmjul4LLI2IbzND3zbKAJW7Mb5vya0y8z5RTpd1APC6KDNqn5SZ06Z76PgdTDmJSaE6ZQAAIABJREFU9Gx/iJY1Qe1jlG3hBspoXABiltMPxPQR0pszfYT0yA3AhRFxOlNrL0YHEH8PfD4iXtKsG81j35bSJNl1E2Vbfh2rAkDSc1LlzBydc3LkZ8320zWpH+Pou3wXytkJvtFcfwLl/JLt7/S3IuJLTD3g/lZzcP2bzvoN3R8DM4/4zllM9RIT+vEOeYyuzFwREfOa38DjopwS57BOmW83QXeXzPxalGlJ5nXLDHm+iJjf/NYcTdknL4iIN1FaVHoncY5hJzZfP3IO9L5fHxdKFe/PKKc8OJ5SO/WcnnKXAtu0rm9DaR6CzuRurDo55iuA1zb/n9cpsxVlYxmNfrs7Ze6s1X0do+f5IK2T3TL+pLdfoPygH04JGV8Els7w+PendFD9GbCy5/avUmqLLqaEkI/TmQSV6ZNtjp10k6kjMw+nNENOG2nX3H4W8ITW9cfTmdiR6SOiYrRshs/v/2/vysPlKOrt+SUBEmQnwAOXJAg+EWSVHZHH4pNFURAlgvhQEBUhLKJPRTYXniKKsgkCQVRAFpEdwZgIAQyaSEjYZCe4sMkmIJLkvD9O9Z2emuru6rkzd5s639ffvdNdXV09U11d9VvO+SJcJpFfZpD74t3QS+9SOGFohDOCZkGTpfx3GRSEhdxmMULEW0DWs39CL8NF+d8upo5c2XlQJmd+ewJyNby9je8vmgw412d/CQ3Yx6KArBWyfj4H8XxleodXRbRnPDSRXxQ4dnWurmugSUCINPj9yIkRR34PEyFm9fy+KWhIp+QzWedCcl5+HZUZ0rn9nwhtgXLbQ2PiISgQC3flHkaE2LUruxq0kLjefX4HFJztlzs2tBX0idVzn1eHwj3yZTLqi++77cNwITeB+t4EjbVPue1yyBIWKjsVERnfkOt6Kff/dtCiYwWvzFzkstChjNjQGFFZlzt2M+QmvAAK5j+8oL4DofHhIfd5bRQTtVaNJXNy/6/r+vBhANYr6Q/RwuYDvfWkJcutEmZCP3ZmVv0SwxlY34FcKTOAPr2qb7nVy28CVW8JWa4yLhF/Nv9PM3scUpq/Dxr87kYAFqfHVMtiQjJbQR7n/NjLQ1Y3/9q7QYHs20KTst8izH+1MsWdMoUN8dYmvhPWWz31BQqTPM4kvHx4Qdk30MlquPLZqjKP6NUnZJ6eDJnEsxVuC0mlKWZjT7QGRJ+QKxPl9qnZF2NdJCC5wPO8LQqVg+7z+6aYil9A0hgtFktUuA1YIZniYTe/uQCepeNGy2BmpSLO2XfIZjLg0dALeAyUBboMW4Nx12AufqYEx0WUydq6HGSd2Rt6gV0BPeM+8paqhQAeYziO8aMATjFpGJ5HMuRey669B2RZJ9SX+qx5JH8ACc0fwla+txAqM6Rzdf/EIjQgSWYUHVV4EHFi14AWJFMhqxcgioFfQBOv/LVj5avezGYX95MQuWq+LkIW21B2t4+pkBV8L/d5X7cv5Lb3M75XQiDjG82W9rOhBXLe0g5oYp6PNX0WYU9JTF2ALN2jUWDpzuFgqL/PAgCSD5h0ekOockHmrXh3o+D96KGOsPmAoicnWW4QuY4Koi0cyN0L8EYoDiobML/CBlv5Ud4ph0Fm1Csok++aaMQCZXUeDZne3wqtDsZCnTtEsFaZBkzyave3JQMncD+joZijt7tzysy3lezsDlGp67Egeaz3+Wo0iBF9xLA+HwxZa7Lv9wIAl7sB03cv7A/FPH2T5CNmNgnN7sQMV8KxYKM53T2P7GW6B+RyytxGk6EBPLu/qL7oysa6SBaYEitoYjKfgsZk3K9zf1dmZ9e2083sJpIHBMpWug1iwHh9tC2hmJqLoMG7kAkUAEzxWsehgBE/h+vM7L2scG1WPB8+5kJBzieQvL2k3C6MCM4nua+buE0GcL6b9EwFcBEdHYI79wxI6DeL2zzIzHYkebB33cVmtgKbtQsnkzzDK3eJiVRyBVN81CchV2QLLKABaWafYPsakC9DC9rpqBa7Hk/yEjP7siuz0MxaFhI1whmmWWv8a9MiOnLRm2EVklNzn883s8MC5QD18ztJvmyKV9sYwA8C5Ra7+/wQlBx0qnsG8wjF8V7fZl35Z/VVFLjqHF4j+e9sYWcSiy5bZJaNJatYgf6qOzeUPf6qmW3DZmHzaD3drmKwTWmDtUGDw6YR5YJ6U/24bh1zfKUeE5rdDy1boPyVCGhP9eN+doOsYetBE8rZAD7QRj3t6PitCE065rjtB8jpJkIrsOlt3teK8FwvuWNB11tB2T9W7avRF1fO3e9sd78rB8qNhzIVn4RcFT8LlfPOWQKyav0Sir/zj8e6DXYAMK5DfWs0NNnPEgG+AWDdkvIPVt1nro8thgbhMuLeUreGVzbL1F664tpzAvuCz3/uNz8MmshcD7mUDskdvy+7tvs8CsC9gXruDOwLusIha8tJ0EJhp5K2RWlA1vi9o9yPruwM991kLv4tAPwuUK4ynCFXdg80XIEfKuhf60TeyzRo0Tfabfui2H12F/RO2MD184ML7mUWNOmeD2CS29cyFrn7yHjgWu4jpi6EXfrZFnruvwMl6tzn+s8V0GI1dO3SsQSKgTwG9TRYN4AWOo+67U8oGL8Hehv0BgzajaszLIS4ju7KOlWgXNQL0JWdjmYG699C2YZNndv9zQaHpf3rosH6+wPIBD4ZBUzAbuAo3AJtvBl6qUxD+WQs+gUzlDd3n8tHlp0BBQSvBMWtzALwvUC5swG8M7LOewGsmfs8Cd5LsEZfvAnK4pnktqOhNPr+fD87Q66XR93fXRBglYdinMa67+dYaABfq+B5iRIMr9nOpSDh86cRiCVyZaaH2u6VMUQuMiAX/FrQgD0asnSeWFB2S0g+5nH3eQMAZ+SOf9b9ri+j+YX1CES54Ne3O/SimgdZzFd1+5cG8Giu3DUAJni/09WB+uaheTKWWbXh7Zte4zcJ9dHCCWNknUtCC7b1UMIKD1l7boUsyre6PtfyUkUkE39k26JFiN3vcJXrr09BVs5gv0PjXXAMXFwZwpPxd0CLrMnu8yQotCB07R1z/WXZunWhObYx2yZCISQtMbzQ5P5AyAV4mfu/KF6tdCwJ3XvJ9zzF/d3a/Y0WNh+orZd5siaE9tNzZZjZfdBA+xg0QGYm4hbqApMOWYaxkO96Ickv5sp8CfL1vw9amX8KwGVsJrCcWtJ0MoJzqAgWyaNiFSSVVkBNkKsvZOKvaluTO7OkXHSau4kkbyNoghLKgMrX+ydKx+sAKEbjWGvmj5rnrjsGCux8GHJrlPWJ90GTsodduQlQpt+vc2Vi++J8erFE1swdFeJ0y9cXuueLoIn89ayIq3KuFzCODyoTDP8CFAPVVmiCi3/bFVpoTIReXOeR/Eug7LlQVlwpI755/HMl1y7lEPPKzoLu9yo2OH36fi+X/bQiRFL8v7lTX2KAosDMznf32eJ6M7MdIOsWISvyplDSAKGs2TtIbuedcxLU985yuw4CsIDkkV65adBCrjIry8zOgyyCeQ3I0e2OTyH3I2TJCrofnUvqP13ZYDyYmf2e5BbOhfZDKJzhMpJvdcd9WoS+U+G5Aq0G91UdmLJcb4Am8dtCk7IgH2JEXQdCJMQrkXyrSS3hRwxTdcTWuRHE+r4XtCi4nGRQs7FGnYVjSdEzVlBPRkobzbE20OjJmCyg8QJzwXljS4r+d406Z3u7bjWzO7wy3zaznSHr0AaQSfV6r0x0+m/uxV/UpvW9z78zEYxu5s77AwskV1juN88H2mdZWv0C42Uh6qS5Z/p0MRhjZqtD2Z9fDRz3A7YrQfIGN9BlE8f7/MlMjb54o0lm4hL3+cNQ5luGz0Dm/0ugl0lpDJO79uSy4y4u8Vgo8HWU27UQiuM4IVA+WjC8CiZG//WgmMjjSc6vOOVxty3ptiLMMbNNSfqCtD6qOMSawJJkA9YIznfHJxRNLkhOc79BHXwJmlh91n2+CRJC9lFFy5DHZyHXVnbsFgB+jFcdnAzp3d0PAGb2Nii2aJOC8puhkXyysYnXymfj/4ab4B6JBhN/X2wU6yXlRHNfmbjuprA5Bu7kggloqXSNmV1C8iNFY703xpcGoMe+L9x3P9ltz0ALMaPHR1VR32uQdf5EknNrjCV1JoT3mpQF1rBm+pbChe9Ao5ctWR+AHuo1oJXDBMiNs647ntf8akHB6jNfdhQ0OPyQZIiHKqaNYyFLlx+0+clcmaAVJFfWt4YcAJmlfwt1xPdAwbrneeVuBrAjNBD/HXrB/A/DbLvRK48qWJg5mCR3z5WJ0eZq59p7Qe64mSQ/Z0pcOInNWSswsSDfzWY9tnVIziqot1Sapaov5sq9BGlqZkHdo5D7jiCT/17QoL0QGhgvywb6QF2VK3gXgLozgE/TEVK67+VMKBOxSS/MxFX2EMQzNp3ko6HvJAZmtti7v2AbA+eVkdNGW6fds/UkNGE7HLIanUHywUCdl0Fuj9Mga9IUAO8iubdXLhicH7h2tEUpFmY2DnJZ3V9S5rNQPyXUh151DaxMrOlA++4KfA8t+9z+UjZ+M3szyQUF19mN/ZRQq0JoTGx3nDSz1Un+LcbibWazSG6es8qPgdxv2eQp6n3hnr1boInfg27fw2yVYSqrbwy0SDrOtaXWWBILZzT4NURaHbyfQQWHgM9yMDYoSG5luOBPKNPs3Nzxa9zfR9DML/MIinmb8mUfgIIut/HK7A7F6RSqs+fKXgqRLz4EBYHeCGX79ee+70cuONh9B/cHyk2ASANLY3Bc2WgfekT78jFl20GTHj92JM+jcnlBPZe4v8EAzn628U9oDTYOfgdQduJt0Ar/VLf90CtT2hfbbOObIFfdXyEpkP7cawt3EcS/UxQ4vS5k5fg5NFn+aaf6R0Vb13PtfcxtsxEIlEc43mRCoNwmgX27FVw7KtkA8cH5V0JWuXNRznsXFTsJvYDuB/CI+7whcrGY0AvxO5DVYjaUXPEMZFFZwqurLCi67WcLCko/xz3320FZjecVlL03/wwGjt8HYGJg//5wXE412lWLi9CVnYvmJJyV4CVRoY1kn4i2RgegV9TzQUiJYIH7HXbI+k4bdR3v/tYeS0bC1rPuQgCvk3zWzEaZ2SiS002abwAAkru5v5OKq2hGZNmToYwPny0+hLVI7mVmu1OcNBfCc73UiSlweBZ6iDO85PY1gfGpux0F5c70YwB+5BXL+2Ra2KAd/mlm20CB16XmWqsngQNocGfu+GK3YgwhRpqltC96bV0frVYxX59yY8jMvxOUkea7sfNlT4YmdPcUFFmC5DP+TpJPm6gf/PqWg2IOs0DZ5VEghdEFnA3gCDruNFOMz48hJu8+kHzM9Y216aRjEJbp+bFJFma+q29vyKLVYgVx39E+/v4ASmVecoh1c8fKnhwLuZFmAADJO00UJRlOgkgwJ7HZQvtddyxPP1DbbR6JOu7HKjb+IyD3+q4kHwAAE93Dx6AFXB3UVW8ANM7fbmaXAn0kpt/MF2ANJnegZaxfEsoIftkb4/8X8n7Mg2KzriUZcguXguSvAPzKxJO2O/T7r2pSPLmCNZQd2KDlqTWWxKDElTpk3IW9PMl63rkVbgbwczN7CrkYBJMsxoUALiTpcy8Voso1BODJyAkW0OCget4kIfN3iKOlDzUe0Ix35EEAs0wB4YQeoLty5WJ99vkHfmkzy0gxS105Je2LigHImlHwfx5zoZfD6lCM0kUsEHtG/UH0YTM7FDJzA5J0KeojMdIspX0xgynQeH2InC/PA/VLd/wEKEj8XmgV+mWGiUXzuBeaTIxBg4cpPwn4d8m5oWMzc9tpLBEM7wJiyGlh8dIxHwZwmZl9DIoz2w/N8Tgws2NK2kOSX/f2Vcm8ZJ+j3XOM4y97neQL1hwzln92doMSW/KLhxed+/A+NMcx5d1ThTp5beC9AE7xv4sCjIe0Ee9A8/eYEdReZ2avAbjezD4I4ABokrktC3Qli8AaXIS5cy4wJQ9lfFx7FC1kTJqpT5B8zS0M1ofkdXypnmVz5xg0dm/hPu8OMcqfDj3PB0IWok3M7Hk6WZ26oAiCLwRwoSmubC8ovq8d+ay6Y0kMpri/3Zr49xu9HJP1BshKMwpagS4P4Od0au0mvbe9oSDoZ6EAzF+whJizKk7AlTkF6vx+hkoLEaWLn7oceuimQqvtY0j6lp2Y+y0NTGdDbLlWjFenEBsD4PYvQiOWZhwaLNGhjKAJ0O+4tyt7ETSR+HM/2roq5CrYHnpRTQNwWOgFYyJW3BBym7W8DFyZ0r6YK3cPyXeUtGsxZPnLvo/s4a5c1Zn0K/eHJrm3Avixs6hl33XLKQDGkgyuQM2JUxddrxswsysgN1eenHYTNlQOsnJ3QnF/c9jIBCyK/Xkb9Kw+DlmgX/WOH+mfA8XNfQpyCy7jlQ8+h/SYyU3JEidCqfb5eEw/JiYqdtKUeTkNsnTsCVmLliD5GXf8zyRDFrDCY9aqk/duAH06eXVhZj+DqDBiWO6D1ii2Zkm/G3KZ3QbgIyT/1U7bXF1vg1zwE9G8iG7RaY2dOLmyd0KT/olQkseVkJvbZ18PtSmLvboVwN50cWiuzu2hd8ZUBrILLSJGLxamjNfb/OfDK9PWWDLc0XOTLJOMwGokb/X2bwPgbyQfCpyzBRRMvCcUH3UhyRYWZDO7FxWuITcR80GS+9W7k/4h5iVozYKf4yAOopfKzulHez4ITYS2htKZLwZwDmu4ayOusREU97E+ydG5/VHyLW1es/BlULcvuhflySUr4rYmyKZstt2gSdabIcvfNpArYu/QOUWwnDg1ySpx6o7CrbSPR4Pd/xYo6PY5r9wdJDczl/btJrm3s5WqI8OqkIvvNaA1YzdX77LQyvpT0Hd4cpFlp+r5M7OZkIvv+5DLe39IMuUYr9wEKAZsCZQE55sEe78KWYsMChT+ejbpMLNfQVpvF3jn7QtNTlqeATObC5GVPuU+rwLxtrUkx8TCGiz3+0O/QWZdrTXu5CztBnGsvQ4tfNuytLs650KhC7PRnDna4o73Jk7XQtQjwYlTrh8eBeBfdOzrbA2c3yP3cZSr/z0ktzSzP5DcNFf2NJKfd///nuQWXl3vh1zBS5KcZGYbQglQbY11pmzKLSGR+1sgq/zMulbDNq5bN1xm4MEhEBg2kBsUT9FCJAmlnLeQ+HlltoOC914rOH4pciKj/WjjEWVbP+suJU3MlYsW/Ozw7/MGKG7iamjVcyaU1t1ufWOgl9TPoZX+xQB298o8DVlAjoJ4avLB9+/JlasdANvJvuja8wIUwFxIWlqzDd+HkjTOArCZd6wlISKivmhx6sHaIGvEWZDr7kAAt6OZRT0YGI/iAPmVIM67R6DMwULy1RrPX0aiOc/f16Xv5I3ut5sBxROdDOB3kAX2jQXn+IHco/x9bballOXeldnD7a9MIOrgdxT9/aOG2Dzimdyn5rYfQ5PmjKT2wZK2tAT6QxPF5b3ntBO/3RqQlfRxiCOya7/HcNl6MSZrNQZiokjOM7OJ/n4z2xR6APaEBtGz0BAbzspk5JjLoiROwJUdD+mBTUSzyfnTuSrrcLfUxSkQ99dV7rpzzWzbQLk6gp8dAzsUA2BmO0G/2y7Qi+JiKHU4ZK7+DyhIfDI0wbsWWj37wqTRsVuRK6xafRGyEH0cmlx1Kpj8LgBHF3wvIYHjSjBenLojiLVEmtnpkBX6u65/vAjFZR1D8qZc+ccsnhj3JOiFn6kABGkjcoh9/l4zs1EAHjDRPvwFueD8gLXNu+UWd2Gpq4sid93czLaHskMBMXtPK7mXkE7edSXlS+Hiiv4Hote4AJr0P+WscPdAi5sMlbqunYI1qHmuNrPPQe7H/PjeQueDSLF5hyjNVJbzJ84yswPpeVjM7CBo/GtpH8tj9GrBOsiP1x+YxzXILlD91EUvTrJWKDk2LvvHzL4FDRr/gF7QW7M4iLcOOeaVkOTITBS8fNiIj1rJf4CtOSOoLUS+BGsJfnYDlKn5bLfVxZehydqRrDBZUwHDN0AvjaWgydYMMzueOWZj1giAZVxCQlRfzOFpBmL3+om+2DTLidOSfIztcTRFi1N3ELFC0n8G8F0T4ewl0IQrmAzBeGLcI6EX7tEAvpp7rgrdFZHP3xRIEuVQiMZle4jGJUMo0DdjSQ+Jdl8KubrOKbhe1rZMDqwQOTf3Uc6Flblnb4csxrVgEk6+DVpQfY9k08uZ5Ctm9invtCcHYoLlMBsN1yMgi3cGIpzhHDVxAgDK/Z/xe60IyeB82y9nZm+CJppZgsYtEOHpE5Cr+FemJI057vgmkKv0g4HL3u3KjjbF/x0K/Qbt4hR0iB+vHVgB1yAaC4ZBQy/GZF0E6Qn6M/4DoPiCj7rPx0DWjAdq1D0JiqXJ4hzGQYPRo7kyd5LcMLK+WwHsTPJF93kdAJfSk1apA4snTfwOgOehldghUAbdPSRDTOjDHhYh39Lp2K3YvpjbfwY0MbsaJbIeFhGEmit7F+SyWh/SLjwHisGpm+ae1Tce0tzcEXop3Qi9CFpoQjoFZ3XKLJHro9gSmZWPSoawCGLcNtoa9fzVrLNS9sTMZpMsYk6ve71roMzVed7+dwL4Fsn3h88srO+7EM3GOpBl9VbohX9bgZUI1iWJm8GAmc2AeMzGQBO6pyCdxCO8cjdBC8d8Ysc+JHfKlclbIu92k+bQNUtj9Nq8j3WhcIttoPCS+0l+vN36al57LrQQ+Q2VCPBfAPYl6U/OBxy9OMlaDTL3/hsN/qB3QbwjH2KBxExk3X8EsBXJf7vPS0IPSz4g8URopl/p/jKzXSGf/q6QW+MC6KG6sx9tjHoJOlfFp9D8EJ7DEdhhrFm+5WIWyLeY2dMosZjQy2yKuG6tvmhhTUvSk+qoE4SaC7o9BsBfSJ5rAR0wZ7H4NhQEbhhKgaU55CyRJ0EkiKUaa1aQDOGO5SeaWfbc3vSY+Gu2L/T8HZpNJmq4PkOUJ18gGUx+MLPjoJd3jKur6h6agqy9Y1G6kAXnLgn1/62g/rslgOcZyKiNfRY6CZMixA0kXzKzoyGr79fz1lBrg7fJKjRTc+VaFuh1Fu3dhClhYWsobvTdEMXG70l+IlC242OJNXRG5wLYiOIunMt+JGF0Cj03ycrgZrqZRahwxl+zztBD0PRDm9lzUMDhK9DLNetgQfkeU9bdF6E4rT391XY3YTUEgYczLFK+pa7FpMb1O94XXb2VIs0WKU5rZg+iJAbG6vNFdRQxlshc2TGQvMfeEJP1DOh3vDJQ1rcS/ZLkqX65iPZFybzETuStBuWJO/ZIYDeLylfcywMk1y449iDJterW6c5dHppYbe3+rgAFY0druXYT2cTHlP37DWgifwzJzXNlvgxRZfwDDZ7DPjCQ4esmZO+FxLG/SvIPBZOsaXDZlm7XZAD7s4b4szXih4Ooa43P1XsXGvx4N7OEH69qLGnz+r+B3KInQhO8pwBsSnKr0hMHAL0YkwUAoEgLp1cWrIenzewDdHEzpkBOn+F2fFUl1sw8btCk7CEAnzeJoIbEWqvqjHoJmrWIeMLEbxIUBB4JIFko+uuVi4rdauP6UX3RIrQsXbk6Qail4rQ5VMXAhALn+/iioLiirsAihaQtMhmiwEpURIwbi5vM7H30YlXMbH8onitjkY9NwtgDmiRON7OM8qRQEJwdpEIB8EcLB1kfgBJ1gSKY2dlQn34JmljeBsVmhSyvddUZOokslm1XAGeTvNbMvuGVWRmKT3o7lKBS6foEcALkKZjpJlhrQpmTPj4JxWR9H7r326BEgTrI4of3gPraz9znyZAkVFtgg/4khh+vY/F05uIDIWLWV6HYtH2gmKxDOnGN/qJnLVmxMLNp/kohtM/tfysU+LkGNOAtALAfWzlr9gawJslvmYIZV2OOa8XMMhPrODQmwv0Sa7VI0kTrkojnSEEdi0kXrn0pxL79MWhg3gcSkp7ileukSHPGzfMeRMbAWA2+qE6ghiXyt1BMy+WhF7hXX7SVKLKNu0Av35DMy86hlX+M69MasieToZiUC1Age2LVahSx99LRkAs3SRwPURjcBgXQz2fg5WRm7yd5dW6MbEI7Y2ONdl4DZXnuBLkKX4VY7ltcUnVcn/1s02EkgxJcFef9keS7qvbVqK+SH6+dsSTiuh2ND+wG0iSrAM5qsDRkYdgOjVXictBkozC12ySRAgbSuc3sNCiVd1uS65jSg3/N5ritJSCdq09CfCOA9OCmAvgKyRYzdM17K3wJmiQ5dqKnMeVchzeyDRX5kQKLjN3q4vWz2I3MbbEEgFvoEQ26slFBqFXxERaOfcnAvBXN9eUjoMnfT6Asxa6SEXYD1iViXFNCwlmQWyOTednV/47anchbg/Lko4GFYaUaRRv30zE3t7OgrwtNSrZy9f4DIokNsuQPNEzB4u+DXJgPmLJU31kwoa10fXbCKmdmj5N8Sxv3ci/U9x52nydBlB3r1K3LnT8LCk24ig0VhfnMJWnVGUtqXLcr8YGdRM+6CyNwEESItwa0WssmWS9C7pcgTMHq6wIYay5N23OzbUUFGv/JHfuHW/Xk8R2IEydGrDUagZfgxoGXYMdFPEcQ9oUsJlMAHGoR6fodRqWWJdDXV2JFmkv5hrKXgpltzVZm+q1z/9flixqyYAfFcb16pzn34AzIYrM9vWyuWNdnQf1llCcxQuW1EOvmjqyLAOab2fMQwegLEE3FZlD4AgDAuqjOENHGVwD80sxWdW51QJblPtRxfaI94WkfhS7iChwOhTo87OqYAAlKtw1WUJPEjiU1UZcGZ+DBIcCIOhgbIhmD4TENV9T5I8hcvwAaGOYBONcrMwuKdcoYgVeGxwTs2mWB+kcDeKDN+z0JciF9CTLpFpWb086xtA1IXzwAwIqQuf1hKLjzM4FydwE4A3JFvani2rdGtrHlt8/vgyZxr2Ztz21dZ+IeoN9oRegl1JbqQe6M6KQVAAAMiUlEQVR7eQlys70c+n7c9/hSp79HdEiNokvf7aGQtfBxN0b9FMBnIWqRUV7ZKHWGLrXzA+45fRlKglgEWfDyZW6AJk3nu/7yztBY3sE2Pd6Pc5dy3/EGAJbqZzsugyyQcyBPzRcga3+obOlYUvO6FwE4MLD/AEhreND7d8+6Cy0yw8HCabvfIDknUDZz42R/lwFwPcl3m9kYkgvNbD8AH4JWludBAtTHk7w4V09tsdaI+10M+b8XojxupSdFPAcTsX2xjXpj9ClL+YZcrMVWkDUnH4+3HBR/M+gp0gnVsAih8sGCmX0PLkCc5N8qynYlwzeynVFcTLGuz1irnJWrR4xjIGs44l6WgCaymdrADABnsc1QFIugBurGWNLp+MBuoJfdhbEZDl8jeakpbXdHyCJ0JkQk6CMjf3zFlD7/LIDV3b47IPfcBWY2G43OuBdbXQL3mNl+DIu1FirTl4HxGXSjq0sldBilfdElIxSC5Pe88n1BqACqRJqXg+hE3puvEkAWhLqkq2cMmuWeXoRiMBKGB44b7AYUgR7pZkXZrmT4RuJ1ks+a2SgzG0Vyupm1BJ1TlotK1ycilQoYpx5RF2dCFqcz3OePu30HtFMZFWKyT0Wxjo8lJJ8EsJUXH3gtO0SD0wn0nCWrboZDLtj4RChw8UILKKS7sl+DUmx3AHA69LI6h+TXis4paOMboZfcq2ienY+DZuddz2RL6D5i+6KZ5Qfmg6DgaeTKHe/VWxmE2kZbJzDA8ZMwfOBW/VmQ8B3sYsZnN9FuYkAHrptxMf0fFObRwsVkZoeiYcF6HY6+wW3zSC7OlR1Uq5xvOQrti6inFj+eu+dLSO5Z5zrDGb04yaqV4WA10na985aC3GsvuM9PQHIaRRduOWbNEgn3sFysNWGYoZ1sm5jJupnNIrl5vmzRAGrKGj0Qran9/nMwHeEMqO3L2pIwNGBmH4Gs8DOAPvb6o0heNpjtqgsbhAxfa2gr3gNZfUdBVpvlAfzcc4lFuz69a9RSKugvzGwO5EV5yH1eE8Bl9JQeIuqJogbyzrmd5JZtNHtYoucmWRmKMhwC++qk7RbKLpjZ3yBzbJFJ+PjQ/oSRj9i+6Pa3SN4EykTr45nZbRAn1GzksoFIXu6Vy+vejQWwJ4CFJL9YcXsJQwAunmgnNqhaVoFii4ZVTJ1FcqJ1+JqZtmIdgtHYugfLKrcDRAmUzy7cn8oYbbfOKH48l6X7RigZoy/+1/cijRT08iQrpM8WfIG5eKy1SU51g9MydESdXrlC2YWYl2NCb6JmX4yZZEWLNFs/tM/M7A6Sm7VzbsLAwjzOIJM2aYt8UkIxrMMEo4NhlfOuvxSkiQuIR++1svIl9dTixyuw4Act9yMBPRf4nstwWMULKF4Ookjwyx8LPVj/Cc38l4CkCEK8HmWyC+3ymSSMUMT2RWsWm13LpBMGNFbvTRpnkUGoGa4xs11IXlfR1ry25igAm0DukoThgRvM7Ndo6N59FHq5J8RjHPRsLu+2v0KWrXYx2Lx7m6ARJrChSbKtlgKAtcGPxyGiRTlQ6LlJFupnOHwIwEYQ/wdI/tWZRUP4i5mdBcVvfdutFLKsvmgRz4SeQWxf3C2msrpBqA5TAHzFzP6NZsFyf4CfDU30DKIBeQRyCyQMYZjTdiN5lEu02MYduh2SAEuogNUjGI1GbMZ3N2AFCgAQz2MdHAkl6xwN4KsxE0WTlNypaBgqboEs7YWi0sMZvewujMqWylwimZvGxAJ9u289cGWj47cSEoDOZtu0E4SaMLJhw0DbbajDamgrDheYZHU6qgBQ49o3QRqiP3W79gWwD8mdBrotA4FetGRlON/MYrKlLnHWqRXM7EBIT/DH/nkOq0McHa+Z2XZQWm5tAdaE3gHJRSZOtU7UdXL2fy4IdX+ITfvk0Dmmpec+ACaR/LqZvRliBr/DK9dR8sKEAcNq/gQLAEjOM7OJA9+c4QeS73PPSUYweiSA9cxsSGkr1sR8iDYmOgOyg1iFZD4u63yXwTki0cuWrOhsKTPbCSJrNEjM+aaCOu+E4rcmQvEOVwJYl+QunW19wkhCJ7Nt2ghCPROSctmeEixfERIC39Qrdw4Uj/gTt+vjABaRbIu8MGFgYGYPkFy74NiDJNca6DYNZzhX19bQZGs3yEJcpp83pGBmV0NuwWUxSAoAZjYNim/O4gMnQ5mNIzKkpmctWSRne7tuNbO+1XuOG2WOm1QFJ1YeFlPSOXsAOJXkqeaEoBMSSjAWUgfIW1HzrOsA+tKubyP5KgJoJwgVwOZsFix/zloFywGRLubT/X/raAEShjb+aGYHkmyyvpvZAWgQHSeUwIoJRs9D/wLfBwPfHewGQN6gUyFpHULf5YgNhu/ZSVZEttSbAJwC4O0uuyuGG+V1M5sMYD8AWaxD0vpLKEWNbJv9AJzp3BS3ALgZwMycpap2ECrUZ0fDZS86ipLFgXKLzOytHnnhokC5hKGFwwBcYWb7IKDtNmitGl6YCFmZD2cNgtGhCJK/C+13lB6TB6gNj0Fi2z2BXnYXPoLWbKkTSM70ykVzo5jZOwB8BvLTX2RmkwB8hOS3u3ozCcMadbNtXAzXhyGl+zXYhkBsrq59oHT+jSFX4IcBHE3yUq9cx8kLEwYO1qztdjeHkLZbwsDBzJYDcDAUnnAV5KE5GBpL5pLcvYvXbif7edijZydZsTCz5aGJ1dbu7wpQ9uCINW8mDCxis21MAuHvBvBOAM8AmAngFpK39/P6b4coRgzANBaIVXeKvDAhIWFwYGZXAngOypDcAcCq0HM/heSdXb52T2Y/9+wkqypbKsCN8nsAv68IIl4bwIkA3gHF2QAASK7ZhVtIGCEIsa4X7HsGwEMAfgRgOslH+3HNsZDVdS0oruRckgsD5TYFsIDk393n/aAkkccAHFfiOk9ISBhiyDP/uzCBvwF4C8l/DXA7oiR4RgIGjQxtCOBMKA7rDLdt4vZleAuApQD8HRKIfgLA8xV1TnV1LATwXxB9w8862uqEkYhnzWxfMxvttn2hQPgmkBwPBY2OBfBNM7vDkQq2g59AbvB5AHZGcUDsWRBJKcxsWwD/B/XrF6AA+4SEhOGDPsoVkosAPDGQEywzW8mpoNwFxYRvTPJLI3WCBfS2JWuuly3Vss/jRtkKimko5EYxs9kkN/FWC7NJbuKXTUjIYGYToJisLdHItjmU5ONeueUgt/V7ILfheMi6+ok2rpnvo2MA3MGwVmLfM2FmpwN4muRx7nPbuocJCQkDDzNbhAZNjEFSQa9gAKR8vOzn0yOzn4c9eja7EBHZUo4Nd76ZPQ+t3F+AuFE2AxAioHvNZWk8YGafhyxgI9LPnNA51Mi2mZnbTuunDEV+Rbswl4noY7SZjXGuxB0AfDp3rJfHj4SEYQeSLfq8A4h2sp+HPXp5kDwKwHQza8qWyg62yY0yBcDSAA4F8HWI96i2lSGhN1A32yaTcjKzpUm+0s/Lb2BmL2ZNATDOffYHvIsA/M7Fg70KZT5mmngv9LMNCQkJPQIOolbjYKJn3YVAebaUmX0PjhtruHOjJAxN1M22MbMtAZwLYBmSbzGzDQAcRPJzXW7nFpBk1I0kX3b73ubaMaeb105ISEgYzui5SVY3sqXM7Kqy4wMhVZAwvBGTbWNmsyAeq6tIbuT2zSe5nl9fQkJCQsLgoxfdhWcB2BFoypY6BNJxOht6idXFlgAWQK6VWZDLJSGhEgGtwY3LaEJILvDipxLrekJCQsIQRS9OskbnrFUfBXA2ycsBXO4EntvBfwDYCZIl+BiAawFcRPLufrc2YcSiDa3BBWa2FQA6nrcpAILEoQkJCQkJg49edBfOB7Chy6i6D8CnSd6cHeuv68XFeU0GcBKA40me1u9GJ4xImNliKNtmIZx2YHYIgWwbMxsP4AeQJdYA3AgxNbdwaiUkJCQkDD560ZLVlWwpN7naFZpgTQTwQwBX9LexCSMXdbNtSD4DuRUTEhISEoYBes6SBXQ+W8rMLoCISq8DcDHJ+Z1sb0Jvo1eFVRMSEhKGO3pyktVpOLdPxqJb6fZJSKiDXhVWTUhISBjuSJOshIRhhF4SVk1ISEgY7ujFmKyEhGGHulQPCQkJCQmDjzTJSkgY4miD6iEhISEhYQgguQsTEoY46lI9JCQkJCQMDaRJVkJCQkJCQkJCF9CTqtgJCQkJCQkJCd1GmmQlJCQkJCQkJHQBaZKVkJCQkJCQkNAFpElWQkJCQkJCQkIXkCZZCQkJCQkJCQldQJpkJSQkJCQkJCR0Af8POt0i87DuZ3wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax= plt.subplots(1,1,figsize=(10,10))\n", + "\n", + "\n", + "ax.bar(range(50),df[df.columns[2]][0:50]/df[df.columns[9]][0:50])\n", + "ax.set_xticks(range(50))\n", + "_=ax.set_xticklabels(state_names, rotation='vertical', fontsize=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.031532\n", + "1 0.039884\n", + "2 0.011382\n", + "3 0.046341\n", + "4 0.046565\n", + "5 0.018248\n", + "6 0.040625\n", + "7 0.017714\n", + "8 0.043038\n", + "9 0.067347\n", + "10 0.018254\n", + "11 0.011345\n", + "12 0.046341\n", + "13 0.027966\n", + "14 0.075556\n", + "15 0.040385\n", + "16 0.058333\n", + "17 0.018487\n", + "18 0.025131\n", + "19 0.027200\n", + "20 0.012860\n", + "21 0.013043\n", + "22 0.037037\n", + "23 0.040000\n", + "24 0.054074\n", + "25 0.051471\n", + "26 0.022785\n", + "27 0.073469\n", + "28 0.039516\n", + "29 0.024074\n", + "30 0.045745\n", + "31 0.019626\n", + "32 0.083871\n", + "33 0.028689\n", + "34 0.027679\n", + "35 0.120792\n", + "36 0.045614\n", + "37 0.051818\n", + "38 0.025000\n", + "39 0.044000\n", + "40 0.038462\n", + "41 0.049107\n", + "42 0.031068\n", + "43 0.018116\n", + "44 0.016505\n", + "45 0.153448\n", + "46 0.019512\n", + "47 0.159459\n", + "48 0.035294\n", + "49 0.012849\n", + "dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df.columns[2]][0:50]/df[df.columns[9]][0:50]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Heart Data\n", + "\n", + "[Source](https://www.kaggle.com/ronitf/heart-disease-uci/version/1#)\n", + "\n", + "* *age*- age in years\n", + "* *sex*- (1 = male; 0 = female)\n", + "* *cp*- chest pain type\n", + "* *trestbps*- resting blood pressure (in mm Hg on admission to the hospital)\n", + "* *chol*- serum cholestoral in mg/dl\n", + "* *fbs*- (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)\n", + "* *restecg*- resting electrocardiographic results\n", + "* *thalach*- maximum heart rate achieved\n", + "* *exang*- exercise induced angina (1 = yes; 0 = no)\n", + "* *oldpeak*- ST depression induced by exercise relative to rest\n", + "* *slope*- the slope of the peak exercise ST segment\n", + "* *ca*- number of major vessels (0-3) colored by flourosopy\n", + "* *thal*- 3 = normal; 6 = fixed defect; 7 = reversable defect\n", + "* *target*- 1 or 0\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal,target\r", + "\r\n", + "63,1,3,145,233,1,0,150,0,2.3,0,0,1,1\r", + "\r\n", + "37,1,2,130,250,0,1,187,0,3.5,0,0,2,1\r", + "\r\n", + "41,0,1,130,204,0,0,172,0,1.4,2,0,2,1\r", + "\r\n", + "56,1,1,120,236,0,1,178,0,0.8,2,0,2,1\r", + "\r\n", + "57,0,0,120,354,0,1,163,1,0.6,2,0,2,1\r", + "\r\n", + "57,1,0,140,192,0,1,148,0,0.4,1,0,1,1\r", + "\r\n", + "56,0,1,140,294,0,0,153,0,1.3,1,0,2,1\r", + "\r\n", + "44,1,1,120,263,0,1,173,0,0,2,0,3,1\r", + "\r\n", + "52,1,2,172,199,1,1,162,0,0.5,2,0,3,1\r", + "\r\n" + ] + } + ], + "source": [ + "!head heart.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "df_heart=pd.read_csv(\"heart.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063131452331015002.30011
137121302500118703.50021
241011302040017201.42021
356111202360117800.82021
457001203540116310.62021
.............................................
29857001402410112310.21030
29945131102640113201.21030
30068101441931114103.41230
30157101301310111511.21130
30257011302360017400.01120
\n", + "

303 rows Ă— 14 columns

\n", + "
" + ], + "text/plain": [ + " age sex cp trestbps chol fbs restecg thalach exang oldpeak \\\n", + "0 63 1 3 145 233 1 0 150 0 2.3 \n", + "1 37 1 2 130 250 0 1 187 0 3.5 \n", + "2 41 0 1 130 204 0 0 172 0 1.4 \n", + "3 56 1 1 120 236 0 1 178 0 0.8 \n", + "4 57 0 0 120 354 0 1 163 1 0.6 \n", + ".. ... ... .. ... ... ... ... ... ... ... \n", + "298 57 0 0 140 241 0 1 123 1 0.2 \n", + "299 45 1 3 110 264 0 1 132 0 1.2 \n", + "300 68 1 0 144 193 1 1 141 0 3.4 \n", + "301 57 1 0 130 131 0 1 115 1 1.2 \n", + "302 57 0 1 130 236 0 0 174 0 0.0 \n", + "\n", + " slope ca thal target \n", + "0 0 0 1 1 \n", + "1 0 0 2 1 \n", + "2 2 0 2 1 \n", + "3 2 0 2 1 \n", + "4 2 0 2 1 \n", + ".. ... .. ... ... \n", + "298 1 0 3 0 \n", + "299 1 0 3 0 \n", + "300 1 2 3 0 \n", + "301 1 1 3 0 \n", + "302 1 1 2 0 \n", + "\n", + "[303 rows x 14 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_heart" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(303, 14)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np_heart=np.array(df_heart)\n", + "np_heart.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'age': 0,\n", + " 'sex': 1,\n", + " 'cp': 2,\n", + " 'trestbps': 3,\n", + " 'chol': 4,\n", + " 'fbs': 5,\n", + " 'restecg': 6,\n", + " 'thalach': 7,\n", + " 'exang': 8,\n", + " 'oldpeak': 9,\n", + " 'slope': 10,\n", + " 'ca': 11,\n", + " 'thal': 12,\n", + " 'target': 13}" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h_c_tmp=df_heart.columns.tolist()\n", + "h_columns=dict(zip(h_c_tmp,range(len(h_c_tmp))))\n", + "h_columns" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['age',\n", + " 'sex',\n", + " 'cp',\n", + " 'trestbps',\n", + " 'chol',\n", + " 'fbs',\n", + " 'restecg',\n", + " 'thalach',\n", + " 'exang',\n", + " 'oldpeak',\n", + " 'slope',\n", + " 'ca',\n", + " 'thal',\n", + " 'target']" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h_c_tmp" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "index=np.where(np_heart[:,h_columns[\"cp\"]]==0.)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(143,)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np_heart[index,h_columns[\"chol\"]].flatten().shape" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAOdUlEQVR4nO3df4xl9VnH8ffTZflNSoEbgizXodpgCLFARqTSEAVRYBvQhD+W2FpNzSQqCv5IHWJi2z9MVqO1NWlax5YWLYVWCpGwaQWFpmliF1lY6MKCXWDbgpQtNhRoDBT6+Mc9szud3pk5A/fcee7s+5Xc7LnnnL37PPO9+9lzv/ecPZGZSJLqesNaFyBJWp5BLUnFGdSSVJxBLUnFGdSSVNwhXbzoCSeckFNTU128tCStSzt27Hg2M3vDtnUS1FNTU9x7771dvLQkrUsR8Y2ltjn1IUnFGdSSVJxBLUnFGdSSVJxBLUnFGdSSVFyroI6IP4qIhyJiV0TcGBGHd12YJGlgxaCOiJOBPwSmM/MMYAOwpevCJEkDbac+DgGOiIhDgCOB/+muJEnSQitemZiZT0XE3wDfBP4PuCMz71i8X0TMADMA/X5/1HWqhanZbUPX7926ecyVjN6k9zbp9WtttZn6eBNwOXAq8BPAURHxzsX7ZeZcZk5n5nSvN/RydUnSa9Bm6uOXgScy8zuZ+QPgFuAXui1LkjSvTVB/Ezg3Io6MiAAuBHZ3W5Ykad6KQZ2Z24GbgfuArzW/Z67juiRJjVb/zWlmvg94X8e1SJKG8MpESSrOoJak4gxqSSrOoJak4gxqSSrOoJak4gxqSSrOoJak4gxqSSrOoJak4gxqSSrOoJak4gxqSSrOoJak4gxqSSrOoJak4trc3Pa0iNi54PF8RFwzjuIkSS3u8JKZjwJnAkTEBuAp4NaO65IkNVY79XEh8FhmfqOLYiRJP261Qb0FuLGLQiRJw7W6uS1ARBwKXAZcu8T2GWAGoN/vj6Q41TI1u23o+r1bN4+5Eungspoj6kuA+zLzmWEbM3MuM6czc7rX642mOknSqoL6Spz2kKSxaxXUEXEUcBFwS7flSJIWazVHnZnfB47vuBZJ0hBemShJxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxbW9FdexEXFzRDwSEbsj4m1dFyZJGmh1Ky7gw8AXM/OKiDgUOLLDmiRJC6wY1BHxRuB84LcAMvNl4OVuy5IkzWtzRH0q8B3gkxHxVmAHcHVzw9v9ImIGmAHo9/ujrlPrzNTstjV5nb1bN4/k9Vf7OtLr0WaO+hDgbOCjmXkW8H1gdvFOmTmXmdOZOd3r9UZcpiQdvNoE9ZPAk5m5vXl+M4PgliSNwYpBnZnfBr4VEac1qy4EHu60KknSfm3P+vgD4IbmjI/Hgd/uriRJ0kKtgjozdwLTHdciSRrCKxMlqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqbhWd3iJiL3AC8CrwCuZ6d1eJGlM2t4zEeCXMvPZziqRJA3l1IckFdf2iDqBOyIigX/IzLnFO0TEDDAD0O/3R1ehfszU7LaR7L936+ZOX7+i1f4spAraHlG/PTPPBi4Bfj8izl+8Q2bOZeZ0Zk73er2RFilJB7NWQZ2ZTzW/7gNuBc7psihJ0gErBnVEHBURx8wvA78C7Oq6MEnSQJs56hOBWyNifv/PZOYXO61KkrTfikGdmY8Dbx1DLZKkITw9T5KKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKM6glqTiDWpKKax3UEbEhIu6PiNu7LEiS9KNWc0R9NbC7q0IkScO1CuqI2ARsBj7ebTmSpMXa3IUc4EPAe4FjltohImaAGYB+v//6K5tQU7Pblty2d+vmkb3WKHT9+uvZUj+71Y7xOExSrRpuxSPqiHgHsC8zdyy3X2bOZeZ0Zk73er2RFShJB7s2Ux/nAZdFxF7gJuCCiPh0p1VJkvZbMagz89rM3JSZU8AW4K7MfGfnlUmSAM+jlqTy2n6ZCEBmfgn4UieVSJKG8ohakoozqCWpOINakoozqCWpOINakoozqCWpOINakoozqCWpOINakoozqCWpOINakoozqCWpOINakoozqCWpOINakoozqCWpOINakoprcxfywyPinoh4ICIeiogPjKMwSdJAm1txvQRckJkvRsRG4CsR8YXM/GrHtUmSaBHUmZnAi83Tjc0juyxKknRAq5vbRsQGYAfw08BHMnP7kH1mgBmAfr8/yhrX1NTstqHr927d3PmfofVvubEf5XtMk63Vl4mZ+WpmnglsAs6JiDOG7DOXmdOZOd3r9UZdpyQdtFZ11kdmPgfcDVzcTTmSpMXanPXRi4hjm+UjgIuAR7ouTJI00GaO+iTg+mae+g3A5zLz9m7LkiTNa3PWx4PAWWOoRZI0hFcmSlJxBrUkFWdQS1JxBrUkFWdQS1JxBrUkFWdQS1JxBrUkFWdQS1JxBrUkFWdQS1JxBrUkFWdQS1JxBrUkFWdQS1JxBrUkFWdQS1Jxbe6ZeEpE3B0RD0fEQxFx9TgKkyQNtLln4ivAn2TmfRFxDLAjIu7MzIc7rk2SRIsj6sx8OjPva5ZfAHYDJ3ddmCRpoM0R9X4RMcXgRrfbh2ybAWYA+v3+CEqrbWp221h+jybLKMfY90tdS43N3q2bO/nzWn+ZGBFHA58HrsnM5xdvz8y5zJzOzOlerzfKGiXpoNYqqCNiI4OQviEzb+m2JEnSQm3O+gjgE8DuzPxg9yVJkhZqc0R9HvAu4IKI2Nk8Lu24LklSY8UvEzPzK0CMoRZJ0hBemShJxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxRnUklScQS1JxbW5Z+J1EbEvInaNoyBJ0o9qc0T9KeDijuuQJC1hxaDOzC8D3x1DLZKkIVa8uW1bETEDzAD0+/3X/DpTs9uGrt+7dXOnr7PU/jo4HIzjv9qeR/V3Z7V/l8dhVLnTlZF9mZiZc5k5nZnTvV5vVC8rSQc9z/qQpOIMakkqrs3peTcC/wmcFhFPRsR7ui9LkjRvxS8TM/PKcRQiSRrOqQ9JKs6glqTiDGpJKs6glqTiDGpJKs6glqTiDGpJKs6glqTiDGpJKs6glqTiDGpJKs6glqTiDGpJKs6glqTiDGpJKs6glqTiDGpJKq5VUEfExRHxaETsiYjZrouSJB3Q5p6JG4CPAJcApwNXRsTpXRcmSRpoc0R9DrAnMx/PzJeBm4DLuy1LkjQvMnP5HSKuAC7OzN9pnr8L+PnMvGrRfjPATPP0NODR0Zf7mp0APLvWRXRgvfYF9jap1mtv4+jrJzOzN2zDinchbysz54C5Ub3eKEXEvZk5vdZ1jNp67QvsbVKt197Wuq82Ux9PAacseL6pWSdJGoM2Qf1fwFsi4tSIOBTYAtzWbVmSpHkrTn1k5isRcRXwb8AG4LrMfKjzykar5JTMCKzXvsDeJtV67W1N+1rxy0RJ0tryykRJKs6glqTiJj6oI+K6iNgXEbsWrHt/RDwVETubx6ULtl3bXAr/aET86tpU3U5EnBIRd0fEwxHxUERc3aw/LiLujIivN7++qVkfEfH3TX8PRsTZa9vBcMv0NfHjFhGHR8Q9EfFA09sHmvWnRsT2pofPNl/MExGHNc/3NNun1rL+5SzT26ci4okF43Zms34i3o/zImJDRNwfEbc3z+uMWWZO9AM4Hzgb2LVg3fuBPx2y7+nAA8BhwKnAY8CGte5hmd5OAs5ulo8B/rvp4a+B2Wb9LPBXzfKlwBeAAM4Ftq91D6vsa+LHrfnZH90sbwS2N2PxOWBLs/5jwO82y78HfKxZ3gJ8dq17eA29fQq4Ysj+E/F+XFDvHwOfAW5vnpcZs4k/os7MLwPfbbn75cBNmflSZj4B7GFwiXxJmfl0Zt7XLL8A7AZOZtDH9c1u1wO/1ixfDvxTDnwVODYiThpz2Stapq+lTMy4NT/7F5unG5tHAhcANzfrF4/Z/FjeDFwYETGmcldlmd6WMhHvR4CI2ARsBj7ePA8KjdnEB/Uyrmo+bl03PzXAIAy+tWCfJ1k+IMpoPl6dxeAo5sTMfLrZ9G3gxGZ54vpb1Besg3FrPkLvBPYBdzL4BPBcZr7S7LKw/v29Ndu/Bxw/3orbW9xbZs6P21824/Z3EXFYs26Sxu1DwHuBHzbPj6fQmK3XoP4o8FPAmcDTwN+ubTmvT0QcDXweuCYzn1+4LQefvybyHMshfa2LccvMVzPzTAZX8Z4D/MwalzQyi3uLiDOAaxn0+HPAccCfrWGJqxYR7wD2ZeaOta5lKesyqDPzmeYN9UPgHznwMXniLoePiI0MwuyGzLylWf3M/EfI5td9zfqJ6W9YX+tp3AAy8zngbuBtDD72z19gtrD+/b01298I/O+YS121Bb1d3ExlZWa+BHySyRu384DLImIvg/8d9ALgwxQas3UZ1IvmwX4dmD8j5DZgS/Ot7anAW4B7xl1fW8281yeA3Zn5wQWbbgPe3Sy/G/jXBet/s/m2/VzgewumSMpYqq/1MG4R0YuIY5vlI4CLGMzB3w1c0ey2eMzmx/IK4K7mU1I5S/T2yIKDhmAwj7tw3Mq/HzPz2szclJlTDL4cvCszf4NKYzaub1S7egA3MviY/AMG80jvAf4Z+BrwYPNDPWnB/n/OYM7wUeCSta5/hd7ezmBa40FgZ/O4lMF82H8AXwf+HTiu2T8Y3OThsab/6bXuYZV9Tfy4AT8L3N/0sAv4i2b9mxn847IH+BfgsGb94c3zPc32N691D6+ht7uacdsFfJoDZ4ZMxPtxUY+/yIGzPsqMmZeQS1Jx63LqQ5LWE4NakoozqCWpOINakoozqCWpOINakoozqCWpuP8HJJWbpEDsgRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "_=plt.hist(np_heart[index,h_columns[\"chol\"]].flatten(),bins=50)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAASR0lEQVR4nO3dXYxc513H8e8Pu0lfgLR1DErtgI1iqBxEX1iZFCoEDSWOqDAXETiiNKoickECLSpCCRIXROIiEmoKIq2ImkAIBScyrbqqgFBIL+CiTsZNobVdiyVJiU1Lt0ma0iISNvy5mKdhPZ7dnbW9r8/3I432nOc858xzzs7Mb87bM6kqJEn9+ba1boAkaW0YAJLUKQNAkjplAEhSpwwASerU1rVuwHJceumltWvXrrVuhiRtGEePHv1qVW0fN21DBcCuXbsYDAZr3QxJ2jCSfHGhaR4CkqROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUxMFQJL9SU4mmUly65jpFyd5oE0/kmRXK9+W5FNJvpHkD0fm+eEkn2vz/EGSXIgVkiRNZskASLIFuAu4FtgLXJ9k70i1G4Fnq+oK4E7gjlb+38BvA78xZtEfAn4Z2NMe+89lBSRJ52aSPYB9wExVPV5VLwCHgAMjdQ4A97Xhw8DVSVJV36yqf2QYBC9JchnwnVX16Rr+Is2fAj93PivSpeTMR69tWU/bQdpAJgmAHcBT88ZPtbKxdapqDngO2LbEMk8tsUwAktyUZJBkMDs7O0FzN6fRz7gEQhFW/hfdxj63n7PShrfuTwJX1d1VNVVVU9u3j+3PSJJ0DiYJgNPA5fPGd7aysXWSbAUuAZ5eYpk7l1imJGkFTRIAjwJ7kuxOchFwEJgeqTMN3NCGrwMerkV+bb6qvgR8PclV7eqfdwEfX3brJUnnbMnuoKtqLsktwEPAFuDeqjqW5HZgUFXTwD3A/UlmgGcYhgQASZ4EvhO4KMnPAT9dVceBXwH+BHgF8NftIUlaJVnki/q6MzU1Vb3+HsBiJ12LNnGF/pcLPfcZTzdaaTVfV2v53NI6l+RoVU2Nm7buTwJLklaGASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnq1JJdQWjjmugO3gnqS9qc3AOQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROeSdwz8669dff0pV64h6AJHXKAJCkThkAktQpA0CSOuVJ4A79/7lfT/pKPXMPQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkTk0UAEn2JzmZZCbJrWOmX5zkgTb9SJJd86bd1spPJrlmXvmvJzmW5PNJ/iLJyy/ECkmSJrNkACTZAtwFXAvsBa5Psnek2o3As1V1BXAncEebdy9wELgS2A98MMmWJDuAXwOmquoHgS2tniRplUyyB7APmKmqx6vqBeAQcGCkzgHgvjZ8GLg6SVr5oap6vqqeAGba8mB4F/IrkmwFXgn8+/mtiiRpOSYJgB3AU/PGT7WysXWqag54Dti20LxVdRr4PeDfgC8Bz1XV34578iQ3JRkkGczOzk7QXEnSJNbkJHCS1zDcO9gNvA54VZJ3jqtbVXdX1VRVTW3fvn01mylJm9okAXAauHze+M5WNrZOO6RzCfD0IvP+FPBEVc1W1f8AHwV+9FxWQJJ0biYJgEeBPUl2J7mI4cna6ZE608ANbfg64OGqqlZ+sF0ltBvYAzzC8NDPVUle2c4VXA2cOP/V6VOo4SOc8ZCkxSzZHXRVzSW5BXiI4dU691bVsSS3A4OqmgbuAe5PMgM8Q7uip9V7EDgOzAE3V9WLwJEkh4HPtPLHgLsv/OpJkhaS4Rf1jWFqaqoGg8FaN2NNrMdv9Ge8dEYbuJqvq7V8bmmdS3K0qqbGTfNOYEnqlAEgSZ0yACSpU/4msM7dYicmljppsdRx+vnze0xfWhHuAUhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI65Y1gOmdh/A1axfibwM6o731e0ppzD0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQGsv439ARtLKMgAkqVMGgCR1aqIASLI/yckkM0luHTP94iQPtOlHkuyaN+22Vn4yyTXzyl+d5HCSLyQ5keQtF2KFJEmTWTIAkmwB7gKuBfYC1yfZO1LtRuDZqroCuBO4o827FzgIXAnsBz7Ylgfw+8DfVNXrgTcAJ85/dSRJk5pkD2AfMFNVj1fVC8Ah4MBInQPAfW34MHB1krTyQ1X1fFU9AcwA+5JcAvw4cA9AVb1QVV87/9WRJE1qkgDYATw1b/xUKxtbp6rmgOeAbYvMuxuYBf44yWNJPpzkVeOePMlNSQZJBrOzsxM0V5I0ibU6CbwVeDPwoap6E/BN4KxzCwBVdXdVTVXV1Pbt21ezjZK0qU0SAKeBy+eN72xlY+sk2QpcAjy9yLyngFNVdaSVH2YYCJKkVTJJADwK7EmyO8lFDE/qTo/UmQZuaMPXAQ9XVbXyg+0qod3AHuCRqvoy8FSSH2jzXA0cP891kSQtw9alKlTVXJJbgIeALcC9VXUsye3AoKqmGZ7MvT/JDPAMw5Cg1XuQ4Yf7HHBzVb3YFv2rwEdaqDwOvPsCr5skaREZflHfGKampmowGKx1M9bERuotoRjf2DD+tVYERl+H81d4qdfo6MbZQK9paaUlOVpVU+OmLbkHIC3XQh/0i9Y/KzNqwSCRdGHYFYQkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKn7A10tS236+KX6nfcxfFqdvds19LqiAGgTWV819J+jkvjeAhIkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXK7qDXmdHu6Lv+HQBJK8o9AEnq1EQBkGR/kpNJZpLcOmb6xUkeaNOPJNk1b9ptrfxkkmtG5tuS5LEknzjfFZEkLc+SAZBkC3AXcC2wF7g+yd6RajcCz1bVFcCdwB1t3r3AQeBKYD/wwba8b3kPcOJ8V0KStHyT7AHsA2aq6vGqegE4BBwYqXMAuK8NHwauTpJWfqiqnq+qJ4CZtjyS7AR+Bvjw+a+GJGm5JgmAHcBT88ZPtbKxdapqDngO2LbEvB8AfhP438WePMlNSQZJBrOzsxM0V5I0iTU5CZzkHcBXquroUnWr6u6qmqqqqe3bt69C6ySpD5MEwGng8nnjO1vZ2DpJtgKXAE8vMu+PAT+b5EmGh5TeluTPzqH9kqRzNEkAPArsSbI7yUUMT+pOj9SZBm5ow9cBD1dVtfKD7Sqh3cAe4JGquq2qdlbVrra8h6vqnRdgfSRJE1ryRrCqmktyC/AQsAW4t6qOJbkdGFTVNHAPcH+SGeAZhh/qtHoPAseBOeDmqnpxhdZFkrQMGX5R3ximpqZqMBisdTMWN3or7+j2XWL62XcC96tYYGMssk2zwJ3TE7/Ml/r/SRtMkqNVNTVumncCS1KnDABJ6pQBIEmdsjfQFbZQ754LHt+WpFXiHoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pTdQa+Rl3660F6hl22hLrYlLY97AJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTXgaqPpx97Wh/5m+D8tJZuQcgSd0yACSpUwaAJHXKAJCkThkAktQpA0CSOjVRACTZn+Rkkpkkt46ZfnGSB9r0I0l2zZt2Wys/meSaVnZ5kk8lOZ7kWJL3XKgVkiRNZsn7AJJsAe4C3g6cAh5NMl1Vx+dVuxF4tqquSHIQuAP4hSR7gYPAlcDrgL9L8v3AHPC+qvpMku8Ajib55Mgy1blcwG6el7ussp9udWCSPYB9wExVPV5VLwCHgAMjdQ4A97Xhw8DVSdLKD1XV81X1BDAD7KuqL1XVZwCq6j+BE8CO818dSdKkJgmAHcBT88ZPcfaH9Ut1qmoOeA7YNsm87XDRm4AjkzdbknS+1vQkcJJvB/4SeG9VfX2BOjclGSQZzM7Orm4DJWkTmyQATgOXzxvf2crG1kmyFbgEeHqxeZO8jOGH/0eq6qMLPXlV3V1VU1U1tX379gmaK0maxCQB8CiwJ8nuJBcxPKk7PVJnGrihDV8HPFxV1coPtquEdgN7gEfa+YF7gBNV9f4LsSKSpOVZ8iqgqppLcgvwELAFuLeqjiW5HRhU1TTDD/P7k8wAzzAMCVq9B4HjDK/8ubmqXkzyVuCXgM8l+Wx7qt+qqr+60CsoSRovtYG6hZ2amqrBYLDWzVjcSLfDF/JSRq2ely4D3UDvjyXZHXSXkhytqqlx07wTWJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHVqyfsAdKYs0EmkV9X1wf+/NhP3ACSpUwaAJHXKAJCkTvV5DmD0QO5SB3DPqL9A3YUODmtjO+v/upzXyhgrebJgua9rdc89AEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmd6qYriDPvkh+5RX7JXhyWvqU+E9TRxnGh/p9nLae91tZjLw12db32Vvt/4B6AJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUqYkCIMn+JCeTzCS5dcz0i5M80KYfSbJr3rTbWvnJJNdMukxJ0spaMgCSbAHuAq4F9gLXJ9k7Uu1G4NmqugK4E7ijzbsXOAhcCewHPphky4TLlCStoEn2APYBM1X1eFW9ABwCDozUOQDc14YPA1cnSSs/VFXPV9UTwExb3iTLlCStoEm6g94BPDVv/BTwIwvVqaq5JM8B21r5p0fm3dGGl1omAEluAm5qo99IcnKCNm92lwJfXetGrENrtl0W6sZ3ob7GF65/AQ2fZPw2WUYDVqWtq29DvYfO83/wvQtNWPe/B1BVdwN3r3U71pMkg6qaWut2rDdul7O5TcZzuwxNcgjoNHD5vPGdrWxsnSRbgUuApxeZd5JlSpJW0CQB8CiwJ8nuJBcxPKk7PVJnGrihDV8HPFxV1coPtquEdgN7gEcmXKYkaQUteQioHdO/BXgI2ALcW1XHktwODKpqGrgHuD/JDPAMww90Wr0HgePAHHBzVb0IMG6ZF371Ni0PiY3ndjmb22Q8twuQ8gc/JalL3gksSZ0yACSpUwbAOpTk8iSfSnI8ybEk72nlr03yyST/0v6+ppUnyR+0bjX+Ocmb13YNLrwkL0/ySJJ/atvkd1r57tb9yEzrjuSiVr5g9ySbTbu7/rEkn2jjbpPkySSfS/LZJINW1u37ZyEGwPo0B7yvqvYCVwE3t64ybgX+vqr2AH/fxmHYpcae9rgJ+NDqN3nFPQ+8rareALwR2J/kKobdjtzZuiF5lmG3JLBA9ySb1HuAE/PG3SZDP1lVb5x3vX/P75/xqsrHOn8AHwfeDpwELmtllwEn2/AfAdfPq/9Svc34AF4JfIbh3eNfBba28rcAD7Xhh4C3tOGtrV7Wuu0rsC12MvwwexvwCYa3Hne9Tdr6PQlcOlLm+2fk4R7AOtd2098EHAG+u6q+1CZ9GfjuNjyuu44dbDLtUMdnga8AnwT+FfhaVc21KvPX+4zuSYBvdU+y2XwA+E3gf9v4NtwmAAX8bZKjrTsZ6Pz9M8667wqiZ0m+HfhL4L1V9fXM6xCkqipJV9fw1vAekjcmeTXwMeD1a9ykNZXkHcBXqupokp9Y6/asM2+tqtNJvgv4ZJIvzJ/Y4/tnHPcA1qkkL2P44f+RqvpoK/6PJJe16Zcx/CYMnXWtUVVfAz7F8PDGq1v3I3Dmei/UPclm8mPAzyZ5kmGPum8Dfp++twkAVXW6/f0Kwy8L+/D9cxYDYB1qXWnfA5yoqvfPmzS/y40bGJ4b+Fb5u9rVDFcBz83b1d0Ukmxv3/xJ8gqG50ROMAyC61q10W0yrnuSTaOqbquqnVW1i+Hd9w9X1S/S8TYBSPKqJN/xrWHgp4HP0/H7ZyHeCbwOJXkr8A/A5/j/Y7u/xfA8wIPA9wBfBH6+qp5pgfGHDH9057+Ad1fVYNUbvoKS/BDD35zYwvCLy4NVdXuS72P47fe1wGPAO6vq+SQvB+5neP7kGeBgVT2+Nq1fee0Q0G9U1Tt63yZt/T/WRrcCf15Vv5tkG52+fxZiAEhSpzwEJEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSp/4PwxtfBeUfta8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "index=np.where(np_heart[:,h_columns[\"cp\"]]==0)\n", + "_=plt.hist(np_heart[index,h_columns[\"chol\"]].flatten(),color=\"r\",bins=50,density=1.)\n", + "index=np.where(np_heart[:,h_columns[\"cp\"]]!=0)\n", + "_=plt.hist(np_heart[index,h_columns[\"chol\"]].flatten(),color=\"b\",bins=50,density=1.)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250.13286713286712\n", + "242.80625\n" + ] + } + ], + "source": [ + "index=np.where(np_heart[:,h_columns[\"cp\"]]==0)\n", + "print (np.mean(np_heart[index,h_columns[\"chol\"]].flatten()))\n", + "index=np.where(np_heart[:,h_columns[\"cp\"]]!=0)\n", + "print (np.mean(np_heart[index,h_columns[\"chol\"]].flatten()))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'age': -0.06865301584014483,\n", + " 'sex': -0.049352875346989386,\n", + " 'cp': 1.0,\n", + " 'trestbps': 0.04760776064464842,\n", + " 'chol': -0.07690439103320763,\n", + " 'fbs': 0.09444403499533158,\n", + " 'restecg': 0.04442059251016377,\n", + " 'thalach': 0.2957621245879105,\n", + " 'exang': -0.39428026849502146,\n", + " 'oldpeak': -0.14923015809708068,\n", + " 'slope': 0.11971658853470613,\n", + " 'ca': -0.18105302605349535,\n", + " 'thal': -0.1617355705100218,\n", + " 'target': 0.4337982615068934}" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dict(zip(h_c_tmp,np.corrcoef(np.array(np_heart).transpose())[h_columns[\"cp\"]]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Lectures/Lecture-24/Lecture-24.ipynb b/Lectures/Lecture-24/Lecture-24.ipynb new file mode 100644 index 0000000..c09456a --- /dev/null +++ b/Lectures/Lecture-24/Lecture-24.ipynb @@ -0,0 +1,4703 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lecture 24\n", + "\n", + "## Numpy " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Parts of this lecture are adapted from [http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `numpy` package (module) is used in almost all numerical computation using Python. It is a package that provide high-performance vector, matrix and higher-dimensional data structures for Python. It is implemented in C and Fortran so when calculations are vectorized (formulated with vectors and matrices), performance is very good. \n", + "\n", + "To use `numpy` you need to import the module, using for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the `numpy` package the terminology used for vectors, matrices and higher-dimensional data sets is *array*. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating `numpy` arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are a number of ways to initialize new numpy arrays, for example from\n", + "\n", + "* a Python list or tuples\n", + "* using functions that are dedicated to generating numpy arrays, such as `arange`, `linspace`, etc.\n", + "* reading data from files" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### From lists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For example, to create new vector and matrix arrays from Python lists we can use the `numpy.array` function." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a vector: the argument to the array function is a Python list\n", + "v = np.array([1,2,3,4])\n", + "\n", + "v" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a matrix: the argument to the array function is a nested Python list\n", + "M = np.array([[1, 2], [3, 4]])\n", + "\n", + "M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `v` and `M` objects are both of the type `ndarray` that the `numpy` module provides." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(numpy.ndarray, numpy.ndarray)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(v), type(M)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The difference between the `v` and `M` arrays is only their shapes. We can get information about the shape of an array by using the `ndarray.shape` property." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4,)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of elements in the array is available through the `ndarray.size` property:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.size" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Equivalently, we could use the function `numpy.shape` and `numpy.size`" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.shape(M)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.size(M)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So far the `numpy.ndarray` looks awefully much like a Python list (or nested list). Why not simply use Python lists for computations instead of creating a new array type? \n", + "\n", + "There are several reasons:\n", + "\n", + "* Python lists are very general. They can contain any kind of object. They are dynamically typed. They do not support mathematical functions such as matrix and dot multiplications, etc. Implementing such functions for Python lists would not be very efficient because of the dynamic typing.\n", + "* Numpy arrays are **statically typed** and **homogeneous**. The type of the elements is determined when the array is created.\n", + "* Numpy arrays are memory efficient.\n", + "* Because of the static typing, fast implementation of mathematical functions such as multiplication and addition of `numpy` arrays can be implemented in a compiled language (C and Fortran is used).\n", + "\n", + "Using the `dtype` (data type) property of an `ndarray`, we can see what type the data of an array has:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('int64')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We get an error if we try to assign a value of the wrong type to an element in a numpy array:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "invalid literal for int() with base 10: 'hello'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"hello\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'hello'" + ] + } + ], + "source": [ + "M[0,0] = \"hello\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want, we can explicitly define the type of the array data when we create it, using the `dtype` keyword argument: " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.+0.j, 2.+0.j],\n", + " [3.+0.j, 4.+0.j]])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M = np.array([[1, 2], [3, 4]], dtype=complex)\n", + "\n", + "M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Common data types that can be used with `dtype` are: `int`, `float`, `complex`, `bool`, `object`, etc.\n", + "\n", + "We can also explicitly define the bit size of the data types, for example: `int64`, `int16`, `float128`, `complex128`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using array-generating functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For larger arrays it is inpractical to initialize the data manually, using explicit python lists. Instead we can use one of the many functions in `numpy` that generate arrays of different forms. Some of the more common are:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### arange" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# create a range\n", + "\n", + "x = np.arange(0, 10, 1) # arguments: start, stop, step\n", + "\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.00000000e+00, -9.00000000e-01, -8.00000000e-01, -7.00000000e-01,\n", + " -6.00000000e-01, -5.00000000e-01, -4.00000000e-01, -3.00000000e-01,\n", + " -2.00000000e-01, -1.00000000e-01, -2.22044605e-16, 1.00000000e-01,\n", + " 2.00000000e-01, 3.00000000e-01, 4.00000000e-01, 5.00000000e-01,\n", + " 6.00000000e-01, 7.00000000e-01, 8.00000000e-01, 9.00000000e-01])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.arange(-1, 1, 0.1)\n", + "\n", + "x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### linspace and logspace" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0. , 0.41666667, 0.83333333, 1.25 , 1.66666667,\n", + " 2.08333333, 2.5 , 2.91666667, 3.33333333, 3.75 ,\n", + " 4.16666667, 4.58333333, 5. , 5.41666667, 5.83333333,\n", + " 6.25 , 6.66666667, 7.08333333, 7.5 , 7.91666667,\n", + " 8.33333333, 8.75 , 9.16666667, 9.58333333, 10. ])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# using linspace, both end points ARE included\n", + "np.linspace(0, 10, 25)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.00000000e+00, 3.03773178e+00, 9.22781435e+00, 2.80316249e+01,\n", + " 8.51525577e+01, 2.58670631e+02, 7.85771994e+02, 2.38696456e+03,\n", + " 7.25095809e+03, 2.20264658e+04])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from math import e\n", + "np.logspace(0, 10, 10, base=e)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### mgrid" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "x, y = np.mgrid[0:5, 0:5] # similar to meshgrid in MATLAB" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 0, 0, 0, 0],\n", + " [1, 1, 1, 1, 1],\n", + " [2, 2, 2, 2, 2],\n", + " [3, 3, 3, 3, 3],\n", + " [4, 4, 4, 4, 4]])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 1, 2, 3, 4],\n", + " [0, 1, 2, 3, 4],\n", + " [0, 1, 2, 3, 4],\n", + " [0, 1, 2, 3, 4],\n", + " [0, 1, 2, 3, 4]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### random data" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.63112997, 0.13574817, 0.74303704, 0.502363 , 0.79405927],\n", + " [0.81827903, 0.95889016, 0.94296117, 0.75706362, 0.06519533],\n", + " [0.2031896 , 0.04010831, 0.79287743, 0.84231938, 0.78992637],\n", + " [0.34726123, 0.89875878, 0.4950607 , 0.89109261, 0.74353815],\n", + " [0.74882519, 0.33852538, 0.88550848, 0.13775374, 0.82998075]])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# uniform random numbers in [0,1]\n", + "np.random.rand(5,5)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.23639361, -0.54285209, 1.52931601, -1.45424374, 0.35703921],\n", + " [ 1.0274817 , -0.564539 , -1.34690528, 0.37877 , 0.69705654],\n", + " [-0.39125945, 1.49676014, -1.00223801, 1.62323919, -0.05757404],\n", + " [ 0.40243793, -1.65216426, -1.20963184, 2.89594655, -0.8400074 ],\n", + " [ 0.21597637, 1.54423065, -0.13224831, -0.37995534, 1.12949491]])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# standard normal distributed random numbers\n", + "np.random.randn(5,5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### diag" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 0, 0],\n", + " [0, 2, 0],\n", + " [0, 0, 3]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a diagonal matrix\n", + "np.diag([1,2,3])" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 1, 0, 0],\n", + " [0, 0, 2, 0],\n", + " [0, 0, 0, 3],\n", + " [0, 0, 0, 0]])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# diagonal with offset from the main diagonal\n", + "np.diag([1,2,3], k=1) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### zeros and ones" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 0., 0.],\n", + " [0., 0., 0.],\n", + " [0., 0., 0.]])" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.zeros((3,3))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 1., 1.],\n", + " [1., 1., 1.],\n", + " [1., 1., 1.]])" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.ones((3,3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## File I/O" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comma-separated values (CSV)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A very common file format for data files is comma-separated values (CSV), or related formats such as TSV (tab-separated values). To read data from such files into Numpy arrays we can use the `numpy.genfromtxt` function. For example, " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1800 1 1 -6.1 -6.1 -6.1 1\r\n", + "1800 1 2 -15.4 -15.4 -15.4 1\r\n", + "1800 1 3 -15.0 -15.0 -15.0 1\r\n", + "1800 1 4 -19.3 -19.3 -19.3 1\r\n", + "1800 1 5 -16.8 -16.8 -16.8 1\r\n", + "1800 1 6 -11.4 -11.4 -11.4 1\r\n", + "1800 1 7 -7.6 -7.6 -7.6 1\r\n", + "1800 1 8 -7.1 -7.1 -7.1 1\r\n", + "1800 1 9 -10.1 -10.1 -10.1 1\r\n", + "1800 1 10 -9.5 -9.5 -9.5 1\r\n" + ] + } + ], + "source": [ + "!head stockholm_td_adj.dat" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "data = np.genfromtxt('stockholm_td_adj.dat')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77431, 7)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEWCAYAAACpAjzFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd7hcVdX/vzsFEkJLICA99K4oxV5QUBERK4Kv/rD3V32tERVQUUCRKkiR3ntNJT0kIb333ntyk5ub22f//piZO+vsmb1mzZk97d71eZ48mTtzyj7n7LP3Xt1Ya6EoiqIoiqIoitJV6VbpBiiKoiiKoiiKolQSFYoURVEURVEURenSqFCkKIqiKIqiKEqXRoUiRVEURVEURVG6NCoUKYqiKIqiKIrSpVGhSFEURVEURVGULo0KRYqiKEqnxhhzjTHmv5VuB4cx5hFjzA2F/iY47hhjzHeLa52iKErnR4UiRVGUKsYYs8oYc1Gl21EoxpjrjTFPVLodAGCt/bu1NpZgYIw52hjzojFmmzFmlzFmnjHmm6nfBhhjrDGmR9AGK4qiKGVHB3JFURSl6jDG9LDWtlW6HQAeBzAbwHEAmgGcDeAdFW2RoiiKEhy1FCmKolQpxpjHARwL4HVjzB5jzG9T37/PGDPRGFNnjJltjPkY2WeMMeaG1O97jDGvG2MOMcY8aYzZbYyZaowZQLa3xpifGWNWpKwh/zTGdCO/f9sYs9AYs9MYM8wYcxz57Q5jzNrUcacbYz6c+v7TAK4B8NVUG2anvo9Yvag1iVhdvmOMWQNglOBav5lqd70xZqUx5n889zHXea42xqxJXfMfmMdwPoBHrLUN1to2a+1Ma+2Q1G/jUv/Xpa7z/caYbsaYPxpjVhtjthhjHjPGHETa8iFyPWvTVienvQcYY0YbY+40xpjU132NMYNS1zrZGHMi2f4Dqee6K/X/Bzz34ZvGmAnGmNtS51+R2vebqbZsMcZczdwLRVGUTosKRYqiKFWKtfYbANYAuMxau7+19h/GmKMADAJwA4B+AH4N4EVjTH+y65UAvgHgKAAnApgE4OHU9gsBXOec6gsAzgPwHgCXA/g2ABhjLkdSuPkigP4AxgN4muw3FcA5qeM+BeB5Y0wva+1QAH8H8Gyq3e8q4LI/CuB0AJ/irtUY0wfAnQAusdYeAOADAGYVcJ4PATgVwCcAXGuMOd2z3dsA7jbGXGmMOdb57SOp/w9OXeckAN9M/bsQwAkA9gfwbwBICZRDANyF5P08x22zMeYQACMBTLDW/sxaa1M/XQngzwD6AlgG4G+p7fsheY/uBHAIgFsBDEodJxfvBTAnte1TAJ5BUvA7CcDXAfzbGLO/Z19FUZROiwpFiqIotcXXAQy21g621iastW8CmAbgM2Sbh621y621u5BchC+31o5IuaM9D+DdzjFvttbusNauAXA7gKtS3/8QwI3W2oWpff8O4Jy0tcha+4S1dnvKgvIvAPsiKWgUw/Upq0yj4FoTAM4yxvS21m601s4v4Dx/ttY2WmtnI+ke5xPcvoKkMPgnACuNMbOMMeczx/0fALdaa1dYa/cA+D2AK1NxR18DMMJa+7S1tjV176hQdCSAsQCet9b+0Tnuy9baKann8CSSAhUAXApgqbX28dRzeBrAIgCXedq30lr7sLW2HcCzAI4B8BdrbbO1djiAFiQFJEVRlC6FCkWKoii1xXEAvpJyf6ozxtQhafU4gmyzmXxuzPG3awlYSz6vRnJxnj7XHeQ8OwAYJC1QMMb8OuVatyv1+0EADi3u8iJt8V6rtbYBwFeRFNw2plzLTivgPJvI573IvicAAGvtTmvtQGvtmQAOR9Ky8wpxa3M5Esl7mGY1kvG7hyMpgCxn2nQpgN4A7i2gve750uc8ynMOty/AWpuvfyiKonR6VChSFEWpbqzz91oAj1trDyb/+lhrbyriHMeQz8cC2EDO9QPnXL2ttRNT8UO/BXAFgL7W2oMB7EJSaMrVbgBoALAf+TtXwgK6H3ut1tph1tqLkRQIFwF4oKCrLhBr7TYAtyApiPRD7mvcgKQwl+ZYAG1ICiNrkXRn9PEAgKEABqfcAyW450ufc71wf0VRFAUqFCmKolQ7m5GMTUnzBIDLjDGfMsZ0N8b0MsZ8zBhzdBHn+I0xpq8x5hgAP0fSrQpIWix+b4w5EwCMMQcZY76S+u0AJBf7WwH0MMZcC+BAp90DaNIGJK0sVxpjehpjzgPw5Tzt8l6rMeZwY8zlKeGhGcAeJN3pgmKMudkYc5Yxpocx5gAAPwKwzFq7HclrTyD6fJ4G8H/GmONTsTnp2Kq029tFxpgrUsc7xBhzjnPKnwJYjGRyjd6CJg4GcIox5mupY34VwBkA3ijmuhVFUboaKhQpiqJUNzcC+GPKfezX1tq1SCZDuAbJRflaAL9BceP5qwCmIym0DALwIABYa18GcDOAZ4wxuwHMA3BJap9hSFo1liDprtWEqOvb86n/txtjZqQ+/wlJS8lOJJMGPMU1Ks+1dgPwSyQtJTuQTNDwo4KvPD/7AXgZQB2AFUhaZT6Xat9eJBMeTEg9n/cBeAjJNN7jAKxE8r78b2r7NUjGQ/0q1eZZcGKZUokVvg9gHYBXjTG9uMalhLPPpo65HUnr3WdTVi1FURRFiMkktlEURVG6GsYYC+Bka+2ySrdFURRFUSqFWooURVEURVEURenSqFCkKIqiKIqiKEqXpmJCUSpgdopJViifb4z5c+r741PVupcZY541xuxTqTYqiqJ0dqy1Rl3nFEVRlK5OJS1FzQA+nqp0fg6AT6eCVG8GcJu19iQkg3G/U8E2KoqiKIqiKIrSyelRqROnMuzsSf3ZM/XPAvg4klW/AeBRANcD+A93rEMPPdQOGDCgJO1UFEVRFEVRFKX2mT59+jZrbf9cv1VMKAIAY0x3JNPAngTgbiQrfdel6jkAyZSkOatyG2O+j2TaUhx77LGYNm1a6RusKIqiKIqiKEpNYoxZ7futookWrLXt1tpzABwN4AIApxWw7/3W2vOstef1759T4FMURVEURVEURclLVWSfs9bWARgN4P0ADjbGpC1YRwNYX7GGKYqiKIqiKIrS6alk9rn+xpiDU597A7gYwEIkhaMvpza7GslK64qiKIqiKIqiKCWhkjFFRwB4NBVX1A3Ac9baN4wxCwA8Y4y5AcBMAA9WsI2KoiiKoiiKonRyKpl9bg6Ad+f4fgWS8UWKoiiKoiiKoiglpypiihRFURRFURRFUSqFCkWKoiiKoiiKonRpVChSFEVRFEVRysqMNTuxYMPuSjdDUTqoaPFWRVEURVEUpevxxXsmAgBW3XRphVuiKEnUUqQoiqIoiqIoSpdGhSJFURRFURSl01Lf1FrpJig1gApFXYSdDS2YsnJHpZuhKIqiKIpSNiYt346zrx+OsUu2VropSpWjQlEX4Wv/nYwr7ptU6WYoiqIoStlpbGnH8q17Kt0MpQJMX51UCE9Zub3CLckwb/0uDBg4CNNWqbK6mlChqIuwcGMyw4u1tsItUaqZHQ0tSCS0jyiKUhh7W9qwt6Wt0s3w8tOnZuAT/xqLlrZE1m+D5mxUgUkpK+OXbgMAvLlwc4VbolBUKOpijFq0pdJNqBmstRg0ZyPau4iQsG1PM97z1zdx65tLKt0URVFqjDOuHYYzrh1W6WZ4eWtZchGayKEY/ElKYFI6J9WoC25qba90E0rCrW8uwd2jl1W6GbFRoaiL0dSarSVTcvPa7A34yVMz8N/xKyrdFC8DBg7CL5+bFeRY2/Y0AwCGL9gU5Hil5pEJKzFg4CDU7W2pdFOUEnHf2OXqXqJksWzLHuzaW1jgfLWsixdvqsee5uq1qHVmDEylm9DBHSOXAgBmramrcEvCcufIpfjnsMWVbkZsVCjqYtgSTQ0jFmzudIuXrfVJIWHz7uYKt4TnpRnrgxynmiYMCU9PWQsA2LS7qcItUUrFjUMW4cv3aiykEuWiW8fi0rvG593u1VnrsWhTdRUH/dTt4/Dth6dWuhmdnrq9Lbhv7PKqDxmoJgH53rHLcea1QyvdjIqiQlEN8uBbK/F/z4axDrhYa/Hi9HVobS/MovTdx6aVbfFSaNuUzk2Vz3mKEsFaizYdw4pm3c7GvNv8/JlZ+PTt+YWncpFeoE/pZArEauT3L83FjUMWYXIJsu5aa/HKzPVBXOBMFekibxqyCA0tndOtT4oKRTXIX99YgJdnhrEOuLw2ewN+9fxs3DtmeUmOXyxz1+3CyX8YgtEaG1UyQgoZSzbXd1jcFEUBrnl5Lk76w5Bgx7PWYuLybVWvEVe6Js9NXYtXSrRe4ahvSlpgqBI1lKfM+KXb8ItnZ+HmoYuKPtaGOvV0qCZUKCoDF986Ft9/bFre7XY1tmL7nsouIHc2JOMztlW4HT6mpjRsWm8gPmt37MUD48oTJ/XJ28bhw/8YVdJz5NK0bahr7NDibahrxL014Eah1DZb6pvw6+dn5+1nabfPUAyZtwlfe2Aynnh7NbtdImFx+4glXTcGT/j672luw63DF5fEmtcVh6DfvjgHvyiRZ0uhhHIR39WYjGfbEsC1fkdD/PdxwMBBGDBwEBoLsO40tbZjwMBBeceLlrYE/jV8cUHH7gyoUFQGlm7Zg+EL8qddPO+GN3HuDSMAJBeubwr2KZRyDMqJhC1ZatZ083MthJ+bthaf+/dbJTlvZ+IbD07G3wYvLEgA37W3FS/PXBfrfJVI7vGBm0bhR09MBwB8//FpuGnIIqzevrfs7VC6Dhf8bSRemL4OD09YVdbzrtuZ7Nf5+vfoxVtw+4iluO61+eVoVtWSz13plmGLceeoZXhl1obyNEipOdIZDKvF9a0QJXZdKkHJXaOWsts9NXk17hq1DPeMqd1McnFQoaiKaG3PSCyfuXM8viewLhVKORRVNw5ZiDOuHVaQv+20VTvwuxfm5NWypn/PtdlvX5iDOet2FdTWrkjarcC9hekBPtcT+NkzM/F/z87OW8sjkbD41XOzMWtt5TPqjF6ctCamr7dF4zjKyo1DFmJECRQ75aaptR0/fHw6Vm9vEG2/cptsu3KTrs9TzamAl26ux5oSKy/yKQYbUoHv7YkSWIqCH1GRkL7vOwNZSdN9qHu3KpGKcvDHV+Zi0vJksdpEwmL04i0511dvzNmA20dkl+ForoHxohSoUFSlpBdy+Rg2fxMGDByEjbvyB52WiwfGrwSQmVwkXHHfJDw7bW3emkBpt7lHJq5it7PWYvGmevH5uxK+O8wN7+n+lS/JxfaGFrw4Yx2+80j1ZFdKa9BvHlK8/7ci576xK/DdEih2ys2oRVswdP4m/OaFOaLtq0V7DACbdjXhX8MXw9pMNEXahWjL7qaiXHekrNrWgAEDB2GcwOX54tvG4SP/HF3yNnGkpyBTggcZ14V34rJteHF6PEt9SAYMHIS/vL6g0s2IzZOT1wQ5ToelKMjRkuxoaMGWgJlUn3h7Da564G0AwGOTVuFbD0/F63M2diht0ll1f/rUTNw+IttqVE3jWDlRoajGeXZq0j99/npZ2tFy9vNCap5m3OL4Fkp9eJ+cvAafun0cJqQK9ikZbIwBPf0suxkDay0GDByE8/82IvvYSLsVlK+nSdcZq3cUpoE+74YRePCtlTFapFSSptb2oO67z6TG2CnCLFaVWkvkeuX+9+kZuGvUMsxbv7vjPUlvd8HfR+I9f30z73HfmLMhYr3ZWaAglc609mrKHa2huQ3NbdWrfU6PYd2qaFX4tf9Oxq+en13pZgAAHppQmjFx/NKtmFsjnh6WzIeheM9f38QFfx+Z87eXZqwrKrX82lSmxs27mjB55XbRPoPmbAQQ9WBKM3XVDpz6xyEFjwW1gApFNY4t0Lc1lPneWouh8zaxwaiFaMU6Jux82wmvYP6G5ACySujy0hXxCS65nlv6u24mM0jmyiqX9jipxkQdPQpwdVhf14hte5rx1zeqRyva2p7A0HmbypIwYvPuprLVHVu3c29Qd8uLbxuLM64dFux47z2+HwDg5MP2D3bMkHDdoZG4vmQUFoUd/6dPzcQld4wDkBQM3/3XNzF0XgEFnjsWkMn/z7xuGC65o/xpsqVzx/rUAnJ3Y2HFYWVtKI5SJBhqbU/g6oemYHaed7DUaeS/8eAUXFYjMcEJ6YIlJmu278VX75uE+qZWWGvxy+dmF5VaflQqW68xcmX17JSAmsvl8J7Ry9DclsDMtTtjt6laUaGoxuESD5SSNxdsxg+fmI67R/tTdxdiKUqT7zriHLMzMWXlDjxcpKauzjPZc/de6lLSWAH/Y2nf79ldPtytF9RAKTd3jVyKHz4xHaMXlz4d/SdvG1dw3bGm1nZc++o87G4qbDH5oZtH4/N3T8j6XhrDAwCn/HEIrro/6Sqydkfm2bW2J/DKzPUFufK6HNJnHwDAu489WLR9Oa2k+UgrKYyhiqfC25euXZJeOE/NIzAPT7l1r9rW0LGAfHNhJr5sxdbqVVal69q8Pid8ooVi9RkzVodfhC7cuBtjl2zFb/O4h+ayGOSiua0dX3vgbWyoCzeGbqhrLNi1rFSF6pPHTlIqa+JtI5Zg8sodGD5/M54I4PJH4xwLjZXjYiStjT/uVysqFNU43ES3p7mtZNWSt+1Jag+4WKZEII32hrpGPJUaGCTHzKdJX7N9LwYMHIR562Wm+nzj3tNT1uCUPwzJGw/lsjmG//AV903Cn4v06c6n5Mp1FemB8eUZfL2JuM/8E/8agxuHLCxon0InvZ7dq2exGod1qUXG9j2FuSx85B+jcevwxQXtsyuGlvzpKWvw2KTVuGskn9VISkOzXMBuaUtg0opst5CbhizCL56dhY/+c0yQNtUadEwKoUBLEIsxADw+aVXOxeprs5MCxZz1uzrOm856VWmkQ1Q1uc+lKUWT/vTKPADAptRzbGptx64intVLM9Zj4vLt+MBN4UoxfOCmUV7XMgmhjevWeQ+WbK7v6PM3D12EAQMHFeUKSB/zfOE6RUJjS3vB1sZ08qotu5uIZ1KmhU9OTo77/x4VzVJX6HqoWlChqAopyO0s/SHHYHnWdcNw1nXh3EhywQ3SizcXnuggl5b16w9OxjUvz8Wuva0iDWPy9vnv4chFSY3l89Nk9ULyPY7rX5uPlvZER3YnCS/NWIf3/n0kpns0f4mELbmblDHJgS4TAJ1/xh2zZAsrjMRt8/KtDbhvbLzaSWmFQCLPIFzIGF2F6yFWw7+1vhljPBakNTv24s7UhGWtzXuf4pKeBKspyV/aLc/nzlmKe1GpvpNr7NyRcn1JWoqKj/ejsYVrtu/Fn16djx+kUt/naou1llWUWGvZxVOhz6c9YXHFfZNyJnUodGjqXsx98ozfxVovQtXZoaTdpOpTmv7P3DEe7/rLcADJeeqHj2c/XyBZ2mHY/Gw3ylDKUB/SuXFbfeniXeh7ACQt6z97eiYA4D+pwvdPTUnWASp2Lk/HNHK4XdV3vttGLIk1Pi/bsgcX/H1kzhjbtOXJfVfzJWWqVlQoKhELN+7Oq2211uK7j07NSgbwaoz6CNKhMt/LuWFXUlvUFmCxkM+qICWtGZcOtqEG5bS7QL7A0vTZ/vDy3Kzfdu1tzRkgmXY/8WXIO+GawXkDa0MITZ+/ewL+30NTxNuv2raXXVwUkhJ9ysodQRalFhYjF27GCdcMxsKN/mDUQuJWqkUm2lDXmJWiONcd+8q9E/HNh/Nn/Lv64ak44ZrBgVoXnnU79+LyuydgT3NbSd1fAGDovE044ZrBWJpHeeNmbZu7bhfrjleKhWtc+u7XEwDQo1s3cdwmR8czMZkU97nmubQG3VpeGHl04iqceM3gnDXTpq3agROuGSxOcAEk4x+mrNyRs1hoek6TJuEoRrg94ZrB+EqB7qcSSilwpx/TCuIu9cvnZmNoSvBxY0jHL92GH+QQmEptITjhmsH49fP5M0HGUcpKSQgUDOl+f8I1g3Htq+WtDeZ75xI23rphzY5kn+ASV+W6FTPX7CzYS6HSqFBUIi65Yzy+eh8/KO5oaMGIhVvwP/+dnPW9hLb2RHBrwv3jktr6yXkmopXb+Ho1gD92Jc2k5dsLKlArnRCSY3J041lr6zrM23uFFZobncnztD8Nwb9yveCpR/DSzGwh8F1/GV5wgGQ6M9NLeYTKEI8+LQRHD5z877pX5+F9jsvCnuY29ry/fE6WIWn0oi244r5JeDhPanUpw+cn+1Gp6iNddf/b+MaDk/NuN3z+po7aEFKa29px25tLctaD+MBNo/CRf47GvPW72P6/SljbRZIWuRD+O34FBgwcxI5DhWgMP3TzaMxeW4eHAmX9486d1nLPzeOeQrO2NTS34bJ/v4WfPjXDu32u57R0cz2emRKNDSg0Gck3H56Cr9w7saB9clHMwppm3eKyWKa/s+C15C+mxrj1OeJP0jFtg+duZNs0c83OjrE9ba3n5tAn3pbFaBRbg2ZaygugsaUdW+qT42yxY3Ypxe18bfuLMOlMOeravDgjk5583c69JRPE6DvX0NzW8c6mT8cnmsp8fvzt1SVpXzXg6zfGAF+4Z2KHl0KtoEJRCVmUwwqwbMsevP/Gkdha34w7ivS9X0NSDBtjsLOhBR+8aRQWbIifupFj/oZdmL46KSylaxFx5LMCXPXA26ICtYUKfkltZnSfz989ocO8/c9hMs2F+zI3tSZwV44XXKLR9k0UufZ9ZMIqUfuKxb2t6cVSWlP46KTVHX7mkf0CaPDT8THLt+5h03omEhbPTl3DLm5Daeattd7nNGnFdoxfmltL1tTa3tFHv//49I7aEFIenbgKd4xcyqb/HkQXhlXkqn3DoGQcGPeKhtLbJMefwgLNOctlWnhtLsDtNb3oThcGlnLxbeMw8KWoJfnXz89GW3sCn7ptHEalXHrvHbscP0q5o81dtwsfunlUhyVmzOKtmLoq+/qlt5d7b7fvae5IwRvZx3l4biwFkFtbPnhuUuBMJDJ1wnKRPg43VSzfuget7Qk8O3VNzjnlC/dM7Bjb0xr8Iw/q5T2eex9884sbU9TU2o4LbxmDicsLK/Nw5f2TcMHf4sfDFENTa3sQa/z6ukbxPOwbjwtJlLB6e4Mo9mVDXSM+dPNo3FIiawR95y65YzzOuyFZhiJtKX6+CmpH5YJ7UsV40nB7clazWoovUqGozDz41kps3NWE4Qs2oVFosfCxaVcT0dwB45Zuxfq6RvxnbDQjXL5Um7nYk6N47KV3voUv/ce1fvlfhNC+xbkG2xlrdma5b0hPGypLFM3K056w+PXzs7HEMd0v2+Ja1vznbmrNv0hbX9dY9No47v5xH+urs9bj/nHJvtmhSbbAW4xJ/sUZ6/C7F+fivrH+LIfFsHl3U4fL3d2jl+G0Pw1FXZ6q5w3NbfjJkzOwtb4Zu/a24rQ/DcV1r0XdI1rbExg0Z2OHfzlH+nlzGlaD6nHpo6RfoUIn4dlr6wqucZEcf4qzlCzfugdrU8qktMDPZVdykWRXlMYWNjS3YUdDCxZvrsfvXkwKTDcNWYQhqXTXt49YgnU7GzG1APcxIGmBSieRobeec5/73mPT8JOnZnRowqev3pHTKhypV5b6Lntsy7jWJazNqVhJk45neWupfwFsjMH941bgdy/OxQvMIlRqkXSvyTeedXMsRSu2NmDltoaCi5fOJoJ5sVOi2yaOptZ2nPanobh5WLJo9dLN9TktchI+mCdpwq7GVsxYkxQefNPqDmdcXcvUjfvoP8fgaoFbd9qlrxz1CKkS+uah+QuB0zi+fIS2rnHnjdMHfYIuPZYr9NJ9nhPGb1cDKhRVEG6ycHlq8hrMWRcVbiwyCw4qiLuaIepSlJbYz7thBH7ypN8FpJC2+YijHchV1M93lNb2BL54z0R855FoLIW1mVidWWtK407lY/nWPXhh+jr23gJkMZnj4iSyWksb7zr53Uen5p3I4hJ3Xv/5M7Pw98HJySRzjZZNMZ0WeHc0ZLti5rx3BbbpgzeN6qiZ8nLK/XHbnmb2GZx53TAMmrsRt49Ygq17ku/JY5Oi7hGz19bhJ0/NEE2e6Qkx1+IyF6FibdoTVnxOHxnhlm+TtRZ3j17WsRC6/O4J+Eoe9+JS8Il/jcWH/zE68l2uR/3mgs0YmUohTev7vD47Gu955f2T8Mnbxka+k7rKGJiSGP0uuWM8PntXdr0XruDkulQK+rZ2i12NrfjSfybhx0/OyGpfWig0kC2usm32uZnIuJx2MxlXQy7t7y1CD4B0e1Zta0iOo8x5gWS20lyL1qenrMGAgYPY+LJCU8HT+LaV2xqKClZPn/u5VKD+xbeNK2pO4Cyq33p4Cr54z8SC5vyWAIH4DY6L+9glW7PcLa2Vj5nWWizbkj8WSdT3LVAvfP5uDLd7Xfmo29uKRIDxPB9jcljI0y1/hYmFzxUzWK1UTCgyxhxjjBltjFlgjJlvjPl56vt+xpg3jTFLU//3rVQbS0Ph0+Abczbgmpfn4nP/jtbysDYzmfzquVlYtS254BiUNShkn3PbnuaO7f4zZjm+XKQGNhdxhCK2VoIzl6eP78YEJKzFjJQwNIQpMsilEy+WfNee8bmPhwHQzozMIxZuyasVdPuFVKAIYQGkWiRJanJOSDEmOukV4m5JJ6P0pz3CVNAWYVzD7klZk7i+CmTfg6HzNmFVAVYOl2tfnYeLbh3LJhrIF6OVXmDnsxTN37Ab/xy2OCKQcBN4vgB9ILlADhJTaZIKlkcnrkJbewKt7Ql877Fp+M6j0zrakt7QPdvbK3ZgyebSLkTy4VqAaEA8fVe5gpPprYwBmlMCwIINu7Pub9ryKU3Es7uxVTSucEKRtcDe1DvJLcxXFPAu7GhowcduGYPfvTjH24e6G4PW9gQ+8s/R+NnTM7MW1ul7kb7fz09bm2X9dOPGuMX5mws24+LbxuHVWeuxpb4JF94yBn9+PX+Avk9QTHtC5IvtlTpMcBb99BzclkiIU5kX6ykDAF97IBrnefVDU/DjHArJpcw7+ufX5+PHTyZdVh98ayUuunVcsNjUd14/XLSdO6cOmy+PtQaSY/ndo5fholvHssmGgJhrDueRUiVBGWqJl5VKWoraAPzKWnsGgNfn4gMAACAASURBVPcB+Ikx5gwAAwGMtNaeDGBk6u9OiXTwuOal7KxmQNRdYNuelo5gTpc1O6KLY1cTcvPQRR1BoSGJs3jOGbfhOUymZobJ+X2+NuzMUYth4cbdOReahaTbBnJP0MPmb+qoCZGLsUu2orGlXSycPDYxqpF+eMJKkbtWmlDuc6MXbcHAF/NnA8rsTwUYPiaonANuOt37ta/6n5GLpHkhhG96nvQ9+eET0/Hxf42JfcwnU7W/FnoyIAJJwYsj/erR98wd1hIWGLGwsEn+8bdXsb9vrW/GO68fjrtHFx/Ea2DwyIRVuO61+Xj87dXeejqhM3/VN7eFdYnMcbDlqT7d3NaelUUv7+GMv38nLUD5e/8NgxYW7aZsAey3b3cAQK+e3b1uV2LPMmtxb8od9+WZ6yNXQZVZxpgOYWw4SQjUkW48tWdbwmLF1j34zQtz8sbIcuNZ2uV60aZ67E4JMm7SFvdWjl68Be+8fnjOOKd01tMsF8gQGT+dg6bn4ERC/hxcF/Ni4E6ZsBZtTsHSt5Zuwy+fS2YofHjCqo4YuLQbHufaVwp8/UKqWG5pT2B6yn1x064m9s2MpUhydkkrMTqZPASggkKRtXajtXZG6nM9gIUAjgJwOYBHU5s9CuDzlWlhabHWP8lK5xC34ruvg67bmXnBrZXFrBSC7yWbIXRdixuEl97PHYTp+McJRblcGy65Yzw+dsuYrO8lblAAP+n94PHp2a41qR1+/9JcXP3QFPzi2Zmi529MdsamP7++IKud0vSzBeFc47cemZqzloIv3fhrszdE3AdF14uk1nXAwEFsXIGEAQMHYcDAQd7fCymOKplf7hldfDxUMqYo+0blenWstfjH0EWR954jzCIp92cg+Q7ePqKwpDLb8jyDtHVx0FxeaJPQ1Nre4aZZ3+RPBS6xXhUC1ei66Y6BsAuOvS3tHQfM975lhCf/+NnNyO9Fsda8ptb2jrT01lqv21U3Y3DjkLR7rnGUL1GLMC1OSpv3MCm/0M0AU1Zlx3OlLatrU8rGK+6b1OF+yCkXcwkBAwYOwo2DcxWt9ltgm1rbO46VTleeK+OlL04lTmHmfKQteJNXbkf37rmXle74JbWw+uqvRQ/Od2q3C379wck5s7umE6jEKYuSdc4C3mDfO9Kzh1yhIH3NlgtqPYYg6r1RllMGoSpiiowxAwC8G8BkAIdba9P+X5sAHO7Z5/vGmGnGmGlbt4ZNM1tKJq9IDmKPCFMRb61v9mra3LWMb3FDLSmhtZ3G5E8dnWvCp1CLl7UWbe0JDBg4CJ9JxXqk/XLdQD63gFrme2IpYuS/Ql7UfCbpQnGfw9OpdL3D5m8WaVYNDBuLk4Zzc8nOPifrHNLB3pelaWt9cyRlL2cxpc8ybcF7ekp2Sl0rXfAFHp0l1tCeqUXCtj3NIgFk6LxNWbWt1u7MCMD5jrB4cz3uGbMcP3qCj2vLHC9/m5pa2zuKO/7v0zM7Cjqmk4xQV5j6pniJTwohZGFAOhbn6j7UtawQvvHg5IIsqC4bc6XLz4PPJemg3j0zsVE5fqeedZkaLEwSAmPEz7VYd9slm+sxclFyrONcgrsZE8mgR90z3RTdtIYN7f/ryHvmjkvpy2hL2Egylh0NLejXZx8AwIBD9vO2L1l7K5v7xmUXrTaZATKLgS/OwSdvG4dlW/agNSWM5MqKKiXkkmDY/E3i403yzA+u8Pj6bD4lO5D/GgrtgYVatnOes4CT+qYFqVWXJj4pRUYezp1QNH/kiBWvViouFBlj9gfwIoBfWGsjKwGbXMHkvOPW2vuttedZa8/r379/GVoqh1tAp92qpAFx03JoqtK4k43PxYuO7YXOT+vrGvMWz1vCBCZOXrEd5/9tRM7Cpj72pn3anfvoutalF7huMCO9L1zcTSG4Pu/3jl2OG4dka/ikCyfDaAIlWFhvqluqCWRTJZOzjyxgEpAaFui5E45bCr1P3D1Lp63fQgTr9HPP1Yx7x2YvMHxt4tidI/uiy86GFjwwnj8fkIwJ3LK7CefdMCKnv7vLD5+YnlXbakdDc8S6xpFWBOSrv1MIF94yBmen/ONfn72ho6BjmtXE3cRNUxtaEAWAr95XWNrzfHATezpZC1eTJBfjl27LW42euzPpeSRvEXBylPV1uccEaqHem9OCQKSiFE2tCW9fe232BnEcn+8n10Vp9KLcSp42kt3TwC+MueOI1/XPRhd5kXGK/NGtm/+6fFkI99unh+es0dpOHNwUYmA6Atq/++hUVuk1aE7xVlQfWzyKzrb24tPAvDorqmT1uePlyxKaJvToU4r00sWOkYYcQ5oEpRA2MMoISWjB3QG8JcpFRYUiY0xPJAWiJ621L6W+3myMOSL1+xEABLbT6mL5VpnAI40p8iHt+PQ8nHUhV0zSR/8xGlcUkSUqLcik4xdyIXbDcP72jU1UEOIGsGLGjZuGLMJ9ORbg0muRLnB9vMaY9/c4QuKa7XsxYOAgvD57Q0eqXpdZa+siA/MmRkstHcCt57MBcMMbmfo23FuQLrQ7f0OmeKl7drr/ym0NeQTB/BgDUa2vOet25czG47KlvrljEZEWJpZtqcfAF+cUtNCWDhdpX3kpuxvbYK3FtFU7vM82n9WiPZHwWgRKUaJCkrkqVyZLH+k2rq9rRFNL9NjpQpFLNu8RW0lDZltqaGljFyVRcneSxpZ2LN6UnJdy1SPK7G0wN5VCeldjq/eZrt6+N/Kexckk5lp9vuVkEc117OQCOb9HBCukMc8wIhQxL5xPg8+9o91jzPdZYx05xK7GVvZ8U1bJikjHeT9980N7ongf0x7dostS3zXSxDTsrQ08/rjv9hqPcnJmAckaCikLkIvZ63Z1rLUs+Pk7Dtz9DRkbVg1UMvucAfAggIXW2lvJT68BuDr1+WoAr5a7bcVCx4Ri3a4s/B1ynFPbwffu09oGIxf6haLmHLFG+bIM5Rvme3TPPxHQichNfuDzCwf8Ak8t+a/mQjJ3bmdqvLiatdfnJAWoGwcvjApMzn2aRwQBTrCX3l76vNZGCg1nrHsWMuVA0g86ul3a2nr/uBXiInq0TT5XNmOiBX59iRLqm1o7MnXlP2/077++sRDPTF2bs8Bzvv25RV1Ta7v4mGluGbYYr83egC/fOwnH/35w5LeWtkQkzsI9V5r2BHIqCYDw9coo3PjKKQ5c0uUOnpm6ll3gSy8lXdQ2LrSfPjZptag+EsCPHVLNOrWShnh2vmNIRQS6HVenpzv5jWs1d0n00XdnzuX+JLlN3brJx07JvenezbDuVT7X8RBvo+8Y7VZuKfJt51pG6ZwVx6JiYUu6JvjJUxnrP7VAFpIe+wcpd2SXOHrzRMIW7a42eYVMoO6MVNJS9EEA3wDwcWPMrNS/zwC4CcDFxpilAC5K/V1TrCCBbG/MKS5gb1djq9d9Yv3O6GLNX5k787lHd9NRZK0czPQkW6Aacm68ooGruQK4cyGdyEPHCQHAeKYIYS5yxUZI/Yh9RIQMm1ngb9jVFDmye5f+QtK/soq3GBMM7cOuLFJodip3/7hVxaWXsbsxtyudMQYNwrSy7lIhXa39zQVRt0VfrEzC2o7igdz9jxNEXd/c5tVUPjRhJf7yRu5ilaOIu1NbIuEV1N32urV+SoUrbLsWVApVsBzYK7cLVCHdVBqT4HuW7veSd45bIhsAL830x35GE2UQxUGMd/1tZ0H1Vq6MojEZv3SbyH1uIylsnvwt86ObqMXn5huJ08g6Wf42JDfLfNG9Gx+HlbZITibu6pwQ4Lohu4kVEowC6K2l2/CZO8bHjs3zzbHtCduROS8u8zdEvRkGk2QqvoQu+V/NcFKReyQ6drhxz1KkKe6B5NopRHIcDtezp6cneQZHrSqnK5l97i1rrbHWvtNae07q32Br7XZr7SestSdbay+y1hZWzrsKuH+czH+Sm8DS/HvUMu+g7Q5MnA91mp7du+GvnkVOnE68bMsetlZKevHnsjOS/Sd64jlrM4Mi9Sd3r9dnKUons6gEbhxULmiigRsGLcyazCTmaLZuD/m8VpiBDMif8SuNdFEbXZRkPtPiervzuIDkYnYRNSQiLn2eDp+1IPW66/jPkxXf4Hm33Lif+8bmHjsSFpiwLLnYrMZ0scOZuhrufZbWACl2UnV395U2cPEJ6Q3NbZFr8ZVAAJJZ7CT8PWfmseyxzl0oUkIuPrIunXNF9SxQ3bpXTQWWM8g6D/m8cONub5PyJfxJ48bD0PfbTS3vFcCc2VtiH8lnEU8rU6ev3tnRB1dt3xvpc/QIbgIjt8/Ra3HrOw18aQ4WbNwd283Ktyjf29KOW4Yvyb1Pqj3z1u9irZbUQue6psXp6tbx6JseuPyI9Xx2aWxpx4CBg/Cxf47O+q0QZdZJfxiCqx+e4v2dq+UVl4+ckjtuvz1hS5LNsJJUPNFCV2YzM6mmcYu/UT9sN4mAb8idSpI19N9/X792MsaQ09SWQGOMFN+OMSPCVE9yCU5DQ/nFs4XFVARFoPm98JYxHdmUgOyMUS8zGt00nDWJLupYNzjSpnvdxTgzf7tB9j582kQ6KW1vaJHXFxHC9eJQRfmAwi1cuXAFhg2eRQrdLle2qsx20b/posctLCnhgH35wPE0XDbNuEpNtwh1oSxyFBRcvSiJYLFk857ItUxbVfzi6jWPgsFtzs+fiY5pj0xYiQEDB2WNHb4+ySXD4c7NWd1988XbTmKeYl3wejgDhC8hQ1yiiRYyn9varVdx4lN6zFvvV4p172bEq3p6eLrIzbZEZRg6L/q+BEzQmAW9DKqkGZXn2SzYsBufvestfPE/E7394uyjDur4/K1Hoov/aGp1KsByGUyjf09emds1rBQJYSi/ej75Dq9yBL0481/Oeo4p/vz6/Fi+JnR+cO+ET6C/d+zyDmVdZ0GFohIgdamhA6hPY+N2zqjVKPrbnHW5tYlUo/Shkw8VWZQ4XBNxnBcw4sbFnJe+i3tb/O4BxdDQ3IZEwgbJKuO9t+SXPc1tkdSv+c66p7kNz05dE9UYMjddOsjSNrW2+1uRpdUT3ibJ7WxP2CwBb2t9M979l+FZyQ5CpJN/ZMKqjs/FPm2uOe6CxHeuLFdC4XZSqBC4YltGQHatTb5Xyc3sSJH2M/c99e3mKoCKLXrbXRDPmCaq7WUEgYJcduJD687kus/Xv5609tOxvanVX/h5W30htbdyW07ScVe598l8dhM5+N3dZHdwf0cwf2Lyas+WMr75gQGRv33WY2OArZ6EGXGSJM3fsDuW4pEd653OsWlXU8f9byFxJZzrKMWtfeiDWoo4ywt9p40BPnNnMqvmiq3+hDgn9N+/47NbU8d393h3b8sKEWniJAtxaWPmUZ/AHEK5Rtm8O16SF6pA5bxBqMslp2TcHNOVsNKoUFRipOt2V8uTOUD0z4RnwgIy6b5dqDn6wbdWyhrEQM2lm3c1eYvE5eK5aWtx9+hl0YHAXRiSn+hwcefIaAHIQvxwfdQ3teLM64bhluGLO3y6S0Ex8tsnbx2L3704NzL5ZHm5CLMmxcGdUKUTe8QVxTNtNbcl4CQbwuhFW7BzbysecgL8Q1wVdUPyPRO3eKtvO1dIp7hpZb2uet4jRHFr//iQPnpXAKFIC/5Kz+Veo2+/e8dErZVubEqh7FOIH7zQByaqnc5877qMFQtN9MFZhS1sh7vt66QossuHTj6UPR+9ZKqwoUNsulhprt+4McH3HMTlC5ztuNpzvv0iyRqy6g9l2k69L0Ys2IxrX52PXMQZi3729MxY8wBtb74sZVc98DZ+8tQMtLQlIgkz3KyjaeuTe7w3mMyElA1EYcE9x0gpBtfl0Oua6EcST5a1D2QCz/15yjlI2Mm4Ba6J4fZc5ySeCh1LlK/cSi7cml8+QtaSKycqFJUYaZ0cusCnWcDcyYYuNCWZ3YDsLDq+BZrrtuaznFDt2abdTZHA0Hz89oU5+OewxZGBz3UjpC4hnBZlFMmk50s1nY+0gPfqrA2xAkSlJnfWDYX5bdfe1g6XKpqByhUI1zjZ3XzQeKW4gpp0XI7WJsq9TXsikfWMuSKTxSKxCLiZvuh9oll5uIxgS51q7X7rrPt+597OnRx9uM/Ud9+5zFpSi6lUw+lO5L79FjuCBdV4SoVCipval+vvUkE/eozMdSzZLM80JYEuKNz74rbn9CMOBAB88T1HFZ2kBYgWAqX905Vths/PHQDv0qtn7mWGVJmWvZiO86zI986zpn+9SjIWSj0+3GNwuBljfTw3LVPfil59k+OqHrkzxmBdKoY0qz9THaS1HRbG616LCn3Se+u2wwc3lPh+4pR6vvd0254W8SLcl1QkRGxMHH0kNxa7BdDj1F3knqk0viqaBVh23hBK60qgQlGJ4cypFFoclC7OXbcm+tfBvfcRHTtLM+bZbriTCcvne+tmvYsDbZKbvpbGTHCZ8qhwNnRecYXq1tc1igp25sM3AHFWBW7soM+AHtqN4aD3iS4i3OZQN4K4Qxa9Rk5DLhkTm9sS/oQjJZCKEjEGdzoRDxH2s72tjnWNnCuSedFpw9z1ud0RQswv9FyhrYnS8wL+JATc4uDWN3MHb3NIlUZuQD13q6UxJsUiTtWOzHrXzUZG4ZQym3c3idw2XWGWWlS5e+bru3G9Fop9FVxhTDwOkO2WObGaUmFCqmW/h1hN6T6uwsKtH5ZeL0iF4ywrnFThFUMZKHZP56w+NvfnldsacOPgRXn34fCFHxRyvDhKiT77dPf+NtGJ15FeywG9eha8D4dEmQgk6++lka59qw0VikoMHfineRIIAFGpmlsc+Py9OXozLx0dcN3T+gaxM448UHReDjp4jPNkqAN4H2c6oAcx1cYYPXwuiy5/eT13xj+AH2RoYg2+oGrmc3N7ZtLnLI0c9PksdeotUKsF578sOdfq7XuzFlu+LHhSywRbuLHIcVqazj77PJkv9jIacm9tkZgWyVIKnNJ76bZpgSeTmhtQT+EWVD6XEi4GJhLrAPlCOyokkM/C/UPDuTpS16gVW/3j1FtLt3nTqVPNtFtA9rhD9+v4zPVP37OTLpqO7bdf5O9i3+Gnp6yNfhHjeFyG0F2MVZfr417ILm7GuTG0GLsw5pSOo+5mYmGHPNPVnuKlQDRJhNSlWKqwcfee7h2bo1v61gpTmPUZxVUWx0nQEI218l/vjy88KfI3fT7Swt8hRBP6DnOXS8tjFFI8u5pQoaiMcOmaqWDAFaij84tU8eJW0qadekdD5uXkhDFKXC1znMGjpc2/T8TdLcQiL8Y+rtAW0aiQ693BFU4UntjVCvqgroRucGckDkD4PNwFFRUEuUlUapVxHx2Np6DEKtzn7BNnQUX3cVNo+5CmTG9x0qf69uOK9VIedSyIFHrpbu2YaFansNQ5bin0+HTi5MYV7vWmrkYU16WNHv75aevI99Gjc+mvafAw3auMhreIpeNPr8zr+Oz2dVoqgQuIpl6GWYtkp24P5ZxjDs6cm2lvnOQC9Fred0K/aJsCZwlrkwYp0TYwk+8rZPEv7RecKyFVUE0KXFQzO75Kth9dJHNuUlQx4XpL0HPR9PbSmCLX3Z0ahrcTocO9pnxxWflwM0HS65L2dWplzS4EnDnGvj38LsCbhIkMWCUhCh/32feP/MSt3aoZFYrKiHTe5LRJPn9Y9rzCE7sD5FRPrFC+tJs+aCYZaf0czgJENX5xfemLnV+5+bQ+Uonbv520PtC7jz04/0YOrouKVOMjhXebkVk1ff1zU8wsOlKKFZA4TntH1JoayVpGLtjVpsVZXNNxQJrx58YhUVeT2ULXEefMoq3+NTwq5NJ70dCcuX5OKcNpU30xje7xaAwYXQy0J6Kpl7nYAqoJjRtTVSx0ETpjTV1Hn3lg/Mqo9Ypp3m4So8WNnXS82KeHf7nAvRe+MVIs3DgX4tYZKpZbhudWwri4fSb6WwYu1vAfROFD+1wDkx1OPCaQDd1b2+Rx3+aSTnDQy3eVrlLo/VxJ1gZ80oTMPm46evq+02QhdzgJmmioQog5cFNEUSK1cmVO7M7/tE0H9u4Z+c1VokmOT58Vt7bk6k363Bazz5shRDbfSqBCUTkRDh6cxlS60JQej+JmR3lmam4N7DBhnZpsiOVEqPnm3BTOOCKz8CynOxDF9S2PHC8yfvkP7osjceGKskkHrTgDFe+OxlmK6OfCz+u6VcYZYt1gaeqOSCeO7Uw2tji8MD2ayZC2nXbV7JTchXfkqUy9HLpwX8zEqUiteokYQrXbb1eQdyYayC9zG3bxWdHcBQDn6ln89O1veyuRCqSpkTncgpa0z0Rco5hBscmj3Xa9GagAxmbz4/pMkSvPEEY4eivOPa5v5DdpLAnF9fzzjb9cPB2tV8P1fbFnBjmZO5fT+mdcaQefp4MLfaacg0lUGeT/jWaHY4Uiso9rXesW6fuZ7934PNcFUQLnpioVVChSwWI/J/Thq/dPkh2D9kFyRDcdvbRN6+v2irajGUNXCdO7VxsqFJURqTuxXCgqtkVRpJND3/38CR7cCZuyU5hBiyINOI7LTOJWEsfNo9UZEOkzoQtwzhoUJIiefmaO99ay/PUa4p7XjTmgfVWa6pVLFR2nTVx2HXqf/voGE/MlfD67mQxpvkD+OH3OhcvMZpmFUhz2CNN1U9y0r+2eMUzqvutC91pIFvVc1jaXOOt2aWvpsX2FqQtBWr9JGnNA+caD0WKZNA6kp2Mpmrwicy1cP44jFIWxYuc+yCmH75/z+0JoF7rcTVvNxBGT58MLRfJ2pfnjK3Mjf9OCtzPXZOY8TnB+aYa/iDhVrnGuvVy/oLGqy8hnPvtcBtdtj8a6SpVLbuZbH80xCtRzsIonRkFF10O+hDVAVBG1aGNmnz5MMW7uPf3X8CWi7eh9ClH+pRKoUFRGpC8qq5ArUvseF6rh5M66rs6/8PrKvZO8v8XBp33ncDW1P3t6ZsHnpcVruRSZS4VV5MVeJOwxyEAqO5z4vKymkhxjoRszR37j6jdQOGtYHKTuICF89Tk3KV+CFG5ik/KdR6d1fHatRlQY/+BJfK2aDphbRntC3NGHpvOliybWUkQ+c4t9qtEtZHj0KRW4YOF++2eUQ+WMKZLG57FuzsL2UiWFaymibkn8Is/TBGEbjjtkv/wb5YGz3sTR9GfH0eS+SE4IpnvEVQhEIDfUneeoMoz+tn6nv4gzp1Sgl+9mQo1sR24tVzaDcx+MnjdzYlfhVYgSJI1U2JFaeOPU8HORxihxoQWD52aUkDSesKeTkZMqsc866iDv8ei8zJYXIe2NE6tXDahQVEak4x43QLYy6Xx99O3TM/9GeVhHBk8uW5xbG8RHCHGOLjRHLNzs3Y6ay11rRvR4svPSQSZErJB0IJUuIqTpyUOcN+Lj7bgzhHbVk24Xx/+ZPZf0PglXmnQB4GZuovfa9ZmXsN7p33EsUY9OWiXajnffEJ6XbDZrjd+NlB7uu49Ni/wWRCAhJxizODO+/c0pF0A5gGhdpTV3uMxkUrg7Gy8mzf8bfYfdBZW0TT7cIskUmpgm7vP1XZe7qHOza/qgwryrAPG5K2VluvPAJxnx/+YrI8EZCWn73P0jxYn9h4iVknsG837T9nICCD3thaf2F7WBg7sOapGVFH8F5GsI7ry0SD0bX84dXzj30hAJqWAufdfbNSW3kg+pbzBn0qYLbW7RSYUnzt2N8uE8Vc8lSAW/0MHHXPFE6eKcbsWlAqfbuYMbXQwuYrINUsTlG2QGm9iFbKPHyxzxsUmrvdtRZZCbYpde14G9ihfM5cKOzfk5+3hSAUy0GX8M8plLRUzPtUy4WGPPS473GKPRpTw/3b+Qo2MTf29Fp4ocgUtvT2O0qNACxIs5cdtH/6QWT67v00UyzQLnQseIXzw7y7udNK7NdZek1upIjTLR0XioRYTLihonMyTnGv04ue9x3z+fy2rcBC43D80kJ5EWU+agyhF2bRCjg4eeX+Me/6DesnGf9uE/vOx/l+iD5PqjFO4qPnvnWx2fpckkpHedy9hHk+V0Z5TM3DtHk8+IiyQHWLvRn1o10YKSF6mlKECiBeo3PH6pLI7E3S5Ol5ZmZLptROHFGF1CaGV8/JFZ5HAujPRvzhwdPZ7UYiOTilqFZmvpbeFSmNJD1DsaPnov5BkVZW3itWSZz6wAQj5z2lhx7xEGCIdwe43jr90gjAdau8NvTZUuQ6Q1P6S3gsvoNY1JNEGRar6lVeOveTkTt8EVfn50ol+wirZBtBl++dxsZz8iFJGLDCLMk2Nw81Lo5Y/UGs9BhXZa443zdOCgx3hy8prIb28STwVpe1+bvaHj8/YGv6AmXay+NCOjOOD6sPh+MueV9tUjD+4t2k4ao0Wf6e0jljJbyuDuBY2VelvqXi21oDE3kMbfcmsDbj1A3SVpsiHe9TZeQi4KFejieDpUAyoUlRHpgsKt60GhL9PJh/kDRvc0yzRZ3OAWJ0uL1AQbJ+OPSxz/3Thm/6zz0gWUM5YPnptxXZPWlgmRkaqJxD7EsYxl/Sac9NaSAfIhZ6EutsTITiU+9sTlmQmBW0zTQ4Rw6ec0crsaM32BezwR9xWmTVxiCAo9Roj4JQrvOiobO4IkmhCmvo+RxIuFy+ZHkZYfiFXYE9E5gdZY4hJ/RCxKzPXScZAb20PHt44lgkvcIz9HXIPmMbWnpNBrdMeVJ4hlS9rPaAD8p28fX1zjEFWE8vGNsuO57k9nkqLt0hIL0rmIs5xQwodRyw4oncvFrmUBrCjid064nbTY6kMT/Ao52vVDrGsqgQpFZURqRXmdaJBcaA2N04840Lvdpl2yRUmcIFOOMsYbi4lo6Tlfa7Ld7LX+SXQwidm5d+zyYpoGAPjHUH+dDNqmt5f7tVW0LkOIBYr0EDQ9u6sZihSKZY7hFqiTMHqxX9tLXUdvcurxRBC2j8LFVXB1Hu4ft6LjMzchusV2QyJ1ZeGgnqEbXQAAIABJREFUwc30Ktz7Eni+FsPVGOJjoDKfxcKTsNeEELg56IJyPRkHqHsWm06bgfZVPmW67HhZyVg80GfAWXa45z1/Q+Zccdz7XLj3VqqNp9DkLtx1xHGFizsH9O6ZSQH92Nt+C6e8nlFmu/OcVOiR7QIo8ijSd7ixRepVEVZo45R1keMxv41aKKsXKZ2HpZaiCcv865AQLo2VRoWiGmMQySriBlVTuLz6pYTTToZGOlfQgZlNtECGDE7LsVeoARk0xy/cSqGXOGONzE1ImvRFWumagy6U3GBUae0b+TCaOQhnlaHn4iwW0muk96lXj+7+7Zhj0CDjcr6b9F68/4RDRNtx0PtO70uro1WWLl5CW6+4mB2KuwiTFjikuNdcKWjbaZYo+ry5QHG3Fkr02DIXWOkinLrFcdDDvcYoCZ+f5o9/o3E6IcIbKlWM8sdPzih4H87y0qun/3lTXIUpvf7p0rmIPMh+ffyxzRMZhR9FnE1UeLw/vcrEL0XOK9pM3D6uVIT0vFJ36PHCMhwhEtbUvkikQlFZCdFhoosS/3ZSc3RoqN91qZEOQLsbM4OHm7kqDhedcbhoO2n2OQ4rFCxiHZv5TboAoAOpm3abHoIrwhsH3pUn92eXIcTix72b9F5wi0vp85FmpAoNN+lJF7VUw/nzZ/wCiPTdvD1AbCFFKmS5izpqwQj9nkm10VIXHRdqHbqBZMs7/tA+ov2P6uuP+6AKlrGMxUY63TzOJK6IgzThQQjruTTWLHR69tmMIHlMv9zPbiMzDy/aFM8aTdcUNPW/mzKdXj7tF8MX+DPEcpkIKdKnOHyBLAMrFy9LkfZvaftCrM+kXZrrP5StgQuY1yoqFJURLm20FFqVPfSiNgRB6i0QevX0d9F3HXOw6BhSn37piMZpVilcUc048DFANudnjgmMBklaNJdLkkC18VuERfI4NxIqj/A1bTLn5d6D37+UCZTnXFup8MRNZlLLU5yimiHgrlGqqeUSV1BorY0jD+rlP14ZlTf08t0MdpS4womPF0kAPIfUiiI9Pmftni+MsaHCxF2jlvm3E8eOBHbXZqYbmuwjbnIFijTFcGihuoEJWD/32Nwuady4R9Mwc5x6+AHeY3JJN+g401tolQodUyR1BZPOlVLrvrR94sQNZSyKPDFAYXdphuVqRoWiMsJpSqRcfs6RHZ+5F7pSpv7QQhF3GZ8UWmweZgIDS0mPmH78lEghN+Z5R2poCB/9ta/O9/4WItaMy6hEoc19gvFjp5YoblKmfT9u8DqlOUYSCw6pxjkElXLwoklajunnL775ZoAxMTQh4k/iEDpZAbeYpune+UQLsnNJ3YGk+CwgLlJrfFyBk+Jm16xVpLF1+zoKSSrQNjIeK3HGSGn2ubnrZc+xrlHWL0Ivk6Tv8EymZhOF699xhosxS/xxSCEEmk4gE6lQVE5CLKiO6ZtZYHBHk2YSkSK3PAUWikIsQgMHcUoHI+mC/OD9/AHwt76ZcS/iLuNxIkyUM9ECxwhhICjl1VmyOCxpJiypVS8E4hTxNVq/AZBPeq/MXN/x+fJzjipRazoXL0yTWZSkhEkuIFusSjOVSru+dIH29JQ1+TdCeZWE5Xy/Q8+3FDdD7Jfec3TO7bj5RjoXSZ+P1D12Q53MM0GcIa1Ci322NEgMlRcnjIXpS7UvFalQVGPQGjRHM77gz04NO8FSSwRH6OQjIdxrpIeQZkYSpxsWnlfqF1/KFNcu0sksdJYxaQrt15kkFjNWk9S0wvNySUtCI43PX7Ch+Ex0TcRacCxjsZHCBb1TaCFWWs+nFtgZoDBnHLj6H3HgFprRIrzMMYR91Y0n9MHNWRSpm6aUcrpp3jXa72YYmjgKMG7ty8WVxFEwSW975VJyy5C745W4IYTQXTpEsXC1FCll58HxGVewUw47wLvdif1lQbbyl7j6tNtizbxwQ+lELF0AhHaHCWHJOkcYh1UpFyKeTJu4GAE6wZazVkJoS9Gq7bIgYI6/Dc4E3sdJfe7CxeJUO1XZpQnSbFJSuG5G1y6c8CQdB/rs20O0HZc1ktIaOO5OqngKQegyFxxSy7oUqcKPQstBuAyZt9H7G+WsI2WFzqWJWULPX6/NWp9/I8S7f3F5ihQQ/sgp/Ys+XoiY9+pcNxSGCkU1hriImLBvNggXjQs3ygLvHyD1WKqF0MLJi9NlA2To8WF/4cLj0P39qU/FgpV4u/K56lHTfzkXOaGfo7ywaVg6QxBsMVT7dB06PTmX0IMKQkuZzJBStyaufhfl7RU78m9UwHmVwuGeFC0+7hJnHNzNJM6hcC7klFXbZdbU0HGbG4RZde+r0PrnpP77V+S8LiEy7lYaFYoCU2pJWXp8aZYfmnXqwycf6t1u1CJZfMjsdcVXDpcivdNSC5BUeNq0WzZAhh6YpWmtD+zln2AWC9OxSu+FdO2yNIBpnpr3Q1g9pDQLNb+twndu8krZwjC0MN9duHDtrHQGLWYh3DFyqfc3msBlB2P53iKMFQp9a8uZjKSrEVfevJErhO1BKtyGSEJF6WoydQjlpJJEhaJOitQl+4XpYWOPysmjE1eJtpP6K0sXq5VCqoWhqWhdpLFh4kklwFgsHdBHEsGcy6wV2iAifUcembAq7IlDz3M6b3Yp9jLvyLTVmTHiH0MXe7eTxhmE7lrS9NdK4cRx8frUmbJMry6VqpdYThfGakB1COFQoajGoIPMr56f7d0ujlY0tGa61EiFmBABhHHoU8bMZ6ERJ1DQlXYHXI2lOIxfWnzdCCVDOePLykVcBYDUbVpK6KmjUovpakBadLec7LePzHXbJUS/OEDoNt6VUXfTcLBCkTGmlzHmy8aYO4wxzxtjHjPG/NYYc2a5GlhrlFqukMYFuOk0fUSLfsq2U2QccZAs01I1IhV2dgQudFnLHMEUKY3DAmE2REWG1EpaS/zooyfG2i+0ISa0cqQrL/L69fHHhFaKl2fK4mhdQqwbOkt9qFISQqEdoqZfZ8ArFBlj/gxgIoD3A5gM4D4AzwFoA3CTMeZNY8w7izm5MeYhY8wWY8w88l2/1LGXpv7PXbK5ixLamtOVNXKlppb94nv1kFm5lm8tPkNaaGPTYQfsG/aAQopNZMAlyAgBTZOtdG1CK7lCD3UtTJKI0AXCq43OpIDU5UV5CLEu7F1Cz5ZDqlDQ98FZiqZYa99jrf2VtfYpa+0Ia+0b1tpbrbWXAfgfAMVe6SMAPu18NxDASGvtyQBGpv6uGUo9BoQeL6lLSa25z1WKE4TuDbVcpLOsRU8DH69n98p4BRf7/pT69bvtTVk6W6V2iNtlanms7+xWpM50dYPmylJyK8UR5J0oYcfb3tCCXRWq/1Yo3OphpDEmK/m5Maa/MaaXtXaLtXZaMSe31o4D4AaGXA7g0dTnRwF8vphzKDw0GJebJ33uFr16dr2wNHHdoxqbvD/3riM7Ppez6eG11pW5761F+iSVXqFSW/1RSoiitF2N0K690tTLSn5o6YFap7MLsNXC9gCpsEvtpri5Xpa1t9JwK9o7AXw4x/cfAnBbaZoDADjcWptWL2wCkDPtiTHm+8aYacaYaVu3Vk9BwZKn5C7h0olruq9Y5iF9KuOqVEmkbnG1rI0tJ+894ZCgx3trWWUSFBRb/K6zCi2lpm8NuWaEJm6XCe2qWan6LEptEjr+sqszUlgyRckPJxSda619yf3SWvsygI+UrkmRc1l4FKjW2vuttedZa8/r37/4ar61gq6bKo+wHE1Nu8+VU6Dj6irFoVrSsX7wpMKEvZJbikp8/Eoxe23n0awXyjNT1+TfKActbZ21Nyi1QGePC1OyqZW1KycUcT4JpfSZ2myMOQIAUv/XlAhc6ucuLSQZhzhWqK6o3ZZec60lWqCtLWca886a1nvCsu35NyKUWoiuse6oCKiL6affyiQyqDbeefRBlW5CTXDUwbWT7VTHoq5HrczznHCzxRhzgfulMeZ8AKX0V3sNwNWpz1cDeLWE51IINWzYKCsbdsl8Y2vZnzpuCtY4hJ4gTejqrWWi1L2lsdVfzFPpWrRJzd1VgLS8RFfnhP7VV99IUdJUiwdHPjih6DcAnjPGXG+MuSz1789IpuX+TYiTG2OeBjAJwKnGmHXGmO8AuAnAxcaYpQAuSv1dM9SyBiSO1aeGL7fk1LJQVE4embiq0k2oDrS7KGWi2KQgSvVRS8Weu6KHSVfnn8MWV7oJIrylgq21U1KWop8A+Gbq6/kA3mutDeLSZq29yvPTJ0IcXymMSq7hT3vHAVi0qb5yDSgBtZZ9rlJMX70z6PHW72wMerxyob1FKRfvOFAD3ZXKoWNd1yNEhrxy4BWKACAl/FxXprZ0CirpN3nB8f0wZaWb4VzOrBgBy6EUPoeUuHBlJVBlWGXYtLs2Un+6qPY0LGcfdRDmrlfXq1xsFLoAK0op0P7X9ehWI9VbvM00xryecpnLSg1ljDnBGPMXY8y3S9s8pSBqeE3VGdeDe0qc9z80CzboArKSdMJXoKLM0/7spdj08YqiKIXQrUZifTlL0fcA/BLA7caYHUgmV+gFYACA5QD+ba3VJAgOlVzcV6IuTijLWGcUimqN5VsbKt2ELo2+A2HR+6koilId1ErCFC6maBOA3wL4rTFmAIAjADQCWGKt3VuW1ikFUYk1wObdzUGOUyvpGhWlVOg7oCiKoiiVg40pSmOtXQVgVUlbohRNLcck1HDTFSUITa21kbJUURRFUTojNRL6pEioZblichEJIhRFURRFUYrhmH61UwBXKQ0qFAWmEnE9adTaoiiKoiiKUji6hlJEQpExprcx5tRSN6YzMG5J5Qqo6fusKIqiKIpSOCoUKXmFImPMZQBmARia+vscY8xrpW5YrdLSXrm4gNkx6gwpiqIoiqJ0dWqtjIYSHoml6HoAFwCoAwBr7SwAx5ewTTVNLSc7UBRFURRF6YpUMvxBqQ4kQlGrtdZNMK49R1EURVEURekU1EZ5UaWUSFJyzzfGfA1Ad2PMyQB+BmBiaZulKIqiKIqiKOWhXt3nujwSS9H/AjgTQDOApwDsAvCLUjaqllHrq6IoiqIoSm2h6zeFtRQZY7oD+Iu19tcA/lCeJtU2WpVeURRFURRFUWoL1lJkrW0H8KEytaVToJoGRVEUpVIYDYxQFEWJhSSmaGYqBffzABrSX1prXypZq2qYhApFiqIoSoVQxZyiKEo8JEJRLwDbAXycfGcBqFCkKIqiKIqiKErNk1costZ+qxwN6SxonSJFURRFURRFqS3yCkXGmIeRoy6RtfbbJWlRjaMikaIoCk83o67GSpLvffh4PDB+ZaWbUTbOPuogzF3vln5UFKUakLjPvUE+9wLwBQAbStOcToBO9IqiKCwqEClpevXsXukmlBVNhKEo1YvEfe5F+rcx5mkAb5WsRTWOpuRWFEVRFBmmi0kJXe16FaWWkBRvdTkZwGGhG9JZ0JAiRVEURZHR1USE2WvrKt0ERVE8SGKK6hF1CtsE4Hcla1GN8/oc9SxUFEVRFAkvTF9X6SYoiqIAkLnPHVCOhnQWJizbXukmKIqiKEpN0NqeqHQTFEVRAAjc54wxIyXfKYqiKIqiFMKV5x9T6SYoiqIAYCxFxpheAPYDcKgxpi8yrr8HAjiqDG1TFEVRFKUTs3VPc6WboCiKAoB3n/sBgF8AOBLAdGSEot0A/l3idimKoiiK0snRbGyKolQLXvc5a+0d1trjAfzaWnuCtfb41L93WWtVKFIURVEURalSTji0T6WbEIyzjzqo0k1QYnDB8f0q3YSCyBtTZK29yxhzljHmCmPM/0v/K3XDjDGfNsYsNsYsM8YMLPX5FEVRFEUpLws37g56vKMO7h30eLVMt26dxwrXe5+uVeS3s/D/3n9cpZtQEJJEC9cBuCv170IA/wDwuVI2yhjTHcDdAC4BcAaAq4wxZ5TynIqiKIqilJddja1Bj9e3T8+gx6tlDuiVN8GwopSUbjXmHisp3vplAJ8AsMla+y0A7wJQajvmBQCWWWtXWGtbADwD4PISn1NRFEVRlDISOiV3nALq5xxzcNA2VAtnHnlgpZsQjCkrd1S6CRF69+zalqvjha6ZtSUSyYSiRmttAkCbMeZAAFsAlDqH5lEA1pK/18HJeGeM+b4xZpoxZtrWrVtL3BylGDrTwKwoiqKEw1TBsqnGlNliWtq0BlSpsIghfXcijjtkP9F2tfZuSYSiacaYgwE8gGQWuhkAJpW0VQKstfdba8+z1p7Xv3//SjdHYYijuVNknD+gb6WboChKifjjpadXugmx2aeHZHmhdDVC9IsLT9U1X6WRr+tqSypie6dJ5sq80VpbZ629F8DFAK5OudGVkvWIWqOOTn2n1CC1pimoJQ4/sFfk72s+c1qFWqIo5aUrWKD37QIuOqHnhz77Fh5H01mnqGp08frs2UcUfYwT++8foCVKMfTdTxa7V2vrP1YostZaAIPJ36ustXNK3ipgKoCTjTHHG2P2AXAlgNfKcN6yc/oRnX9iV0qHW+Oj/wH7VqglilJeai2ANw77dJdd45EH9cq/URXx5XOP7vgc+in+4CMnFLxPZ3Vm6L1P9SVauPzdR+XfKA8H9a58Mo1q9IA59fADynauvn32EW1Xa+O0xI45wxhzfslbQrDWtgH4KYBhABYCeM5aO7+cbSgXtdVd4lGNg0elKHWG1Grwzw/B92MsbDiqYRJVwlJjc20s3nl050wAcN5xpXP73beHzDpSjVaU0FRjRu4QbZK++326WBrvaoxzSsce9RQqeCqNRCh6L4BJxpjlxpg5xpi5xpiSW4ustYOttadYa0+01v6t1OerFP2E0nYtI31NT3tH+bQclaJ74FnKNWF3loXiYYEtXp3lvqh7ZIZO8khZpAv36lsKAbddcY73tw+edGjHZ9faXSzH9pMFgH/yzMMzbQjaguohjpb+wABpvK+64Fjvb90DPG9pn2kvoUa2GtOdV6MC2gA4pl9vXPbOIyvdFBESoehTAE4E8HEAlwH4bOp/JQDVqMEOXfzOVuObWiF6dAsbfPyLi04JejyXauyflFJqnKuRUYu2VLoJJacalSPS9LOhlVwDhOetRi48zR8M34sIexeeeljQ83avEY10MezTXTaPxNHBhSj4ygmm5SwoW1p3surrZ+VcaUkF7oNSittaWQXmfbOstauRTHrw8dTnvZL9FBnVWHFaGpcSevHyjRqrfByHEI/7Ayce0vF5P8c9gA5UIRZoPYWTb6U4WBjs2VmYuaau0k2IjXQhd4YwgUJoCwOHdHF1RoViRKtvFuGhj+7wAwNbhZnf3PGylJQy+94X3yOLy4nzjoSIAUkwitByxpj0PyATa/fLi0urQIzDu48N6x5bzvFH+hQPO6BXTbn1531rjTHXAfgdgN+nvuoJ4IlSNqor0bMKhSJpk6RWBG6ApHTWAnqUEELwDz56ovc3Ot+E6FmlnL8uGNDP+1to42Loy9g/RoarEFRK28YpQPYVLv7ec5zs/eYmULoYLOfQ2dTWLtruhP61a9kJTXNrpkbORaf7rUGh+zQ3ZlELFR1jZsRUNnzkFL817OefODnWMSX0ErpVxhm/dzS0FL6TQzNTHymEnk1+XZmH3Ba4SHCIuVF6iA8Rd1OO6y47I35jFAAyi88XAHwOQAMAWGs3AKg+/4YapZzaTinSuBfpZCZd4HLbVeFtioV0MovL0s17Oj5L7xkXv1PK275vz+Jnxy7nmVmF1/vU994r2k6qIeY221jXRLarvkEhtOtxLUOf98H7Ra3Wvid35fnF14XnhOq6vYUv+LnYkUrVy7nivMx9uuxd/liNSmnon5myhvk1QEyR8Bh0fgg9XnyccfuUWoCkw/lhjDX1pxee1PG51Fa4LpGcRLBNSyo1twUAY4yqwgISog/3CrC4pJRzsUEX5OU0uX8xQFpQyqH7y1xAQgwq63bu9f42aO7Gjs/SOIhDmLaXcpD9/DnFPwNp80LLEtJg7tCUM7vQBcdnLHncmHDucX6LH0X6rLjNJq3YLtouNNWeVvakALETodP5GzItcXo2+tNHGcvLKYcXX5uGxmhJHyn37I84yC8ER6z2gbvPQcRt+EuMK12lvJ8bW/2W1RAWXuk4SGuZhX6Hb/jCWR2fXa+ZZ77/vo7PV10gE/R/++lTY7UjzmU9/M14CaXfQVL/V/mQGBvJK/OcMeY+AAcbY74HYASAB0rbrK5DiH516dlhs3qEdkvhhq/7/995HZ8TnKUoXHMAlNdlgxLi3i7f0iA6r9S9sVKJMN51zEHe3+ikx7mqVcpSdOk7iy9AGIdyXi9NoXpAAHdBqXZXungpp6AifW+lj+f9JxySf6MC+PknTsq/UZkxkc9SK6F/u2P6yhQRXLe4/F2FK2K44/XZV6bk+t2nw2aNlPb8SllTrfUv8kNkYJX2Jyroh17X0HjbgZdEny9NC//x0w6HDzqe//hj0Xc4IkwxA0ucOeGso/xz75Cff1h0jMMOqK3aaFIkiRZuAfACgBcBnALgWmvtXaVuWFchxMT+2cALNHHGMedlPJt50XxQ14RyLs6lcU6hCTFJcQG8kYWI8Fxc8HFp51T/waWPJ4T1oZYI3Wu5d52OTae8o3gtvTSeTvxMy/pQw54sdIKQ7sKsllwMTCldwcr5TEN3iz4xC6DShfsPmTjQYqlGN9JTDt8fJ/bPPWaEWPOID0E2lO7zsRjvAZeQKIxljPut8FmBuxc9SIPfe7zfC+DqDwwo+Ly1gNS4OhfAeADjUp+VQFTheIY/XhovWI+ajCmcAEJrFvTdz58tjQ6kl55dPi29tF5OjDE6Nh8+2R90GSfRAlcoNU5zpW57HPQ6OM2iG6vgowpDcWIhzfgo9WmXTo4hYhNCvyPvPLpwJUxcQmuZK5V1lGardpvwcye9v88t+xcXFZ5AwH2mdCHfzfPZRfwOc656wtv+rQ8O6Pj860/5s5Zx70UpH3FDc5touzhWGXf8jnMd5x7XF+/yFB4OXauPgyaykgqPN3z+rPwbOXBH5k7rExxdQitxpU/AFfYOIRltC3mO9/zPe0qaeCQkkuxz3wUwBcAXAXwZwNvGmG+XumFK5egT01XGt19bOyMUkReLrclB3r/QcRWcUCDN+lJOi0VU8Ike8RQSWyBtE6fliqOF/PsXzhZtJ3X9+9Nn/UL60X1lge0JzjezhvimUDsnTd3NPd0PCvu+FHlXkm34q0/6ffCl/UJKiKQy//vxjHtMnAKWXBykdH3y8dMyweHuosY9xoG9cluzpG4zB5D9uXHkM8TTgbsMqSeBr92FQI/Rq0e8ONA4CjBpoo7dTa2Z83BtKLwJWe3mYk45+vbJ/RxCKAZXb2/IvxHipUWPU0uQuyau70vHcz60oHRC5oG9o2s6ej/pWfMVsj3rqINqpuaa5On/BsC7rbXftNZeDeBcJFN0KwGoRkuRtEmnHyHTWnMDk1TbQDc7YN/iJz06v37nQ8dHfutTploWPeJqzJgB8kgyqUoHS27A9U1sHCGyytG2HxK4IGa1ECewPbSrDHe8yARYRrcmqRacy+T4idPCFgSVLsi/dK5fcKELhzipu49mkntI33XqZueOvVJldJxxy92D/i2tXyUVTN1+QZsrbbn0XO9k4iLjJNW55jOnC7cs3hXVN/dyz0qKtf4+2Z8IWZzXA8fkFTtE29HrP/kwmVUmzljHuqAz+53NWrszex4XOLGP1IXxPcdGi6Nf/7kzc2533WW5v69FJKPRdgD15O/61HdKEKpPKpIOCj0CVNX2Dcw9narkdID9/kf9lh0pSzbXe3+jE2Ip3VxKIRDHm8D8S4DfX5KZpENXBw9iNavC90fKgXm0a7kIHXfHZgWj/vgBziUV6JqZmkDnHdfX+xvlG+8fINpOinvb+3pigg7uLRPgQxdFlmdhzFyI++64PesLKcuUG/8Ux/3JXYT5MrOdS56v674Xt+t3j7hQxTuGD06gi2NplVo2pG6vceJ3si2Ixd00zvLEuWJy3axNaPmnffx9J/qTm9BsotzVuuuSNJ884x3efY52EoTEKSB8EhHozmSKW0v7D/dM6U/tzn32eaJ0plTdkju4DMBkY8z1qUKubwNYYoz5pTHml6VtXuennOkppcSpARB3O9/LeYqzAKebSTWLHE1MylDaXunLHmdx7u5z1lGFV6POun2exQYHN7/0JgN4OdNBl/NctcRrszcEPR73blIXr3IGc3PvktS1N05zOSHV9el/v2eBFSLNs4/QTyDf3JN2d/mUs+A72UmNLbkUdxsaC0h/6kuswkcd3DsiGMUdEYynH3N9/6iDZS6Ccd2mfEiVHtyRT5JaRDzfu0k74rxL9Cr4eBv/r9ydoIt1LraQxgS7Z/rUmZmscMWuwzjlqSvcn36EdJ7PXOPnmFpUFHHoA3O9tAtywmc0LlB22lpAsrpcDuAVZJ7QqwBWIlnAVYu4eriAydpR9Qg7+HGHyEy63ODm0zq6c0Pod046wV5yll8DRAmxZhRn/WPOtXJrxtdauvDapwejNSKfKxaWw8YeSRfJnWPU3r6n+Grz+xJt4namen2IujBx4Fz6pVaKOE/7Wx+MutFedHrGBe9sJ2ic9idpzSq6wIjTHUN04QtJwUl3IecuyNN/GhNd9NCabPvv20M0znDPzfdufu29x+Hr7z3O2z4pvlNzboC0OGpcpI+L3hvpFUYFvehv3yb9OE7iClfnKHfpI8eOOVfQRDLcMaJZa/3bfYCx1lGLVaQPCgWGuBzOFGL1EbrmlVhhKpz0XUVJLSNJyf1n7l85GlmLlNJ/tdRIpf4QrmW+gGNXM9uNmQTicPJhMnmeG1RDE6KOy5glW+kBRfAFCDMHkQ6Q0olDnFGH2ezLARYvUo44qPJ1GUL0/T9cKlvkHCtUekiRNp17D6THoJYIqWXZjfOhWtezHJcVOm5ddLq/DgmFvj+hh31pv6DxNu430zYxAAAgAElEQVQ44kugYIzfFaxvn56i+YJ11/HuE33142bguvL8Yzs+06yMBzJKKKkSJYT7brHjituGYt0Fzzwiank5kkn+wCkE4pz7lxdnMv1dfIb/vfrG+48TbRdtj6wPhnbJznIdjeGJE7qCCG3Bjz8WTRdPmyt1Uzz+0C4kFBljzjPGvGyMmWGMmZP+V47G1TLybGTlk4qklohyatXFQfkeTWUhUPe0iFtYGS0gdAFFXcR+dbE/7asL9fF3n9SPSlgPQ74okW23pb45fmNSxMniFRfq/x4itocuUH2+6hxurIc0IUWcOxZGOyk7yEVn+JMkSNvRj9wLaYHNfZ0sY5FFibNtJHhfOtYHVuxEjh3jqbrCjBuPkBmfTKTttHRCN2NE546jP0sG60f/jgNduMfJTBffbU+2XWhXSnq4OMf+5JlRIYM7xKnEskMtIJHYtQLaQLflymF0F24nP7Fsszh9IUuoLNodMezgwT2eXHN+rqK8Xc197kkADwP4EoDLyD+FoZzV1qWThTT/frEt/9p7j438zS0gfRmk3F3o/eSyTnH060MGbaZNjUy8kQ/pPaOxUrQJB+/XM4ggTd0KpG3i+k89Sf3aN3AWOPE7wvrtyw4RQoih7T0gQNpfmqjkuEOiVgqJ4N/PeR7Se3HOMbJkBSGQ1qb4Akk3ferhfp/7OAobbp9PMlrm952QiRvKSrTgeRe41knr8fhga+IUrlvK64pI3eeOODBjzaDul9ZCNNBwRWOlxLUU+QrlhhgTyunKRIuj87FMuT+76b7dIHofIdcyhSQZ4MbA0HpMqSdKiDsR5xihE+xIx9FcfeTHHzsJq266NNbxagHJULrVWvuatXaltXZ1+l/JW1aDNLZkFtNiV5EAfUn6voTIbBPZLsd3y/52Cf7mCF9xBlU30D7EfaLK+EiGuTJqwbnNgpvIhW3iFhurt+/t+Hx14IxevEtN2EGWCjHvP8GfhUiaKvmDJ/mPQbnivKM7Pn/l3KMjv7W2JTo+v+PAqAuN6NHF7C+nvEPo6kCOH/d5vIO4BnExHNTFjVvgx3lXuV2i7j/RG3puJNNd9Df6XojbUWSX5rLycc/HH8OQRygin3Nph9NInom03hvXhrjj40c9All9kyz1e6mRdovXfvpBso9/ER/5jXz/LiZ9OIe0fZ8+MxN/ayNjR4ZCBNufkrpeLnHi83iFReZz3H5x79fPjfz95v99BC/9+APZ7RA2WHqrJIf7P6cws3QclQrOnQnJKvk6Y8x/jTFXGWO+mP5X8pbVIJXKmBX6rNKXkfpCH7p/UnPao3u3rJf+KKeQosTNpxSJFmi7qBvFYQeWNlbE52pz5lHxJimKe6+j2ujcbSgE+hjOYFKBxoFrU+h3iVrQOA05544XvdeyG0ozQV1xfjT+acHG3R2f3fg8XxP5CVAomJfRZZee6Qgmoxd93pywHMvCUgLF06hFWzo+05gGrtdGek+MRrW2J7y/tSX8v/med94mpC7awF+zSvqextUkFxtXceX5x3jP3R7CUkQ+7+9k/goRIxo5XgzFWzQmVLR7VntcizSF3kLqiSGFuyIubf3IhZsLPxdzMnrNe1v8QhF3DLdg9MmHH9BR5+fCUzOCeZw3gSt/4uvGx/TLtMdV9u23D/UoibaIuvupUJSbbwE4B8CnkXGd+2wpG9UZCGFOPDJwYHdoSwQt7OX641Pc9NoS3KZKC11ymV3oQjNOcOtVFxybf6McnD8gk4nwzCMzgtDAT58W2U4em+D/zVeo0E3TerywujQ12x8szY4nJMQ7Etpqz2bJKvK87qKJ4p7W93xYF6rA9yLixx7g2FydK+nYxAV9+/j5Rf54vY+f7o9fogt+2jy3Cv3/b+/M4/Oo6v3/+SZpkmZrmiZt2ixNlzRp2qZL0nSj+960FChLkbVsAmXfpICAIFKuXr3Xe696cbnuIldcuAoqevXiBohsigIiVAH9IYKACAJtz++PZ+bJmfPMOXNmnplnSb7v1yuvPM88M2fOzJw553y/57tMtXyXvL4eVod4ME2eH/uTPu+azpzKlBByXlv9kEcRqf5QQ59NSTpt0T169XKjms/pahf3fC+qiZN8nbZBQczmc/6rSCYh8J0rhnL/qWW3GaMryu+If/TCoG1RePWNt4N3UogjlUfUti77c1tHftPcrCMViwOdYkIWKo3JZZX6yAJTHIqDYsOmlSwUQvQLIU4SQuxy/k5JvGbDmF3LOtKfzUm0DOYmlqZwUZBPa7Lrlfdb1aW3GZ+grMTYvGZqh7C11y5OvykSlG2OCh03HjEn/EEK8mQoinM9oEzO1fJL/CcvKvIAbroXUe6T7TFq/gYdpruUZKSgBe312v2sTRuk+pnyU6j9wId3zg8sW61CVKFa7o885ccc/UhdMfacS3NelSiCuZx/qE9J/rp0mr9ZV9/ksZ56yH40/R3eMrxO0HrkthBtxUt/jElg8PhLSHUYV6NfAZCv1/SOtTdU+Qp4YS7PJEzIE74oE7Tdq/UmWFGFLNn/zRjRzPp9lCwYLFMMeI4P+O5ius9y4CHTNfVY5tgRQqSfXRLuJlGenLzaMqGuInYlcYVhThblVKrQ7o6XUcLFCwF87tQB7e+Nmr6AV4r8+SkR9SRek2GG3BGoCUBtVymMzrOR2mq8DVzuVGqUxIfnxDAYyX4btppVk1D0kpSTpbHW2wmcIWnKohBlAEziXB4tobxdGSrlAUKeeKidYxTtp+0R5smWnfY9CiaTH1sH5jjOJaPm/LIJ5BCX8+2Vmjwkcr8VtdmulJQluQw+IyPfJtV3S4fq/7SmW7+i5DmX4Tfdio0tuYzwROQNtKCjo7Ha81wXT02tisflfyibs661fAYybQ1V6fpn+LRFeH0WTWmwjmZoS5THamsKJhNHcBjbsbureUh4kvv5oKNt+7QwARv8+NrZyzzfO6VVbHVc8iigDfe9M4aVcM8xMc7XBID60XolyI/ftcZ3OwtF/iwG8BARPe6E4/4lh+QOxqsV1P9mW4bPj2nimBzpBv2o85iyiKsgaVSfohgCGfzltaEQ0Kq9snXiVA37D1ja1ivf6yr9NYMDHdGS/5Lmi3pfLtkwZFIkN59VXd52EKVl1WquScVkqrZkmj6QQZTJpTxRaK7Tr1hEmXjFgTrIR3nv7PsV5bvmZGM0UbvCIOfAMmVbj9OpOKNsy1as1kE2d5TvkX1Gej0vGZLm6lDfFzmAgCmfWtQ+3B1Xgg6XTZubnFxH8w2rrPbnB7bOHbIQmG6ZW06H+o5FmfBdurHLo8GX703UUdibNDj8w1Ivw9M/SuWpoas9Sg/DfEVm4yxvMnP5nZGVvccOtKHM0eqevVpKExHTHFt+dlGmP+qqjhwkQpeU/oeXrIpslyALk9ZlKNelu06bfl8Ioe0HCPqIvlFXU4sZG6FoE4BOABsw5E/EIbkD+PubQ856UTWktqEhbZutqX3rOkLTMRRxRHjnilQnuc5gz39QCGOEnSh4ioj5Xfd0/AryqdTQy4fO8zcLNEV7guG+6ExlVORAE3L91EADURRFJv8yebIUZD6oC+OrRnGzQb4sk9DW25r9ZG7RlCGB1iQIeI+xi2YnE9V8LgpqP2CbnFqmzWg+Z9fQ7n36pdDnjTKuE+l9KaY1ZZ+o0BQ0wZa1Uv9pDhASvux5bWOtzQJtk3gv7PAPBW/yKZKvyzqnnQHZlNvWHM8TSY30Ssio80c1hYUNcqLdzOhzduiCZ7xi8NdZaFDWyWZdRITSEsK+vYO4QPLpcyPg2SrOdCS5gKG7n81jKmPpY8fZ5llUzuVG3IumGDKdR1/g25bK3uFEYC/jhN9uA7DG+fy6zXEjEY+2RV5xVV+yLM0o1ONyKcxbh/XWhAUFhky0xvgs5/7Tjl4AmS+xSbD80DFzreqUpPmOPEjtVgSkua1DwRV02cbV69Xl1ggiSlJJeeKhE9Li4LRDpoSKwOU3+Thz5bREo6eZTFZt39sOSfDdPHuidj9ZU6sKgFqtnrS9utw7sbDN3xXFhFMVWvZsSQUJ0YU7jnACK555KXwo7KT7R7l8U9hxGbkvkoVo2/MAXq29tTmV5bixsGNsejU9qF3ZmvXpzLd0hxO8gsuBiBM0ub+QV7WiWVhQhpDkYusjaSxdczNUJYTOByRVhp0yUdMs8BspKqaKanbuDcYS3BDc4ExucBL5GNXNwEiSQpGmRWbTj5y7JpWv7ZptPbhkg0nhOYR6P9zVMXWFU6dQ8uisI9b9IJvPZUJE1wB4F4A9zqZRAD6fZKWGB3LHFG0SF/ckvjGOzM8xmLmYihhwJghhQnLL90mNsibjZ67lmkvFeatLlZn1hev10a/ixrtSNIRqHijf3tktQ+ZAalhReeJQZ2liqJtsVI4qjfQuyMdcvrnbsKdteXbnivre6iYbKhtnGYKCWAh+5631+u1dsM4uUWqG+ZzVMd693HsTdcjcnqDwnU/Mjvf+bevTuwas+h9VISWvepgO9yoihj4HRdM8ur8NZ6+ahvMCEvDKfY5J0LhiS7h3t6SEPOY72U7P1OOjzvd0Zne2q8ImdM8xc1U4/MqgSdGoM7lTaR1rikQXjFoHub2Ul5VYP2O5XXRYRn801UYWLIxK7IgKua7mWuzbO4hdy6YYAzLYcunGIcGqeYz/Cry3jURr7Bx9zp/DARwK4O8AIIT4I4DsjHtHAHJ7dJ1PffczvGSm1y9KWzUtfXvPG95sLaPTlj5n+Os4O/tpGEvSky2vDexCS23qOEOuBDnylNsJujkYonR22yR7d3UiXC3Zr1eV6wZL/Tlto/6pg6NuNcMkLHqDM+jrZLsSkTTyddlq5mU6xukHUZMiQjY5TDpogE3xm5RVKLmdVWfpiBxEtlfvak5dhOezvnNTfRps8JSWwGOL4hAtN9vRls/K5PdoK4zJrDb4z+0/KFBeVoLLNnUH+oL5vQvuObf2DrXROs1KkdZ8Dt5Jc6iVBLUgnxMF+UtsmePf1tScMbqQ7LpHYlII6PqVML4dtk08Wi607DBGGgxxjfL9WGxIxq3jxQg+fQIiY6UsCupV7ljgbw6u7ue2fyKvT9RqQ+TfdFkmNwjDcQcOCq3f83DFRih6S6RaqwAAIkouLNQwQm5oJn+BqB1QSQxaAKUmvlszYvvrtFCGt04OYQoMTSL8rt3dphYn50RS0Wm8VOZIZmyu34s74Mc9EBy+oCV4JwV58lJfZTCPsCzDJODMbdP7zly7bSjYZBRHS9MRcZuYRAnAYfKBMMlYcjCSpCOByW1aXskzIb+DJ0m5dNRQ8nEEK0ivFIVoH6bJv22I+CipCOSyjYqm0CW75dvtJ5+7LYTGPYrgrzuvbUn/ePuAtwyTeZ70SNRb8eGd8/HEezf7/hZUp6ryMs9qTlSfIl3dg1aKzl3TibaG0Z4oqETAzIlSpDIifOrkhb7Hq6koXPRKMsMqT4hJrdwnyk0njoBM6rnClplhARJx4A2zynfpxq6MOUjmarm+Hq4ipqykBGes0PsOR+X9R/am3xGZOE3XopZ04KBAuybwxHDFppe5lYj+E0A9EZ0O4HsAPpFstYqfWCbZlvbAJnThv220C75EMJ9TJ6E2/WiYvtbWaVOeaG6bOwkXrZ/hWYZ2sU7GqNn+9Yeeszo+in8EYB5ISjz3XT7Gu58ukSiRV4PcN9l/hU41s7Ohr2Os1xk3dAnxsKJTH6lLZ34I2A/gOp8DFVN5sqmnyYleh6zNDjKTitJX2RyiBtKoKi9LRwBTz9kzyU7wy1ZIjzI5MAnyjTXl1nWSr1md4Jvup03SaOMzTPBFI/K+M+5nd0tJCQUKsup74I5NNZVl1lHGTKajrmJvgZKjKmjSOXNiHX502RqtgmpqU2qc0K3uqBFOXWQhyxZTG5umWAF4/UrDN4w40kboqIrBxBAISijrZffq6fjQMfM824i8vmGm1d73HzkX9+xZi/KykkAFxUNXr8cj124w7qMKkrp3xNZ3yOY8UeXhCXWVifrwFiI2gRY+AOArAG4D0AXgaiHEh7M5KREdRUSPEtFBIupXfttDRE86IcA3ZnOefGK7erGhR+9XYEu0GPh26MJTBmHTsfq9bK452zsWtVtPvK0dS6XPpSWE89Z2+pqGmEJF25T96htvW3Ukb+0/GHuHM7ZaHsDtVo1k1PvXrBGqTROdJsV3rcvJ39BcV6kNNGGsk91uAWUMlaJGAPTsJ51MHUhtsQ8BbTuZHqrUKsvABuo9O+2QKb7lJYmf4K3LE9Qgmb0a/RE1t8wUJvvQudH9l75/8UptDg+3PlH6X3UibTLpdLHt24LOFSdCeNvT1Vt7cOxAeyQzRxfZJ9PjU2S40SZfl8pRpfjmuYfgI8ct8GyPImATgKP62rBzYRu+dtYyp/xUfW2eYVBddf20nx+Ta0KlmlWaFDuec2mEJ9tjwuCGA+9tSVlr+N35ME/D5I9pQ1kJWQWzAVJjnW4cVKmvKteaiYZFJ7OrbcQU7dVFdUfwlGd4pkunjUsHjjJZlwwnbAIt3CSEuEsIcakQ4hIhxF1EdFOW5/0VgCMA3K2cqwfATgCzkAoF/hEiKgxHBgu0jS5jv6Etqn2y6TiXs1dN02Z2V1dN3qlJSpo5Hvi/gR89rk9bP3N5ejbNbkbPxDqctSpzKbq6ogxP37gFu1dPxzXbZuG4Re2474q19oUbME0O4pw2WE9CaMhXKij3iezsbCp96TSvqYdLvyYcbkaViDydrm4iYqpDXeWotB/dtCb9RME2N1QsxqGWj0R+drI20pXlbj9nGb530YoYamSPLKOr2m79Md4LTmpebA7Zn3nS9Y4SaGyVPkmwqUzdT8f0Z9rl79s7iKdv3OLxhbO9De47MK2pxujfV1VRGsl8TtW7vP8ofQRNGyFbvdfLpdVQMuynI4zAIF9LU20Fbjxijq/SJKwMQoD1y78jwFx5dsuYDAWYaezV1okIo8tLsXdHbzqP1/i6SnzypH78hyR0mf2IM5nlrJRGMZ8znUB+3kn4zNsWOdsRhozNL0T9dNcy1jJqaxQzXNN5k6DDUiGtKiH9MNW7xzD3OChEOmpkVYH4FCeNTctY77Mt0wAyBEKI3wghHvf5aTuAW4QQbwohngbwJICBbM5V6Jg6Cd1EeefCdvzTkf6DqFqczh40MwqMfx3iSOCoUl9VjjvOX66NGuN25JWjSnHD4XMw3jILPRCwIhKDOWK2x3iOR0qLfd+VawODYFwgCUVm4c5f47d9XngfJxNBk6tjFqbM5Ga3jNHeJ5PfVMDZQx/R6SR+PMRJcqlbDQwSaHtb6wOTSNonIrW7DrmuanJdfdn254oWEdB/e9DK92WbunH/VevSK8JhCavdV6/NVmERtNuRTq6s0w6ZGinQgloveVXtM6f4D3lhDKE+cVI/vnj6Inzs+D7v6mzYiloQ90qUa3ZJRJ7oV/JdvmpwpueYKG1Y9g3KlrUzJ3iUPMY+2uenoGZtu6qsRjYzryDqttuNL9mQ1NqlbTsYV6MqZaQyDLWL8q6r2FqilAbk8QvCIxD7/O4GUDD5vHsSFY8QKzqtUEREZxHRLwF0EdEj0t/TAB5JqD4tAJ6Rvj/rbPOr3xlEdD8R3f/CCy8kVJ3omLRz8rd5hmSRJy7p8N0uIDx5bEyv6UizB5VvtaoNyuWdCKPddXMcGQcwqSNta9CbFcYhqMWxnzvIkLJN1x5NJk5xPDd3EnvFltRk6gJNmGF1vCqE0NFRJp3qdWTbLnRzMrWduxphwP+5lZaQceUFMGs+9fUw4warkB2uVX9Lj49BQIHuxL2slKydvr0O8PqVvEmGeunL9n6vKCvF0mmN2DS72fNMomIaR8JaG48P0Gxff9hsnHrIFKzuatKGvzZF07Qmh1p/Gb/3OagqYXzuvXMP/Tl0UWYn1tsrIW1RhTrd5WS7EmOrNLExOUuKKL6p2SKEyHiHbYo/cFDkdHWsEDCtFH0RwDYAtzv/3b8+IcTxQQUT0feI6Fc+f9vjqLgQ4mYhRL8Qor+pKaYEgjFiavg1kombbTZwk3YhSqNtUFaAbCdNO/r8Vxzy+d6Q5rOK6R56TMayrQ/ZCaOqI7p9+dG03WqCUD9KSG9rbSpbJS0UWdY1TC6nKBP8JdPGYd/ewUCHfvV9/GeNWVNLfXKCqUqU3ExRV0isy7do37Z5rVRMQlPU8LCuFl92fs9SD5v+ZO8bNvQ5UkC5iKt96rkGLNMb2CFCmyIFNcXGmgq8e2sPykpLtIJqHONNlDKSUqy5bUgfKc9c21pnpXHz7GZrf2a1XbirvCafGLU8NYG0Drf2GSvY2i/RiDqB9/pX6ffLNhJkGHQKAVvUumqvy3BJcrsb8StFQohXhBD7hBDHCiF+L/29ZFOwEGKdEGK2z983DIc9B6BN+t7qbCs6TC+ZLi69iSVSLP4oNvcq1x8223uc5YHvPWyOr3BRDNqEsCYNQWj7GEvBIttEeL7n9nz2VsI0kU8fo9Rb91ytAzdY7RW839mrpqVN35LsmzMHEv+zmfwR4n4Xeg2ryTIthsAkcd8ztw/ICNmPof7tnNXTM37TsdIygMTpFj6SQf55OuRLKQtUWAydUDd3MQkLGStFhjOdsGQyystKsG6m3nTS7zkMlT1UeuWoUnz+1EV49D2pGEYDjtmuenxm6GR96U2OEBuUnNV9tdR8Z6Zrl1ci4zBd8pStXKTpHoYl7Hji3hOd4i7oyhscc7Dz1nb6RgP0r2P2vcKhIVfS47Jc0QknQQqKFTOa0n7WYVaGXdz7eVgOLAhUQThsfeU+LBUQRdnBogyb8wSt/BYb8fUC8XA7gJ1EVEFEUwB0Argvz3XKGrUtRoluZhoQdL+pZhgytYo2yHa4KS2htP17IQpCuhwNqd8sy4hwrijHZ5YX8UBPGUOFbMsi6lbwecy/p5sGAd3NKdt9XRhwXXly+7psUzc+f9oi4zn7LIMQmLAN/mAi7Gtx3KKAkNmW5cyaJJmuWR6krrz0Orm83GemY9GUBpyzerqvb+PVW3tw5sppoUwPdX6DqsO6buIq3/NdUo4mE2q29nUzJ2Dz7FTUtA0hoqfpJmI/uGSV/iCLvsntv7ub6/DEezdjoiZzPWAWwOSyS53wv27QATec85WKj456SWp46UU+q002ZpGXbuzCZx2fKTeMtik5bHmpJEDFPN4I4V2tbzWYJbvE0Uf7CSofOW4Bzl/bmY7UqRIUPtx9XiVE3sAXNRWed6hKkyvMK6yECbLhvZadC9usVkFPdt7RzOi23nP7tTNgKGCLiny0n3Lks6cMYI9jQq1X+OlxV1mP7Gsz7BUPumdu2wblKI4CAhNqFbNci/IOCmGce/708jW466KVdhUqEvIiFBHR4UT0LIAlAL5FRN8BACHEowBuBfBrAN8GsFsIcUBfUuESt7nK1MbwNtQNNeU5c6RRX5w4EsVly7Ze76QszlDESwxZtImAORZ2/LarMmGQi4xiJhPXHUqbg4Bw4xG9uOWMxZGTwNmaAQZN5K3O5dyBKHmYTOWZMCUmjsp4ZQDUh2P1/vCuTSltvxodTqWkhHDJxq4M/x8hUsFZLt/cHSm6l8rW3kn46tlLtfXdtawjctnPv/qm53tZaUlaKA42kxn6XTdfVVdmbc183UusNCS7DYNNt6cq6tRLUn+XVwjszXkJu1dPT4fEv2DdDOzbO2gU6Gx9Z6MgEH7lIo6VDl8BuH40Llw/Q3svba+dCOiXgvYsnd6IdTNTAoQQ3iimfjn6smXvjl48deNgxnZ1bDtiQSv27R30BtvxuUidIk3Xt3zu1CHF2TsGzIJLlJXHyeOqsW/vIA4x5LqLi8WGOYaa5+zO85fjZ3u8qQPUPkynfPBrcffsWYvNs5uxaXaztF/mnpPqR8eiSCwk8iIUCSG+JoRoFUJUCCEmCCE2Sr/dIISYJoToEkLcmY/6xYHcHuOYHKyTNCOmyHGk2R6EZ8B2vqiRbDKOKRAbU4+porT9DMXUpj1Ewrcg1FUJNZlcNs7NNxw+O3gnDVk/E7IrI4yAObq81NjBA/6rp65WU/3NHeRdrts+CwBw5kr7bON6ISH1PxsB1TYpoP2KZPg62IRpjVq2iaihbnUQ2QmNtkqYoImQa8akS7wZpcw0xpstC+Nxd6wRLBMC7uf0ppSSbl7bUD+XUz1YDOcSKakoVtyVTJMjf5h3zjWZlAOEuHzomHnobq7NWD01vYPyRHmCtDrrrZN9BUMrPwOL9veDsc01Ni9ELh256q5pduqcyU9sPnfqAP73YvMKy9LpjTh5aQeOcMLNy9Y9rtJroZNqY+bEuoyVZFkIOnjQTwmrf3bNYyrx0eP7UFVeFum93jInep6yfBNPemHGl+ryUvz9rQNYNi17rYLJ5l5oPgPJrtiEzVGSa9QqmFYSTPWtKi/F6295FywFBOa0jMHXHky5vMlL9QTLYAWa+k4ymMkkTVwrnK4QdJRP/hg//O7/3h29mNPy+4xVOXXPE5d0aCM1hmVIKMr/SueD716PkhKK9C4tnx6tz3HPFNV/44iAfDFx46e99Ku7rYb/ko1dGDN6VCifgShNRfdMPRNai3K/fcFyPPSHl40mS+bm4+/gH+TYv2jqOPzfpavQ3lCFe5+ycjM2snl2M57+y9+N+8hV2n9QYHxtBf78tzf1BwQgILytIkKUP5WbjpyDC7/8MEYbcrqEWW1qb0itqqmREgFgy5yJ2DJnIgDgnDXTcdlXHvFVhqzuHo/3fus3OHTeJNy/z+ZZpaLbvvz625l1T3JY91XIpTYM9k7E7Q//MbFTj42YIiAqyzvtfCivPXRW+vNXzlyCHz7+Z49Pnt+K/owJNXji+ddw7prpuPuJVGRmk/zv9kUPXe2XfUfez6rKAJD2MyxGCs2naFjhLg1H7Uh0E7MwE7aDB4P3WR5yKdjvemzzpySN6V4bf3P+n7y0w6NBA4D/u3Q17rrQm7BTCGB8nf+Ln6tgFnkAACAASURBVG2AmmwcirMVRglesx+3qanmZEFnaWuowr69g4ErRCYaqstx7trORATsnz31ou92VygU6e+p/ydZ+qmkjg33/HR7j60u9zVNsLkdtlEtMwv337wzwBTFJYq/pIlcpxSoqSjDhetnhFrdVwWId66YisaazMmKlfmcn0O0ge7mOuwcaDe+IzbFqfd5Xlvw6tzkcdWBuVBs+ejxffj2BeakyPJ7RfBGcY1CEnqPshJ9u7nS8WWZoBk3/LBduT66vw379g6iyica3LSmGuzbO5ixijJFyhNI8LY720ltUqojnc9QnOjqnn91rj8djdU4edkUzza/a3DboEkwB4ATHEWiu9JYX1Xumzsw/+rB3MJCUUJE1bibIoRN0SQ7NQlJNnH7VSEgCupKViFo2lVMEyz5cbl213OdQaSptgKdGgdY/7IomvY4/CGJ4DfBUjcZxv6AsjXboxUXGdWfJF0PpyLue0NE+N37tuDqrT3askwO5klM6u++dDW+eLo56IRtPeStG2dJJrpK+620zOsR5movDhGGXXu+kLc3rm6ppiJ1PyrKSjO083u2zMT9V2VqXU0RSd1ktmu6h5RLUauqZqg33SPd/dDJhJmO8cjZy2vy0VL5wFFzAxMJA957U1UR3MaDoxK6BWduOm35FPzufVtCJa12dQxxRd4bLfmpNUurT4fNb/Ga4Wv7ae8Ptuayptovm55SnJ2+fMjcPRfThwKcoqSJ209HCOHjP9qF371vS+wmz8UO342ksPTNUOnvsLCfD1GercDjr3FIXYC6kuRqIgq4T/HF9nnY5A+K4qSbWZ94ZhOVo2xf4+AnZu00XTAiXLykV4qkW1UaYMIW5jG6/k+e4+0PB5BahVsa0iRXV0fXDv3+q9bh345dkNM27QoTNpPXIILC1ca92HjR+i5curELh89vSfeHY6uiT2Qaqstx3xVrsWfLTOMTmNbkrxiTURUWxsSrTh+vLvD53cOHrl6Pb59vXs1JkqlN3mBDprZ2ZF8rbj6x31iemtBy19KUFt7UHnXR4TILz9xERKFXUt1rdIN5LJs+DoO9E0OVIXN0v/+KrxpW2bYfWGlpBjZUbibuqlRHY3XaTNDNJ5ekuZ5O0CwAy3/rduK3V1Ak16H9wrfHkQD7FMVI3C+T2o7T9v6mua1I5Qm57YFnIcTQaocJtdqVo0px3trOtLOcGnDhS6cvwu0P/9E4CciXFiZbMxLbFa5x1eWRTfV0HL6gFT94/AV0NQfnWemZWIc/vfIGAODdW3tw5dd+ldYQX7x+BlZ3hzNnHDN6FF554+3MyZGl6Du1sRpPBfgEAIWjndM9Z/fys8mbV6tE+fnp5WvS7eHEJR24+huPeusS/VSRIUo9C1cJo652ZfgmJlQHwBthTCVopTvsaxbXdYwuL8VuJw9TtbPCsEsxbZHZoyTg9Zt0qmHJ/dropRu7cebnf2Gsm32OIeCyjV0oJcLhii+Y330Ks8IRFzYmz3GV72rMRxnDm+d2Erm2ezxuvvspLJ2WWk35wmmLsypvVGkJfnL5Gt/oiqaVTN32yGa6Eu/e2oO60aOwaVYzystK8I3dyzICFUUaNyI+q0Lwh447enGG/1yYYwtl0M4RvFKUA2JrU5atOmyYWr/qXbR+BrqdybmqTeicUIuLN3QVROcB2Gu1shWYgKEJ3PZ5LQbHRbuy1N0OnTsJ+/YOWiVZveP85Xjw6g1OOamS5jqRoM5d22kV/e5Hl63G13cvA+ANoe1fV+92dSwME63Lt/zCaEppP4WtIbSx/37sfM932dSSSlJhS31zzGiu2ZTPKSrqqa5xzAHV7ennELHPivIYTf2jG8BksHciPnmSXvMfxrzoo8ctAJDKqRIHFWWl2Ld30BPuWOWUQ6Zg+7whwaPNkBPHnZyP8zHLnN+eUnKp+aVkMoQi7Z4pQef6w2ano6XNmJBajbExu848b+4mTxTREgMA/uMdqee/e403uXCstY+hP9s0qxmLpo7Dvr2D1gmcbWipH51hQZLPsXxcTQWu2z473e7nttXHsoJxr8ZvNE0Bz/XXdIdbgcsFYdpIAd/aQHilKCF0EchULbK5DDs8Y1GEvqRA5qORCJOg1HSd7gsvMKQ17/MJBSxr2Nznq2aaL5QJfhBtDVXpUOK6Tkw7z1Eu0rWBPjog2pytrXq2DExpwH1P20XFOmJBC776QCqKYFV5GR66en1GcmMTiwzBJOpClOPyviPmhD4mLFMcU6RunwSHucLmmbuh792JrIo7kZI1q0ED8qbZzbh2Ww+O0pgSJQHBK+y6uXr8aB1bhZt2zMGabr0ZV2WAE7XMxtnN+MzPfm9Zz/DvYZKmtLqys5G/BnsnYrB30Cnf75yFQb7GESH0E+CoVSovdc00c3dRf3jpdePvhTxxP2351OCdAlBNiiMH/Mq6JsUFC0UJ4ZqnZP4QR+lC+aaJUuez7f6r1mVkSk7VNd6m/+Lf34q1PB1hFEo25m5CpISFuy5cgQ7fwBau8DR0v9SOvsQy0EJQJ7V4agPuCRHu1vYRvu9wn0m3e6yl2YR6MlezJ2vDwxAmIpMNpy+fahSKmmor8LsXUuZ+qilJNmZC127TB2SwxbQKEBnlAa6c0YQ7z19unfDWtn8IM/AudJILh1FsuLi+HbtXT8db+w/i+MWTcev9z+CJ51/z3f/YgXb86Ld/QXdzLYgoI4rTCYsnh65DGMJq4o9Z2G783fQ0GhX/kLax4fOzRRkOiixNEQD/5xJL2VkUcujcSbj94T/GujoUlrhFlxuP6MX0Hz+NZSFTBWRTj6A8i4VsFtbsE4LdFl+foizqki43xL4FfGsDYfO5AkbnU6TSM9E+UWhjTUWG7XrQUnUUTWBQh5QtbjK3oJfPzfLcVFsRamLSOaHWbBImgCEBKRls/MGAeDSKaZkow6fIH1XLnm0dwjybOK53hRQtMY4OfG5r6h2c1z426/YQ5l587Pg+AMDUAAf8k31Cis+cWJdxLt2Zk2jjUxpT2eFXGHKw+XHbWUtwyxkp34rqijJctbUHlaNKjUlet8yZiH17B30Dz+zbO4jrD4ueMLnQeM+hmcE8bLENAe13TBLolCW6U4ZNL2FTZjaFff/ilYFJOlXcCXG+VoqyMU3U0VRbgcs3dxeUY38hz9ujWBi4+L27ptW/IJZMHYcNPROs+xXrYCQFCgtFCUHw71iCmmWUCVrUjsZt5CVEsWul/PIlxIkcutb0rrv3xtZPI8g3wcYZNei39D4BrSFubYupPNdZXGfeoG7VhQwNqnPhDIkxk45al9xQO9DRkLFt0+xmPHb9JnwnIMdLQ8jkhO57MLslZV6XS7OXIPomN/gmW3RNyvycyPNN3DUyladL3WBVbjramX07dpU32ZxXh59fFQB0T6zNyMPy2PWb8F8nLwxV/vEJrxBOa6rJiJpX6JhMrQrFj1jlses3ZSQfLcYIqR88ei46x8fTXuRHlU1I98pRpbj5xH6N5Yz/eeMKIZ8P2HwuIXSdeRydSlD0OdtTyJFjjupvxb9+/7fZVSwPBF3r+NpK7Nncnc78rS0n5HkFgLmOIPmOAb2pSzZmYaqZo44ljk/L4fPtTNf87tmXz1iC7/3m+USc/GVy1VUGCSdJZdxOhWoPeYxSV7/jf3r5Gt/s5UA4/5Ig0r51TpVuPqEfX3vwOXT45acpMC7Z2IWaijIcZvkeMJlEGZ2OX9SOZdPG5XTyX11ehlMOmYLzb3kovS3Ke2AT4jxf5HpKLwsRYQSKUaWEtw8k3bOby68cVRr6+atDxGPXb8qZ2b+OIxa04ogFZr9cW+TrGxdSKTaSYaEoRuSORNZieTJxh+jpOhRnXL1AlX2HFFcelmyOiRu3U3jnymmB+45xJpzjqs2T5XRwLpEyc9i3dzBjnzfeOpD+XD96qDM6si9cZ2f7VDscMyTrcn0K7misjsW5MxvmttXj4WdejqWsoJUNdyVzy5zmWO2thbB/brqJR7WPYDrJIiJhHKi3bVL96HToaavj86idrakowyUbu/J2fhNx9YfZLES2jk2mDRFRXlZDKiwTCpuQ+4k6Z/VbzdmTBHNbx+DhZ1/x/e3sVdPwwt/exHFZrGJ98bRFuNcy0IwfYZJs/+Rda/DX19+OfK4o9YgD9VWqHFVqFfm10JHv2bfOOwQXfflhbOhpzm0dinCVzoWFogTxaxhhmorO2c52XAzSlm+e3YyP3/0UTj1kinG/KB1T0j5FNoSp97beiXh7/0EcOs/s9J22uTc8hblt9egYV43u5lpcsy1lovjbGzajNOSNjNsSK8kBJo6yN89ujk0oqrBOaBsPQ9cvQj84dW834lo+ybfxw3lrO/GX197Mcy2SYZ6lr2BcNI+pRM/EOuzZ0h24r5v4tRgcpePoc+REtys6G/HBo+cGWhXEwcqu8VqhqL6qHB86Zl5W5S+d3oilIYManL+uE48//zcsndaIj939lPVx4+sqM/yUi4EoYeeLjVmTxuA7F+Y+4TKbzzEZeOw5Q7QP066yNtr/F/eb3WjRWFOBuy9bDQB47uU3rI6xZcOsZtx452OxlumHEPGYGRARdlis5Njc242zmlE5qhTflvw8/II2BA3qcXcskSJKhZ7gR0+2GafMFqbabm6WbHD9WMKsFCXN6cun4JuP/CnUMa5FbWS3nJge4kXrZ8RTUIHgrsTff9W6rExUowgCo0pLcMf5y+3KR3ifonwRS78vm4wRZW26NNFRZBajs/nMiXX4wSWrAOjvbT7DhIcm0IE7uIjrtkcPWjJSka2ONs3K7QpVHLBQlCBxdyC68lS76KrylFnB5Dz6AYRdFbFh7xFzQjuMJ4Wpk47LzzupeUk0c0jvQap/SxzL5XE2GfvVVOC0Q6bifXdkJ8D/y875+PjdT2F++1g8+sdXjftetqkLAx0N+NJ9zwBIznfgysEeXDkYLkT4vLaxOHlpB05bbl49ZqLRmKUvW9KySiGYPeeSuK+3v6MBXz17adrftFgplHaQzbgSLBMFv0zDwZwu1wgh0v3Usun6HH6FSv5tnIYpo0eVRhrALlynz4ruor7M6oS1o7EanzixHx84am74CsREEp3qzoF2bFA0D7nuvK2iysVUpzi0td/YvSx0SFgbRpd77flXOmGVWyPkREmCMCtcJTFIsS31o3HtobNQWkKB5z571XT0S5HkCkknX1pCuPbQWZGfY6FMpoY7Sd/nQmqTSWIbVTFM0vUF7WMDI8IWYIBED/qVotxW3I1yGsYcutbJ8zav3SyY5tqMNVfccNgcLOwYixnNBRD1sAgHBF4pSohtcyfhg3c9Efo4k8OqjdakzMkcva5nKBv6yhlNaMrCebR4neaSq7fZzDGe88aSPyfLjl9XBbWvO235FBw2vyWwnZkCBtjeN9PA3FI/Gs+9/IZ9sIMEmkg+z80w2bCgfSweefYVNGSRwDhXxDFB16UWUPnmeYfggT/8NevzFQuFEnr73dt60DmhBqu7xgfv7HDPnrX4t/99EpcFBF05dqA90EKgCKxIM5jbVo//PnNpXuvQPTGVymFyQ2EoScPAQlGMyP1IaQn55ykK2dl89pQBPP/qPzK26yIJ+TlofuaUgVDnLDpy2H8P+XXpe0vbRxy0XyHZ9QddEhFZCd4mIS2OcXj6+Jq0f9yC9no88Id4AjcwdmTzCL9w2iI8+9fXY6sLE54rB2di50Ab2osgBHsc3f54J2VCUI6lyeOqMXlc4YbvjpvCEIlSESXDRkWtrijD5ZuDg4qoea6KCTd/XFzhu+NEiFSY/vlt9ZjdMibf1QkNC0U5Jmxn45ftXYhUhBo/dBHrsmFWSx2+9ctwDtu6FYEkwp3mMlpXLjVohSAS2chl560NNvm0IY57e822Hlz3zV9jydRx+MgPnoyhVuGxlWXHVqW01NUJJzouFpaFjJY1EmmqrcCWOc2Jhc8fVVqC7ua6RMqOmzj6x/G1qfHy0LnmqKMjDb+0AMONMp/gR8VC69iqUGk4cg0RFaVABLBQlBPkzjubeZ+VP0sCOp7elpR2P4zTnM5mekJMoTtdTWZva33ofBW9rdm/rKaJr+3kPuhZqee4cN0M3Pv0i1Zl25QXCtJ/nR+TbXbYSHd+TG2qwad35Xdl1PYqLt7QhfaGKmyeXXwRelSqy0vxdyk/F5MMpSWEjxzX5/vb13cvw1v7D+a4RvkjjpGuobocj1y7ATU5VkwUukn6TTt6sfjG7+OrZ+fXDCuIUaWFfR9HEqcsm4JP/eTpfFcja1goihF1Tuf/uupf4sHe5PMj6DB1LYUYc35B+1h876IVmBYyaeCP37U68Qh2tt10S0AyRVVIOH9dJ4DsV2VCZkvK+nz54tiBdvx8X+79AGyFu8pRpThhSUeylckxheKLkATfPPcQPFjAfiXD1XFcR1xNra7Szq9oJKFLTC4TRyqDbLjvirWxJPBl4uHoha341E+eLsj5YhiKd/2wgImqvegPMAPbPq8FQDImaDbNOBvt1kePW5AqI8Y50/TxtaEnYa1jq1CVhVbQzWVUX5X9QBrk5FtMPkWxnCPmCfWa7pRzrt99rnEiFGUbIrmYuH77rMQUL4XTUpNjdsuYYSfEMvlhOOgObINUJMX4ukqMiWEcZuKh0Fc/beGVogRw57LXbZ+N9/zPo5hUH4/J2Jkrp2LXsg5U5thBMI65+cRhEu//wnWdOHvVtJw8g6RkojiK9QgwMfWFuQxTu6KzEe8/shfbEvAlKCBZ1sMJSzoSn9QPj2ExN7DJYXTqRo9CeVnx6nSHw3syXCbBJhZOaTD+TlS4/b2OxMP5F9n9UGGhKEFWzGjC9y9e5dlmapBBjYmIci4Qec8fZt+wxoPxk8TLn8tnUAh9Sy47uLgfV5Df11H9bTGf0Tlvnp9cmJwqcVHsA2E+uOeKtXj7AN+4KJSWUDrH0NJpxZcgstie+tzWMXj42Ve8G4e/TBS4GvbwNRtwoIje4RuPmBNokRSV4bD6CbBQlAimxpF0u4k6ITP7FCXLvVesxesxakynNlbjqb/8PbbywhJX57Bk6jh85RfPYmFHvJ1YlOqpQm61nLy1eMaEnJBPAeF7F63QRqbMBX5tf/SoUkxMICpmsVPLviyhObq/Fbfe/2y+q5E1xTZ//Nxpi/DMS95w+cV2DUlQbP5oxw60J1b29KYanLy0Ayct7UjsHLmAhaIcY1wpyl01QlHuhK6sS8iGOI6IdN8895DALOLFhpuIt3lM/kwPdW2yc0JtTusRhXxprvL5Hk8fn5/nYlLG/Pq6jTmsCTOcuWlHL/Ye0ZvvamRNSZGNVXWVozBrUipq6+quJvzg8Rdw1WBPTuuQRN65w+ZNwqKpxbfSWIiUlBCuPXRWvquRNSwUxYjNKo1JixxHSOKomM68eGoDrhqciaP6kjE3igM5Jv5FG2bgnC8+iEl5EiZKCnQdOcwq4qd3LfTkqsjFFRXbREHHSDYl8/MzGM4R6Zjkue2sJXj1H/sBpNqS2pxG8vuWD/7zhH787R9vY1yOg9TccsYSzLjqzlh9T/9l5/z4CmOGBSwUJUBYB8RCj+9ORFknC6ypSJlbdQRkDo+Drb2TsLU3f8n4lgwDzdOqrlTktiee/1vsZX/lzCV46JlMjd9wmToXUtTAXDECL5nJEX2Tzc7uxUhtZfFOvcrLSnIuEAEYdpYgTGGSlzeTiN4PYBuAtwD8DsAuIcTLzm97AJwK4ACA84QQ38lHHaPgCkPj6/QdxkhVmk4fX4tPndyPxcNAYNBRW1mGv/1jf+wrHnGVFiVa0JTGaqzqasKF62bEVAugv6MB/R3JT3R4op57Rmr/xuSPYmxzk8ellIN9CTm9D0fcx3z4/Na81oMZ3uQrpuVdAGYLIXoBPAFgDwAQUQ+AnQBmAdgE4CNEVDTZucrLSvAvx8zDre9cot3H37wk9T+fk7hcjCtruidklSOo4CnwSXiUIByjSkvw6V0DmOuTGHJVV1Pkcv0oK02mOyrGSVOx8b7D56CptiLtf8gwuaIYlR+u3mx0HqPJFhslJYSHr9mAm3bMyXdVmGFMXkYwIcR3hRD7na/3AHBF/+0AbhFCvCmEeBrAkwAG8lHHqBw2vwWTDDl5/CZo7qawk8v/2rUQ//GOBaGOYZIn7kl43GN+NvW747zlePfWlINt3LJGEjmD8kE+fQOTxNRudvS14udXrhs2fmFxccaK7MyOmeGJqxwdiaa22TBm9KjElGcMAxSGT9EpAL7sfG5BSkhyedbZlgERnQHgDABob08uzGDc+E0Zok5SVzt+H3GQVNe8KCD5GVNc9EyqQ8+kukTKri4vxc6FbTiyr7jNIw4O03nO+NoKPP/qm0WdNDPXXLFlJq7YMjPf1RjWFONKcCFYhzAMk0liQhERfQ9As89PVwohvuHscyWA/QC+ELZ8IcTNAG4GgP7+fu5aHDrGJR/IwJbHrt+EMtYcZ1BeVoK39h+03j+uO+iaapSVFOakloiwd0fxh9sdrrz3sDk4/bP3Y76PKSXDMPa4QhGvFDFMYZGYUCSEWGf6nYhOBrAVwFoxZG/yHAA57nOrs23Y4BeedmvvJHz8R0/HsvJTGdFGOarJz4PvXq/V1EWty3DnjvMOwc9+92LOz3vppm6MGT0K2+cVjpna7ecswxPPv5ZI2W5I8TiDRIxkqp0IksWomWeYQsJN28AyEcMUFvmKPrcJwGUAVgoh5DTJtwP4IhF9EMAkAJ0A7stDFXPK3LZ67Ns7mNc6RO2cx1aXx1uRImZyYxV+9dyrKA2YNU4fX2uVZDPuAbOmogwXbeiKrTw3qWxNRfSkvr2t9ehtTWblobysJC/v1RQn7HxXyAS3t521BD98/IUkqhQLNY6QOTGPyYQZZjgQ1Y+YYZhkyZdP0b8DqABwl7Nyco8Q4kwhxKNEdCuAXyNlVrdbCHEgT3VkmFB8etcAHvzDy56kp3FQqJr5q7f2YPHUBgyw35gHVws8bXw4U9a+yQ0FnZOlt7UeHz52PtZ2x+fLyDAjETcgCa8UMUxhkRehSAgx3fDbDQBuyGF1GCYWGmsqsL5nQuzlFurAObq8FNvn+cZBKTrW90zA/gP2fl4mmsdUAgC6JiQTkCKfHDpMIgQyw4dC7R9NuHou9ilimMKiEKLPjShcrf9nTxnA71963bxzDuG+ufBIRyjKbzVGBB8/sT+2svomj8XXdy/DnJYxsZXJMMzwwfUt5r6dYQoLFopyxI4FrbjtgWexxjE9WTGjKc818sK2zYVHp+N3tGzauDzXhAnLPI7QxjA5oVDNi00MRZ/Lbz0YhvHCQlGOmNqU8i+oidnfJC54pajw6JlUh/uvWodxHMwig8aaCpy/rjPf1WAYhglNSYEkKvr2BcvxhxcLx2KFYfJNYc7QmZzDMlFh0lhTke8qFCT3X2WM+M8wDFOwDPkU5bUa6G6uQ3fz8PN9ZJioFGYWRybntDdU5bsKDMMwDDPsmVifCsayeY5ffnuGYfIFrxTliKjJUXNFaUkRGmYzDMMwTJExvrYSv7x2Q8Ga0zPMSIXfyBxTjE6hDMMwDMPER21l9KTXDMMkA5vPMQzDMAzDMAwzomGhiGEYhmEYhmGYEQ0LRQzDMAzDMAzDjGhYKGIYhmEYpqhwc/8dNq8lzzVhGGa4wIEWGIZhIvCBo+bi7ideyHc1GGZEMnHMaDx94xYQRy9iYmZDzwR899fP57saTB5goShHbJkzER/47hPYbqnVmjUpXEK1k5ZMxsPPvhKlagzDRODIvlYc2dea72owzIiFBSImCf79HQvw9zf357saTB5goShHTG2qwb69g1b7/u/FK9FUWxGq/Pdsnx2lWgzDMAzDMIxDeVkJysvK810NJg+wUFSATG2qyXcVGIZhGIZhGGbEwIEWGIZhGIZhGIYZ0fBKEZPmmm09WDRlXL6rwTAMwzAMwzA5hYUiJs2uZVPyXQWGYRiGYRiGyTlsPscwDMMwDMMwzIiGhSKGYRiGYRiGYUY0LBQxDMMwDMMwDDOiYaGIYRiGYRiGYZgRDQtFDMMwDMMwDMOMaFgoYhiGYRiGYRhmRMNCEcMwDMMwDMMwIxoWihiGYRiGYRiGGdGQECLfdcgaInoBwO/zXQ+HRgB/yXclGEYDt0+mUOG2yRQy3D6ZQoXbZjgmCyGa/H4YFkJRIUFE9wsh+vNdD4bxg9snU6hw22QKGW6fTKHCbTM+2HyOYRiGYRiGYZgRDQtFDMMwDMMwDMOMaFgoip+b810BhjHA7ZMpVLhtMoUMt0+mUOG2GRPsU8QwDMMwDMMwzIiGV4oYhmEYhmEYhhnRsFDEMAzDMAzDMMyIhoUiC4joU0T0ZyL6lbRtHhHdQ0QPEdH9RDTgbCci+jARPUlEjxDRAumYk4jot87fSfm4FmZ4EbJtriKiV5ztDxHR1dIxm4jocafdXp6Pa2GGH5r2OZeIfkZEvySi/yGiOum3PU4bfJyINkrbuX0ysRKmbRJRBxG9IfWdH5OO6XP2f9IZ+ykf18MML4iojYh+QES/JqJHieh8Z3sDEd3lzCPvIqKxznaee8aBEIL/Av4ArACwAMCvpG3fBbDZ+bwFwA+lz3cCIACLAdzrbG8A8JTzf6zzeWy+r43/ivsvZNtcBeCbPmWUAvgdgKkAygE8DKAn39fGf8X/p2mfPwew0vl8CoDrnc89TturADDFaZOl3D75L4m/kG2zQ95PKec+Z6wnZ+zfnO9r47/i/wMwEcAC53MtgCecPvKfAFzubL8cwE3OZ557xvDHK0UWCCHuBvCSuhmAq+EcA+CPzuftAD4rUtwDoJ6IJgLYCOAuIcRLQoi/ArgLwKbka88MZ0K2TR0DAJ4UQjwlhHgLwC1ItWOGyQpN+5wB4G7n810AdjiftwO4RQjxphDiaQBPItU2uX0ysROybfrijO11Qoh7RGoG+lkAh8VdV2bkIYT4kxDiAefz3wD8BkALUn3fs23fFgAABPxJREFUZ5zdPoOh9sZzzxhgoSg6FwB4PxE9A+ADAPY421sAPCPt96yzTbedYeJG1zYBYAkRPUxEdxLRLGcbt00mlzyKIaHmKABtzmfuO5l8o2ubADCFiB4kov8jouXOthak2qMLt00mdoioA8B8APcCmCCE+JPz0/8DMMH5zP1nDLBQFJ2zAFwohGgDcCGAT+a5PgzjomubDwCYLISYC+DfAHw9T/VjRjanADibiH6BlFnIW3muD8O46NrmnwC0CyHmA7gIwBdlXziGSQoiqgFwG4ALhBCvyr85q5OcVydGWCiKzkkAvup8/m+kTDwA4Dl4tUutzjbddoaJG9+2KYR4VQjxmvP5DgCjiKgR3DaZHCKEeEwIsUEI0QfgS0j5CwHcdzJ5Rtc2HZPOF53Pv3C2z0CqHbZKRXDbZGKDiEYhJRB9QQjhjunPO2Zxrvnmn53t3H/GAAtF0fkjgJXO5zUAfut8vh3AiU4kkMUAXnGWOr8DYAMRjXWihWxwtjFM3Pi2TSJqdiMjORHpSgC8iJRzcScRTSGicgA7kWrHDBM7RDTe+V8C4CoAbiSv2wHsJKIKIpoCoBMpJ3Zun0xO0LVNImoiolLn81Sk2uZTztj+KhEtdvrWEwF8Iy+VZ4YVTnv6JIDfCCE+KP10O1KKTzj/vyFt57lnlpTluwLFABF9CanIXY1E9CyAawCcDuBfiagMwD8AnOHsfgdSUUCeBPA6gF0AIIR4iYiuR2qAB4DrhBCqkyfDhCJk2zwSwFlEtB/AGwB2Osvv+4noHKQ6ylIAnxJCPJrbK2GGI5r2WUNEu51dvgrgvwBACPEoEd0K4NcA9gPYLYQ44JTD7ZOJlTBtE6lIddcR0dsADgI4Uxq/zwbwaQCjkYr+dWdOLoAZ7iwDcAKAXxLRQ862KwDsBXArEZ0K4PcAjnZ+47lnDFBqTsQwDMMwDMMwDDMyYfM5hmEYhmEYhmFGNCwUMQzDMAzDMAwzomGhiGEYhmEYhmGYEQ0LRQzDMAzDMAzDjGhYKGIYhmEYhmEYZkTDQhHDMAzDMAzDMCMaFooYhmGYEY2bmJNhGIYZubBQxDAMwxQNRHQdEV0gfb+BiM4nokuJ6OdE9AgRvUf6/etE9AsiepSIzpC2v0ZE/0xEDwNYkuPLYBiGYQoMFooYhmGYYuJTAE4EACIqAbATwP8D0AlgAMA8AH1EtMLZ/xQhRB+AfgDnEdE4Z3s1gHuFEHOFED/O5QUwDMMwhUdZvivAMAzDMLYIIfYR0YtENB/ABAAPAlgIYIPzGQBqkBKS7kZKEDrc2d7mbH8RwAEAt+Wy7gzDMEzhwkIRwzAMU2x8AsDJAJqRWjlaC+BGIcR/yjsR0SoA6wAsEUK8TkQ/BFDp/PwPIcSBXFWYYRiGKWzYfI5hGIYpNr4GYBNSK0Tfcf5OIaIaACCiFiIaD2AMgL86AlE3gMX5qjDDMAxT2PBKEcMwDFNUCCHeIqIfAHjZWe35LhHNBPAzIgKA1wAcD+DbAM4kot8AeBzAPfmqM8MwDFPYkBAi33VgGIZhGGucAAsPADhKCPHbfNeHYRiGKX7YfI5hGIYpGoioB8CTAL7PAhHDMAwTF7xSxDAMwzAMwzDMiIZXihiGYRiGYRiGGdGwUMQwDMMwDMMwzIiGhSKGYRiGYRiGYUY0LBQxDMMwDMMwDDOiYaGIYRiGYRiGYZgRzf8HPFolB4G4rFcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(14,4))\n", + "ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])\n", + "ax.axis('tight')\n", + "ax.set_title('tempeatures in Stockholm')\n", + "ax.set_xlabel('year')\n", + "ax.set_ylabel('temperature (C)');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using `numpy.savetxt` we can store a Numpy array to a file in CSV format:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.70398304, 0.98898545, 0.32264658],\n", + " [0.90084036, 0.36902765, 0.74232302],\n", + " [0.75028389, 0.30695582, 0.33015886]])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M = np.random.rand(3,3)\n", + "\n", + "M" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "np.savetxt(\"random-matrix.csv\", M)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.039830359649775771e-01 9.889854525993927448e-01 3.226465761315283620e-01\r\n", + "9.008403594820075799e-01 3.690276521440528645e-01 7.423230185694473793e-01\r\n", + "7.502838869099542896e-01 3.069558247267092366e-01 3.301588630950162973e-01\r\n" + ] + } + ], + "source": [ + "!cat random-matrix.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.70398 0.98899 0.32265\r\n", + "0.90084 0.36903 0.74232\r\n", + "0.75028 0.30696 0.33016\r\n" + ] + } + ], + "source": [ + "np.savetxt(\"random-matrix.csv\", M, fmt='%.5f') # fmt specifies the format\n", + "\n", + "!cat random-matrix.csv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Numpy's native file format" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Useful when storing and reading back numpy array data. Use the functions `numpy.save` and `numpy.load`:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "random-matrix.npy: NumPy array, version 1.0, header length 118\r\n" + ] + } + ], + "source": [ + "np.save(\"random-matrix.npy\", M)\n", + "\n", + "!file random-matrix.npy" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.70398304, 0.98898545, 0.32264658],\n", + " [0.90084036, 0.36902765, 0.74232302],\n", + " [0.75028389, 0.30695582, 0.33015886]])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.load(\"random-matrix.npy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## More properties of the numpy arrays" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.itemsize # bytes per element" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "72" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.nbytes # number of bytes" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.ndim # number of dimensions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Manipulating arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can index elements in an array using square brackets and indices:" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# v is a vector, and has only one dimension, taking one index\n", + "v[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.36902765214405286" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# M is a matrix, or a 2 dimensional array, taking two indices \n", + "M[1,1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional array) " + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.70398304, 0.98898545, 0.32264658],\n", + " [0.90084036, 0.36902765, 0.74232302],\n", + " [0.75028389, 0.30695582, 0.33015886]])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.90084036, 0.36902765, 0.74232302])" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M[1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same thing can be achieved with using `:` instead of an index: " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.90084036, 0.36902765, 0.74232302])" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M[1,:] # row 1" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.98898545, 0.36902765, 0.30695582])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M[:,1] # column 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can assign new values to elements in an array using indexing:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "M[0,0] = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1. , 0.98898545, 0.32264658],\n", + " [0.90084036, 0.36902765, 0.74232302],\n", + " [0.75028389, 0.30695582, 0.33015886]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# also works for rows and columns\n", + "M[1,:] = 0\n", + "M[:,2] = -1" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1. , 0.98898545, -1. ],\n", + " [ 0. , 0. , -1. ],\n", + " [ 0.75028389, 0.30695582, -1. ]])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Index slicing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Index slicing is the technical name for the syntax `M[lower:upper:step]` to extract part of an array:" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5])" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array([1,2,3,4,5])\n", + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3])" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[1:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Array slices are *mutable*: if they are assigned a new value the original array from which the slice was extracted is modified:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, -2, -3, 4, 5])" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[1:3] = [-2,-3]\n", + "\n", + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can omit any of the three parameters in `M[lower:upper:step]`:" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, -2, -3, 4, 5])" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[::] # lower, upper, step all take the default values" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, -3, 5])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[::2] # step is 2, lower and upper defaults to the beginning and end of the array" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, -2, -3])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[:3] # first three elements" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4, 5])" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[3:] # elements from index 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Negative indices counts from the end of the array (positive index from the begining):" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "A = np.array([1,2,3,4,5])" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[-1] # the last element in the array" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([3, 4, 5])" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[-3:] # the last three elements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Index slicing works exactly the same way for multidimensional arrays:" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 2, 3, 4],\n", + " [10, 11, 12, 13, 14],\n", + " [20, 21, 22, 23, 24],\n", + " [30, 31, 32, 33, 34],\n", + " [40, 41, 42, 43, 44]])" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array([[n+m*10 for n in range(5)] for m in range(5)])\n", + "\n", + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[11, 12, 13],\n", + " [21, 22, 23],\n", + " [31, 32, 33]])" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a block from the original array\n", + "A[1:4, 1:4]" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 2, 4],\n", + " [20, 22, 24],\n", + " [40, 42, 44]])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# strides\n", + "A[::2, ::2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fancy indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fancy indexing is the name for when an array or list is used in-place of an index: " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10, 11, 12, 13, 14],\n", + " [20, 21, 22, 23, 24],\n", + " [30, 31, 32, 33, 34]])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row_indices = [1, 2, 3]\n", + "A[row_indices]" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([11, 22, 34])" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "col_indices = [1, 2, -1] # remember, index -1 means the last element\n", + "A[row_indices, col_indices]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also use index masks: If the index mask is an Numpy array of data type `bool`, then an element is selected (True) or not (False) depending on the value of the index mask at the position of each element: " + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4])" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = np.array([n for n in range(5)])\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 2])" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row_mask = np.array([True, False, True, False, False])\n", + "B[row_mask]" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 2])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# same thing\n", + "row_mask = np.array([1,0,1,0,0], dtype=bool)\n", + "B[row_mask]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This feature is very useful to conditionally select elements from an array, using for example comparison operators:" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ,\n", + " 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.arange(0, 10, 0.5)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, False, False, False, False, False, False, False, False,\n", + " False, False, True, True, True, True, False, False, False,\n", + " False, False])" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mask = (5 < x) * (x < 7.5)\n", + "\n", + "mask" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([5.5, 6. , 6.5, 7. ])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x[mask]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Functions for extracting data from arrays and creating arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### where" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The index mask can be converted to position index using the `where` function" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([11, 12, 13, 14]),)" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "indices = np.where(mask)\n", + "\n", + "indices" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([5.5, 6. , 6.5, 7. ])" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x[indices] # this indexing is equivalent to the fancy indexing x[mask]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### diag" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the diag function we can also extract the diagonal and subdiagonals of an array:" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 11, 22, 33, 44])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.diag(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10, 21, 32, 43])" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.diag(A, -1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### take" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `take` function is similar to fancy indexing described above:" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-3, -2, -1, 0, 1, 2])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v2 = np.arange(-3,3)\n", + "v2" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-2, 0, 2])" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row_indices = [1, 3, 5]\n", + "v2[row_indices] # fancy indexing" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-2, 0, 2])" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v2.take(row_indices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But `take` also works on lists and other objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-2, 0, 2])" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.take([-3, -2, -1, 0, 1, 2], row_indices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### choose" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Constructs an array by picking elements from several arrays:" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 5, -2, 5, -2])" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "which = [1, 0, 1, 0]\n", + "choices = [[-2,-2,-2,-2], [5,5,5,5]]\n", + "\n", + "np.choose(which, choices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear algebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vectorizing code is the key to writing efficient numerical calculation with Python/Numpy. That means that as much as possible of a program should be formulated in terms of matrix and vector operations, like matrix-matrix multiplication." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scalar-array operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "v1 = np.arange(0, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 2, 4, 6, 8])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v1 * 2" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3, 4, 5, 6])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v1 + 2" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([[ 0, 2, 4, 6, 8],\n", + " [20, 22, 24, 26, 28],\n", + " [40, 42, 44, 46, 48],\n", + " [60, 62, 64, 66, 68],\n", + " [80, 82, 84, 86, 88]]), array([[ 2, 3, 4, 5, 6],\n", + " [12, 13, 14, 15, 16],\n", + " [22, 23, 24, 25, 26],\n", + " [32, 33, 34, 35, 36],\n", + " [42, 43, 44, 45, 46]]))" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * 2, A + 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Element-wise array-array operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we add, subtract, multiply and divide arrays with each other, the default behaviour is **element-wise** operations:" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 4, 9, 16],\n", + " [ 100, 121, 144, 169, 196],\n", + " [ 400, 441, 484, 529, 576],\n", + " [ 900, 961, 1024, 1089, 1156],\n", + " [1600, 1681, 1764, 1849, 1936]])" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * A # element-wise multiplication" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 4, 9, 16])" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v1 * v1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((5, 5), (5,))" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.shape, v1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 4, 9, 16],\n", + " [ 0, 11, 24, 39, 56],\n", + " [ 0, 21, 44, 69, 96],\n", + " [ 0, 31, 64, 99, 136],\n", + " [ 0, 41, 84, 129, 176]])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * v1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matrix algebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What about matrix mutiplication? There are two ways. We can either use the `dot` function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments: " + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 300, 310, 320, 330, 340],\n", + " [1300, 1360, 1420, 1480, 1540],\n", + " [2300, 2410, 2520, 2630, 2740],\n", + " [3300, 3460, 3620, 3780, 3940],\n", + " [4300, 4510, 4720, 4930, 5140]])" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(A, A)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 30, 130, 230, 330, 430])" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(A, v1)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "30" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(v1, v1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, we can cast the array objects to the type `matrix`. This changes the behavior of the standard arithmetic operators `+, -, *` to use matrix algebra." + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "M = np.matrix(A)\n", + "v = np.matrix(v1).T # make it a column vector" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0],\n", + " [1],\n", + " [2],\n", + " [3],\n", + " [4]])" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[ 300, 310, 320, 330, 340],\n", + " [1300, 1360, 1420, 1480, 1540],\n", + " [2300, 2410, 2520, 2630, 2740],\n", + " [3300, 3460, 3620, 3780, 3940],\n", + " [4300, 4510, 4720, 4930, 5140]])" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M * M" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[ 30],\n", + " [130],\n", + " [230],\n", + " [330],\n", + " [430]])" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M * v" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[30]])" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# inner product\n", + "v.T * v" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[ 30],\n", + " [131],\n", + " [232],\n", + " [333],\n", + " [434]])" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# with matrix objects, standard matrix algebra applies\n", + "v + M*v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we try to add, subtract or multiply objects with incomplatible shapes we get an error:" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [], + "source": [ + "v = np.matrix([1,2,3,4,5,6]).T" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((5, 5), (6, 1))" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.shape(M), np.shape(v)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/numpy/matrixlib/defmatrix.py\u001b[0m in \u001b[0;36m__mul__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0;31m# This promotes 1-D vectors to row vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 220\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 221\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misscalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__rmul__'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mdot\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)" + ] + } + ], + "source": [ + "M * v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "See also the related functions: `inner`, `outer`, `cross`, `kron`, `tensordot`. Try for example `help(kron)`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Array/Matrix transformations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Above we have used the `.T` to transpose the matrix object `v`. We could also have used the `transpose` function to accomplish the same thing. \n", + "\n", + "Other mathematical functions that transform matrix objects are:" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0.+1.j, 0.+2.j],\n", + " [0.+3.j, 0.+4.j]])" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C = np.matrix([[1j, 2j], [3j, 4j]])\n", + "C" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0.-1.j, 0.-2.j],\n", + " [0.-3.j, 0.-4.j]])" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.conjugate(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hermitian conjugate: transpose + conjugate" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0.-1.j, 0.-3.j],\n", + " [0.-2.j, 0.-4.j]])" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C.H" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can extract the real and imaginary parts of complex-valued arrays using `real` and `imag`:" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0., 0.],\n", + " [0., 0.]])" + ] + }, + "execution_count": 109, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.real(C) # same as: C.real" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1., 2.],\n", + " [3., 4.]])" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.imag(C) # same as: C.imag" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or the complex argument and absolute value" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0.78539816, 1.10714872],\n", + " [1.24904577, 1.32581766]])" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.angle(C+1) # heads up MATLAB Users, angle is used instead of arg" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1., 2.],\n", + " [3., 4.]])" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.abs(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matrix computations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Inverse" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[0.+2.j , 0.-1.j ],\n", + " [0.-1.5j, 0.+0.5j]])" + ] + }, + "execution_count": 113, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.inv(C) # equivalent to C.I " + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "matrix([[1.00000000e+00+0.j, 0.00000000e+00+0.j],\n", + " [1.11022302e-16+0.j, 1.00000000e+00+0.j]])" + ] + }, + "execution_count": 114, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C.I * C" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Determinant" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2.0000000000000004+0j)" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.det(C)" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.49999999999999967+0j)" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.det(C.I)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data processing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Often it is useful to store datasets in Numpy arrays. Numpy provides a number of functions to calculate statistics of datasets in arrays. \n", + "\n", + "For example, let's calculate some properties from the Stockholm temperature dataset used above." + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77431, 7)" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# reminder, the tempeature dataset is stored in the data variable:\n", + "np.shape(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### mean" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6.197109684751585" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the temperature data is in column 3\n", + "np.mean(data[:,3])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The daily mean temperature in Stockholm over the last 200 years has been about 6.2 C." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### standard deviations and variance" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(8.282271621340573, 68.59602320966341)" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.std(data[:,3]), np.var(data[:,3])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### min and max" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-25.8" + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# lowest daily average temperature\n", + "data[:,3].min()" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "28.3" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# highest daily average temperature\n", + "data[:,3].max()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### sum, prod, and trace" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 122, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = np.arange(0, 10)\n", + "d" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "45" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sum up all elements\n", + "np.sum(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3628800" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# product of all elements\n", + "np.prod(d+1)" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# cummulative sum\n", + "np.cumsum(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 6, 24, 120, 720, 5040,\n", + " 40320, 362880, 3628800])" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# cummulative product\n", + "np.cumprod(d+1)" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "110" + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# same as: diag(A).sum()\n", + "np.trace(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Computations on subsets of arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can compute with subsets of the data in an array using indexing, fancy indexing, and the other methods of extracting data from an array (described above).\n", + "\n", + "For example, let's go back to the temperature dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1800 1 1 -6.1 -6.1 -6.1 1\r\n", + "1800 1 2 -15.4 -15.4 -15.4 1\r\n", + "1800 1 3 -15.0 -15.0 -15.0 1\r\n" + ] + } + ], + "source": [ + "!head -n 3 stockholm_td_adj.dat" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dataformat is: year, month, day, daily average temperature, low, high, location.\n", + "\n", + "If we are interested in the average temperature only in a particular month, say February, then we can create a index mask and use it to select only the data for that month using:" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.])" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.unique(data[:,1]) # the month column takes values from 1 to 12" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [], + "source": [ + "mask_feb = data[:,1] == 2" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-3.212109570736596" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the temperature data is in column 3\n", + "np.mean(data[mask_feb,3])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With these tools we have very powerful data processing capabilities at our disposal. For example, to extract the average monthly average temperatures for each month of the year only takes a few lines of code: " + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARfElEQVR4nO3da7BkVXnG8f8jEyOCiMqIRhwPWpYWEkQzRVSMQY0JipckpYl4CSoRE8RLtIyjSQrMBzNG8UKZUkGIdyyLeEFnQBAFTLwOighegpJBQeSiCaImGODNh96jh8nMmU2f3t3TZ/1/VV2ne3X3Xu+umnnOOmvvvXaqCklSO2436wIkSdNl8EtSYwx+SWqMwS9JjTH4Jakxq2ZdQB977bVXLSwszLoMSZorF1xwwXVVtXrr9rkI/oWFBTZt2jTrMiRpriS5fFvtTvVIUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGjMXF3BJ82Bh3YaJb3Pz+sMmvk3JEb8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQY1+qR5syk1wRyPaD2OOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjRks+JOckuSaJBcvajsuyZVJLuweTxiqf0nStg054n8XcOg22t9UVQd2j40D9i9J2obBgr+qzgd+PNT2JUnjmcUc/zFJLuqmgu4yg/4lqWnTDv63AfcDDgSuAo7f3geTHJVkU5JN11577bTqk6QVb6rBX1VXV9XNVXULcBJw0BKfPbGq1lbV2tWrV0+vSEla4aYa/EnuuejlHwEXb++zkqRhDLY6Z5JTgUOAvZJcARwLHJLkQKCAzcALhupf2mLSq1mCK1pqvg0W/FV1+DaaTx6qP0lSP165K0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNWTXOl5J8oqqeOOliJO08FtZtmOj2Nq8/bKLb0/jGHfE/f6JVSJKmpteIP8ntgQcCBXy7qq4atCpJ0mB2GPxJDgPeDnwXCLBvkhdU1RlDFydJmrw+I/7jgUdX1XcAktwP2AAY/JI0h/rM8d+wJfQ7lwE3DFSPJGlgfUb8m5JsBD7EaI7/acCXk/wxQFV9eMD6JEkT1if47wBcDfxu9/paYFfgSYx+ERj8kjRHdhj8VfXcaRQiSZqOPmf17Au8CFhY/PmqevJwZUmShtJnquejwMnAx4Fbhi1HkjS0PsH/P1V1wuCVSJKmok/wvyXJscBZwI1bGqvqK4NVJUkaTJ/g/03g2cBj+NVUT3WvJUlzpk/wPw24b1X9YuhiJEnD63Pl7sXAnrd1w0lOSXJNkosXtd01ydlJLu1+3uW2bleStDx9gn9P4FtJPpnk9C2PHt97F3DoVm3rgHOq6v7AOd1rSdIU9ZnqOXacDVfV+UkWtmp+CnBI9/zdwLnAK8fZviRpPH2u3D0vyX2A+1fVp5LcEdhlzP72XrSW/w+Bvbf3wSRHAUcBrFmzZszuJElb2+FUT5LnA6cB7+ia7sXooq5lqapidHbQ9t4/sarWVtXa1atXL7c7SVKnzxz/C4GDgZ8AVNWlwN3H7O/qJPcE6H5eM+Z2JElj6hP8Ny4+lTPJKpYYqe/A6cAR3fMjgI+NuR1J0pj6HNw9L8mrgV2TPA44mtG6PUtKciqjA7l7JbmC0UHi9cCHkhwJXA78ybiFa/4trNsw8W1uXn/YxLcprTR9gn8dcCTwdeAFwMaqOmlHX6qqw7fz1mP7lydJmrQ+wf+iqnoL8MuwT/KSrk2SNGf6zPEfsY2250y4DknSlGx3xJ/kcOAZwL5bXal7J+DHQxcmSRrGUlM9nwOuAvYCjl/UfgNw0ZBFSZKGs93gr6rLGZ158/DplSNJGlqfOX5J0gpi8EtSYwx+SWrMWMGf5LgJ1yFJmpJxR/wXTLQKSdLUjBX8VbXDtXokSTunHS7ZkOSEbTRfD2yqKlfXlKQ502fEfwfgQODS7nEAsA9wZJI3D1ibJGkAfRZpOwA4uKpuBkjyNuCzwCMZrdgpSZojfUb8dwF2X/R6N+Cu3S+CGwepSpI0mD4j/n8ELkxyLhDgUcBrk+wGfGrA2iRJA9hh8FfVyUk2Agd1Ta+uqh90z18xWGWSpEH0Oavn48AHgNOr6mfDlyRJGlKfOf43AL8DfCPJaUmemuQOA9clSRpIn6me8xjdcH0X4DHA84FTgD0Grk2SNIA+B3dJsivwJOBPgYcC7x6yKEnScPrM8X+I0YHdM4G3AudV1S1DFyZJGkafEf/JwOFbLuCSJM23PnP8n0yyf5L9GC3fsKX9PYNWJkkaRJ+pnmOBQ4D9gI3A44F/BQx+SZpDfaZ6ngo8GPhqVT03yd7A+4YtS1ILFtZtmPg2N68/bOLbXGn6nMf/393B3JuS7AFcA9x72LIkSUPpM+LflGRP4CRGd976KfD5QauSJA2mz8Hdo7unb09yJrBHVV00bFmSpKH0uoBri6raPFAdkqQpGfdm65KkOWXwS1Jjdhj8SY5P8qBpFCNJGl6fEf83gROTfDHJXyS589BFSZKGs8Pgr6p3VtXBwJ8BC8BFST6Q5NFDFydJmrxec/zdWvwP7B7XAV8DXpbkgwPWJkkaQJ+1et7EaC3+c4DXVtWXurdel+TbQxYnSZq8PufxXwT87Xbut3vQNtokSTux7QZ/kod2T78GPCDJrd6vqq9U1fUD1iZJGsBSI/7jl3ivGN1/dyxJNgM3ADcDN1XV2nG3JUm6bbYb/FU19Fk7j66q6wbuQ5K0lb43W38Eo1M5f/l578AlSfOpz1k97wXuB1zIaGoGRlM9ywn+As5KUsA7qurEbfR7FHAUwJo1a5bRlSRpsT4j/rXAflVVE+z3kVV1ZZK7A2cn+VZVnb/4A90vgxMB1q5dO8m+JalpfS7guhi4xyQ7raoru5/XAB/B00IlaWqWOp3z44ymZO4EfCPJl4Abt7xfVU8ep8MkuwG3q6obuue/D/z9ONuSJN12S031vGGgPvcGPtJdF7AK+EBVnTlQX5KkrSx1Oud5AEleV1WvXPxektcB543TYVVdBjx4nO9Kkpavzxz/47bR9vhJFyJJmo6l5vj/EjgauG+SxTdXvxPwuaELkyQNY6k5/g8AZwD/AKxb1H5DVf140KokSYNZao7/euB64PBuPf69u8/vnmT3qvrelGqUJE1Qnyt3jwGOA64GbumaCzhguLIkSUPpc+XuS4EHVNWPhi5GO4+FdRsmur3N6w+b6PYkja/PWT3fZzTlI0laAfqM+C8Dzk2ygVtfufvGwaqSJA2mT/B/r3vcvntIkubYDoO/ql4DkGT37vVPhy5KkjScHc7xJ9k/yVeBS4BLklyQ5EHDlyZJGkKfg7snAi+rqvtU1X2AlwMnDVuWJGkofYJ/t6r6zJYXVXUusNtgFUmSBtXrrJ4kfwe8t3v9LEZn+kiS5lCfEf/zgNXAh7vH6q5NkjSH+pzV85/Ai6dQiyRpCpZalvn0pb447q0XJUmztdSI/+GMlms4FfgikKlUJEka1FLBfw9Gd986HHgGsAE4taoumUZhkqRhbPfgblXdXFVnVtURwMOA7zBas+eYqVUnSZq4JQ/uJvl14DBGo/4F4ATgI8OXJUkaylIHd98D7A9sBF5TVRdPrSpJ0mCWGvE/C/gZ8BLgxckvj+0GqKraY+DaJEkDWOqeu30u7pKknd6k7ygH831XOcNdkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxswk+JMcmuTbSb6TZN0sapCkVk09+JPsAvwT8HhgP+DwJPtNuw5JatUsRvwHAd+pqsuq6hfAB4GnzKAOSWpSqmq6HSZPBQ6tqj/vXj8b+O2qOmarzx0FHAWwZs2a37r88svH6m9at1yb137m+fZx0s5mZ7vFY5ILqmrt1u077cHdqjqxqtZW1drVq1fPuhxJWjFmEfxXAvde9Hqfrk2SNAWzCP4vA/dPsm+S2wNPB06fQR2S1KRV0+6wqm5KcgzwSWAX4JSqumTadUhSq6Ye/ABVtRHYOIu+Jal1O+3BXUnSMAx+SWrMTKZ6ND7Pu5e0XI74JakxBr8kNcbgl6TGOMcvSRMyL8fgHPFLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhqz4m/EMi83RpCkaXHEL0mNWfEj/mnxLwtJ88IRvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNSZVNesadijJtcDls65jQvYCrpt1ERO0kvZnJe0LuD87s2nty32qavXWjXMR/CtJkk1VtXbWdUzKStqflbQv4P7szGa9L071SFJjDH5JaozBP30nzrqACVtJ+7OS9gXcn53ZTPfFOX5JaowjfklqjMEvSY0x+Kckyb2TfCbJN5JckuQls65puZLskuSrST4x61qWK8meSU5L8q0k30zy8FnXtBxJ/qr7d3ZxklOT3GHWNfWV5JQk1yS5eFHbXZOcneTS7uddZlnjbbGd/Xl992/toiQfSbLnNGsy+KfnJuDlVbUf8DDghUn2m3FNy/US4JuzLmJC3gKcWVUPBB7MHO9XknsBLwbWVtX+wC7A02db1W3yLuDQrdrWAedU1f2Bc7rX8+Jd/P/9ORvYv6oOAP4deNU0CzL4p6Sqrqqqr3TPb2AULPeabVXjS7IPcBjwzlnXslxJ7gw8CjgZoKp+UVX/Nduqlm0VsGuSVcAdgR/MuJ7equp84MdbNT8FeHf3/N3AH061qGXY1v5U1VlVdVP38gvAPtOsyeCfgSQLwEOAL862kmV5M/DXwC2zLmQC9gWuBf65m7p6Z5LdZl3UuKrqSuANwPeAq4Drq+qs2Va1bHtX1VXd8x8Ce8+ymAl7HnDGNDs0+Kcsye7AvwAvraqfzLqecSR5InBNVV0w61omZBXwUOBtVfUQ4GfM11TCrXTz309h9AvtN4DdkjxrtlVNTo3OQV8R56En+RtG08Dvn2a/Bv8UJfk1RqH//qr68KzrWYaDgScn2Qx8EHhMkvfNtqRluQK4oqq2/AV2GqNfBPPq94D/qKprq+p/gQ8Dj5hxTct1dZJ7AnQ/r5lxPcuW5DnAE4Fn1pQvqDL4pyRJGM0hf7Oq3jjrepajql5VVftU1QKjg4afrqq5HVFW1Q+B7yd5QNf0WOAbMyxpub4HPCzJHbt/d49ljg9Wd04HjuieHwF8bIa1LFuSQxlNlT65qn4+7f4N/uk5GHg2o9Hxhd3jCbMuSr/0IuD9SS4CDgReO+N6xtb95XIa8BXg64z+n8/NcgdJTgU+DzwgyRVJjgTWA49Lcimjv2jWz7LG22I7+/NW4E7A2V0WvH2qNblkgyS1xRG/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH4JSFKLL0JLsirJteOuPNqt9nn0oteHrIRVTLUyGPzSyM+A/ZPs2r1+HHDlMra3J3D0Dj8lzYDBL/3KRkYrjgIcDpy65Y1uPfiPduunfyHJAV37cd166+cmuSzJi7uvrAfu112c8/qubfdFa/6/v7uqVpo6g1/6lQ8CT+9uWnIAt1499TXAV7v1018NvGfRew8E/gA4CDi2W5NpHfDdqjqwql7Rfe4hwEuB/YD7MrqaW5o6g1/qVNVFwAKj0f7Grd5+JPDe7nOfBu6WZI/uvQ1VdWNVXcdo8bDtLRn8paq6oqpuAS7s+pKmbtWsC5B2MqczWsv+EOBuPb9z46LnN7P9/1d9PycNyhG/dGunAK+pqq9v1f5Z4JkwOkMHuG4H91O4gdEiXNJOxxGHtEhVXQGcsI23jgNO6Vbv/Dm/WiJ4e9v5UZJ/626wfQawYdK1SuNydU5JaoxTPZLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNeb/AGb7TuENaeSfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "months = np.arange(1,13)\n", + "monthly_mean = [np.mean(data[data[:,1] == month, 3]) for month in months]\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.bar(months, monthly_mean)\n", + "ax.set_xlabel(\"Month\")\n", + "ax.set_ylabel(\"Monthly avg. temp.\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculations with higher-dimensional data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When functions such as `min`, `max`, etc. are applied to a multidimensional arrays, it is sometimes useful to apply the calculation to the entire array, and sometimes only on a row or column basis. Using the `axis` argument we can specify how these functions should behave: " + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.24069276, 0.31177791, 0.28573237],\n", + " [0.16521973, 0.76434069, 0.96119093],\n", + " [0.92194894, 0.01893095, 0.80473947]])" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "m = np.random.rand(3,3)\n", + "m" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9611909250933929" + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# global max\n", + "m.max()" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.92194894, 0.76434069, 0.96119093])" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# max in each column\n", + "m.max(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.31177791, 0.96119093, 0.92194894])" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# max in each row\n", + "m.max(axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Many other functions and methods in the `array` and `matrix` classes accept the same (optional) `axis` keyword argument." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reshaping, resizing and stacking arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The shape of an Numpy array can be modified without copying the underlaying data, which makes it a fast operation even for large arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 2, 3, 4],\n", + " [10, 11, 12, 13, 14],\n", + " [20, 21, 22, 23, 24],\n", + " [30, 31, 32, 33, 34],\n", + " [40, 41, 42, 43, 44]])" + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [], + "source": [ + "n, m = A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30,\n", + " 31, 32, 33, 34, 40, 41, 42, 43, 44]])" + ] + }, + "execution_count": 140, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = A.reshape((1,n*m))\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 5, 5, 5, 5, 5, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30,\n", + " 31, 32, 33, 34, 40, 41, 42, 43, 44]])" + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B[0,0:5] = 5 # modify the array\n", + "\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 5, 5, 5, 5, 5],\n", + " [10, 11, 12, 13, 14],\n", + " [20, 21, 22, 23, 24],\n", + " [30, 31, 32, 33, 34],\n", + " [40, 41, 42, 43, 44]])" + ] + }, + "execution_count": 144, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A # and the original variable is also changed. B is only a different view of the same data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also use the function `flatten` to make a higher-dimensional array into a vector. But this function create a copy of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 5, 5, 5, 5, 5, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,\n", + " 32, 33, 34, 40, 41, 42, 43, 44])" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = A.flatten()\n", + "\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,\n", + " 32, 33, 34, 40, 41, 42, 43, 44])" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B[0:5] = 10\n", + "\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 5, 5, 5, 5, 5],\n", + " [10, 11, 12, 13, 14],\n", + " [20, 21, 22, 23, 24],\n", + " [30, 31, 32, 33, 34],\n", + " [40, 41, 42, 43, 44]])" + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A # now A has not changed, because B's data is a copy of A's, not refering to the same data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a new dimension: newaxis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With `newaxis`, we can insert new dimensions in an array, for example converting a vector to a column or row matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": 208, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 208, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v = np.array([1,2,3])\n", + "v" + ] + }, + { + "cell_type": "code", + "execution_count": 209, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3,)" + ] + }, + "execution_count": 209, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.shape(v)" + ] + }, + { + "cell_type": "code", + "execution_count": 210, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1],\n", + " [2],\n", + " [3]])" + ] + }, + "execution_count": 210, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# make a column matrix of the vector v\n", + "v[:, np.newaxis]" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 1)" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# column matrix\n", + "v[:,np.newaxis].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 207, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3, 4]])" + ] + }, + "execution_count": 207, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# row matrix\n", + "v[np.newaxis,:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stacking and repeating arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using function `repeat`, `tile`, `vstack`, `hstack`, and `concatenate` we can create larger vectors and matrices from smaller ones:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### tile and repeat" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([[1, 2], [3, 4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# repeat each element 3 times\n", + "np.repeat(a, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 1, 2, 1, 2],\n", + " [3, 4, 3, 4, 3, 4]])" + ] + }, + "execution_count": 159, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# tile the matrix 3 times \n", + "np.tile(a, 3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### concatenate" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [], + "source": [ + "b = np.array([[5, 6]])" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.concatenate((a, b), axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 5],\n", + " [3, 4, 6]])" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.concatenate((a, b.T), axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### hstack and vstack" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.vstack((a,b))" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 5],\n", + " [3, 4, 6]])" + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.hstack((a,b.T))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Copy and \"deep copy\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To achieve high performance, assignments in Python usually do not copy the underlaying objects. This is important for example when objects are passed between functions, to avoid an excessive amount of memory copying when it is not necessary (technical term: pass by reference). " + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 165, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array([[1, 2], [3, 4]])\n", + "\n", + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [], + "source": [ + "# now B is referring to the same array data as A \n", + "B = A " + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10, 2],\n", + " [ 3, 4]])" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# changing B affects A\n", + "B[0,0] = 10\n", + "\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10, 2],\n", + " [ 3, 4]])" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to avoid this behavior, so that when we get a new completely independent object `B` copied from `A`, then we need to do a so-called \"deep copy\" using the function `copy`:" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [], + "source": [ + "B = np.copy(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5, 2],\n", + " [ 3, 4]])" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# now, if we modify B, A is not affected\n", + "B[0,0] = -5\n", + "\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10, 2],\n", + " [ 3, 4]])" + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Iterating over array elements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generally, we want to avoid iterating over the elements of arrays whenever we can (at all costs). The reason is that in a interpreted language like Python (or MATLAB), iterations are really slow compared to vectorized operations. \n", + "\n", + "However, sometimes iterations are unavoidable. For such cases, the Python `for` loop is the most convenient way to iterate over an array:" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "2\n", + "3\n", + "4\n" + ] + } + ], + "source": [ + "v = np.array([1,2,3,4])\n", + "\n", + "for element in v:\n", + " print(element)" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "row [1 2]\n", + "1\n", + "2\n", + "row [3 4]\n", + "3\n", + "4\n" + ] + } + ], + "source": [ + "M = np.array([[1,2], [3,4]])\n", + "\n", + "for row in M:\n", + " print(\"row\", row)\n", + " \n", + " for element in row:\n", + " print(element)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we need to iterate over each element of an array and modify its elements, it is convenient to use the `enumerate` function to obtain both the element and its index in the `for` loop: " + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "row_idx 0 row [1 4]\n", + "col_idx 0 element 1\n", + "col_idx 1 element 4\n", + "row_idx 1 row [ 9 16]\n", + "col_idx 0 element 9\n", + "col_idx 1 element 16\n" + ] + } + ], + "source": [ + "for row_idx, row in enumerate(M):\n", + " print(\"row_idx\", row_idx, \"row\", row)\n", + " \n", + " for col_idx, element in enumerate(row):\n", + " print(\"col_idx\", col_idx, \"element\", element)\n", + " \n", + " # update the matrix M: square each element\n", + " M[row_idx, col_idx] = element ** 2" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 16],\n", + " [ 81, 256]])" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# each element in M is now squared\n", + "M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Vectorizing functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As mentioned several times by now, to get good performance we should try to avoid looping over elements in our vectors and matrices, and instead use vectorized algorithms. The first step in converting a scalar algorithm to a vectorized algorithm is to make sure that the functions we write work with vector inputs." + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [], + "source": [ + "def Theta(x):\n", + " \"\"\"\n", + " Scalar implemenation of the Heaviside step function.\n", + " \"\"\"\n", + " if x >= 0:\n", + " return 1\n", + " else:\n", + " return 0" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTheta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mTheta\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mScalar\u001b[0m \u001b[0mimplemenation\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mHeaviside\u001b[0m \u001b[0mstep\u001b[0m \u001b[0mfunction\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \"\"\"\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()" + ] + } + ], + "source": [ + "Theta(np.array([-3,-2,-1,0,1,2,3]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "OK, that didn't work because we didn't write the `Theta` function so that it can handle a vector input... \n", + "\n", + "To get a vectorized version of Theta we can use the Numpy function `vectorize`. In many cases it can automatically vectorize a function:" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [], + "source": [ + "Theta_vec = np.vectorize(Theta)" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 0, 1, 1, 1, 1])" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Theta_vec(np.array([-3,-2,-1,0,1,2,3]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also implement the function to accept a vector input from the beginning (requires more effort but might give better performance):" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [], + "source": [ + "def Theta(x):\n", + " \"\"\"\n", + " Vector-aware implemenation of the Heaviside step function.\n", + " \"\"\"\n", + " return 1 * (x >= 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 0, 1, 1, 1, 1])" + ] + }, + "execution_count": 186, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Theta(np.array([-3,-2,-1,0,1,2,3]))" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0, 1)" + ] + }, + "execution_count": 187, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# still works for scalars as well\n", + "Theta(-1.2), Theta(2.6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using arrays in conditions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When using arrays in conditions,for example `if` statements and other boolean expressions, one needs to use `any` or `all`, which requires that any or all elements in the array evalutes to `True`:" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 16],\n", + " [ 81, 256]])" + ] + }, + "execution_count": 188, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "at least one element in M is larger than 5\n" + ] + } + ], + "source": [ + "if (M > 5).any():\n", + " print(\"at least one element in M is larger than 5\")\n", + "else:\n", + " print(\"no element in M is larger than 5\")" + ] + }, + { + "cell_type": "code", + "execution_count": 190, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "all elements in M are not larger than 5\n" + ] + } + ], + "source": [ + "if (M > 5).all():\n", + " print(\"all elements in M are larger than 5\")\n", + "else:\n", + " print(\"all elements in M are not larger than 5\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Type casting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since Numpy arrays are *statically typed*, the type of an array does not change once created. But we can explicitly cast an array of some type to another using the `astype` functions (see also the similar `asarray` function). This always create a new array of new type:" + ] + }, + { + "cell_type": "code", + "execution_count": 191, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('int64')" + ] + }, + "execution_count": 191, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M.dtype" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1., 16.],\n", + " [ 81., 256.]])" + ] + }, + "execution_count": 193, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M2 = M.astype(float)\n", + "\n", + "M2" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('float64')" + ] + }, + "execution_count": 194, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M2.dtype" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ True, True],\n", + " [ True, True]])" + ] + }, + "execution_count": 195, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M3 = M.astype(bool)\n", + "\n", + "M3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Vectorizing" + ] + }, + { + "cell_type": "code", + "execution_count": 196, + "metadata": {}, + "outputs": [], + "source": [ + "def hatFunc(x):\n", + " if x < 0:\n", + " return 0.0\n", + " elif 0 <= x < 1:\n", + " return x\n", + " elif 1 <= x < 2:\n", + " return 2 - x\n", + " elif x >= 2:\n", + " return 0.0" + ] + }, + { + "cell_type": "code", + "execution_count": 199, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ,\n", + " 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])" + ] + }, + "execution_count": 199, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 197, + "metadata": {}, + "outputs": [], + "source": [ + "y=list()\n", + "for i in range(len(x)):\n", + " y.append(hatFunc(x[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 198, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0.0,\n", + " 0.5,\n", + " 1.0,\n", + " 0.5,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0]" + ] + }, + "execution_count": 198, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 200, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 200, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAbCElEQVR4nO3df4wc93nf8fdze7t3e+RxVxJpURIlU25oOXTdwupBdZu0dStXpoRGbJwfoICgTm1ESAu1SRO3kOFCMGQUhWM0BdoodeXGSGK4kWU3TomEhuLECloUlSrKlmTrB60zTVpk9IOitMsfu3e7d/v0j5lZrla7t7O7M7PHvc8LILi3O7fz5dzywy+fmXm+5u6IiMjlb2bSAxARkWQo0EVEpoQCXURkSijQRUSmhAJdRGRKzE5qxzt37vS9e/dOavciIpelJ5988nV339XrtYkF+t69ezl69Oikdi8iclkys5P9XlPJRURkSijQRUSmhAJdRGRKKNBFRKaEAl1EZEoo0EVEpoQCXURkSijQRRJw5vwqX3vyFGpHLZOkQBdJwNe/c4pPfPVpvvz4jyY9FNnCFOgiCXjjYhOAf/cnz3P8zIUJj0a2KgW6SAKq9QaLc7MUZmf4V195iuZ6a9JDki1IgS6SgEqtye7SPP/+I+/j6VNV/vO3lic9JNmCFOgiCajUmpQX8tzxvmv4yM3X8VvfepHXL6xOeliyxSjQRRJQqTcpFQsAHHjvbloOr1RXJjwq2WoU6CIJqNYalBfyAJQXgmCv1JqTHJJsQQp0kQRU603KxSjQg98r9cYkhyRbkAJdZEyNtRYXG+uXZuhhsGuGLllToIuMqVoPgrsUBvmO8PfoeZGsKNBFxlQNSyulsHY+n89RzOeo1FRykWwp0EXGFJVWolILBHV0zdAlawp0kTG1A33hUqCXinnV0CVzCnSRMVXq0Qy90H6uvJBvPy+SFQW6yJiiWnmpa4Ze1QxdMqZAFxlTtd5kxmBxbrb9XLlY0HXokjkFusiYKrUmpWKemRlrP1deUA1dsqdAFxlTpd5s3+4fKS3kWV1rsdJcn9CoZCtSoIuMqVJrtG8qikQnSDVLlywp0EXGdK7efMsli6B+LjIZCnSRMVU6GnNF1M9FJiFWoJvZATM7ZmbLZnZvj9dvMLNHzew7ZvaMmd2R/FBFNqfopGin6BJGBbpkaWCgm1kOeAC4HdgP3GVm+7s2+7fAw+7+fuAQ8NtJD1RkM1pvOedWmu0+LpHoJGlVJRfJUJwZ+i3Asrsfd/cG8BBwsGsbB3aEj0vAXyY3RJHN6/xKE3f6llzUz0WyFCfQrwNe6vj6VPhcp08Dv2Bmp4AjwL/o9UZmdreZHTWzo2fOnBlhuCKbS68+LgALhRz5nKnkIplK6qToXcDvuvse4A7gS2b2tvd29wfdfcndl3bt2pXQrkUmp93HpSvQzSxo0KUZumQoTqCfBq7v+HpP+FynjwMPA7j7/wXmgZ1JDFBkM2v3cSkW3vaa+rlI1uIE+hPAPjO70cwKBCc9D3dt8yPgVgAz+3GCQFdNRaZetc8MPXhO/VwkWwMD3d3XgHuAR4DnCa5medbM7jezO8PNfh34JTN7GvgD4Bfd3dMatMhm0Wtxi0hZPdElY7ODNwF3P0JwsrPzufs6Hj8H/ESyQxPZ/KLA7r4OHYJr0V945XzWQ5ItTHeKioyhUm+wODfLbO7tf5XKxYIuW5RMKdBFxlCtN9+ysEWn8kKeC6trNNdbGY9KtioFusgYqj1u+49EJ0o1S5esKNBFxlDp0WkxUlKDLsmYAl1kDJVa4y2LQ3e61M9FgS7ZUKCLjGHDGnq7n4uuRZdsKNBFRuTuVGpv74UeUclFsqZAFxnRxcY6ay3vW0Mvqye6ZEyBLjKiqI9Lvxr64nweM9SgSzKjQBcZUfsu0T4z9NyMsWM+T7WmGrpkQ4EuMqJ2Y64+NXQIyi6aoUtWFOgiI7q0uEXvkguoQZdkS4EuMqKoNW6/k6IApYWCZuiSGQW6yIiikku/W/8hmKGrhi5ZUaCLjKhaazI3O8N8Ptd3G9XQJUsKdJERVWr9+7hEysU81XqTVkvrvUj6FOgiI6rU+/dxiZQWCrjD+dW1jEYlW5kCXWRElVr/Pi6RqL6uxaIlCwp0kRFV6/37uESi19/UiVHJgAJdZESxauha5EIypEAXGVGl3tjwpiLoaNClQJcMKNBFRrDSXGel2drwGnSAUnjSVNeiSxYU6CIjaPdxiXlSVLf/SxYU6CIjaPdxGXDZYmF2hm2FnEoukgkFusgI2r3QB8zQg20KmqFLJhToIiOI08clUirmta6oZEKBLjKCyhCBXl5QC13JhgJdZATVWryTotE2qqFLFhToIiOo1BvkZoztc7MDty0VC7qxSDKhQBcZQaUW3PZvZgO3LRXzVGtN3NVxUdKlQBcZQaU+uDFXpLyQp7Heot5cT3lUstUp0EVGUK0NbswVKevmIsmIAl1kBHH6uETa/VwU6JIyBbrICCpDzNCjfi4VXYsuKYsV6GZ2wMyOmdmymd3bZ5ufN7PnzOxZM/vvyQ5TZHOpxljcItJuoasZuqRs4DVXZpYDHgD+IXAKeMLMDrv7cx3b7AM+CfyEu79pZu9Ia8Aik9Zcb3F+dW1gH5eIWuhKVuLM0G8Blt39uLs3gIeAg13b/BLwgLu/CeDuryU7TJHN41zMTouRKPhVQ5e0xQn064CXOr4+FT7X6d3Au83s/5jZY2Z2oNcbmdndZnbUzI6eOXNmtBGLTNgwfVwA5vMzFGZnVEOX1CV1UnQW2Ad8ELgL+IKZlbs3cvcH3X3J3Zd27dqV0K5FstXu4xJzhm5mlMObi0TSFCfQTwPXd3y9J3yu0yngsLs33f2HwPcJAl5k6rT7uMScoYMadEk24gT6E8A+M7vRzArAIeBw1zZ/RDA7x8x2EpRgjic4TpFNIyqdxL0OHYI6uvq5SNoGBrq7rwH3AI8AzwMPu/uzZna/md0ZbvYIcNbMngMeBf61u59Na9Aik1QZYYa+o6iOi5K+wa3iAHc/Ahzpeu6+jscO/Fr4S2SqRYG+Y8iSy3N/WU1rSCKA7hQVGVq13mTH/Cy5mcGdFiNlzdAlAwp0kSFVavH7uETKC3lqjXVW19RxUdKjQBcZUqXejH1TUaQU/gOgE6OSJgW6yJAqtWbsm4oi0QlUXYsuaVKgiwypWm+OVHIB9XORdCnQRYZUqTWGumQR1M9FsqFAFxlCq+VU6yOUXNqLXKifi6RHgS4yhAuNNVoev9NiJOr7opOikiYFusgQopOaw87QF+eC69ZVcpE0KdBFhtC+7X/Ik6JmRqmY1wxdUqVAFxnCpcZcw83QIZjV6yoXSZMCXWQIozTmipSKeZ0UlVQp0EWGMOziFp3KCyq5SLoU6CJDqIYz7GFPikLYoEsnRSVFCnSRIVRqTRYKOeZmc0N/b3mhoJKLpEqBLjKEygg3FUVKxTznVtZYb3nCoxIJKNBFhlCpDd/HJRJdGXNOdXRJiQJdZAjn6s2RrnABNeiS9CnQRYZQqTdGLrlcatClOrqkQ4EuMoSg5DJiDb3doEszdEmHAl0kJncPToqOGOjtRS5UcpGUKNBFYlpptmistdqlk2GVtQydpEyBLhLTOH1cAHbMzwbvo5KLpESBLhLTOH1cAGZzMyzOzbb/YRBJmgJdJKYo0EetoUffq4WiJS0KdJGYqlHJZcQaOgTlGl2HLmlRoIvEdGlxi9Fn6OWi+rlIehToIjFFM+txAr2kGbqkSIEuElOl1qSQm6GYH77TYqRcVA1d0qNAF4mpGt5UZGYjv0dUQ3dXx0VJngJdJKbqGH1cIuVigfWWc2F1LaFRiVyiQBeJqVIbvdNiRP1cJE0KdJGYxmnMFVE/F0mTAl0kpmq9SWmMa9BB/VwkXQp0kZgqtcbYM/SoBq+Si6QhVqCb2QEzO2Zmy2Z27wbb/YyZuZktJTdEkclrrLW42Fgfu4Z+adUi3VwkyRsY6GaWAx4Abgf2A3eZ2f4e2y0CvwI8nvQgRSatmsBNRaAZuqQrzgz9FmDZ3Y+7ewN4CDjYY7vPAJ8FVhIcn8imEPVxKY24QHRkPp9jPj+jGrqkIk6gXwe81PH1qfC5NjO7Gbje3f9kozcys7vN7KiZHT1z5szQgxWZlHFb53ZSPxdJy9gnRc1sBvhN4NcHbevuD7r7krsv7dq1a9xdi2QmicZckfJCXiUXSUWcQD8NXN/x9Z7wucgi8FeBvzCzE8AHgMM6MSrTpN2Ya8zLFiGoo6tBl6QhTqA/AewzsxvNrAAcAg5HL7p71d13uvted98LPAbc6e5HUxmxyARENe9xFreIlLXIhaRkYKC7+xpwD/AI8DzwsLs/a2b3m9mdaQ9QZDOo1hqYweLc7NjvVS4WdNmipCLWp9PdjwBHup67r8+2Hxx/WCKbS6XepFTMMzMzeqfFiGrokhbdKSoSQxKNuSKlhTyray1WmuuJvJ9IRIEuEkOl3hz7GvRIdGJV16JL0hToIjFUa43kZui6W1RSokAXiaFSH791bqTdz0U3F0nCFOgiMSRaQ49m6Cq5SMIU6CIDrLeccysJ1tDDGbquRZekKdBFBji/0sQ9mT4ucGmRC12LLklToIsMkGQfF4BthRyzM6aTopI4BbrIAJWEeqFHzCy4uUg1dEmYAl1kgHYflwQac0VKRfVzkeQp0EUGiC4vLCVUQ4egjq4auiRNgS4yQFLLz3UqF9XPRZKnQBcZIAreJGfoJTXokhQo0EUGqNSabJ+bJZ9L7q9LuVjgnE6KSsIU6CIDVOqNRGfnEMz2z6+u0VxvJfq+srUp0EUGqNaaiQd6VI/XLF2SpEAXGaBSb3LFtnQCXdeiS5IU6CIDVGqNRBaH7qQWupIGBbrIANV6M5HFoTtF/VyquhZdEqRAF9mAuyfaOjcSvd+bFzVDl+Qo0EU2cLGxzlrLE72pCDpa6KqGLglSoItsILrtP+ka+uJ8HjOdFJVkKdBFNtBuzJXwDD03Y+yYz1PVMnSSIAW6yAaqKdz2H1ELXUmaAl1kA0n3Qu9ULuZVQ5dEKdBFNtBerSjhGjpAaaGg69AlUQp0kQ1EPcvTmKGXNEOXhCnQRTZQrTWZm51hPp9L/L2Dnug6KSrJUaCLbKBSa6YyO4dg1l+tN2m1PJX3l61HgS6ygUo9+T4ukVIxT8vh/OpaKu8vW48CXWQDlVryfVwi7X4uOjEqCVGgi2ygWk++j0skel8tFi1JUaCLbCDtGnq0D5EkKNBFNlCpN9qlkaRpkQtJWqxAN7MDZnbMzJbN7N4er/+amT1nZs+Y2Z+b2TuTH6pItlaa66w0W6nc9g9QKkY1dJVcJBkDA93McsADwO3AfuAuM9vftdl3gCV3/2vA14DfSHqgIlmrpnjbP1zqD6ObiyQpcWbotwDL7n7c3RvAQ8DBzg3c/VF3r4VfPgbsSXaYItlrB3pKly0WZmfYVsiphi6JiRPo1wEvdXx9Knyun48D3+j1gpndbWZHzezomTNn4o9SZAIqKXZajJSK6rgoyUn0pKiZ/QKwBHyu1+vu/qC7L7n70q5du5LctUji2otbpFRyATXokmTNxtjmNHB9x9d7wufewsw+BHwK+HvuvprM8EQmJ5o5pzlDD1ro6qSoJCPODP0JYJ+Z3WhmBeAQcLhzAzN7P/BfgTvd/bXkhymSvegOzjRn6OWFvGbokpiBge7ua8A9wCPA88DD7v6smd1vZneGm30O2A581cyeMrPDfd5O5LJRqTfIzRjb5+L8R3Y0WrVIkhTrk+ruR4AjXc/d1/H4QwmPS2TiKrXgtn8zS20fpWKBaq2Ju6e6H9kadKeoSB+VenqNuSLlhTyN9Rb15nqq+5GtQYEu0ke1ll5jrki7QZfq6JIABbpIH2n2cYmoQZckSYEu0kclgxl6u5+LToxKAhToIn1UU1zcIhLN0HUtuiRBgS7Sw9p6i/Ora6n1cYmo5CJJUqCL9HBuJVjnM82biuDSXai6Fl2SoEAX6SGLPi4AxXyOQm5GM3RJhAJdpIdoxrwj5ZOiZkZpQf1cJBkKdJEe2n1cUg70aB+aoUsSFOgiPVTqUckl3ZOiwT4U6JIMBbpID5UMZ+ilYkEnRSURCnSRHqJAT7uGDsEMXQtFSxIU6CI9VOtNdszPkptJvwNiWcvQSUIU6CI9VGrp93GJlBfy1BrrNNZamexPppcCXaSHSr2Z+jXokdKC+rlIMhToIj28XFnhHYtzmewrOvGqa9FlXAp0kS6tlnPyjYvsvWpbJvtTPxdJigJdpMtr51dZabZ4585sAr2kRS4kIQp0kS4nz14EYO9VC5nsL+roqCtdZFwKdJEuJ8/WADIruVy5PQj0V8+tZLI/mV4KdJEuJ85eZHbGuKY0n8n+ts/Ncm1pnu+/ej6T/cn0UqCLdDl5tsb1Vy4wm8vur8dNuxc59ooCXcajQBfpcuLsRd6ZUf08ctPuHfzgzAWa67q5SEanQBfp4O6cPFvLrH4euWn3dprrzg9fv5jpfmW6KNBFOrxxscGF1bXsZ+hX7wDgBZVdZAwKdJEOJzK+wiXyV96xjdyMceyVc5nuV6aLAl2kQ3QN+g0Zz9DnZnO8a+c2nRiVsSjQRTqcOFtjxmDPFcXM9/3u3Ysc06WLMgYFukiHk2cvcm25yNxsLvN9v+fqRV56o86F1bXM9y3TQYEu0uHEBK5widy0exFANxjJyBToIh1+NIFr0CPv2R1c6aI6uoxKgS4SqtaavFlrTmyGvueKIguFnAJdRqZAFwmdfGMyV7hEZmaMfVcv8oIuXZQRKdBFQpO6Br3Te64Oerq4+8TGIJevWIFuZgfM7JiZLZvZvT1enzOzr4SvP25me5MeqEjaToa33d9w5WRm6BCcGH2z1uTMhdWJjUEuXwMD3cxywAPA7cB+4C4z29+12ceBN939x4D/CHw26YGKpO3E2Rq7d8xTLGR/yWLkPeGVLqqjyyhmY2xzC7Ds7scBzOwh4CDwXMc2B4FPh4+/BvyWmZmn8P/Gh594iS/87+NJv60Ipyt13nddaaJjiC5d/MRXn2bHfH6iY5H0/Mtb9/FTf/3axN83TqBfB7zU8fUp4G/228bd18ysClwFvN65kZndDdwNcMMNN4w04PJCnn1Xbx/pe0U2su/q7fz0+/dMdAxXbZ/jnr//Yxx//cJExyHpitaRTVqcQE+Muz8IPAiwtLQ00uz9tvfu5rb37k50XCKbySc+fNOkhyCXqTgnRU8D13d8vSd8ruc2ZjYLlICzSQxQRETiiRPoTwD7zOxGMysAh4DDXdscBj4aPv5Z4Ftp1M9FRKS/gSWXsCZ+D/AIkAO+6O7Pmtn9wFF3Pwz8DvAlM1sG3iAIfRERyVCsGrq7HwGOdD13X8fjFeDnkh2aiIgMQ3eKiohMCQW6iMiUUKCLiEwJBbqIyJSwSV1daGZngJMjfvtOuu5C3SQ0ruFoXMPbrGPTuIYzzrje6e67er0wsUAfh5kddfelSY+jm8Y1HI1reJt1bBrXcNIal0ouIiJTQoEuIjIlLtdAf3DSA+hD4xqOxjW8zTo2jWs4qYzrsqyhi4jI212uM3QREemiQBcRmRKbNtDN7OfM7Fkza5nZUtdrnwwXpD5mZh/u8/03hgtWL4cLWBdSGONXzOyp8NcJM3uqz3YnzOy74XZHkx5Hj/192sxOd4ztjj7bbbj4dwrj+pyZvWBmz5jZ182s3Ge7TI7XZlz83MyuN7NHzey58PP/Kz22+aCZVTt+vvf1eq8Uxrbhz8UC/yk8Xs+Y2c0ZjOmmjuPwlJmdM7Nf7doms+NlZl80s9fM7Hsdz11pZt80sxfD36/o870fDbd50cw+2mubgdx9U/4Cfhy4CfgLYKnj+f3A08AccCPwAyDX4/sfBg6Fjz8P/LOUx/sfgPv6vHYC2Jnhsfs08IkB2+TCY/cuoBAe0/0pj+s2YDZ8/Fngs5M6XnH+/MA/Bz4fPj4EfCWDn901wM3h40Xg+z3G9UHgj7P6PMX9uQB3AN8ADPgA8HjG48sBrxDceDOR4wX8XeBm4Hsdz/0GcG/4+N5en3vgSuB4+PsV4eMrht3/pp2hu/vz7n6sx0sHgYfcfdXdfwgsEyxk3WZmBvwDggWrAX4P+MdpjTXc388Df5DWPlLQXvzb3RtAtPh3atz9T919LfzyMYLVryYlzp//IMFnB4LP0q3hzzo17v6yu387fHweeJ5gzd7LwUHg9z3wGFA2s2sy3P+twA/cfdQ70Mfm7v+LYE2ITp2fo35Z9GHgm+7+hru/CXwTODDs/jdtoG+g16LV3R/4q4BKR3j02iZJfwd41d1f7PO6A39qZk+GC2Vn4Z7wv71f7PNfvDjHMU0fI5jN9ZLF8Yrz53/L4udAtPh5JsISz/uBx3u8/LfM7Gkz+4aZvTejIQ36uUz6M3WI/pOqSRyvyNXu/nL4+BXg6h7bJHLsMl0kupuZ/RnQa8XnT7n7/8x6PL3EHONdbDw7/0l3P21m7wC+aWYvhP+SpzIu4L8AnyH4C/gZgnLQx8bZXxLjio6XmX0KWAO+3OdtEj9elxsz2w78D+BX3f1c18vfJigrXAjPj/wRsC+DYW3an0t4juxO4JM9Xp7U8Xobd3czS+1a8YkGurt/aIRvi7No9VmC/+7NhjOrXtskMkYLFsX+CPA3NniP0+Hvr5nZ1wn+uz/WX4S4x87MvgD8cY+X4hzHxMdlZr8I/CPgVg+Lhz3eI/Hj1cMwi5+fsgwXPzezPEGYf9nd/7D79c6Ad/cjZvbbZrbT3VNtQhXj55LKZyqm24Fvu/ur3S9M6nh1eNXMrnH3l8MS1Gs9tjlNUOuP7CE4fziUy7Hkchg4FF6BcCPBv7T/r3ODMCgeJViwGoIFrNOa8X8IeMHdT/V60cy2mdli9JjgxOD3em2blK665U/32V+cxb+THtcB4N8Ad7p7rc82WR2vTbn4eVij/x3geXf/zT7b7I5q+WZ2C8Hf41T/oYn5czkM/JPwapcPANWOUkPa+v4veRLHq0vn56hfFj0C3GZmV4Ql0tvC54aTxZnfUX4RBNEpYBV4FXik47VPEVyhcAy4veP5I8C14eN3EQT9MvBVYC6lcf4u8Mtdz10LHOkYx9Phr2cJSg9pH7svAd8Fngk/TNd0jyv8+g6Cqyh+kNG4lgnqhE+Fvz7fPa4sj1evPz9wP8E/OADz4WdnOfwsvSuDY/STBKWyZzqO0x3AL0efM+Ce8Ng8TXBy+W9nMK6eP5eucRnwQHg8v0vH1Wkpj20bQUCXOp6byPEi+EflZaAZ5tfHCc67/DnwIvBnwJXhtkvAf+v43o+Fn7Vl4J+Osn/d+i8iMiUux5KLiIj0oEAXEZkSCnQRkSmhQBcRmRIKdBGRKaFAFxGZEgp0EZEp8f8B/kv/EEB3oxQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "x=np.linspace(-10.,10,100)\n", + "y=list(map(hatFunc,x))\n", + "plt.plot(x,y)" + ] + }, + { + "cell_type": "code", + "execution_count": 202, + "metadata": {}, + "outputs": [], + "source": [ + "y=x.copy()\n", + "y[x<0]=0.\n", + "index=np.logical_and(0.<=x,x<1)\n", + "y[index]=x[index]" + ] + }, + { + "cell_type": "code", + "execution_count": 203, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def hatFunc_vect(x):\n", + " y=x.copy()\n", + " y[x<0]=0.\n", + " index=np.logical_and(0.<=x,x<1.)\n", + " y[index]=x[index]\n", + " index=np.logical_and(1.<=x,x<2.)\n", + " y[index]=2.-x[index]\n", + " y[x>=2]=0.\n", + " \n", + " return y\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 204, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 204, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAa8ElEQVR4nO3da4xj93nf8e9Dzm3J2dsMuZL2JnLiTZTNrTYWihsFiGO5huS60ou2gRQkqRs3CxRR6yBKC6Uu1EJ9lbpwisBKk3UaJHXSqIp727YbyKmt1kFRGVrFlhpdsRmO9ibvkjOzN87MzoVPX5BnRHGHMxzOIQ95+PsAAobkWfIhtPvbs//znOdv7o6IiPS/RNQFiIhIOBToIiIxoUAXEYkJBbqISEwo0EVEYkKBLiISE1sGupn9rpldNbO/aPK6mdlvmNk5M3vNzD4SfpkiIrKVVs7Qfw94aJPXHwaO1f47CfybnZclIiLbNbTVAe7+TTPLbXLIo8C/8+odSi+Z2T4zu8fd39vsfTOZjOdym72tiIg0euWVV0runt3otS0DvQWHgAt1jy/Wnts00HO5HGfPng3h40VEBoeZvdvsta5eFDWzk2Z21szOFovFbn60iEjshRHol4AjdY8P1567g7ufcvcT7n4im93wXwwiItKmMAL9NPBztW6XjwLXt1o/FxGR8G25hm5mfwR8DMiY2UXgnwHDAO7+W8AZ4FPAOWAB+LudKlZERJprpcvl8S1ed+AXQ6tIRETaojtFRURiQoEuIhITCnSRHvDVVy5y5cZS1GVIn1Ogi0Ts8rVFfuWPX+XkV15hebUSdTnSxxToIhErlMoAvHrhGv/qa29HXI30MwW6SMSma4H+yeN3ceqb07z49tWIK5J+pUAXiVihWCY1kuQ3Hv8w9929myeff5XvXtd6umyfAl0kYoXSLXKTacaGk3zppz/CjcUV/uClpvOXRJpSoItErFAqk8+mAfjQgXHunUzxl8VbEVcl/UiBLhKhlbUKF+YXmcqk15/LZ8bXL5SKbIcCXSRCF+YWWKs4+Q8EeopCqUyl4hFWJv1IgS4SoeBMPN9whn57tcJ7utFItkmBLhKhjQO9+nOhqGUX2R4FukiEpktl9qeG2ZcaWX9uqnaBtFDShVHZHgW6SIQKxfIHzs4BDuweJTWSpFBaiKgq6VcKdJEIzcyWyWfGP/CcmZGbTOsMXbZNgS4SkYXlVd67vrS+xFIvn02rdVG2TYEuEpGZ2pJKbvLOQJ/KpLkwv6jpi7ItCnSRiGzU4RLIZ9KsVZwL81pHl9Yp0EUiEqyR5zKpO15T66K0Q4EuEpFCaYF79o6RGrlzr/b1QNc6umyDAl0kIoXSrQ2XWwD2pUbYnxpen5Uu0goFukhECqU7e9Dr5TNpZhTosg0KdJEIXFtYZn5hZYtA19RF2R4FukgEgqWUjVoWA1PZNN+9sUT59mq3ypI+p0AXiUDQvbLRTUWB4Ox9ZlZn6dIaBbpIBGZmyyQTxpGJO1sWA8HZu5ZdpFUKdJEITJfKHJ1IMZxs/kcw6E9XL7q0SoEuEoGNpiw2So0Mcc/eMZ2hS8sU6CJd5u4USuVNL4gG8pk0Ba2hS4sU6CJdduXGbRZX1shvckE0kM9o6qK0ToEu0mXTtRkuU1ssuUA10K8trDBfXu50WRIDLQW6mT1kZm+b2Tkze2qD14+a2Ytm9m0ze83MPhV+qSLxsNmUxUbBMRoBIK3YMtDNLAk8CzwMHAceN7PjDYf9U+B5d/8w8Bjwm2EXKhIXhWKZseEEd+8Z2/JYDemS7WjlDP1+4Jy7T7v7MvAc8GjDMQ7sqf28F7gcXoki8TIzW70gmkjYlscemUiRTJi2o5OW3Dm3806HgAt1jy8CP9pwzD8HvmZm/wBIA58IpTqRGJoulfm+u3a3dOxwMsHRidT67kYimwnroujjwO+5+2HgU8BXzOyO9zazk2Z21szOFovFkD5apH+srlU4P7vQ0vp5IJ9Jaw1dWtJKoF8CjtQ9Plx7rt5ngecB3P3/AmNApvGN3P2Uu59w9xPZbLa9ikX62MX5RVYrvu1AnymVqVS8g5VJHLQS6C8Dx8wsb2YjVC96nm445jzwIICZfT/VQNcpuEiD4OLmZkO5GuUyaRZX1rhyc6lTZUlMbBno7r4KPAG8ALxJtZvldTN7xsweqR32JPALZvYq8EfAZ9xdpxMiDabXWxbHW/41U9pfVFrUykVR3P0McKbhuafrfn4DeCDc0kTip1C6xZ6xIfanhlv+NfW96D/2oTtWMkXW6U5RkS6aKS2Qz45jtnXLYuDuPWOMDSe0HZ1sSYEu0kWFUrmlW/7rJRJGblIzXWRrCnSRLllaWePStcVtdbgENKRLWqFAF+mSYCu5XJuBfn5ugZW1SthlSYwo0EW6ZH0f0TYDfbXiXJxfDLssiREFukiXBC2L7ZyhB33rujAqm1Ggi3RJoVTmwO5Rxkdb6hb+gKBvXSMAZDMKdJEumSltvY9oM/tTw+zdNcx0UVMXpTkFukiXFErlbd3yX8/MyGXS6xdWRTaiQBfpgusLK8yWl9s+Q4fqxVTd/i+bUaCLdEEhaFmcbD/Q85k0l68vsbi8FlZZEjMKdJEuCHYcanfJBd6f6fLunM7SZWMKdJEuKBTLJKy6pVy78pq6KFtQoIt0QWF2gcP7U4wOJdt+j/qpiyIbUaCLdEGhdGtHF0QB0qNDHNg9qpku0pQCXaTD3J1Csf0e9Hoa0iWbUaCLdFjx5m3Ky2uhBPpUNq3b/6UpBbpIh72/7Vw4Z+iz5WWuL6zs+L0kfhToIh02E2qgV2e6FHTHqGxAgS7SYYVSmZGhBAf37drxe+Uzqdp7aqaL3EmBLtJh06UyuckUyUTr+4g2c2QiRcLUiy4bU6CLdFihVN7RLf/1RoeSHN6fUi+6bEiBLtJBaxXn3dky+R3c8t8or6mL0oQCXaSDLs0vsrLmbW0710y+NnXR3UN7T4kHBbpIB4UxZbHRVDZNeXmN4s3bob2nxIMCXaSDCsVgyuJ4aO8Z/OWgdXRppEAX6aBCqczu0SEy4yOhvef61EUFujRQoIt00HSpTC6TxmznLYuBg/t2MTKU0AgAuYMCXaSDCjvYGLqZZMLITab4S/WiSwMFukiHLK2scenaYuiBDmpdlI0p0EU65MLcAu4723aumXxmnHdny6xV1Loo71Ogi3RImFMWG+UzKVbWnEvzi6G/t/QvBbpIhwRdKLmOBHq1DXJaQ7qkTkuBbmYPmdnbZnbOzJ5qcsxPmdkbZva6mf37cMsU6T+FYpnM+Ah7xoZDf+/grF+dLlJvaKsDzCwJPAv8NeAi8LKZnXb3N+qOOQb8KvCAu8+b2YFOFSzSLzrR4RLIjI+we3RIvejyAa2cod8PnHP3aXdfBp4DHm045heAZ919HsDdr4Zbpkj/Kcx2LtDNjHw2rbtF5QNaCfRDwIW6xxdrz9X7XuB7zez/mNlLZvbQRm9kZifN7KyZnS0Wi+1VLNIHbi6tULx5e32tuxNyk9owWj4orIuiQ8Ax4GPA48CXzWxf40HufsrdT7j7iWw2G9JHi/SemdIC0JkOl0A+k+bStUWWVtY69hnSX1oJ9EvAkbrHh2vP1bsInHb3FXcvAO9QDXiRgRR0n3SiBz0wlU3jDufnFjr2GdJfWgn0l4FjZpY3sxHgMeB0wzH/herZOWaWoboEMx1inSJ9pVAqYwZHJ1Id+wwN6ZJGWwa6u68CTwAvAG8Cz7v762b2jJk9UjvsBWDWzN4AXgT+kbvPdqpokV5XKJU5uHcXY8PJjn1GToEuDbZsWwRw9zPAmYbnnq772YFfrv0nMvBmSuWOLrcA7BkbJjM+qg2jZZ3uFBUJmbsz3cEe9Hr5TEpn6LJOgS4SstnyMjeXVrsU6OpFl/cp0EVC1skZLo3ymXFKt25zc2ml458lvU+BLhKyYE07H+LG0M28P9NFrYuiQBcJ3XSpzHDSOLx/V8c/K7jwqqmLAgp0kdDNlMocnUgxlOz8H6+jEynM1LooVQp0kZBVpyx2boZLvbHhJAf37lKgC6BAFwlVpeIUZjvfg15vKqshXVKlQBcJ0eXriyyvVsh14YJoIJ+pBnr1/j4ZZAp0kRAVOriPaDP5TJqbS6vMlpe79pnSmxToIiEKAr2bSy4a0iUBBbpIiAqlMqmRJAd2j3btM9cDXTNdBp4CXSREwT6iZta1zzy0bxfDSdMIAFGgi4SpkxtDNzOUTHB0IkVBNxcNPAW6SEiWVytcmFvoeqBDdaaLbv8XBbpISM7PLVDx7na4BKayaQqzZSoVtS4OMgW6SEhmImhZDOQm0yyvVrh8fbHrny29Q4EuEpIoetADal0UUKCLhGa6VGYiPcK+1EjXPzvoe1egDzYFukhICqVb5CZTkXz2gd2jpEaSCvQBp0AXCUk3pyw2MrP1mS4yuBToIiEo317lyo3bXb3lv5ECXRToIiGYmY3ugmggn0lzYW6B5dVKZDVItBToIiGIssMlkM+kqXi1H14GkwJdJATBYKxuzkFvpNZFUaCLhKBQKnPP3jF2jSQjqyEI9BkF+sBSoIuEYDqCoVyN9qVGmEiPaOriAFOgi4RgZjb6QIeg00VTFweVAl1kh+bLy1xbWOmJQM9NppnWRhcDS4EuskPTEWw718xUNs3Vm7cp316NuhSJgAJdZIeCrpIoO1wC6nQZbAp0kR0qlG6RTBhHJqKZ41JvvdNlVoE+iFoKdDN7yMzeNrNzZvbUJsf9TTNzMzsRXokiva1QKnN0IsVwMvrzo+BfCdowejBt+TvQzJLAs8DDwHHgcTM7vsFxu4HPAd8Ku0iRXlYoRbPt3EZ2jSS5Z++YllwGVCunFPcD59x92t2XgeeARzc47l8AvwYshVifSE+rVJyZHuhBr5fPpNWLPqBaCfRDwIW6xxdrz60zs48AR9z9f4RYm0jPu3JzicWVtd4L9OIt3LW/6KDZ8aKfmSWALwJPtnDsSTM7a2Zni8XiTj9aJHLBWnWvBfqNpVXmF1aiLkW6rJVAvwQcqXt8uPZcYDfwg8D/MrMZ4KPA6Y0ujLr7KXc/4e4nstls+1WL9IjpHpiy2Ejb0Q2uVgL9ZeCYmeXNbAR4DDgdvOju19094+45d88BLwGPuPvZjlQs0kNmSmXGhhPcvWcs6lLWBbsmKdAHz5aB7u6rwBPAC8CbwPPu/rqZPWNmj3S6QJFeViiVyU2mSSQs6lLWHd6/i2TCNNNlAA21cpC7nwHONDz3dJNjP7bzskT6Q6FU5r57dkddxgcMJxMcnUjpDH0ARX8nhEifWlmrcH6ud3rQ61U7XRTog0aBLtKmi/OLrFa8J2a4NMpn0rw7u0ClotbFQaJAF2lTsEbdC1MWG+UzaRZX1rhyU/f5DRIFukibCqXqZsxBV0kvmcpopssgUqCLtKlQusWesSH2p4ajLuUOuVqgawTAYFGgi7SpUCozlR3HrHdaFgN37xljbDihTpcBo0AXaVOh2FtDueolEkZuMq1AHzAKdJE2LC6vcfn6Us8GOlQv1s4o0AeKAl2kDcGOQL0c6PlMmvNzC6ysVaIuRbpEgS7ShpkeHMrVKJ8ZZ7XiXJxfjLoU6RIFukgbenHKYqN8prrHqWa6DA4FukgbCqUyd+0ZJT3a0jikSAT98RoBMDgU6CJtCKYs9rL9qWH27hpeX++X+FOgi7Sh2oPe24FuZuQzal0cJAp0kW26vrDCXHm5p9fPA1OZtG7/HyAKdJFtKqy3LPbeDJdGuUyay9eXWFxei7oU6QIFusg2BV0j/XCGHtSodfTBoEAX2aZCsUzC4OhEKupSthQEutbRB4MCXWSbpktlDu9PMTLU+398FOiDpfd/R4r0mEKpd4dyNUqPDnHXnlEF+oBQoItsg7sz00eBDqh1cYAo0EW2oXjzNuXltZ7vQa+nQB8cCnSRbeiHGS6N8pk0c+Vlri+sRF2KdJgCXWQbgjPdXr/tv17QL19Q62LsKdBFtqFQKjMylODgvl1Rl9Ky9ztdNHUx7hToIttQKJW5dyJFMtF7+4g2c3QiRcLQCIABoEAX2YZ+GMrVaGQowZGJ1Pr6v8SXAl2kRWsV593Zcl/McGmkDaMHgwJdpEWX5hdZWfP1nYD6SdC66O5RlyIdpEAXadH0+lCu/jtDn8qmWVheo3jzdtSlSAcp0EVaVOjDHvRAULPW0eNNgS7SoplSmd2jQ2TGR6IuZds0pGswtBToZvaQmb1tZufM7KkNXv9lM3vDzF4zs6+b2b3hlyoSrelSmXw2jVn/tCwGDu7dxchQQoEec1sGupklgWeBh4HjwONmdrzhsG8DJ9z9h4GvAv8y7EJFotZPUxYbJRJGbjLFtHrRY62VM/T7gXPuPu3uy8BzwKP1B7j7i+6+UHv4EnA43DJForW0ssala4t9dct/o2qni+4WjbNWAv0QcKHu8cXac818FviTnRQl0mvOzy3gTt/dVFQvnxnn/NwCaxW1LsZVqBdFzexngBPAF5q8ftLMzprZ2WKxGOZHi3RUsFTRr0suAFOZNCtrzqX5xahLkQ5pJdAvAUfqHh+uPfcBZvYJ4PPAI+6+YbOru59y9xPufiKbzbZTr0gkgk2Wc30c6Pls0LqoZZe4aiXQXwaOmVnezEaAx4DT9QeY2YeB36Ya5lfDL1MkWoVimcz4KHvGhqMupW3B+r86XeJry0B391XgCeAF4E3geXd/3cyeMbNHaod9ARgH/tjMvmNmp5u8nUhfKpTKTPXx2TlAZnyE3aNDCvQYG2rlIHc/A5xpeO7pup8/EXJdIj1lulTm4/f19zKhmZHPakhXnOlOUZEt3FhaoXTrdl/OcGmk/UXjTYEusoWZPp7h0iifSXPp2iJLK2tRlyIdoEAX2UJwRtvPPeiBfCaNe7WvXuJHgS6yhUKpjFl1K7d+tz51USMAYkmBLrKFQqnMwb27GBtORl3KjuU0dTHWFOgiW+jHfUSb2TM2TGZ8dP26gMSLAl1kE+5Oodi/UxY3MqVOl9hSoItsYra8zM3bq7EK9HwmrZ2LYkqBLrKJft52rplcJk3p1m1uLK1EXYqETIEusolCrRtkKgY3FQWCv5y0jh4/CnSRTUyXygwnjYP7xqIuJTTBBV6to8ePAl1kE4XSLY5OpBhKxuePytGJFGYK9DiKz+9SkQ6o7iMan+UWgLHhJIf27VKgx5ACXaSJSsWZmV2ITQ96PQ3piicFukgTl68vsrxaiVWHSyCfSVMolnHX/qJxokAXaSKOLYuBfCbNzdurzJaXoy5FQqRAF2ki7oEOujAaNwp0kSami2VSI0kO7B6NupTQBX31BU1djBUFukgTM7PVGS5mFnUpoTu0fxfDSdMIgJhRoIs0UW1ZjN9yC0AyYRydSFEo3Yq6FAmRAl1kA8urFS7MLTAV00AHyGfGmSlp56I4UaCLbOD83AIVh3wMe9ADU9k0hdkylYpaF+NCgS6ygaD7IzcZ30DPZ9Isr1a4fH0x6lIkJAp0kQ0Ea8txXUMHtS7GkQJdZAOF0gIT6RH2pUaiLqVjphTosaNAF9nAW9+9EesLogDZ3aOkR5IK9BhRoIs0mCsv850L13jgQ5moS+koMyOnIV2xokAXafC/37mKO3z8vgNRl9JxmroYLwp0kQZff/MqmfFRfujQ3qhL6bipTJoLcwssr1aiLkVCoEAXqbOyVuGb7xT5+H1ZEon43fLfaCo7TsXhjfduRF2KhECBLlLnlXfnubG0OhDLLQA/ed8Bdo8O8eVvTkddioRAgS5S58W3rjKcNH78WDbqUrpi765hPvNAjjN/8R7vXLkZdTmyQy0Fupk9ZGZvm9k5M3tqg9dHzew/1F7/lpnlwi5UpBu+/tZVPjo1yfjoUNSldM3PP5AnNZzkS984F3UpskNbBrqZJYFngYeB48DjZna84bDPAvPu/iHg14FfC7tQkU47P7vAuau3+MnvG4zllsD+9Ag/92M5/ttrlzl3VdMX+1krZ+j3A+fcfdrdl4HngEcbjnkU+P3az18FHrQ4DpGWWPvGW1cAePD7ByvQAf7ej+cZG0rymy/qLL2ftfLvykPAhbrHF4EfbXaMu6+a2XVgEiiFUWS951++wJf/TBdwJHxXbizxPdk098Z4IFczk+Oj/OxfvZff+bNp/t+l61GXE3v/8MFj/I0fORj6+3Z1odDMTgInAY4ePdrWe+xLDXPsrvEwyxIB4Nhd4zzyI4eiLiMyf/8nvofSrdssraxFXUrs7d013JH3bSXQLwFH6h4frj230TEXzWwI2AvMNr6Ru58CTgGcOHGirSHMn/yBu/nkD9zdzi8VkU3sT4/wxZ/6K1GXITvQyhr6y8AxM8ub2QjwGHC64ZjTwN+p/fy3gG+4u6bmi4h00ZZn6LU18SeAF4Ak8Lvu/rqZPQOcdffTwL8FvmJm54A5qqEvIiJd1NIaurufAc40PPd03c9LwN8OtzQREdkO3SkqIhITCnQRkZhQoIuIxIQCXUQkJhToIiIxYVG1i5tZEXg3kg/fmQwdGGnQ4wbtOw/a9wV9535yr7tvON85skDvV2Z21t1PRF1HNw3adx607wv6znGhJRcRkZhQoIuIxIQCfftORV1ABAbtOw/a9wV951jQGrqISEzoDF1EJCYU6DtgZk+amZtZJupaOsnMvmBmb5nZa2b2n81sX9Q1dcpWG6LHjZkdMbMXzewNM3vdzD4XdU3dYmZJM/u2mf33qGsJiwK9TWZ2BPgkcD7qWrrgT4EfdPcfBt4BfjXiejqixQ3R42YVeNLdjwMfBX5xAL5z4HPAm1EXESYFevt+HfjHQOwvQrj719x9tfbwJaq7VsVRKxuix4q7v+fuf177+SbVgIv9Pnxmdhj468DvRF1LmBTobTCzR4FL7v5q1LVE4OeBP4m6iA7ZaEP02IdbwMxywIeBb0VbSVf8a6onZJWoCwlTVzeJ7idm9j+BjTYv/TzwT6gut8TGZt/X3f9r7ZjPU/0n+h92szbpPDMbB/4j8EvufiPqejrJzD4NXHX3V8zsY1HXEyYFehPu/omNnjezHwLywKtmBtXlhz83s/vd/btdLDFUzb5vwMw+A3waeDDG+8W2siF67JjZMNUw/0N3/09R19MFDwCPmNmngDFgj5n9gbv/TMR17Zj60HfIzGaAE+7ej0N+WmJmDwFfBH7C3YtR19MpZjZE9aLvg1SD/GXgp9399UgL6yCrnpX8PjDn7r8UdT3dVjtD/xV3/3TUtYRBa+jSii8Bu4E/NbPvmNlvRV1QJ9Qu/AYbor8JPB/nMK95APhZ4OO1/7ffqZ25Sh/SGbqISEzoDF1EJCYU6CIiMaFAFxGJCQW6iEhMKNBFRGJCgS4iEhMKdBGRmFCgi4jExP8HSzrTCQ7WTLIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "x=np.linspace(-5.,5.,100)\n", + "\n", + "plt.plot(x,hatFunc_vect(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 205, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10 µs ± 486 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" + ] + } + ], + "source": [ + "%timeit hatFunc_vect(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 206, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "76.2 µs ± 2.02 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" + ] + } + ], + "source": [ + "xx=x.tolist()\n", + "\n", + "%timeit list(map(hatFunc,x))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/Lectures/Lecture-24/heart.csv b/Lectures/Lecture-24/heart.csv new file mode 100644 index 0000000..08b5462 --- /dev/null +++ b/Lectures/Lecture-24/heart.csv @@ -0,0 +1,304 @@ +age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal,target +63,1,3,145,233,1,0,150,0,2.3,0,0,1,1 +37,1,2,130,250,0,1,187,0,3.5,0,0,2,1 +41,0,1,130,204,0,0,172,0,1.4,2,0,2,1 +56,1,1,120,236,0,1,178,0,0.8,2,0,2,1 +57,0,0,120,354,0,1,163,1,0.6,2,0,2,1 +57,1,0,140,192,0,1,148,0,0.4,1,0,1,1 +56,0,1,140,294,0,0,153,0,1.3,1,0,2,1 +44,1,1,120,263,0,1,173,0,0,2,0,3,1 +52,1,2,172,199,1,1,162,0,0.5,2,0,3,1 +57,1,2,150,168,0,1,174,0,1.6,2,0,2,1 +54,1,0,140,239,0,1,160,0,1.2,2,0,2,1 +48,0,2,130,275,0,1,139,0,0.2,2,0,2,1 +49,1,1,130,266,0,1,171,0,0.6,2,0,2,1 +64,1,3,110,211,0,0,144,1,1.8,1,0,2,1 +58,0,3,150,283,1,0,162,0,1,2,0,2,1 +50,0,2,120,219,0,1,158,0,1.6,1,0,2,1 +58,0,2,120,340,0,1,172,0,0,2,0,2,1 +66,0,3,150,226,0,1,114,0,2.6,0,0,2,1 +43,1,0,150,247,0,1,171,0,1.5,2,0,2,1 +69,0,3,140,239,0,1,151,0,1.8,2,2,2,1 +59,1,0,135,234,0,1,161,0,0.5,1,0,3,1 +44,1,2,130,233,0,1,179,1,0.4,2,0,2,1 +42,1,0,140,226,0,1,178,0,0,2,0,2,1 +61,1,2,150,243,1,1,137,1,1,1,0,2,1 +40,1,3,140,199,0,1,178,1,1.4,2,0,3,1 +71,0,1,160,302,0,1,162,0,0.4,2,2,2,1 +59,1,2,150,212,1,1,157,0,1.6,2,0,2,1 +51,1,2,110,175,0,1,123,0,0.6,2,0,2,1 +65,0,2,140,417,1,0,157,0,0.8,2,1,2,1 +53,1,2,130,197,1,0,152,0,1.2,0,0,2,1 +41,0,1,105,198,0,1,168,0,0,2,1,2,1 +65,1,0,120,177,0,1,140,0,0.4,2,0,3,1 +44,1,1,130,219,0,0,188,0,0,2,0,2,1 +54,1,2,125,273,0,0,152,0,0.5,0,1,2,1 +51,1,3,125,213,0,0,125,1,1.4,2,1,2,1 +46,0,2,142,177,0,0,160,1,1.4,0,0,2,1 +54,0,2,135,304,1,1,170,0,0,2,0,2,1 +54,1,2,150,232,0,0,165,0,1.6,2,0,3,1 +65,0,2,155,269,0,1,148,0,0.8,2,0,2,1 +65,0,2,160,360,0,0,151,0,0.8,2,0,2,1 +51,0,2,140,308,0,0,142,0,1.5,2,1,2,1 +48,1,1,130,245,0,0,180,0,0.2,1,0,2,1 +45,1,0,104,208,0,0,148,1,3,1,0,2,1 +53,0,0,130,264,0,0,143,0,0.4,1,0,2,1 +39,1,2,140,321,0,0,182,0,0,2,0,2,1 +52,1,1,120,325,0,1,172,0,0.2,2,0,2,1 +44,1,2,140,235,0,0,180,0,0,2,0,2,1 +47,1,2,138,257,0,0,156,0,0,2,0,2,1 +53,0,2,128,216,0,0,115,0,0,2,0,0,1 +53,0,0,138,234,0,0,160,0,0,2,0,2,1 +51,0,2,130,256,0,0,149,0,0.5,2,0,2,1 +66,1,0,120,302,0,0,151,0,0.4,1,0,2,1 +62,1,2,130,231,0,1,146,0,1.8,1,3,3,1 +44,0,2,108,141,0,1,175,0,0.6,1,0,2,1 +63,0,2,135,252,0,0,172,0,0,2,0,2,1 +52,1,1,134,201,0,1,158,0,0.8,2,1,2,1 +48,1,0,122,222,0,0,186,0,0,2,0,2,1 +45,1,0,115,260,0,0,185,0,0,2,0,2,1 +34,1,3,118,182,0,0,174,0,0,2,0,2,1 +57,0,0,128,303,0,0,159,0,0,2,1,2,1 +71,0,2,110,265,1,0,130,0,0,2,1,2,1 +54,1,1,108,309,0,1,156,0,0,2,0,3,1 +52,1,3,118,186,0,0,190,0,0,1,0,1,1 +41,1,1,135,203,0,1,132,0,0,1,0,1,1 +58,1,2,140,211,1,0,165,0,0,2,0,2,1 +35,0,0,138,183,0,1,182,0,1.4,2,0,2,1 +51,1,2,100,222,0,1,143,1,1.2,1,0,2,1 +45,0,1,130,234,0,0,175,0,0.6,1,0,2,1 +44,1,1,120,220,0,1,170,0,0,2,0,2,1 +62,0,0,124,209,0,1,163,0,0,2,0,2,1 +54,1,2,120,258,0,0,147,0,0.4,1,0,3,1 +51,1,2,94,227,0,1,154,1,0,2,1,3,1 +29,1,1,130,204,0,0,202,0,0,2,0,2,1 +51,1,0,140,261,0,0,186,1,0,2,0,2,1 +43,0,2,122,213,0,1,165,0,0.2,1,0,2,1 +55,0,1,135,250,0,0,161,0,1.4,1,0,2,1 +51,1,2,125,245,1,0,166,0,2.4,1,0,2,1 +59,1,1,140,221,0,1,164,1,0,2,0,2,1 +52,1,1,128,205,1,1,184,0,0,2,0,2,1 +58,1,2,105,240,0,0,154,1,0.6,1,0,3,1 +41,1,2,112,250,0,1,179,0,0,2,0,2,1 +45,1,1,128,308,0,0,170,0,0,2,0,2,1 +60,0,2,102,318,0,1,160,0,0,2,1,2,1 +52,1,3,152,298,1,1,178,0,1.2,1,0,3,1 +42,0,0,102,265,0,0,122,0,0.6,1,0,2,1 +67,0,2,115,564,0,0,160,0,1.6,1,0,3,1 +68,1,2,118,277,0,1,151,0,1,2,1,3,1 +46,1,1,101,197,1,1,156,0,0,2,0,3,1 +54,0,2,110,214,0,1,158,0,1.6,1,0,2,1 +58,0,0,100,248,0,0,122,0,1,1,0,2,1 +48,1,2,124,255,1,1,175,0,0,2,2,2,1 +57,1,0,132,207,0,1,168,1,0,2,0,3,1 +52,1,2,138,223,0,1,169,0,0,2,4,2,1 +54,0,1,132,288,1,0,159,1,0,2,1,2,1 +45,0,1,112,160,0,1,138,0,0,1,0,2,1 +53,1,0,142,226,0,0,111,1,0,2,0,3,1 +62,0,0,140,394,0,0,157,0,1.2,1,0,2,1 +52,1,0,108,233,1,1,147,0,0.1,2,3,3,1 +43,1,2,130,315,0,1,162,0,1.9,2,1,2,1 +53,1,2,130,246,1,0,173,0,0,2,3,2,1 +42,1,3,148,244,0,0,178,0,0.8,2,2,2,1 +59,1,3,178,270,0,0,145,0,4.2,0,0,3,1 +63,0,1,140,195,0,1,179,0,0,2,2,2,1 +42,1,2,120,240,1,1,194,0,0.8,0,0,3,1 +50,1,2,129,196,0,1,163,0,0,2,0,2,1 +68,0,2,120,211,0,0,115,0,1.5,1,0,2,1 +69,1,3,160,234,1,0,131,0,0.1,1,1,2,1 +45,0,0,138,236,0,0,152,1,0.2,1,0,2,1 +50,0,1,120,244,0,1,162,0,1.1,2,0,2,1 +50,0,0,110,254,0,0,159,0,0,2,0,2,1 +64,0,0,180,325,0,1,154,1,0,2,0,2,1 +57,1,2,150,126,1,1,173,0,0.2,2,1,3,1 +64,0,2,140,313,0,1,133,0,0.2,2,0,3,1 +43,1,0,110,211,0,1,161,0,0,2,0,3,1 +55,1,1,130,262,0,1,155,0,0,2,0,2,1 +37,0,2,120,215,0,1,170,0,0,2,0,2,1 +41,1,2,130,214,0,0,168,0,2,1,0,2,1 +56,1,3,120,193,0,0,162,0,1.9,1,0,3,1 +46,0,1,105,204,0,1,172,0,0,2,0,2,1 +46,0,0,138,243,0,0,152,1,0,1,0,2,1 +64,0,0,130,303,0,1,122,0,2,1,2,2,1 +59,1,0,138,271,0,0,182,0,0,2,0,2,1 +41,0,2,112,268,0,0,172,1,0,2,0,2,1 +54,0,2,108,267,0,0,167,0,0,2,0,2,1 +39,0,2,94,199,0,1,179,0,0,2,0,2,1 +34,0,1,118,210,0,1,192,0,0.7,2,0,2,1 +47,1,0,112,204,0,1,143,0,0.1,2,0,2,1 +67,0,2,152,277,0,1,172,0,0,2,1,2,1 +52,0,2,136,196,0,0,169,0,0.1,1,0,2,1 +74,0,1,120,269,0,0,121,1,0.2,2,1,2,1 +54,0,2,160,201,0,1,163,0,0,2,1,2,1 +49,0,1,134,271,0,1,162,0,0,1,0,2,1 +42,1,1,120,295,0,1,162,0,0,2,0,2,1 +41,1,1,110,235,0,1,153,0,0,2,0,2,1 +41,0,1,126,306,0,1,163,0,0,2,0,2,1 +49,0,0,130,269,0,1,163,0,0,2,0,2,1 +60,0,2,120,178,1,1,96,0,0,2,0,2,1 +62,1,1,128,208,1,0,140,0,0,2,0,2,1 +57,1,0,110,201,0,1,126,1,1.5,1,0,1,1 +64,1,0,128,263,0,1,105,1,0.2,1,1,3,1 +51,0,2,120,295,0,0,157,0,0.6,2,0,2,1 +43,1,0,115,303,0,1,181,0,1.2,1,0,2,1 +42,0,2,120,209,0,1,173,0,0,1,0,2,1 +67,0,0,106,223,0,1,142,0,0.3,2,2,2,1 +76,0,2,140,197,0,2,116,0,1.1,1,0,2,1 +70,1,1,156,245,0,0,143,0,0,2,0,2,1 +44,0,2,118,242,0,1,149,0,0.3,1,1,2,1 +60,0,3,150,240,0,1,171,0,0.9,2,0,2,1 +44,1,2,120,226,0,1,169,0,0,2,0,2,1 +42,1,2,130,180,0,1,150,0,0,2,0,2,1 +66,1,0,160,228,0,0,138,0,2.3,2,0,1,1 +71,0,0,112,149,0,1,125,0,1.6,1,0,2,1 +64,1,3,170,227,0,0,155,0,0.6,1,0,3,1 +66,0,2,146,278,0,0,152,0,0,1,1,2,1 +39,0,2,138,220,0,1,152,0,0,1,0,2,1 +58,0,0,130,197,0,1,131,0,0.6,1,0,2,1 +47,1,2,130,253,0,1,179,0,0,2,0,2,1 +35,1,1,122,192,0,1,174,0,0,2,0,2,1 +58,1,1,125,220,0,1,144,0,0.4,1,4,3,1 +56,1,1,130,221,0,0,163,0,0,2,0,3,1 +56,1,1,120,240,0,1,169,0,0,0,0,2,1 +55,0,1,132,342,0,1,166,0,1.2,2,0,2,1 +41,1,1,120,157,0,1,182,0,0,2,0,2,1 +38,1,2,138,175,0,1,173,0,0,2,4,2,1 +38,1,2,138,175,0,1,173,0,0,2,4,2,1 +67,1,0,160,286,0,0,108,1,1.5,1,3,2,0 +67,1,0,120,229,0,0,129,1,2.6,1,2,3,0 +62,0,0,140,268,0,0,160,0,3.6,0,2,2,0 +63,1,0,130,254,0,0,147,0,1.4,1,1,3,0 +53,1,0,140,203,1,0,155,1,3.1,0,0,3,0 +56,1,2,130,256,1,0,142,1,0.6,1,1,1,0 +48,1,1,110,229,0,1,168,0,1,0,0,3,0 +58,1,1,120,284,0,0,160,0,1.8,1,0,2,0 +58,1,2,132,224,0,0,173,0,3.2,2,2,3,0 +60,1,0,130,206,0,0,132,1,2.4,1,2,3,0 +40,1,0,110,167,0,0,114,1,2,1,0,3,0 +60,1,0,117,230,1,1,160,1,1.4,2,2,3,0 +64,1,2,140,335,0,1,158,0,0,2,0,2,0 +43,1,0,120,177,0,0,120,1,2.5,1,0,3,0 +57,1,0,150,276,0,0,112,1,0.6,1,1,1,0 +55,1,0,132,353,0,1,132,1,1.2,1,1,3,0 +65,0,0,150,225,0,0,114,0,1,1,3,3,0 +61,0,0,130,330,0,0,169,0,0,2,0,2,0 +58,1,2,112,230,0,0,165,0,2.5,1,1,3,0 +50,1,0,150,243,0,0,128,0,2.6,1,0,3,0 +44,1,0,112,290,0,0,153,0,0,2,1,2,0 +60,1,0,130,253,0,1,144,1,1.4,2,1,3,0 +54,1,0,124,266,0,0,109,1,2.2,1,1,3,0 +50,1,2,140,233,0,1,163,0,0.6,1,1,3,0 +41,1,0,110,172,0,0,158,0,0,2,0,3,0 +51,0,0,130,305,0,1,142,1,1.2,1,0,3,0 +58,1,0,128,216,0,0,131,1,2.2,1,3,3,0 +54,1,0,120,188,0,1,113,0,1.4,1,1,3,0 +60,1,0,145,282,0,0,142,1,2.8,1,2,3,0 +60,1,2,140,185,0,0,155,0,3,1,0,2,0 +59,1,0,170,326,0,0,140,1,3.4,0,0,3,0 +46,1,2,150,231,0,1,147,0,3.6,1,0,2,0 +67,1,0,125,254,1,1,163,0,0.2,1,2,3,0 +62,1,0,120,267,0,1,99,1,1.8,1,2,3,0 +65,1,0,110,248,0,0,158,0,0.6,2,2,1,0 +44,1,0,110,197,0,0,177,0,0,2,1,2,0 +60,1,0,125,258,0,0,141,1,2.8,1,1,3,0 +58,1,0,150,270,0,0,111,1,0.8,2,0,3,0 +68,1,2,180,274,1,0,150,1,1.6,1,0,3,0 +62,0,0,160,164,0,0,145,0,6.2,0,3,3,0 +52,1,0,128,255,0,1,161,1,0,2,1,3,0 +59,1,0,110,239,0,0,142,1,1.2,1,1,3,0 +60,0,0,150,258,0,0,157,0,2.6,1,2,3,0 +49,1,2,120,188,0,1,139,0,2,1,3,3,0 +59,1,0,140,177,0,1,162,1,0,2,1,3,0 +57,1,2,128,229,0,0,150,0,0.4,1,1,3,0 +61,1,0,120,260,0,1,140,1,3.6,1,1,3,0 +39,1,0,118,219,0,1,140,0,1.2,1,0,3,0 +61,0,0,145,307,0,0,146,1,1,1,0,3,0 +56,1,0,125,249,1,0,144,1,1.2,1,1,2,0 +43,0,0,132,341,1,0,136,1,3,1,0,3,0 +62,0,2,130,263,0,1,97,0,1.2,1,1,3,0 +63,1,0,130,330,1,0,132,1,1.8,2,3,3,0 +65,1,0,135,254,0,0,127,0,2.8,1,1,3,0 +48,1,0,130,256,1,0,150,1,0,2,2,3,0 +63,0,0,150,407,0,0,154,0,4,1,3,3,0 +55,1,0,140,217,0,1,111,1,5.6,0,0,3,0 +65,1,3,138,282,1,0,174,0,1.4,1,1,2,0 +56,0,0,200,288,1,0,133,1,4,0,2,3,0 +54,1,0,110,239,0,1,126,1,2.8,1,1,3,0 +70,1,0,145,174,0,1,125,1,2.6,0,0,3,0 +62,1,1,120,281,0,0,103,0,1.4,1,1,3,0 +35,1,0,120,198,0,1,130,1,1.6,1,0,3,0 +59,1,3,170,288,0,0,159,0,0.2,1,0,3,0 +64,1,2,125,309,0,1,131,1,1.8,1,0,3,0 +47,1,2,108,243,0,1,152,0,0,2,0,2,0 +57,1,0,165,289,1,0,124,0,1,1,3,3,0 +55,1,0,160,289,0,0,145,1,0.8,1,1,3,0 +64,1,0,120,246,0,0,96,1,2.2,0,1,2,0 +70,1,0,130,322,0,0,109,0,2.4,1,3,2,0 +51,1,0,140,299,0,1,173,1,1.6,2,0,3,0 +58,1,0,125,300,0,0,171,0,0,2,2,3,0 +60,1,0,140,293,0,0,170,0,1.2,1,2,3,0 +77,1,0,125,304,0,0,162,1,0,2,3,2,0 +35,1,0,126,282,0,0,156,1,0,2,0,3,0 +70,1,2,160,269,0,1,112,1,2.9,1,1,3,0 +59,0,0,174,249,0,1,143,1,0,1,0,2,0 +64,1,0,145,212,0,0,132,0,2,1,2,1,0 +57,1,0,152,274,0,1,88,1,1.2,1,1,3,0 +56,1,0,132,184,0,0,105,1,2.1,1,1,1,0 +48,1,0,124,274,0,0,166,0,0.5,1,0,3,0 +56,0,0,134,409,0,0,150,1,1.9,1,2,3,0 +66,1,1,160,246,0,1,120,1,0,1,3,1,0 +54,1,1,192,283,0,0,195,0,0,2,1,3,0 +69,1,2,140,254,0,0,146,0,2,1,3,3,0 +51,1,0,140,298,0,1,122,1,4.2,1,3,3,0 +43,1,0,132,247,1,0,143,1,0.1,1,4,3,0 +62,0,0,138,294,1,1,106,0,1.9,1,3,2,0 +67,1,0,100,299,0,0,125,1,0.9,1,2,2,0 +59,1,3,160,273,0,0,125,0,0,2,0,2,0 +45,1,0,142,309,0,0,147,1,0,1,3,3,0 +58,1,0,128,259,0,0,130,1,3,1,2,3,0 +50,1,0,144,200,0,0,126,1,0.9,1,0,3,0 +62,0,0,150,244,0,1,154,1,1.4,1,0,2,0 +38,1,3,120,231,0,1,182,1,3.8,1,0,3,0 +66,0,0,178,228,1,1,165,1,1,1,2,3,0 +52,1,0,112,230,0,1,160,0,0,2,1,2,0 +53,1,0,123,282,0,1,95,1,2,1,2,3,0 +63,0,0,108,269,0,1,169,1,1.8,1,2,2,0 +54,1,0,110,206,0,0,108,1,0,1,1,2,0 +66,1,0,112,212,0,0,132,1,0.1,2,1,2,0 +55,0,0,180,327,0,2,117,1,3.4,1,0,2,0 +49,1,2,118,149,0,0,126,0,0.8,2,3,2,0 +54,1,0,122,286,0,0,116,1,3.2,1,2,2,0 +56,1,0,130,283,1,0,103,1,1.6,0,0,3,0 +46,1,0,120,249,0,0,144,0,0.8,2,0,3,0 +61,1,3,134,234,0,1,145,0,2.6,1,2,2,0 +67,1,0,120,237,0,1,71,0,1,1,0,2,0 +58,1,0,100,234,0,1,156,0,0.1,2,1,3,0 +47,1,0,110,275,0,0,118,1,1,1,1,2,0 +52,1,0,125,212,0,1,168,0,1,2,2,3,0 +58,1,0,146,218,0,1,105,0,2,1,1,3,0 +57,1,1,124,261,0,1,141,0,0.3,2,0,3,0 +58,0,1,136,319,1,0,152,0,0,2,2,2,0 +61,1,0,138,166,0,0,125,1,3.6,1,1,2,0 +42,1,0,136,315,0,1,125,1,1.8,1,0,1,0 +52,1,0,128,204,1,1,156,1,1,1,0,0,0 +59,1,2,126,218,1,1,134,0,2.2,1,1,1,0 +40,1,0,152,223,0,1,181,0,0,2,0,3,0 +61,1,0,140,207,0,0,138,1,1.9,2,1,3,0 +46,1,0,140,311,0,1,120,1,1.8,1,2,3,0 +59,1,3,134,204,0,1,162,0,0.8,2,2,2,0 +57,1,1,154,232,0,0,164,0,0,2,1,2,0 +57,1,0,110,335,0,1,143,1,3,1,1,3,0 +55,0,0,128,205,0,2,130,1,2,1,1,3,0 +61,1,0,148,203,0,1,161,0,0,2,1,3,0 +58,1,0,114,318,0,2,140,0,4.4,0,3,1,0 +58,0,0,170,225,1,0,146,1,2.8,1,2,1,0 +67,1,2,152,212,0,0,150,0,0.8,1,0,3,0 +44,1,0,120,169,0,1,144,1,2.8,0,0,1,0 +63,1,0,140,187,0,0,144,1,4,2,2,3,0 +63,0,0,124,197,0,1,136,1,0,1,0,2,0 +59,1,0,164,176,1,0,90,0,1,1,2,1,0 +57,0,0,140,241,0,1,123,1,0.2,1,0,3,0 +45,1,3,110,264,0,1,132,0,1.2,1,0,3,0 +68,1,0,144,193,1,1,141,0,3.4,1,2,3,0 +57,1,0,130,131,0,1,115,1,1.2,1,1,3,0 +57,0,1,130,236,0,0,174,0,0,1,1,2,0 diff --git a/Lectures/Lecture-24/stockholm_td_adj.dat b/Lectures/Lecture-24/stockholm_td_adj.dat new file mode 100644 index 0000000..a4e4945 --- /dev/null +++ b/Lectures/Lecture-24/stockholm_td_adj.dat @@ -0,0 +1,77431 @@ +1800 1 1 -6.1 -6.1 -6.1 1 +1800 1 2 -15.4 -15.4 -15.4 1 +1800 1 3 -15.0 -15.0 -15.0 1 +1800 1 4 -19.3 -19.3 -19.3 1 +1800 1 5 -16.8 -16.8 -16.8 1 +1800 1 6 -11.4 -11.4 -11.4 1 +1800 1 7 -7.6 -7.6 -7.6 1 +1800 1 8 -7.1 -7.1 -7.1 1 +1800 1 9 -10.1 -10.1 -10.1 1 +1800 1 10 -9.5 -9.5 -9.5 1 +1800 1 11 -6.4 -6.4 -6.4 1 +1800 1 12 -5.8 -5.8 -5.8 1 +1800 1 13 -4.4 -4.4 -4.4 1 +1800 1 14 -4.4 -4.4 -4.4 1 +1800 1 15 -4.4 -4.4 -4.4 1 +1800 1 16 -5.5 -5.5 -5.5 1 +1800 1 17 -2.3 -2.3 -2.3 1 +1800 1 18 -3.5 -3.5 -3.5 1 +1800 1 19 -10.2 -10.2 -10.2 1 +1800 1 20 -7.1 -7.1 -7.1 1 +1800 1 21 -0.5 -0.5 -0.5 1 +1800 1 22 -6.5 -6.5 -6.5 1 +1800 1 23 -11.1 -11.1 -11.1 1 +1800 1 24 -3.5 -3.5 -3.5 1 +1800 1 25 -3.8 -3.8 -3.8 1 +1800 1 26 -0.3 -0.3 -0.3 1 +1800 1 27 2.2 2.2 2.2 1 +1800 1 28 -0.5 -0.5 -0.5 1 +1800 1 29 1.5 1.5 1.5 1 +1800 1 30 0.5 0.5 0.5 1 +1800 1 31 1.5 1.5 1.5 1 +1800 2 1 1.5 1.5 1.5 1 +1800 2 2 0.5 0.5 0.5 1 +1800 2 3 -2.5 -2.5 -2.5 1 +1800 2 4 -1.1 -1.1 -1.1 1 +1800 2 5 -9.2 -9.2 -9.2 1 +1800 2 6 -7.8 -7.8 -7.8 1 +1800 2 7 -4.8 -4.8 -4.8 1 +1800 2 8 -5.5 -5.5 -5.5 1 +1800 2 9 -7.6 -7.6 -7.6 1 +1800 2 10 -11.5 -11.5 -11.5 1 +1800 2 11 -9.0 -9.0 -9.0 1 +1800 2 12 -7.2 -7.2 -7.2 1 +1800 2 13 -7.8 -7.8 -7.8 1 +1800 2 14 -8.5 -8.5 -8.5 1 +1800 2 15 -8.2 -8.2 -8.2 1 +1800 2 16 -6.2 -6.2 -6.2 1 +1800 2 17 -1.5 -1.5 -1.5 1 +1800 2 18 -3.5 -3.5 -3.5 1 +1800 2 19 -7.2 -7.2 -7.2 1 +1800 2 20 -3.5 -3.5 -3.5 1 +1800 2 21 -1.5 -1.5 -1.5 1 +1800 2 22 -4.8 -4.8 -4.8 1 +1800 2 23 -8.6 -8.6 -8.6 1 +1800 2 24 -13.0 -13.0 -13.0 1 +1800 2 25 -11.6 -11.6 -11.6 1 +1800 2 26 -15.3 -15.3 -15.3 1 +1800 2 27 -17.0 -17.0 -17.0 1 +1800 2 28 -13.5 -13.5 -13.5 1 +1800 3 1 -8.8 -8.8 -8.8 1 +1800 3 2 -7.5 -7.5 -7.5 1 +1800 3 3 -8.1 -8.1 -8.1 1 +1800 3 4 -12.7 -12.7 -12.7 1 +1800 3 5 -14.4 -14.4 -14.4 1 +1800 3 6 -14.3 -14.3 -14.3 1 +1800 3 7 -9.4 -9.4 -9.4 1 +1800 3 8 -5.4 -5.4 -5.4 1 +1800 3 9 -10.4 -10.4 -10.4 1 +1800 3 10 -6.0 -6.0 -6.0 1 +1800 3 11 -4.4 -4.4 -4.4 1 +1800 3 12 -4.2 -4.2 -4.2 1 +1800 3 13 -6.1 -6.1 -6.1 1 +1800 3 14 -7.4 -7.4 -7.4 1 +1800 3 15 -8.0 -8.0 -8.0 1 +1800 3 16 -6.9 -6.9 -6.9 1 +1800 3 17 -4.0 -4.0 -4.0 1 +1800 3 18 -4.9 -4.9 -4.9 1 +1800 3 19 -3.3 -3.3 -3.3 1 +1800 3 20 -8.5 -8.5 -8.5 1 +1800 3 21 -15.8 -15.8 -15.8 1 +1800 3 22 -13.0 -13.0 -13.0 1 +1800 3 23 0.2 0.2 0.2 1 +1800 3 24 1.3 1.3 1.3 1 +1800 3 25 0.9 0.9 0.9 1 +1800 3 26 -6.3 -6.3 -6.3 1 +1800 3 27 -8.0 -8.0 -8.0 1 +1800 3 28 -4.0 -4.0 -4.0 1 +1800 3 29 1.7 1.7 1.7 1 +1800 3 30 0.9 0.9 0.9 1 +1800 3 31 5.4 5.4 5.4 1 +1800 4 1 0.7 0.7 0.7 1 +1800 4 2 3.8 3.8 3.8 1 +1800 4 3 4.0 4.0 4.0 1 +1800 4 4 0.6 0.6 0.6 1 +1800 4 5 2.8 2.8 2.8 1 +1800 4 6 3.8 3.8 3.8 1 +1800 4 7 6.5 6.5 6.5 1 +1800 4 8 6.2 6.2 6.2 1 +1800 4 9 3.5 3.5 3.5 1 +1800 4 10 1.1 1.1 1.1 1 +1800 4 11 -1.2 -1.2 -1.2 1 +1800 4 12 -4.8 -4.8 -4.8 1 +1800 4 13 -2.6 -2.6 -2.6 1 +1800 4 14 3.1 3.1 3.1 1 +1800 4 15 5.2 5.2 5.2 1 +1800 4 16 6.2 6.2 6.2 1 +1800 4 17 6.2 6.2 6.2 1 +1800 4 18 6.5 6.5 6.5 1 +1800 4 19 3.8 3.8 3.8 1 +1800 4 20 7.7 7.7 7.7 1 +1800 4 21 9.3 9.3 9.3 1 +1800 4 22 11.3 11.3 11.3 1 +1800 4 23 10.3 10.3 10.3 1 +1800 4 24 12.8 12.8 12.8 1 +1800 4 25 8.7 8.7 8.7 1 +1800 4 26 7.9 7.9 7.9 1 +1800 4 27 6.3 6.3 6.3 1 +1800 4 28 8.0 8.0 8.0 1 +1800 4 29 9.0 9.0 9.0 1 +1800 4 30 9.5 9.5 9.5 1 +1800 5 1 6.2 6.2 6.2 1 +1800 5 2 7.2 7.2 7.2 1 +1800 5 3 12.0 12.0 12.0 1 +1800 5 4 12.1 12.1 12.1 1 +1800 5 5 15.4 15.4 15.3 1 +1800 5 6 14.1 14.1 14.0 1 +1800 5 7 8.7 8.7 8.6 1 +1800 5 8 7.7 7.7 7.6 1 +1800 5 9 5.1 5.1 5.0 1 +1800 5 10 0.4 0.4 0.2 1 +1800 5 11 3.0 3.0 2.8 1 +1800 5 12 3.4 3.4 3.2 1 +1800 5 13 5.6 5.6 5.4 1 +1800 5 14 1.5 1.5 1.2 1 +1800 5 15 3.0 3.0 2.7 1 +1800 5 16 5.6 5.6 5.3 1 +1800 5 17 5.8 5.8 5.5 1 +1800 5 18 8.0 8.0 7.7 1 +1800 5 19 11.1 11.1 10.7 1 +1800 5 20 12.1 12.1 11.7 1 +1800 5 21 15.1 15.1 14.7 1 +1800 5 22 16.1 16.1 15.7 1 +1800 5 23 16.8 16.8 16.3 1 +1800 5 24 10.8 10.8 10.3 1 +1800 5 25 7.4 7.4 6.9 1 +1800 5 26 9.7 9.7 9.2 1 +1800 5 27 11.9 11.9 11.4 1 +1800 5 28 14.1 14.1 13.5 1 +1800 5 29 13.1 13.1 12.5 1 +1800 5 30 11.9 11.9 11.3 1 +1800 5 31 11.8 11.8 11.2 1 +1800 6 1 10.7 10.7 10.0 1 +1800 6 2 11.0 11.0 10.3 1 +1800 6 3 15.4 15.4 14.7 1 +1800 6 4 16.5 16.5 15.8 1 +1800 6 5 18.5 18.5 17.8 1 +1800 6 6 13.1 13.1 12.4 1 +1800 6 7 6.7 6.7 6.0 1 +1800 6 8 8.6 8.6 7.9 1 +1800 6 9 8.7 8.7 8.0 1 +1800 6 10 9.5 9.5 8.8 1 +1800 6 11 7.8 7.8 7.1 1 +1800 6 12 9.2 9.2 8.5 1 +1800 6 13 9.3 9.3 8.6 1 +1800 6 14 14.0 14.0 13.3 1 +1800 6 15 8.2 8.2 7.5 1 +1800 6 16 8.3 8.3 7.6 1 +1800 6 17 6.2 6.2 5.5 1 +1800 6 18 7.0 7.0 6.3 1 +1800 6 19 10.6 10.6 9.9 1 +1800 6 20 12.1 12.1 11.4 1 +1800 6 21 10.3 10.3 9.6 1 +1800 6 22 12.4 12.4 11.7 1 +1800 6 23 13.1 13.1 12.4 1 +1800 6 24 13.7 13.7 13.0 1 +1800 6 25 17.1 17.1 16.4 1 +1800 6 26 16.0 16.0 15.3 1 +1800 6 27 14.1 14.1 13.4 1 +1800 6 28 14.5 14.5 13.8 1 +1800 6 29 15.1 15.1 14.4 1 +1800 6 30 14.0 14.0 13.3 1 +1800 7 1 13.0 13.0 12.3 1 +1800 7 2 13.7 13.7 13.0 1 +1800 7 3 12.2 12.2 11.5 1 +1800 7 4 14.3 14.3 13.6 1 +1800 7 5 16.1 16.1 15.4 1 +1800 7 6 13.7 13.7 13.0 1 +1800 7 7 15.8 15.8 15.1 1 +1800 7 8 19.4 19.4 18.7 1 +1800 7 9 17.9 17.9 17.2 1 +1800 7 10 16.3 16.3 15.6 1 +1800 7 11 17.5 17.5 16.8 1 +1800 7 12 12.8 12.8 12.1 1 +1800 7 13 12.6 12.6 11.9 1 +1800 7 14 11.8 11.8 11.1 1 +1800 7 15 12.3 12.3 11.6 1 +1800 7 16 16.8 16.8 16.1 1 +1800 7 17 15.5 15.5 14.8 1 +1800 7 18 13.5 13.5 12.8 1 +1800 7 19 14.4 14.4 13.7 1 +1800 7 20 11.7 11.7 11.0 1 +1800 7 21 12.8 12.8 12.1 1 +1800 7 22 14.6 14.6 13.9 1 +1800 7 23 20.3 20.3 19.6 1 +1800 7 24 17.4 17.4 16.7 1 +1800 7 25 15.1 15.1 14.4 1 +1800 7 26 17.1 17.1 16.4 1 +1800 7 27 15.8 15.8 15.1 1 +1800 7 28 16.0 16.0 15.3 1 +1800 7 29 17.4 17.4 16.7 1 +1800 7 30 17.5 17.5 16.8 1 +1800 7 31 19.4 19.4 18.7 1 +1800 8 1 17.3 17.3 16.7 1 +1800 8 2 16.4 16.4 15.8 1 +1800 8 3 17.0 17.0 16.4 1 +1800 8 4 17.4 17.4 16.8 1 +1800 8 5 15.1 15.1 14.6 1 +1800 8 6 13.2 13.2 12.7 1 +1800 8 7 13.0 13.0 12.5 1 +1800 8 8 15.0 15.0 14.5 1 +1800 8 9 17.8 17.8 17.3 1 +1800 8 10 15.6 15.6 15.2 1 +1800 8 11 20.1 20.1 19.7 1 +1800 8 12 21.2 21.2 20.8 1 +1800 8 13 20.5 20.5 20.1 1 +1800 8 14 22.1 22.1 21.8 1 +1800 8 15 21.1 21.1 20.8 1 +1800 8 16 16.0 16.0 15.7 1 +1800 8 17 16.7 16.7 16.4 1 +1800 8 18 15.7 15.7 15.4 1 +1800 8 19 14.3 14.3 14.1 1 +1800 8 20 14.9 14.9 14.7 1 +1800 8 21 12.0 12.0 11.8 1 +1800 8 22 11.4 11.4 11.2 1 +1800 8 23 12.9 12.9 12.8 1 +1800 8 24 12.4 12.4 12.3 1 +1800 8 25 14.5 14.5 14.4 1 +1800 8 26 13.6 13.6 13.5 1 +1800 8 27 14.6 14.6 14.5 1 +1800 8 28 15.8 15.8 15.8 1 +1800 8 29 14.5 14.5 14.5 1 +1800 8 30 15.0 15.0 15.0 1 +1800 8 31 15.7 15.7 15.7 1 +1800 9 1 13.4 13.4 13.4 1 +1800 9 2 12.4 12.4 12.4 1 +1800 9 3 14.5 14.5 14.5 1 +1800 9 4 16.4 16.4 16.4 1 +1800 9 5 9.8 9.8 9.8 1 +1800 9 6 10.0 10.0 10.0 1 +1800 9 7 9.8 9.8 9.8 1 +1800 9 8 11.8 11.8 11.8 1 +1800 9 9 12.8 12.8 12.8 1 +1800 9 10 12.6 12.6 12.6 1 +1800 9 11 11.1 11.1 11.1 1 +1800 9 12 10.8 10.8 10.8 1 +1800 9 13 14.4 14.4 14.4 1 +1800 9 14 14.5 14.5 14.5 1 +1800 9 15 14.9 14.9 14.9 1 +1800 9 16 15.6 15.6 15.6 1 +1800 9 17 12.1 12.1 12.1 1 +1800 9 18 9.9 9.9 9.9 1 +1800 9 19 8.2 8.2 8.2 1 +1800 9 20 9.0 9.0 9.0 1 +1800 9 21 8.9 8.9 8.9 1 +1800 9 22 8.4 8.4 8.4 1 +1800 9 23 9.7 9.7 9.7 1 +1800 9 24 10.4 10.4 10.4 1 +1800 9 25 9.4 9.4 9.4 1 +1800 9 26 9.3 9.3 9.3 1 +1800 9 27 8.0 8.0 8.0 1 +1800 9 28 8.0 8.0 8.0 1 +1800 9 29 5.8 5.8 5.8 1 +1800 9 30 5.0 5.0 5.0 1 +1800 10 1 5.3 5.3 5.3 1 +1800 10 2 7.0 7.0 7.0 1 +1800 10 3 8.0 8.0 8.0 1 +1800 10 4 9.3 9.3 9.3 1 +1800 10 5 10.6 10.6 10.6 1 +1800 10 6 10.0 10.0 10.0 1 +1800 10 7 10.3 10.3 10.3 1 +1800 10 8 10.0 10.0 10.0 1 +1800 10 9 11.7 11.7 11.7 1 +1800 10 10 12.3 12.3 12.3 1 +1800 10 11 10.2 10.2 10.2 1 +1800 10 12 7.2 7.2 7.2 1 +1800 10 13 6.6 6.6 6.6 1 +1800 10 14 8.6 8.6 8.6 1 +1800 10 15 8.9 8.9 8.9 1 +1800 10 16 3.7 3.7 3.7 1 +1800 10 17 2.2 2.2 2.2 1 +1800 10 18 5.5 5.5 5.5 1 +1800 10 19 4.7 4.7 4.7 1 +1800 10 20 8.2 8.2 8.2 1 +1800 10 21 8.9 8.9 8.9 1 +1800 10 22 2.2 2.2 2.2 1 +1800 10 23 -0.1 -0.1 -0.1 1 +1800 10 24 5.2 5.2 5.2 1 +1800 10 25 10.2 10.2 10.2 1 +1800 10 26 8.2 8.2 8.2 1 +1800 10 27 7.2 7.2 7.2 1 +1800 10 28 7.1 7.1 7.1 1 +1800 10 29 6.4 6.4 6.4 1 +1800 10 30 5.7 5.7 5.7 1 +1800 10 31 8.9 8.9 8.9 1 +1800 11 1 7.0 7.0 7.0 1 +1800 11 2 3.5 3.5 3.5 1 +1800 11 3 5.6 5.6 5.6 1 +1800 11 4 7.6 7.6 7.6 1 +1800 11 5 6.9 6.9 6.9 1 +1800 11 6 6.6 6.6 6.6 1 +1800 11 7 2.7 2.7 2.7 1 +1800 11 8 2.7 2.7 2.7 1 +1800 11 9 7.1 7.1 7.1 1 +1800 11 10 5.7 5.7 5.7 1 +1800 11 11 2.7 2.7 2.7 1 +1800 11 12 4.4 4.4 4.4 1 +1800 11 13 4.5 4.5 4.5 1 +1800 11 14 6.6 6.6 6.6 1 +1800 11 15 7.0 7.0 7.0 1 +1800 11 16 6.1 6.1 6.1 1 +1800 11 17 5.6 5.6 5.6 1 +1800 11 18 4.2 4.2 4.2 1 +1800 11 19 -1.1 -1.1 -1.1 1 +1800 11 20 -0.8 -0.8 -0.8 1 +1800 11 21 0.4 0.4 0.4 1 +1800 11 22 1.6 1.6 1.6 1 +1800 11 23 2.1 2.1 2.1 1 +1800 11 24 1.2 1.2 1.2 1 +1800 11 25 3.3 3.3 3.3 1 +1800 11 26 6.3 6.3 6.3 1 +1800 11 27 2.9 2.9 2.9 1 +1800 11 28 -0.1 -0.1 -0.1 1 +1800 11 29 -4.1 -4.1 -4.1 1 +1800 11 30 -1.1 -1.1 -1.1 1 +1800 12 1 3.6 3.6 3.6 1 +1800 12 2 3.6 3.6 3.6 1 +1800 12 3 0.9 0.9 0.9 1 +1800 12 4 1.8 1.8 1.8 1 +1800 12 5 -0.4 -0.4 -0.4 1 +1800 12 6 -1.4 -1.4 -1.4 1 +1800 12 7 2.9 2.9 2.9 1 +1800 12 8 3.7 3.7 3.7 1 +1800 12 9 4.8 4.8 4.8 1 +1800 12 10 4.1 4.1 4.1 1 +1800 12 11 3.6 3.6 3.6 1 +1800 12 12 3.4 3.4 3.4 1 +1800 12 13 2.9 2.9 2.9 1 +1800 12 14 -0.1 -0.1 -0.1 1 +1800 12 15 0.3 0.3 0.3 1 +1800 12 16 -1.6 -1.6 -1.6 1 +1800 12 17 -0.9 -0.9 -0.9 1 +1800 12 18 -2.8 -2.8 -2.8 1 +1800 12 19 -1.8 -1.8 -1.8 1 +1800 12 20 0.3 0.3 0.3 1 +1800 12 21 -0.3 -0.3 -0.3 1 +1800 12 22 -3.3 -3.3 -3.3 1 +1800 12 23 -0.7 -0.7 -0.7 1 +1800 12 24 2.4 2.4 2.4 1 +1800 12 25 3.3 3.3 3.3 1 +1800 12 26 3.1 3.1 3.1 1 +1800 12 27 -1.8 -1.8 -1.8 1 +1800 12 28 -8.4 -8.4 -8.4 1 +1800 12 29 0.8 0.8 0.8 1 +1800 12 30 -1.8 -1.8 -1.8 1 +1800 12 31 -10.1 -10.1 -10.1 1 +1801 1 1 -6.6 -6.6 -6.6 1 +1801 1 2 1.2 1.2 1.2 1 +1801 1 3 1.2 1.2 1.2 1 +1801 1 4 2.0 2.0 2.0 1 +1801 1 5 2.9 2.9 2.9 1 +1801 1 6 4.9 4.9 4.9 1 +1801 1 7 -5.1 -5.1 -5.1 1 +1801 1 8 -6.6 -6.6 -6.6 1 +1801 1 9 -3.8 -3.8 -3.8 1 +1801 1 10 -5.5 -5.5 -5.5 1 +1801 1 11 -0.4 -0.4 -0.4 1 +1801 1 12 -2.0 -2.0 -2.0 1 +1801 1 13 0.7 0.7 0.7 1 +1801 1 14 -2.4 -2.4 -2.4 1 +1801 1 15 0.6 0.6 0.6 1 +1801 1 16 1.0 1.0 1.0 1 +1801 1 17 1.2 1.2 1.2 1 +1801 1 18 1.5 1.5 1.5 1 +1801 1 19 1.2 1.2 1.2 1 +1801 1 20 1.2 1.2 1.2 1 +1801 1 21 -2.0 -2.0 -2.0 1 +1801 1 22 -6.1 -6.1 -6.1 1 +1801 1 23 -12.0 -12.0 -12.0 1 +1801 1 24 -12.8 -12.8 -12.8 1 +1801 1 25 -13.5 -13.5 -13.5 1 +1801 1 26 -5.7 -5.7 -5.7 1 +1801 1 27 -13.8 -13.8 -13.8 1 +1801 1 28 -16.5 -16.5 -16.5 1 +1801 1 29 -8.5 -8.5 -8.5 1 +1801 1 30 -17.5 -17.5 -17.5 1 +1801 1 31 -14.5 -14.5 -14.5 1 +1801 2 1 -5.5 -5.5 -5.5 1 +1801 2 2 -6.0 -6.0 -6.0 1 +1801 2 3 0.5 0.5 0.5 1 +1801 2 4 3.0 3.0 3.0 1 +1801 2 5 5.2 5.2 5.2 1 +1801 2 6 -5.8 -5.8 -5.8 1 +1801 2 7 -11.5 -11.5 -11.5 1 +1801 2 8 -8.6 -8.6 -8.6 1 +1801 2 9 -9.6 -9.6 -9.6 1 +1801 2 10 -7.5 -7.5 -7.5 1 +1801 2 11 -9.1 -9.1 -9.1 1 +1801 2 12 -7.8 -7.8 -7.8 1 +1801 2 13 -6.3 -6.3 -6.3 1 +1801 2 14 -6.5 -6.5 -6.5 1 +1801 2 15 -3.8 -3.8 -3.8 1 +1801 2 16 -5.5 -5.5 -5.5 1 +1801 2 17 -7.5 -7.5 -7.5 1 +1801 2 18 -8.4 -8.4 -8.4 1 +1801 2 19 -5.6 -5.6 -5.6 1 +1801 2 20 -7.0 -7.0 -7.0 1 +1801 2 21 -5.3 -5.3 -5.3 1 +1801 2 22 -4.5 -4.5 -4.5 1 +1801 2 23 -3.4 -3.4 -3.4 1 +1801 2 24 -0.1 -0.1 -0.1 1 +1801 2 25 -2.6 -2.6 -2.6 1 +1801 2 26 0.7 0.7 0.7 1 +1801 2 27 3.0 3.0 3.0 1 +1801 2 28 2.4 2.4 2.4 1 +1801 3 1 2.7 2.7 2.7 1 +1801 3 2 3.5 3.5 3.5 1 +1801 3 3 4.0 4.0 4.0 1 +1801 3 4 0.8 0.8 0.8 1 +1801 3 5 -1.4 -1.4 -1.4 1 +1801 3 6 -3.2 -3.2 -3.2 1 +1801 3 7 -2.1 -2.1 -2.1 1 +1801 3 8 0.6 0.6 0.6 1 +1801 3 9 -6.1 -6.1 -6.1 1 +1801 3 10 -5.9 -5.9 -5.9 1 +1801 3 11 -4.2 -4.2 -4.2 1 +1801 3 12 -1.0 -1.0 -1.0 1 +1801 3 13 3.3 3.3 3.3 1 +1801 3 14 2.1 2.1 2.1 1 +1801 3 15 -6.2 -6.2 -6.2 1 +1801 3 16 -6.7 -6.7 -6.7 1 +1801 3 17 -4.7 -4.7 -4.7 1 +1801 3 18 1.3 1.3 1.3 1 +1801 3 19 -1.8 -1.8 -1.8 1 +1801 3 20 -3.2 -3.2 -3.2 1 +1801 3 21 0.3 0.3 0.3 1 +1801 3 22 1.8 1.8 1.8 1 +1801 3 23 1.7 1.7 1.7 1 +1801 3 24 2.0 2.0 2.0 1 +1801 3 25 -0.3 -0.3 -0.3 1 +1801 3 26 3.4 3.4 3.4 1 +1801 3 27 7.4 7.4 7.4 1 +1801 3 28 4.6 4.6 4.6 1 +1801 3 29 8.0 8.0 8.0 1 +1801 3 30 0.9 0.9 0.9 1 +1801 3 31 -0.3 -0.3 -0.3 1 +1801 4 1 -1.6 -1.6 -1.6 1 +1801 4 2 1.6 1.6 1.6 1 +1801 4 3 4.4 4.4 4.4 1 +1801 4 4 3.4 3.4 3.4 1 +1801 4 5 3.1 3.1 3.1 1 +1801 4 6 1.8 1.8 1.8 1 +1801 4 7 2.6 2.6 2.6 1 +1801 4 8 3.6 3.6 3.6 1 +1801 4 9 4.0 4.0 4.0 1 +1801 4 10 4.2 4.2 4.2 1 +1801 4 11 3.0 3.0 3.0 1 +1801 4 12 4.7 4.7 4.7 1 +1801 4 13 3.8 3.8 3.8 1 +1801 4 14 4.7 4.7 4.7 1 +1801 4 15 9.6 9.6 9.6 1 +1801 4 16 9.9 9.9 9.9 1 +1801 4 17 6.8 6.8 6.8 1 +1801 4 18 8.5 8.5 8.5 1 +1801 4 19 6.9 6.9 6.9 1 +1801 4 20 7.1 7.1 7.1 1 +1801 4 21 1.8 1.8 1.8 1 +1801 4 22 0.8 0.8 0.8 1 +1801 4 23 4.4 4.4 4.4 1 +1801 4 24 9.9 9.9 9.9 1 +1801 4 25 12.1 12.1 12.1 1 +1801 4 26 5.5 5.5 5.5 1 +1801 4 27 6.9 6.9 6.9 1 +1801 4 28 12.2 12.2 12.2 1 +1801 4 29 7.7 7.7 7.7 1 +1801 4 30 7.4 7.4 7.4 1 +1801 5 1 9.5 9.5 9.5 1 +1801 5 2 7.2 7.2 7.2 1 +1801 5 3 10.7 10.7 10.7 1 +1801 5 4 12.2 12.2 12.2 1 +1801 5 5 14.7 14.7 14.6 1 +1801 5 6 10.4 10.4 10.3 1 +1801 5 7 5.2 5.2 5.1 1 +1801 5 8 5.3 5.3 5.2 1 +1801 5 9 8.9 8.9 8.8 1 +1801 5 10 9.3 9.3 9.1 1 +1801 5 11 10.4 10.4 10.2 1 +1801 5 12 11.4 11.4 11.2 1 +1801 5 13 11.6 11.6 11.4 1 +1801 5 14 8.0 8.0 7.7 1 +1801 5 15 7.7 7.7 7.4 1 +1801 5 16 8.7 8.7 8.4 1 +1801 5 17 10.4 10.4 10.1 1 +1801 5 18 12.0 12.0 11.7 1 +1801 5 19 17.3 17.3 16.9 1 +1801 5 20 15.0 15.0 14.6 1 +1801 5 21 14.2 14.2 13.8 1 +1801 5 22 15.8 15.8 15.4 1 +1801 5 23 16.7 16.7 16.2 1 +1801 5 24 18.8 18.8 18.3 1 +1801 5 25 19.0 19.0 18.5 1 +1801 5 26 18.4 18.4 17.9 1 +1801 5 27 18.1 18.1 17.6 1 +1801 5 28 11.4 11.4 10.8 1 +1801 5 29 9.8 9.8 9.2 1 +1801 5 30 11.8 11.8 11.2 1 +1801 5 31 14.1 14.1 13.5 1 +1801 6 1 16.2 16.2 15.5 1 +1801 6 2 14.9 14.9 14.2 1 +1801 6 3 15.5 15.5 14.8 1 +1801 6 4 18.9 18.9 18.2 1 +1801 6 5 19.7 19.7 19.0 1 +1801 6 6 17.8 17.8 17.1 1 +1801 6 7 16.8 16.8 16.1 1 +1801 6 8 18.8 18.8 18.1 1 +1801 6 9 18.1 18.1 17.4 1 +1801 6 10 12.8 12.8 12.1 1 +1801 6 11 8.1 8.1 7.4 1 +1801 6 12 7.8 7.8 7.1 1 +1801 6 13 7.9 7.9 7.2 1 +1801 6 14 10.3 10.3 9.6 1 +1801 6 15 11.6 11.6 10.9 1 +1801 6 16 12.8 12.8 12.1 1 +1801 6 17 12.0 12.0 11.3 1 +1801 6 18 11.8 11.8 11.1 1 +1801 6 19 11.7 11.7 11.0 1 +1801 6 20 11.7 11.7 11.0 1 +1801 6 21 13.8 13.8 13.1 1 +1801 6 22 13.7 13.7 13.0 1 +1801 6 23 15.7 15.7 15.0 1 +1801 6 24 13.7 13.7 13.0 1 +1801 6 25 14.9 14.9 14.2 1 +1801 6 26 14.2 14.2 13.5 1 +1801 6 27 14.5 14.5 13.8 1 +1801 6 28 12.6 12.6 11.9 1 +1801 6 29 10.6 10.6 9.9 1 +1801 6 30 12.4 12.4 11.7 1 +1801 7 1 17.8 17.8 17.1 1 +1801 7 2 18.2 18.2 17.5 1 +1801 7 3 16.8 16.8 16.1 1 +1801 7 4 15.5 15.5 14.8 1 +1801 7 5 17.3 17.3 16.6 1 +1801 7 6 16.1 16.1 15.4 1 +1801 7 7 15.8 15.8 15.1 1 +1801 7 8 16.8 16.8 16.1 1 +1801 7 9 19.3 19.3 18.6 1 +1801 7 10 17.4 17.4 16.7 1 +1801 7 11 16.9 16.9 16.2 1 +1801 7 12 15.4 15.4 14.7 1 +1801 7 13 15.7 15.7 15.0 1 +1801 7 14 17.7 17.7 17.0 1 +1801 7 15 20.0 20.0 19.3 1 +1801 7 16 20.8 20.8 20.1 1 +1801 7 17 20.5 20.5 19.8 1 +1801 7 18 19.4 19.4 18.7 1 +1801 7 19 17.3 17.3 16.6 1 +1801 7 20 17.5 17.5 16.8 1 +1801 7 21 19.8 19.8 19.1 1 +1801 7 22 23.8 23.8 23.1 1 +1801 7 23 25.1 25.1 24.4 1 +1801 7 24 19.8 19.8 19.1 1 +1801 7 25 21.3 21.3 20.6 1 +1801 7 26 22.6 22.6 21.9 1 +1801 7 27 23.3 23.3 22.6 1 +1801 7 28 17.7 17.7 17.0 1 +1801 7 29 14.1 14.1 13.4 1 +1801 7 30 15.6 15.6 14.9 1 +1801 7 31 13.8 13.8 13.1 1 +1801 8 1 13.1 13.1 12.5 1 +1801 8 2 16.8 16.8 16.2 1 +1801 8 3 20.5 20.5 19.9 1 +1801 8 4 18.0 18.0 17.4 1 +1801 8 5 10.4 10.4 9.9 1 +1801 8 6 13.4 13.4 12.9 1 +1801 8 7 17.4 17.4 16.9 1 +1801 8 8 20.3 20.3 19.8 1 +1801 8 9 15.4 15.4 14.9 1 +1801 8 10 15.8 15.8 15.4 1 +1801 8 11 16.9 16.9 16.5 1 +1801 8 12 17.6 17.6 17.2 1 +1801 8 13 18.8 18.8 18.4 1 +1801 8 14 19.7 19.7 19.4 1 +1801 8 15 14.8 14.8 14.5 1 +1801 8 16 11.1 11.1 10.8 1 +1801 8 17 12.2 12.2 11.9 1 +1801 8 18 13.5 13.5 13.2 1 +1801 8 19 11.0 11.0 10.8 1 +1801 8 20 8.6 8.6 8.4 1 +1801 8 21 8.2 8.2 8.0 1 +1801 8 22 10.4 10.4 10.2 1 +1801 8 23 15.5 15.5 15.4 1 +1801 8 24 12.1 12.1 12.0 1 +1801 8 25 11.5 11.5 11.4 1 +1801 8 26 11.6 11.6 11.5 1 +1801 8 27 9.7 9.7 9.6 1 +1801 8 28 11.7 11.7 11.7 1 +1801 8 29 5.7 5.7 5.7 1 +1801 8 30 7.9 7.9 7.9 1 +1801 8 31 9.5 9.5 9.5 1 +1801 9 1 8.8 8.8 8.8 1 +1801 9 2 11.3 11.3 11.3 1 +1801 9 3 13.3 13.3 13.3 1 +1801 9 4 12.8 12.8 12.8 1 +1801 9 5 13.1 13.1 13.1 1 +1801 9 6 10.5 10.5 10.5 1 +1801 9 7 9.5 9.5 9.5 1 +1801 9 8 8.8 8.8 8.8 1 +1801 9 9 10.5 10.5 10.5 1 +1801 9 10 9.6 9.6 9.6 1 +1801 9 11 12.1 12.1 12.1 1 +1801 9 12 12.5 12.5 12.5 1 +1801 9 13 9.8 9.8 9.8 1 +1801 9 14 13.1 13.1 13.1 1 +1801 9 15 14.8 14.8 14.8 1 +1801 9 16 15.7 15.7 15.7 1 +1801 9 17 14.1 14.1 14.1 1 +1801 9 18 10.7 10.7 10.7 1 +1801 9 19 15.2 15.2 15.2 1 +1801 9 20 16.9 16.9 16.9 1 +1801 9 21 13.4 13.4 13.4 1 +1801 9 22 11.0 11.0 11.0 1 +1801 9 23 9.0 9.0 9.0 1 +1801 9 24 9.0 9.0 9.0 1 +1801 9 25 8.7 8.7 8.7 1 +1801 9 26 10.0 10.0 10.0 1 +1801 9 27 7.7 7.7 7.7 1 +1801 9 28 7.3 7.3 7.3 1 +1801 9 29 5.5 5.5 5.5 1 +1801 9 30 8.7 8.7 8.7 1 +1801 10 1 10.0 10.0 10.0 1 +1801 10 2 11.0 11.0 11.0 1 +1801 10 3 12.6 12.6 12.6 1 +1801 10 4 11.0 11.0 11.0 1 +1801 10 5 10.3 10.3 10.3 1 +1801 10 6 10.1 10.1 10.1 1 +1801 10 7 8.6 8.6 8.6 1 +1801 10 8 8.6 8.6 8.6 1 +1801 10 9 8.3 8.3 8.3 1 +1801 10 10 6.4 6.4 6.4 1 +1801 10 11 7.6 7.6 7.6 1 +1801 10 12 4.2 4.2 4.2 1 +1801 10 13 2.2 2.2 2.2 1 +1801 10 14 2.7 2.7 2.7 1 +1801 10 15 5.1 5.1 5.1 1 +1801 10 16 8.9 8.9 8.9 1 +1801 10 17 8.6 8.6 8.6 1 +1801 10 18 7.7 7.7 7.7 1 +1801 10 19 5.7 5.7 5.7 1 +1801 10 20 3.4 3.4 3.4 1 +1801 10 21 1.9 1.9 1.9 1 +1801 10 22 1.7 1.7 1.7 1 +1801 10 23 0.5 0.5 0.5 1 +1801 10 24 5.2 5.2 5.2 1 +1801 10 25 7.5 7.5 7.5 1 +1801 10 26 7.4 7.4 7.4 1 +1801 10 27 10.2 10.2 10.2 1 +1801 10 28 5.2 5.2 5.2 1 +1801 10 29 1.4 1.4 1.4 1 +1801 10 30 9.4 9.4 9.4 1 +1801 10 31 12.7 12.7 12.7 1 +1801 11 1 11.9 11.9 11.9 1 +1801 11 2 5.9 5.9 5.9 1 +1801 11 3 0.4 0.4 0.4 1 +1801 11 4 -0.8 -0.8 -0.8 1 +1801 11 5 0.6 0.6 0.6 1 +1801 11 6 -3.3 -3.3 -3.3 1 +1801 11 7 -2.5 -2.5 -2.5 1 +1801 11 8 3.7 3.7 3.7 1 +1801 11 9 4.7 4.7 4.7 1 +1801 11 10 3.6 3.6 3.6 1 +1801 11 11 4.4 4.4 4.4 1 +1801 11 12 4.9 4.9 4.9 1 +1801 11 13 3.9 3.9 3.9 1 +1801 11 14 4.1 4.1 4.1 1 +1801 11 15 4.1 4.1 4.1 1 +1801 11 16 8.9 8.9 8.9 1 +1801 11 17 5.4 5.4 5.4 1 +1801 11 18 5.6 5.6 5.6 1 +1801 11 19 5.6 5.6 5.6 1 +1801 11 20 1.7 1.7 1.7 1 +1801 11 21 4.2 4.2 4.2 1 +1801 11 22 3.9 3.9 3.9 1 +1801 11 23 1.3 1.3 1.3 1 +1801 11 24 -1.6 -1.6 -1.6 1 +1801 11 25 -3.6 -3.6 -3.6 1 +1801 11 26 -1.8 -1.8 -1.8 1 +1801 11 27 -0.1 -0.1 -0.1 1 +1801 11 28 -0.7 -0.7 -0.7 1 +1801 11 29 -0.7 -0.7 -0.7 1 +1801 11 30 -2.4 -2.4 -2.4 1 +1801 12 1 -0.9 -0.9 -0.9 1 +1801 12 2 4.3 4.3 4.3 1 +1801 12 3 1.6 1.6 1.6 1 +1801 12 4 -3.4 -3.4 -3.4 1 +1801 12 5 -2.4 -2.4 -2.4 1 +1801 12 6 2.9 2.9 2.9 1 +1801 12 7 3.9 3.9 3.9 1 +1801 12 8 3.6 3.6 3.6 1 +1801 12 9 1.6 1.6 1.6 1 +1801 12 10 0.9 0.9 0.9 1 +1801 12 11 -2.1 -2.1 -2.1 1 +1801 12 12 -2.2 -2.2 -2.2 1 +1801 12 13 -2.7 -2.7 -2.7 1 +1801 12 14 -4.6 -4.6 -4.6 1 +1801 12 15 -4.4 -4.4 -4.4 1 +1801 12 16 -6.1 -6.1 -6.1 1 +1801 12 17 -3.8 -3.8 -3.8 1 +1801 12 18 -5.1 -5.1 -5.1 1 +1801 12 19 -7.2 -7.2 -7.2 1 +1801 12 20 -13.1 -13.1 -13.1 1 +1801 12 21 -10.7 -10.7 -10.7 1 +1801 12 22 -3.1 -3.1 -3.1 1 +1801 12 23 -7.6 -7.6 -7.6 1 +1801 12 24 -8.7 -8.7 -8.7 1 +1801 12 25 -9.2 -9.2 -9.2 1 +1801 12 26 -10.6 -10.6 -10.6 1 +1801 12 27 -6.7 -6.7 -6.7 1 +1801 12 28 -6.4 -6.4 -6.4 1 +1801 12 29 -2.7 -2.7 -2.7 1 +1801 12 30 -3.4 -3.4 -3.4 1 +1801 12 31 -9.8 -9.8 -9.8 1 +1802 1 1 -8.9 -8.9 -8.9 1 +1802 1 2 -14.8 -14.8 -14.8 1 +1802 1 3 -21.8 -21.8 -21.8 1 +1802 1 4 -18.8 -18.8 -18.8 1 +1802 1 5 -9.5 -9.5 -9.5 1 +1802 1 6 -3.0 -3.0 -3.0 1 +1802 1 7 -7.1 -7.1 -7.1 1 +1802 1 8 -15.1 -15.1 -15.1 1 +1802 1 9 -8.4 -8.4 -8.4 1 +1802 1 10 -9.8 -9.8 -9.8 1 +1802 1 11 -18.6 -18.6 -18.6 1 +1802 1 12 -24.8 -24.8 -24.8 1 +1802 1 13 -23.3 -23.3 -23.3 1 +1802 1 14 -20.6 -20.6 -20.6 1 +1802 1 15 -12.6 -12.6 -12.6 1 +1802 1 16 0.2 0.2 0.2 1 +1802 1 17 -1.2 -1.2 -1.2 1 +1802 1 18 2.8 2.8 2.8 1 +1802 1 19 3.2 3.2 3.2 1 +1802 1 20 0.5 0.5 0.5 1 +1802 1 21 -7.2 -7.2 -7.2 1 +1802 1 22 -10.2 -10.2 -10.2 1 +1802 1 23 -10.8 -10.8 -10.8 1 +1802 1 24 -3.3 -3.3 -3.3 1 +1802 1 25 0.2 0.2 0.2 1 +1802 1 26 0.8 0.8 0.8 1 +1802 1 27 2.5 2.5 2.5 1 +1802 1 28 0.3 0.3 0.3 1 +1802 1 29 2.7 2.7 2.7 1 +1802 1 30 -0.5 -0.5 -0.5 1 +1802 1 31 1.5 1.5 1.5 1 +1802 2 1 2.2 2.2 2.2 1 +1802 2 2 2.2 2.2 2.2 1 +1802 2 3 2.9 2.9 2.9 1 +1802 2 4 -0.6 -0.6 -0.6 1 +1802 2 5 1.2 1.2 1.2 1 +1802 2 6 0.9 0.9 0.9 1 +1802 2 7 -0.7 -0.7 -0.7 1 +1802 2 8 -1.7 -1.7 -1.7 1 +1802 2 9 -0.1 -0.1 -0.1 1 +1802 2 10 1.2 1.2 1.2 1 +1802 2 11 0.0 0.0 0.0 1 +1802 2 12 -6.0 -6.0 -6.0 1 +1802 2 13 -5.7 -5.7 -5.7 1 +1802 2 14 -10.5 -10.5 -10.5 1 +1802 2 15 -6.5 -6.5 -6.5 1 +1802 2 16 -2.5 -2.5 -2.5 1 +1802 2 17 -2.0 -2.0 -2.0 1 +1802 2 18 -4.1 -4.1 -4.1 1 +1802 2 19 -5.3 -5.3 -5.3 1 +1802 2 20 -5.5 -5.5 -5.5 1 +1802 2 21 -1.6 -1.6 -1.6 1 +1802 2 22 1.4 1.4 1.4 1 +1802 2 23 -6.4 -6.4 -6.4 1 +1802 2 24 -4.4 -4.4 -4.4 1 +1802 2 25 -9.3 -9.3 -9.3 1 +1802 2 26 -7.9 -7.9 -7.9 1 +1802 2 27 4.9 4.9 4.9 1 +1802 2 28 3.8 3.8 3.8 1 +1802 3 1 3.0 3.0 3.0 1 +1802 3 2 3.6 3.6 3.6 1 +1802 3 3 4.7 4.7 4.7 1 +1802 3 4 2.9 2.9 2.9 1 +1802 3 5 0.7 0.7 0.7 1 +1802 3 6 -0.6 -0.6 -0.6 1 +1802 3 7 1.9 1.9 1.9 1 +1802 3 8 2.2 2.2 2.2 1 +1802 3 9 1.3 1.3 1.3 1 +1802 3 10 2.8 2.8 2.8 1 +1802 3 11 5.1 5.1 5.1 1 +1802 3 12 4.3 4.3 4.3 1 +1802 3 13 -1.4 -1.4 -1.4 1 +1802 3 14 -3.0 -3.0 -3.0 1 +1802 3 15 -2.2 -2.2 -2.2 1 +1802 3 16 1.0 1.0 1.0 1 +1802 3 17 0.3 0.3 0.3 1 +1802 3 18 6.0 6.0 6.0 1 +1802 3 19 7.0 7.0 7.0 1 +1802 3 20 6.0 6.0 6.0 1 +1802 3 21 3.8 3.8 3.8 1 +1802 3 22 5.3 5.3 5.3 1 +1802 3 23 -0.3 -0.3 -0.3 1 +1802 3 24 -2.6 -2.6 -2.6 1 +1802 3 25 1.8 1.8 1.8 1 +1802 3 26 5.7 5.7 5.7 1 +1802 3 27 3.4 3.4 3.4 1 +1802 3 28 8.7 8.7 8.7 1 +1802 3 29 4.4 4.4 4.4 1 +1802 3 30 -4.1 -4.1 -4.1 1 +1802 3 31 0.7 0.7 0.7 1 +1802 4 1 8.6 8.6 8.6 1 +1802 4 2 6.4 6.4 6.4 1 +1802 4 3 7.4 7.4 7.4 1 +1802 4 4 4.8 4.8 4.8 1 +1802 4 5 5.1 5.1 5.1 1 +1802 4 6 8.5 8.5 8.5 1 +1802 4 7 9.0 9.0 9.0 1 +1802 4 8 6.1 6.1 6.1 1 +1802 4 9 5.2 5.2 5.2 1 +1802 4 10 2.8 2.8 2.8 1 +1802 4 11 3.0 3.0 3.0 1 +1802 4 12 -1.4 -1.4 -1.4 1 +1802 4 13 -1.5 -1.5 -1.5 1 +1802 4 14 -0.8 -0.8 -0.8 1 +1802 4 15 -1.4 -1.4 -1.4 1 +1802 4 16 0.7 0.7 0.7 1 +1802 4 17 2.2 2.2 2.2 1 +1802 4 18 4.8 4.8 4.8 1 +1802 4 19 7.7 7.7 7.7 1 +1802 4 20 7.5 7.5 7.5 1 +1802 4 21 7.0 7.0 7.0 1 +1802 4 22 5.5 5.5 5.5 1 +1802 4 23 8.6 8.6 8.6 1 +1802 4 24 6.3 6.3 6.3 1 +1802 4 25 7.9 7.9 7.9 1 +1802 4 26 9.1 9.1 9.1 1 +1802 4 27 9.5 9.5 9.5 1 +1802 4 28 13.4 13.4 13.4 1 +1802 4 29 13.0 13.0 13.0 1 +1802 4 30 7.8 7.8 7.8 1 +1802 5 1 9.4 9.4 9.4 1 +1802 5 2 9.2 9.2 9.2 1 +1802 5 3 6.0 6.0 6.0 1 +1802 5 4 4.2 4.2 4.2 1 +1802 5 5 4.4 4.4 4.3 1 +1802 5 6 5.9 5.9 5.8 1 +1802 5 7 3.7 3.7 3.6 1 +1802 5 8 9.4 9.4 9.3 1 +1802 5 9 10.2 10.2 10.1 1 +1802 5 10 5.9 5.9 5.7 1 +1802 5 11 6.6 6.6 6.4 1 +1802 5 12 0.8 0.8 0.6 1 +1802 5 13 3.0 3.0 2.8 1 +1802 5 14 4.8 4.8 4.5 1 +1802 5 15 4.3 4.3 4.0 1 +1802 5 16 2.6 2.6 2.3 1 +1802 5 17 4.0 4.0 3.7 1 +1802 5 18 5.0 5.0 4.7 1 +1802 5 19 6.3 6.3 5.9 1 +1802 5 20 5.7 5.7 5.3 1 +1802 5 21 8.7 8.7 8.3 1 +1802 5 22 11.5 11.5 11.1 1 +1802 5 23 11.5 11.5 11.0 1 +1802 5 24 13.3 13.3 12.8 1 +1802 5 25 8.8 8.8 8.3 1 +1802 5 26 9.7 9.7 9.2 1 +1802 5 27 12.9 12.9 12.4 1 +1802 5 28 14.5 14.5 13.9 1 +1802 5 29 12.6 12.6 12.0 1 +1802 5 30 6.2 6.2 5.6 1 +1802 5 31 6.4 6.4 5.8 1 +1802 6 1 8.2 8.2 7.5 1 +1802 6 2 9.5 9.5 8.8 1 +1802 6 3 11.6 11.6 10.9 1 +1802 6 4 8.8 8.8 8.1 1 +1802 6 5 9.2 9.2 8.5 1 +1802 6 6 8.8 8.8 8.1 1 +1802 6 7 11.8 11.8 11.1 1 +1802 6 8 12.5 12.5 11.8 1 +1802 6 9 12.6 12.6 11.9 1 +1802 6 10 15.0 15.0 14.3 1 +1802 6 11 16.6 16.6 15.9 1 +1802 6 12 14.6 14.6 13.9 1 +1802 6 13 16.2 16.2 15.5 1 +1802 6 14 12.8 12.8 12.1 1 +1802 6 15 12.1 12.1 11.4 1 +1802 6 16 13.9 13.9 13.2 1 +1802 6 17 13.9 13.9 13.2 1 +1802 6 18 15.3 15.3 14.6 1 +1802 6 19 17.1 17.1 16.4 1 +1802 6 20 12.7 12.7 12.0 1 +1802 6 21 12.0 12.0 11.3 1 +1802 6 22 14.4 14.4 13.7 1 +1802 6 23 13.7 13.7 13.0 1 +1802 6 24 11.8 11.8 11.1 1 +1802 6 25 10.9 10.9 10.2 1 +1802 6 26 15.0 15.0 14.3 1 +1802 6 27 15.2 15.2 14.5 1 +1802 6 28 15.7 15.7 15.0 1 +1802 6 29 13.9 13.9 13.2 1 +1802 6 30 13.7 13.7 13.0 1 +1802 7 1 13.4 13.4 12.7 1 +1802 7 2 14.0 14.0 13.3 1 +1802 7 3 13.2 13.2 12.5 1 +1802 7 4 12.4 12.4 11.7 1 +1802 7 5 14.1 14.1 13.4 1 +1802 7 6 14.5 14.5 13.8 1 +1802 7 7 14.8 14.8 14.1 1 +1802 7 8 14.1 14.1 13.4 1 +1802 7 9 14.7 14.7 14.0 1 +1802 7 10 16.5 16.5 15.8 1 +1802 7 11 15.3 15.3 14.6 1 +1802 7 12 16.6 16.6 15.9 1 +1802 7 13 11.0 11.0 10.3 1 +1802 7 14 13.2 13.2 12.5 1 +1802 7 15 17.9 17.9 17.2 1 +1802 7 16 18.4 18.4 17.7 1 +1802 7 17 14.2 14.2 13.5 1 +1802 7 18 14.0 14.0 13.3 1 +1802 7 19 14.1 14.1 13.4 1 +1802 7 20 13.7 13.7 13.0 1 +1802 7 21 15.2 15.2 14.5 1 +1802 7 22 16.8 16.8 16.1 1 +1802 7 23 14.6 14.6 13.9 1 +1802 7 24 16.8 16.8 16.1 1 +1802 7 25 14.1 14.1 13.4 1 +1802 7 26 15.2 15.2 14.5 1 +1802 7 27 15.1 15.1 14.4 1 +1802 7 28 13.1 13.1 12.4 1 +1802 7 29 15.1 15.1 14.4 1 +1802 7 30 15.9 15.9 15.2 1 +1802 7 31 18.6 18.6 17.9 1 +1802 8 1 16.7 16.7 16.1 1 +1802 8 2 13.6 13.6 13.0 1 +1802 8 3 13.6 13.6 13.0 1 +1802 8 4 13.3 13.3 12.7 1 +1802 8 5 13.4 13.4 12.9 1 +1802 8 6 16.1 16.1 15.6 1 +1802 8 7 15.4 15.4 14.9 1 +1802 8 8 19.1 19.1 18.6 1 +1802 8 9 19.8 19.8 19.3 1 +1802 8 10 20.0 20.0 19.6 1 +1802 8 11 21.8 21.8 21.4 1 +1802 8 12 20.6 20.6 20.2 1 +1802 8 13 19.6 19.6 19.2 1 +1802 8 14 15.6 15.6 15.3 1 +1802 8 15 10.9 10.9 10.6 1 +1802 8 16 10.8 10.8 10.5 1 +1802 8 17 15.4 15.4 15.1 1 +1802 8 18 20.4 20.4 20.1 1 +1802 8 19 19.5 19.5 19.3 1 +1802 8 20 20.1 20.1 19.9 1 +1802 8 21 18.1 18.1 17.9 1 +1802 8 22 18.1 18.1 17.9 1 +1802 8 23 20.0 20.0 19.9 1 +1802 8 24 17.6 17.6 17.5 1 +1802 8 25 19.6 19.6 19.5 1 +1802 8 26 14.9 14.9 14.8 1 +1802 8 27 14.6 14.6 14.5 1 +1802 8 28 15.1 15.1 15.1 1 +1802 8 29 14.9 14.9 14.9 1 +1802 8 30 16.7 16.7 16.7 1 +1802 8 31 12.7 12.7 12.7 1 +1802 9 1 10.4 10.4 10.4 1 +1802 9 2 9.2 9.2 9.2 1 +1802 9 3 10.9 10.9 10.9 1 +1802 9 4 10.0 10.0 10.0 1 +1802 9 5 11.5 11.5 11.5 1 +1802 9 6 7.6 7.6 7.6 1 +1802 9 7 9.1 9.1 9.1 1 +1802 9 8 6.8 6.8 6.8 1 +1802 9 9 9.3 9.3 9.3 1 +1802 9 10 13.5 13.5 13.5 1 +1802 9 11 13.8 13.8 13.8 1 +1802 9 12 12.1 12.1 12.1 1 +1802 9 13 11.4 11.4 11.4 1 +1802 9 14 9.0 9.0 9.0 1 +1802 9 15 11.3 11.3 11.3 1 +1802 9 16 11.3 11.3 11.3 1 +1802 9 17 8.3 8.3 8.3 1 +1802 9 18 9.2 9.2 9.2 1 +1802 9 19 11.1 11.1 11.1 1 +1802 9 20 9.4 9.4 9.4 1 +1802 9 21 12.4 12.4 12.4 1 +1802 9 22 13.9 13.9 13.9 1 +1802 9 23 13.7 13.7 13.7 1 +1802 9 24 15.7 15.7 15.7 1 +1802 9 25 16.4 16.4 16.4 1 +1802 9 26 13.7 13.7 13.7 1 +1802 9 27 8.3 8.3 8.3 1 +1802 9 28 7.2 7.2 7.2 1 +1802 9 29 6.3 6.3 6.3 1 +1802 9 30 7.8 7.8 7.8 1 +1802 10 1 12.3 12.3 12.3 1 +1802 10 2 9.0 9.0 9.0 1 +1802 10 3 7.8 7.8 7.8 1 +1802 10 4 15.0 15.0 15.0 1 +1802 10 5 13.3 13.3 13.3 1 +1802 10 6 9.8 9.8 9.8 1 +1802 10 7 10.0 10.0 10.0 1 +1802 10 8 5.4 5.4 5.4 1 +1802 10 9 9.3 9.3 9.3 1 +1802 10 10 5.7 5.7 5.7 1 +1802 10 11 5.1 5.1 5.1 1 +1802 10 12 4.6 4.6 4.6 1 +1802 10 13 3.2 3.2 3.2 1 +1802 10 14 5.5 5.5 5.5 1 +1802 10 15 10.6 10.6 10.6 1 +1802 10 16 9.2 9.2 9.2 1 +1802 10 17 8.2 8.2 8.2 1 +1802 10 18 8.0 8.0 8.0 1 +1802 10 19 9.5 9.5 9.5 1 +1802 10 20 11.2 11.2 11.2 1 +1802 10 21 9.5 9.5 9.5 1 +1802 10 22 11.0 11.0 11.0 1 +1802 10 23 11.0 11.0 11.0 1 +1802 10 24 9.6 9.6 9.6 1 +1802 10 25 8.7 8.7 8.7 1 +1802 10 26 9.2 9.2 9.2 1 +1802 10 27 8.4 8.4 8.4 1 +1802 10 28 8.9 8.9 8.9 1 +1802 10 29 8.4 8.4 8.4 1 +1802 10 30 7.9 7.9 7.9 1 +1802 10 31 7.4 7.4 7.4 1 +1802 11 1 7.2 7.2 7.2 1 +1802 11 2 2.9 2.9 2.9 1 +1802 11 3 3.0 3.0 3.0 1 +1802 11 4 2.2 2.2 2.2 1 +1802 11 5 1.1 1.1 1.1 1 +1802 11 6 -0.1 -0.1 -0.1 1 +1802 11 7 -0.8 -0.8 -0.8 1 +1802 11 8 -4.6 -4.6 -4.6 1 +1802 11 9 -4.0 -4.0 -4.0 1 +1802 11 10 -3.1 -3.1 -3.1 1 +1802 11 11 -6.5 -6.5 -6.5 1 +1802 11 12 -3.0 -3.0 -3.0 1 +1802 11 13 -1.6 -1.6 -1.6 1 +1802 11 14 -4.1 -4.1 -4.1 1 +1802 11 15 -1.8 -1.8 -1.8 1 +1802 11 16 1.7 1.7 1.7 1 +1802 11 17 0.6 0.6 0.6 1 +1802 11 18 -1.3 -1.3 -1.3 1 +1802 11 19 -1.9 -1.9 -1.9 1 +1802 11 20 0.2 0.2 0.2 1 +1802 11 21 1.6 1.6 1.6 1 +1802 11 22 3.3 3.3 3.3 1 +1802 11 23 4.1 4.1 4.1 1 +1802 11 24 3.3 3.3 3.3 1 +1802 11 25 4.9 4.9 4.9 1 +1802 11 26 4.6 4.6 4.6 1 +1802 11 27 3.1 3.1 3.1 1 +1802 11 28 -2.4 -2.4 -2.4 1 +1802 11 29 -4.1 -4.1 -4.1 1 +1802 11 30 -1.4 -1.4 -1.4 1 +1802 12 1 0.1 0.1 0.1 1 +1802 12 2 -1.4 -1.4 -1.4 1 +1802 12 3 -2.7 -2.7 -2.7 1 +1802 12 4 -3.4 -3.4 -3.4 1 +1802 12 5 -1.1 -1.1 -1.1 1 +1802 12 6 -6.4 -6.4 -6.4 1 +1802 12 7 -10.4 -10.4 -10.4 1 +1802 12 8 -5.8 -5.8 -5.8 1 +1802 12 9 0.6 0.6 0.6 1 +1802 12 10 1.8 1.8 1.8 1 +1802 12 11 4.8 4.8 4.8 1 +1802 12 12 -2.7 -2.7 -2.7 1 +1802 12 13 -2.9 -2.9 -2.9 1 +1802 12 14 0.4 0.4 0.4 1 +1802 12 15 -0.6 -0.6 -0.6 1 +1802 12 16 -6.1 -6.1 -6.1 1 +1802 12 17 -3.7 -3.7 -3.7 1 +1802 12 18 -2.9 -2.9 -2.9 1 +1802 12 19 -6.8 -6.8 -6.8 1 +1802 12 20 0.1 0.1 0.1 1 +1802 12 21 4.7 4.7 4.7 1 +1802 12 22 -0.8 -0.8 -0.8 1 +1802 12 23 -3.9 -3.9 -3.9 1 +1802 12 24 -1.1 -1.1 -1.1 1 +1802 12 25 -0.6 -0.6 -0.6 1 +1802 12 26 -2.8 -2.8 -2.8 1 +1802 12 27 -6.1 -6.1 -6.1 1 +1802 12 28 -4.2 -4.2 -4.2 1 +1802 12 29 -7.4 -7.4 -7.4 1 +1802 12 30 -7.6 -7.6 -7.6 1 +1802 12 31 -3.9 -3.9 -3.9 1 +1803 1 1 -3.6 -3.6 -3.6 1 +1803 1 2 -2.8 -2.8 -2.8 1 +1803 1 3 -3.8 -3.8 -3.8 1 +1803 1 4 -12.4 -12.4 -12.4 1 +1803 1 5 -11.3 -11.3 -11.3 1 +1803 1 6 -16.1 -16.1 -16.1 1 +1803 1 7 -17.8 -17.8 -17.8 1 +1803 1 8 -14.6 -14.6 -14.6 1 +1803 1 9 -15.1 -15.1 -15.1 1 +1803 1 10 -11.1 -11.1 -11.1 1 +1803 1 11 -10.1 -10.1 -10.1 1 +1803 1 12 -8.0 -8.0 -8.0 1 +1803 1 13 -10.8 -10.8 -10.8 1 +1803 1 14 -12.1 -12.1 -12.1 1 +1803 1 15 -9.8 -9.8 -9.8 1 +1803 1 16 -5.6 -5.6 -5.6 1 +1803 1 17 -8.2 -8.2 -8.2 1 +1803 1 18 -8.3 -8.3 -8.3 1 +1803 1 19 -6.1 -6.1 -6.1 1 +1803 1 20 -8.5 -8.5 -8.5 1 +1803 1 21 -11.3 -11.3 -11.3 1 +1803 1 22 -6.5 -6.5 -6.5 1 +1803 1 23 -11.5 -11.5 -11.5 1 +1803 1 24 -13.5 -13.5 -13.5 1 +1803 1 25 -12.2 -12.2 -12.2 1 +1803 1 26 -13.8 -13.8 -13.8 1 +1803 1 27 -11.5 -11.5 -11.5 1 +1803 1 28 -9.8 -9.8 -9.8 1 +1803 1 29 -8.1 -8.1 -8.1 1 +1803 1 30 -5.2 -5.2 -5.2 1 +1803 1 31 -6.7 -6.7 -6.7 1 +1803 2 1 -5.0 -5.0 -5.0 1 +1803 2 2 -7.0 -7.0 -7.0 1 +1803 2 3 -13.5 -13.5 -13.5 1 +1803 2 4 -20.7 -20.7 -20.7 1 +1803 2 5 -14.1 -14.1 -14.1 1 +1803 2 6 -12.5 -12.5 -12.5 1 +1803 2 7 -18.1 -18.1 -18.1 1 +1803 2 8 -18.5 -18.5 -18.5 1 +1803 2 9 -21.5 -21.5 -21.5 1 +1803 2 10 -13.5 -13.5 -13.5 1 +1803 2 11 -10.5 -10.5 -10.5 1 +1803 2 12 -11.3 -11.3 -11.3 1 +1803 2 13 -7.8 -7.8 -7.8 1 +1803 2 14 -8.8 -8.8 -8.8 1 +1803 2 15 -3.0 -3.0 -3.0 1 +1803 2 16 -1.5 -1.5 -1.5 1 +1803 2 17 0.0 0.0 0.0 1 +1803 2 18 1.7 1.7 1.7 1 +1803 2 19 1.2 1.2 1.2 1 +1803 2 20 -0.7 -0.7 -0.7 1 +1803 2 21 -0.8 -0.8 -0.8 1 +1803 2 22 0.4 0.4 0.4 1 +1803 2 23 0.5 0.5 0.5 1 +1803 2 24 1.9 1.9 1.9 1 +1803 2 25 -2.1 -2.1 -2.1 1 +1803 2 26 1.2 1.2 1.2 1 +1803 2 27 -0.8 -0.8 -0.8 1 +1803 2 28 -3.5 -3.5 -3.5 1 +1803 3 1 -5.9 -5.9 -5.9 1 +1803 3 2 -6.6 -6.6 -6.6 1 +1803 3 3 -7.0 -7.0 -7.0 1 +1803 3 4 -6.4 -6.4 -6.4 1 +1803 3 5 -6.1 -6.1 -6.1 1 +1803 3 6 -9.9 -9.9 -9.9 1 +1803 3 7 -7.8 -7.8 -7.8 1 +1803 3 8 -8.1 -8.1 -8.1 1 +1803 3 9 -4.4 -4.4 -4.4 1 +1803 3 10 -1.0 -1.0 -1.0 1 +1803 3 11 -4.4 -4.4 -4.4 1 +1803 3 12 -9.1 -9.1 -9.1 1 +1803 3 13 -7.7 -7.7 -7.7 1 +1803 3 14 -2.0 -2.0 -2.0 1 +1803 3 15 -2.2 -2.2 -2.2 1 +1803 3 16 -0.9 -0.9 -0.9 1 +1803 3 17 -0.7 -0.7 -0.7 1 +1803 3 18 3.7 3.7 3.7 1 +1803 3 19 5.3 5.3 5.3 1 +1803 3 20 6.3 6.3 6.3 1 +1803 3 21 3.0 3.0 3.0 1 +1803 3 22 1.7 1.7 1.7 1 +1803 3 23 2.3 2.3 2.3 1 +1803 3 24 2.4 2.4 2.4 1 +1803 3 25 3.2 3.2 3.2 1 +1803 3 26 5.5 5.5 5.5 1 +1803 3 27 5.2 5.2 5.2 1 +1803 3 28 8.4 8.4 8.4 1 +1803 3 29 6.0 6.0 6.0 1 +1803 3 30 3.7 3.7 3.7 1 +1803 3 31 1.4 1.4 1.4 1 +1803 4 1 9.4 9.4 9.4 1 +1803 4 2 7.6 7.6 7.6 1 +1803 4 3 4.4 4.4 4.4 1 +1803 4 4 8.8 8.8 8.8 1 +1803 4 5 10.8 10.8 10.8 1 +1803 4 6 8.8 8.8 8.8 1 +1803 4 7 8.8 8.8 8.8 1 +1803 4 8 6.2 6.2 6.2 1 +1803 4 9 6.5 6.5 6.5 1 +1803 4 10 9.9 9.9 9.9 1 +1803 4 11 10.2 10.2 10.2 1 +1803 4 12 8.2 8.2 8.2 1 +1803 4 13 8.2 8.2 8.2 1 +1803 4 14 11.6 11.6 11.6 1 +1803 4 15 10.9 10.9 10.9 1 +1803 4 16 11.0 11.0 11.0 1 +1803 4 17 12.1 12.1 12.1 1 +1803 4 18 10.9 10.9 10.9 1 +1803 4 19 8.9 8.9 8.9 1 +1803 4 20 5.7 5.7 5.7 1 +1803 4 21 3.5 3.5 3.5 1 +1803 4 22 -0.5 -0.5 -0.5 1 +1803 4 23 1.7 1.7 1.7 1 +1803 4 24 6.3 6.3 6.3 1 +1803 4 25 6.6 6.6 6.6 1 +1803 4 26 5.2 5.2 5.2 1 +1803 4 27 6.7 6.7 6.7 1 +1803 4 28 5.6 5.6 5.6 1 +1803 4 29 5.9 5.9 5.9 1 +1803 4 30 10.3 10.3 10.3 1 +1803 5 1 6.7 6.7 6.7 1 +1803 5 2 8.0 8.0 8.0 1 +1803 5 3 8.6 8.6 8.6 1 +1803 5 4 10.0 10.0 10.0 1 +1803 5 5 13.3 13.3 13.2 1 +1803 5 6 11.4 11.4 11.3 1 +1803 5 7 11.9 11.9 11.8 1 +1803 5 8 9.7 9.7 9.6 1 +1803 5 9 8.7 8.7 8.6 1 +1803 5 10 8.3 8.3 8.1 1 +1803 5 11 9.1 9.1 8.9 1 +1803 5 12 8.9 8.9 8.7 1 +1803 5 13 6.6 6.6 6.4 1 +1803 5 14 6.3 6.3 6.0 1 +1803 5 15 8.1 8.1 7.8 1 +1803 5 16 7.7 7.7 7.4 1 +1803 5 17 8.4 8.4 8.1 1 +1803 5 18 9.1 9.1 8.8 1 +1803 5 19 11.0 11.0 10.6 1 +1803 5 20 9.3 9.3 8.9 1 +1803 5 21 10.7 10.7 10.3 1 +1803 5 22 10.7 10.7 10.3 1 +1803 5 23 8.3 8.3 7.8 1 +1803 5 24 8.1 8.1 7.6 1 +1803 5 25 11.2 11.2 10.7 1 +1803 5 26 12.0 12.0 11.5 1 +1803 5 27 11.9 11.9 11.4 1 +1803 5 28 10.0 10.0 9.4 1 +1803 5 29 9.4 9.4 8.8 1 +1803 5 30 11.5 11.5 10.9 1 +1803 5 31 14.0 14.0 13.4 1 +1803 6 1 14.6 14.6 13.9 1 +1803 6 2 14.1 14.1 13.4 1 +1803 6 3 16.4 16.4 15.7 1 +1803 6 4 15.2 15.2 14.5 1 +1803 6 5 14.4 14.4 13.7 1 +1803 6 6 13.3 13.3 12.6 1 +1803 6 7 13.5 13.5 12.8 1 +1803 6 8 11.7 11.7 11.0 1 +1803 6 9 14.5 14.5 13.8 1 +1803 6 10 15.3 15.3 14.6 1 +1803 6 11 13.0 13.0 12.3 1 +1803 6 12 8.7 8.7 8.0 1 +1803 6 13 12.5 12.5 11.8 1 +1803 6 14 11.3 11.3 10.6 1 +1803 6 15 9.8 9.8 9.1 1 +1803 6 16 13.6 13.6 12.9 1 +1803 6 17 15.9 15.9 15.2 1 +1803 6 18 14.0 14.0 13.3 1 +1803 6 19 15.3 15.3 14.6 1 +1803 6 20 13.8 13.8 13.1 1 +1803 6 21 11.8 11.8 11.1 1 +1803 6 22 11.4 11.4 10.7 1 +1803 6 23 12.7 12.7 12.0 1 +1803 6 24 14.5 14.5 13.8 1 +1803 6 25 17.2 17.2 16.5 1 +1803 6 26 13.6 13.6 12.9 1 +1803 6 27 18.8 18.8 18.1 1 +1803 6 28 15.8 15.8 15.1 1 +1803 6 29 13.8 13.8 13.1 1 +1803 6 30 17.8 17.8 17.1 1 +1803 7 1 15.5 15.5 14.8 1 +1803 7 2 18.0 18.0 17.3 1 +1803 7 3 21.0 21.0 20.3 1 +1803 7 4 22.3 22.3 21.6 1 +1803 7 5 21.1 21.1 20.4 1 +1803 7 6 19.3 19.3 18.6 1 +1803 7 7 18.4 18.4 17.7 1 +1803 7 8 18.5 18.5 17.8 1 +1803 7 9 18.2 18.2 17.5 1 +1803 7 10 18.8 18.8 18.1 1 +1803 7 11 17.4 17.4 16.7 1 +1803 7 12 13.9 13.9 13.2 1 +1803 7 13 15.0 15.0 14.3 1 +1803 7 14 18.7 18.7 18.0 1 +1803 7 15 16.3 16.3 15.6 1 +1803 7 16 17.8 17.8 17.1 1 +1803 7 17 19.7 19.7 19.0 1 +1803 7 18 19.4 19.4 18.7 1 +1803 7 19 17.1 17.1 16.4 1 +1803 7 20 15.1 15.1 14.4 1 +1803 7 21 15.3 15.3 14.6 1 +1803 7 22 16.6 16.6 15.9 1 +1803 7 23 17.7 17.7 17.0 1 +1803 7 24 15.1 15.1 14.4 1 +1803 7 25 15.3 15.3 14.6 1 +1803 7 26 18.4 18.4 17.7 1 +1803 7 27 17.9 17.9 17.2 1 +1803 7 28 19.2 19.2 18.5 1 +1803 7 29 21.8 21.8 21.1 1 +1803 7 30 18.5 18.5 17.8 1 +1803 7 31 20.0 20.0 19.3 1 +1803 8 1 16.3 16.3 15.7 1 +1803 8 2 17.7 17.7 17.1 1 +1803 8 3 22.5 22.5 21.9 1 +1803 8 4 20.3 20.3 19.7 1 +1803 8 5 17.4 17.4 16.9 1 +1803 8 6 17.3 17.3 16.8 1 +1803 8 7 17.5 17.5 17.0 1 +1803 8 8 13.4 13.4 12.9 1 +1803 8 9 14.9 14.9 14.4 1 +1803 8 10 16.4 16.4 16.0 1 +1803 8 11 17.0 17.0 16.6 1 +1803 8 12 17.4 17.4 17.0 1 +1803 8 13 19.6 19.6 19.2 1 +1803 8 14 22.1 22.1 21.8 1 +1803 8 15 18.3 18.3 18.0 1 +1803 8 16 19.7 19.7 19.4 1 +1803 8 17 18.7 18.7 18.4 1 +1803 8 18 18.9 18.9 18.6 1 +1803 8 19 18.9 18.9 18.7 1 +1803 8 20 18.3 18.3 18.1 1 +1803 8 21 17.0 17.0 16.8 1 +1803 8 22 17.2 17.2 17.0 1 +1803 8 23 16.1 16.1 16.0 1 +1803 8 24 15.2 15.2 15.1 1 +1803 8 25 15.6 15.6 15.5 1 +1803 8 26 18.9 18.9 18.8 1 +1803 8 27 13.2 13.2 13.1 1 +1803 8 28 14.2 14.2 14.2 1 +1803 8 29 18.2 18.2 18.2 1 +1803 8 30 14.9 14.9 14.9 1 +1803 8 31 15.0 15.0 15.0 1 +1803 9 1 12.5 12.5 12.5 1 +1803 9 2 12.0 12.0 12.0 1 +1803 9 3 14.8 14.8 14.8 1 +1803 9 4 9.8 9.8 9.8 1 +1803 9 5 8.0 8.0 8.0 1 +1803 9 6 9.0 9.0 9.0 1 +1803 9 7 11.8 11.8 11.8 1 +1803 9 8 13.2 13.2 13.2 1 +1803 9 9 15.2 15.2 15.2 1 +1803 9 10 12.2 12.2 12.2 1 +1803 9 11 10.8 10.8 10.8 1 +1803 9 12 7.8 7.8 7.8 1 +1803 9 13 7.1 7.1 7.1 1 +1803 9 14 7.1 7.1 7.1 1 +1803 9 15 12.7 12.7 12.7 1 +1803 9 16 12.7 12.7 12.7 1 +1803 9 17 13.6 13.6 13.6 1 +1803 9 18 11.7 11.7 11.7 1 +1803 9 19 9.7 9.7 9.7 1 +1803 9 20 9.1 9.1 9.1 1 +1803 9 21 9.2 9.2 9.2 1 +1803 9 22 11.4 11.4 11.4 1 +1803 9 23 7.0 7.0 7.0 1 +1803 9 24 5.7 5.7 5.7 1 +1803 9 25 6.4 6.4 6.4 1 +1803 9 26 11.0 11.0 11.0 1 +1803 9 27 12.8 12.8 12.8 1 +1803 9 28 8.8 8.8 8.8 1 +1803 9 29 10.7 10.7 10.7 1 +1803 9 30 8.7 8.7 8.7 1 +1803 10 1 9.6 9.6 9.6 1 +1803 10 2 10.0 10.0 10.0 1 +1803 10 3 9.5 9.5 9.5 1 +1803 10 4 9.3 9.3 9.3 1 +1803 10 5 10.3 10.3 10.3 1 +1803 10 6 6.6 6.6 6.6 1 +1803 10 7 4.3 4.3 4.3 1 +1803 10 8 3.3 3.3 3.3 1 +1803 10 9 2.3 2.3 2.3 1 +1803 10 10 2.6 2.6 2.6 1 +1803 10 11 2.2 2.2 2.2 1 +1803 10 12 -0.6 -0.6 -0.6 1 +1803 10 13 -0.6 -0.6 -0.6 1 +1803 10 14 -0.1 -0.1 -0.1 1 +1803 10 15 6.3 6.3 6.3 1 +1803 10 16 5.4 5.4 5.4 1 +1803 10 17 9.2 9.2 9.2 1 +1803 10 18 8.5 8.5 8.5 1 +1803 10 19 5.5 5.5 5.5 1 +1803 10 20 3.5 3.5 3.5 1 +1803 10 21 4.2 4.2 4.2 1 +1803 10 22 4.1 4.1 4.1 1 +1803 10 23 4.5 4.5 4.5 1 +1803 10 24 2.5 2.5 2.5 1 +1803 10 25 4.5 4.5 4.5 1 +1803 10 26 6.2 6.2 6.2 1 +1803 10 27 4.2 4.2 4.2 1 +1803 10 28 6.5 6.5 6.5 1 +1803 10 29 6.9 6.9 6.9 1 +1803 10 30 1.9 1.9 1.9 1 +1803 10 31 -0.1 -0.1 -0.1 1 +1803 11 1 0.2 0.2 0.2 1 +1803 11 2 3.2 3.2 3.2 1 +1803 11 3 1.9 1.9 1.9 1 +1803 11 4 0.2 0.2 0.2 1 +1803 11 5 1.2 1.2 1.2 1 +1803 11 6 3.5 3.5 3.5 1 +1803 11 7 3.5 3.5 3.5 1 +1803 11 8 3.9 3.9 3.9 1 +1803 11 9 2.2 2.2 2.2 1 +1803 11 10 2.2 2.2 2.2 1 +1803 11 11 4.9 4.9 4.9 1 +1803 11 12 6.6 6.6 6.6 1 +1803 11 13 5.9 5.9 5.9 1 +1803 11 14 1.9 1.9 1.9 1 +1803 11 15 0.9 0.9 0.9 1 +1803 11 16 -1.4 -1.4 -1.4 1 +1803 11 17 0.9 0.9 0.9 1 +1803 11 18 3.2 3.2 3.2 1 +1803 11 19 1.2 1.2 1.2 1 +1803 11 20 -0.8 -0.8 -0.8 1 +1803 11 21 -4.3 -4.3 -4.3 1 +1803 11 22 -0.6 -0.6 -0.6 1 +1803 11 23 3.3 3.3 3.3 1 +1803 11 24 2.9 2.9 2.9 1 +1803 11 25 -4.7 -4.7 -4.7 1 +1803 11 26 -8.4 -8.4 -8.4 1 +1803 11 27 -13.8 -13.8 -13.8 1 +1803 11 28 -13.8 -13.8 -13.8 1 +1803 11 29 -10.4 -10.4 -10.4 1 +1803 11 30 -11.8 -11.8 -11.8 1 +1803 12 1 -13.3 -13.3 -13.3 1 +1803 12 2 -4.9 -4.9 -4.9 1 +1803 12 3 -5.9 -5.9 -5.9 1 +1803 12 4 -10.4 -10.4 -10.4 1 +1803 12 5 -16.8 -16.8 -16.8 1 +1803 12 6 -10.4 -10.4 -10.4 1 +1803 12 7 -2.7 -2.7 -2.7 1 +1803 12 8 2.3 2.3 2.3 1 +1803 12 9 -0.1 -0.1 -0.1 1 +1803 12 10 -2.4 -2.4 -2.4 1 +1803 12 11 -1.9 -1.9 -1.9 1 +1803 12 12 -0.7 -0.7 -0.7 1 +1803 12 13 -3.1 -3.1 -3.1 1 +1803 12 14 -8.1 -8.1 -8.1 1 +1803 12 15 -9.7 -9.7 -9.7 1 +1803 12 16 -9.1 -9.1 -9.1 1 +1803 12 17 -11.1 -11.1 -11.1 1 +1803 12 18 -14.3 -14.3 -14.3 1 +1803 12 19 -12.1 -12.1 -12.1 1 +1803 12 20 -18.6 -18.6 -18.6 1 +1803 12 21 -4.1 -4.1 -4.1 1 +1803 12 22 -9.6 -9.6 -9.6 1 +1803 12 23 -10.7 -10.7 -10.7 1 +1803 12 24 -3.1 -3.1 -3.1 1 +1803 12 25 -6.6 -6.6 -6.6 1 +1803 12 26 -10.2 -10.2 -10.2 1 +1803 12 27 -7.1 -7.1 -7.1 1 +1803 12 28 -3.7 -3.7 -3.7 1 +1803 12 29 1.9 1.9 1.9 1 +1803 12 30 1.6 1.6 1.6 1 +1803 12 31 0.6 0.6 0.6 1 +1804 1 1 -4.4 -4.4 -4.4 1 +1804 1 2 -8.1 -8.1 -8.1 1 +1804 1 3 -4.6 -4.6 -4.6 1 +1804 1 4 -9.8 -9.8 -9.8 1 +1804 1 5 -12.5 -12.5 -12.5 1 +1804 1 6 -4.8 -4.8 -4.8 1 +1804 1 7 -7.6 -7.6 -7.6 1 +1804 1 8 -12.6 -12.6 -12.6 1 +1804 1 9 -8.6 -8.6 -8.6 1 +1804 1 10 -14.1 -14.1 -14.1 1 +1804 1 11 -4.3 -4.3 -4.3 1 +1804 1 12 -4.1 -4.1 -4.1 1 +1804 1 13 -4.5 -4.5 -4.5 1 +1804 1 14 -7.5 -7.5 -7.5 1 +1804 1 15 -16.1 -16.1 -16.1 1 +1804 1 16 -16.2 -16.2 -16.2 1 +1804 1 17 -3.0 -3.0 -3.0 1 +1804 1 18 -2.3 -2.3 -2.3 1 +1804 1 19 -0.8 -0.8 -0.8 1 +1804 1 20 1.4 1.4 1.4 1 +1804 1 21 2.9 2.9 2.9 1 +1804 1 22 3.2 3.2 3.2 1 +1804 1 23 2.3 2.3 2.3 1 +1804 1 24 2.5 2.5 2.5 1 +1804 1 25 -1.5 -1.5 -1.5 1 +1804 1 26 -1.3 -1.3 -1.3 1 +1804 1 27 1.4 1.4 1.4 1 +1804 1 28 1.4 1.4 1.4 1 +1804 1 29 -1.0 -1.0 -1.0 1 +1804 1 30 -4.6 -4.6 -4.6 1 +1804 1 31 -0.6 -0.6 -0.6 1 +1804 2 1 2.2 2.2 2.2 1 +1804 2 2 2.7 2.7 2.7 1 +1804 2 3 -7.8 -7.8 -7.8 1 +1804 2 4 -14.3 -14.3 -14.3 1 +1804 2 5 -16.8 -16.8 -16.8 1 +1804 2 6 -12.8 -12.8 -12.8 1 +1804 2 7 -18.5 -18.5 -18.5 1 +1804 2 8 -9.0 -9.0 -9.0 1 +1804 2 9 -11.0 -11.0 -11.0 1 +1804 2 10 -15.8 -15.8 -15.8 1 +1804 2 11 -20.5 -20.5 -20.5 1 +1804 2 12 -16.9 -16.9 -16.9 1 +1804 2 13 -8.9 -8.9 -8.9 1 +1804 2 14 -3.5 -3.5 -3.5 1 +1804 2 15 -6.5 -6.5 -6.5 1 +1804 2 16 -6.9 -6.9 -6.9 1 +1804 2 17 -1.5 -1.5 -1.5 1 +1804 2 18 -1.0 -1.0 -1.0 1 +1804 2 19 -1.0 -1.0 -1.0 1 +1804 2 20 -2.8 -2.8 -2.8 1 +1804 2 21 -0.7 -0.7 -0.7 1 +1804 2 22 0.2 0.2 0.2 1 +1804 2 23 -4.0 -4.0 -4.0 1 +1804 2 24 -7.8 -7.8 -7.8 1 +1804 2 25 -13.8 -13.8 -13.8 1 +1804 2 26 -11.8 -11.8 -11.8 1 +1804 2 27 -9.8 -9.8 -9.8 1 +1804 2 28 -7.8 -7.8 -7.8 1 +1804 2 29 -8.3 -8.3 -8.3 1 +1804 3 1 -6.6 -6.6 -6.6 1 +1804 3 2 -5.1 -5.1 -5.1 1 +1804 3 3 -2.7 -2.7 -2.7 1 +1804 3 4 -2.1 -2.1 -2.1 1 +1804 3 5 -4.9 -4.9 -4.9 1 +1804 3 6 -2.7 -2.7 -2.7 1 +1804 3 7 -5.1 -5.1 -5.1 1 +1804 3 8 -8.8 -8.8 -8.8 1 +1804 3 9 -10.9 -10.9 -10.9 1 +1804 3 10 -8.7 -8.7 -8.7 1 +1804 3 11 -3.4 -3.4 -3.4 1 +1804 3 12 -3.9 -3.9 -3.9 1 +1804 3 13 -0.2 -0.2 -0.2 1 +1804 3 14 2.8 2.8 2.8 1 +1804 3 15 2.8 2.8 2.8 1 +1804 3 16 2.5 2.5 2.5 1 +1804 3 17 -6.7 -6.7 -6.7 1 +1804 3 18 -13.9 -13.9 -13.9 1 +1804 3 19 -16.9 -16.9 -16.9 1 +1804 3 20 -15.2 -15.2 -15.2 1 +1804 3 21 -14.3 -14.3 -14.3 1 +1804 3 22 -7.7 -7.7 -7.7 1 +1804 3 23 -5.0 -5.0 -5.0 1 +1804 3 24 -7.8 -7.8 -7.8 1 +1804 3 25 -4.0 -4.0 -4.0 1 +1804 3 26 1.4 1.4 1.4 1 +1804 3 27 2.0 2.0 2.0 1 +1804 3 28 -0.8 -0.8 -0.8 1 +1804 3 29 -2.3 -2.3 -2.3 1 +1804 3 30 -4.4 -4.4 -4.4 1 +1804 3 31 -0.3 -0.3 -0.3 1 +1804 4 1 0.9 0.9 0.9 1 +1804 4 2 1.7 1.7 1.7 1 +1804 4 3 1.2 1.2 1.2 1 +1804 4 4 1.1 1.1 1.1 1 +1804 4 5 0.6 0.6 0.6 1 +1804 4 6 -0.6 -0.6 -0.6 1 +1804 4 7 -1.7 -1.7 -1.7 1 +1804 4 8 0.8 0.8 0.8 1 +1804 4 9 0.0 0.0 0.0 1 +1804 4 10 -0.8 -0.8 -0.8 1 +1804 4 11 3.5 3.5 3.5 1 +1804 4 12 4.7 4.7 4.7 1 +1804 4 13 5.2 5.2 5.2 1 +1804 4 14 4.6 4.6 4.6 1 +1804 4 15 4.6 4.6 4.6 1 +1804 4 16 -0.4 -0.4 -0.4 1 +1804 4 17 -2.1 -2.1 -2.1 1 +1804 4 18 -3.5 -3.5 -3.5 1 +1804 4 19 0.2 0.2 0.2 1 +1804 4 20 2.8 2.8 2.8 1 +1804 4 21 1.3 1.3 1.3 1 +1804 4 22 2.4 2.4 2.4 1 +1804 4 23 -0.3 -0.3 -0.3 1 +1804 4 24 2.2 2.2 2.2 1 +1804 4 25 1.6 1.6 1.6 1 +1804 4 26 4.4 4.4 4.4 1 +1804 4 27 5.3 5.3 5.3 1 +1804 4 28 7.1 7.1 7.1 1 +1804 4 29 9.7 9.7 9.7 1 +1804 4 30 10.7 10.7 10.7 1 +1804 5 1 10.4 10.4 10.4 1 +1804 5 2 11.4 11.4 11.4 1 +1804 5 3 8.6 8.6 8.6 1 +1804 5 4 11.6 11.6 11.6 1 +1804 5 5 12.3 12.3 12.2 1 +1804 5 6 5.1 5.1 5.0 1 +1804 5 7 5.6 5.6 5.5 1 +1804 5 8 10.4 10.4 10.3 1 +1804 5 9 8.4 8.4 8.3 1 +1804 5 10 10.2 10.2 10.0 1 +1804 5 11 2.9 2.9 2.7 1 +1804 5 12 5.5 5.5 5.3 1 +1804 5 13 2.3 2.3 2.1 1 +1804 5 14 2.1 2.1 1.8 1 +1804 5 15 3.1 3.1 2.8 1 +1804 5 16 8.3 8.3 8.0 1 +1804 5 17 10.1 10.1 9.8 1 +1804 5 18 9.3 9.3 9.0 1 +1804 5 19 6.4 6.4 6.0 1 +1804 5 20 9.2 9.2 8.8 1 +1804 5 21 8.4 8.4 8.0 1 +1804 5 22 12.7 12.7 12.3 1 +1804 5 23 14.0 14.0 13.5 1 +1804 5 24 16.4 16.4 15.9 1 +1804 5 25 16.8 16.8 16.3 1 +1804 5 26 15.2 15.2 14.7 1 +1804 5 27 16.1 16.1 15.6 1 +1804 5 28 13.8 13.8 13.2 1 +1804 5 29 14.9 14.9 14.3 1 +1804 5 30 11.9 11.9 11.3 1 +1804 5 31 15.1 15.1 14.5 1 +1804 6 1 12.7 12.7 12.0 1 +1804 6 2 13.9 13.9 13.2 1 +1804 6 3 16.2 16.2 15.5 1 +1804 6 4 15.7 15.7 15.0 1 +1804 6 5 18.6 18.6 17.9 1 +1804 6 6 17.4 17.4 16.7 1 +1804 6 7 13.9 13.9 13.2 1 +1804 6 8 12.8 12.8 12.1 1 +1804 6 9 12.7 12.7 12.0 1 +1804 6 10 12.7 12.7 12.0 1 +1804 6 11 13.2 13.2 12.5 1 +1804 6 12 13.3 13.3 12.6 1 +1804 6 13 18.0 18.0 17.3 1 +1804 6 14 16.8 16.8 16.1 1 +1804 6 15 16.2 16.2 15.5 1 +1804 6 16 13.2 13.2 12.5 1 +1804 6 17 14.7 14.7 14.0 1 +1804 6 18 16.8 16.8 16.1 1 +1804 6 19 16.9 16.9 16.2 1 +1804 6 20 14.2 14.2 13.5 1 +1804 6 21 14.6 14.6 13.9 1 +1804 6 22 12.2 12.2 11.5 1 +1804 6 23 14.4 14.4 13.7 1 +1804 6 24 14.2 14.2 13.5 1 +1804 6 25 16.3 16.3 15.6 1 +1804 6 26 13.7 13.7 13.0 1 +1804 6 27 13.1 13.1 12.4 1 +1804 6 28 15.0 15.0 14.3 1 +1804 6 29 13.6 13.6 12.9 1 +1804 6 30 11.8 11.8 11.1 1 +1804 7 1 10.4 10.4 9.7 1 +1804 7 2 12.6 12.6 11.9 1 +1804 7 3 17.5 17.5 16.8 1 +1804 7 4 17.3 17.3 16.6 1 +1804 7 5 16.3 16.3 15.6 1 +1804 7 6 17.3 17.3 16.6 1 +1804 7 7 18.9 18.9 18.2 1 +1804 7 8 17.9 17.9 17.2 1 +1804 7 9 18.3 18.3 17.6 1 +1804 7 10 16.2 16.2 15.5 1 +1804 7 11 15.7 15.7 15.0 1 +1804 7 12 18.2 18.2 17.5 1 +1804 7 13 20.8 20.8 20.1 1 +1804 7 14 23.7 23.7 23.0 1 +1804 7 15 23.8 23.8 23.1 1 +1804 7 16 23.8 23.8 23.1 1 +1804 7 17 21.9 21.9 21.2 1 +1804 7 18 21.2 21.2 20.5 1 +1804 7 19 20.5 20.5 19.8 1 +1804 7 20 20.6 20.6 19.9 1 +1804 7 21 21.0 21.0 20.3 1 +1804 7 22 21.0 21.0 20.3 1 +1804 7 23 22.8 22.8 22.1 1 +1804 7 24 22.5 22.5 21.8 1 +1804 7 25 20.7 20.7 20.0 1 +1804 7 26 16.8 16.8 16.1 1 +1804 7 27 18.1 18.1 17.4 1 +1804 7 28 19.3 19.3 18.6 1 +1804 7 29 20.7 20.7 20.0 1 +1804 7 30 20.1 20.1 19.4 1 +1804 7 31 24.0 24.0 23.3 1 +1804 8 1 24.8 24.8 24.2 1 +1804 8 2 19.4 19.4 18.8 1 +1804 8 3 19.6 19.6 19.0 1 +1804 8 4 20.1 20.1 19.5 1 +1804 8 5 20.6 20.6 20.1 1 +1804 8 6 19.3 19.3 18.8 1 +1804 8 7 19.5 19.5 19.0 1 +1804 8 8 17.2 17.2 16.7 1 +1804 8 9 15.4 15.4 14.9 1 +1804 8 10 19.8 19.8 19.4 1 +1804 8 11 17.0 17.0 16.6 1 +1804 8 12 16.3 16.3 15.9 1 +1804 8 13 17.0 17.0 16.6 1 +1804 8 14 18.0 18.0 17.7 1 +1804 8 15 14.3 14.3 14.0 1 +1804 8 16 16.3 16.3 16.0 1 +1804 8 17 17.0 17.0 16.7 1 +1804 8 18 16.5 16.5 16.2 1 +1804 8 19 13.8 13.8 13.6 1 +1804 8 20 14.3 14.3 14.1 1 +1804 8 21 14.3 14.3 14.1 1 +1804 8 22 14.4 14.4 14.2 1 +1804 8 23 13.1 13.1 13.0 1 +1804 8 24 13.2 13.2 13.1 1 +1804 8 25 13.2 13.2 13.1 1 +1804 8 26 13.9 13.9 13.8 1 +1804 8 27 14.9 14.9 14.8 1 +1804 8 28 12.9 12.9 12.9 1 +1804 8 29 14.6 14.6 14.6 1 +1804 8 30 15.2 15.2 15.2 1 +1804 8 31 16.9 16.9 16.9 1 +1804 9 1 14.5 14.5 14.5 1 +1804 9 2 15.2 15.2 15.2 1 +1804 9 3 14.3 14.3 14.3 1 +1804 9 4 15.2 15.2 15.2 1 +1804 9 5 16.2 16.2 16.2 1 +1804 9 6 17.5 17.5 17.5 1 +1804 9 7 15.9 15.9 15.9 1 +1804 9 8 14.5 14.5 14.5 1 +1804 9 9 14.5 14.5 14.5 1 +1804 9 10 15.8 15.8 15.8 1 +1804 9 11 14.4 14.4 14.4 1 +1804 9 12 16.1 16.1 16.1 1 +1804 9 13 15.4 15.4 15.4 1 +1804 9 14 18.4 18.4 18.4 1 +1804 9 15 22.1 22.1 22.1 1 +1804 9 16 15.7 15.7 15.7 1 +1804 9 17 17.8 17.8 17.8 1 +1804 9 18 14.1 14.1 14.1 1 +1804 9 19 13.4 13.4 13.4 1 +1804 9 20 13.1 13.1 13.1 1 +1804 9 21 10.7 10.7 10.7 1 +1804 9 22 9.7 9.7 9.7 1 +1804 9 23 8.0 8.0 8.0 1 +1804 9 24 7.0 7.0 7.0 1 +1804 9 25 6.5 6.5 6.5 1 +1804 9 26 9.3 9.3 9.3 1 +1804 9 27 8.0 8.0 8.0 1 +1804 9 28 11.7 11.7 11.7 1 +1804 9 29 10.3 10.3 10.3 1 +1804 9 30 11.7 11.7 11.7 1 +1804 10 1 6.1 6.1 6.1 1 +1804 10 2 7.0 7.0 7.0 1 +1804 10 3 11.3 11.3 11.3 1 +1804 10 4 14.3 14.3 14.3 1 +1804 10 5 6.6 6.6 6.6 1 +1804 10 6 12.6 12.6 12.6 1 +1804 10 7 10.1 10.1 10.1 1 +1804 10 8 11.3 11.3 11.3 1 +1804 10 9 11.3 11.3 11.3 1 +1804 10 10 6.7 6.7 6.7 1 +1804 10 11 6.3 6.3 6.3 1 +1804 10 12 8.6 8.6 8.6 1 +1804 10 13 9.9 9.9 9.9 1 +1804 10 14 10.6 10.6 10.6 1 +1804 10 15 11.2 11.2 11.2 1 +1804 10 16 11.2 11.2 11.2 1 +1804 10 17 8.9 8.9 8.9 1 +1804 10 18 9.2 9.2 9.2 1 +1804 10 19 6.6 6.6 6.6 1 +1804 10 20 8.6 8.6 8.6 1 +1804 10 21 8.5 8.5 8.5 1 +1804 10 22 6.7 6.7 6.7 1 +1804 10 23 9.2 9.2 9.2 1 +1804 10 24 6.5 6.5 6.5 1 +1804 10 25 4.7 4.7 4.7 1 +1804 10 26 3.1 3.1 3.1 1 +1804 10 27 3.2 3.2 3.2 1 +1804 10 28 3.1 3.1 3.1 1 +1804 10 29 3.5 3.5 3.5 1 +1804 10 30 2.6 2.6 2.6 1 +1804 10 31 2.6 2.6 2.6 1 +1804 11 1 2.2 2.2 2.2 1 +1804 11 2 1.9 1.9 1.9 1 +1804 11 3 -0.3 -0.3 -0.3 1 +1804 11 4 0.9 0.9 0.9 1 +1804 11 5 1.4 1.4 1.4 1 +1804 11 6 2.9 2.9 2.9 1 +1804 11 7 2.5 2.5 2.5 1 +1804 11 8 1.2 1.2 1.2 1 +1804 11 9 1.9 1.9 1.9 1 +1804 11 10 3.9 3.9 3.9 1 +1804 11 11 2.4 2.4 2.4 1 +1804 11 12 -2.1 -2.1 -2.1 1 +1804 11 13 -6.8 -6.8 -6.8 1 +1804 11 14 -7.0 -7.0 -7.0 1 +1804 11 15 -0.8 -0.8 -0.8 1 +1804 11 16 -3.5 -3.5 -3.5 1 +1804 11 17 -2.5 -2.5 -2.5 1 +1804 11 18 -1.1 -1.1 -1.1 1 +1804 11 19 0.9 0.9 0.9 1 +1804 11 20 0.6 0.6 0.6 1 +1804 11 21 -1.1 -1.1 -1.1 1 +1804 11 22 1.6 1.6 1.6 1 +1804 11 23 -0.1 -0.1 -0.1 1 +1804 11 24 -3.6 -3.6 -3.6 1 +1804 11 25 -5.8 -5.8 -5.8 1 +1804 11 26 -3.7 -3.7 -3.7 1 +1804 11 27 -4.1 -4.1 -4.1 1 +1804 11 28 -7.3 -7.3 -7.3 1 +1804 11 29 -5.1 -5.1 -5.1 1 +1804 11 30 -8.1 -8.1 -8.1 1 +1804 12 1 -5.8 -5.8 -5.8 1 +1804 12 2 -10.8 -10.8 -10.8 1 +1804 12 3 -8.4 -8.4 -8.4 1 +1804 12 4 -4.1 -4.1 -4.1 1 +1804 12 5 -8.8 -8.8 -8.8 1 +1804 12 6 -11.8 -11.8 -11.8 1 +1804 12 7 -11.3 -11.3 -11.3 1 +1804 12 8 -3.2 -3.2 -3.2 1 +1804 12 9 -4.8 -4.8 -4.8 1 +1804 12 10 -5.8 -5.8 -5.8 1 +1804 12 11 -3.4 -3.4 -3.4 1 +1804 12 12 -1.7 -1.7 -1.7 1 +1804 12 13 -0.9 -0.9 -0.9 1 +1804 12 14 -2.7 -2.7 -2.7 1 +1804 12 15 -5.7 -5.7 -5.7 1 +1804 12 16 -8.9 -8.9 -8.9 1 +1804 12 17 -10.8 -10.8 -10.8 1 +1804 12 18 -9.7 -9.7 -9.7 1 +1804 12 19 -12.1 -12.1 -12.1 1 +1804 12 20 0.8 0.8 0.8 1 +1804 12 21 -4.4 -4.4 -4.4 1 +1804 12 22 -5.3 -5.3 -5.3 1 +1804 12 23 -8.8 -8.8 -8.8 1 +1804 12 24 -12.4 -12.4 -12.4 1 +1804 12 25 -9.8 -9.8 -9.8 1 +1804 12 26 -12.1 -12.1 -12.1 1 +1804 12 27 -14.3 -14.3 -14.3 1 +1804 12 28 -15.6 -15.6 -15.6 1 +1804 12 29 -12.1 -12.1 -12.1 1 +1804 12 30 -8.4 -8.4 -8.4 1 +1804 12 31 -5.1 -5.1 -5.1 1 +1805 1 1 -2.8 -2.8 -2.8 1 +1805 1 2 -7.8 -7.8 -7.8 1 +1805 1 3 -9.4 -9.4 -9.4 1 +1805 1 4 -8.4 -8.4 -8.4 1 +1805 1 5 -3.9 -3.9 -3.9 1 +1805 1 6 -10.1 -10.1 -10.1 1 +1805 1 7 -4.8 -4.8 -4.8 1 +1805 1 8 0.9 0.9 0.9 1 +1805 1 9 1.7 1.7 1.7 1 +1805 1 10 -0.6 -0.6 -0.6 1 +1805 1 11 -5.8 -5.8 -5.8 1 +1805 1 12 -7.5 -7.5 -7.5 1 +1805 1 13 -4.8 -4.8 -4.8 1 +1805 1 14 -4.9 -4.9 -4.9 1 +1805 1 15 -6.8 -6.8 -6.8 1 +1805 1 16 -10.1 -10.1 -10.1 1 +1805 1 17 -9.5 -9.5 -9.5 1 +1805 1 18 -1.5 -1.5 -1.5 1 +1805 1 19 0.7 0.7 0.7 1 +1805 1 20 -1.0 -1.0 -1.0 1 +1805 1 21 -2.3 -2.3 -2.3 1 +1805 1 22 -6.0 -6.0 -6.0 1 +1805 1 23 -9.0 -9.0 -9.0 1 +1805 1 24 -8.5 -8.5 -8.5 1 +1805 1 25 -11.5 -11.5 -11.5 1 +1805 1 26 -9.2 -9.2 -9.2 1 +1805 1 27 -2.3 -2.3 -2.3 1 +1805 1 28 -2.6 -2.6 -2.6 1 +1805 1 29 -7.1 -7.1 -7.1 1 +1805 1 30 -10.2 -10.2 -10.2 1 +1805 1 31 -15.5 -15.5 -15.5 1 +1805 2 1 -8.5 -8.5 -8.5 1 +1805 2 2 -7.3 -7.3 -7.3 1 +1805 2 3 -16.2 -16.2 -16.2 1 +1805 2 4 -17.0 -17.0 -17.0 1 +1805 2 5 -17.2 -17.2 -17.2 1 +1805 2 6 -20.5 -20.5 -20.5 1 +1805 2 7 -24.9 -24.9 -24.9 1 +1805 2 8 -14.9 -14.9 -14.9 1 +1805 2 9 -2.8 -2.8 -2.8 1 +1805 2 10 -2.6 -2.6 -2.6 1 +1805 2 11 -5.8 -5.8 -5.8 1 +1805 2 12 -11.0 -11.0 -11.0 1 +1805 2 13 -10.3 -10.3 -10.3 1 +1805 2 14 -11.8 -11.8 -11.8 1 +1805 2 15 -13.8 -13.8 -13.8 1 +1805 2 16 -8.8 -8.8 -8.8 1 +1805 2 17 -17.9 -17.9 -17.9 1 +1805 2 18 -10.8 -10.8 -10.8 1 +1805 2 19 -11.2 -11.2 -11.2 1 +1805 2 20 -1.5 -1.5 -1.5 1 +1805 2 21 -0.8 -0.8 -0.8 1 +1805 2 22 1.7 1.7 1.7 1 +1805 2 23 2.2 2.2 2.2 1 +1805 2 24 0.5 0.5 0.5 1 +1805 2 25 2.6 2.6 2.6 1 +1805 2 26 1.9 1.9 1.9 1 +1805 2 27 1.1 1.1 1.1 1 +1805 2 28 -1.9 -1.9 -1.9 1 +1805 3 1 -2.1 -2.1 -2.1 1 +1805 3 2 -1.9 -1.9 -1.9 1 +1805 3 3 -4.1 -4.1 -4.1 1 +1805 3 4 -5.5 -5.5 -5.5 1 +1805 3 5 -2.1 -2.1 -2.1 1 +1805 3 6 -5.6 -5.6 -5.6 1 +1805 3 7 -8.1 -8.1 -8.1 1 +1805 3 8 -4.4 -4.4 -4.4 1 +1805 3 9 -3.8 -3.8 -3.8 1 +1805 3 10 -4.1 -4.1 -4.1 1 +1805 3 11 0.0 0.0 0.0 1 +1805 3 12 -1.0 -1.0 -1.0 1 +1805 3 13 -1.7 -1.7 -1.7 1 +1805 3 14 4.3 4.3 4.3 1 +1805 3 15 2.3 2.3 2.3 1 +1805 3 16 -1.4 -1.4 -1.4 1 +1805 3 17 3.8 3.8 3.8 1 +1805 3 18 5.6 5.6 5.6 1 +1805 3 19 4.7 4.7 4.7 1 +1805 3 20 3.3 3.3 3.3 1 +1805 3 21 -2.0 -2.0 -2.0 1 +1805 3 22 -1.5 -1.5 -1.5 1 +1805 3 23 -2.5 -2.5 -2.5 1 +1805 3 24 -2.6 -2.6 -2.6 1 +1805 3 25 -8.5 -8.5 -8.5 1 +1805 3 26 -7.8 -7.8 -7.8 1 +1805 3 27 -4.6 -4.6 -4.6 1 +1805 3 28 -6.1 -6.1 -6.1 1 +1805 3 29 -7.1 -7.1 -7.1 1 +1805 3 30 -5.4 -5.4 -5.4 1 +1805 3 31 -5.6 -5.6 -5.6 1 +1805 4 1 -4.8 -4.8 -4.8 1 +1805 4 2 -4.4 -4.4 -4.4 1 +1805 4 3 -1.9 -1.9 -1.9 1 +1805 4 4 -1.2 -1.2 -1.2 1 +1805 4 5 -2.0 -2.0 -2.0 1 +1805 4 6 -1.3 -1.3 -1.3 1 +1805 4 7 1.2 1.2 1.2 1 +1805 4 8 3.3 3.3 3.3 1 +1805 4 9 6.5 6.5 6.5 1 +1805 4 10 9.0 9.0 9.0 1 +1805 4 11 7.5 7.5 7.5 1 +1805 4 12 9.2 9.2 9.2 1 +1805 4 13 6.9 6.9 6.9 1 +1805 4 14 3.2 3.2 3.2 1 +1805 4 15 2.5 2.5 2.5 1 +1805 4 16 2.6 2.6 2.6 1 +1805 4 17 4.2 4.2 4.2 1 +1805 4 18 5.6 5.6 5.6 1 +1805 4 19 5.2 5.2 5.2 1 +1805 4 20 2.2 2.2 2.2 1 +1805 4 21 0.8 0.8 0.8 1 +1805 4 22 0.4 0.4 0.4 1 +1805 4 23 3.0 3.0 3.0 1 +1805 4 24 5.3 5.3 5.3 1 +1805 4 25 4.5 4.5 4.5 1 +1805 4 26 1.6 1.6 1.6 1 +1805 4 27 -3.3 -3.3 -3.3 1 +1805 4 28 -3.4 -3.4 -3.4 1 +1805 4 29 -2.3 -2.3 -2.3 1 +1805 4 30 -5.1 -5.1 -5.1 1 +1805 5 1 -1.1 -1.1 -1.1 1 +1805 5 2 1.0 1.0 1.0 1 +1805 5 3 5.3 5.3 5.3 1 +1805 5 4 4.7 4.7 4.7 1 +1805 5 5 4.0 4.0 3.9 1 +1805 5 6 4.8 4.8 4.7 1 +1805 5 7 1.9 1.9 1.8 1 +1805 5 8 2.8 2.8 2.7 1 +1805 5 9 2.6 2.6 2.5 1 +1805 5 10 6.0 6.0 5.8 1 +1805 5 11 5.0 5.0 4.8 1 +1805 5 12 7.4 7.4 7.2 1 +1805 5 13 8.3 8.3 8.1 1 +1805 5 14 9.5 9.5 9.2 1 +1805 5 15 11.1 11.1 10.8 1 +1805 5 16 11.6 11.6 11.3 1 +1805 5 17 5.6 5.6 5.3 1 +1805 5 18 10.7 10.7 10.4 1 +1805 5 19 12.1 12.1 11.7 1 +1805 5 20 10.1 10.1 9.7 1 +1805 5 21 7.1 7.1 6.7 1 +1805 5 22 3.6 3.6 3.2 1 +1805 5 23 2.6 2.6 2.1 1 +1805 5 24 4.7 4.7 4.2 1 +1805 5 25 7.1 7.1 6.6 1 +1805 5 26 7.0 7.0 6.5 1 +1805 5 27 8.3 8.3 7.8 1 +1805 5 28 7.3 7.3 6.7 1 +1805 5 29 7.2 7.2 6.6 1 +1805 5 30 11.1 11.1 10.5 1 +1805 5 31 9.1 9.1 8.5 1 +1805 6 1 7.3 7.3 6.6 1 +1805 6 2 9.4 9.4 8.7 1 +1805 6 3 8.9 8.9 8.2 1 +1805 6 4 6.3 6.3 5.6 1 +1805 6 5 7.0 7.0 6.3 1 +1805 6 6 8.2 8.2 7.5 1 +1805 6 7 8.8 8.8 8.1 1 +1805 6 8 9.8 9.8 9.1 1 +1805 6 9 10.8 10.8 10.1 1 +1805 6 10 11.0 11.0 10.3 1 +1805 6 11 13.3 13.3 12.6 1 +1805 6 12 16.2 16.2 15.5 1 +1805 6 13 15.5 15.5 14.8 1 +1805 6 14 15.2 15.2 14.5 1 +1805 6 15 10.8 10.8 10.1 1 +1805 6 16 11.0 11.0 10.3 1 +1805 6 17 11.5 11.5 10.8 1 +1805 6 18 13.3 13.3 12.6 1 +1805 6 19 10.7 10.7 10.0 1 +1805 6 20 14.1 14.1 13.4 1 +1805 6 21 13.0 13.0 12.3 1 +1805 6 22 13.7 13.7 13.0 1 +1805 6 23 14.1 14.1 13.4 1 +1805 6 24 14.1 14.1 13.4 1 +1805 6 25 13.2 13.2 12.5 1 +1805 6 26 11.5 11.5 10.8 1 +1805 6 27 12.4 12.4 11.7 1 +1805 6 28 13.1 13.1 12.4 1 +1805 6 29 13.1 13.1 12.4 1 +1805 6 30 14.4 14.4 13.7 1 +1805 7 1 12.2 12.2 11.5 1 +1805 7 2 16.3 16.3 15.6 1 +1805 7 3 14.1 14.1 13.4 1 +1805 7 4 14.8 14.8 14.1 1 +1805 7 5 13.1 13.1 12.4 1 +1805 7 6 18.2 18.2 17.5 1 +1805 7 7 20.8 20.8 20.1 1 +1805 7 8 22.3 22.3 21.6 1 +1805 7 9 23.0 23.0 22.3 1 +1805 7 10 24.7 24.7 24.0 1 +1805 7 11 23.8 23.8 23.1 1 +1805 7 12 19.7 19.7 19.0 1 +1805 7 13 15.1 15.1 14.4 1 +1805 7 14 16.7 16.7 16.0 1 +1805 7 15 14.5 14.5 13.8 1 +1805 7 16 16.8 16.8 16.1 1 +1805 7 17 16.1 16.1 15.4 1 +1805 7 18 17.3 17.3 16.6 1 +1805 7 19 19.5 19.5 18.8 1 +1805 7 20 16.7 16.7 16.0 1 +1805 7 21 18.7 18.7 18.0 1 +1805 7 22 16.3 16.3 15.6 1 +1805 7 23 16.1 16.1 15.4 1 +1805 7 24 15.8 15.8 15.1 1 +1805 7 25 15.9 15.9 15.2 1 +1805 7 26 16.6 16.6 15.9 1 +1805 7 27 18.3 18.3 17.6 1 +1805 7 28 17.6 17.6 16.9 1 +1805 7 29 19.4 19.4 18.7 1 +1805 7 30 18.0 18.0 17.3 1 +1805 7 31 18.0 18.0 17.3 1 +1805 8 1 20.4 20.4 19.8 1 +1805 8 2 16.0 16.0 15.4 1 +1805 8 3 18.1 18.1 17.5 1 +1805 8 4 19.1 19.1 18.5 1 +1805 8 5 19.3 19.3 18.8 1 +1805 8 6 18.1 18.1 17.6 1 +1805 8 7 17.2 17.2 16.7 1 +1805 8 8 18.0 18.0 17.5 1 +1805 8 9 17.7 17.7 17.2 1 +1805 8 10 19.3 19.3 18.9 1 +1805 8 11 16.4 16.4 16.0 1 +1805 8 12 19.0 19.0 18.6 1 +1805 8 13 18.9 18.9 18.5 1 +1805 8 14 17.1 17.1 16.8 1 +1805 8 15 18.7 18.7 18.4 1 +1805 8 16 17.6 17.6 17.3 1 +1805 8 17 16.6 16.6 16.3 1 +1805 8 18 16.5 16.5 16.2 1 +1805 8 19 17.3 17.3 17.1 1 +1805 8 20 16.3 16.3 16.1 1 +1805 8 21 13.5 13.5 13.3 1 +1805 8 22 14.9 14.9 14.7 1 +1805 8 23 14.3 14.3 14.2 1 +1805 8 24 14.1 14.1 14.0 1 +1805 8 25 15.4 15.4 15.3 1 +1805 8 26 16.2 16.2 16.1 1 +1805 8 27 14.5 14.5 14.4 1 +1805 8 28 13.2 13.2 13.2 1 +1805 8 29 12.3 12.3 12.3 1 +1805 8 30 10.2 10.2 10.2 1 +1805 8 31 10.4 10.4 10.4 1 +1805 9 1 9.9 9.9 9.9 1 +1805 9 2 12.0 12.0 12.0 1 +1805 9 3 11.8 11.8 11.8 1 +1805 9 4 11.5 11.5 11.5 1 +1805 9 5 11.1 11.1 11.1 1 +1805 9 6 10.5 10.5 10.5 1 +1805 9 7 10.3 10.3 10.3 1 +1805 9 8 12.5 12.5 12.5 1 +1805 9 9 13.8 13.8 13.8 1 +1805 9 10 14.0 14.0 14.0 1 +1805 9 11 14.8 14.8 14.8 1 +1805 9 12 14.8 14.8 14.8 1 +1805 9 13 13.7 13.7 13.7 1 +1805 9 14 13.1 13.1 13.1 1 +1805 9 15 11.6 11.6 11.6 1 +1805 9 16 13.2 13.2 13.2 1 +1805 9 17 16.1 16.1 16.1 1 +1805 9 18 16.9 16.9 16.9 1 +1805 9 19 13.7 13.7 13.7 1 +1805 9 20 16.1 16.1 16.1 1 +1805 9 21 16.0 16.0 16.0 1 +1805 9 22 10.0 10.0 10.0 1 +1805 9 23 11.0 11.0 11.0 1 +1805 9 24 11.7 11.7 11.7 1 +1805 9 25 11.0 11.0 11.0 1 +1805 9 26 10.7 10.7 10.7 1 +1805 9 27 12.0 12.0 12.0 1 +1805 9 28 13.0 13.0 13.0 1 +1805 9 29 9.7 9.7 9.7 1 +1805 9 30 9.3 9.3 9.3 1 +1805 10 1 5.6 5.6 5.6 1 +1805 10 2 10.0 10.0 10.0 1 +1805 10 3 10.1 10.1 10.1 1 +1805 10 4 10.1 10.1 10.1 1 +1805 10 5 10.1 10.1 10.1 1 +1805 10 6 5.3 5.3 5.3 1 +1805 10 7 3.4 3.4 3.4 1 +1805 10 8 0.1 0.1 0.1 1 +1805 10 9 -1.8 -1.8 -1.8 1 +1805 10 10 0.1 0.1 0.1 1 +1805 10 11 0.7 0.7 0.7 1 +1805 10 12 5.9 5.9 5.9 1 +1805 10 13 7.6 7.6 7.6 1 +1805 10 14 5.8 5.8 5.8 1 +1805 10 15 3.9 3.9 3.9 1 +1805 10 16 1.5 1.5 1.5 1 +1805 10 17 1.2 1.2 1.2 1 +1805 10 18 0.0 0.0 0.0 1 +1805 10 19 3.0 3.0 3.0 1 +1805 10 20 4.5 4.5 4.5 1 +1805 10 21 1.5 1.5 1.5 1 +1805 10 22 2.4 2.4 2.4 1 +1805 10 23 5.0 5.0 5.0 1 +1805 10 24 3.7 3.7 3.7 1 +1805 10 25 -1.6 -1.6 -1.6 1 +1805 10 26 -2.3 -2.3 -2.3 1 +1805 10 27 -2.0 -2.0 -2.0 1 +1805 10 28 -5.6 -5.6 -5.6 1 +1805 10 29 -3.5 -3.5 -3.5 1 +1805 10 30 -4.8 -4.8 -4.8 1 +1805 10 31 -5.2 -5.2 -5.2 1 +1805 11 1 1.7 1.7 1.7 1 +1805 11 2 4.4 4.4 4.4 1 +1805 11 3 -0.2 -0.2 -0.2 1 +1805 11 4 2.4 2.4 2.4 1 +1805 11 5 3.4 3.4 3.4 1 +1805 11 6 5.2 5.2 5.2 1 +1805 11 7 3.6 3.6 3.6 1 +1805 11 8 5.5 5.5 5.5 1 +1805 11 9 3.9 3.9 3.9 1 +1805 11 10 1.2 1.2 1.2 1 +1805 11 11 -0.1 -0.1 -0.1 1 +1805 11 12 -2.1 -2.1 -2.1 1 +1805 11 13 -2.0 -2.0 -2.0 1 +1805 11 14 3.9 3.9 3.9 1 +1805 11 15 -1.5 -1.5 -1.5 1 +1805 11 16 -4.6 -4.6 -4.6 1 +1805 11 17 3.7 3.7 3.7 1 +1805 11 18 2.9 2.9 2.9 1 +1805 11 19 5.4 5.4 5.4 1 +1805 11 20 -3.1 -3.1 -3.1 1 +1805 11 21 -5.1 -5.1 -5.1 1 +1805 11 22 -7.3 -7.3 -7.3 1 +1805 11 23 -9.8 -9.8 -9.8 1 +1805 11 24 -3.7 -3.7 -3.7 1 +1805 11 25 -1.3 -1.3 -1.3 1 +1805 11 26 -6.3 -6.3 -6.3 1 +1805 11 27 -4.8 -4.8 -4.8 1 +1805 11 28 -0.1 -0.1 -0.1 1 +1805 11 29 1.1 1.1 1.1 1 +1805 11 30 2.1 2.1 2.1 1 +1805 12 1 6.9 6.9 6.9 1 +1805 12 2 1.1 1.1 1.1 1 +1805 12 3 -0.4 -0.4 -0.4 1 +1805 12 4 0.1 0.1 0.1 1 +1805 12 5 1.6 1.6 1.6 1 +1805 12 6 -0.1 -0.1 -0.1 1 +1805 12 7 3.9 3.9 3.9 1 +1805 12 8 1.6 1.6 1.6 1 +1805 12 9 -5.4 -5.4 -5.4 1 +1805 12 10 2.9 2.9 2.9 1 +1805 12 11 -9.8 -9.8 -9.8 1 +1805 12 12 -14.6 -14.6 -14.6 1 +1805 12 13 -10.8 -10.8 -10.8 1 +1805 12 14 -12.1 -12.1 -12.1 1 +1805 12 15 -10.8 -10.8 -10.8 1 +1805 12 16 -13.1 -13.1 -13.1 1 +1805 12 17 -9.4 -9.4 -9.4 1 +1805 12 18 -2.9 -2.9 -2.9 1 +1805 12 19 -3.6 -3.6 -3.6 1 +1805 12 20 1.8 1.8 1.8 1 +1805 12 21 1.9 1.9 1.9 1 +1805 12 22 3.9 3.9 3.9 1 +1805 12 23 1.9 1.9 1.9 1 +1805 12 24 -4.2 -4.2 -4.2 1 +1805 12 25 -1.3 -1.3 -1.3 1 +1805 12 26 -7.1 -7.1 -7.1 1 +1805 12 27 -14.7 -14.7 -14.7 1 +1805 12 28 -5.3 -5.3 -5.3 1 +1805 12 29 -1.6 -1.6 -1.6 1 +1805 12 30 -3.6 -3.6 -3.6 1 +1805 12 31 -3.8 -3.8 -3.8 1 +1806 1 1 -4.1 -4.1 -4.1 1 +1806 1 2 -1.1 -1.1 -1.1 1 +1806 1 3 -15.6 -15.6 -15.6 1 +1806 1 4 -6.8 -6.8 -6.8 1 +1806 1 5 0.7 0.7 0.7 1 +1806 1 6 1.6 1.6 1.6 1 +1806 1 7 1.2 1.2 1.2 1 +1806 1 8 1.4 1.4 1.4 1 +1806 1 9 -0.5 -0.5 -0.5 1 +1806 1 10 -0.6 -0.6 -0.6 1 +1806 1 11 0.9 0.9 0.9 1 +1806 1 12 0.6 0.6 0.6 1 +1806 1 13 -2.1 -2.1 -2.1 1 +1806 1 14 -6.3 -6.3 -6.3 1 +1806 1 15 -2.9 -2.9 -2.9 1 +1806 1 16 0.5 0.5 0.5 1 +1806 1 17 3.5 3.5 3.5 1 +1806 1 18 2.4 2.4 2.4 1 +1806 1 19 1.4 1.4 1.4 1 +1806 1 20 0.7 0.7 0.7 1 +1806 1 21 -1.3 -1.3 -1.3 1 +1806 1 22 -1.8 -1.8 -1.8 1 +1806 1 23 -1.8 -1.8 -1.8 1 +1806 1 24 1.4 1.4 1.4 1 +1806 1 25 1.0 1.0 1.0 1 +1806 1 26 0.0 0.0 0.0 1 +1806 1 27 -7.5 -7.5 -7.5 1 +1806 1 28 -9.1 -9.1 -9.1 1 +1806 1 29 -10.1 -10.1 -10.1 1 +1806 1 30 -10.1 -10.1 -10.1 1 +1806 1 31 -16.0 -16.0 -16.0 1 +1806 2 1 -16.1 -16.1 -16.1 1 +1806 2 2 -9.6 -9.6 -9.6 1 +1806 2 3 -12.5 -12.5 -12.5 1 +1806 2 4 -13.8 -13.8 -13.8 1 +1806 2 5 -4.8 -4.8 -4.8 1 +1806 2 6 -2.6 -2.6 -2.6 1 +1806 2 7 -2.0 -2.0 -2.0 1 +1806 2 8 -1.0 -1.0 -1.0 1 +1806 2 9 -1.3 -1.3 -1.3 1 +1806 2 10 -4.8 -4.8 -4.8 1 +1806 2 11 -9.5 -9.5 -9.5 1 +1806 2 12 -12.3 -12.3 -12.3 1 +1806 2 13 -12.1 -12.1 -12.1 1 +1806 2 14 -5.1 -5.1 -5.1 1 +1806 2 15 -1.8 -1.8 -1.8 1 +1806 2 16 -4.0 -4.0 -4.0 1 +1806 2 17 -0.5 -0.5 -0.5 1 +1806 2 18 -1.0 -1.0 -1.0 1 +1806 2 19 -3.5 -3.5 -3.5 1 +1806 2 20 -0.2 -0.2 -0.2 1 +1806 2 21 0.5 0.5 0.5 1 +1806 2 22 1.3 1.3 1.3 1 +1806 2 23 -1.2 -1.2 -1.2 1 +1806 2 24 2.0 2.0 2.0 1 +1806 2 25 3.2 3.2 3.2 1 +1806 2 26 2.3 2.3 2.3 1 +1806 2 27 -1.0 -1.0 -1.0 1 +1806 2 28 -5.1 -5.1 -5.1 1 +1806 3 1 -7.3 -7.3 -7.3 1 +1806 3 2 -6.5 -6.5 -6.5 1 +1806 3 3 -4.6 -4.6 -4.6 1 +1806 3 4 -11.1 -11.1 -11.1 1 +1806 3 5 -9.1 -9.1 -9.1 1 +1806 3 6 2.2 2.2 2.2 1 +1806 3 7 -2.8 -2.8 -2.8 1 +1806 3 8 -8.4 -8.4 -8.4 1 +1806 3 9 -7.9 -7.9 -7.9 1 +1806 3 10 -6.0 -6.0 -6.0 1 +1806 3 11 -8.7 -8.7 -8.7 1 +1806 3 12 -6.2 -6.2 -6.2 1 +1806 3 13 -11.4 -11.4 -11.4 1 +1806 3 14 -1.2 -1.2 -1.2 1 +1806 3 15 -1.7 -1.7 -1.7 1 +1806 3 16 -4.5 -4.5 -4.5 1 +1806 3 17 -5.5 -5.5 -5.5 1 +1806 3 18 -2.5 -2.5 -2.5 1 +1806 3 19 -2.9 -2.9 -2.9 1 +1806 3 20 -3.3 -3.3 -3.3 1 +1806 3 21 -1.3 -1.3 -1.3 1 +1806 3 22 1.8 1.8 1.8 1 +1806 3 23 1.8 1.8 1.8 1 +1806 3 24 2.7 2.7 2.7 1 +1806 3 25 1.7 1.7 1.7 1 +1806 3 26 -0.1 -0.1 -0.1 1 +1806 3 27 -1.0 -1.0 -1.0 1 +1806 3 28 -1.0 -1.0 -1.0 1 +1806 3 29 -2.1 -2.1 -2.1 1 +1806 3 30 -5.0 -5.0 -5.0 1 +1806 3 31 -4.9 -4.9 -4.9 1 +1806 4 1 -1.2 -1.2 -1.2 1 +1806 4 2 2.1 2.1 2.1 1 +1806 4 3 1.0 1.0 1.0 1 +1806 4 4 2.8 2.8 2.8 1 +1806 4 5 2.8 2.8 2.8 1 +1806 4 6 4.5 4.5 4.5 1 +1806 4 7 5.5 5.5 5.5 1 +1806 4 8 2.3 2.3 2.3 1 +1806 4 9 4.6 4.6 4.6 1 +1806 4 10 -3.9 -3.9 -3.9 1 +1806 4 11 -10.2 -10.2 -10.2 1 +1806 4 12 -8.3 -8.3 -8.3 1 +1806 4 13 -8.0 -8.0 -8.0 1 +1806 4 14 -5.4 -5.4 -5.4 1 +1806 4 15 -3.2 -3.2 -3.2 1 +1806 4 16 -1.1 -1.1 -1.1 1 +1806 4 17 1.2 1.2 1.2 1 +1806 4 18 1.9 1.9 1.9 1 +1806 4 19 2.0 2.0 2.0 1 +1806 4 20 5.1 5.1 5.1 1 +1806 4 21 3.4 3.4 3.4 1 +1806 4 22 6.1 6.1 6.1 1 +1806 4 23 5.5 5.5 5.5 1 +1806 4 24 6.0 6.0 6.0 1 +1806 4 25 4.5 4.5 4.5 1 +1806 4 26 -0.4 -0.4 -0.4 1 +1806 4 27 0.4 0.4 0.4 1 +1806 4 28 1.1 1.1 1.1 1 +1806 4 29 1.5 1.5 1.5 1 +1806 4 30 3.7 3.7 3.7 1 +1806 5 1 4.6 4.6 4.6 1 +1806 5 2 5.9 5.9 5.9 1 +1806 5 3 6.9 6.9 6.9 1 +1806 5 4 5.0 5.0 5.0 1 +1806 5 5 4.7 4.7 4.6 1 +1806 5 6 5.7 5.7 5.6 1 +1806 5 7 4.3 4.3 4.2 1 +1806 5 8 5.3 5.3 5.2 1 +1806 5 9 7.4 7.4 7.3 1 +1806 5 10 8.4 8.4 8.2 1 +1806 5 11 11.4 11.4 11.2 1 +1806 5 12 7.9 7.9 7.7 1 +1806 5 13 11.9 11.9 11.7 1 +1806 5 14 7.6 7.6 7.3 1 +1806 5 15 7.6 7.6 7.3 1 +1806 5 16 15.4 15.4 15.1 1 +1806 5 17 10.6 10.6 10.3 1 +1806 5 18 11.2 11.2 10.9 1 +1806 5 19 13.1 13.1 12.7 1 +1806 5 20 16.1 16.1 15.7 1 +1806 5 21 18.3 18.3 17.9 1 +1806 5 22 15.1 15.1 14.7 1 +1806 5 23 11.2 11.2 10.7 1 +1806 5 24 7.4 7.4 6.9 1 +1806 5 25 9.7 9.7 9.2 1 +1806 5 26 8.0 8.0 7.5 1 +1806 5 27 6.3 6.3 5.8 1 +1806 5 28 10.1 10.1 9.5 1 +1806 5 29 11.0 11.0 10.4 1 +1806 5 30 7.2 7.2 6.6 1 +1806 5 31 5.8 5.8 5.2 1 +1806 6 1 7.3 7.3 6.6 1 +1806 6 2 5.0 5.0 4.3 1 +1806 6 3 4.4 4.4 3.7 1 +1806 6 4 9.0 9.0 8.3 1 +1806 6 5 9.5 9.5 8.8 1 +1806 6 6 12.2 12.2 11.5 1 +1806 6 7 11.3 11.3 10.6 1 +1806 6 8 14.7 14.7 14.0 1 +1806 6 9 18.5 18.5 17.8 1 +1806 6 10 21.3 21.3 20.6 1 +1806 6 11 20.5 20.5 19.8 1 +1806 6 12 11.3 11.3 10.6 1 +1806 6 13 10.6 10.6 9.9 1 +1806 6 14 12.7 12.7 12.0 1 +1806 6 15 17.4 17.4 16.7 1 +1806 6 16 14.7 14.7 14.0 1 +1806 6 17 11.2 11.2 10.5 1 +1806 6 18 13.6 13.6 12.9 1 +1806 6 19 13.4 13.4 12.7 1 +1806 6 20 12.1 12.1 11.4 1 +1806 6 21 6.3 6.3 5.6 1 +1806 6 22 7.5 7.5 6.8 1 +1806 6 23 6.4 6.4 5.7 1 +1806 6 24 7.4 7.4 6.7 1 +1806 6 25 9.7 9.7 9.0 1 +1806 6 26 9.6 9.6 8.9 1 +1806 6 27 11.1 11.1 10.4 1 +1806 6 28 11.1 11.1 10.4 1 +1806 6 29 11.1 11.1 10.4 1 +1806 6 30 10.1 10.1 9.4 1 +1806 7 1 10.8 10.8 10.1 1 +1806 7 2 11.3 11.3 10.6 1 +1806 7 3 11.6 11.6 10.9 1 +1806 7 4 11.8 11.8 11.1 1 +1806 7 5 9.9 9.9 9.2 1 +1806 7 6 13.0 13.0 12.3 1 +1806 7 7 14.4 14.4 13.7 1 +1806 7 8 16.3 16.3 15.6 1 +1806 7 9 14.5 14.5 13.8 1 +1806 7 10 16.6 16.6 15.9 1 +1806 7 11 16.5 16.5 15.8 1 +1806 7 12 17.2 17.2 16.5 1 +1806 7 13 15.1 15.1 14.4 1 +1806 7 14 16.0 16.0 15.3 1 +1806 7 15 14.0 14.0 13.3 1 +1806 7 16 15.0 15.0 14.3 1 +1806 7 17 14.8 14.8 14.1 1 +1806 7 18 16.3 16.3 15.6 1 +1806 7 19 16.2 16.2 15.5 1 +1806 7 20 15.7 15.7 15.0 1 +1806 7 21 16.6 16.6 15.9 1 +1806 7 22 19.1 19.1 18.4 1 +1806 7 23 19.5 19.5 18.8 1 +1806 7 24 17.9 17.9 17.2 1 +1806 7 25 18.0 18.0 17.3 1 +1806 7 26 17.8 17.8 17.1 1 +1806 7 27 14.3 14.3 13.6 1 +1806 7 28 16.1 16.1 15.4 1 +1806 7 29 16.0 16.0 15.3 1 +1806 7 30 16.0 16.0 15.3 1 +1806 7 31 17.7 17.7 17.0 1 +1806 8 1 15.4 15.4 14.8 1 +1806 8 2 15.5 15.5 14.9 1 +1806 8 3 14.5 14.5 13.9 1 +1806 8 4 15.7 15.7 15.1 1 +1806 8 5 17.0 17.0 16.5 1 +1806 8 6 16.5 16.5 16.0 1 +1806 8 7 17.1 17.1 16.6 1 +1806 8 8 21.3 21.3 20.8 1 +1806 8 9 18.0 18.0 17.5 1 +1806 8 10 17.7 17.7 17.3 1 +1806 8 11 17.5 17.5 17.1 1 +1806 8 12 17.3 17.3 16.9 1 +1806 8 13 16.9 16.9 16.5 1 +1806 8 14 17.9 17.9 17.6 1 +1806 8 15 16.7 16.7 16.4 1 +1806 8 16 17.6 17.6 17.3 1 +1806 8 17 17.6 17.6 17.3 1 +1806 8 18 18.5 18.5 18.2 1 +1806 8 19 14.9 14.9 14.7 1 +1806 8 20 14.4 14.4 14.2 1 +1806 8 21 13.2 13.2 13.0 1 +1806 8 22 14.9 14.9 14.7 1 +1806 8 23 16.8 16.8 16.7 1 +1806 8 24 16.8 16.8 16.7 1 +1806 8 25 14.7 14.7 14.6 1 +1806 8 26 14.2 14.2 14.1 1 +1806 8 27 16.0 16.0 15.9 1 +1806 8 28 16.2 16.2 16.2 1 +1806 8 29 16.2 16.2 16.2 1 +1806 8 30 20.0 20.0 20.0 1 +1806 8 31 20.6 20.6 20.6 1 +1806 9 1 18.9 18.9 18.9 1 +1806 9 2 17.0 17.0 17.0 1 +1806 9 3 14.5 14.5 14.5 1 +1806 9 4 16.3 16.3 16.3 1 +1806 9 5 16.5 16.5 16.5 1 +1806 9 6 16.3 16.3 16.3 1 +1806 9 7 16.2 16.2 16.2 1 +1806 9 8 16.2 16.2 16.2 1 +1806 9 9 15.5 15.5 15.5 1 +1806 9 10 14.5 14.5 14.5 1 +1806 9 11 14.1 14.1 14.1 1 +1806 9 12 15.0 15.0 15.0 1 +1806 9 13 12.1 12.1 12.1 1 +1806 9 14 13.6 13.6 13.6 1 +1806 9 15 15.4 15.4 15.4 1 +1806 9 16 15.1 15.1 15.1 1 +1806 9 17 13.7 13.7 13.7 1 +1806 9 18 12.7 12.7 12.7 1 +1806 9 19 13.4 13.4 13.4 1 +1806 9 20 13.2 13.2 13.2 1 +1806 9 21 15.2 15.2 15.2 1 +1806 9 22 13.6 13.6 13.6 1 +1806 9 23 15.0 15.0 15.0 1 +1806 9 24 10.7 10.7 10.7 1 +1806 9 25 8.0 8.0 8.0 1 +1806 9 26 12.3 12.3 12.3 1 +1806 9 27 13.7 13.7 13.7 1 +1806 9 28 11.7 11.7 11.7 1 +1806 9 29 8.7 8.7 8.7 1 +1806 9 30 12.3 12.3 12.3 1 +1806 10 1 13.2 13.2 13.2 1 +1806 10 2 13.6 13.6 13.6 1 +1806 10 3 12.0 12.0 12.0 1 +1806 10 4 11.8 11.8 11.8 1 +1806 10 5 11.3 11.3 11.3 1 +1806 10 6 11.3 11.3 11.3 1 +1806 10 7 9.6 9.6 9.6 1 +1806 10 8 11.3 11.3 11.3 1 +1806 10 9 4.2 4.2 4.2 1 +1806 10 10 3.9 3.9 3.9 1 +1806 10 11 5.6 5.6 5.6 1 +1806 10 12 9.2 9.2 9.2 1 +1806 10 13 6.6 6.6 6.6 1 +1806 10 14 4.6 4.6 4.6 1 +1806 10 15 4.6 4.6 4.6 1 +1806 10 16 5.4 5.4 5.4 1 +1806 10 17 5.4 5.4 5.4 1 +1806 10 18 2.9 2.9 2.9 1 +1806 10 19 0.7 0.7 0.7 1 +1806 10 20 -0.1 -0.1 -0.1 1 +1806 10 21 -1.3 -1.3 -1.3 1 +1806 10 22 5.9 5.9 5.9 1 +1806 10 23 6.6 6.6 6.6 1 +1806 10 24 1.0 1.0 1.0 1 +1806 10 25 1.7 1.7 1.7 1 +1806 10 26 7.7 7.7 7.7 1 +1806 10 27 8.9 8.9 8.9 1 +1806 10 28 2.9 2.9 2.9 1 +1806 10 29 -0.2 -0.2 -0.2 1 +1806 10 30 4.5 4.5 4.5 1 +1806 10 31 7.2 7.2 7.2 1 +1806 11 1 5.6 5.6 5.6 1 +1806 11 2 6.6 6.6 6.6 1 +1806 11 3 6.9 6.9 6.9 1 +1806 11 4 4.6 4.6 4.6 1 +1806 11 5 2.6 2.6 2.6 1 +1806 11 6 -1.8 -1.8 -1.8 1 +1806 11 7 -3.4 -3.4 -3.4 1 +1806 11 8 -5.8 -5.8 -5.8 1 +1806 11 9 2.2 2.2 2.2 1 +1806 11 10 -1.0 -1.0 -1.0 1 +1806 11 11 -1.1 -1.1 -1.1 1 +1806 11 12 3.1 3.1 3.1 1 +1806 11 13 3.0 3.0 3.0 1 +1806 11 14 0.2 0.2 0.2 1 +1806 11 15 -0.8 -0.8 -0.8 1 +1806 11 16 4.9 4.9 4.9 1 +1806 11 17 1.1 1.1 1.1 1 +1806 11 18 -1.1 -1.1 -1.1 1 +1806 11 19 5.1 5.1 5.1 1 +1806 11 20 4.2 4.2 4.2 1 +1806 11 21 5.4 5.4 5.4 1 +1806 11 22 5.9 5.9 5.9 1 +1806 11 23 4.3 4.3 4.3 1 +1806 11 24 0.8 0.8 0.8 1 +1806 11 25 -0.8 -0.8 -0.8 1 +1806 11 26 -1.7 -1.7 -1.7 1 +1806 11 27 -2.4 -2.4 -2.4 1 +1806 11 28 -4.3 -4.3 -4.3 1 +1806 11 29 1.9 1.9 1.9 1 +1806 11 30 1.4 1.4 1.4 1 +1806 12 1 -3.2 -3.2 -3.2 1 +1806 12 2 -6.7 -6.7 -6.7 1 +1806 12 3 -11.8 -11.8 -11.8 1 +1806 12 4 -9.6 -9.6 -9.6 1 +1806 12 5 -5.6 -5.6 -5.6 1 +1806 12 6 1.8 1.8 1.8 1 +1806 12 7 5.9 5.9 5.9 1 +1806 12 8 1.1 1.1 1.1 1 +1806 12 9 2.6 2.6 2.6 1 +1806 12 10 3.9 3.9 3.9 1 +1806 12 11 2.3 2.3 2.3 1 +1806 12 12 2.1 2.1 2.1 1 +1806 12 13 2.9 2.9 2.9 1 +1806 12 14 5.9 5.9 5.9 1 +1806 12 15 4.6 4.6 4.6 1 +1806 12 16 3.9 3.9 3.9 1 +1806 12 17 3.9 3.9 3.9 1 +1806 12 18 3.8 3.8 3.8 1 +1806 12 19 1.6 1.6 1.6 1 +1806 12 20 3.9 3.9 3.9 1 +1806 12 21 4.1 4.1 4.1 1 +1806 12 22 3.6 3.6 3.6 1 +1806 12 23 5.8 5.8 5.8 1 +1806 12 24 2.9 2.9 2.9 1 +1806 12 25 0.9 0.9 0.9 1 +1806 12 26 4.1 4.1 4.1 1 +1806 12 27 0.6 0.6 0.6 1 +1806 12 28 -7.3 -7.3 -7.3 1 +1806 12 29 -7.3 -7.3 -7.3 1 +1806 12 30 -4.9 -4.9 -4.9 1 +1806 12 31 -3.1 -3.1 -3.1 1 +1807 1 1 -9.3 -9.3 -9.3 1 +1807 1 2 0.1 0.1 0.1 1 +1807 1 3 0.9 0.9 0.9 1 +1807 1 4 -4.8 -4.8 -4.8 1 +1807 1 5 -8.8 -8.8 -8.8 1 +1807 1 6 -1.3 -1.3 -1.3 1 +1807 1 7 -1.6 -1.6 -1.6 1 +1807 1 8 -2.9 -2.9 -2.9 1 +1807 1 9 -5.6 -5.6 -5.6 1 +1807 1 10 1.6 1.6 1.6 1 +1807 1 11 4.4 4.4 4.4 1 +1807 1 12 4.1 4.1 4.1 1 +1807 1 13 -3.1 -3.1 -3.1 1 +1807 1 14 -9.1 -9.1 -9.1 1 +1807 1 15 -9.6 -9.6 -9.6 1 +1807 1 16 -5.2 -5.2 -5.2 1 +1807 1 17 -11.2 -11.2 -11.2 1 +1807 1 18 -0.1 -0.1 -0.1 1 +1807 1 19 -10.0 -10.0 -10.0 1 +1807 1 20 -13.6 -13.6 -13.6 1 +1807 1 21 -17.3 -17.3 -17.3 1 +1807 1 22 -9.2 -9.2 -9.2 1 +1807 1 23 -4.8 -4.8 -4.8 1 +1807 1 24 -4.8 -4.8 -4.8 1 +1807 1 25 -9.2 -9.2 -9.2 1 +1807 1 26 0.9 0.9 0.9 1 +1807 1 27 0.8 0.8 0.8 1 +1807 1 28 -2.8 -2.8 -2.8 1 +1807 1 29 0.5 0.5 0.5 1 +1807 1 30 1.3 1.3 1.3 1 +1807 1 31 2.5 2.5 2.5 1 +1807 2 1 -0.3 -0.3 -0.3 1 +1807 2 2 -7.7 -7.7 -7.7 1 +1807 2 3 -3.2 -3.2 -3.2 1 +1807 2 4 -0.5 -0.5 -0.5 1 +1807 2 5 1.0 1.0 1.0 1 +1807 2 6 -0.3 -0.3 -0.3 1 +1807 2 7 -1.8 -1.8 -1.8 1 +1807 2 8 -4.1 -4.1 -4.1 1 +1807 2 9 -2.8 -2.8 -2.8 1 +1807 2 10 -1.0 -1.0 -1.0 1 +1807 2 11 -3.5 -3.5 -3.5 1 +1807 2 12 1.2 1.2 1.2 1 +1807 2 13 -2.0 -2.0 -2.0 1 +1807 2 14 2.6 2.6 2.6 1 +1807 2 15 3.2 3.2 3.2 1 +1807 2 16 4.5 4.5 4.5 1 +1807 2 17 2.8 2.8 2.8 1 +1807 2 18 -2.0 -2.0 -2.0 1 +1807 2 19 -5.9 -5.9 -5.9 1 +1807 2 20 -1.8 -1.8 -1.8 1 +1807 2 21 0.9 0.9 0.9 1 +1807 2 22 0.0 0.0 0.0 1 +1807 2 23 -5.2 -5.2 -5.2 1 +1807 2 24 -4.0 -4.0 -4.0 1 +1807 2 25 -8.4 -8.4 -8.4 1 +1807 2 26 -8.8 -8.8 -8.8 1 +1807 2 27 -8.8 -8.8 -8.8 1 +1807 2 28 -6.1 -6.1 -6.1 1 +1807 3 1 -1.1 -1.1 -1.1 1 +1807 3 2 2.4 2.4 2.4 1 +1807 3 3 1.9 1.9 1.9 1 +1807 3 4 -0.8 -0.8 -0.8 1 +1807 3 5 -6.6 -6.6 -6.6 1 +1807 3 6 -5.1 -5.1 -5.1 1 +1807 3 7 -5.8 -5.8 -5.8 1 +1807 3 8 -3.2 -3.2 -3.2 1 +1807 3 9 -6.2 -6.2 -6.2 1 +1807 3 10 -5.7 -5.7 -5.7 1 +1807 3 11 -2.1 -2.1 -2.1 1 +1807 3 12 -1.0 -1.0 -1.0 1 +1807 3 13 1.6 1.6 1.6 1 +1807 3 14 0.8 0.8 0.8 1 +1807 3 15 -8.4 -8.4 -8.4 1 +1807 3 16 -9.2 -9.2 -9.2 1 +1807 3 17 -9.4 -9.4 -9.4 1 +1807 3 18 -7.9 -7.9 -7.9 1 +1807 3 19 0.0 0.0 0.0 1 +1807 3 20 0.5 0.5 0.5 1 +1807 3 21 -4.8 -4.8 -4.8 1 +1807 3 22 -2.8 -2.8 -2.8 1 +1807 3 23 -3.8 -3.8 -3.8 1 +1807 3 24 4.8 4.8 4.8 1 +1807 3 25 6.0 6.0 6.0 1 +1807 3 26 5.0 5.0 5.0 1 +1807 3 27 2.5 2.5 2.5 1 +1807 3 28 -2.3 -2.3 -2.3 1 +1807 3 29 -2.9 -2.9 -2.9 1 +1807 3 30 -2.3 -2.3 -2.3 1 +1807 3 31 0.6 0.6 0.6 1 +1807 4 1 -1.2 -1.2 -1.2 1 +1807 4 2 -0.7 -0.7 -0.7 1 +1807 4 3 -1.2 -1.2 -1.2 1 +1807 4 4 -1.5 -1.5 -1.5 1 +1807 4 5 1.2 1.2 1.2 1 +1807 4 6 4.8 4.8 4.8 1 +1807 4 7 -0.4 -0.4 -0.4 1 +1807 4 8 0.2 0.2 0.2 1 +1807 4 9 3.5 3.5 3.5 1 +1807 4 10 1.2 1.2 1.2 1 +1807 4 11 1.3 1.3 1.3 1 +1807 4 12 4.5 4.5 4.5 1 +1807 4 13 2.3 2.3 2.3 1 +1807 4 14 -5.2 -5.2 -5.2 1 +1807 4 15 -5.9 -5.9 -5.9 1 +1807 4 16 -5.8 -5.8 -5.8 1 +1807 4 17 -5.5 -5.5 -5.5 1 +1807 4 18 -3.8 -3.8 -3.8 1 +1807 4 19 -3.9 -3.9 -3.9 1 +1807 4 20 -4.6 -4.6 -4.6 1 +1807 4 21 -1.2 -1.2 -1.2 1 +1807 4 22 0.0 0.0 0.0 1 +1807 4 23 1.1 1.1 1.1 1 +1807 4 24 3.9 3.9 3.9 1 +1807 4 25 4.9 4.9 4.9 1 +1807 4 26 8.0 8.0 8.0 1 +1807 4 27 7.0 7.0 7.0 1 +1807 4 28 4.3 4.3 4.3 1 +1807 4 29 9.2 9.2 9.2 1 +1807 4 30 8.1 8.1 8.1 1 +1807 5 1 5.4 5.4 5.4 1 +1807 5 2 2.7 2.7 2.7 1 +1807 5 3 1.7 1.7 1.7 1 +1807 5 4 5.1 5.1 5.1 1 +1807 5 5 6.7 6.7 6.6 1 +1807 5 6 6.7 6.7 6.6 1 +1807 5 7 9.0 9.0 8.9 1 +1807 5 8 5.9 5.9 5.8 1 +1807 5 9 8.0 8.0 7.9 1 +1807 5 10 8.3 8.3 8.1 1 +1807 5 11 4.6 4.6 4.4 1 +1807 5 12 5.2 5.2 5.0 1 +1807 5 13 4.6 4.6 4.4 1 +1807 5 14 3.3 3.3 3.0 1 +1807 5 15 5.8 5.8 5.5 1 +1807 5 16 7.1 7.1 6.8 1 +1807 5 17 8.7 8.7 8.4 1 +1807 5 18 10.1 10.1 9.8 1 +1807 5 19 6.7 6.7 6.3 1 +1807 5 20 8.0 8.0 7.6 1 +1807 5 21 11.5 11.5 11.1 1 +1807 5 22 11.2 11.2 10.8 1 +1807 5 23 12.9 12.9 12.4 1 +1807 5 24 12.7 12.7 12.2 1 +1807 5 25 8.0 8.0 7.5 1 +1807 5 26 10.7 10.7 10.2 1 +1807 5 27 14.4 14.4 13.9 1 +1807 5 28 13.4 13.4 12.8 1 +1807 5 29 11.1 11.1 10.5 1 +1807 5 30 9.0 9.0 8.4 1 +1807 5 31 11.7 11.7 11.1 1 +1807 6 1 13.9 13.9 13.2 1 +1807 6 2 14.8 14.8 14.1 1 +1807 6 3 11.4 11.4 10.7 1 +1807 6 4 11.2 11.2 10.5 1 +1807 6 5 14.0 14.0 13.3 1 +1807 6 6 16.7 16.7 16.0 1 +1807 6 7 14.5 14.5 13.8 1 +1807 6 8 15.3 15.3 14.6 1 +1807 6 9 15.3 15.3 14.6 1 +1807 6 10 16.3 16.3 15.6 1 +1807 6 11 16.0 16.0 15.3 1 +1807 6 12 15.9 15.9 15.2 1 +1807 6 13 13.8 13.8 13.1 1 +1807 6 14 14.1 14.1 13.4 1 +1807 6 15 19.1 19.1 18.4 1 +1807 6 16 19.1 19.1 18.4 1 +1807 6 17 15.9 15.9 15.2 1 +1807 6 18 15.6 15.6 14.9 1 +1807 6 19 12.8 12.8 12.1 1 +1807 6 20 12.8 12.8 12.1 1 +1807 6 21 11.6 11.6 10.9 1 +1807 6 22 9.6 9.6 8.9 1 +1807 6 23 10.7 10.7 10.0 1 +1807 6 24 10.0 10.0 9.3 1 +1807 6 25 11.6 11.6 10.9 1 +1807 6 26 14.3 14.3 13.6 1 +1807 6 27 12.2 12.2 11.5 1 +1807 6 28 10.0 10.0 9.3 1 +1807 6 29 13.4 13.4 12.7 1 +1807 6 30 17.6 17.6 16.9 1 +1807 7 1 16.1 16.1 15.4 1 +1807 7 2 16.8 16.8 16.1 1 +1807 7 3 14.8 14.8 14.1 1 +1807 7 4 14.4 14.4 13.7 1 +1807 7 5 14.9 14.9 14.2 1 +1807 7 6 12.8 12.8 12.1 1 +1807 7 7 11.6 11.6 10.9 1 +1807 7 8 12.4 12.4 11.7 1 +1807 7 9 12.6 12.6 11.9 1 +1807 7 10 12.3 12.3 11.6 1 +1807 7 11 13.5 13.5 12.8 1 +1807 7 12 18.3 18.3 17.6 1 +1807 7 13 21.6 21.6 20.9 1 +1807 7 14 22.3 22.3 21.6 1 +1807 7 15 20.0 20.0 19.3 1 +1807 7 16 18.0 18.0 17.3 1 +1807 7 17 18.6 18.6 17.9 1 +1807 7 18 21.2 21.2 20.5 1 +1807 7 19 20.4 20.4 19.7 1 +1807 7 20 19.5 19.5 18.8 1 +1807 7 21 20.0 20.0 19.3 1 +1807 7 22 22.5 22.5 21.8 1 +1807 7 23 22.3 22.3 21.6 1 +1807 7 24 21.0 21.0 20.3 1 +1807 7 25 20.1 20.1 19.4 1 +1807 7 26 21.5 21.5 20.8 1 +1807 7 27 23.0 23.0 22.3 1 +1807 7 28 22.1 22.1 21.4 1 +1807 7 29 22.6 22.6 21.9 1 +1807 7 30 22.9 22.9 22.2 1 +1807 7 31 24.5 24.5 23.8 1 +1807 8 1 25.5 25.5 24.9 1 +1807 8 2 25.3 25.3 24.7 1 +1807 8 3 24.6 24.6 24.0 1 +1807 8 4 20.9 20.9 20.3 1 +1807 8 5 19.2 19.2 18.7 1 +1807 8 6 18.9 18.9 18.4 1 +1807 8 7 19.0 19.0 18.5 1 +1807 8 8 16.1 16.1 15.6 1 +1807 8 9 14.3 14.3 13.8 1 +1807 8 10 14.9 14.9 14.5 1 +1807 8 11 15.4 15.4 15.0 1 +1807 8 12 15.6 15.6 15.2 1 +1807 8 13 17.7 17.7 17.3 1 +1807 8 14 19.7 19.7 19.4 1 +1807 8 15 19.1 19.1 18.8 1 +1807 8 16 21.5 21.5 21.2 1 +1807 8 17 22.2 22.2 21.9 1 +1807 8 18 21.5 21.5 21.2 1 +1807 8 19 19.6 19.6 19.4 1 +1807 8 20 18.6 18.6 18.4 1 +1807 8 21 18.4 18.4 18.2 1 +1807 8 22 17.6 17.6 17.4 1 +1807 8 23 19.3 19.3 19.2 1 +1807 8 24 20.4 20.4 20.3 1 +1807 8 25 16.4 16.4 16.3 1 +1807 8 26 17.4 17.4 17.3 1 +1807 8 27 18.2 18.2 18.1 1 +1807 8 28 18.9 18.9 18.9 1 +1807 8 29 21.5 21.5 21.5 1 +1807 8 30 19.1 19.1 19.1 1 +1807 8 31 18.5 18.5 18.5 1 +1807 9 1 15.0 15.0 15.0 1 +1807 9 2 12.6 12.6 12.6 1 +1807 9 3 15.3 15.3 15.3 1 +1807 9 4 16.5 16.5 16.5 1 +1807 9 5 17.5 17.5 17.5 1 +1807 9 6 14.5 14.5 14.5 1 +1807 9 7 19.1 19.1 19.1 1 +1807 9 8 12.5 12.5 12.5 1 +1807 9 9 10.8 10.8 10.8 1 +1807 9 10 10.6 10.6 10.6 1 +1807 9 11 7.8 7.8 7.8 1 +1807 9 12 9.3 9.3 9.3 1 +1807 9 13 9.1 9.1 9.1 1 +1807 9 14 9.5 9.5 9.5 1 +1807 9 15 9.4 9.4 9.4 1 +1807 9 16 7.7 7.7 7.7 1 +1807 9 17 7.4 7.4 7.4 1 +1807 9 18 6.9 6.9 6.9 1 +1807 9 19 7.1 7.1 7.1 1 +1807 9 20 6.1 6.1 6.1 1 +1807 9 21 5.6 5.6 5.6 1 +1807 9 22 5.9 5.9 5.9 1 +1807 9 23 6.2 6.2 6.2 1 +1807 9 24 9.4 9.4 9.4 1 +1807 9 25 11.0 11.0 11.0 1 +1807 9 26 9.7 9.7 9.7 1 +1807 9 27 10.0 10.0 10.0 1 +1807 9 28 10.2 10.2 10.2 1 +1807 9 29 7.0 7.0 7.0 1 +1807 9 30 6.3 6.3 6.3 1 +1807 10 1 6.5 6.5 6.5 1 +1807 10 2 6.6 6.6 6.6 1 +1807 10 3 6.0 6.0 6.0 1 +1807 10 4 5.3 5.3 5.3 1 +1807 10 5 4.4 4.4 4.4 1 +1807 10 6 6.1 6.1 6.1 1 +1807 10 7 10.9 10.9 10.9 1 +1807 10 8 11.0 11.0 11.0 1 +1807 10 9 5.3 5.3 5.3 1 +1807 10 10 4.2 4.2 4.2 1 +1807 10 11 3.4 3.4 3.4 1 +1807 10 12 3.9 3.9 3.9 1 +1807 10 13 1.6 1.6 1.6 1 +1807 10 14 4.2 4.2 4.2 1 +1807 10 15 8.9 8.9 8.9 1 +1807 10 16 11.2 11.2 11.2 1 +1807 10 17 8.9 8.9 8.9 1 +1807 10 18 8.7 8.7 8.7 1 +1807 10 19 4.0 4.0 4.0 1 +1807 10 20 0.9 0.9 0.9 1 +1807 10 21 3.4 3.4 3.4 1 +1807 10 22 3.9 3.9 3.9 1 +1807 10 23 6.2 6.2 6.2 1 +1807 10 24 5.9 5.9 5.9 1 +1807 10 25 6.2 6.2 6.2 1 +1807 10 26 3.6 3.6 3.6 1 +1807 10 27 6.4 6.4 6.4 1 +1807 10 28 0.4 0.4 0.4 1 +1807 10 29 0.1 0.1 0.1 1 +1807 10 30 -3.3 -3.3 -3.3 1 +1807 10 31 -6.2 -6.2 -6.2 1 +1807 11 1 -2.3 -2.3 -2.3 1 +1807 11 2 4.2 4.2 4.2 1 +1807 11 3 6.2 6.2 6.2 1 +1807 11 4 5.4 5.4 5.4 1 +1807 11 5 4.2 4.2 4.2 1 +1807 11 6 4.2 4.2 4.2 1 +1807 11 7 4.1 4.1 4.1 1 +1807 11 8 3.9 3.9 3.9 1 +1807 11 9 4.6 4.6 4.6 1 +1807 11 10 3.9 3.9 3.9 1 +1807 11 11 5.6 5.6 5.6 1 +1807 11 12 5.4 5.4 5.4 1 +1807 11 13 0.1 0.1 0.1 1 +1807 11 14 -2.1 -2.1 -2.1 1 +1807 11 15 -3.8 -3.8 -3.8 1 +1807 11 16 -4.3 -4.3 -4.3 1 +1807 11 17 0.6 0.6 0.6 1 +1807 11 18 -1.6 -1.6 -1.6 1 +1807 11 19 -6.5 -6.5 -6.5 1 +1807 11 20 -2.8 -2.8 -2.8 1 +1807 11 21 3.6 3.6 3.6 1 +1807 11 22 1.4 1.4 1.4 1 +1807 11 23 0.2 0.2 0.2 1 +1807 11 24 1.8 1.8 1.8 1 +1807 11 25 2.3 2.3 2.3 1 +1807 11 26 1.1 1.1 1.1 1 +1807 11 27 1.9 1.9 1.9 1 +1807 11 28 1.1 1.1 1.1 1 +1807 11 29 -1.6 -1.6 -1.6 1 +1807 11 30 0.6 0.6 0.6 1 +1807 12 1 -0.1 -0.1 -0.1 1 +1807 12 2 1.8 1.8 1.8 1 +1807 12 3 -0.1 -0.1 -0.1 1 +1807 12 4 -4.9 -4.9 -4.9 1 +1807 12 5 -2.4 -2.4 -2.4 1 +1807 12 6 -2.4 -2.4 -2.4 1 +1807 12 7 -6.2 -6.2 -6.2 1 +1807 12 8 0.6 0.6 0.6 1 +1807 12 9 -5.2 -5.2 -5.2 1 +1807 12 10 -5.4 -5.4 -5.4 1 +1807 12 11 -4.1 -4.1 -4.1 1 +1807 12 12 -4.4 -4.4 -4.4 1 +1807 12 13 -2.4 -2.4 -2.4 1 +1807 12 14 -3.3 -3.3 -3.3 1 +1807 12 15 -9.3 -9.3 -9.3 1 +1807 12 16 -8.1 -8.1 -8.1 1 +1807 12 17 -9.6 -9.6 -9.6 1 +1807 12 18 -1.2 -1.2 -1.2 1 +1807 12 19 -3.4 -3.4 -3.4 1 +1807 12 20 2.1 2.1 2.1 1 +1807 12 21 3.3 3.3 3.3 1 +1807 12 22 2.9 2.9 2.9 1 +1807 12 23 -2.1 -2.1 -2.1 1 +1807 12 24 -1.1 -1.1 -1.1 1 +1807 12 25 2.6 2.6 2.6 1 +1807 12 26 4.4 4.4 4.4 1 +1807 12 27 2.7 2.7 2.7 1 +1807 12 28 2.4 2.4 2.4 1 +1807 12 29 3.1 3.1 3.1 1 +1807 12 30 3.6 3.6 3.6 1 +1807 12 31 2.6 2.6 2.6 1 +1808 1 1 -1.3 -1.3 -1.3 1 +1808 1 2 1.4 1.4 1.4 1 +1808 1 3 -0.1 -0.1 -0.1 1 +1808 1 4 2.2 2.2 2.2 1 +1808 1 5 0.4 0.4 0.4 1 +1808 1 6 0.7 0.7 0.7 1 +1808 1 7 2.6 2.6 2.6 1 +1808 1 8 2.9 2.9 2.9 1 +1808 1 9 4.2 4.2 4.2 1 +1808 1 10 -0.6 -0.6 -0.6 1 +1808 1 11 0.6 0.6 0.6 1 +1808 1 12 -8.1 -8.1 -8.1 1 +1808 1 13 -14.5 -14.5 -14.5 1 +1808 1 14 -10.6 -10.6 -10.6 1 +1808 1 15 -5.1 -5.1 -5.1 1 +1808 1 16 -11.3 -11.3 -11.3 1 +1808 1 17 -16.2 -16.2 -16.2 1 +1808 1 18 -0.1 -0.1 -0.1 1 +1808 1 19 1.0 1.0 1.0 1 +1808 1 20 -3.3 -3.3 -3.3 1 +1808 1 21 -8.5 -8.5 -8.5 1 +1808 1 22 -4.5 -4.5 -4.5 1 +1808 1 23 2.5 2.5 2.5 1 +1808 1 24 1.9 1.9 1.9 1 +1808 1 25 -0.3 -0.3 -0.3 1 +1808 1 26 -1.1 -1.1 -1.1 1 +1808 1 27 -0.8 -0.8 -0.8 1 +1808 1 28 -0.6 -0.6 -0.6 1 +1808 1 29 0.5 0.5 0.5 1 +1808 1 30 0.9 0.9 0.9 1 +1808 1 31 -0.5 -0.5 -0.5 1 +1808 2 1 -1.0 -1.0 -1.0 1 +1808 2 2 -2.5 -2.5 -2.5 1 +1808 2 3 -2.8 -2.8 -2.8 1 +1808 2 4 -6.5 -6.5 -6.5 1 +1808 2 5 1.2 1.2 1.2 1 +1808 2 6 1.3 1.3 1.3 1 +1808 2 7 -1.6 -1.6 -1.6 1 +1808 2 8 -7.4 -7.4 -7.4 1 +1808 2 9 -11.5 -11.5 -11.5 1 +1808 2 10 -13.7 -13.7 -13.7 1 +1808 2 11 -9.3 -9.3 -9.3 1 +1808 2 12 -5.5 -5.5 -5.5 1 +1808 2 13 -3.6 -3.6 -3.6 1 +1808 2 14 -14.8 -14.8 -14.8 1 +1808 2 15 -14.5 -14.5 -14.5 1 +1808 2 16 -3.7 -3.7 -3.7 1 +1808 2 17 -5.2 -5.2 -5.2 1 +1808 2 18 -3.0 -3.0 -3.0 1 +1808 2 19 -6.0 -6.0 -6.0 1 +1808 2 20 -1.2 -1.2 -1.2 1 +1808 2 21 2.0 2.0 2.0 1 +1808 2 22 -5.3 -5.3 -5.3 1 +1808 2 23 -5.5 -5.5 -5.5 1 +1808 2 24 -8.6 -8.6 -8.6 1 +1808 2 25 -9.8 -9.8 -9.8 1 +1808 2 26 -3.3 -3.3 -3.3 1 +1808 2 27 -15.1 -15.1 -15.1 1 +1808 2 28 -19.5 -19.5 -19.5 1 +1808 2 29 -19.6 -19.6 -19.6 1 +1808 3 1 -11.6 -11.6 -11.6 1 +1808 3 2 -5.1 -5.1 -5.1 1 +1808 3 3 -2.7 -2.7 -2.7 1 +1808 3 4 -2.1 -2.1 -2.1 1 +1808 3 5 0.3 0.3 0.3 1 +1808 3 6 0.6 0.6 0.6 1 +1808 3 7 -1.6 -1.6 -1.6 1 +1808 3 8 -0.4 -0.4 -0.4 1 +1808 3 9 -9.1 -9.1 -9.1 1 +1808 3 10 -8.9 -8.9 -8.9 1 +1808 3 11 2.1 2.1 2.1 1 +1808 3 12 -0.7 -0.7 -0.7 1 +1808 3 13 -5.2 -5.2 -5.2 1 +1808 3 14 -11.2 -11.2 -11.2 1 +1808 3 15 -9.0 -9.0 -9.0 1 +1808 3 16 -6.4 -6.4 -6.4 1 +1808 3 17 -5.0 -5.0 -5.0 1 +1808 3 18 -3.5 -3.5 -3.5 1 +1808 3 19 -3.5 -3.5 -3.5 1 +1808 3 20 -0.7 -0.7 -0.7 1 +1808 3 21 -1.7 -1.7 -1.7 1 +1808 3 22 -2.5 -2.5 -2.5 1 +1808 3 23 -4.3 -4.3 -4.3 1 +1808 3 24 -3.7 -3.7 -3.7 1 +1808 3 25 -2.1 -2.1 -2.1 1 +1808 3 26 -4.5 -4.5 -4.5 1 +1808 3 27 -6.3 -6.3 -6.3 1 +1808 3 28 -2.6 -2.6 -2.6 1 +1808 3 29 -0.9 -0.9 -0.9 1 +1808 3 30 -3.4 -3.4 -3.4 1 +1808 3 31 -9.3 -9.3 -9.3 1 +1808 4 1 -9.2 -9.2 -9.2 1 +1808 4 2 -13.7 -13.7 -13.7 1 +1808 4 3 -11.6 -11.6 -11.6 1 +1808 4 4 1.6 1.6 1.6 1 +1808 4 5 4.6 4.6 4.6 1 +1808 4 6 3.3 3.3 3.3 1 +1808 4 7 1.8 1.8 1.8 1 +1808 4 8 1.0 1.0 1.0 1 +1808 4 9 -3.2 -3.2 -3.2 1 +1808 4 10 -3.3 -3.3 -3.3 1 +1808 4 11 -1.7 -1.7 -1.7 1 +1808 4 12 -2.3 -2.3 -2.3 1 +1808 4 13 1.5 1.5 1.5 1 +1808 4 14 4.9 4.9 4.9 1 +1808 4 15 2.7 2.7 2.7 1 +1808 4 16 2.6 2.6 2.6 1 +1808 4 17 2.4 2.4 2.4 1 +1808 4 18 1.2 1.2 1.2 1 +1808 4 19 1.9 1.9 1.9 1 +1808 4 20 0.2 0.2 0.2 1 +1808 4 21 2.2 2.2 2.2 1 +1808 4 22 2.0 2.0 2.0 1 +1808 4 23 4.0 4.0 4.0 1 +1808 4 24 1.7 1.7 1.7 1 +1808 4 25 1.9 1.9 1.9 1 +1808 4 26 3.7 3.7 3.7 1 +1808 4 27 5.7 5.7 5.7 1 +1808 4 28 1.3 1.3 1.3 1 +1808 4 29 -1.0 -1.0 -1.0 1 +1808 4 30 4.7 4.7 4.7 1 +1808 5 1 7.2 7.2 7.2 1 +1808 5 2 6.9 6.9 6.9 1 +1808 5 3 10.0 10.0 10.0 1 +1808 5 4 10.1 10.1 10.1 1 +1808 5 5 12.2 12.2 12.1 1 +1808 5 6 12.9 12.9 12.8 1 +1808 5 7 14.1 14.1 14.0 1 +1808 5 8 14.2 14.2 14.1 1 +1808 5 9 9.9 9.9 9.8 1 +1808 5 10 5.1 5.1 4.9 1 +1808 5 11 6.8 6.8 6.6 1 +1808 5 12 7.9 7.9 7.7 1 +1808 5 13 11.0 11.0 10.8 1 +1808 5 14 13.3 13.3 13.0 1 +1808 5 15 14.1 14.1 13.8 1 +1808 5 16 15.7 15.7 15.4 1 +1808 5 17 14.3 14.3 14.0 1 +1808 5 18 7.1 7.1 6.8 1 +1808 5 19 6.1 6.1 5.7 1 +1808 5 20 3.3 3.3 2.9 1 +1808 5 21 5.6 5.6 5.2 1 +1808 5 22 7.3 7.3 6.9 1 +1808 5 23 7.1 7.1 6.6 1 +1808 5 24 7.3 7.3 6.8 1 +1808 5 25 10.0 10.0 9.5 1 +1808 5 26 10.1 10.1 9.6 1 +1808 5 27 8.8 8.8 8.3 1 +1808 5 28 10.0 10.0 9.4 1 +1808 5 29 16.2 16.2 15.6 1 +1808 5 30 17.8 17.8 17.2 1 +1808 5 31 19.4 19.4 18.8 1 +1808 6 1 19.1 19.1 18.4 1 +1808 6 2 18.2 18.2 17.5 1 +1808 6 3 19.0 19.0 18.3 1 +1808 6 4 19.7 19.7 19.0 1 +1808 6 5 16.4 16.4 15.7 1 +1808 6 6 18.8 18.8 18.1 1 +1808 6 7 17.8 17.8 17.1 1 +1808 6 8 15.3 15.3 14.6 1 +1808 6 9 11.5 11.5 10.8 1 +1808 6 10 16.8 16.8 16.1 1 +1808 6 11 18.4 18.4 17.7 1 +1808 6 12 10.9 10.9 10.2 1 +1808 6 13 8.1 8.1 7.4 1 +1808 6 14 8.2 8.2 7.5 1 +1808 6 15 5.7 5.7 5.0 1 +1808 6 16 9.1 9.1 8.4 1 +1808 6 17 11.9 11.9 11.2 1 +1808 6 18 14.8 14.8 14.1 1 +1808 6 19 13.7 13.7 13.0 1 +1808 6 20 12.5 12.5 11.8 1 +1808 6 21 12.8 12.8 12.1 1 +1808 6 22 15.1 15.1 14.4 1 +1808 6 23 14.8 14.8 14.1 1 +1808 6 24 13.7 13.7 13.0 1 +1808 6 25 15.0 15.0 14.3 1 +1808 6 26 20.0 20.0 19.3 1 +1808 6 27 18.4 18.4 17.7 1 +1808 6 28 20.0 20.0 19.3 1 +1808 6 29 17.7 17.7 17.0 1 +1808 6 30 21.3 21.3 20.6 1 +1808 7 1 21.2 21.2 20.5 1 +1808 7 2 17.3 17.3 16.6 1 +1808 7 3 9.7 9.7 9.0 1 +1808 7 4 11.9 11.9 11.2 1 +1808 7 5 11.3 11.3 10.6 1 +1808 7 6 10.8 10.8 10.1 1 +1808 7 7 14.6 14.6 13.9 1 +1808 7 8 17.3 17.3 16.6 1 +1808 7 9 16.5 16.5 15.8 1 +1808 7 10 15.4 15.4 14.7 1 +1808 7 11 19.7 19.7 19.0 1 +1808 7 12 18.5 18.5 17.8 1 +1808 7 13 16.3 16.3 15.6 1 +1808 7 14 18.6 18.6 17.9 1 +1808 7 15 16.6 16.6 15.9 1 +1808 7 16 15.8 15.8 15.1 1 +1808 7 17 15.2 15.2 14.5 1 +1808 7 18 17.2 17.2 16.5 1 +1808 7 19 19.5 19.5 18.8 1 +1808 7 20 18.6 18.6 17.9 1 +1808 7 21 21.3 21.3 20.6 1 +1808 7 22 22.5 22.5 21.8 1 +1808 7 23 24.1 24.1 23.4 1 +1808 7 24 24.1 24.1 23.4 1 +1808 7 25 24.3 24.3 23.6 1 +1808 7 26 17.6 17.6 16.9 1 +1808 7 27 16.5 16.5 15.8 1 +1808 7 28 20.3 20.3 19.6 1 +1808 7 29 17.1 17.1 16.4 1 +1808 7 30 17.4 17.4 16.7 1 +1808 7 31 19.4 19.4 18.7 1 +1808 8 1 19.8 19.8 19.2 1 +1808 8 2 21.2 21.2 20.6 1 +1808 8 3 19.4 19.4 18.8 1 +1808 8 4 18.4 18.4 17.8 1 +1808 8 5 13.9 13.9 13.4 1 +1808 8 6 17.5 17.5 17.0 1 +1808 8 7 19.0 19.0 18.5 1 +1808 8 8 20.7 20.7 20.2 1 +1808 8 9 20.3 20.3 19.8 1 +1808 8 10 16.1 16.1 15.7 1 +1808 8 11 17.5 17.5 17.1 1 +1808 8 12 15.6 15.6 15.2 1 +1808 8 13 15.6 15.6 15.2 1 +1808 8 14 16.3 16.3 16.0 1 +1808 8 15 18.5 18.5 18.2 1 +1808 8 16 17.3 17.3 17.0 1 +1808 8 17 17.7 17.7 17.4 1 +1808 8 18 18.3 18.3 18.0 1 +1808 8 19 19.1 19.1 18.9 1 +1808 8 20 20.9 20.9 20.7 1 +1808 8 21 19.6 19.6 19.4 1 +1808 8 22 15.3 15.3 15.1 1 +1808 8 23 17.5 17.5 17.4 1 +1808 8 24 17.1 17.1 17.0 1 +1808 8 25 12.1 12.1 12.0 1 +1808 8 26 13.4 13.4 13.3 1 +1808 8 27 15.1 15.1 15.0 1 +1808 8 28 14.6 14.6 14.6 1 +1808 8 29 17.5 17.5 17.5 1 +1808 8 30 15.2 15.2 15.2 1 +1808 8 31 16.5 16.5 16.5 1 +1808 9 1 18.5 18.5 18.5 1 +1808 9 2 18.8 18.8 18.8 1 +1808 9 3 18.8 18.8 18.8 1 +1808 9 4 16.5 16.5 16.5 1 +1808 9 5 14.1 14.1 14.1 1 +1808 9 6 13.5 13.5 13.5 1 +1808 9 7 14.1 14.1 14.1 1 +1808 9 8 11.8 11.8 11.8 1 +1808 9 9 13.6 13.6 13.6 1 +1808 9 10 14.9 14.9 14.9 1 +1808 9 11 15.6 15.6 15.6 1 +1808 9 12 11.8 11.8 11.8 1 +1808 9 13 10.6 10.6 10.6 1 +1808 9 14 11.1 11.1 11.1 1 +1808 9 15 11.8 11.8 11.8 1 +1808 9 16 13.1 13.1 13.1 1 +1808 9 17 14.6 14.6 14.6 1 +1808 9 18 15.1 15.1 15.1 1 +1808 9 19 13.4 13.4 13.4 1 +1808 9 20 16.1 16.1 16.1 1 +1808 9 21 15.4 15.4 15.4 1 +1808 9 22 15.4 15.4 15.4 1 +1808 9 23 14.0 14.0 14.0 1 +1808 9 24 10.9 10.9 10.9 1 +1808 9 25 9.7 9.7 9.7 1 +1808 9 26 11.7 11.7 11.7 1 +1808 9 27 10.3 10.3 10.3 1 +1808 9 28 7.7 7.7 7.7 1 +1808 9 29 6.3 6.3 6.3 1 +1808 9 30 5.0 5.0 5.0 1 +1808 10 1 5.3 5.3 5.3 1 +1808 10 2 7.0 7.0 7.0 1 +1808 10 3 6.3 6.3 6.3 1 +1808 10 4 9.3 9.3 9.3 1 +1808 10 5 10.0 10.0 10.0 1 +1808 10 6 7.8 7.8 7.8 1 +1808 10 7 8.8 8.8 8.8 1 +1808 10 8 11.6 11.6 11.6 1 +1808 10 9 11.9 11.9 11.9 1 +1808 10 10 11.6 11.6 11.6 1 +1808 10 11 9.9 9.9 9.9 1 +1808 10 12 9.3 9.3 9.3 1 +1808 10 13 7.9 7.9 7.9 1 +1808 10 14 6.7 6.7 6.7 1 +1808 10 15 5.6 5.6 5.6 1 +1808 10 16 7.4 7.4 7.4 1 +1808 10 17 8.7 8.7 8.7 1 +1808 10 18 7.9 7.9 7.9 1 +1808 10 19 7.9 7.9 7.9 1 +1808 10 20 10.2 10.2 10.2 1 +1808 10 21 7.4 7.4 7.4 1 +1808 10 22 7.6 7.6 7.6 1 +1808 10 23 6.9 6.9 6.9 1 +1808 10 24 6.9 6.9 6.9 1 +1808 10 25 9.4 9.4 9.4 1 +1808 10 26 8.4 8.4 8.4 1 +1808 10 27 10.1 10.1 10.1 1 +1808 10 28 10.2 10.2 10.2 1 +1808 10 29 9.6 9.6 9.6 1 +1808 10 30 10.2 10.2 10.2 1 +1808 10 31 6.9 6.9 6.9 1 +1808 11 1 5.3 5.3 5.3 1 +1808 11 2 4.8 4.8 4.8 1 +1808 11 3 1.7 1.7 1.7 1 +1808 11 4 0.8 0.8 0.8 1 +1808 11 5 2.2 2.2 2.2 1 +1808 11 6 1.0 1.0 1.0 1 +1808 11 7 3.9 3.9 3.9 1 +1808 11 8 4.2 4.2 4.2 1 +1808 11 9 3.9 3.9 3.9 1 +1808 11 10 1.7 1.7 1.7 1 +1808 11 11 0.4 0.4 0.4 1 +1808 11 12 3.7 3.7 3.7 1 +1808 11 13 3.2 3.2 3.2 1 +1808 11 14 -3.0 -3.0 -3.0 1 +1808 11 15 -1.1 -1.1 -1.1 1 +1808 11 16 4.9 4.9 4.9 1 +1808 11 17 5.0 5.0 5.0 1 +1808 11 18 5.2 5.2 5.2 1 +1808 11 19 6.1 6.1 6.1 1 +1808 11 20 3.7 3.7 3.7 1 +1808 11 21 1.2 1.2 1.2 1 +1808 11 22 0.9 0.9 0.9 1 +1808 11 23 -1.6 -1.6 -1.6 1 +1808 11 24 1.1 1.1 1.1 1 +1808 11 25 -2.4 -2.4 -2.4 1 +1808 11 26 -2.2 -2.2 -2.2 1 +1808 11 27 -1.8 -1.8 -1.8 1 +1808 11 28 -7.2 -7.2 -7.2 1 +1808 11 29 -8.7 -8.7 -8.7 1 +1808 11 30 -7.8 -7.8 -7.8 1 +1808 12 1 -4.9 -4.9 -4.9 1 +1808 12 2 -5.4 -5.4 -5.4 1 +1808 12 3 -1.7 -1.7 -1.7 1 +1808 12 4 -4.2 -4.2 -4.2 1 +1808 12 5 -7.4 -7.4 -7.4 1 +1808 12 6 1.9 1.9 1.9 1 +1808 12 7 -1.1 -1.1 -1.1 1 +1808 12 8 -7.4 -7.4 -7.4 1 +1808 12 9 -10.1 -10.1 -10.1 1 +1808 12 10 -11.4 -11.4 -11.4 1 +1808 12 11 -15.3 -15.3 -15.3 1 +1808 12 12 -11.1 -11.1 -11.1 1 +1808 12 13 -6.9 -6.9 -6.9 1 +1808 12 14 -0.6 -0.6 -0.6 1 +1808 12 15 -2.1 -2.1 -2.1 1 +1808 12 16 -6.2 -6.2 -6.2 1 +1808 12 17 -8.1 -8.1 -8.1 1 +1808 12 18 -4.7 -4.7 -4.7 1 +1808 12 19 -6.2 -6.2 -6.2 1 +1808 12 20 -7.9 -7.9 -7.9 1 +1808 12 21 -11.7 -11.7 -11.7 1 +1808 12 22 -9.1 -9.1 -9.1 1 +1808 12 23 -6.6 -6.6 -6.6 1 +1808 12 24 0.8 0.8 0.8 1 +1808 12 25 -1.6 -1.6 -1.6 1 +1808 12 26 -2.3 -2.3 -2.3 1 +1808 12 27 -2.4 -2.4 -2.4 1 +1808 12 28 -2.6 -2.6 -2.6 1 +1808 12 29 -5.7 -5.7 -5.7 1 +1808 12 30 -7.4 -7.4 -7.4 1 +1808 12 31 -9.9 -9.9 -9.9 1 +1809 1 1 -16.1 -16.1 -16.1 1 +1809 1 2 -16.6 -16.6 -16.6 1 +1809 1 3 -16.8 -16.8 -16.8 1 +1809 1 4 -15.1 -15.1 -15.1 1 +1809 1 5 -22.8 -22.8 -22.8 1 +1809 1 6 -18.8 -18.8 -18.8 1 +1809 1 7 -4.6 -4.6 -4.6 1 +1809 1 8 -2.4 -2.4 -2.4 1 +1809 1 9 -3.1 -3.1 -3.1 1 +1809 1 10 -3.4 -3.4 -3.4 1 +1809 1 11 -5.9 -5.9 -5.9 1 +1809 1 12 -11.3 -11.3 -11.3 1 +1809 1 13 -14.0 -14.0 -14.0 1 +1809 1 14 -16.1 -16.1 -16.1 1 +1809 1 15 -15.6 -15.6 -15.6 1 +1809 1 16 -12.5 -12.5 -12.5 1 +1809 1 17 -10.1 -10.1 -10.1 1 +1809 1 18 -14.8 -14.8 -14.8 1 +1809 1 19 -22.6 -22.6 -22.6 1 +1809 1 20 -6.3 -6.3 -6.3 1 +1809 1 21 -9.1 -9.1 -9.1 1 +1809 1 22 -11.6 -11.6 -11.6 1 +1809 1 23 -11.1 -11.1 -11.1 1 +1809 1 24 -9.1 -9.1 -9.1 1 +1809 1 25 -12.5 -12.5 -12.5 1 +1809 1 26 -23.7 -23.7 -23.7 1 +1809 1 27 -24.8 -24.8 -24.8 1 +1809 1 28 -11.1 -11.1 -11.1 1 +1809 1 29 -2.1 -2.1 -2.1 1 +1809 1 30 -0.3 -0.3 -0.3 1 +1809 1 31 -11.1 -11.1 -11.1 1 +1809 2 1 -11.2 -11.2 -11.2 1 +1809 2 2 -7.1 -7.1 -7.1 1 +1809 2 3 -16.7 -16.7 -16.7 1 +1809 2 4 -19.3 -19.3 -19.3 1 +1809 2 5 -17.2 -17.2 -17.2 1 +1809 2 6 -24.2 -24.2 -24.2 1 +1809 2 7 -20.2 -20.2 -20.2 1 +1809 2 8 -15.8 -15.8 -15.8 1 +1809 2 9 -11.8 -11.8 -11.8 1 +1809 2 10 -8.1 -8.1 -8.1 1 +1809 2 11 -8.3 -8.3 -8.3 1 +1809 2 12 -13.2 -13.2 -13.2 1 +1809 2 13 -9.8 -9.8 -9.8 1 +1809 2 14 -1.0 -1.0 -1.0 1 +1809 2 15 2.5 2.5 2.5 1 +1809 2 16 3.0 3.0 3.0 1 +1809 2 17 2.3 2.3 2.3 1 +1809 2 18 3.2 3.2 3.2 1 +1809 2 19 0.7 0.7 0.7 1 +1809 2 20 -0.5 -0.5 -0.5 1 +1809 2 21 -1.8 -1.8 -1.8 1 +1809 2 22 -18.2 -18.2 -18.2 1 +1809 2 23 -20.2 -20.2 -20.2 1 +1809 2 24 -12.3 -12.3 -12.3 1 +1809 2 25 -2.3 -2.3 -2.3 1 +1809 2 26 -3.5 -3.5 -3.5 1 +1809 2 27 -0.9 -0.9 -0.9 1 +1809 2 28 4.8 4.8 4.8 1 +1809 3 1 -4.1 -4.1 -4.1 1 +1809 3 2 -6.5 -6.5 -6.5 1 +1809 3 3 1.2 1.2 1.2 1 +1809 3 4 0.2 0.2 0.2 1 +1809 3 5 -5.8 -5.8 -5.8 1 +1809 3 6 -5.8 -5.8 -5.8 1 +1809 3 7 -0.4 -0.4 -0.4 1 +1809 3 8 1.9 1.9 1.9 1 +1809 3 9 1.3 1.3 1.3 1 +1809 3 10 -8.6 -8.6 -8.6 1 +1809 3 11 -3.0 -3.0 -3.0 1 +1809 3 12 -3.0 -3.0 -3.0 1 +1809 3 13 -4.7 -4.7 -4.7 1 +1809 3 14 -2.4 -2.4 -2.4 1 +1809 3 15 -4.2 -4.2 -4.2 1 +1809 3 16 -3.7 -3.7 -3.7 1 +1809 3 17 2.0 2.0 2.0 1 +1809 3 18 1.8 1.8 1.8 1 +1809 3 19 1.5 1.5 1.5 1 +1809 3 20 0.7 0.7 0.7 1 +1809 3 21 -4.0 -4.0 -4.0 1 +1809 3 22 -5.8 -5.8 -5.8 1 +1809 3 23 -10.7 -10.7 -10.7 1 +1809 3 24 -13.0 -13.0 -13.0 1 +1809 3 25 -16.1 -16.1 -16.1 1 +1809 3 26 -15.3 -15.3 -15.3 1 +1809 3 27 -12.3 -12.3 -12.3 1 +1809 3 28 -8.3 -8.3 -8.3 1 +1809 3 29 -3.3 -3.3 -3.3 1 +1809 3 30 -1.4 -1.4 -1.4 1 +1809 3 31 0.0 0.0 0.0 1 +1809 4 1 -5.6 -5.6 -5.6 1 +1809 4 2 -8.9 -8.9 -8.9 1 +1809 4 3 -4.8 -4.8 -4.8 1 +1809 4 4 -6.4 -6.4 -6.4 1 +1809 4 5 -6.7 -6.7 -6.7 1 +1809 4 6 -1.0 -1.0 -1.0 1 +1809 4 7 2.5 2.5 2.5 1 +1809 4 8 2.4 2.4 2.4 1 +1809 4 9 4.1 4.1 4.1 1 +1809 4 10 1.6 1.6 1.6 1 +1809 4 11 -6.1 -6.1 -6.1 1 +1809 4 12 -8.8 -8.8 -8.8 1 +1809 4 13 -9.2 -9.2 -9.2 1 +1809 4 14 -5.2 -5.2 -5.2 1 +1809 4 15 -2.2 -2.2 -2.2 1 +1809 4 16 -5.9 -5.9 -5.9 1 +1809 4 17 -0.1 -0.1 -0.1 1 +1809 4 18 4.2 4.2 4.2 1 +1809 4 19 2.4 2.4 2.4 1 +1809 4 20 5.6 5.6 5.6 1 +1809 4 21 4.6 4.6 4.6 1 +1809 4 22 2.5 2.5 2.5 1 +1809 4 23 1.6 1.6 1.6 1 +1809 4 24 2.7 2.7 2.7 1 +1809 4 25 4.8 4.8 4.8 1 +1809 4 26 5.3 5.3 5.3 1 +1809 4 27 5.0 5.0 5.0 1 +1809 4 28 4.0 4.0 4.0 1 +1809 4 29 3.2 3.2 3.2 1 +1809 4 30 4.8 4.8 4.8 1 +1809 5 1 3.1 3.1 3.1 1 +1809 5 2 6.2 6.2 6.2 1 +1809 5 3 7.0 7.0 7.0 1 +1809 5 4 6.0 6.0 6.0 1 +1809 5 5 9.3 9.3 9.2 1 +1809 5 6 5.2 5.2 5.1 1 +1809 5 7 5.2 5.2 5.1 1 +1809 5 8 5.0 5.0 4.9 1 +1809 5 9 7.9 7.9 7.8 1 +1809 5 10 11.8 11.8 11.6 1 +1809 5 11 9.9 9.9 9.7 1 +1809 5 12 5.8 5.8 5.6 1 +1809 5 13 5.7 5.7 5.5 1 +1809 5 14 12.6 12.6 12.3 1 +1809 5 15 11.1 11.1 10.8 1 +1809 5 16 8.9 8.9 8.6 1 +1809 5 17 15.8 15.8 15.5 1 +1809 5 18 16.1 16.1 15.8 1 +1809 5 19 15.5 15.5 15.1 1 +1809 5 20 17.1 17.1 16.7 1 +1809 5 21 18.3 18.3 17.9 1 +1809 5 22 14.2 14.2 13.8 1 +1809 5 23 12.8 12.8 12.3 1 +1809 5 24 17.2 17.2 16.7 1 +1809 5 25 16.5 16.5 16.0 1 +1809 5 26 16.6 16.6 16.1 1 +1809 5 27 17.9 17.9 17.4 1 +1809 5 28 16.1 16.1 15.5 1 +1809 5 29 13.1 13.1 12.5 1 +1809 5 30 11.3 11.3 10.7 1 +1809 5 31 9.9 9.9 9.3 1 +1809 6 1 11.0 11.0 10.3 1 +1809 6 2 12.9 12.9 12.2 1 +1809 6 3 14.1 14.1 13.4 1 +1809 6 4 13.5 13.5 12.8 1 +1809 6 5 12.4 12.4 11.7 1 +1809 6 6 13.3 13.3 12.6 1 +1809 6 7 13.1 13.1 12.4 1 +1809 6 8 16.1 16.1 15.4 1 +1809 6 9 16.6 16.6 15.9 1 +1809 6 10 11.3 11.3 10.6 1 +1809 6 11 12.8 12.8 12.1 1 +1809 6 12 13.4 13.4 12.7 1 +1809 6 13 13.8 13.8 13.1 1 +1809 6 14 16.8 16.8 16.1 1 +1809 6 15 16.4 16.4 15.7 1 +1809 6 16 13.7 13.7 13.0 1 +1809 6 17 13.0 13.0 12.3 1 +1809 6 18 9.3 9.3 8.6 1 +1809 6 19 10.0 10.0 9.3 1 +1809 6 20 13.3 13.3 12.6 1 +1809 6 21 10.0 10.0 9.3 1 +1809 6 22 13.1 13.1 12.4 1 +1809 6 23 17.8 17.8 17.1 1 +1809 6 24 18.1 18.1 17.4 1 +1809 6 25 10.3 10.3 9.6 1 +1809 6 26 14.6 14.6 13.9 1 +1809 6 27 14.9 14.9 14.2 1 +1809 6 28 18.5 18.5 17.8 1 +1809 6 29 20.8 20.8 20.1 1 +1809 6 30 19.5 19.5 18.8 1 +1809 7 1 18.1 18.1 17.4 1 +1809 7 2 17.8 17.8 17.1 1 +1809 7 3 18.3 18.3 17.6 1 +1809 7 4 19.2 19.2 18.5 1 +1809 7 5 17.8 17.8 17.1 1 +1809 7 6 22.1 22.1 21.4 1 +1809 7 7 21.7 21.7 21.0 1 +1809 7 8 19.8 19.8 19.1 1 +1809 7 9 18.8 18.8 18.1 1 +1809 7 10 18.8 18.8 18.1 1 +1809 7 11 20.5 20.5 19.8 1 +1809 7 12 21.4 21.4 20.7 1 +1809 7 13 15.3 15.3 14.6 1 +1809 7 14 9.7 9.7 9.0 1 +1809 7 15 14.1 14.1 13.4 1 +1809 7 16 10.8 10.8 10.1 1 +1809 7 17 12.3 12.3 11.6 1 +1809 7 18 10.8 10.8 10.1 1 +1809 7 19 14.8 14.8 14.1 1 +1809 7 20 14.7 14.7 14.0 1 +1809 7 21 17.4 17.4 16.7 1 +1809 7 22 19.4 19.4 18.7 1 +1809 7 23 20.5 20.5 19.8 1 +1809 7 24 19.0 19.0 18.3 1 +1809 7 25 16.5 16.5 15.8 1 +1809 7 26 17.5 17.5 16.8 1 +1809 7 27 19.1 19.1 18.4 1 +1809 7 28 20.4 20.4 19.7 1 +1809 7 29 19.1 19.1 18.4 1 +1809 7 30 18.3 18.3 17.6 1 +1809 7 31 19.2 19.2 18.5 1 +1809 8 1 16.5 16.5 15.9 1 +1809 8 2 17.7 17.7 17.1 1 +1809 8 3 19.3 19.3 18.7 1 +1809 8 4 16.9 16.9 16.3 1 +1809 8 5 17.3 17.3 16.8 1 +1809 8 6 18.6 18.6 18.1 1 +1809 8 7 17.5 17.5 17.0 1 +1809 8 8 17.3 17.3 16.8 1 +1809 8 9 17.0 17.0 16.5 1 +1809 8 10 17.7 17.7 17.3 1 +1809 8 11 17.4 17.4 17.0 1 +1809 8 12 18.1 18.1 17.7 1 +1809 8 13 19.1 19.1 18.7 1 +1809 8 14 19.4 19.4 19.1 1 +1809 8 15 19.5 19.5 19.2 1 +1809 8 16 19.3 19.3 19.0 1 +1809 8 17 18.3 18.3 18.0 1 +1809 8 18 18.8 18.8 18.5 1 +1809 8 19 19.8 19.8 19.6 1 +1809 8 20 17.2 17.2 17.0 1 +1809 8 21 17.5 17.5 17.3 1 +1809 8 22 18.8 18.8 18.6 1 +1809 8 23 18.4 18.4 18.3 1 +1809 8 24 19.1 19.1 19.0 1 +1809 8 25 19.7 19.7 19.6 1 +1809 8 26 18.6 18.6 18.5 1 +1809 8 27 18.9 18.9 18.8 1 +1809 8 28 18.7 18.7 18.7 1 +1809 8 29 17.8 17.8 17.8 1 +1809 8 30 17.8 17.8 17.8 1 +1809 8 31 17.5 17.5 17.5 1 +1809 9 1 18.5 18.5 18.5 1 +1809 9 2 19.2 19.2 19.2 1 +1809 9 3 19.5 19.5 19.5 1 +1809 9 4 16.5 16.5 16.5 1 +1809 9 5 15.8 15.8 15.8 1 +1809 9 6 18.5 18.5 18.5 1 +1809 9 7 19.5 19.5 19.5 1 +1809 9 8 18.1 18.1 18.1 1 +1809 9 9 18.3 18.3 18.3 1 +1809 9 10 17.1 17.1 17.1 1 +1809 9 11 14.9 14.9 14.9 1 +1809 9 12 9.6 9.6 9.6 1 +1809 9 13 7.6 7.6 7.6 1 +1809 9 14 9.4 9.4 9.4 1 +1809 9 15 10.6 10.6 10.6 1 +1809 9 16 12.4 12.4 12.4 1 +1809 9 17 11.9 11.9 11.9 1 +1809 9 18 11.6 11.6 11.6 1 +1809 9 19 11.6 11.6 11.6 1 +1809 9 20 9.7 9.7 9.7 1 +1809 9 21 9.4 9.4 9.4 1 +1809 9 22 10.7 10.7 10.7 1 +1809 9 23 14.4 14.4 14.4 1 +1809 9 24 11.7 11.7 11.7 1 +1809 9 25 8.2 8.2 8.2 1 +1809 9 26 8.3 8.3 8.3 1 +1809 9 27 8.8 8.8 8.8 1 +1809 9 28 9.7 9.7 9.7 1 +1809 9 29 8.2 8.2 8.2 1 +1809 9 30 8.5 8.5 8.5 1 +1809 10 1 6.6 6.6 6.6 1 +1809 10 2 8.6 8.6 8.6 1 +1809 10 3 10.3 10.3 10.3 1 +1809 10 4 14.0 14.0 14.0 1 +1809 10 5 8.4 8.4 8.4 1 +1809 10 6 5.4 5.4 5.4 1 +1809 10 7 2.4 2.4 2.4 1 +1809 10 8 1.8 1.8 1.8 1 +1809 10 9 1.4 1.4 1.4 1 +1809 10 10 1.6 1.6 1.6 1 +1809 10 11 4.3 4.3 4.3 1 +1809 10 12 5.9 5.9 5.9 1 +1809 10 13 5.2 5.2 5.2 1 +1809 10 14 5.5 5.5 5.5 1 +1809 10 15 5.4 5.4 5.4 1 +1809 10 16 3.7 3.7 3.7 1 +1809 10 17 5.2 5.2 5.2 1 +1809 10 18 6.1 6.1 6.1 1 +1809 10 19 9.6 9.6 9.6 1 +1809 10 20 8.0 8.0 8.0 1 +1809 10 21 3.7 3.7 3.7 1 +1809 10 22 6.7 6.7 6.7 1 +1809 10 23 7.2 7.2 7.2 1 +1809 10 24 7.2 7.2 7.2 1 +1809 10 25 5.1 5.1 5.1 1 +1809 10 26 5.2 5.2 5.2 1 +1809 10 27 5.9 5.9 5.9 1 +1809 10 28 6.2 6.2 6.2 1 +1809 10 29 4.8 4.8 4.8 1 +1809 10 30 9.4 9.4 9.4 1 +1809 10 31 8.7 8.7 8.7 1 +1809 11 1 3.2 3.2 3.2 1 +1809 11 2 0.7 0.7 0.7 1 +1809 11 3 0.2 0.2 0.2 1 +1809 11 4 1.7 1.7 1.7 1 +1809 11 5 3.4 3.4 3.4 1 +1809 11 6 4.7 4.7 4.7 1 +1809 11 7 4.9 4.9 4.9 1 +1809 11 8 4.9 4.9 4.9 1 +1809 11 9 8.4 8.4 8.4 1 +1809 11 10 6.0 6.0 6.0 1 +1809 11 11 7.4 7.4 7.4 1 +1809 11 12 4.5 4.5 4.5 1 +1809 11 13 1.9 1.9 1.9 1 +1809 11 14 4.4 4.4 4.4 1 +1809 11 15 -1.8 -1.8 -1.8 1 +1809 11 16 -5.1 -5.1 -5.1 1 +1809 11 17 -8.3 -8.3 -8.3 1 +1809 11 18 -5.8 -5.8 -5.8 1 +1809 11 19 -8.5 -8.5 -8.5 1 +1809 11 20 -2.8 -2.8 -2.8 1 +1809 11 21 -3.8 -3.8 -3.8 1 +1809 11 22 -6.9 -6.9 -6.9 1 +1809 11 23 -12.6 -12.6 -12.6 1 +1809 11 24 -5.2 -5.2 -5.2 1 +1809 11 25 -5.8 -5.8 -5.8 1 +1809 11 26 -0.6 -0.6 -0.6 1 +1809 11 27 -0.4 -0.4 -0.4 1 +1809 11 28 0.6 0.6 0.6 1 +1809 11 29 1.1 1.1 1.1 1 +1809 11 30 -0.1 -0.1 -0.1 1 +1809 12 1 0.6 0.6 0.6 1 +1809 12 2 1.9 1.9 1.9 1 +1809 12 3 2.4 2.4 2.4 1 +1809 12 4 2.1 2.1 2.1 1 +1809 12 5 1.7 1.7 1.7 1 +1809 12 6 1.2 1.2 1.2 1 +1809 12 7 1.9 1.9 1.9 1 +1809 12 8 2.3 2.3 2.3 1 +1809 12 9 2.1 2.1 2.1 1 +1809 12 10 1.8 1.8 1.8 1 +1809 12 11 3.6 3.6 3.6 1 +1809 12 12 2.1 2.1 2.1 1 +1809 12 13 2.2 2.2 2.2 1 +1809 12 14 1.9 1.9 1.9 1 +1809 12 15 1.9 1.9 1.9 1 +1809 12 16 0.6 0.6 0.6 1 +1809 12 17 2.4 2.4 2.4 1 +1809 12 18 3.1 3.1 3.1 1 +1809 12 19 2.9 2.9 2.9 1 +1809 12 20 3.4 3.4 3.4 1 +1809 12 21 3.1 3.1 3.1 1 +1809 12 22 3.3 3.3 3.3 1 +1809 12 23 1.6 1.6 1.6 1 +1809 12 24 2.4 2.4 2.4 1 +1809 12 25 0.9 0.9 0.9 1 +1809 12 26 1.8 1.8 1.8 1 +1809 12 27 1.6 1.6 1.6 1 +1809 12 28 1.3 1.3 1.3 1 +1809 12 29 1.3 1.3 1.3 1 +1809 12 30 0.8 0.8 0.8 1 +1809 12 31 -1.3 -1.3 -1.3 1 +1810 1 1 -2.3 -2.3 -2.3 1 +1810 1 2 -2.4 -2.4 -2.4 1 +1810 1 3 3.2 3.2 3.2 1 +1810 1 4 0.9 0.9 0.9 1 +1810 1 5 4.2 4.2 4.2 1 +1810 1 6 3.9 3.9 3.9 1 +1810 1 7 3.1 3.1 3.1 1 +1810 1 8 0.5 0.5 0.5 1 +1810 1 9 -1.6 -1.6 -1.6 1 +1810 1 10 -2.1 -2.1 -2.1 1 +1810 1 11 -3.1 -3.1 -3.1 1 +1810 1 12 -7.1 -7.1 -7.1 1 +1810 1 13 -8.9 -8.9 -8.9 1 +1810 1 14 -9.4 -9.4 -9.4 1 +1810 1 15 -8.3 -8.3 -8.3 1 +1810 1 16 -5.5 -5.5 -5.5 1 +1810 1 17 -0.6 -0.6 -0.6 1 +1810 1 18 -6.1 -6.1 -6.1 1 +1810 1 19 -4.5 -4.5 -4.5 1 +1810 1 20 -3.6 -3.6 -3.6 1 +1810 1 21 -2.6 -2.6 -2.6 1 +1810 1 22 -3.5 -3.5 -3.5 1 +1810 1 23 -4.1 -4.1 -4.1 1 +1810 1 24 -1.6 -1.6 -1.6 1 +1810 1 25 2.2 2.2 2.2 1 +1810 1 26 -1.2 -1.2 -1.2 1 +1810 1 27 1.3 1.3 1.3 1 +1810 1 28 -1.0 -1.0 -1.0 1 +1810 1 29 -1.2 -1.2 -1.2 1 +1810 1 30 -2.5 -2.5 -2.5 1 +1810 1 31 -1.2 -1.2 -1.2 1 +1810 2 1 -0.1 -0.1 -0.1 1 +1810 2 2 2.5 2.5 2.5 1 +1810 2 3 2.0 2.0 2.0 1 +1810 2 4 1.5 1.5 1.5 1 +1810 2 5 -4.2 -4.2 -4.2 1 +1810 2 6 4.2 4.2 4.2 1 +1810 2 7 1.8 1.8 1.8 1 +1810 2 8 -2.5 -2.5 -2.5 1 +1810 2 9 2.4 2.4 2.4 1 +1810 2 10 2.8 2.8 2.8 1 +1810 2 11 -1.2 -1.2 -1.2 1 +1810 2 12 -5.2 -5.2 -5.2 1 +1810 2 13 -5.1 -5.1 -5.1 1 +1810 2 14 -10.6 -10.6 -10.6 1 +1810 2 15 -13.2 -13.2 -13.2 1 +1810 2 16 -8.8 -8.8 -8.8 1 +1810 2 17 -9.7 -9.7 -9.7 1 +1810 2 18 -13.1 -13.1 -13.1 1 +1810 2 19 -14.0 -14.0 -14.0 1 +1810 2 20 -15.5 -15.5 -15.5 1 +1810 2 21 -11.2 -11.2 -11.2 1 +1810 2 22 -3.3 -3.3 -3.3 1 +1810 2 23 -2.2 -2.2 -2.2 1 +1810 2 24 -1.4 -1.4 -1.4 1 +1810 2 25 -0.1 -0.1 -0.1 1 +1810 2 26 -0.1 -0.1 -0.1 1 +1810 2 27 -0.8 -0.8 -0.8 1 +1810 2 28 -2.6 -2.6 -2.6 1 +1810 3 1 -3.8 -3.8 -3.8 1 +1810 3 2 -7.8 -7.8 -7.8 1 +1810 3 3 -3.6 -3.6 -3.6 1 +1810 3 4 -2.8 -2.8 -2.8 1 +1810 3 5 -2.3 -2.3 -2.3 1 +1810 3 6 -5.8 -5.8 -5.8 1 +1810 3 7 -6.8 -6.8 -6.8 1 +1810 3 8 -1.7 -1.7 -1.7 1 +1810 3 9 1.1 1.1 1.1 1 +1810 3 10 0.3 0.3 0.3 1 +1810 3 11 -4.7 -4.7 -4.7 1 +1810 3 12 -5.2 -5.2 -5.2 1 +1810 3 13 -1.4 -1.4 -1.4 1 +1810 3 14 0.0 0.0 0.0 1 +1810 3 15 -5.9 -5.9 -5.9 1 +1810 3 16 -5.9 -5.9 -5.9 1 +1810 3 17 -8.0 -8.0 -8.0 1 +1810 3 18 -5.5 -5.5 -5.5 1 +1810 3 19 -0.7 -0.7 -0.7 1 +1810 3 20 -6.3 -6.3 -6.3 1 +1810 3 21 -7.7 -7.7 -7.7 1 +1810 3 22 -9.7 -9.7 -9.7 1 +1810 3 23 -7.7 -7.7 -7.7 1 +1810 3 24 -6.7 -6.7 -6.7 1 +1810 3 25 -10.6 -10.6 -10.6 1 +1810 3 26 -4.8 -4.8 -4.8 1 +1810 3 27 -2.3 -2.3 -2.3 1 +1810 3 28 -1.3 -1.3 -1.3 1 +1810 3 29 -6.1 -6.1 -6.1 1 +1810 3 30 -1.9 -1.9 -1.9 1 +1810 3 31 -4.3 -4.3 -4.3 1 +1810 4 1 -6.9 -6.9 -6.9 1 +1810 4 2 -4.7 -4.7 -4.7 1 +1810 4 3 -1.9 -1.9 -1.9 1 +1810 4 4 -4.0 -4.0 -4.0 1 +1810 4 5 -4.2 -4.2 -4.2 1 +1810 4 6 1.6 1.6 1.6 1 +1810 4 7 -1.9 -1.9 -1.9 1 +1810 4 8 -0.8 -0.8 -0.8 1 +1810 4 9 -2.5 -2.5 -2.5 1 +1810 4 10 -2.5 -2.5 -2.5 1 +1810 4 11 -6.0 -6.0 -6.0 1 +1810 4 12 -7.1 -7.1 -7.1 1 +1810 4 13 -6.1 -6.1 -6.1 1 +1810 4 14 -1.1 -1.1 -1.1 1 +1810 4 15 1.5 1.5 1.5 1 +1810 4 16 -1.5 -1.5 -1.5 1 +1810 4 17 -0.7 -0.7 -0.7 1 +1810 4 18 -1.2 -1.2 -1.2 1 +1810 4 19 1.1 1.1 1.1 1 +1810 4 20 0.5 0.5 0.5 1 +1810 4 21 3.2 3.2 3.2 1 +1810 4 22 4.9 4.9 4.9 1 +1810 4 23 4.5 4.5 4.5 1 +1810 4 24 2.0 2.0 2.0 1 +1810 4 25 -0.7 -0.7 -0.7 1 +1810 4 26 7.0 7.0 7.0 1 +1810 4 27 8.7 8.7 8.7 1 +1810 4 28 10.4 10.4 10.4 1 +1810 4 29 10.9 10.9 10.9 1 +1810 4 30 6.0 6.0 6.0 1 +1810 5 1 2.8 2.8 2.8 1 +1810 5 2 3.9 3.9 3.9 1 +1810 5 3 6.3 6.3 6.3 1 +1810 5 4 5.6 5.6 5.6 1 +1810 5 5 3.2 3.2 3.1 1 +1810 5 6 3.2 3.2 3.1 1 +1810 5 7 4.7 4.7 4.6 1 +1810 5 8 2.5 2.5 2.4 1 +1810 5 9 3.3 3.3 3.2 1 +1810 5 10 4.4 4.4 4.2 1 +1810 5 11 4.9 4.9 4.7 1 +1810 5 12 5.4 5.4 5.2 1 +1810 5 13 9.1 9.1 8.9 1 +1810 5 14 5.2 5.2 4.9 1 +1810 5 15 3.3 3.3 3.0 1 +1810 5 16 4.0 4.0 3.7 1 +1810 5 17 4.1 4.1 3.8 1 +1810 5 18 6.6 6.6 6.3 1 +1810 5 19 8.9 8.9 8.5 1 +1810 5 20 10.4 10.4 10.0 1 +1810 5 21 12.8 12.8 12.4 1 +1810 5 22 11.1 11.1 10.7 1 +1810 5 23 13.2 13.2 12.7 1 +1810 5 24 8.8 8.8 8.3 1 +1810 5 25 10.6 10.6 10.1 1 +1810 5 26 8.8 8.8 8.3 1 +1810 5 27 12.5 12.5 12.0 1 +1810 5 28 8.4 8.4 7.8 1 +1810 5 29 11.5 11.5 10.9 1 +1810 5 30 11.5 11.5 10.9 1 +1810 5 31 10.5 10.5 9.9 1 +1810 6 1 11.5 11.5 10.8 1 +1810 6 2 12.7 12.7 12.0 1 +1810 6 3 12.5 12.5 11.8 1 +1810 6 4 15.6 15.6 14.9 1 +1810 6 5 13.2 13.2 12.5 1 +1810 6 6 14.3 14.3 13.6 1 +1810 6 7 11.3 11.3 10.6 1 +1810 6 8 7.5 7.5 6.8 1 +1810 6 9 6.8 6.8 6.1 1 +1810 6 10 7.3 7.3 6.6 1 +1810 6 11 9.2 9.2 8.5 1 +1810 6 12 13.5 13.5 12.8 1 +1810 6 13 14.8 14.8 14.1 1 +1810 6 14 15.2 15.2 14.5 1 +1810 6 15 14.8 14.8 14.1 1 +1810 6 16 11.3 11.3 10.6 1 +1810 6 17 9.4 9.4 8.7 1 +1810 6 18 11.8 11.8 11.1 1 +1810 6 19 11.2 11.2 10.5 1 +1810 6 20 9.5 9.5 8.8 1 +1810 6 21 8.3 8.3 7.6 1 +1810 6 22 13.0 13.0 12.3 1 +1810 6 23 13.5 13.5 12.8 1 +1810 6 24 17.5 17.5 16.8 1 +1810 6 25 19.2 19.2 18.5 1 +1810 6 26 20.0 20.0 19.3 1 +1810 6 27 22.7 22.7 22.0 1 +1810 6 28 22.0 22.0 21.3 1 +1810 6 29 20.8 20.8 20.1 1 +1810 6 30 21.0 21.0 20.3 1 +1810 7 1 19.5 19.5 18.8 1 +1810 7 2 17.8 17.8 17.1 1 +1810 7 3 18.7 18.7 18.0 1 +1810 7 4 14.7 14.7 14.0 1 +1810 7 5 15.3 15.3 14.6 1 +1810 7 6 16.7 16.7 16.0 1 +1810 7 7 17.3 17.3 16.6 1 +1810 7 8 19.8 19.8 19.1 1 +1810 7 9 16.8 16.8 16.1 1 +1810 7 10 13.2 13.2 12.5 1 +1810 7 11 19.0 19.0 18.3 1 +1810 7 12 22.2 22.2 21.5 1 +1810 7 13 23.0 23.0 22.3 1 +1810 7 14 20.7 20.7 20.0 1 +1810 7 15 20.8 20.8 20.1 1 +1810 7 16 20.2 20.2 19.5 1 +1810 7 17 16.8 16.8 16.1 1 +1810 7 18 18.2 18.2 17.5 1 +1810 7 19 17.5 17.5 16.8 1 +1810 7 20 14.0 14.0 13.3 1 +1810 7 21 13.2 13.2 12.5 1 +1810 7 22 18.4 18.4 17.7 1 +1810 7 23 16.4 16.4 15.7 1 +1810 7 24 15.8 15.8 15.1 1 +1810 7 25 17.1 17.1 16.4 1 +1810 7 26 16.5 16.5 15.8 1 +1810 7 27 20.0 20.0 19.3 1 +1810 7 28 19.3 19.3 18.6 1 +1810 7 29 19.8 19.8 19.1 1 +1810 7 30 18.5 18.5 17.8 1 +1810 7 31 19.2 19.2 18.5 1 +1810 8 1 16.0 16.0 15.4 1 +1810 8 2 17.3 17.3 16.7 1 +1810 8 3 14.5 14.5 13.9 1 +1810 8 4 14.6 14.6 14.0 1 +1810 8 5 15.1 15.1 14.6 1 +1810 8 6 17.5 17.5 17.0 1 +1810 8 7 16.0 16.0 15.5 1 +1810 8 8 18.6 18.6 18.1 1 +1810 8 9 16.1 16.1 15.6 1 +1810 8 10 16.9 16.9 16.5 1 +1810 8 11 17.4 17.4 17.0 1 +1810 8 12 18.9 18.9 18.5 1 +1810 8 13 17.4 17.4 17.0 1 +1810 8 14 17.6 17.6 17.3 1 +1810 8 15 17.3 17.3 17.0 1 +1810 8 16 16.7 16.7 16.4 1 +1810 8 17 16.7 16.7 16.4 1 +1810 8 18 17.3 17.3 17.0 1 +1810 8 19 15.5 15.5 15.3 1 +1810 8 20 15.9 15.9 15.7 1 +1810 8 21 16.2 16.2 16.0 1 +1810 8 22 17.3 17.3 17.1 1 +1810 8 23 19.6 19.6 19.5 1 +1810 8 24 18.8 18.8 18.7 1 +1810 8 25 20.5 20.5 20.4 1 +1810 8 26 19.9 19.9 19.8 1 +1810 8 27 18.9 18.9 18.8 1 +1810 8 28 18.9 18.9 18.9 1 +1810 8 29 18.3 18.3 18.3 1 +1810 8 30 18.0 18.0 18.0 1 +1810 8 31 12.7 12.7 12.7 1 +1810 9 1 12.9 12.9 12.9 1 +1810 9 2 18.2 18.2 18.2 1 +1810 9 3 21.2 21.2 21.2 1 +1810 9 4 16.2 16.2 16.2 1 +1810 9 5 13.2 13.2 13.2 1 +1810 9 6 13.5 13.5 13.5 1 +1810 9 7 12.5 12.5 12.5 1 +1810 9 8 12.1 12.1 12.1 1 +1810 9 9 13.5 13.5 13.5 1 +1810 9 10 12.8 12.8 12.8 1 +1810 9 11 14.3 14.3 14.3 1 +1810 9 12 12.6 12.6 12.6 1 +1810 9 13 12.3 12.3 12.3 1 +1810 9 14 12.6 12.6 12.6 1 +1810 9 15 9.3 9.3 9.3 1 +1810 9 16 9.9 9.9 9.9 1 +1810 9 17 12.6 12.6 12.6 1 +1810 9 18 13.6 13.6 13.6 1 +1810 9 19 11.3 11.3 11.3 1 +1810 9 20 13.1 13.1 13.1 1 +1810 9 21 14.1 14.1 14.1 1 +1810 9 22 13.4 13.4 13.4 1 +1810 9 23 14.7 14.7 14.7 1 +1810 9 24 13.7 13.7 13.7 1 +1810 9 25 11.7 11.7 11.7 1 +1810 9 26 10.7 10.7 10.7 1 +1810 9 27 11.7 11.7 11.7 1 +1810 9 28 12.2 12.2 12.2 1 +1810 9 29 11.0 11.0 11.0 1 +1810 9 30 10.2 10.2 10.2 1 +1810 10 1 9.3 9.3 9.3 1 +1810 10 2 8.0 8.0 8.0 1 +1810 10 3 12.1 12.1 12.1 1 +1810 10 4 12.3 12.3 12.3 1 +1810 10 5 13.0 13.0 13.0 1 +1810 10 6 10.4 10.4 10.4 1 +1810 10 7 9.9 9.9 9.9 1 +1810 10 8 4.6 4.6 4.6 1 +1810 10 9 2.6 2.6 2.6 1 +1810 10 10 6.6 6.6 6.6 1 +1810 10 11 6.8 6.8 6.8 1 +1810 10 12 6.2 6.2 6.2 1 +1810 10 13 6.9 6.9 6.9 1 +1810 10 14 2.1 2.1 2.1 1 +1810 10 15 3.7 3.7 3.7 1 +1810 10 16 5.2 5.2 5.2 1 +1810 10 17 6.9 6.9 6.9 1 +1810 10 18 3.7 3.7 3.7 1 +1810 10 19 6.6 6.6 6.6 1 +1810 10 20 5.0 5.0 5.0 1 +1810 10 21 5.1 5.1 5.1 1 +1810 10 22 2.1 2.1 2.1 1 +1810 10 23 2.2 2.2 2.2 1 +1810 10 24 -1.0 -1.0 -1.0 1 +1810 10 25 -2.0 -2.0 -2.0 1 +1810 10 26 2.0 2.0 2.0 1 +1810 10 27 5.0 5.0 5.0 1 +1810 10 28 4.6 4.6 4.6 1 +1810 10 29 4.7 4.7 4.7 1 +1810 10 30 0.5 0.5 0.5 1 +1810 10 31 -1.0 -1.0 -1.0 1 +1810 11 1 0.8 0.8 0.8 1 +1810 11 2 -1.5 -1.5 -1.5 1 +1810 11 3 0.5 0.5 0.5 1 +1810 11 4 2.2 2.2 2.2 1 +1810 11 5 3.7 3.7 3.7 1 +1810 11 6 4.6 4.6 4.6 1 +1810 11 7 4.7 4.7 4.7 1 +1810 11 8 7.1 7.1 7.1 1 +1810 11 9 5.1 5.1 5.1 1 +1810 11 10 4.1 4.1 4.1 1 +1810 11 11 2.6 2.6 2.6 1 +1810 11 12 1.1 1.1 1.1 1 +1810 11 13 -2.8 -2.8 -2.8 1 +1810 11 14 -7.1 -7.1 -7.1 1 +1810 11 15 -0.6 -0.6 -0.6 1 +1810 11 16 1.2 1.2 1.2 1 +1810 11 17 1.2 1.2 1.2 1 +1810 11 18 0.6 0.6 0.6 1 +1810 11 19 -0.9 -0.9 -0.9 1 +1810 11 20 -3.4 -3.4 -3.4 1 +1810 11 21 -5.1 -5.1 -5.1 1 +1810 11 22 -2.6 -2.6 -2.6 1 +1810 11 23 0.3 0.3 0.3 1 +1810 11 24 2.6 2.6 2.6 1 +1810 11 25 -1.9 -1.9 -1.9 1 +1810 11 26 -2.7 -2.7 -2.7 1 +1810 11 27 -1.9 -1.9 -1.9 1 +1810 11 28 -0.8 -0.8 -0.8 1 +1810 11 29 2.8 2.8 2.8 1 +1810 11 30 4.6 4.6 4.6 1 +1810 12 1 4.1 4.1 4.1 1 +1810 12 2 2.9 2.9 2.9 1 +1810 12 3 -3.8 -3.8 -3.8 1 +1810 12 4 0.3 0.3 0.3 1 +1810 12 5 0.6 0.6 0.6 1 +1810 12 6 1.4 1.4 1.4 1 +1810 12 7 4.3 4.3 4.3 1 +1810 12 8 3.9 3.9 3.9 1 +1810 12 9 2.9 2.9 2.9 1 +1810 12 10 -2.3 -2.3 -2.3 1 +1810 12 11 -8.1 -8.1 -8.1 1 +1810 12 12 -7.4 -7.4 -7.4 1 +1810 12 13 -6.1 -6.1 -6.1 1 +1810 12 14 -8.6 -8.6 -8.6 1 +1810 12 15 -8.1 -8.1 -8.1 1 +1810 12 16 -4.9 -4.9 -4.9 1 +1810 12 17 -2.1 -2.1 -2.1 1 +1810 12 18 -5.4 -5.4 -5.4 1 +1810 12 19 0.3 0.3 0.3 1 +1810 12 20 -9.4 -9.4 -9.4 1 +1810 12 21 -6.8 -6.8 -6.8 1 +1810 12 22 -1.9 -1.9 -1.9 1 +1810 12 23 -8.4 -8.4 -8.4 1 +1810 12 24 2.4 2.4 2.4 1 +1810 12 25 2.1 2.1 2.1 1 +1810 12 26 0.9 0.9 0.9 1 +1810 12 27 -1.9 -1.9 -1.9 1 +1810 12 28 -6.3 -6.3 -6.3 1 +1810 12 29 -10.4 -10.4 -10.4 1 +1810 12 30 -8.4 -8.4 -8.4 1 +1810 12 31 -7.1 -7.1 -7.1 1 +1811 1 1 -1.9 -1.9 -1.9 1 +1811 1 2 -3.9 -3.9 -3.9 1 +1811 1 3 -8.1 -8.1 -8.1 1 +1811 1 4 -11.1 -11.1 -11.1 1 +1811 1 5 -12.5 -12.5 -12.5 1 +1811 1 6 -10.5 -10.5 -10.5 1 +1811 1 7 -10.8 -10.8 -10.8 1 +1811 1 8 -6.6 -6.6 -6.6 1 +1811 1 9 -11.5 -11.5 -11.5 1 +1811 1 10 -5.9 -5.9 -5.9 1 +1811 1 11 -2.6 -2.6 -2.6 1 +1811 1 12 -0.8 -0.8 -0.8 1 +1811 1 13 1.2 1.2 1.2 1 +1811 1 14 -0.3 -0.3 -0.3 1 +1811 1 15 1.6 1.6 1.6 1 +1811 1 16 0.8 0.8 0.8 1 +1811 1 17 0.5 0.5 0.5 1 +1811 1 18 1.0 1.0 1.0 1 +1811 1 19 -4.5 -4.5 -4.5 1 +1811 1 20 -2.0 -2.0 -2.0 1 +1811 1 21 -0.8 -0.8 -0.8 1 +1811 1 22 0.4 0.4 0.4 1 +1811 1 23 1.4 1.4 1.4 1 +1811 1 24 -2.0 -2.0 -2.0 1 +1811 1 25 -3.0 -3.0 -3.0 1 +1811 1 26 1.7 1.7 1.7 1 +1811 1 27 -5.7 -5.7 -5.7 1 +1811 1 28 -11.7 -11.7 -11.7 1 +1811 1 29 -9.8 -9.8 -9.8 1 +1811 1 30 -4.2 -4.2 -4.2 1 +1811 1 31 -5.3 -5.3 -5.3 1 +1811 2 1 -2.5 -2.5 -2.5 1 +1811 2 2 0.7 0.7 0.7 1 +1811 2 3 -0.8 -0.8 -0.8 1 +1811 2 4 1.4 1.4 1.4 1 +1811 2 5 1.3 1.3 1.3 1 +1811 2 6 2.5 2.5 2.5 1 +1811 2 7 1.9 1.9 1.9 1 +1811 2 8 2.5 2.5 2.5 1 +1811 2 9 2.5 2.5 2.5 1 +1811 2 10 -4.0 -4.0 -4.0 1 +1811 2 11 -3.7 -3.7 -3.7 1 +1811 2 12 -2.3 -2.3 -2.3 1 +1811 2 13 -6.0 -6.0 -6.0 1 +1811 2 14 -15.9 -15.9 -15.9 1 +1811 2 15 -12.7 -12.7 -12.7 1 +1811 2 16 -8.0 -8.0 -8.0 1 +1811 2 17 -7.8 -7.8 -7.8 1 +1811 2 18 -8.7 -8.7 -8.7 1 +1811 2 19 -4.0 -4.0 -4.0 1 +1811 2 20 -5.7 -5.7 -5.7 1 +1811 2 21 -3.7 -3.7 -3.7 1 +1811 2 22 -4.7 -4.7 -4.7 1 +1811 2 23 -3.4 -3.4 -3.4 1 +1811 2 24 -4.6 -4.6 -4.6 1 +1811 2 25 -4.6 -4.6 -4.6 1 +1811 2 26 -5.0 -5.0 -5.0 1 +1811 2 27 -3.9 -3.9 -3.9 1 +1811 2 28 -1.6 -1.6 -1.6 1 +1811 3 1 0.6 0.6 0.6 1 +1811 3 2 2.0 2.0 2.0 1 +1811 3 3 3.2 3.2 3.2 1 +1811 3 4 3.4 3.4 3.4 1 +1811 3 5 4.1 4.1 4.1 1 +1811 3 6 2.6 2.6 2.6 1 +1811 3 7 3.6 3.6 3.6 1 +1811 3 8 2.3 2.3 2.3 1 +1811 3 9 2.1 2.1 2.1 1 +1811 3 10 -2.6 -2.6 -2.6 1 +1811 3 11 7.6 7.6 7.6 1 +1811 3 12 4.8 4.8 4.8 1 +1811 3 13 -1.1 -1.1 -1.1 1 +1811 3 14 -1.6 -1.6 -1.6 1 +1811 3 15 4.3 4.3 4.3 1 +1811 3 16 4.1 4.1 4.1 1 +1811 3 17 4.3 4.3 4.3 1 +1811 3 18 5.0 5.0 5.0 1 +1811 3 19 4.3 4.3 4.3 1 +1811 3 20 2.5 2.5 2.5 1 +1811 3 21 4.5 4.5 4.5 1 +1811 3 22 3.7 3.7 3.7 1 +1811 3 23 1.7 1.7 1.7 1 +1811 3 24 2.9 2.9 2.9 1 +1811 3 25 1.5 1.5 1.5 1 +1811 3 26 2.5 2.5 2.5 1 +1811 3 27 4.0 4.0 4.0 1 +1811 3 28 3.9 3.9 3.9 1 +1811 3 29 -3.6 -3.6 -3.6 1 +1811 3 30 -3.6 -3.6 -3.6 1 +1811 3 31 -4.1 -4.1 -4.1 1 +1811 4 1 -4.9 -4.9 -4.9 1 +1811 4 2 -4.6 -4.6 -4.6 1 +1811 4 3 -8.2 -8.2 -8.2 1 +1811 4 4 -2.2 -2.2 -2.2 1 +1811 4 5 3.2 3.2 3.2 1 +1811 4 6 2.9 2.9 2.9 1 +1811 4 7 3.6 3.6 3.6 1 +1811 4 8 4.2 4.2 4.2 1 +1811 4 9 -0.7 -0.7 -0.7 1 +1811 4 10 2.8 2.8 2.8 1 +1811 4 11 2.6 2.6 2.6 1 +1811 4 12 0.5 0.5 0.5 1 +1811 4 13 1.5 1.5 1.5 1 +1811 4 14 3.2 3.2 3.2 1 +1811 4 15 1.3 1.3 1.3 1 +1811 4 16 -0.1 -0.1 -0.1 1 +1811 4 17 0.4 0.4 0.4 1 +1811 4 18 -0.1 -0.1 -0.1 1 +1811 4 19 0.9 0.9 0.9 1 +1811 4 20 1.3 1.3 1.3 1 +1811 4 21 5.1 5.1 5.1 1 +1811 4 22 6.2 6.2 6.2 1 +1811 4 23 7.3 7.3 7.3 1 +1811 4 24 5.0 5.0 5.0 1 +1811 4 25 6.3 6.3 6.3 1 +1811 4 26 7.7 7.7 7.7 1 +1811 4 27 4.2 4.2 4.2 1 +1811 4 28 6.3 6.3 6.3 1 +1811 4 29 7.3 7.3 7.3 1 +1811 4 30 6.8 6.8 6.8 1 +1811 5 1 9.7 9.7 9.7 1 +1811 5 2 6.9 6.9 6.9 1 +1811 5 3 9.2 9.2 9.2 1 +1811 5 4 8.7 8.7 8.7 1 +1811 5 5 10.8 10.8 10.7 1 +1811 5 6 6.9 6.9 6.8 1 +1811 5 7 4.3 4.3 4.2 1 +1811 5 8 4.6 4.6 4.5 1 +1811 5 9 4.9 4.9 4.8 1 +1811 5 10 5.4 5.4 5.2 1 +1811 5 11 5.3 5.3 5.1 1 +1811 5 12 12.3 12.3 12.1 1 +1811 5 13 9.8 9.8 9.6 1 +1811 5 14 16.1 16.1 15.8 1 +1811 5 15 18.1 18.1 17.8 1 +1811 5 16 14.8 14.8 14.5 1 +1811 5 17 13.1 13.1 12.8 1 +1811 5 18 17.5 17.5 17.2 1 +1811 5 19 19.7 19.7 19.3 1 +1811 5 20 16.1 16.1 15.7 1 +1811 5 21 13.8 13.8 13.4 1 +1811 5 22 19.8 19.8 19.4 1 +1811 5 23 19.5 19.5 19.0 1 +1811 5 24 18.8 18.8 18.3 1 +1811 5 25 20.2 20.2 19.7 1 +1811 5 26 18.8 18.8 18.3 1 +1811 5 27 17.2 17.2 16.7 1 +1811 5 28 17.0 17.0 16.4 1 +1811 5 29 12.8 12.8 12.2 1 +1811 5 30 11.7 11.7 11.1 1 +1811 5 31 5.2 5.2 4.6 1 +1811 6 1 5.0 5.0 4.3 1 +1811 6 2 10.1 10.1 9.4 1 +1811 6 3 15.0 15.0 14.3 1 +1811 6 4 14.9 14.9 14.2 1 +1811 6 5 16.8 16.8 16.1 1 +1811 6 6 17.8 17.8 17.1 1 +1811 6 7 16.8 16.8 16.1 1 +1811 6 8 16.8 16.8 16.1 1 +1811 6 9 16.8 16.8 16.1 1 +1811 6 10 16.1 16.1 15.4 1 +1811 6 11 18.8 18.8 18.1 1 +1811 6 12 19.5 19.5 18.8 1 +1811 6 13 16.8 16.8 16.1 1 +1811 6 14 17.5 17.5 16.8 1 +1811 6 15 17.5 17.5 16.8 1 +1811 6 16 18.2 18.2 17.5 1 +1811 6 17 17.8 17.8 17.1 1 +1811 6 18 15.0 15.0 14.3 1 +1811 6 19 17.1 17.1 16.4 1 +1811 6 20 14.9 14.9 14.2 1 +1811 6 21 16.2 16.2 15.5 1 +1811 6 22 12.7 12.7 12.0 1 +1811 6 23 17.1 17.1 16.4 1 +1811 6 24 18.5 18.5 17.8 1 +1811 6 25 18.8 18.8 18.1 1 +1811 6 26 19.8 19.8 19.1 1 +1811 6 27 23.1 23.1 22.4 1 +1811 6 28 22.6 22.6 21.9 1 +1811 6 29 24.1 24.1 23.4 1 +1811 6 30 25.7 25.7 25.0 1 +1811 7 1 24.8 24.8 24.1 1 +1811 7 2 23.3 23.3 22.6 1 +1811 7 3 27.1 27.1 26.4 1 +1811 7 4 21.4 21.4 20.7 1 +1811 7 5 21.8 21.8 21.1 1 +1811 7 6 21.8 21.8 21.1 1 +1811 7 7 20.1 20.1 19.4 1 +1811 7 8 16.8 16.8 16.1 1 +1811 7 9 13.8 13.8 13.1 1 +1811 7 10 15.7 15.7 15.0 1 +1811 7 11 12.5 12.5 11.8 1 +1811 7 12 17.2 17.2 16.5 1 +1811 7 13 17.8 17.8 17.1 1 +1811 7 14 16.8 16.8 16.1 1 +1811 7 15 19.5 19.5 18.8 1 +1811 7 16 20.2 20.2 19.5 1 +1811 7 17 21.5 21.5 20.8 1 +1811 7 18 21.5 21.5 20.8 1 +1811 7 19 22.3 22.3 21.6 1 +1811 7 20 24.5 24.5 23.8 1 +1811 7 21 26.6 26.6 25.9 1 +1811 7 22 24.5 24.5 23.8 1 +1811 7 23 22.1 22.1 21.4 1 +1811 7 24 22.5 22.5 21.8 1 +1811 7 25 19.1 19.1 18.4 1 +1811 7 26 18.9 18.9 18.2 1 +1811 7 27 16.9 16.9 16.2 1 +1811 7 28 16.1 16.1 15.4 1 +1811 7 29 17.7 17.7 17.0 1 +1811 7 30 18.7 18.7 18.0 1 +1811 7 31 16.7 16.7 16.0 1 +1811 8 1 19.5 19.5 18.9 1 +1811 8 2 19.5 19.5 18.9 1 +1811 8 3 18.1 18.1 17.5 1 +1811 8 4 19.3 19.3 18.7 1 +1811 8 5 18.0 18.0 17.5 1 +1811 8 6 19.8 19.8 19.3 1 +1811 8 7 18.1 18.1 17.6 1 +1811 8 8 16.3 16.3 15.8 1 +1811 8 9 14.0 14.0 13.5 1 +1811 8 10 16.0 16.0 15.6 1 +1811 8 11 12.6 12.6 12.2 1 +1811 8 12 14.8 14.8 14.4 1 +1811 8 13 13.9 13.9 13.5 1 +1811 8 14 14.9 14.9 14.6 1 +1811 8 15 13.6 13.6 13.3 1 +1811 8 16 14.5 14.5 14.2 1 +1811 8 17 14.9 14.9 14.6 1 +1811 8 18 16.4 16.4 16.1 1 +1811 8 19 17.4 17.4 17.2 1 +1811 8 20 18.0 18.0 17.8 1 +1811 8 21 16.0 16.0 15.8 1 +1811 8 22 16.3 16.3 16.1 1 +1811 8 23 13.3 13.3 13.2 1 +1811 8 24 14.9 14.9 14.8 1 +1811 8 25 15.6 15.6 15.5 1 +1811 8 26 15.0 15.0 14.9 1 +1811 8 27 16.3 16.3 16.2 1 +1811 8 28 15.7 15.7 15.7 1 +1811 8 29 15.5 15.5 15.5 1 +1811 8 30 15.5 15.5 15.5 1 +1811 8 31 15.4 15.4 15.4 1 +1811 9 1 14.2 14.2 14.2 1 +1811 9 2 11.8 11.8 11.8 1 +1811 9 3 10.0 10.0 10.0 1 +1811 9 4 10.7 10.7 10.7 1 +1811 9 5 13.2 13.2 13.2 1 +1811 9 6 14.2 14.2 14.2 1 +1811 9 7 15.9 15.9 15.9 1 +1811 9 8 15.0 15.0 15.0 1 +1811 9 9 14.5 14.5 14.5 1 +1811 9 10 14.8 14.8 14.8 1 +1811 9 11 15.3 15.3 15.3 1 +1811 9 12 12.3 12.3 12.3 1 +1811 9 13 10.8 10.8 10.8 1 +1811 9 14 11.0 11.0 11.0 1 +1811 9 15 7.8 7.8 7.8 1 +1811 9 16 7.8 7.8 7.8 1 +1811 9 17 7.1 7.1 7.1 1 +1811 9 18 10.6 10.6 10.6 1 +1811 9 19 12.4 12.4 12.4 1 +1811 9 20 11.2 11.2 11.2 1 +1811 9 21 11.1 11.1 11.1 1 +1811 9 22 12.0 12.0 12.0 1 +1811 9 23 11.2 11.2 11.2 1 +1811 9 24 11.7 11.7 11.7 1 +1811 9 25 12.1 12.1 12.1 1 +1811 9 26 11.0 11.0 11.0 1 +1811 9 27 10.5 10.5 10.5 1 +1811 9 28 10.2 10.2 10.2 1 +1811 9 29 11.0 11.0 11.0 1 +1811 9 30 10.2 10.2 10.2 1 +1811 10 1 9.6 9.6 9.6 1 +1811 10 2 9.0 9.0 9.0 1 +1811 10 3 5.0 5.0 5.0 1 +1811 10 4 5.6 5.6 5.6 1 +1811 10 5 7.3 7.3 7.3 1 +1811 10 6 8.6 8.6 8.6 1 +1811 10 7 9.0 9.0 9.0 1 +1811 10 8 8.6 8.6 8.6 1 +1811 10 9 5.6 5.6 5.6 1 +1811 10 10 1.4 1.4 1.4 1 +1811 10 11 3.6 3.6 3.6 1 +1811 10 12 6.4 6.4 6.4 1 +1811 10 13 4.6 4.6 4.6 1 +1811 10 14 4.3 4.3 4.3 1 +1811 10 15 4.1 4.1 4.1 1 +1811 10 16 5.1 5.1 5.1 1 +1811 10 17 5.7 5.7 5.7 1 +1811 10 18 5.9 5.9 5.9 1 +1811 10 19 9.9 9.9 9.9 1 +1811 10 20 8.0 8.0 8.0 1 +1811 10 21 8.7 8.7 8.7 1 +1811 10 22 7.9 7.9 7.9 1 +1811 10 23 10.2 10.2 10.2 1 +1811 10 24 8.9 8.9 8.9 1 +1811 10 25 7.2 7.2 7.2 1 +1811 10 26 0.9 0.9 0.9 1 +1811 10 27 0.6 0.6 0.6 1 +1811 10 28 0.1 0.1 0.1 1 +1811 10 29 -1.4 -1.4 -1.4 1 +1811 10 30 -3.4 -3.4 -3.4 1 +1811 10 31 -5.5 -5.5 -5.5 1 +1811 11 1 -2.0 -2.0 -2.0 1 +1811 11 2 1.9 1.9 1.9 1 +1811 11 3 6.4 6.4 6.4 1 +1811 11 4 4.7 4.7 4.7 1 +1811 11 5 7.9 7.9 7.9 1 +1811 11 6 4.5 4.5 4.5 1 +1811 11 7 4.1 4.1 4.1 1 +1811 11 8 0.2 0.2 0.2 1 +1811 11 9 -0.8 -0.8 -0.8 1 +1811 11 10 -2.2 -2.2 -2.2 1 +1811 11 11 0.4 0.4 0.4 1 +1811 11 12 2.2 2.2 2.2 1 +1811 11 13 0.9 0.9 0.9 1 +1811 11 14 3.7 3.7 3.7 1 +1811 11 15 4.4 4.4 4.4 1 +1811 11 16 3.5 3.5 3.5 1 +1811 11 17 2.2 2.2 2.2 1 +1811 11 18 -0.3 -0.3 -0.3 1 +1811 11 19 4.6 4.6 4.6 1 +1811 11 20 0.2 0.2 0.2 1 +1811 11 21 -1.9 -1.9 -1.9 1 +1811 11 22 2.6 2.6 2.6 1 +1811 11 23 3.6 3.6 3.6 1 +1811 11 24 -0.9 -0.9 -0.9 1 +1811 11 25 -2.9 -2.9 -2.9 1 +1811 11 26 -3.6 -3.6 -3.6 1 +1811 11 27 1.9 1.9 1.9 1 +1811 11 28 6.2 6.2 6.2 1 +1811 11 29 -1.8 -1.8 -1.8 1 +1811 11 30 -1.3 -1.3 -1.3 1 +1811 12 1 6.4 6.4 6.4 1 +1811 12 2 6.6 6.6 6.6 1 +1811 12 3 3.2 3.2 3.2 1 +1811 12 4 4.3 4.3 4.3 1 +1811 12 5 2.6 2.6 2.6 1 +1811 12 6 0.9 0.9 0.9 1 +1811 12 7 0.2 0.2 0.2 1 +1811 12 8 3.6 3.6 3.6 1 +1811 12 9 4.9 4.9 4.9 1 +1811 12 10 3.6 3.6 3.6 1 +1811 12 11 3.1 3.1 3.1 1 +1811 12 12 1.9 1.9 1.9 1 +1811 12 13 -1.8 -1.8 -1.8 1 +1811 12 14 -2.1 -2.1 -2.1 1 +1811 12 15 -2.9 -2.9 -2.9 1 +1811 12 16 -2.3 -2.3 -2.3 1 +1811 12 17 0.6 0.6 0.6 1 +1811 12 18 -0.2 -0.2 -0.2 1 +1811 12 19 -5.3 -5.3 -5.3 1 +1811 12 20 1.9 1.9 1.9 1 +1811 12 21 2.3 2.3 2.3 1 +1811 12 22 -1.2 -1.2 -1.2 1 +1811 12 23 -3.2 -3.2 -3.2 1 +1811 12 24 -4.1 -4.1 -4.1 1 +1811 12 25 -8.1 -8.1 -8.1 1 +1811 12 26 -10.8 -10.8 -10.8 1 +1811 12 27 -9.8 -9.8 -9.8 1 +1811 12 28 -6.9 -6.9 -6.9 1 +1811 12 29 -7.3 -7.3 -7.3 1 +1811 12 30 -7.4 -7.4 -7.4 1 +1811 12 31 -9.3 -9.3 -9.3 1 +1812 1 1 0.2 0.2 0.2 1 +1812 1 2 -4.8 -4.8 -4.8 1 +1812 1 3 -3.1 -3.1 -3.1 1 +1812 1 4 0.9 0.9 0.9 1 +1812 1 5 0.9 0.9 0.9 1 +1812 1 6 0.6 0.6 0.6 1 +1812 1 7 -0.8 -0.8 -0.8 1 +1812 1 8 -7.5 -7.5 -7.5 1 +1812 1 9 -7.3 -7.3 -7.3 1 +1812 1 10 -0.5 -0.5 -0.5 1 +1812 1 11 -6.5 -6.5 -6.5 1 +1812 1 12 -10.5 -10.5 -10.5 1 +1812 1 13 -12.8 -12.8 -12.8 1 +1812 1 14 -13.3 -13.3 -13.3 1 +1812 1 15 -8.6 -8.6 -8.6 1 +1812 1 16 -8.8 -8.8 -8.8 1 +1812 1 17 -7.8 -7.8 -7.8 1 +1812 1 18 -8.3 -8.3 -8.3 1 +1812 1 19 -0.5 -0.5 -0.5 1 +1812 1 20 0.0 0.0 0.0 1 +1812 1 21 -4.6 -4.6 -4.6 1 +1812 1 22 -5.1 -5.1 -5.1 1 +1812 1 23 -8.5 -8.5 -8.5 1 +1812 1 24 -7.8 -7.8 -7.8 1 +1812 1 25 -6.8 -6.8 -6.8 1 +1812 1 26 -1.1 -1.1 -1.1 1 +1812 1 27 -0.5 -0.5 -0.5 1 +1812 1 28 2.0 2.0 2.0 1 +1812 1 29 1.2 1.2 1.2 1 +1812 1 30 -1.0 -1.0 -1.0 1 +1812 1 31 -1.8 -1.8 -1.8 1 +1812 2 1 -3.0 -3.0 -3.0 1 +1812 2 2 -3.1 -3.1 -3.1 1 +1812 2 3 -3.0 -3.0 -3.0 1 +1812 2 4 -2.1 -2.1 -2.1 1 +1812 2 5 -1.6 -1.6 -1.6 1 +1812 2 6 -4.5 -4.5 -4.5 1 +1812 2 7 -3.8 -3.8 -3.8 1 +1812 2 8 -3.3 -3.3 -3.3 1 +1812 2 9 -2.0 -2.0 -2.0 1 +1812 2 10 -3.1 -3.1 -3.1 1 +1812 2 11 -1.1 -1.1 -1.1 1 +1812 2 12 -2.5 -2.5 -2.5 1 +1812 2 13 -2.0 -2.0 -2.0 1 +1812 2 14 -0.3 -0.3 -0.3 1 +1812 2 15 -0.5 -0.5 -0.5 1 +1812 2 16 1.0 1.0 1.0 1 +1812 2 17 -1.6 -1.6 -1.6 1 +1812 2 18 -1.3 -1.3 -1.3 1 +1812 2 19 -3.5 -3.5 -3.5 1 +1812 2 20 -3.1 -3.1 -3.1 1 +1812 2 21 2.9 2.9 2.9 1 +1812 2 22 3.2 3.2 3.2 1 +1812 2 23 3.1 3.1 3.1 1 +1812 2 24 1.9 1.9 1.9 1 +1812 2 25 -4.9 -4.9 -4.9 1 +1812 2 26 -8.3 -8.3 -8.3 1 +1812 2 27 -7.1 -7.1 -7.1 1 +1812 2 28 -7.5 -7.5 -7.5 1 +1812 2 29 -6.8 -6.8 -6.8 1 +1812 3 1 -5.6 -5.6 -5.6 1 +1812 3 2 -4.8 -4.8 -4.8 1 +1812 3 3 -6.7 -6.7 -6.7 1 +1812 3 4 -6.1 -6.1 -6.1 1 +1812 3 5 -0.4 -0.4 -0.4 1 +1812 3 6 0.1 0.1 0.1 1 +1812 3 7 -1.8 -1.8 -1.8 1 +1812 3 8 0.1 0.1 0.1 1 +1812 3 9 -1.0 -1.0 -1.0 1 +1812 3 10 -3.1 -3.1 -3.1 1 +1812 3 11 -2.1 -2.1 -2.1 1 +1812 3 12 -3.0 -3.0 -3.0 1 +1812 3 13 0.3 0.3 0.3 1 +1812 3 14 -1.4 -1.4 -1.4 1 +1812 3 15 -7.4 -7.4 -7.4 1 +1812 3 16 -10.0 -10.0 -10.0 1 +1812 3 17 -10.4 -10.4 -10.4 1 +1812 3 18 -8.0 -8.0 -8.0 1 +1812 3 19 -7.2 -7.2 -7.2 1 +1812 3 20 -6.8 -6.8 -6.8 1 +1812 3 21 -7.3 -7.3 -7.3 1 +1812 3 22 -9.3 -9.3 -9.3 1 +1812 3 23 -6.0 -6.0 -6.0 1 +1812 3 24 -3.3 -3.3 -3.3 1 +1812 3 25 -5.6 -5.6 -5.6 1 +1812 3 26 -8.0 -8.0 -8.0 1 +1812 3 27 -2.8 -2.8 -2.8 1 +1812 3 28 -1.3 -1.3 -1.3 1 +1812 3 29 -7.1 -7.1 -7.1 1 +1812 3 30 -8.1 -8.1 -8.1 1 +1812 3 31 -8.6 -8.6 -8.6 1 +1812 4 1 -4.6 -4.6 -4.6 1 +1812 4 2 -1.6 -1.6 -1.6 1 +1812 4 3 -0.3 -0.3 -0.3 1 +1812 4 4 -4.6 -4.6 -4.6 1 +1812 4 5 -7.0 -7.0 -7.0 1 +1812 4 6 -4.5 -4.5 -4.5 1 +1812 4 7 -8.2 -8.2 -8.2 1 +1812 4 8 -8.0 -8.0 -8.0 1 +1812 4 9 -8.0 -8.0 -8.0 1 +1812 4 10 -5.8 -5.8 -5.8 1 +1812 4 11 -2.0 -2.0 -2.0 1 +1812 4 12 -1.0 -1.0 -1.0 1 +1812 4 13 -2.5 -2.5 -2.5 1 +1812 4 14 -2.8 -2.8 -2.8 1 +1812 4 15 -0.6 -0.6 -0.6 1 +1812 4 16 -1.5 -1.5 -1.5 1 +1812 4 17 -3.2 -3.2 -3.2 1 +1812 4 18 -2.2 -2.2 -2.2 1 +1812 4 19 -0.8 -0.8 -0.8 1 +1812 4 20 2.1 2.1 2.1 1 +1812 4 21 3.3 3.3 3.3 1 +1812 4 22 1.9 1.9 1.9 1 +1812 4 23 1.2 1.2 1.2 1 +1812 4 24 2.5 2.5 2.5 1 +1812 4 25 2.6 2.6 2.6 1 +1812 4 26 3.4 3.4 3.4 1 +1812 4 27 3.7 3.7 3.7 1 +1812 4 28 2.9 2.9 2.9 1 +1812 4 29 3.2 3.2 3.2 1 +1812 4 30 4.2 4.2 4.2 1 +1812 5 1 4.1 4.1 4.1 1 +1812 5 2 5.4 5.4 5.4 1 +1812 5 3 5.9 5.9 5.9 1 +1812 5 4 4.7 4.7 4.7 1 +1812 5 5 2.1 2.1 2.0 1 +1812 5 6 2.0 2.0 1.9 1 +1812 5 7 2.4 2.4 2.3 1 +1812 5 8 3.7 3.7 3.6 1 +1812 5 9 4.4 4.4 4.3 1 +1812 5 10 1.4 1.4 1.2 1 +1812 5 11 3.3 3.3 3.1 1 +1812 5 12 5.0 5.0 4.8 1 +1812 5 13 5.3 5.3 5.1 1 +1812 5 14 5.6 5.6 5.3 1 +1812 5 15 8.0 8.0 7.7 1 +1812 5 16 10.8 10.8 10.5 1 +1812 5 17 9.1 9.1 8.8 1 +1812 5 18 5.8 5.8 5.5 1 +1812 5 19 7.6 7.6 7.2 1 +1812 5 20 4.7 4.7 4.3 1 +1812 5 21 3.3 3.3 2.9 1 +1812 5 22 3.8 3.8 3.4 1 +1812 5 23 5.1 5.1 4.6 1 +1812 5 24 4.8 4.8 4.3 1 +1812 5 25 5.5 5.5 5.0 1 +1812 5 26 6.8 6.8 6.3 1 +1812 5 27 9.5 9.5 9.0 1 +1812 5 28 12.5 12.5 11.9 1 +1812 5 29 13.2 13.2 12.6 1 +1812 5 30 15.0 15.0 14.4 1 +1812 5 31 14.3 14.3 13.7 1 +1812 6 1 15.8 15.8 15.1 1 +1812 6 2 18.2 18.2 17.5 1 +1812 6 3 18.2 18.2 17.5 1 +1812 6 4 15.8 15.8 15.1 1 +1812 6 5 15.5 15.5 14.8 1 +1812 6 6 17.1 17.1 16.4 1 +1812 6 7 19.4 19.4 18.7 1 +1812 6 8 12.4 12.4 11.7 1 +1812 6 9 8.3 8.3 7.6 1 +1812 6 10 7.3 7.3 6.6 1 +1812 6 11 11.0 11.0 10.3 1 +1812 6 12 10.7 10.7 10.0 1 +1812 6 13 13.1 13.1 12.4 1 +1812 6 14 14.2 14.2 13.5 1 +1812 6 15 12.5 12.5 11.8 1 +1812 6 16 17.2 17.2 16.5 1 +1812 6 17 12.7 12.7 12.0 1 +1812 6 18 14.7 14.7 14.0 1 +1812 6 19 15.2 15.2 14.5 1 +1812 6 20 12.1 12.1 11.4 1 +1812 6 21 16.4 16.4 15.7 1 +1812 6 22 13.3 13.3 12.6 1 +1812 6 23 16.1 16.1 15.4 1 +1812 6 24 13.3 13.3 12.6 1 +1812 6 25 13.0 13.0 12.3 1 +1812 6 26 13.1 13.1 12.4 1 +1812 6 27 8.5 8.5 7.8 1 +1812 6 28 12.1 12.1 11.4 1 +1812 6 29 10.4 10.4 9.7 1 +1812 6 30 12.2 12.2 11.5 1 +1812 7 1 13.4 13.4 12.7 1 +1812 7 2 13.2 13.2 12.5 1 +1812 7 3 15.3 15.3 14.6 1 +1812 7 4 11.3 11.3 10.6 1 +1812 7 5 11.7 11.7 11.0 1 +1812 7 6 13.4 13.4 12.7 1 +1812 7 7 16.2 16.2 15.5 1 +1812 7 8 18.1 18.1 17.4 1 +1812 7 9 21.2 21.2 20.5 1 +1812 7 10 19.5 19.5 18.8 1 +1812 7 11 10.8 10.8 10.1 1 +1812 7 12 12.3 12.3 11.6 1 +1812 7 13 10.0 10.0 9.3 1 +1812 7 14 11.9 11.9 11.2 1 +1812 7 15 12.2 12.2 11.5 1 +1812 7 16 12.8 12.8 12.1 1 +1812 7 17 14.5 14.5 13.8 1 +1812 7 18 13.7 13.7 13.0 1 +1812 7 19 14.8 14.8 14.1 1 +1812 7 20 14.9 14.9 14.2 1 +1812 7 21 14.0 14.0 13.3 1 +1812 7 22 18.1 18.1 17.4 1 +1812 7 23 16.6 16.6 15.9 1 +1812 7 24 12.3 12.3 11.6 1 +1812 7 25 13.6 13.6 12.9 1 +1812 7 26 14.6 14.6 13.9 1 +1812 7 27 16.4 16.4 15.7 1 +1812 7 28 14.7 14.7 14.0 1 +1812 7 29 13.7 13.7 13.0 1 +1812 7 30 15.0 15.0 14.3 1 +1812 7 31 16.0 16.0 15.3 1 +1812 8 1 17.1 17.1 16.5 1 +1812 8 2 14.0 14.0 13.4 1 +1812 8 3 14.0 14.0 13.4 1 +1812 8 4 16.8 16.8 16.2 1 +1812 8 5 21.4 21.4 20.9 1 +1812 8 6 19.7 19.7 19.2 1 +1812 8 7 19.1 19.1 18.6 1 +1812 8 8 19.8 19.8 19.3 1 +1812 8 9 13.8 13.8 13.3 1 +1812 8 10 14.1 14.1 13.7 1 +1812 8 11 13.4 13.4 13.0 1 +1812 8 12 13.8 13.8 13.4 1 +1812 8 13 16.1 16.1 15.7 1 +1812 8 14 17.8 17.8 17.5 1 +1812 8 15 17.3 17.3 17.0 1 +1812 8 16 19.7 19.7 19.4 1 +1812 8 17 18.7 18.7 18.4 1 +1812 8 18 18.1 18.1 17.8 1 +1812 8 19 17.7 17.7 17.5 1 +1812 8 20 19.4 19.4 19.2 1 +1812 8 21 17.9 17.9 17.7 1 +1812 8 22 18.4 18.4 18.2 1 +1812 8 23 16.9 16.9 16.8 1 +1812 8 24 15.9 15.9 15.8 1 +1812 8 25 16.5 16.5 16.4 1 +1812 8 26 15.3 15.3 15.2 1 +1812 8 27 15.3 15.3 15.2 1 +1812 8 28 13.3 13.3 13.3 1 +1812 8 29 12.7 12.7 12.7 1 +1812 8 30 14.5 14.5 14.5 1 +1812 8 31 13.2 13.2 13.2 1 +1812 9 1 7.9 7.9 7.9 1 +1812 9 2 6.7 6.7 6.7 1 +1812 9 3 6.9 6.9 6.9 1 +1812 9 4 8.5 8.5 8.5 1 +1812 9 5 5.7 5.7 5.7 1 +1812 9 6 7.5 7.5 7.5 1 +1812 9 7 5.7 5.7 5.7 1 +1812 9 8 7.2 7.2 7.2 1 +1812 9 9 6.8 6.8 6.8 1 +1812 9 10 10.1 10.1 10.1 1 +1812 9 11 12.1 12.1 12.1 1 +1812 9 12 13.1 13.1 13.1 1 +1812 9 13 13.8 13.8 13.8 1 +1812 9 14 14.4 14.4 14.4 1 +1812 9 15 14.4 14.4 14.4 1 +1812 9 16 13.1 13.1 13.1 1 +1812 9 17 11.1 11.1 11.1 1 +1812 9 18 11.1 11.1 11.1 1 +1812 9 19 7.9 7.9 7.9 1 +1812 9 20 7.6 7.6 7.6 1 +1812 9 21 12.0 12.0 12.0 1 +1812 9 22 12.0 12.0 12.0 1 +1812 9 23 6.0 6.0 6.0 1 +1812 9 24 5.4 5.4 5.4 1 +1812 9 25 4.0 4.0 4.0 1 +1812 9 26 4.9 4.9 4.9 1 +1812 9 27 8.7 8.7 8.7 1 +1812 9 28 11.0 11.0 11.0 1 +1812 9 29 7.7 7.7 7.7 1 +1812 9 30 9.6 9.6 9.6 1 +1812 10 1 9.3 9.3 9.3 1 +1812 10 2 10.6 10.6 10.6 1 +1812 10 3 11.0 11.0 11.0 1 +1812 10 4 9.6 9.6 9.6 1 +1812 10 5 9.0 9.0 9.0 1 +1812 10 6 9.3 9.3 9.3 1 +1812 10 7 10.3 10.3 10.3 1 +1812 10 8 10.2 10.2 10.2 1 +1812 10 9 10.3 10.3 10.3 1 +1812 10 10 7.9 7.9 7.9 1 +1812 10 11 8.6 8.6 8.6 1 +1812 10 12 8.1 8.1 8.1 1 +1812 10 13 7.4 7.4 7.4 1 +1812 10 14 9.1 9.1 9.1 1 +1812 10 15 10.2 10.2 10.2 1 +1812 10 16 7.9 7.9 7.9 1 +1812 10 17 2.4 2.4 2.4 1 +1812 10 18 5.2 5.2 5.2 1 +1812 10 19 7.9 7.9 7.9 1 +1812 10 20 9.9 9.9 9.9 1 +1812 10 21 9.2 9.2 9.2 1 +1812 10 22 5.9 5.9 5.9 1 +1812 10 23 7.6 7.6 7.6 1 +1812 10 24 8.9 8.9 8.9 1 +1812 10 25 7.5 7.5 7.5 1 +1812 10 26 7.9 7.9 7.9 1 +1812 10 27 8.6 8.6 8.6 1 +1812 10 28 7.9 7.9 7.9 1 +1812 10 29 6.6 6.6 6.6 1 +1812 10 30 7.6 7.6 7.6 1 +1812 10 31 7.2 7.2 7.2 1 +1812 11 1 3.9 3.9 3.9 1 +1812 11 2 5.5 5.5 5.5 1 +1812 11 3 5.6 5.6 5.6 1 +1812 11 4 5.2 5.2 5.2 1 +1812 11 5 4.9 4.9 4.9 1 +1812 11 6 4.9 4.9 4.9 1 +1812 11 7 4.2 4.2 4.2 1 +1812 11 8 0.9 0.9 0.9 1 +1812 11 9 0.7 0.7 0.7 1 +1812 11 10 -0.8 -0.8 -0.8 1 +1812 11 11 -1.5 -1.5 -1.5 1 +1812 11 12 -4.8 -4.8 -4.8 1 +1812 11 13 -1.4 -1.4 -1.4 1 +1812 11 14 -0.4 -0.4 -0.4 1 +1812 11 15 -0.8 -0.8 -0.8 1 +1812 11 16 -0.9 -0.9 -0.9 1 +1812 11 17 -1.1 -1.1 -1.1 1 +1812 11 18 -1.9 -1.9 -1.9 1 +1812 11 19 -2.1 -2.1 -2.1 1 +1812 11 20 -6.1 -6.1 -6.1 1 +1812 11 21 -7.1 -7.1 -7.1 1 +1812 11 22 -9.1 -9.1 -9.1 1 +1812 11 23 -3.9 -3.9 -3.9 1 +1812 11 24 4.3 4.3 4.3 1 +1812 11 25 3.9 3.9 3.9 1 +1812 11 26 -0.7 -0.7 -0.7 1 +1812 11 27 -1.1 -1.1 -1.1 1 +1812 11 28 0.4 0.4 0.4 1 +1812 11 29 0.6 0.6 0.6 1 +1812 11 30 0.8 0.8 0.8 1 +1812 12 1 1.4 1.4 1.4 1 +1812 12 2 -1.4 -1.4 -1.4 1 +1812 12 3 -4.8 -4.8 -4.8 1 +1812 12 4 -5.7 -5.7 -5.7 1 +1812 12 5 -8.9 -8.9 -8.9 1 +1812 12 6 -10.4 -10.4 -10.4 1 +1812 12 7 -11.1 -11.1 -11.1 1 +1812 12 8 -5.4 -5.4 -5.4 1 +1812 12 9 -10.8 -10.8 -10.8 1 +1812 12 10 -8.8 -8.8 -8.8 1 +1812 12 11 -11.1 -11.1 -11.1 1 +1812 12 12 -10.4 -10.4 -10.4 1 +1812 12 13 -6.8 -6.8 -6.8 1 +1812 12 14 -12.9 -12.9 -12.9 1 +1812 12 15 -9.8 -9.8 -9.8 1 +1812 12 16 -5.3 -5.3 -5.3 1 +1812 12 17 -8.4 -8.4 -8.4 1 +1812 12 18 -10.3 -10.3 -10.3 1 +1812 12 19 -6.1 -6.1 -6.1 1 +1812 12 20 -6.1 -6.1 -6.1 1 +1812 12 21 -9.1 -9.1 -9.1 1 +1812 12 22 -10.1 -10.1 -10.1 1 +1812 12 23 -5.7 -5.7 -5.7 1 +1812 12 24 -6.4 -6.4 -6.4 1 +1812 12 25 -4.1 -4.1 -4.1 1 +1812 12 26 -0.8 -0.8 -0.8 1 +1812 12 27 -4.4 -4.4 -4.4 1 +1812 12 28 -4.4 -4.4 -4.4 1 +1812 12 29 4.2 4.2 4.2 1 +1812 12 30 -2.8 -2.8 -2.8 1 +1812 12 31 -6.4 -6.4 -6.4 1 +1813 1 1 -6.4 -6.4 -6.4 1 +1813 1 2 -13.8 -13.8 -13.8 1 +1813 1 3 -0.8 -0.8 -0.8 1 +1813 1 4 -3.1 -3.1 -3.1 1 +1813 1 5 -1.1 -1.1 -1.1 1 +1813 1 6 -3.1 -3.1 -3.1 1 +1813 1 7 1.9 1.9 1.9 1 +1813 1 8 1.6 1.6 1.6 1 +1813 1 9 0.2 0.2 0.2 1 +1813 1 10 1.1 1.1 1.1 1 +1813 1 11 -0.3 -0.3 -0.3 1 +1813 1 12 -1.9 -1.9 -1.9 1 +1813 1 13 -3.8 -3.8 -3.8 1 +1813 1 14 -5.8 -5.8 -5.8 1 +1813 1 15 -5.5 -5.5 -5.5 1 +1813 1 16 -1.5 -1.5 -1.5 1 +1813 1 17 -2.5 -2.5 -2.5 1 +1813 1 18 -3.3 -3.3 -3.3 1 +1813 1 19 -3.6 -3.6 -3.6 1 +1813 1 20 -4.5 -4.5 -4.5 1 +1813 1 21 -5.1 -5.1 -5.1 1 +1813 1 22 -6.1 -6.1 -6.1 1 +1813 1 23 -1.2 -1.2 -1.2 1 +1813 1 24 -5.2 -5.2 -5.2 1 +1813 1 25 -4.1 -4.1 -4.1 1 +1813 1 26 -5.0 -5.0 -5.0 1 +1813 1 27 -4.5 -4.5 -4.5 1 +1813 1 28 -5.5 -5.5 -5.5 1 +1813 1 29 -7.5 -7.5 -7.5 1 +1813 1 30 -12.3 -12.3 -12.3 1 +1813 1 31 -5.6 -5.6 -5.6 1 +1813 2 1 -8.5 -8.5 -8.5 1 +1813 2 2 -14.8 -14.8 -14.8 1 +1813 2 3 -13.0 -13.0 -13.0 1 +1813 2 4 -0.5 -0.5 -0.5 1 +1813 2 5 1.7 1.7 1.7 1 +1813 2 6 -0.8 -0.8 -0.8 1 +1813 2 7 1.9 1.9 1.9 1 +1813 2 8 1.0 1.0 1.0 1 +1813 2 9 2.9 2.9 2.9 1 +1813 2 10 1.8 1.8 1.8 1 +1813 2 11 -0.2 -0.2 -0.2 1 +1813 2 12 -2.5 -2.5 -2.5 1 +1813 2 13 -0.8 -0.8 -0.8 1 +1813 2 14 0.9 0.9 0.9 1 +1813 2 15 1.7 1.7 1.7 1 +1813 2 16 2.0 2.0 2.0 1 +1813 2 17 2.9 2.9 2.9 1 +1813 2 18 -0.1 -0.1 -0.1 1 +1813 2 19 -0.9 -0.9 -0.9 1 +1813 2 20 -1.7 -1.7 -1.7 1 +1813 2 21 2.5 2.5 2.5 1 +1813 2 22 3.2 3.2 3.2 1 +1813 2 23 4.5 4.5 4.5 1 +1813 2 24 3.2 3.2 3.2 1 +1813 2 25 -4.4 -4.4 -4.4 1 +1813 2 26 -2.1 -2.1 -2.1 1 +1813 2 27 1.2 1.2 1.2 1 +1813 2 28 -4.1 -4.1 -4.1 1 +1813 3 1 -6.5 -6.5 -6.5 1 +1813 3 2 -0.1 -0.1 -0.1 1 +1813 3 3 0.1 0.1 0.1 1 +1813 3 4 -0.1 -0.1 -0.1 1 +1813 3 5 4.2 4.2 4.2 1 +1813 3 6 1.7 1.7 1.7 1 +1813 3 7 -0.9 -0.9 -0.9 1 +1813 3 8 -5.7 -5.7 -5.7 1 +1813 3 9 -7.6 -7.6 -7.6 1 +1813 3 10 -11.7 -11.7 -11.7 1 +1813 3 11 -5.0 -5.0 -5.0 1 +1813 3 12 -7.7 -7.7 -7.7 1 +1813 3 13 -6.0 -6.0 -6.0 1 +1813 3 14 -5.0 -5.0 -5.0 1 +1813 3 15 0.0 0.0 0.0 1 +1813 3 16 3.3 3.3 3.3 1 +1813 3 17 6.6 6.6 6.6 1 +1813 3 18 3.3 3.3 3.3 1 +1813 3 19 3.5 3.5 3.5 1 +1813 3 20 2.8 2.8 2.8 1 +1813 3 21 2.8 2.8 2.8 1 +1813 3 22 2.3 2.3 2.3 1 +1813 3 23 1.3 1.3 1.3 1 +1813 3 24 3.0 3.0 3.0 1 +1813 3 25 3.4 3.4 3.4 1 +1813 3 26 4.5 4.5 4.5 1 +1813 3 27 5.7 5.7 5.7 1 +1813 3 28 5.0 5.0 5.0 1 +1813 3 29 4.7 4.7 4.7 1 +1813 3 30 5.2 5.2 5.2 1 +1813 3 31 4.1 4.1 4.1 1 +1813 4 1 4.1 4.1 4.1 1 +1813 4 2 5.1 5.1 5.1 1 +1813 4 3 4.9 4.9 4.9 1 +1813 4 4 2.6 2.6 2.6 1 +1813 4 5 4.5 4.5 4.5 1 +1813 4 6 3.5 3.5 3.5 1 +1813 4 7 4.8 4.8 4.8 1 +1813 4 8 8.2 8.2 8.2 1 +1813 4 9 9.5 9.5 9.5 1 +1813 4 10 10.0 10.0 10.0 1 +1813 4 11 5.5 5.5 5.5 1 +1813 4 12 6.5 6.5 6.5 1 +1813 4 13 1.8 1.8 1.8 1 +1813 4 14 8.2 8.2 8.2 1 +1813 4 15 9.4 9.4 9.4 1 +1813 4 16 5.5 5.5 5.5 1 +1813 4 17 2.7 2.7 2.7 1 +1813 4 18 0.5 0.5 0.5 1 +1813 4 19 2.8 2.8 2.8 1 +1813 4 20 1.9 1.9 1.9 1 +1813 4 21 0.2 0.2 0.2 1 +1813 4 22 -1.1 -1.1 -1.1 1 +1813 4 23 0.9 0.9 0.9 1 +1813 4 24 5.4 5.4 5.4 1 +1813 4 25 7.3 7.3 7.3 1 +1813 4 26 7.0 7.0 7.0 1 +1813 4 27 1.6 1.6 1.6 1 +1813 4 28 2.2 2.2 2.2 1 +1813 4 29 -0.7 -0.7 -0.7 1 +1813 4 30 1.7 1.7 1.7 1 +1813 5 1 5.1 5.1 5.1 1 +1813 5 2 5.7 5.7 5.7 1 +1813 5 3 5.7 5.7 5.7 1 +1813 5 4 5.4 5.4 5.4 1 +1813 5 5 7.1 7.1 7.0 1 +1813 5 6 8.0 8.0 7.9 1 +1813 5 7 7.2 7.2 7.1 1 +1813 5 8 3.0 3.0 2.9 1 +1813 5 9 4.1 4.1 4.0 1 +1813 5 10 6.4 6.4 6.2 1 +1813 5 11 8.1 8.1 7.9 1 +1813 5 12 9.4 9.4 9.2 1 +1813 5 13 7.2 7.2 7.0 1 +1813 5 14 12.0 12.0 11.7 1 +1813 5 15 11.8 11.8 11.5 1 +1813 5 16 9.3 9.3 9.0 1 +1813 5 17 3.5 3.5 3.2 1 +1813 5 18 3.0 3.0 2.7 1 +1813 5 19 4.4 4.4 4.0 1 +1813 5 20 6.0 6.0 5.6 1 +1813 5 21 6.0 6.0 5.6 1 +1813 5 22 7.9 7.9 7.5 1 +1813 5 23 6.4 6.4 5.9 1 +1813 5 24 8.2 8.2 7.7 1 +1813 5 25 9.7 9.7 9.2 1 +1813 5 26 11.1 11.1 10.6 1 +1813 5 27 9.7 9.7 9.2 1 +1813 5 28 10.4 10.4 9.8 1 +1813 5 29 9.2 9.2 8.6 1 +1813 5 30 12.5 12.5 11.9 1 +1813 5 31 14.0 14.0 13.4 1 +1813 6 1 14.7 14.7 14.0 1 +1813 6 2 15.5 15.5 14.8 1 +1813 6 3 17.6 17.6 16.9 1 +1813 6 4 11.8 11.8 11.1 1 +1813 6 5 12.2 12.2 11.5 1 +1813 6 6 14.4 14.4 13.7 1 +1813 6 7 14.4 14.4 13.7 1 +1813 6 8 10.7 10.7 10.0 1 +1813 6 9 10.7 10.7 10.0 1 +1813 6 10 11.4 11.4 10.7 1 +1813 6 11 10.7 10.7 10.0 1 +1813 6 12 11.5 11.5 10.8 1 +1813 6 13 13.1 13.1 12.4 1 +1813 6 14 12.3 12.3 11.6 1 +1813 6 15 13.1 13.1 12.4 1 +1813 6 16 13.0 13.0 12.3 1 +1813 6 17 10.3 10.3 9.6 1 +1813 6 18 11.9 11.9 11.2 1 +1813 6 19 14.8 14.8 14.1 1 +1813 6 20 13.2 13.2 12.5 1 +1813 6 21 10.7 10.7 10.0 1 +1813 6 22 10.1 10.1 9.4 1 +1813 6 23 4.7 4.7 4.0 1 +1813 6 24 9.8 9.8 9.1 1 +1813 6 25 13.0 13.0 12.3 1 +1813 6 26 14.6 14.6 13.9 1 +1813 6 27 14.2 14.2 13.5 1 +1813 6 28 12.1 12.1 11.4 1 +1813 6 29 11.8 11.8 11.1 1 +1813 6 30 14.2 14.2 13.5 1 +1813 7 1 13.2 13.2 12.5 1 +1813 7 2 9.3 9.3 8.6 1 +1813 7 3 10.2 10.2 9.5 1 +1813 7 4 11.2 11.2 10.5 1 +1813 7 5 10.5 10.5 9.8 1 +1813 7 6 9.0 9.0 8.3 1 +1813 7 7 14.8 14.8 14.1 1 +1813 7 8 14.5 14.5 13.8 1 +1813 7 9 17.0 17.0 16.3 1 +1813 7 10 18.5 18.5 17.8 1 +1813 7 11 19.3 19.3 18.6 1 +1813 7 12 19.7 19.7 19.0 1 +1813 7 13 19.5 19.5 18.8 1 +1813 7 14 13.7 13.7 13.0 1 +1813 7 15 19.2 19.2 18.5 1 +1813 7 16 20.0 20.0 19.3 1 +1813 7 17 19.2 19.2 18.5 1 +1813 7 18 20.0 20.0 19.3 1 +1813 7 19 18.2 18.2 17.5 1 +1813 7 20 19.8 19.8 19.1 1 +1813 7 21 21.0 21.0 20.3 1 +1813 7 22 19.6 19.6 18.9 1 +1813 7 23 19.1 19.1 18.4 1 +1813 7 24 21.1 21.1 20.4 1 +1813 7 25 21.3 21.3 20.6 1 +1813 7 26 19.1 19.1 18.4 1 +1813 7 27 18.4 18.4 17.7 1 +1813 7 28 18.3 18.3 17.6 1 +1813 7 29 18.5 18.5 17.8 1 +1813 7 30 18.3 18.3 17.6 1 +1813 7 31 20.3 20.3 19.6 1 +1813 8 1 20.1 20.1 19.5 1 +1813 8 2 20.0 20.0 19.4 1 +1813 8 3 18.7 18.7 18.1 1 +1813 8 4 17.5 17.5 16.9 1 +1813 8 5 15.3 15.3 14.8 1 +1813 8 6 16.3 16.3 15.8 1 +1813 8 7 15.5 15.5 15.0 1 +1813 8 8 15.9 15.9 15.4 1 +1813 8 9 13.8 13.8 13.3 1 +1813 8 10 16.4 16.4 16.0 1 +1813 8 11 16.4 16.4 16.0 1 +1813 8 12 19.8 19.8 19.4 1 +1813 8 13 18.8 18.8 18.4 1 +1813 8 14 18.8 18.8 18.5 1 +1813 8 15 18.1 18.1 17.8 1 +1813 8 16 17.5 17.5 17.2 1 +1813 8 17 15.6 15.6 15.3 1 +1813 8 18 14.1 14.1 13.8 1 +1813 8 19 14.2 14.2 14.0 1 +1813 8 20 14.8 14.8 14.6 1 +1813 8 21 14.6 14.6 14.4 1 +1813 8 22 14.3 14.3 14.1 1 +1813 8 23 12.6 12.6 12.5 1 +1813 8 24 12.2 12.2 12.1 1 +1813 8 25 12.2 12.2 12.1 1 +1813 8 26 13.3 13.3 13.2 1 +1813 8 27 12.6 12.6 12.5 1 +1813 8 28 13.7 13.7 13.7 1 +1813 8 29 15.6 15.6 15.6 1 +1813 8 30 15.8 15.8 15.8 1 +1813 8 31 15.2 15.2 15.2 1 +1813 9 1 15.7 15.7 15.7 1 +1813 9 2 16.0 16.0 16.0 1 +1813 9 3 16.3 16.3 16.3 1 +1813 9 4 15.8 15.8 15.8 1 +1813 9 5 17.4 17.4 17.4 1 +1813 9 6 16.5 16.5 16.5 1 +1813 9 7 15.5 15.5 15.5 1 +1813 9 8 16.0 16.0 16.0 1 +1813 9 9 13.3 13.3 13.3 1 +1813 9 10 14.8 14.8 14.8 1 +1813 9 11 13.4 13.4 13.4 1 +1813 9 12 12.4 12.4 12.4 1 +1813 9 13 12.1 12.1 12.1 1 +1813 9 14 12.8 12.8 12.8 1 +1813 9 15 12.7 12.7 12.7 1 +1813 9 16 12.9 12.9 12.9 1 +1813 9 17 13.1 13.1 13.1 1 +1813 9 18 13.4 13.4 13.4 1 +1813 9 19 14.0 14.0 14.0 1 +1813 9 20 14.1 14.1 14.1 1 +1813 9 21 14.7 14.7 14.7 1 +1813 9 22 14.4 14.4 14.4 1 +1813 9 23 13.4 13.4 13.4 1 +1813 9 24 10.4 10.4 10.4 1 +1813 9 25 9.4 9.4 9.4 1 +1813 9 26 7.0 7.0 7.0 1 +1813 9 27 9.3 9.3 9.3 1 +1813 9 28 7.3 7.3 7.3 1 +1813 9 29 4.3 4.3 4.3 1 +1813 9 30 3.7 3.7 3.7 1 +1813 10 1 9.0 9.0 9.0 1 +1813 10 2 4.3 4.3 4.3 1 +1813 10 3 5.6 5.6 5.6 1 +1813 10 4 4.0 4.0 4.0 1 +1813 10 5 5.0 5.0 5.0 1 +1813 10 6 1.6 1.6 1.6 1 +1813 10 7 3.3 3.3 3.3 1 +1813 10 8 5.0 5.0 5.0 1 +1813 10 9 3.6 3.6 3.6 1 +1813 10 10 3.2 3.2 3.2 1 +1813 10 11 4.2 4.2 4.2 1 +1813 10 12 4.2 4.2 4.2 1 +1813 10 13 3.9 3.9 3.9 1 +1813 10 14 7.6 7.6 7.6 1 +1813 10 15 4.7 4.7 4.7 1 +1813 10 16 3.9 3.9 3.9 1 +1813 10 17 7.2 7.2 7.2 1 +1813 10 18 7.6 7.6 7.6 1 +1813 10 19 8.2 8.2 8.2 1 +1813 10 20 3.9 3.9 3.9 1 +1813 10 21 1.9 1.9 1.9 1 +1813 10 22 1.5 1.5 1.5 1 +1813 10 23 4.2 4.2 4.2 1 +1813 10 24 3.9 3.9 3.9 1 +1813 10 25 -1.1 -1.1 -1.1 1 +1813 10 26 -2.0 -2.0 -2.0 1 +1813 10 27 2.6 2.6 2.6 1 +1813 10 28 1.9 1.9 1.9 1 +1813 10 29 -1.6 -1.6 -1.6 1 +1813 10 30 -1.0 -1.0 -1.0 1 +1813 10 31 3.2 3.2 3.2 1 +1813 11 1 4.2 4.2 4.2 1 +1813 11 2 3.9 3.9 3.9 1 +1813 11 3 3.6 3.6 3.6 1 +1813 11 4 -0.2 -0.2 -0.2 1 +1813 11 5 2.9 2.9 2.9 1 +1813 11 6 4.2 4.2 4.2 1 +1813 11 7 3.6 3.6 3.6 1 +1813 11 8 3.9 3.9 3.9 1 +1813 11 9 5.4 5.4 5.4 1 +1813 11 10 4.6 4.6 4.6 1 +1813 11 11 6.6 6.6 6.6 1 +1813 11 12 5.7 5.7 5.7 1 +1813 11 13 4.9 4.9 4.9 1 +1813 11 14 4.6 4.6 4.6 1 +1813 11 15 4.4 4.4 4.4 1 +1813 11 16 3.4 3.4 3.4 1 +1813 11 17 1.4 1.4 1.4 1 +1813 11 18 2.5 2.5 2.5 1 +1813 11 19 3.2 3.2 3.2 1 +1813 11 20 1.2 1.2 1.2 1 +1813 11 21 4.4 4.4 4.4 1 +1813 11 22 3.9 3.9 3.9 1 +1813 11 23 2.8 2.8 2.8 1 +1813 11 24 3.1 3.1 3.1 1 +1813 11 25 1.6 1.6 1.6 1 +1813 11 26 1.1 1.1 1.1 1 +1813 11 27 -0.2 -0.2 -0.2 1 +1813 11 28 -1.2 -1.2 -1.2 1 +1813 11 29 -2.1 -2.1 -2.1 1 +1813 11 30 -3.9 -3.9 -3.9 1 +1813 12 1 -3.6 -3.6 -3.6 1 +1813 12 2 -5.6 -5.6 -5.6 1 +1813 12 3 -0.4 -0.4 -0.4 1 +1813 12 4 2.6 2.6 2.6 1 +1813 12 5 3.9 3.9 3.9 1 +1813 12 6 3.1 3.1 3.1 1 +1813 12 7 0.4 0.4 0.4 1 +1813 12 8 -1.6 -1.6 -1.6 1 +1813 12 9 -2.9 -2.9 -2.9 1 +1813 12 10 -3.8 -3.8 -3.8 1 +1813 12 11 -7.1 -7.1 -7.1 1 +1813 12 12 -4.1 -4.1 -4.1 1 +1813 12 13 -0.1 -0.1 -0.1 1 +1813 12 14 -10.9 -10.9 -10.9 1 +1813 12 15 -14.1 -14.1 -14.1 1 +1813 12 16 -11.4 -11.4 -11.4 1 +1813 12 17 -5.1 -5.1 -5.1 1 +1813 12 18 -1.6 -1.6 -1.6 1 +1813 12 19 -0.4 -0.4 -0.4 1 +1813 12 20 2.1 2.1 2.1 1 +1813 12 21 1.3 1.3 1.3 1 +1813 12 22 1.1 1.1 1.1 1 +1813 12 23 2.6 2.6 2.6 1 +1813 12 24 1.8 1.8 1.8 1 +1813 12 25 2.3 2.3 2.3 1 +1813 12 26 -1.4 -1.4 -1.4 1 +1813 12 27 -0.7 -0.7 -0.7 1 +1813 12 28 -1.1 -1.1 -1.1 1 +1813 12 29 0.4 0.4 0.4 1 +1813 12 30 2.7 2.7 2.7 1 +1813 12 31 -4.4 -4.4 -4.4 1 +1814 1 1 -1.9 -1.9 -1.9 1 +1814 1 2 -2.3 -2.3 -2.3 1 +1814 1 3 -10.6 -10.6 -10.6 1 +1814 1 4 -13.1 -13.1 -13.1 1 +1814 1 5 -19.1 -19.1 -19.1 1 +1814 1 6 -19.8 -19.8 -19.8 1 +1814 1 7 -19.6 -19.6 -19.6 1 +1814 1 8 -19.5 -19.5 -19.5 1 +1814 1 9 -22.6 -22.6 -22.6 1 +1814 1 10 -19.5 -19.5 -19.5 1 +1814 1 11 -20.0 -20.0 -20.0 1 +1814 1 12 -16.9 -16.9 -16.9 1 +1814 1 13 -20.1 -20.1 -20.1 1 +1814 1 14 -13.1 -13.1 -13.1 1 +1814 1 15 -13.1 -13.1 -13.1 1 +1814 1 16 -9.0 -9.0 -9.0 1 +1814 1 17 -8.1 -8.1 -8.1 1 +1814 1 18 -17.3 -17.3 -17.3 1 +1814 1 19 -25.2 -25.2 -25.2 1 +1814 1 20 -25.8 -25.8 -25.8 1 +1814 1 21 -17.1 -17.1 -17.1 1 +1814 1 22 -11.1 -11.1 -11.1 1 +1814 1 23 -15.3 -15.3 -15.3 1 +1814 1 24 -17.1 -17.1 -17.1 1 +1814 1 25 -14.6 -14.6 -14.6 1 +1814 1 26 -16.1 -16.1 -16.1 1 +1814 1 27 -15.8 -15.8 -15.8 1 +1814 1 28 -13.1 -13.1 -13.1 1 +1814 1 29 -4.1 -4.1 -4.1 1 +1814 1 30 -1.1 -1.1 -1.1 1 +1814 1 31 -0.8 -0.8 -0.8 1 +1814 2 1 -4.0 -4.0 -4.0 1 +1814 2 2 -12.0 -12.0 -12.0 1 +1814 2 3 -11.2 -11.2 -11.2 1 +1814 2 4 -12.2 -12.2 -12.2 1 +1814 2 5 -16.8 -16.8 -16.8 1 +1814 2 6 -4.1 -4.1 -4.1 1 +1814 2 7 -2.0 -2.0 -2.0 1 +1814 2 8 -6.0 -6.0 -6.0 1 +1814 2 9 -5.5 -5.5 -5.5 1 +1814 2 10 -5.0 -5.0 -5.0 1 +1814 2 11 -4.5 -4.5 -4.5 1 +1814 2 12 -8.5 -8.5 -8.5 1 +1814 2 13 -7.5 -7.5 -7.5 1 +1814 2 14 -7.0 -7.0 -7.0 1 +1814 2 15 -5.7 -5.7 -5.7 1 +1814 2 16 -13.5 -13.5 -13.5 1 +1814 2 17 -10.6 -10.6 -10.6 1 +1814 2 18 -15.6 -15.6 -15.6 1 +1814 2 19 -16.9 -16.9 -16.9 1 +1814 2 20 -9.2 -9.2 -9.2 1 +1814 2 21 -7.3 -7.3 -7.3 1 +1814 2 22 -2.3 -2.3 -2.3 1 +1814 2 23 -5.8 -5.8 -5.8 1 +1814 2 24 -6.8 -6.8 -6.8 1 +1814 2 25 -6.1 -6.1 -6.1 1 +1814 2 26 -7.5 -7.5 -7.5 1 +1814 2 27 -12.0 -12.0 -12.0 1 +1814 2 28 -13.8 -13.8 -13.8 1 +1814 3 1 -10.8 -10.8 -10.8 1 +1814 3 2 -7.6 -7.6 -7.6 1 +1814 3 3 -5.9 -5.9 -5.9 1 +1814 3 4 -6.9 -6.9 -6.9 1 +1814 3 5 -8.4 -8.4 -8.4 1 +1814 3 6 -8.2 -8.2 -8.2 1 +1814 3 7 -8.2 -8.2 -8.2 1 +1814 3 8 -9.1 -9.1 -9.1 1 +1814 3 9 -7.2 -7.2 -7.2 1 +1814 3 10 -9.7 -9.7 -9.7 1 +1814 3 11 -7.7 -7.7 -7.7 1 +1814 3 12 -6.0 -6.0 -6.0 1 +1814 3 13 -4.4 -4.4 -4.4 1 +1814 3 14 -1.4 -1.4 -1.4 1 +1814 3 15 -2.2 -2.2 -2.2 1 +1814 3 16 0.5 0.5 0.5 1 +1814 3 17 1.1 1.1 1.1 1 +1814 3 18 1.8 1.8 1.8 1 +1814 3 19 0.0 0.0 0.0 1 +1814 3 20 1.3 1.3 1.3 1 +1814 3 21 2.0 2.0 2.0 1 +1814 3 22 1.3 1.3 1.3 1 +1814 3 23 -0.3 -0.3 -0.3 1 +1814 3 24 -0.7 -0.7 -0.7 1 +1814 3 25 3.4 3.4 3.4 1 +1814 3 26 0.7 0.7 0.7 1 +1814 3 27 1.5 1.5 1.5 1 +1814 3 28 3.0 3.0 3.0 1 +1814 3 29 1.7 1.7 1.7 1 +1814 3 30 1.1 1.1 1.1 1 +1814 3 31 0.7 0.7 0.7 1 +1814 4 1 4.4 4.4 4.4 1 +1814 4 2 3.6 3.6 3.6 1 +1814 4 3 1.2 1.2 1.2 1 +1814 4 4 2.4 2.4 2.4 1 +1814 4 5 2.8 2.8 2.8 1 +1814 4 6 1.5 1.5 1.5 1 +1814 4 7 2.0 2.0 2.0 1 +1814 4 8 4.5 4.5 4.5 1 +1814 4 9 8.5 8.5 8.5 1 +1814 4 10 8.0 8.0 8.0 1 +1814 4 11 6.5 6.5 6.5 1 +1814 4 12 5.7 5.7 5.7 1 +1814 4 13 7.7 7.7 7.7 1 +1814 4 14 10.6 10.6 10.6 1 +1814 4 15 11.7 11.7 11.7 1 +1814 4 16 10.9 10.9 10.9 1 +1814 4 17 11.2 11.2 11.2 1 +1814 4 18 9.3 9.3 9.3 1 +1814 4 19 11.2 11.2 11.2 1 +1814 4 20 13.8 13.8 13.8 1 +1814 4 21 10.6 10.6 10.6 1 +1814 4 22 2.5 2.5 2.5 1 +1814 4 23 3.5 3.5 3.5 1 +1814 4 24 2.2 2.2 2.2 1 +1814 4 25 0.9 0.9 0.9 1 +1814 4 26 0.2 0.2 0.2 1 +1814 4 27 -1.5 -1.5 -1.5 1 +1814 4 28 -1.5 -1.5 -1.5 1 +1814 4 29 0.1 0.1 0.1 1 +1814 4 30 3.1 3.1 3.1 1 +1814 5 1 3.2 3.2 3.2 1 +1814 5 2 2.2 2.2 2.2 1 +1814 5 3 5.6 5.6 5.6 1 +1814 5 4 3.7 3.7 3.7 1 +1814 5 5 2.9 2.9 2.8 1 +1814 5 6 4.7 4.7 4.6 1 +1814 5 7 5.4 5.4 5.3 1 +1814 5 8 8.4 8.4 8.3 1 +1814 5 9 7.3 7.3 7.2 1 +1814 5 10 6.4 6.4 6.2 1 +1814 5 11 8.0 8.0 7.8 1 +1814 5 12 8.1 8.1 7.9 1 +1814 5 13 7.8 7.8 7.6 1 +1814 5 14 6.8 6.8 6.5 1 +1814 5 15 10.3 10.3 10.0 1 +1814 5 16 8.1 8.1 7.8 1 +1814 5 17 8.5 8.5 8.2 1 +1814 5 18 9.7 9.7 9.4 1 +1814 5 19 12.8 12.8 12.4 1 +1814 5 20 4.7 4.7 4.3 1 +1814 5 21 3.3 3.3 2.9 1 +1814 5 22 4.4 4.4 4.0 1 +1814 5 23 5.5 5.5 5.0 1 +1814 5 24 4.7 4.7 4.2 1 +1814 5 25 4.8 4.8 4.3 1 +1814 5 26 5.2 5.2 4.7 1 +1814 5 27 9.8 9.8 9.3 1 +1814 5 28 10.8 10.8 10.2 1 +1814 5 29 11.7 11.7 11.1 1 +1814 5 30 11.5 11.5 10.9 1 +1814 5 31 10.4 10.4 9.8 1 +1814 6 1 8.1 8.1 7.4 1 +1814 6 2 8.0 8.0 7.3 1 +1814 6 3 8.1 8.1 7.4 1 +1814 6 4 9.5 9.5 8.8 1 +1814 6 5 9.5 9.5 8.8 1 +1814 6 6 5.8 5.8 5.1 1 +1814 6 7 6.8 6.8 6.1 1 +1814 6 8 9.0 9.0 8.3 1 +1814 6 9 9.0 9.0 8.3 1 +1814 6 10 9.6 9.6 8.9 1 +1814 6 11 8.3 8.3 7.6 1 +1814 6 12 7.1 7.1 6.4 1 +1814 6 13 13.0 13.0 12.3 1 +1814 6 14 13.2 13.2 12.5 1 +1814 6 15 13.3 13.3 12.6 1 +1814 6 16 14.8 14.8 14.1 1 +1814 6 17 14.8 14.8 14.1 1 +1814 6 18 13.6 13.6 12.9 1 +1814 6 19 15.0 15.0 14.3 1 +1814 6 20 11.0 11.0 10.3 1 +1814 6 21 8.8 8.8 8.1 1 +1814 6 22 11.0 11.0 10.3 1 +1814 6 23 11.5 11.5 10.8 1 +1814 6 24 12.8 12.8 12.1 1 +1814 6 25 13.1 13.1 12.4 1 +1814 6 26 16.6 16.6 15.9 1 +1814 6 27 19.8 19.8 19.1 1 +1814 6 28 20.1 20.1 19.4 1 +1814 6 29 20.1 20.1 19.4 1 +1814 6 30 19.1 19.1 18.4 1 +1814 7 1 17.8 17.8 17.1 1 +1814 7 2 18.2 18.2 17.5 1 +1814 7 3 15.7 15.7 15.0 1 +1814 7 4 12.8 12.8 12.1 1 +1814 7 5 13.1 13.1 12.4 1 +1814 7 6 13.3 13.3 12.6 1 +1814 7 7 14.7 14.7 14.0 1 +1814 7 8 17.4 17.4 16.7 1 +1814 7 9 19.4 19.4 18.7 1 +1814 7 10 21.1 21.1 20.4 1 +1814 7 11 21.2 21.2 20.5 1 +1814 7 12 22.6 22.6 21.9 1 +1814 7 13 19.8 19.8 19.1 1 +1814 7 14 17.5 17.5 16.8 1 +1814 7 15 17.8 17.8 17.1 1 +1814 7 16 18.6 18.6 17.9 1 +1814 7 17 17.8 17.8 17.1 1 +1814 7 18 17.5 17.5 16.8 1 +1814 7 19 16.8 16.8 16.1 1 +1814 7 20 18.6 18.6 17.9 1 +1814 7 21 21.8 21.8 21.1 1 +1814 7 22 20.8 20.8 20.1 1 +1814 7 23 19.4 19.4 18.7 1 +1814 7 24 21.5 21.5 20.8 1 +1814 7 25 21.1 21.1 20.4 1 +1814 7 26 24.0 24.0 23.3 1 +1814 7 27 22.0 22.0 21.3 1 +1814 7 28 23.1 23.1 22.4 1 +1814 7 29 25.5 25.5 24.8 1 +1814 7 30 23.6 23.6 22.9 1 +1814 7 31 20.0 20.0 19.3 1 +1814 8 1 19.6 19.6 19.0 1 +1814 8 2 20.0 20.0 19.4 1 +1814 8 3 20.6 20.6 20.0 1 +1814 8 4 20.6 20.6 20.0 1 +1814 8 5 19.4 19.4 18.9 1 +1814 8 6 18.4 18.4 17.9 1 +1814 8 7 17.5 17.5 17.0 1 +1814 8 8 17.0 17.0 16.5 1 +1814 8 9 17.1 17.1 16.6 1 +1814 8 10 18.0 18.0 17.6 1 +1814 8 11 16.9 16.9 16.5 1 +1814 8 12 18.0 18.0 17.6 1 +1814 8 13 16.9 16.9 16.5 1 +1814 8 14 17.7 17.7 17.4 1 +1814 8 15 19.3 19.3 19.0 1 +1814 8 16 17.1 17.1 16.8 1 +1814 8 17 17.7 17.7 17.4 1 +1814 8 18 18.1 18.1 17.8 1 +1814 8 19 18.6 18.6 18.4 1 +1814 8 20 14.0 14.0 13.8 1 +1814 8 21 11.3 11.3 11.1 1 +1814 8 22 10.9 10.9 10.7 1 +1814 8 23 12.0 12.0 11.9 1 +1814 8 24 11.6 11.6 11.5 1 +1814 8 25 12.3 12.3 12.2 1 +1814 8 26 14.1 14.1 14.0 1 +1814 8 27 15.2 15.2 15.1 1 +1814 8 28 16.8 16.8 16.8 1 +1814 8 29 15.5 15.5 15.5 1 +1814 8 30 15.2 15.2 15.2 1 +1814 8 31 17.5 17.5 17.5 1 +1814 9 1 13.4 13.4 13.4 1 +1814 9 2 12.2 12.2 12.2 1 +1814 9 3 14.0 14.0 14.0 1 +1814 9 4 14.2 14.2 14.2 1 +1814 9 5 11.8 11.8 11.8 1 +1814 9 6 13.5 13.5 13.5 1 +1814 9 7 12.2 12.2 12.2 1 +1814 9 8 9.0 9.0 9.0 1 +1814 9 9 9.0 9.0 9.0 1 +1814 9 10 7.8 7.8 7.8 1 +1814 9 11 7.8 7.8 7.8 1 +1814 9 12 8.1 8.1 8.1 1 +1814 9 13 7.0 7.0 7.0 1 +1814 9 14 8.4 8.4 8.4 1 +1814 9 15 9.4 9.4 9.4 1 +1814 9 16 9.4 9.4 9.4 1 +1814 9 17 8.9 8.9 8.9 1 +1814 9 18 9.1 9.1 9.1 1 +1814 9 19 9.1 9.1 9.1 1 +1814 9 20 9.6 9.6 9.6 1 +1814 9 21 10.5 10.5 10.5 1 +1814 9 22 11.0 11.0 11.0 1 +1814 9 23 11.7 11.7 11.7 1 +1814 9 24 11.0 11.0 11.0 1 +1814 9 25 13.4 13.4 13.4 1 +1814 9 26 14.9 14.9 14.9 1 +1814 9 27 13.0 13.0 13.0 1 +1814 9 28 15.3 15.3 15.3 1 +1814 9 29 9.5 9.5 9.5 1 +1814 9 30 3.3 3.3 3.3 1 +1814 10 1 3.1 3.1 3.1 1 +1814 10 2 4.1 4.1 4.1 1 +1814 10 3 6.0 6.0 6.0 1 +1814 10 4 7.3 7.3 7.3 1 +1814 10 5 8.0 8.0 8.0 1 +1814 10 6 5.3 5.3 5.3 1 +1814 10 7 6.1 6.1 6.1 1 +1814 10 8 6.3 6.3 6.3 1 +1814 10 9 2.1 2.1 2.1 1 +1814 10 10 1.7 1.7 1.7 1 +1814 10 11 1.7 1.7 1.7 1 +1814 10 12 2.9 2.9 2.9 1 +1814 10 13 5.7 5.7 5.7 1 +1814 10 14 8.1 8.1 8.1 1 +1814 10 15 7.5 7.5 7.5 1 +1814 10 16 9.1 9.1 9.1 1 +1814 10 17 7.9 7.9 7.9 1 +1814 10 18 8.9 8.9 8.9 1 +1814 10 19 9.1 9.1 9.1 1 +1814 10 20 8.1 8.1 8.1 1 +1814 10 21 9.1 9.1 9.1 1 +1814 10 22 9.1 9.1 9.1 1 +1814 10 23 7.9 7.9 7.9 1 +1814 10 24 3.9 3.9 3.9 1 +1814 10 25 4.4 4.4 4.4 1 +1814 10 26 4.4 4.4 4.4 1 +1814 10 27 3.9 3.9 3.9 1 +1814 10 28 4.4 4.4 4.4 1 +1814 10 29 4.6 4.6 4.6 1 +1814 10 30 3.9 3.9 3.9 1 +1814 10 31 4.1 4.1 4.1 1 +1814 11 1 3.9 3.9 3.9 1 +1814 11 2 2.5 2.5 2.5 1 +1814 11 3 -1.9 -1.9 -1.9 1 +1814 11 4 -3.4 -3.4 -3.4 1 +1814 11 5 0.7 0.7 0.7 1 +1814 11 6 3.2 3.2 3.2 1 +1814 11 7 3.9 3.9 3.9 1 +1814 11 8 4.7 4.7 4.7 1 +1814 11 9 6.1 6.1 6.1 1 +1814 11 10 4.9 4.9 4.9 1 +1814 11 11 1.9 1.9 1.9 1 +1814 11 12 2.7 2.7 2.7 1 +1814 11 13 3.9 3.9 3.9 1 +1814 11 14 2.1 2.1 2.1 1 +1814 11 15 3.6 3.6 3.6 1 +1814 11 16 3.1 3.1 3.1 1 +1814 11 17 4.5 4.5 4.5 1 +1814 11 18 7.4 7.4 7.4 1 +1814 11 19 5.6 5.6 5.6 1 +1814 11 20 4.9 4.9 4.9 1 +1814 11 21 5.3 5.3 5.3 1 +1814 11 22 5.6 5.6 5.6 1 +1814 11 23 2.3 2.3 2.3 1 +1814 11 24 1.9 1.9 1.9 1 +1814 11 25 1.8 1.8 1.8 1 +1814 11 26 1.8 1.8 1.8 1 +1814 11 27 2.9 2.9 2.9 1 +1814 11 28 3.8 3.8 3.8 1 +1814 11 29 2.3 2.3 2.3 1 +1814 11 30 2.6 2.6 2.6 1 +1814 12 1 3.4 3.4 3.4 1 +1814 12 2 3.1 3.1 3.1 1 +1814 12 3 0.9 0.9 0.9 1 +1814 12 4 -4.2 -4.2 -4.2 1 +1814 12 5 -2.9 -2.9 -2.9 1 +1814 12 6 -4.4 -4.4 -4.4 1 +1814 12 7 -12.6 -12.6 -12.6 1 +1814 12 8 -5.1 -5.1 -5.1 1 +1814 12 9 2.9 2.9 2.9 1 +1814 12 10 -0.1 -0.1 -0.1 1 +1814 12 11 -2.3 -2.3 -2.3 1 +1814 12 12 -5.1 -5.1 -5.1 1 +1814 12 13 -4.1 -4.1 -4.1 1 +1814 12 14 2.6 2.6 2.6 1 +1814 12 15 4.2 4.2 4.2 1 +1814 12 16 3.9 3.9 3.9 1 +1814 12 17 2.9 2.9 2.9 1 +1814 12 18 3.2 3.2 3.2 1 +1814 12 19 3.1 3.1 3.1 1 +1814 12 20 1.4 1.4 1.4 1 +1814 12 21 -5.3 -5.3 -5.3 1 +1814 12 22 -5.8 -5.8 -5.8 1 +1814 12 23 -1.7 -1.7 -1.7 1 +1814 12 24 -2.4 -2.4 -2.4 1 +1814 12 25 -4.6 -4.6 -4.6 1 +1814 12 26 -6.9 -6.9 -6.9 1 +1814 12 27 -5.1 -5.1 -5.1 1 +1814 12 28 -1.9 -1.9 -1.9 1 +1814 12 29 0.3 0.3 0.3 1 +1814 12 30 -1.6 -1.6 -1.6 1 +1814 12 31 -1.9 -1.9 -1.9 1 +1815 1 1 -3.3 -3.3 -3.3 1 +1815 1 2 -3.3 -3.3 -3.3 1 +1815 1 3 1.4 1.4 1.4 1 +1815 1 4 2.9 2.9 2.9 1 +1815 1 5 0.9 0.9 0.9 1 +1815 1 6 -2.3 -2.3 -2.3 1 +1815 1 7 -3.1 -3.1 -3.1 1 +1815 1 8 -3.8 -3.8 -3.8 1 +1815 1 9 -3.3 -3.3 -3.3 1 +1815 1 10 -2.3 -2.3 -2.3 1 +1815 1 11 0.2 0.2 0.2 1 +1815 1 12 -0.4 -0.4 -0.4 1 +1815 1 13 -4.9 -4.9 -4.9 1 +1815 1 14 -5.6 -5.6 -5.6 1 +1815 1 15 -6.1 -6.1 -6.1 1 +1815 1 16 -7.5 -7.5 -7.5 1 +1815 1 17 -2.6 -2.6 -2.6 1 +1815 1 18 -2.3 -2.3 -2.3 1 +1815 1 19 -3.0 -3.0 -3.0 1 +1815 1 20 -3.5 -3.5 -3.5 1 +1815 1 21 -4.1 -4.1 -4.1 1 +1815 1 22 -3.6 -3.6 -3.6 1 +1815 1 23 -2.3 -2.3 -2.3 1 +1815 1 24 -0.8 -0.8 -0.8 1 +1815 1 25 -1.3 -1.3 -1.3 1 +1815 1 26 -3.5 -3.5 -3.5 1 +1815 1 27 -6.5 -6.5 -6.5 1 +1815 1 28 -7.6 -7.6 -7.6 1 +1815 1 29 -8.1 -8.1 -8.1 1 +1815 1 30 -9.8 -9.8 -9.8 1 +1815 1 31 -11.0 -11.0 -11.0 1 +1815 2 1 -9.5 -9.5 -9.5 1 +1815 2 2 -6.8 -6.8 -6.8 1 +1815 2 3 -6.5 -6.5 -6.5 1 +1815 2 4 -8.5 -8.5 -8.5 1 +1815 2 5 -4.6 -4.6 -4.6 1 +1815 2 6 -4.0 -4.0 -4.0 1 +1815 2 7 -2.3 -2.3 -2.3 1 +1815 2 8 -2.3 -2.3 -2.3 1 +1815 2 9 -0.8 -0.8 -0.8 1 +1815 2 10 -1.3 -1.3 -1.3 1 +1815 2 11 -2.1 -2.1 -2.1 1 +1815 2 12 -2.3 -2.3 -2.3 1 +1815 2 13 -2.0 -2.0 -2.0 1 +1815 2 14 -0.5 -0.5 -0.5 1 +1815 2 15 0.5 0.5 0.5 1 +1815 2 16 0.5 0.5 0.5 1 +1815 2 17 1.2 1.2 1.2 1 +1815 2 18 -4.9 -4.9 -4.9 1 +1815 2 19 -6.5 -6.5 -6.5 1 +1815 2 20 -5.8 -5.8 -5.8 1 +1815 2 21 -6.0 -6.0 -6.0 1 +1815 2 22 -6.3 -6.3 -6.3 1 +1815 2 23 1.8 1.8 1.8 1 +1815 2 24 -0.2 -0.2 -0.2 1 +1815 2 25 3.0 3.0 3.0 1 +1815 2 26 4.2 4.2 4.2 1 +1815 2 27 3.2 3.2 3.2 1 +1815 2 28 2.5 2.5 2.5 1 +1815 3 1 -0.1 -0.1 -0.1 1 +1815 3 2 0.5 0.5 0.5 1 +1815 3 3 1.2 1.2 1.2 1 +1815 3 4 2.9 2.9 2.9 1 +1815 3 5 1.2 1.2 1.2 1 +1815 3 6 2.1 2.1 2.1 1 +1815 3 7 0.4 0.4 0.4 1 +1815 3 8 2.1 2.1 2.1 1 +1815 3 9 2.6 2.6 2.6 1 +1815 3 10 0.4 0.4 0.4 1 +1815 3 11 -0.6 -0.6 -0.6 1 +1815 3 12 0.6 0.6 0.6 1 +1815 3 13 0.0 0.0 0.0 1 +1815 3 14 -0.4 -0.4 -0.4 1 +1815 3 15 -2.9 -2.9 -2.9 1 +1815 3 16 -2.9 -2.9 -2.9 1 +1815 3 17 -3.4 -3.4 -3.4 1 +1815 3 18 -4.5 -4.5 -4.5 1 +1815 3 19 -7.7 -7.7 -7.7 1 +1815 3 20 -9.3 -9.3 -9.3 1 +1815 3 21 2.7 2.7 2.7 1 +1815 3 22 4.7 4.7 4.7 1 +1815 3 23 4.7 4.7 4.7 1 +1815 3 24 2.7 2.7 2.7 1 +1815 3 25 0.0 0.0 0.0 1 +1815 3 26 0.4 0.4 0.4 1 +1815 3 27 -1.1 -1.1 -1.1 1 +1815 3 28 -4.3 -4.3 -4.3 1 +1815 3 29 -1.1 -1.1 -1.1 1 +1815 3 30 1.9 1.9 1.9 1 +1815 3 31 3.4 3.4 3.4 1 +1815 4 1 7.4 7.4 7.4 1 +1815 4 2 10.9 10.9 10.9 1 +1815 4 3 8.1 8.1 8.1 1 +1815 4 4 7.8 7.8 7.8 1 +1815 4 5 3.9 3.9 3.9 1 +1815 4 6 3.1 3.1 3.1 1 +1815 4 7 4.8 4.8 4.8 1 +1815 4 8 4.2 4.2 4.2 1 +1815 4 9 3.2 3.2 3.2 1 +1815 4 10 5.2 5.2 5.2 1 +1815 4 11 6.9 6.9 6.9 1 +1815 4 12 7.2 7.2 7.2 1 +1815 4 13 9.2 9.2 9.2 1 +1815 4 14 7.9 7.9 7.9 1 +1815 4 15 0.8 0.8 0.8 1 +1815 4 16 -0.2 -0.2 -0.2 1 +1815 4 17 0.0 0.0 0.0 1 +1815 4 18 4.3 4.3 4.3 1 +1815 4 19 4.2 4.2 4.2 1 +1815 4 20 4.2 4.2 4.2 1 +1815 4 21 3.7 3.7 3.7 1 +1815 4 22 2.6 2.6 2.6 1 +1815 4 23 2.7 2.7 2.7 1 +1815 4 24 3.7 3.7 3.7 1 +1815 4 25 6.8 6.8 6.8 1 +1815 4 26 9.4 9.4 9.4 1 +1815 4 27 10.6 10.6 10.6 1 +1815 4 28 7.5 7.5 7.5 1 +1815 4 29 5.0 5.0 5.0 1 +1815 4 30 7.1 7.1 7.1 1 +1815 5 1 8.6 8.6 8.6 1 +1815 5 2 9.7 9.7 9.7 1 +1815 5 3 10.4 10.4 10.4 1 +1815 5 4 6.4 6.4 6.4 1 +1815 5 5 8.1 8.1 8.0 1 +1815 5 6 12.7 12.7 12.6 1 +1815 5 7 5.7 5.7 5.6 1 +1815 5 8 3.7 3.7 3.6 1 +1815 5 9 6.6 6.6 6.5 1 +1815 5 10 8.6 8.6 8.4 1 +1815 5 11 11.6 11.6 11.4 1 +1815 5 12 7.6 7.6 7.4 1 +1815 5 13 9.9 9.9 9.7 1 +1815 5 14 11.4 11.4 11.1 1 +1815 5 15 11.8 11.8 11.5 1 +1815 5 16 12.1 12.1 11.8 1 +1815 5 17 14.6 14.6 14.3 1 +1815 5 18 10.6 10.6 10.3 1 +1815 5 19 9.6 9.6 9.2 1 +1815 5 20 8.1 8.1 7.7 1 +1815 5 21 8.0 8.0 7.6 1 +1815 5 22 8.0 8.0 7.6 1 +1815 5 23 9.3 9.3 8.8 1 +1815 5 24 10.8 10.8 10.3 1 +1815 5 25 8.1 8.1 7.6 1 +1815 5 26 6.1 6.1 5.6 1 +1815 5 27 4.2 4.2 3.7 1 +1815 5 28 5.8 5.8 5.2 1 +1815 5 29 6.5 6.5 5.9 1 +1815 5 30 6.7 6.7 6.1 1 +1815 5 31 7.8 7.8 7.2 1 +1815 6 1 5.2 5.2 4.5 1 +1815 6 2 6.3 6.3 5.6 1 +1815 6 3 5.9 5.9 5.2 1 +1815 6 4 4.5 4.5 3.8 1 +1815 6 5 9.2 9.2 8.5 1 +1815 6 6 6.0 6.0 5.3 1 +1815 6 7 7.8 7.8 7.1 1 +1815 6 8 10.3 10.3 9.6 1 +1815 6 9 10.3 10.3 9.6 1 +1815 6 10 14.5 14.5 13.8 1 +1815 6 11 16.5 16.5 15.8 1 +1815 6 12 17.0 17.0 16.3 1 +1815 6 13 12.6 12.6 11.9 1 +1815 6 14 12.8 12.8 12.1 1 +1815 6 15 11.5 11.5 10.8 1 +1815 6 16 13.7 13.7 13.0 1 +1815 6 17 14.9 14.9 14.2 1 +1815 6 18 11.8 11.8 11.1 1 +1815 6 19 11.5 11.5 10.8 1 +1815 6 20 13.7 13.7 13.0 1 +1815 6 21 14.1 14.1 13.4 1 +1815 6 22 15.6 15.6 14.9 1 +1815 6 23 12.2 12.2 11.5 1 +1815 6 24 10.8 10.8 10.1 1 +1815 6 25 13.0 13.0 12.3 1 +1815 6 26 11.3 11.3 10.6 1 +1815 6 27 12.3 12.3 11.6 1 +1815 6 28 16.1 16.1 15.4 1 +1815 6 29 16.6 16.6 15.9 1 +1815 6 30 18.0 18.0 17.3 1 +1815 7 1 16.8 16.8 16.1 1 +1815 7 2 16.7 16.7 16.0 1 +1815 7 3 12.2 12.2 11.5 1 +1815 7 4 13.0 13.0 12.3 1 +1815 7 5 13.3 13.3 12.6 1 +1815 7 6 12.8 12.8 12.1 1 +1815 7 7 13.2 13.2 12.5 1 +1815 7 8 13.2 13.2 12.5 1 +1815 7 9 17.2 17.2 16.5 1 +1815 7 10 17.2 17.2 16.5 1 +1815 7 11 14.5 14.5 13.8 1 +1815 7 12 16.2 16.2 15.5 1 +1815 7 13 17.2 17.2 16.5 1 +1815 7 14 19.3 19.3 18.6 1 +1815 7 15 19.3 19.3 18.6 1 +1815 7 16 17.1 17.1 16.4 1 +1815 7 17 19.2 19.2 18.5 1 +1815 7 18 18.1 18.1 17.4 1 +1815 7 19 16.4 16.4 15.7 1 +1815 7 20 14.7 14.7 14.0 1 +1815 7 21 16.7 16.7 16.0 1 +1815 7 22 15.6 15.6 14.9 1 +1815 7 23 16.0 16.0 15.3 1 +1815 7 24 16.2 16.2 15.5 1 +1815 7 25 16.1 16.1 15.4 1 +1815 7 26 15.8 15.8 15.1 1 +1815 7 27 16.1 16.1 15.4 1 +1815 7 28 16.4 16.4 15.7 1 +1815 7 29 15.6 15.6 14.9 1 +1815 7 30 12.0 12.0 11.3 1 +1815 7 31 12.7 12.7 12.0 1 +1815 8 1 12.5 12.5 11.9 1 +1815 8 2 12.9 12.9 12.3 1 +1815 8 3 14.8 14.8 14.2 1 +1815 8 4 14.6 14.6 14.0 1 +1815 8 5 14.5 14.5 14.0 1 +1815 8 6 18.1 18.1 17.6 1 +1815 8 7 17.6 17.6 17.1 1 +1815 8 8 18.4 18.4 17.9 1 +1815 8 9 17.6 17.6 17.1 1 +1815 8 10 17.4 17.4 17.0 1 +1815 8 11 18.3 18.3 17.9 1 +1815 8 12 17.4 17.4 17.0 1 +1815 8 13 18.0 18.0 17.6 1 +1815 8 14 17.8 17.8 17.5 1 +1815 8 15 16.3 16.3 16.0 1 +1815 8 16 16.3 16.3 16.0 1 +1815 8 17 16.0 16.0 15.7 1 +1815 8 18 16.1 16.1 15.8 1 +1815 8 19 16.1 16.1 15.9 1 +1815 8 20 16.0 16.0 15.8 1 +1815 8 21 14.3 14.3 14.1 1 +1815 8 22 14.4 14.4 14.2 1 +1815 8 23 13.6 13.6 13.5 1 +1815 8 24 17.6 17.6 17.5 1 +1815 8 25 19.0 19.0 18.9 1 +1815 8 26 18.3 18.3 18.2 1 +1815 8 27 17.6 17.6 17.5 1 +1815 8 28 18.6 18.6 18.6 1 +1815 8 29 19.4 19.4 19.4 1 +1815 8 30 16.9 16.9 16.9 1 +1815 8 31 15.7 15.7 15.7 1 +1815 9 1 16.5 16.5 16.5 1 +1815 9 2 15.2 15.2 15.2 1 +1815 9 3 16.2 16.2 16.2 1 +1815 9 4 14.8 14.8 14.8 1 +1815 9 5 10.8 10.8 10.8 1 +1815 9 6 10.8 10.8 10.8 1 +1815 9 7 10.0 10.0 10.0 1 +1815 9 8 9.5 9.5 9.5 1 +1815 9 9 8.6 8.6 8.6 1 +1815 9 10 12.8 12.8 12.8 1 +1815 9 11 12.5 12.5 12.5 1 +1815 9 12 12.1 12.1 12.1 1 +1815 9 13 11.8 11.8 11.8 1 +1815 9 14 11.7 11.7 11.7 1 +1815 9 15 11.4 11.4 11.4 1 +1815 9 16 9.1 9.1 9.1 1 +1815 9 17 10.1 10.1 10.1 1 +1815 9 18 8.7 8.7 8.7 1 +1815 9 19 8.1 8.1 8.1 1 +1815 9 20 7.4 7.4 7.4 1 +1815 9 21 10.1 10.1 10.1 1 +1815 9 22 10.0 10.0 10.0 1 +1815 9 23 10.4 10.4 10.4 1 +1815 9 24 10.7 10.7 10.7 1 +1815 9 25 11.0 11.0 11.0 1 +1815 9 26 11.5 11.5 11.5 1 +1815 9 27 11.0 11.0 11.0 1 +1815 9 28 10.2 10.2 10.2 1 +1815 9 29 11.3 11.3 11.3 1 +1815 9 30 11.3 11.3 11.3 1 +1815 10 1 11.3 11.3 11.3 1 +1815 10 2 11.6 11.6 11.6 1 +1815 10 3 12.0 12.0 12.0 1 +1815 10 4 11.6 11.6 11.6 1 +1815 10 5 10.6 10.6 10.6 1 +1815 10 6 8.9 8.9 8.9 1 +1815 10 7 9.6 9.6 9.6 1 +1815 10 8 10.6 10.6 10.6 1 +1815 10 9 6.2 6.2 6.2 1 +1815 10 10 5.1 5.1 5.1 1 +1815 10 11 6.9 6.9 6.9 1 +1815 10 12 6.3 6.3 6.3 1 +1815 10 13 6.3 6.3 6.3 1 +1815 10 14 5.6 5.6 5.6 1 +1815 10 15 5.9 5.9 5.9 1 +1815 10 16 4.9 4.9 4.9 1 +1815 10 17 7.6 7.6 7.6 1 +1815 10 18 7.6 7.6 7.6 1 +1815 10 19 7.2 7.2 7.2 1 +1815 10 20 5.4 5.4 5.4 1 +1815 10 21 9.2 9.2 9.2 1 +1815 10 22 9.9 9.9 9.9 1 +1815 10 23 7.9 7.9 7.9 1 +1815 10 24 8.9 8.9 8.9 1 +1815 10 25 9.2 9.2 9.2 1 +1815 10 26 8.6 8.6 8.6 1 +1815 10 27 8.9 8.9 8.9 1 +1815 10 28 4.9 4.9 4.9 1 +1815 10 29 3.6 3.6 3.6 1 +1815 10 30 1.9 1.9 1.9 1 +1815 10 31 -1.5 -1.5 -1.5 1 +1815 11 1 3.5 3.5 3.5 1 +1815 11 2 3.9 3.9 3.9 1 +1815 11 3 0.0 0.0 0.0 1 +1815 11 4 0.2 0.2 0.2 1 +1815 11 5 3.8 3.8 3.8 1 +1815 11 6 2.2 2.2 2.2 1 +1815 11 7 5.7 5.7 5.7 1 +1815 11 8 2.2 2.2 2.2 1 +1815 11 9 2.7 2.7 2.7 1 +1815 11 10 5.4 5.4 5.4 1 +1815 11 11 5.0 5.0 5.0 1 +1815 11 12 6.2 6.2 6.2 1 +1815 11 13 7.1 7.1 7.1 1 +1815 11 14 7.2 7.2 7.2 1 +1815 11 15 5.4 5.4 5.4 1 +1815 11 16 5.4 5.4 5.4 1 +1815 11 17 4.0 4.0 4.0 1 +1815 11 18 4.0 4.0 4.0 1 +1815 11 19 2.5 2.5 2.5 1 +1815 11 20 -1.3 -1.3 -1.3 1 +1815 11 21 -0.7 -0.7 -0.7 1 +1815 11 22 -2.4 -2.4 -2.4 1 +1815 11 23 1.6 1.6 1.6 1 +1815 11 24 -0.6 -0.6 -0.6 1 +1815 11 25 -1.6 -1.6 -1.6 1 +1815 11 26 -1.3 -1.3 -1.3 1 +1815 11 27 0.1 0.1 0.1 1 +1815 11 28 -1.1 -1.1 -1.1 1 +1815 11 29 1.4 1.4 1.4 1 +1815 11 30 0.5 0.5 0.5 1 +1815 12 1 0.1 0.1 0.1 1 +1815 12 2 -3.1 -3.1 -3.1 1 +1815 12 3 -3.6 -3.6 -3.6 1 +1815 12 4 -1.6 -1.6 -1.6 1 +1815 12 5 -1.3 -1.3 -1.3 1 +1815 12 6 -8.3 -8.3 -8.3 1 +1815 12 7 -12.1 -12.1 -12.1 1 +1815 12 8 -4.3 -4.3 -4.3 1 +1815 12 9 -2.4 -2.4 -2.4 1 +1815 12 10 -3.8 -3.8 -3.8 1 +1815 12 11 -2.4 -2.4 -2.4 1 +1815 12 12 -0.9 -0.9 -0.9 1 +1815 12 13 -0.1 -0.1 -0.1 1 +1815 12 14 0.9 0.9 0.9 1 +1815 12 15 2.6 2.6 2.6 1 +1815 12 16 2.6 2.6 2.6 1 +1815 12 17 1.1 1.1 1.1 1 +1815 12 18 -6.6 -6.6 -6.6 1 +1815 12 19 -4.6 -4.6 -4.6 1 +1815 12 20 -2.4 -2.4 -2.4 1 +1815 12 21 -2.9 -2.9 -2.9 1 +1815 12 22 -3.1 -3.1 -3.1 1 +1815 12 23 -9.9 -9.9 -9.9 1 +1815 12 24 -0.3 -0.3 -0.3 1 +1815 12 25 0.4 0.4 0.4 1 +1815 12 26 -3.2 -3.2 -3.2 1 +1815 12 27 -2.4 -2.4 -2.4 1 +1815 12 28 0.9 0.9 0.9 1 +1815 12 29 -2.6 -2.6 -2.6 1 +1815 12 30 -6.4 -6.4 -6.4 1 +1815 12 31 -9.4 -9.4 -9.4 1 +1816 1 1 0.9 0.9 0.9 1 +1816 1 2 2.1 2.1 2.1 1 +1816 1 3 -4.6 -4.6 -4.6 1 +1816 1 4 -5.4 -5.4 -5.4 1 +1816 1 5 -7.6 -7.6 -7.6 1 +1816 1 6 -5.5 -5.5 -5.5 1 +1816 1 7 -1.0 -1.0 -1.0 1 +1816 1 8 -9.6 -9.6 -9.6 1 +1816 1 9 -6.4 -6.4 -6.4 1 +1816 1 10 -3.5 -3.5 -3.5 1 +1816 1 11 -0.2 -0.2 -0.2 1 +1816 1 12 1.9 1.9 1.9 1 +1816 1 13 1.5 1.5 1.5 1 +1816 1 14 1.4 1.4 1.4 1 +1816 1 15 0.0 0.0 0.0 1 +1816 1 16 1.1 1.1 1.1 1 +1816 1 17 0.9 0.9 0.9 1 +1816 1 18 2.0 2.0 2.0 1 +1816 1 19 2.5 2.5 2.5 1 +1816 1 20 1.2 1.2 1.2 1 +1816 1 21 1.1 1.1 1.1 1 +1816 1 22 -0.1 -0.1 -0.1 1 +1816 1 23 -3.0 -3.0 -3.0 1 +1816 1 24 -0.8 -0.8 -0.8 1 +1816 1 25 -5.0 -5.0 -5.0 1 +1816 1 26 -8.8 -8.8 -8.8 1 +1816 1 27 -12.8 -12.8 -12.8 1 +1816 1 28 -16.5 -16.5 -16.5 1 +1816 1 29 -14.2 -14.2 -14.2 1 +1816 1 30 -9.2 -9.2 -9.2 1 +1816 1 31 -6.2 -6.2 -6.2 1 +1816 2 1 -4.8 -4.8 -4.8 1 +1816 2 2 -9.0 -9.0 -9.0 1 +1816 2 3 -11.8 -11.8 -11.8 1 +1816 2 4 -18.5 -18.5 -18.5 1 +1816 2 5 -17.5 -17.5 -17.5 1 +1816 2 6 -18.1 -18.1 -18.1 1 +1816 2 7 -13.8 -13.8 -13.8 1 +1816 2 8 -17.3 -17.3 -17.3 1 +1816 2 9 -16.2 -16.2 -16.2 1 +1816 2 10 -6.2 -6.2 -6.2 1 +1816 2 11 -10.2 -10.2 -10.2 1 +1816 2 12 -12.0 -12.0 -12.0 1 +1816 2 13 -4.5 -4.5 -4.5 1 +1816 2 14 -5.0 -5.0 -5.0 1 +1816 2 15 0.5 0.5 0.5 1 +1816 2 16 -1.8 -1.8 -1.8 1 +1816 2 17 -12.7 -12.7 -12.7 1 +1816 2 18 -12.0 -12.0 -12.0 1 +1816 2 19 -12.0 -12.0 -12.0 1 +1816 2 20 -5.8 -5.8 -5.8 1 +1816 2 21 2.4 2.4 2.4 1 +1816 2 22 -5.6 -5.6 -5.6 1 +1816 2 23 -0.7 -0.7 -0.7 1 +1816 2 24 1.4 1.4 1.4 1 +1816 2 25 1.6 1.6 1.6 1 +1816 2 26 1.4 1.4 1.4 1 +1816 2 27 -1.8 -1.8 -1.8 1 +1816 2 28 -5.4 -5.4 -5.4 1 +1816 2 29 -6.9 -6.9 -6.9 1 +1816 3 1 -9.6 -9.6 -9.6 1 +1816 3 2 -13.6 -13.6 -13.6 1 +1816 3 3 -9.8 -9.8 -9.8 1 +1816 3 4 -10.1 -10.1 -10.1 1 +1816 3 5 -11.4 -11.4 -11.4 1 +1816 3 6 -12.4 -12.4 -12.4 1 +1816 3 7 -13.2 -13.2 -13.2 1 +1816 3 8 -5.0 -5.0 -5.0 1 +1816 3 9 -9.4 -9.4 -9.4 1 +1816 3 10 -7.6 -7.6 -7.6 1 +1816 3 11 -3.2 -3.2 -3.2 1 +1816 3 12 2.0 2.0 2.0 1 +1816 3 13 2.1 2.1 2.1 1 +1816 3 14 1.3 1.3 1.3 1 +1816 3 15 -1.7 -1.7 -1.7 1 +1816 3 16 2.3 2.3 2.3 1 +1816 3 17 2.0 2.0 2.0 1 +1816 3 18 0.3 0.3 0.3 1 +1816 3 19 1.0 1.0 1.0 1 +1816 3 20 0.3 0.3 0.3 1 +1816 3 21 -1.9 -1.9 -1.9 1 +1816 3 22 -1.1 -1.1 -1.1 1 +1816 3 23 -1.3 -1.3 -1.3 1 +1816 3 24 -1.0 -1.0 -1.0 1 +1816 3 25 2.0 2.0 2.0 1 +1816 3 26 1.0 1.0 1.0 1 +1816 3 27 -0.3 -0.3 -0.3 1 +1816 3 28 0.2 0.2 0.2 1 +1816 3 29 -0.6 -0.6 -0.6 1 +1816 3 30 0.9 0.9 0.9 1 +1816 3 31 -1.0 -1.0 -1.0 1 +1816 4 1 -3.0 -3.0 -3.0 1 +1816 4 2 -3.6 -3.6 -3.6 1 +1816 4 3 -1.8 -1.8 -1.8 1 +1816 4 4 -0.6 -0.6 -0.6 1 +1816 4 5 0.2 0.2 0.2 1 +1816 4 6 -1.0 -1.0 -1.0 1 +1816 4 7 -0.6 -0.6 -0.6 1 +1816 4 8 -0.5 -0.5 -0.5 1 +1816 4 9 -0.1 -0.1 -0.1 1 +1816 4 10 2.6 2.6 2.6 1 +1816 4 11 4.2 4.2 4.2 1 +1816 4 12 5.4 5.4 5.4 1 +1816 4 13 4.4 4.4 4.4 1 +1816 4 14 4.0 4.0 4.0 1 +1816 4 15 0.9 0.9 0.9 1 +1816 4 16 2.7 2.7 2.7 1 +1816 4 17 3.4 3.4 3.4 1 +1816 4 18 3.9 3.9 3.9 1 +1816 4 19 6.2 6.2 6.2 1 +1816 4 20 4.5 4.5 4.5 1 +1816 4 21 5.0 5.0 5.0 1 +1816 4 22 5.7 5.7 5.7 1 +1816 4 23 6.2 6.2 6.2 1 +1816 4 24 6.7 6.7 6.7 1 +1816 4 25 8.3 8.3 8.3 1 +1816 4 26 7.0 7.0 7.0 1 +1816 4 27 4.2 4.2 4.2 1 +1816 4 28 4.7 4.7 4.7 1 +1816 4 29 2.8 2.8 2.8 1 +1816 4 30 1.6 1.6 1.6 1 +1816 5 1 1.3 1.3 1.3 1 +1816 5 2 3.0 3.0 3.0 1 +1816 5 3 3.0 3.0 3.0 1 +1816 5 4 4.0 4.0 4.0 1 +1816 5 5 3.4 3.4 3.3 1 +1816 5 6 1.6 1.6 1.5 1 +1816 5 7 -0.2 -0.2 -0.3 1 +1816 5 8 -2.6 -2.6 -2.7 1 +1816 5 9 -0.7 -0.7 -0.8 1 +1816 5 10 0.4 0.4 0.2 1 +1816 5 11 2.9 2.9 2.7 1 +1816 5 12 2.1 2.1 1.9 1 +1816 5 13 4.1 4.1 3.9 1 +1816 5 14 6.7 6.7 6.4 1 +1816 5 15 4.9 4.9 4.6 1 +1816 5 16 6.5 6.5 6.2 1 +1816 5 17 5.4 5.4 5.1 1 +1816 5 18 5.6 5.6 5.3 1 +1816 5 19 5.6 5.6 5.2 1 +1816 5 20 5.4 5.4 5.0 1 +1816 5 21 8.4 8.4 8.0 1 +1816 5 22 11.0 11.0 10.6 1 +1816 5 23 9.3 9.3 8.8 1 +1816 5 24 9.5 9.5 9.0 1 +1816 5 25 10.2 10.2 9.7 1 +1816 5 26 13.2 13.2 12.7 1 +1816 5 27 16.0 16.0 15.5 1 +1816 5 28 11.2 11.2 10.6 1 +1816 5 29 11.1 11.1 10.5 1 +1816 5 30 12.5 12.5 11.9 1 +1816 5 31 12.5 12.5 11.9 1 +1816 6 1 12.4 12.4 11.7 1 +1816 6 2 12.4 12.4 11.7 1 +1816 6 3 10.8 10.8 10.1 1 +1816 6 4 12.1 12.1 11.4 1 +1816 6 5 8.5 8.5 7.8 1 +1816 6 6 9.0 9.0 8.3 1 +1816 6 7 12.8 12.8 12.1 1 +1816 6 8 11.1 11.1 10.4 1 +1816 6 9 11.1 11.1 10.4 1 +1816 6 10 10.1 10.1 9.4 1 +1816 6 11 14.6 14.6 13.9 1 +1816 6 12 15.4 15.4 14.7 1 +1816 6 13 18.2 18.2 17.5 1 +1816 6 14 20.7 20.7 20.0 1 +1816 6 15 20.1 20.1 19.4 1 +1816 6 16 18.9 18.9 18.2 1 +1816 6 17 16.9 16.9 16.2 1 +1816 6 18 13.7 13.7 13.0 1 +1816 6 19 14.4 14.4 13.7 1 +1816 6 20 17.4 17.4 16.7 1 +1816 6 21 16.7 16.7 16.0 1 +1816 6 22 14.4 14.4 13.7 1 +1816 6 23 16.4 16.4 15.7 1 +1816 6 24 18.4 18.4 17.7 1 +1816 6 25 18.1 18.1 17.4 1 +1816 6 26 20.6 20.6 19.9 1 +1816 6 27 15.4 15.4 14.7 1 +1816 6 28 17.1 17.1 16.4 1 +1816 6 29 21.3 21.3 20.6 1 +1816 6 30 18.8 18.8 18.1 1 +1816 7 1 17.6 17.6 16.9 1 +1816 7 2 19.9 19.9 19.2 1 +1816 7 3 19.3 19.3 18.6 1 +1816 7 4 18.8 18.8 18.1 1 +1816 7 5 17.6 17.6 16.9 1 +1816 7 6 20.6 20.6 19.9 1 +1816 7 7 20.8 20.8 20.1 1 +1816 7 8 22.0 22.0 21.3 1 +1816 7 9 21.3 21.3 20.6 1 +1816 7 10 20.0 20.0 19.3 1 +1816 7 11 19.2 19.2 18.5 1 +1816 7 12 19.5 19.5 18.8 1 +1816 7 13 15.2 15.2 14.5 1 +1816 7 14 18.8 18.8 18.1 1 +1816 7 15 18.7 18.7 18.0 1 +1816 7 16 18.2 18.2 17.5 1 +1816 7 17 16.9 16.9 16.2 1 +1816 7 18 18.1 18.1 17.4 1 +1816 7 19 17.4 17.4 16.7 1 +1816 7 20 19.0 19.0 18.3 1 +1816 7 21 21.2 21.2 20.5 1 +1816 7 22 19.6 19.6 18.9 1 +1816 7 23 16.9 16.9 16.2 1 +1816 7 24 19.4 19.4 18.7 1 +1816 7 25 18.7 18.7 18.0 1 +1816 7 26 18.3 18.3 17.6 1 +1816 7 27 17.6 17.6 16.9 1 +1816 7 28 14.8 14.8 14.1 1 +1816 7 29 17.6 17.6 16.9 1 +1816 7 30 17.4 17.4 16.7 1 +1816 7 31 15.1 15.1 14.4 1 +1816 8 1 15.6 15.6 15.0 1 +1816 8 2 18.3 18.3 17.7 1 +1816 8 3 15.3 15.3 14.7 1 +1816 8 4 16.5 16.5 15.9 1 +1816 8 5 14.8 14.8 14.3 1 +1816 8 6 15.0 15.0 14.5 1 +1816 8 7 15.5 15.5 15.0 1 +1816 8 8 16.0 16.0 15.5 1 +1816 8 9 18.5 18.5 18.0 1 +1816 8 10 17.5 17.5 17.1 1 +1816 8 11 17.7 17.7 17.3 1 +1816 8 12 16.9 16.9 16.5 1 +1816 8 13 16.2 16.2 15.8 1 +1816 8 14 16.5 16.5 16.2 1 +1816 8 15 17.7 17.7 17.4 1 +1816 8 16 16.6 16.6 16.3 1 +1816 8 17 16.0 16.0 15.7 1 +1816 8 18 16.7 16.7 16.4 1 +1816 8 19 15.9 15.9 15.7 1 +1816 8 20 11.0 11.0 10.8 1 +1816 8 21 12.2 12.2 12.0 1 +1816 8 22 12.1 12.1 11.9 1 +1816 8 23 10.4 10.4 10.3 1 +1816 8 24 9.7 9.7 9.6 1 +1816 8 25 10.7 10.7 10.6 1 +1816 8 26 10.1 10.1 10.0 1 +1816 8 27 12.1 12.1 12.0 1 +1816 8 28 12.2 12.2 12.2 1 +1816 8 29 12.9 12.9 12.9 1 +1816 8 30 14.7 14.7 14.7 1 +1816 8 31 13.4 13.4 13.4 1 +1816 9 1 14.1 14.1 14.1 1 +1816 9 2 14.7 14.7 14.7 1 +1816 9 3 15.4 15.4 15.4 1 +1816 9 4 13.9 13.9 13.9 1 +1816 9 5 12.2 12.2 12.2 1 +1816 9 6 12.4 12.4 12.4 1 +1816 9 7 11.7 11.7 11.7 1 +1816 9 8 12.7 12.7 12.7 1 +1816 9 9 15.1 15.1 15.1 1 +1816 9 10 12.6 12.6 12.6 1 +1816 9 11 13.9 13.9 13.9 1 +1816 9 12 13.2 13.2 13.2 1 +1816 9 13 11.7 11.7 11.7 1 +1816 9 14 10.6 10.6 10.6 1 +1816 9 15 13.9 13.9 13.9 1 +1816 9 16 15.4 15.4 15.4 1 +1816 9 17 14.4 14.4 14.4 1 +1816 9 18 12.2 12.2 12.2 1 +1816 9 19 9.4 9.4 9.4 1 +1816 9 20 9.4 9.4 9.4 1 +1816 9 21 11.5 11.5 11.5 1 +1816 9 22 9.7 9.7 9.7 1 +1816 9 23 10.9 10.9 10.9 1 +1816 9 24 8.4 8.4 8.4 1 +1816 9 25 8.0 8.0 8.0 1 +1816 9 26 7.9 7.9 7.9 1 +1816 9 27 7.3 7.3 7.3 1 +1816 9 28 9.3 9.3 9.3 1 +1816 9 29 9.7 9.7 9.7 1 +1816 9 30 10.3 10.3 10.3 1 +1816 10 1 9.2 9.2 9.2 1 +1816 10 2 9.5 9.5 9.5 1 +1816 10 3 6.0 6.0 6.0 1 +1816 10 4 6.0 6.0 6.0 1 +1816 10 5 3.0 3.0 3.0 1 +1816 10 6 4.0 4.0 4.0 1 +1816 10 7 5.6 5.6 5.6 1 +1816 10 8 7.1 7.1 7.1 1 +1816 10 9 3.8 3.8 3.8 1 +1816 10 10 6.3 6.3 6.3 1 +1816 10 11 1.3 1.3 1.3 1 +1816 10 12 0.2 0.2 0.2 1 +1816 10 13 2.6 2.6 2.6 1 +1816 10 14 5.4 5.4 5.4 1 +1816 10 15 8.6 8.6 8.6 1 +1816 10 16 9.8 9.8 9.8 1 +1816 10 17 7.8 7.8 7.8 1 +1816 10 18 7.7 7.7 7.7 1 +1816 10 19 7.9 7.9 7.9 1 +1816 10 20 8.1 8.1 8.1 1 +1816 10 21 8.6 8.6 8.6 1 +1816 10 22 5.9 5.9 5.9 1 +1816 10 23 6.2 6.2 6.2 1 +1816 10 24 3.4 3.4 3.4 1 +1816 10 25 2.6 2.6 2.6 1 +1816 10 26 4.1 4.1 4.1 1 +1816 10 27 3.9 3.9 3.9 1 +1816 10 28 3.4 3.4 3.4 1 +1816 10 29 2.0 2.0 2.0 1 +1816 10 30 3.5 3.5 3.5 1 +1816 10 31 2.9 2.9 2.9 1 +1816 11 1 5.7 5.7 5.7 1 +1816 11 2 1.9 1.9 1.9 1 +1816 11 3 0.2 0.2 0.2 1 +1816 11 4 2.9 2.9 2.9 1 +1816 11 5 2.4 2.4 2.4 1 +1816 11 6 3.9 3.9 3.9 1 +1816 11 7 5.2 5.2 5.2 1 +1816 11 8 1.5 1.5 1.5 1 +1816 11 9 0.5 0.5 0.5 1 +1816 11 10 4.9 4.9 4.9 1 +1816 11 11 3.2 3.2 3.2 1 +1816 11 12 0.5 0.5 0.5 1 +1816 11 13 0.9 0.9 0.9 1 +1816 11 14 1.2 1.2 1.2 1 +1816 11 15 -3.5 -3.5 -3.5 1 +1816 11 16 -1.3 -1.3 -1.3 1 +1816 11 17 -8.4 -8.4 -8.4 1 +1816 11 18 -10.3 -10.3 -10.3 1 +1816 11 19 -10.3 -10.3 -10.3 1 +1816 11 20 -3.0 -3.0 -3.0 1 +1816 11 21 0.7 0.7 0.7 1 +1816 11 22 -0.8 -0.8 -0.8 1 +1816 11 23 1.1 1.1 1.1 1 +1816 11 24 0.9 0.9 0.9 1 +1816 11 25 -0.3 -0.3 -0.3 1 +1816 11 26 1.8 1.8 1.8 1 +1816 11 27 2.1 2.1 2.1 1 +1816 11 28 5.2 5.2 5.2 1 +1816 11 29 5.1 5.1 5.1 1 +1816 11 30 1.6 1.6 1.6 1 +1816 12 1 -0.1 -0.1 -0.1 1 +1816 12 2 -1.1 -1.1 -1.1 1 +1816 12 3 2.9 2.9 2.9 1 +1816 12 4 -0.1 -0.1 -0.1 1 +1816 12 5 -1.1 -1.1 -1.1 1 +1816 12 6 -2.3 -2.3 -2.3 1 +1816 12 7 -0.4 -0.4 -0.4 1 +1816 12 8 1.1 1.1 1.1 1 +1816 12 9 0.1 0.1 0.1 1 +1816 12 10 -0.9 -0.9 -0.9 1 +1816 12 11 -0.6 -0.6 -0.6 1 +1816 12 12 0.9 0.9 0.9 1 +1816 12 13 0.1 0.1 0.1 1 +1816 12 14 -4.4 -4.4 -4.4 1 +1816 12 15 -4.6 -4.6 -4.6 1 +1816 12 16 -0.2 -0.2 -0.2 1 +1816 12 17 -2.1 -2.1 -2.1 1 +1816 12 18 -5.2 -5.2 -5.2 1 +1816 12 19 -6.4 -6.4 -6.4 1 +1816 12 20 -7.4 -7.4 -7.4 1 +1816 12 21 -5.3 -5.3 -5.3 1 +1816 12 22 -1.4 -1.4 -1.4 1 +1816 12 23 -0.7 -0.7 -0.7 1 +1816 12 24 1.4 1.4 1.4 1 +1816 12 25 0.9 0.9 0.9 1 +1816 12 26 2.6 2.6 2.6 1 +1816 12 27 2.6 2.6 2.6 1 +1816 12 28 1.3 1.3 1.3 1 +1816 12 29 1.9 1.9 1.9 1 +1816 12 30 -0.8 -0.8 -0.8 1 +1816 12 31 -4.0 -4.0 -4.0 1 +1817 1 1 -7.6 -7.6 -7.6 1 +1817 1 2 0.4 0.4 0.4 1 +1817 1 3 1.4 1.4 1.4 1 +1817 1 4 1.2 1.2 1.2 1 +1817 1 5 1.7 1.7 1.7 1 +1817 1 6 -0.1 -0.1 -0.1 1 +1817 1 7 -1.8 -1.8 -1.8 1 +1817 1 8 -3.3 -3.3 -3.3 1 +1817 1 9 0.3 0.3 0.3 1 +1817 1 10 3.7 3.7 3.7 1 +1817 1 11 4.5 4.5 4.5 1 +1817 1 12 3.5 3.5 3.5 1 +1817 1 13 1.4 1.4 1.4 1 +1817 1 14 0.9 0.9 0.9 1 +1817 1 15 0.9 0.9 0.9 1 +1817 1 16 -0.6 -0.6 -0.6 1 +1817 1 17 -1.8 -1.8 -1.8 1 +1817 1 18 0.7 0.7 0.7 1 +1817 1 19 0.6 0.6 0.6 1 +1817 1 20 0.7 0.7 0.7 1 +1817 1 21 2.2 2.2 2.2 1 +1817 1 22 2.6 2.6 2.6 1 +1817 1 23 3.9 3.9 3.9 1 +1817 1 24 2.0 2.0 2.0 1 +1817 1 25 -2.3 -2.3 -2.3 1 +1817 1 26 2.7 2.7 2.7 1 +1817 1 27 1.5 1.5 1.5 1 +1817 1 28 0.2 0.2 0.2 1 +1817 1 29 0.5 0.5 0.5 1 +1817 1 30 0.0 0.0 0.0 1 +1817 1 31 0.3 0.3 0.3 1 +1817 2 1 -1.2 -1.2 -1.2 1 +1817 2 2 -0.3 -0.3 -0.3 1 +1817 2 3 5.0 5.0 5.0 1 +1817 2 4 1.7 1.7 1.7 1 +1817 2 5 2.2 2.2 2.2 1 +1817 2 6 0.0 0.0 0.0 1 +1817 2 7 1.4 1.4 1.4 1 +1817 2 8 2.5 2.5 2.5 1 +1817 2 9 1.8 1.8 1.8 1 +1817 2 10 0.5 0.5 0.5 1 +1817 2 11 -1.7 -1.7 -1.7 1 +1817 2 12 -2.3 -2.3 -2.3 1 +1817 2 13 -4.5 -4.5 -4.5 1 +1817 2 14 -7.7 -7.7 -7.7 1 +1817 2 15 -3.3 -3.3 -3.3 1 +1817 2 16 1.0 1.0 1.0 1 +1817 2 17 -2.9 -2.9 -2.9 1 +1817 2 18 3.0 3.0 3.0 1 +1817 2 19 0.4 0.4 0.4 1 +1817 2 20 0.7 0.7 0.7 1 +1817 2 21 1.2 1.2 1.2 1 +1817 2 22 -0.1 -0.1 -0.1 1 +1817 2 23 -2.3 -2.3 -2.3 1 +1817 2 24 0.6 0.6 0.6 1 +1817 2 25 -0.4 -0.4 -0.4 1 +1817 2 26 0.6 0.6 0.6 1 +1817 2 27 -1.8 -1.8 -1.8 1 +1817 2 28 -4.2 -4.2 -4.2 1 +1817 3 1 -7.6 -7.6 -7.6 1 +1817 3 2 -0.4 -0.4 -0.4 1 +1817 3 3 0.9 0.9 0.9 1 +1817 3 4 -1.7 -1.7 -1.7 1 +1817 3 5 -7.1 -7.1 -7.1 1 +1817 3 6 -8.9 -8.9 -8.9 1 +1817 3 7 -5.7 -5.7 -5.7 1 +1817 3 8 -9.2 -9.2 -9.2 1 +1817 3 9 -12.6 -12.6 -12.6 1 +1817 3 10 -10.5 -10.5 -10.5 1 +1817 3 11 -9.7 -9.7 -9.7 1 +1817 3 12 -1.0 -1.0 -1.0 1 +1817 3 13 2.3 2.3 2.3 1 +1817 3 14 1.3 1.3 1.3 1 +1817 3 15 -4.2 -4.2 -4.2 1 +1817 3 16 -4.0 -4.0 -4.0 1 +1817 3 17 -0.5 -0.5 -0.5 1 +1817 3 18 2.7 2.7 2.7 1 +1817 3 19 3.0 3.0 3.0 1 +1817 3 20 2.8 2.8 2.8 1 +1817 3 21 0.0 0.0 0.0 1 +1817 3 22 -3.8 -3.8 -3.8 1 +1817 3 23 -6.3 -6.3 -6.3 1 +1817 3 24 -5.7 -5.7 -5.7 1 +1817 3 25 -0.2 -0.2 -0.2 1 +1817 3 26 2.2 2.2 2.2 1 +1817 3 27 2.8 2.8 2.8 1 +1817 3 28 0.4 0.4 0.4 1 +1817 3 29 -0.3 -0.3 -0.3 1 +1817 3 30 2.5 2.5 2.5 1 +1817 3 31 3.7 3.7 3.7 1 +1817 4 1 2.7 2.7 2.7 1 +1817 4 2 6.7 6.7 6.7 1 +1817 4 3 4.0 4.0 4.0 1 +1817 4 4 2.4 2.4 2.4 1 +1817 4 5 1.5 1.5 1.5 1 +1817 4 6 4.0 4.0 4.0 1 +1817 4 7 4.0 4.0 4.0 1 +1817 4 8 7.2 7.2 7.2 1 +1817 4 9 1.5 1.5 1.5 1 +1817 4 10 -1.8 -1.8 -1.8 1 +1817 4 11 -0.6 -0.6 -0.6 1 +1817 4 12 -0.6 -0.6 -0.6 1 +1817 4 13 -0.5 -0.5 -0.5 1 +1817 4 14 2.4 2.4 2.4 1 +1817 4 15 2.9 2.9 2.9 1 +1817 4 16 1.9 1.9 1.9 1 +1817 4 17 -0.3 -0.3 -0.3 1 +1817 4 18 -0.7 -0.7 -0.7 1 +1817 4 19 2.5 2.5 2.5 1 +1817 4 20 1.4 1.4 1.4 1 +1817 4 21 2.4 2.4 2.4 1 +1817 4 22 4.4 4.4 4.4 1 +1817 4 23 5.5 5.5 5.5 1 +1817 4 24 4.8 4.8 4.8 1 +1817 4 25 1.0 1.0 1.0 1 +1817 4 26 1.2 1.2 1.2 1 +1817 4 27 0.7 0.7 0.7 1 +1817 4 28 2.3 2.3 2.3 1 +1817 4 29 5.3 5.3 5.3 1 +1817 4 30 7.6 7.6 7.6 1 +1817 5 1 6.6 6.6 6.6 1 +1817 5 2 8.0 8.0 8.0 1 +1817 5 3 11.0 11.0 11.0 1 +1817 5 4 10.8 10.8 10.8 1 +1817 5 5 9.0 9.0 8.9 1 +1817 5 6 8.6 8.6 8.5 1 +1817 5 7 5.4 5.4 5.3 1 +1817 5 8 7.4 7.4 7.3 1 +1817 5 9 5.9 5.9 5.8 1 +1817 5 10 6.9 6.9 6.7 1 +1817 5 11 5.6 5.6 5.4 1 +1817 5 12 11.6 11.6 11.4 1 +1817 5 13 9.4 9.4 9.2 1 +1817 5 14 8.9 8.9 8.6 1 +1817 5 15 10.2 10.2 9.9 1 +1817 5 16 8.8 8.8 8.5 1 +1817 5 17 10.2 10.2 9.9 1 +1817 5 18 12.0 12.0 11.7 1 +1817 5 19 7.9 7.9 7.5 1 +1817 5 20 9.6 9.6 9.2 1 +1817 5 21 10.0 10.0 9.6 1 +1817 5 22 12.8 12.8 12.4 1 +1817 5 23 13.5 13.5 13.0 1 +1817 5 24 15.5 15.5 15.0 1 +1817 5 25 15.2 15.2 14.7 1 +1817 5 26 15.8 15.8 15.3 1 +1817 5 27 15.3 15.3 14.8 1 +1817 5 28 17.1 17.1 16.5 1 +1817 5 29 18.2 18.2 17.6 1 +1817 5 30 17.2 17.2 16.6 1 +1817 5 31 9.5 9.5 8.9 1 +1817 6 1 13.5 13.5 12.8 1 +1817 6 2 12.2 12.2 11.5 1 +1817 6 3 13.5 13.5 12.8 1 +1817 6 4 13.3 13.3 12.6 1 +1817 6 5 12.2 12.2 11.5 1 +1817 6 6 12.8 12.8 12.1 1 +1817 6 7 12.2 12.2 11.5 1 +1817 6 8 16.0 16.0 15.3 1 +1817 6 9 13.1 13.1 12.4 1 +1817 6 10 14.6 14.6 13.9 1 +1817 6 11 9.5 9.5 8.8 1 +1817 6 12 9.5 9.5 8.8 1 +1817 6 13 12.0 12.0 11.3 1 +1817 6 14 12.2 12.2 11.5 1 +1817 6 15 14.0 14.0 13.3 1 +1817 6 16 8.3 8.3 7.6 1 +1817 6 17 14.6 14.6 13.9 1 +1817 6 18 16.6 16.6 15.9 1 +1817 6 19 18.9 18.9 18.2 1 +1817 6 20 19.9 19.9 19.2 1 +1817 6 21 20.9 20.9 20.2 1 +1817 6 22 22.3 22.3 21.6 1 +1817 6 23 15.3 15.3 14.6 1 +1817 6 24 13.1 13.1 12.4 1 +1817 6 25 13.8 13.8 13.1 1 +1817 6 26 11.1 11.1 10.4 1 +1817 6 27 12.0 12.0 11.3 1 +1817 6 28 14.1 14.1 13.4 1 +1817 6 29 18.3 18.3 17.6 1 +1817 6 30 17.8 17.8 17.1 1 +1817 7 1 18.3 18.3 17.6 1 +1817 7 2 18.3 18.3 17.6 1 +1817 7 3 19.3 19.3 18.6 1 +1817 7 4 19.1 19.1 18.4 1 +1817 7 5 17.2 17.2 16.5 1 +1817 7 6 16.0 16.0 15.3 1 +1817 7 7 17.2 17.2 16.5 1 +1817 7 8 16.7 16.7 16.0 1 +1817 7 9 16.0 16.0 15.3 1 +1817 7 10 15.5 15.5 14.8 1 +1817 7 11 16.8 16.8 16.1 1 +1817 7 12 16.2 16.2 15.5 1 +1817 7 13 14.7 14.7 14.0 1 +1817 7 14 14.5 14.5 13.8 1 +1817 7 15 16.3 16.3 15.6 1 +1817 7 16 16.2 16.2 15.5 1 +1817 7 17 15.1 15.1 14.4 1 +1817 7 18 16.7 16.7 16.0 1 +1817 7 19 15.9 15.9 15.2 1 +1817 7 20 15.7 15.7 15.0 1 +1817 7 21 15.9 15.9 15.2 1 +1817 7 22 17.9 17.9 17.2 1 +1817 7 23 19.0 19.0 18.3 1 +1817 7 24 22.6 22.6 21.9 1 +1817 7 25 23.6 23.6 22.9 1 +1817 7 26 22.2 22.2 21.5 1 +1817 7 27 20.6 20.6 19.9 1 +1817 7 28 17.9 17.9 17.2 1 +1817 7 29 14.1 14.1 13.4 1 +1817 7 30 15.6 15.6 14.9 1 +1817 7 31 17.1 17.1 16.4 1 +1817 8 1 17.3 17.3 16.7 1 +1817 8 2 16.0 16.0 15.4 1 +1817 8 3 15.3 15.3 14.7 1 +1817 8 4 15.0 15.0 14.4 1 +1817 8 5 13.8 13.8 13.3 1 +1817 8 6 13.8 13.8 13.3 1 +1817 8 7 15.0 15.0 14.5 1 +1817 8 8 16.5 16.5 16.0 1 +1817 8 9 17.0 17.0 16.5 1 +1817 8 10 14.9 14.9 14.5 1 +1817 8 11 15.7 15.7 15.3 1 +1817 8 12 15.5 15.5 15.1 1 +1817 8 13 15.7 15.7 15.3 1 +1817 8 14 15.5 15.5 15.2 1 +1817 8 15 17.7 17.7 17.4 1 +1817 8 16 17.0 17.0 16.7 1 +1817 8 17 16.6 16.6 16.3 1 +1817 8 18 15.6 15.6 15.3 1 +1817 8 19 15.5 15.5 15.3 1 +1817 8 20 16.3 16.3 16.1 1 +1817 8 21 14.7 14.7 14.5 1 +1817 8 22 10.6 10.6 10.4 1 +1817 8 23 10.9 10.9 10.8 1 +1817 8 24 11.6 11.6 11.5 1 +1817 8 25 14.2 14.2 14.1 1 +1817 8 26 14.9 14.9 14.8 1 +1817 8 27 17.6 17.6 17.5 1 +1817 8 28 16.2 16.2 16.2 1 +1817 8 29 15.9 15.9 15.9 1 +1817 8 30 14.9 14.9 14.9 1 +1817 8 31 13.1 13.1 13.1 1 +1817 9 1 11.7 11.7 11.7 1 +1817 9 2 11.8 11.8 11.8 1 +1817 9 3 12.1 12.1 12.1 1 +1817 9 4 13.4 13.4 13.4 1 +1817 9 5 12.7 12.7 12.7 1 +1817 9 6 13.2 13.2 13.2 1 +1817 9 7 14.1 14.1 14.1 1 +1817 9 8 13.4 13.4 13.4 1 +1817 9 9 13.2 13.2 13.2 1 +1817 9 10 13.6 13.6 13.6 1 +1817 9 11 12.9 12.9 12.9 1 +1817 9 12 13.2 13.2 13.2 1 +1817 9 13 13.6 13.6 13.6 1 +1817 9 14 13.4 13.4 13.4 1 +1817 9 15 14.7 14.7 14.7 1 +1817 9 16 13.6 13.6 13.6 1 +1817 9 17 13.9 13.9 13.9 1 +1817 9 18 12.9 12.9 12.9 1 +1817 9 19 12.2 12.2 12.2 1 +1817 9 20 13.7 13.7 13.7 1 +1817 9 21 14.2 14.2 14.2 1 +1817 9 22 14.7 14.7 14.7 1 +1817 9 23 14.7 14.7 14.7 1 +1817 9 24 11.0 11.0 11.0 1 +1817 9 25 10.4 10.4 10.4 1 +1817 9 26 13.5 13.5 13.5 1 +1817 9 27 13.5 13.5 13.5 1 +1817 9 28 12.0 12.0 12.0 1 +1817 9 29 6.2 6.2 6.2 1 +1817 9 30 3.0 3.0 3.0 1 +1817 10 1 6.3 6.3 6.3 1 +1817 10 2 4.5 4.5 4.5 1 +1817 10 3 2.1 2.1 2.1 1 +1817 10 4 5.0 5.0 5.0 1 +1817 10 5 7.1 7.1 7.1 1 +1817 10 6 6.1 6.1 6.1 1 +1817 10 7 6.8 6.8 6.8 1 +1817 10 8 6.8 6.8 6.8 1 +1817 10 9 6.3 6.3 6.3 1 +1817 10 10 7.1 7.1 7.1 1 +1817 10 11 4.4 4.4 4.4 1 +1817 10 12 3.6 3.6 3.6 1 +1817 10 13 2.3 2.3 2.3 1 +1817 10 14 3.8 3.8 3.8 1 +1817 10 15 1.8 1.8 1.8 1 +1817 10 16 0.4 0.4 0.4 1 +1817 10 17 3.9 3.9 3.9 1 +1817 10 18 4.2 4.2 4.2 1 +1817 10 19 4.9 4.9 4.9 1 +1817 10 20 3.2 3.2 3.2 1 +1817 10 21 4.6 4.6 4.6 1 +1817 10 22 3.8 3.8 3.8 1 +1817 10 23 2.9 2.9 2.9 1 +1817 10 24 1.2 1.2 1.2 1 +1817 10 25 3.6 3.6 3.6 1 +1817 10 26 5.2 5.2 5.2 1 +1817 10 27 5.6 5.6 5.6 1 +1817 10 28 5.2 5.2 5.2 1 +1817 10 29 6.2 6.2 6.2 1 +1817 10 30 7.1 7.1 7.1 1 +1817 10 31 7.4 7.4 7.4 1 +1817 11 1 6.5 6.5 6.5 1 +1817 11 2 6.2 6.2 6.2 1 +1817 11 3 5.5 5.5 5.5 1 +1817 11 4 2.7 2.7 2.7 1 +1817 11 5 3.7 3.7 3.7 1 +1817 11 6 2.9 2.9 2.9 1 +1817 11 7 0.9 0.9 0.9 1 +1817 11 8 3.2 3.2 3.2 1 +1817 11 9 4.2 4.2 4.2 1 +1817 11 10 4.1 4.1 4.1 1 +1817 11 11 1.5 1.5 1.5 1 +1817 11 12 2.1 2.1 2.1 1 +1817 11 13 3.1 3.1 3.1 1 +1817 11 14 -0.3 -0.3 -0.3 1 +1817 11 15 1.2 1.2 1.2 1 +1817 11 16 0.9 0.9 0.9 1 +1817 11 17 1.6 1.6 1.6 1 +1817 11 18 2.7 2.7 2.7 1 +1817 11 19 3.2 3.2 3.2 1 +1817 11 20 -0.3 -0.3 -0.3 1 +1817 11 21 -1.8 -1.8 -1.8 1 +1817 11 22 -1.1 -1.1 -1.1 1 +1817 11 23 -1.1 -1.1 -1.1 1 +1817 11 24 0.9 0.9 0.9 1 +1817 11 25 -0.6 -0.6 -0.6 1 +1817 11 26 -4.8 -4.8 -4.8 1 +1817 11 27 1.6 1.6 1.6 1 +1817 11 28 -2.6 -2.6 -2.6 1 +1817 11 29 -0.9 -0.9 -0.9 1 +1817 11 30 -0.3 -0.3 -0.3 1 +1817 12 1 -1.1 -1.1 -1.1 1 +1817 12 2 -7.6 -7.6 -7.6 1 +1817 12 3 -10.1 -10.1 -10.1 1 +1817 12 4 -11.9 -11.9 -11.9 1 +1817 12 5 -5.8 -5.8 -5.8 1 +1817 12 6 -2.4 -2.4 -2.4 1 +1817 12 7 0.6 0.6 0.6 1 +1817 12 8 0.9 0.9 0.9 1 +1817 12 9 0.3 0.3 0.3 1 +1817 12 10 -0.1 -0.1 -0.1 1 +1817 12 11 -0.4 -0.4 -0.4 1 +1817 12 12 -3.1 -3.1 -3.1 1 +1817 12 13 -3.6 -3.6 -3.6 1 +1817 12 14 -4.9 -4.9 -4.9 1 +1817 12 15 -5.7 -5.7 -5.7 1 +1817 12 16 -6.1 -6.1 -6.1 1 +1817 12 17 -6.7 -6.7 -6.7 1 +1817 12 18 -7.1 -7.1 -7.1 1 +1817 12 19 -11.7 -11.7 -11.7 1 +1817 12 20 -8.7 -8.7 -8.7 1 +1817 12 21 -5.7 -5.7 -5.7 1 +1817 12 22 -9.2 -9.2 -9.2 1 +1817 12 23 -8.7 -8.7 -8.7 1 +1817 12 24 -10.6 -10.6 -10.6 1 +1817 12 25 -14.8 -14.8 -14.8 1 +1817 12 26 -19.1 -19.1 -19.1 1 +1817 12 27 -14.1 -14.1 -14.1 1 +1817 12 28 -13.9 -13.9 -13.9 1 +1817 12 29 -19.6 -19.6 -19.6 1 +1817 12 30 -20.3 -20.3 -20.3 1 +1817 12 31 -15.1 -15.1 -15.1 1 +1818 1 1 -16.4 -16.4 -16.4 1 +1818 1 2 -14.3 -14.3 -14.3 1 +1818 1 3 -6.9 -6.9 -6.9 1 +1818 1 4 -9.8 -9.8 -9.8 1 +1818 1 5 -3.1 -3.1 -3.1 1 +1818 1 6 -1.6 -1.6 -1.6 1 +1818 1 7 0.9 0.9 0.9 1 +1818 1 8 0.4 0.4 0.4 1 +1818 1 9 -3.5 -3.5 -3.5 1 +1818 1 10 -2.1 -2.1 -2.1 1 +1818 1 11 2.5 2.5 2.5 1 +1818 1 12 1.1 1.1 1.1 1 +1818 1 13 -0.6 -0.6 -0.6 1 +1818 1 14 2.7 2.7 2.7 1 +1818 1 15 1.5 1.5 1.5 1 +1818 1 16 0.0 0.0 0.0 1 +1818 1 17 -3.8 -3.8 -3.8 1 +1818 1 18 -6.1 -6.1 -6.1 1 +1818 1 19 -7.1 -7.1 -7.1 1 +1818 1 20 -4.1 -4.1 -4.1 1 +1818 1 21 -3.6 -3.6 -3.6 1 +1818 1 22 0.7 0.7 0.7 1 +1818 1 23 -0.2 -0.2 -0.2 1 +1818 1 24 0.5 0.5 0.5 1 +1818 1 25 -1.5 -1.5 -1.5 1 +1818 1 26 -1.8 -1.8 -1.8 1 +1818 1 27 -3.6 -3.6 -3.6 1 +1818 1 28 -0.3 -0.3 -0.3 1 +1818 1 29 -0.5 -0.5 -0.5 1 +1818 1 30 -6.3 -6.3 -6.3 1 +1818 1 31 -5.7 -5.7 -5.7 1 +1818 2 1 -2.0 -2.0 -2.0 1 +1818 2 2 -4.3 -4.3 -4.3 1 +1818 2 3 0.3 0.3 0.3 1 +1818 2 4 0.8 0.8 0.8 1 +1818 2 5 -2.0 -2.0 -2.0 1 +1818 2 6 -4.5 -4.5 -4.5 1 +1818 2 7 -2.6 -2.6 -2.6 1 +1818 2 8 0.7 0.7 0.7 1 +1818 2 9 -0.6 -0.6 -0.6 1 +1818 2 10 -5.5 -5.5 -5.5 1 +1818 2 11 -6.1 -6.1 -6.1 1 +1818 2 12 -1.0 -1.0 -1.0 1 +1818 2 13 0.3 0.3 0.3 1 +1818 2 14 -1.2 -1.2 -1.2 1 +1818 2 15 -4.7 -4.7 -4.7 1 +1818 2 16 -6.7 -6.7 -6.7 1 +1818 2 17 -2.8 -2.8 -2.8 1 +1818 2 18 1.0 1.0 1.0 1 +1818 2 19 1.2 1.2 1.2 1 +1818 2 20 0.5 0.5 0.5 1 +1818 2 21 0.2 0.2 0.2 1 +1818 2 22 0.4 0.4 0.4 1 +1818 2 23 -1.9 -1.9 -1.9 1 +1818 2 24 -3.8 -3.8 -3.8 1 +1818 2 25 -0.1 -0.1 -0.1 1 +1818 2 26 -1.1 -1.1 -1.1 1 +1818 2 27 -9.4 -9.4 -9.4 1 +1818 2 28 -11.9 -11.9 -11.9 1 +1818 3 1 -6.9 -6.9 -6.9 1 +1818 3 2 -5.4 -5.4 -5.4 1 +1818 3 3 -1.1 -1.1 -1.1 1 +1818 3 4 -1.6 -1.6 -1.6 1 +1818 3 5 1.5 1.5 1.5 1 +1818 3 6 2.8 2.8 2.8 1 +1818 3 7 2.4 2.4 2.4 1 +1818 3 8 1.6 1.6 1.6 1 +1818 3 9 1.8 1.8 1.8 1 +1818 3 10 2.5 2.5 2.5 1 +1818 3 11 1.3 1.3 1.3 1 +1818 3 12 0.1 0.1 0.1 1 +1818 3 13 -2.5 -2.5 -2.5 1 +1818 3 14 -2.9 -2.9 -2.9 1 +1818 3 15 -1.5 -1.5 -1.5 1 +1818 3 16 2.0 2.0 2.0 1 +1818 3 17 2.0 2.0 2.0 1 +1818 3 18 1.6 1.6 1.6 1 +1818 3 19 1.8 1.8 1.8 1 +1818 3 20 2.2 2.2 2.2 1 +1818 3 21 1.9 1.9 1.9 1 +1818 3 22 2.9 2.9 2.9 1 +1818 3 23 1.0 1.0 1.0 1 +1818 3 24 2.5 2.5 2.5 1 +1818 3 25 1.2 1.2 1.2 1 +1818 3 26 2.3 2.3 2.3 1 +1818 3 27 0.8 0.8 0.8 1 +1818 3 28 -1.3 -1.3 -1.3 1 +1818 3 29 -1.6 -1.6 -1.6 1 +1818 3 30 0.5 0.5 0.5 1 +1818 3 31 2.4 2.4 2.4 1 +1818 4 1 3.5 3.5 3.5 1 +1818 4 2 2.7 2.7 2.7 1 +1818 4 3 0.5 0.5 0.5 1 +1818 4 4 1.5 1.5 1.5 1 +1818 4 5 -1.3 -1.3 -1.3 1 +1818 4 6 -2.3 -2.3 -2.3 1 +1818 4 7 -2.1 -2.1 -2.1 1 +1818 4 8 -0.3 -0.3 -0.3 1 +1818 4 9 -0.8 -0.8 -0.8 1 +1818 4 10 3.5 3.5 3.5 1 +1818 4 11 -0.8 -0.8 -0.8 1 +1818 4 12 -1.1 -1.1 -1.1 1 +1818 4 13 -0.3 -0.3 -0.3 1 +1818 4 14 1.2 1.2 1.2 1 +1818 4 15 0.5 0.5 0.5 1 +1818 4 16 -3.3 -3.3 -3.3 1 +1818 4 17 -4.3 -4.3 -4.3 1 +1818 4 18 -2.0 -2.0 -2.0 1 +1818 4 19 -0.3 -0.3 -0.3 1 +1818 4 20 0.5 0.5 0.5 1 +1818 4 21 2.2 2.2 2.2 1 +1818 4 22 2.3 2.3 2.3 1 +1818 4 23 3.0 3.0 3.0 1 +1818 4 24 1.8 1.8 1.8 1 +1818 4 25 1.0 1.0 1.0 1 +1818 4 26 1.5 1.5 1.5 1 +1818 4 27 3.0 3.0 3.0 1 +1818 4 28 4.3 4.3 4.3 1 +1818 4 29 4.8 4.8 4.8 1 +1818 4 30 8.0 8.0 8.0 1 +1818 5 1 8.5 8.5 8.5 1 +1818 5 2 0.6 0.6 0.6 1 +1818 5 3 0.8 0.8 0.8 1 +1818 5 4 1.4 1.4 1.4 1 +1818 5 5 3.3 3.3 3.2 1 +1818 5 6 2.9 2.9 2.8 1 +1818 5 7 4.5 4.5 4.4 1 +1818 5 8 6.0 6.0 5.9 1 +1818 5 9 9.8 9.8 9.7 1 +1818 5 10 10.6 10.6 10.4 1 +1818 5 11 11.6 11.6 11.4 1 +1818 5 12 9.9 9.9 9.7 1 +1818 5 13 11.4 11.4 11.2 1 +1818 5 14 11.4 11.4 11.1 1 +1818 5 15 13.0 13.0 12.7 1 +1818 5 16 14.2 14.2 13.9 1 +1818 5 17 11.9 11.9 11.6 1 +1818 5 18 11.9 11.9 11.6 1 +1818 5 19 12.9 12.9 12.5 1 +1818 5 20 8.4 8.4 8.0 1 +1818 5 21 6.6 6.6 6.2 1 +1818 5 22 5.5 5.5 5.1 1 +1818 5 23 6.9 6.9 6.4 1 +1818 5 24 8.5 8.5 8.0 1 +1818 5 25 11.8 11.8 11.3 1 +1818 5 26 13.0 13.0 12.5 1 +1818 5 27 8.5 8.5 8.0 1 +1818 5 28 6.4 6.4 5.8 1 +1818 5 29 4.5 4.5 3.9 1 +1818 5 30 8.2 8.2 7.6 1 +1818 5 31 8.2 8.2 7.6 1 +1818 6 1 11.8 11.8 11.1 1 +1818 6 2 15.1 15.1 14.4 1 +1818 6 3 12.4 12.4 11.7 1 +1818 6 4 15.3 15.3 14.6 1 +1818 6 5 15.4 15.4 14.7 1 +1818 6 6 14.5 14.5 13.8 1 +1818 6 7 12.1 12.1 11.4 1 +1818 6 8 11.5 11.5 10.8 1 +1818 6 9 16.2 16.2 15.5 1 +1818 6 10 20.6 20.6 19.9 1 +1818 6 11 19.1 19.1 18.4 1 +1818 6 12 17.8 17.8 17.1 1 +1818 6 13 10.7 10.7 10.0 1 +1818 6 14 7.1 7.1 6.4 1 +1818 6 15 8.4 8.4 7.7 1 +1818 6 16 13.8 13.8 13.1 1 +1818 6 17 15.7 15.7 15.0 1 +1818 6 18 17.7 17.7 17.0 1 +1818 6 19 17.8 17.8 17.1 1 +1818 6 20 17.6 17.6 16.9 1 +1818 6 21 18.3 18.3 17.6 1 +1818 6 22 17.2 17.2 16.5 1 +1818 6 23 15.8 15.8 15.1 1 +1818 6 24 15.4 15.4 14.7 1 +1818 6 25 14.0 14.0 13.3 1 +1818 6 26 13.8 13.8 13.1 1 +1818 6 27 16.1 16.1 15.4 1 +1818 6 28 16.8 16.8 16.1 1 +1818 6 29 19.3 19.3 18.6 1 +1818 6 30 19.2 19.2 18.5 1 +1818 7 1 17.0 17.0 16.3 1 +1818 7 2 14.8 14.8 14.1 1 +1818 7 3 14.5 14.5 13.8 1 +1818 7 4 14.5 14.5 13.8 1 +1818 7 5 14.3 14.3 13.6 1 +1818 7 6 15.5 15.5 14.8 1 +1818 7 7 17.5 17.5 16.8 1 +1818 7 8 19.1 19.1 18.4 1 +1818 7 9 23.5 23.5 22.8 1 +1818 7 10 21.8 21.8 21.1 1 +1818 7 11 21.0 21.0 20.3 1 +1818 7 12 19.3 19.3 18.6 1 +1818 7 13 19.9 19.9 19.2 1 +1818 7 14 18.8 18.8 18.1 1 +1818 7 15 19.4 19.4 18.7 1 +1818 7 16 22.2 22.2 21.5 1 +1818 7 17 23.5 23.5 22.8 1 +1818 7 18 24.5 24.5 23.8 1 +1818 7 19 24.4 24.4 23.7 1 +1818 7 20 23.5 23.5 22.8 1 +1818 7 21 23.4 23.4 22.7 1 +1818 7 22 23.9 23.9 23.2 1 +1818 7 23 23.0 23.0 22.3 1 +1818 7 24 22.6 22.6 21.9 1 +1818 7 25 23.9 23.9 23.2 1 +1818 7 26 23.6 23.6 22.9 1 +1818 7 27 25.1 25.1 24.4 1 +1818 7 28 25.8 25.8 25.1 1 +1818 7 29 23.9 23.9 23.2 1 +1818 7 30 21.6 21.6 20.9 1 +1818 7 31 19.0 19.0 18.3 1 +1818 8 1 15.0 15.0 14.4 1 +1818 8 2 15.6 15.6 15.0 1 +1818 8 3 13.3 13.3 12.7 1 +1818 8 4 16.3 16.3 15.7 1 +1818 8 5 18.3 18.3 17.8 1 +1818 8 6 22.3 22.3 21.8 1 +1818 8 7 21.7 21.7 21.2 1 +1818 8 8 13.7 13.7 13.2 1 +1818 8 9 12.5 12.5 12.0 1 +1818 8 10 13.0 13.0 12.6 1 +1818 8 11 12.7 12.7 12.3 1 +1818 8 12 13.5 13.5 13.1 1 +1818 8 13 15.4 15.4 15.0 1 +1818 8 14 17.0 17.0 16.7 1 +1818 8 15 14.7 14.7 14.4 1 +1818 8 16 15.4 15.4 15.1 1 +1818 8 17 16.6 16.6 16.3 1 +1818 8 18 15.0 15.0 14.7 1 +1818 8 19 14.6 14.6 14.4 1 +1818 8 20 11.4 11.4 11.2 1 +1818 8 21 12.0 12.0 11.8 1 +1818 8 22 12.7 12.7 12.5 1 +1818 8 23 11.6 11.6 11.5 1 +1818 8 24 11.9 11.9 11.8 1 +1818 8 25 13.6 13.6 13.5 1 +1818 8 26 13.7 13.7 13.6 1 +1818 8 27 13.7 13.7 13.6 1 +1818 8 28 12.7 12.7 12.7 1 +1818 8 29 11.4 11.4 11.4 1 +1818 8 30 12.2 12.2 12.2 1 +1818 8 31 13.6 13.6 13.6 1 +1818 9 1 13.2 13.2 13.2 1 +1818 9 2 12.6 12.6 12.6 1 +1818 9 3 13.7 13.7 13.7 1 +1818 9 4 13.2 13.2 13.2 1 +1818 9 5 14.6 14.6 14.6 1 +1818 9 6 15.7 15.7 15.7 1 +1818 9 7 15.7 15.7 15.7 1 +1818 9 8 14.1 14.1 14.1 1 +1818 9 9 14.9 14.9 14.9 1 +1818 9 10 13.6 13.6 13.6 1 +1818 9 11 13.7 13.7 13.7 1 +1818 9 12 13.9 13.9 13.9 1 +1818 9 13 10.6 10.6 10.6 1 +1818 9 14 8.4 8.4 8.4 1 +1818 9 15 12.7 12.7 12.7 1 +1818 9 16 11.4 11.4 11.4 1 +1818 9 17 10.4 10.4 10.4 1 +1818 9 18 11.0 11.0 11.0 1 +1818 9 19 11.4 11.4 11.4 1 +1818 9 20 12.7 12.7 12.7 1 +1818 9 21 11.4 11.4 11.4 1 +1818 9 22 12.3 12.3 12.3 1 +1818 9 23 11.4 11.4 11.4 1 +1818 9 24 11.5 11.5 11.5 1 +1818 9 25 9.4 9.4 9.4 1 +1818 9 26 9.4 9.4 9.4 1 +1818 9 27 9.3 9.3 9.3 1 +1818 9 28 9.5 9.5 9.5 1 +1818 9 29 9.7 9.7 9.7 1 +1818 9 30 10.2 10.2 10.2 1 +1818 10 1 10.2 10.2 10.2 1 +1818 10 2 8.0 8.0 8.0 1 +1818 10 3 7.7 7.7 7.7 1 +1818 10 4 10.6 10.6 10.6 1 +1818 10 5 12.1 12.1 12.1 1 +1818 10 6 11.3 11.3 11.3 1 +1818 10 7 10.5 10.5 10.5 1 +1818 10 8 10.5 10.5 10.5 1 +1818 10 9 7.9 7.9 7.9 1 +1818 10 10 9.6 9.6 9.6 1 +1818 10 11 9.6 9.6 9.6 1 +1818 10 12 11.1 11.1 11.1 1 +1818 10 13 10.5 10.5 10.5 1 +1818 10 14 9.6 9.6 9.6 1 +1818 10 15 9.1 9.1 9.1 1 +1818 10 16 9.6 9.6 9.6 1 +1818 10 17 9.8 9.8 9.8 1 +1818 10 18 9.2 9.2 9.2 1 +1818 10 19 8.9 8.9 8.9 1 +1818 10 20 8.8 8.8 8.8 1 +1818 10 21 6.9 6.9 6.9 1 +1818 10 22 4.3 4.3 4.3 1 +1818 10 23 4.6 4.6 4.6 1 +1818 10 24 3.6 3.6 3.6 1 +1818 10 25 4.9 4.9 4.9 1 +1818 10 26 5.0 5.0 5.0 1 +1818 10 27 5.0 5.0 5.0 1 +1818 10 28 6.0 6.0 6.0 1 +1818 10 29 6.9 6.9 6.9 1 +1818 10 30 3.2 3.2 3.2 1 +1818 10 31 5.6 5.6 5.6 1 +1818 11 1 4.4 4.4 4.4 1 +1818 11 2 3.7 3.7 3.7 1 +1818 11 3 8.4 8.4 8.4 1 +1818 11 4 9.1 9.1 9.1 1 +1818 11 5 7.9 7.9 7.9 1 +1818 11 6 8.5 8.5 8.5 1 +1818 11 7 7.4 7.4 7.4 1 +1818 11 8 5.0 5.0 5.0 1 +1818 11 9 -1.3 -1.3 -1.3 1 +1818 11 10 -1.6 -1.6 -1.6 1 +1818 11 11 -0.1 -0.1 -0.1 1 +1818 11 12 -1.0 -1.0 -1.0 1 +1818 11 13 0.1 0.1 0.1 1 +1818 11 14 0.5 0.5 0.5 1 +1818 11 15 4.2 4.2 4.2 1 +1818 11 16 6.2 6.2 6.2 1 +1818 11 17 6.1 6.1 6.1 1 +1818 11 18 5.2 5.2 5.2 1 +1818 11 19 4.2 4.2 4.2 1 +1818 11 20 2.9 2.9 2.9 1 +1818 11 21 2.9 2.9 2.9 1 +1818 11 22 3.4 3.4 3.4 1 +1818 11 23 2.9 2.9 2.9 1 +1818 11 24 0.7 0.7 0.7 1 +1818 11 25 2.1 2.1 2.1 1 +1818 11 26 0.9 0.9 0.9 1 +1818 11 27 -0.1 -0.1 -0.1 1 +1818 11 28 1.9 1.9 1.9 1 +1818 11 29 3.6 3.6 3.6 1 +1818 11 30 8.8 8.8 8.8 1 +1818 12 1 9.1 9.1 9.1 1 +1818 12 2 5.9 5.9 5.9 1 +1818 12 3 3.2 3.2 3.2 1 +1818 12 4 4.4 4.4 4.4 1 +1818 12 5 3.9 3.9 3.9 1 +1818 12 6 4.1 4.1 4.1 1 +1818 12 7 2.8 2.8 2.8 1 +1818 12 8 2.9 2.9 2.9 1 +1818 12 9 3.1 3.1 3.1 1 +1818 12 10 0.8 0.8 0.8 1 +1818 12 11 -2.6 -2.6 -2.6 1 +1818 12 12 -0.1 -0.1 -0.1 1 +1818 12 13 -3.1 -3.1 -3.1 1 +1818 12 14 -1.4 -1.4 -1.4 1 +1818 12 15 1.1 1.1 1.1 1 +1818 12 16 -0.1 -0.1 -0.1 1 +1818 12 17 3.6 3.6 3.6 1 +1818 12 18 5.3 5.3 5.3 1 +1818 12 19 2.2 2.2 2.2 1 +1818 12 20 4.9 4.9 4.9 1 +1818 12 21 4.2 4.2 4.2 1 +1818 12 22 0.7 0.7 0.7 1 +1818 12 23 0.6 0.6 0.6 1 +1818 12 24 1.9 1.9 1.9 1 +1818 12 25 -0.2 -0.2 -0.2 1 +1818 12 26 2.4 2.4 2.4 1 +1818 12 27 1.6 1.6 1.6 1 +1818 12 28 -3.3 -3.3 -3.3 1 +1818 12 29 0.6 0.6 0.6 1 +1818 12 30 1.4 1.4 1.4 1 +1818 12 31 1.4 1.4 1.4 1 +1819 1 1 0.4 0.4 0.4 1 +1819 1 2 0.9 0.9 0.9 1 +1819 1 3 1.2 1.2 1.2 1 +1819 1 4 3.2 3.2 3.2 1 +1819 1 5 1.7 1.7 1.7 1 +1819 1 6 1.5 1.5 1.5 1 +1819 1 7 -1.8 -1.8 -1.8 1 +1819 1 8 1.1 1.1 1.1 1 +1819 1 9 1.4 1.4 1.4 1 +1819 1 10 2.6 2.6 2.6 1 +1819 1 11 3.6 3.6 3.6 1 +1819 1 12 3.5 3.5 3.5 1 +1819 1 13 2.2 2.2 2.2 1 +1819 1 14 2.4 2.4 2.4 1 +1819 1 15 3.2 3.2 3.2 1 +1819 1 16 -0.6 -0.6 -0.6 1 +1819 1 17 -1.8 -1.8 -1.8 1 +1819 1 18 1.9 1.9 1.9 1 +1819 1 19 3.2 3.2 3.2 1 +1819 1 20 0.9 0.9 0.9 1 +1819 1 21 0.4 0.4 0.4 1 +1819 1 22 1.4 1.4 1.4 1 +1819 1 23 0.2 0.2 0.2 1 +1819 1 24 1.2 1.2 1.2 1 +1819 1 25 1.9 1.9 1.9 1 +1819 1 26 2.4 2.4 2.4 1 +1819 1 27 3.2 3.2 3.2 1 +1819 1 28 -1.3 -1.3 -1.3 1 +1819 1 29 -2.8 -2.8 -2.8 1 +1819 1 30 -1.5 -1.5 -1.5 1 +1819 1 31 1.0 1.0 1.0 1 +1819 2 1 0.4 0.4 0.4 1 +1819 2 2 -1.8 -1.8 -1.8 1 +1819 2 3 -3.0 -3.0 -3.0 1 +1819 2 4 -2.3 -2.3 -2.3 1 +1819 2 5 -2.8 -2.8 -2.8 1 +1819 2 6 -3.5 -3.5 -3.5 1 +1819 2 7 0.5 0.5 0.5 1 +1819 2 8 -0.8 -0.8 -0.8 1 +1819 2 9 -2.8 -2.8 -2.8 1 +1819 2 10 0.4 0.4 0.4 1 +1819 2 11 1.5 1.5 1.5 1 +1819 2 12 2.2 2.2 2.2 1 +1819 2 13 1.2 1.2 1.2 1 +1819 2 14 -1.0 -1.0 -1.0 1 +1819 2 15 -5.7 -5.7 -5.7 1 +1819 2 16 -3.3 -3.3 -3.3 1 +1819 2 17 -1.6 -1.6 -1.6 1 +1819 2 18 -0.8 -0.8 -0.8 1 +1819 2 19 0.4 0.4 0.4 1 +1819 2 20 1.4 1.4 1.4 1 +1819 2 21 -0.6 -0.6 -0.6 1 +1819 2 22 -0.9 -0.9 -0.9 1 +1819 2 23 -2.6 -2.6 -2.6 1 +1819 2 24 -1.1 -1.1 -1.1 1 +1819 2 25 0.2 0.2 0.2 1 +1819 2 26 -2.4 -2.4 -2.4 1 +1819 2 27 -2.4 -2.4 -2.4 1 +1819 2 28 -2.0 -2.0 -2.0 1 +1819 3 1 -0.9 -0.9 -0.9 1 +1819 3 2 -0.4 -0.4 -0.4 1 +1819 3 3 -1.8 -1.8 -1.8 1 +1819 3 4 -1.7 -1.7 -1.7 1 +1819 3 5 -0.9 -0.9 -0.9 1 +1819 3 6 -0.7 -0.7 -0.7 1 +1819 3 7 0.9 0.9 0.9 1 +1819 3 8 1.9 1.9 1.9 1 +1819 3 9 0.3 0.3 0.3 1 +1819 3 10 -3.4 -3.4 -3.4 1 +1819 3 11 -2.7 -2.7 -2.7 1 +1819 3 12 -3.9 -3.9 -3.9 1 +1819 3 13 -5.4 -5.4 -5.4 1 +1819 3 14 -1.7 -1.7 -1.7 1 +1819 3 15 3.3 3.3 3.3 1 +1819 3 16 3.1 3.1 3.1 1 +1819 3 17 1.6 1.6 1.6 1 +1819 3 18 0.5 0.5 0.5 1 +1819 3 19 0.0 0.0 0.0 1 +1819 3 20 1.3 1.3 1.3 1 +1819 3 21 0.0 0.0 0.0 1 +1819 3 22 -2.8 -2.8 -2.8 1 +1819 3 23 -0.2 -0.2 -0.2 1 +1819 3 24 1.3 1.3 1.3 1 +1819 3 25 1.0 1.0 1.0 1 +1819 3 26 0.8 0.8 0.8 1 +1819 3 27 0.1 0.1 0.1 1 +1819 3 28 0.8 0.8 0.8 1 +1819 3 29 2.7 2.7 2.7 1 +1819 3 30 4.0 4.0 4.0 1 +1819 3 31 4.0 4.0 4.0 1 +1819 4 1 4.0 4.0 4.0 1 +1819 4 2 1.0 1.0 1.0 1 +1819 4 3 0.9 0.9 0.9 1 +1819 4 4 1.4 1.4 1.4 1 +1819 4 5 0.7 0.7 0.7 1 +1819 4 6 0.2 0.2 0.2 1 +1819 4 7 -0.6 -0.6 -0.6 1 +1819 4 8 0.2 0.2 0.2 1 +1819 4 9 2.7 2.7 2.7 1 +1819 4 10 5.2 5.2 5.2 1 +1819 4 11 6.0 6.0 6.0 1 +1819 4 12 5.0 5.0 5.0 1 +1819 4 13 1.4 1.4 1.4 1 +1819 4 14 1.7 1.7 1.7 1 +1819 4 15 6.7 6.7 6.7 1 +1819 4 16 7.5 7.5 7.5 1 +1819 4 17 3.5 3.5 3.5 1 +1819 4 18 8.2 8.2 8.2 1 +1819 4 19 7.0 7.0 7.0 1 +1819 4 20 6.0 6.0 6.0 1 +1819 4 21 4.5 4.5 4.5 1 +1819 4 22 3.4 3.4 3.4 1 +1819 4 23 1.0 1.0 1.0 1 +1819 4 24 2.2 2.2 2.2 1 +1819 4 25 1.3 1.3 1.3 1 +1819 4 26 4.2 4.2 4.2 1 +1819 4 27 6.5 6.5 6.5 1 +1819 4 28 6.0 6.0 6.0 1 +1819 4 29 6.5 6.5 6.5 1 +1819 4 30 7.5 7.5 7.5 1 +1819 5 1 8.3 8.3 8.3 1 +1819 5 2 9.1 9.1 9.1 1 +1819 5 3 10.5 10.5 10.5 1 +1819 5 4 10.8 10.8 10.8 1 +1819 5 5 9.1 9.1 9.0 1 +1819 5 6 10.3 10.3 10.2 1 +1819 5 7 11.6 11.6 11.5 1 +1819 5 8 10.9 10.9 10.8 1 +1819 5 9 9.9 9.9 9.8 1 +1819 5 10 7.9 7.9 7.7 1 +1819 5 11 11.9 11.9 11.7 1 +1819 5 12 9.4 9.4 9.2 1 +1819 5 13 9.3 9.3 9.1 1 +1819 5 14 6.2 6.2 5.9 1 +1819 5 15 6.2 6.2 5.9 1 +1819 5 16 7.3 7.3 7.0 1 +1819 5 17 9.1 9.1 8.8 1 +1819 5 18 8.9 8.9 8.6 1 +1819 5 19 11.2 11.2 10.8 1 +1819 5 20 13.4 13.4 13.0 1 +1819 5 21 15.4 15.4 15.0 1 +1819 5 22 16.3 16.3 15.9 1 +1819 5 23 13.7 13.7 13.2 1 +1819 5 24 9.5 9.5 9.0 1 +1819 5 25 13.7 13.7 13.2 1 +1819 5 26 4.3 4.3 3.8 1 +1819 5 27 9.3 9.3 8.8 1 +1819 5 28 9.8 9.8 9.2 1 +1819 5 29 8.3 8.3 7.7 1 +1819 5 30 9.8 9.8 9.2 1 +1819 5 31 11.8 11.8 11.2 1 +1819 6 1 8.6 8.6 7.9 1 +1819 6 2 9.5 9.5 8.8 1 +1819 6 3 13.1 13.1 12.4 1 +1819 6 4 16.8 16.8 16.1 1 +1819 6 5 19.1 19.1 18.4 1 +1819 6 6 18.0 18.0 17.3 1 +1819 6 7 18.8 18.8 18.1 1 +1819 6 8 18.8 18.8 18.1 1 +1819 6 9 18.7 18.7 18.0 1 +1819 6 10 19.9 19.9 19.2 1 +1819 6 11 20.1 20.1 19.4 1 +1819 6 12 20.2 20.2 19.5 1 +1819 6 13 19.1 19.1 18.4 1 +1819 6 14 20.7 20.7 20.0 1 +1819 6 15 20.4 20.4 19.7 1 +1819 6 16 20.6 20.6 19.9 1 +1819 6 17 23.7 23.7 23.0 1 +1819 6 18 17.6 17.6 16.9 1 +1819 6 19 12.6 12.6 11.9 1 +1819 6 20 14.1 14.1 13.4 1 +1819 6 21 13.5 13.5 12.8 1 +1819 6 22 12.3 12.3 11.6 1 +1819 6 23 12.5 12.5 11.8 1 +1819 6 24 15.4 15.4 14.7 1 +1819 6 25 16.6 16.6 15.9 1 +1819 6 26 17.0 17.0 16.3 1 +1819 6 27 19.1 19.1 18.4 1 +1819 6 28 17.5 17.5 16.8 1 +1819 6 29 18.3 18.3 17.6 1 +1819 6 30 18.5 18.5 17.8 1 +1819 7 1 18.3 18.3 17.6 1 +1819 7 2 16.6 16.6 15.9 1 +1819 7 3 18.2 18.2 17.5 1 +1819 7 4 19.4 19.4 18.7 1 +1819 7 5 22.1 22.1 21.4 1 +1819 7 6 24.3 24.3 23.6 1 +1819 7 7 22.7 22.7 22.0 1 +1819 7 8 19.0 19.0 18.3 1 +1819 7 9 19.6 19.6 18.9 1 +1819 7 10 18.8 18.8 18.1 1 +1819 7 11 17.4 17.4 16.7 1 +1819 7 12 17.5 17.5 16.8 1 +1819 7 13 17.4 17.4 16.7 1 +1819 7 14 18.7 18.7 18.0 1 +1819 7 15 18.2 18.2 17.5 1 +1819 7 16 16.5 16.5 15.8 1 +1819 7 17 16.7 16.7 16.0 1 +1819 7 18 18.5 18.5 17.8 1 +1819 7 19 19.7 19.7 19.0 1 +1819 7 20 22.4 22.4 21.7 1 +1819 7 21 21.9 21.9 21.2 1 +1819 7 22 21.1 21.1 20.4 1 +1819 7 23 21.4 21.4 20.7 1 +1819 7 24 23.2 23.2 22.5 1 +1819 7 25 22.6 22.6 21.9 1 +1819 7 26 20.8 20.8 20.1 1 +1819 7 27 21.6 21.6 20.9 1 +1819 7 28 23.3 23.3 22.6 1 +1819 7 29 24.6 24.6 23.9 1 +1819 7 30 23.8 23.8 23.1 1 +1819 7 31 23.0 23.0 22.3 1 +1819 8 1 24.6 23.9 23.3 1 +1819 8 2 24.0 23.3 22.7 1 +1819 8 3 22.8 22.1 21.5 1 +1819 8 4 23.0 22.3 21.7 1 +1819 8 5 22.0 21.3 20.8 1 +1819 8 6 23.1 22.4 21.9 1 +1819 8 7 23.3 22.6 22.1 1 +1819 8 8 21.2 20.5 20.0 1 +1819 8 9 23.3 22.6 22.1 1 +1819 8 10 21.2 20.5 20.1 1 +1819 8 11 23.4 22.7 22.3 1 +1819 8 12 22.0 21.3 20.9 1 +1819 8 13 22.7 22.0 21.6 1 +1819 8 14 22.9 22.2 21.9 1 +1819 8 15 20.7 20.0 19.7 1 +1819 8 16 19.6 18.9 18.6 1 +1819 8 17 17.2 16.5 16.2 1 +1819 8 18 15.4 14.7 14.4 1 +1819 8 19 16.7 16.0 15.8 1 +1819 8 20 18.9 18.2 18.0 1 +1819 8 21 18.2 17.5 17.3 1 +1819 8 22 17.1 16.4 16.2 1 +1819 8 23 17.9 17.2 17.1 1 +1819 8 24 18.7 18.0 17.9 1 +1819 8 25 18.9 18.2 18.1 1 +1819 8 26 16.9 16.2 16.1 1 +1819 8 27 17.7 17.0 16.9 1 +1819 8 28 19.1 18.4 18.4 1 +1819 8 29 19.6 18.9 18.9 1 +1819 8 30 19.6 18.9 18.9 1 +1819 8 31 20.8 20.1 20.1 1 +1819 9 1 20.3 19.6 19.6 1 +1819 9 2 18.1 17.4 17.4 1 +1819 9 3 16.4 15.7 15.7 1 +1819 9 4 15.4 14.7 14.7 1 +1819 9 5 17.2 16.5 16.5 1 +1819 9 6 18.1 17.4 17.4 1 +1819 9 7 16.9 16.2 16.2 1 +1819 9 8 15.9 15.2 15.2 1 +1819 9 9 18.2 17.5 17.5 1 +1819 9 10 19.1 18.4 18.4 1 +1819 9 11 18.1 17.4 17.4 1 +1819 9 12 15.1 14.4 14.4 1 +1819 9 13 12.9 12.2 12.2 1 +1819 9 14 18.0 17.3 17.3 1 +1819 9 15 15.2 14.5 14.5 1 +1819 9 16 16.9 16.2 16.2 1 +1819 9 17 12.4 11.7 11.7 1 +1819 9 18 12.4 11.7 11.7 1 +1819 9 19 8.2 7.5 7.5 1 +1819 9 20 7.2 6.5 6.5 1 +1819 9 21 9.4 8.7 8.7 1 +1819 9 22 13.4 12.7 12.7 1 +1819 9 23 11.7 11.0 11.0 1 +1819 9 24 12.0 11.3 11.3 1 +1819 9 25 12.5 11.8 11.8 1 +1819 9 26 12.4 11.7 11.7 1 +1819 9 27 11.8 11.1 11.1 1 +1819 9 28 13.5 12.8 12.8 1 +1819 9 29 16.5 15.8 15.8 1 +1819 9 30 14.7 14.0 14.0 1 +1819 10 1 15.0 14.3 14.3 1 +1819 10 2 16.8 16.1 16.1 1 +1819 10 3 15.1 14.4 14.4 1 +1819 10 4 13.8 13.1 13.1 1 +1819 10 5 12.5 11.8 11.8 1 +1819 10 6 7.3 6.6 6.6 1 +1819 10 7 5.6 4.9 4.9 1 +1819 10 8 5.1 4.4 4.4 1 +1819 10 9 6.3 5.6 5.6 1 +1819 10 10 6.3 5.6 5.6 1 +1819 10 11 6.3 5.6 5.6 1 +1819 10 12 10.1 9.4 9.4 1 +1819 10 13 10.4 9.7 9.7 1 +1819 10 14 8.6 7.9 7.9 1 +1819 10 15 6.9 6.2 6.2 1 +1819 10 16 7.1 6.4 6.4 1 +1819 10 17 7.3 6.6 6.6 1 +1819 10 18 6.1 5.4 5.4 1 +1819 10 19 5.7 5.0 5.0 1 +1819 10 20 7.6 6.9 6.9 1 +1819 10 21 8.4 7.7 7.7 1 +1819 10 22 10.1 9.4 9.4 1 +1819 10 23 7.7 7.0 7.0 1 +1819 10 24 2.6 1.9 1.9 1 +1819 10 25 -3.3 -4.0 -4.0 1 +1819 10 26 -2.6 -3.3 -3.3 1 +1819 10 27 -2.3 -3.0 -3.0 1 +1819 10 28 -2.5 -3.2 -3.2 1 +1819 10 29 -4.6 -5.3 -5.3 1 +1819 10 30 -2.0 -2.7 -2.7 1 +1819 10 31 -1.8 -2.5 -2.5 1 +1819 11 1 -1.1 -1.8 -1.8 1 +1819 11 2 1.2 0.5 0.5 1 +1819 11 3 2.2 1.5 1.5 1 +1819 11 4 -2.9 -3.6 -3.6 1 +1819 11 5 -2.4 -3.1 -3.1 1 +1819 11 6 0.4 -0.3 -0.3 1 +1819 11 7 4.7 4.0 4.0 1 +1819 11 8 2.6 1.9 1.9 1 +1819 11 9 -4.5 -5.2 -5.2 1 +1819 11 10 1.7 1.0 1.0 1 +1819 11 11 -2.6 -3.3 -3.3 1 +1819 11 12 -1.3 -2.0 -2.0 1 +1819 11 13 1.6 0.9 0.9 1 +1819 11 14 3.1 2.4 2.4 1 +1819 11 15 -4.4 -5.1 -5.1 1 +1819 11 16 -6.1 -6.8 -6.8 1 +1819 11 17 -4.3 -5.0 -5.0 1 +1819 11 18 -4.6 -5.3 -5.3 1 +1819 11 19 -3.0 -3.7 -3.7 1 +1819 11 20 -1.0 -1.7 -1.7 1 +1819 11 21 1.1 0.4 0.4 1 +1819 11 22 2.2 1.5 1.5 1 +1819 11 23 1.6 0.9 0.9 1 +1819 11 24 0.4 -0.3 -0.3 1 +1819 11 25 -0.6 -1.3 -1.3 1 +1819 11 26 -0.4 -1.1 -1.1 1 +1819 11 27 0.6 -0.1 -0.1 1 +1819 11 28 0.7 0.0 0.0 1 +1819 11 29 0.1 -0.6 -0.6 1 +1819 11 30 1.2 0.5 0.5 1 +1819 12 1 1.3 0.6 0.6 1 +1819 12 2 2.3 1.6 1.6 1 +1819 12 3 2.1 1.4 1.4 1 +1819 12 4 0.4 -0.3 -0.3 1 +1819 12 5 -1.6 -2.3 -2.3 1 +1819 12 6 0.1 -0.6 -0.6 1 +1819 12 7 -1.4 -2.1 -2.1 1 +1819 12 8 -2.6 -3.3 -3.3 1 +1819 12 9 -1.1 -1.8 -1.8 1 +1819 12 10 -1.6 -2.3 -2.3 1 +1819 12 11 0.6 -0.1 -0.1 1 +1819 12 12 1.0 0.3 0.3 1 +1819 12 13 0.1 -0.6 -0.6 1 +1819 12 14 -1.7 -2.4 -2.4 1 +1819 12 15 -3.6 -4.3 -4.3 1 +1819 12 16 -6.9 -7.6 -7.6 1 +1819 12 17 -14.3 -15.0 -15.0 1 +1819 12 18 -6.6 -7.3 -7.3 1 +1819 12 19 -9.6 -10.3 -10.3 1 +1819 12 20 -4.2 -4.9 -4.9 1 +1819 12 21 0.3 -0.4 -0.4 1 +1819 12 22 -2.9 -3.6 -3.6 1 +1819 12 23 -0.7 -1.4 -1.4 1 +1819 12 24 -1.6 -2.3 -2.3 1 +1819 12 25 -5.8 -6.5 -6.5 1 +1819 12 26 -3.7 -4.4 -4.4 1 +1819 12 27 -10.7 -11.4 -11.4 1 +1819 12 28 -13.4 -14.1 -14.1 1 +1819 12 29 -15.7 -16.4 -16.4 1 +1819 12 30 -12.8 -13.5 -13.5 1 +1819 12 31 -13.1 -13.8 -13.8 1 +1820 1 1 -4.8 -5.5 -5.5 1 +1820 1 2 -8.6 -9.3 -9.3 1 +1820 1 3 -5.4 -6.1 -6.1 1 +1820 1 4 -10.4 -11.1 -11.1 1 +1820 1 5 -16.9 -17.6 -17.6 1 +1820 1 6 -15.8 -16.5 -16.5 1 +1820 1 7 -13.8 -14.5 -14.5 1 +1820 1 8 -11.0 -11.7 -11.7 1 +1820 1 9 -12.5 -13.2 -13.2 1 +1820 1 10 -6.1 -6.8 -6.8 1 +1820 1 11 -4.8 -5.5 -5.5 1 +1820 1 12 -15.1 -15.8 -15.8 1 +1820 1 13 -12.8 -13.5 -13.5 1 +1820 1 14 -5.4 -6.1 -6.1 1 +1820 1 15 -5.8 -6.5 -6.5 1 +1820 1 16 -10.8 -11.5 -11.5 1 +1820 1 17 -19.3 -20.0 -20.0 1 +1820 1 18 -17.5 -18.2 -18.2 1 +1820 1 19 -12.3 -13.0 -13.0 1 +1820 1 20 -10.6 -11.3 -11.3 1 +1820 1 21 -8.1 -8.8 -8.8 1 +1820 1 22 -7.8 -8.5 -8.5 1 +1820 1 23 -11.0 -11.7 -11.7 1 +1820 1 24 -11.6 -12.3 -12.3 1 +1820 1 25 -0.5 -1.2 -1.2 1 +1820 1 26 1.0 0.3 0.3 1 +1820 1 27 0.9 0.2 0.2 1 +1820 1 28 0.7 0.0 0.0 1 +1820 1 29 -4.5 -5.2 -5.2 1 +1820 1 30 -5.6 -6.3 -6.3 1 +1820 1 31 -0.8 -1.5 -1.5 1 +1820 2 1 0.5 -0.2 -0.2 1 +1820 2 2 -4.5 -5.2 -5.2 1 +1820 2 3 -2.5 -3.2 -3.2 1 +1820 2 4 0.9 0.2 0.2 1 +1820 2 5 -2.0 -2.7 -2.7 1 +1820 2 6 -1.6 -2.3 -2.3 1 +1820 2 7 -2.7 -3.4 -3.4 1 +1820 2 8 2.2 1.5 1.5 1 +1820 2 9 2.3 1.6 1.6 1 +1820 2 10 1.9 1.2 1.2 1 +1820 2 11 -3.6 -4.3 -4.3 1 +1820 2 12 -9.0 -9.7 -9.7 1 +1820 2 13 -5.7 -6.4 -6.4 1 +1820 2 14 -4.0 -4.7 -4.7 1 +1820 2 15 -3.0 -3.7 -3.7 1 +1820 2 16 -5.0 -5.7 -5.7 1 +1820 2 17 -5.7 -6.4 -6.4 1 +1820 2 18 -3.8 -4.5 -4.5 1 +1820 2 19 -6.3 -7.0 -7.0 1 +1820 2 20 -4.3 -5.0 -5.0 1 +1820 2 21 -3.2 -3.9 -3.9 1 +1820 2 22 -1.0 -1.7 -1.7 1 +1820 2 23 -1.3 -2.0 -2.0 1 +1820 2 24 0.5 -0.2 -0.2 1 +1820 2 25 -7.6 -8.3 -8.3 1 +1820 2 26 -11.1 -11.8 -11.8 1 +1820 2 27 -2.1 -2.8 -2.8 1 +1820 2 28 1.2 0.5 0.5 1 +1820 2 29 0.6 -0.1 -0.1 1 +1820 3 1 0.1 -0.6 -0.6 1 +1820 3 2 -3.1 -3.8 -3.8 1 +1820 3 3 -3.9 -4.6 -4.6 1 +1820 3 4 -8.2 -8.9 -8.9 1 +1820 3 5 -10.2 -10.9 -10.9 1 +1820 3 6 -5.0 -5.7 -5.7 1 +1820 3 7 -5.4 -6.1 -6.1 1 +1820 3 8 -2.4 -3.1 -3.1 1 +1820 3 9 2.6 1.9 1.9 1 +1820 3 10 2.3 1.6 1.6 1 +1820 3 11 2.4 1.7 1.7 1 +1820 3 12 -0.4 -1.1 -1.1 1 +1820 3 13 -1.0 -1.7 -1.7 1 +1820 3 14 -1.7 -2.4 -2.4 1 +1820 3 15 -1.4 -2.1 -2.1 1 +1820 3 16 0.3 -0.4 -0.4 1 +1820 3 17 1.0 0.3 0.3 1 +1820 3 18 0.0 -0.7 -0.7 1 +1820 3 19 -0.9 -1.6 -1.6 1 +1820 3 20 1.0 0.3 0.3 1 +1820 3 21 -1.2 -1.9 -1.9 1 +1820 3 22 -3.7 -4.4 -4.4 1 +1820 3 23 -7.8 -8.5 -8.5 1 +1820 3 24 -4.3 -5.0 -5.0 1 +1820 3 25 -6.5 -7.2 -7.2 1 +1820 3 26 -6.8 -7.5 -7.5 1 +1820 3 27 -2.3 -3.0 -3.0 1 +1820 3 28 1.3 0.6 0.6 1 +1820 3 29 2.0 1.3 1.3 1 +1820 3 30 4.2 3.5 3.5 1 +1820 3 31 4.2 3.5 3.5 1 +1820 4 1 4.2 3.5 3.5 1 +1820 4 2 2.4 1.7 1.7 1 +1820 4 3 1.2 0.5 0.5 1 +1820 4 4 1.4 0.7 0.7 1 +1820 4 5 1.2 0.5 0.5 1 +1820 4 6 1.5 0.8 0.8 1 +1820 4 7 1.2 0.5 0.5 1 +1820 4 8 1.0 0.3 0.3 1 +1820 4 9 2.4 1.7 1.7 1 +1820 4 10 3.9 3.2 3.2 1 +1820 4 11 4.9 4.2 4.2 1 +1820 4 12 6.0 5.3 5.3 1 +1820 4 13 8.4 7.7 7.7 1 +1820 4 14 6.2 5.5 5.5 1 +1820 4 15 3.7 3.0 3.0 1 +1820 4 16 6.5 5.8 5.8 1 +1820 4 17 6.9 6.2 6.2 1 +1820 4 18 8.0 7.3 7.3 1 +1820 4 19 8.4 7.7 7.7 1 +1820 4 20 6.4 5.7 5.7 1 +1820 4 21 5.9 5.2 5.2 1 +1820 4 22 6.5 5.8 5.8 1 +1820 4 23 8.3 7.6 7.6 1 +1820 4 24 5.5 4.8 4.8 1 +1820 4 25 7.3 6.6 6.6 1 +1820 4 26 9.3 8.6 8.6 1 +1820 4 27 5.3 4.6 4.6 1 +1820 4 28 4.8 4.1 4.1 1 +1820 4 29 1.8 1.1 1.1 1 +1820 4 30 5.5 4.8 4.8 1 +1820 5 1 5.5 4.8 4.8 1 +1820 5 2 4.0 3.3 3.3 1 +1820 5 3 3.1 2.4 2.4 1 +1820 5 4 2.2 1.5 1.5 1 +1820 5 5 4.8 4.1 4.0 1 +1820 5 6 4.8 4.1 4.0 1 +1820 5 7 4.8 4.1 4.0 1 +1820 5 8 5.9 5.2 5.1 1 +1820 5 9 8.3 7.6 7.5 1 +1820 5 10 9.4 8.7 8.5 1 +1820 5 11 13.8 13.1 12.9 1 +1820 5 12 12.6 11.9 11.7 1 +1820 5 13 12.2 11.5 11.3 1 +1820 5 14 11.1 10.4 10.1 1 +1820 5 15 9.6 8.9 8.6 1 +1820 5 16 13.4 12.7 12.4 1 +1820 5 17 13.9 13.2 12.9 1 +1820 5 18 12.7 12.0 11.7 1 +1820 5 19 11.2 10.5 10.1 1 +1820 5 20 12.4 11.7 11.3 1 +1820 5 21 12.2 11.5 11.1 1 +1820 5 22 13.9 13.2 12.8 1 +1820 5 23 18.0 17.3 16.8 1 +1820 5 24 15.3 14.6 14.1 1 +1820 5 25 15.8 15.1 14.6 1 +1820 5 26 10.2 9.5 9.0 1 +1820 5 27 10.8 10.1 9.6 1 +1820 5 28 9.0 8.3 7.7 1 +1820 5 29 11.2 10.5 9.9 1 +1820 5 30 12.4 11.7 11.1 1 +1820 5 31 13.0 12.3 11.7 1 +1820 6 1 10.8 10.1 9.4 1 +1820 6 2 12.5 11.8 11.1 1 +1820 6 3 13.0 12.3 11.6 1 +1820 6 4 13.9 13.2 12.5 1 +1820 6 5 14.6 13.9 13.2 1 +1820 6 6 16.2 15.5 14.8 1 +1820 6 7 15.1 14.4 13.7 1 +1820 6 8 14.2 13.5 12.8 1 +1820 6 9 12.2 11.5 10.8 1 +1820 6 10 10.8 10.1 9.4 1 +1820 6 11 11.7 11.0 10.3 1 +1820 6 12 11.6 10.9 10.2 1 +1820 6 13 12.1 11.4 10.7 1 +1820 6 14 14.8 14.1 13.4 1 +1820 6 15 12.8 12.1 11.4 1 +1820 6 16 15.8 15.1 14.4 1 +1820 6 17 15.3 14.6 13.9 1 +1820 6 18 15.8 15.1 14.4 1 +1820 6 19 16.4 15.7 15.0 1 +1820 6 20 15.6 14.9 14.2 1 +1820 6 21 14.7 14.0 13.3 1 +1820 6 22 17.6 16.9 16.2 1 +1820 6 23 19.9 19.2 18.5 1 +1820 6 24 18.1 17.4 16.7 1 +1820 6 25 16.8 16.1 15.4 1 +1820 6 26 20.1 19.4 18.7 1 +1820 6 27 20.1 19.4 18.7 1 +1820 6 28 14.0 13.3 12.6 1 +1820 6 29 12.1 11.4 10.7 1 +1820 6 30 13.2 12.5 11.8 1 +1820 7 1 14.3 13.6 12.9 1 +1820 7 2 12.2 11.5 10.8 1 +1820 7 3 12.8 12.1 11.4 1 +1820 7 4 14.8 14.1 13.4 1 +1820 7 5 14.5 13.8 13.1 1 +1820 7 6 13.5 12.8 12.1 1 +1820 7 7 10.0 9.3 8.6 1 +1820 7 8 13.0 12.3 11.6 1 +1820 7 9 15.0 14.3 13.6 1 +1820 7 10 14.8 14.1 13.4 1 +1820 7 11 14.7 14.0 13.3 1 +1820 7 12 13.9 13.2 12.5 1 +1820 7 13 19.2 18.5 17.8 1 +1820 7 14 19.8 19.1 18.4 1 +1820 7 15 18.2 17.5 16.8 1 +1820 7 16 17.5 16.8 16.1 1 +1820 7 17 20.0 19.3 18.6 1 +1820 7 18 21.0 20.3 19.6 1 +1820 7 19 20.4 19.7 19.0 1 +1820 7 20 18.4 17.7 17.0 1 +1820 7 21 18.1 17.4 16.7 1 +1820 7 22 18.6 17.9 17.2 1 +1820 7 23 18.8 18.1 17.4 1 +1820 7 24 17.7 17.0 16.3 1 +1820 7 25 19.9 19.2 18.5 1 +1820 7 26 19.3 18.6 17.9 1 +1820 7 27 19.3 18.6 17.9 1 +1820 7 28 17.3 16.6 15.9 1 +1820 7 29 17.4 16.7 16.0 1 +1820 7 30 17.8 17.1 16.4 1 +1820 7 31 18.5 17.8 17.1 1 +1820 8 1 19.5 18.8 18.2 1 +1820 8 2 17.1 16.4 15.8 1 +1820 8 3 18.0 17.3 16.7 1 +1820 8 4 19.5 18.8 18.2 1 +1820 8 5 20.7 20.0 19.5 1 +1820 8 6 18.5 17.8 17.3 1 +1820 8 7 19.0 18.3 17.8 1 +1820 8 8 18.7 18.0 17.5 1 +1820 8 9 16.5 15.8 15.3 1 +1820 8 10 17.4 16.7 16.3 1 +1820 8 11 17.7 17.0 16.6 1 +1820 8 12 17.0 16.3 15.9 1 +1820 8 13 16.7 16.0 15.6 1 +1820 8 14 16.2 15.5 15.2 1 +1820 8 15 18.5 17.8 17.5 1 +1820 8 16 17.4 16.7 16.4 1 +1820 8 17 15.7 15.0 14.7 1 +1820 8 18 15.9 15.2 14.9 1 +1820 8 19 16.2 15.5 15.3 1 +1820 8 20 11.9 11.2 11.0 1 +1820 8 21 13.2 12.5 12.3 1 +1820 8 22 12.7 12.0 11.8 1 +1820 8 23 13.2 12.5 12.4 1 +1820 8 24 14.1 13.4 13.3 1 +1820 8 25 13.4 12.7 12.6 1 +1820 8 26 15.0 14.3 14.2 1 +1820 8 27 14.2 13.5 13.4 1 +1820 8 28 13.9 13.2 13.2 1 +1820 8 29 14.1 13.4 13.4 1 +1820 8 30 12.6 11.9 11.9 1 +1820 8 31 13.1 12.4 12.4 1 +1820 9 1 15.7 15.0 15.0 1 +1820 9 2 15.7 15.0 15.0 1 +1820 9 3 14.2 13.5 13.5 1 +1820 9 4 13.9 13.2 13.2 1 +1820 9 5 13.1 12.4 12.4 1 +1820 9 6 14.2 13.5 13.5 1 +1820 9 7 14.1 13.4 13.4 1 +1820 9 8 14.6 13.9 13.9 1 +1820 9 9 15.2 14.5 14.5 1 +1820 9 10 14.4 13.7 13.7 1 +1820 9 11 13.1 12.4 12.4 1 +1820 9 12 12.6 11.9 11.9 1 +1820 9 13 16.4 15.7 15.7 1 +1820 9 14 14.9 14.2 14.2 1 +1820 9 15 14.4 13.7 13.7 1 +1820 9 16 14.4 13.7 13.7 1 +1820 9 17 11.6 10.9 10.9 1 +1820 9 18 8.9 8.2 8.2 1 +1820 9 19 8.0 7.3 7.3 1 +1820 9 20 9.2 8.5 8.5 1 +1820 9 21 9.9 9.2 9.2 1 +1820 9 22 10.0 9.3 9.3 1 +1820 9 23 11.5 10.8 10.8 1 +1820 9 24 11.9 11.2 11.2 1 +1820 9 25 12.9 12.2 12.2 1 +1820 9 26 10.5 9.8 9.8 1 +1820 9 27 9.2 8.5 8.5 1 +1820 9 28 7.2 6.5 6.5 1 +1820 9 29 9.0 8.3 8.3 1 +1820 9 30 8.7 8.0 8.0 1 +1820 10 1 11.0 10.3 10.3 1 +1820 10 2 9.6 8.9 8.9 1 +1820 10 3 9.3 8.6 8.6 1 +1820 10 4 7.5 6.8 6.8 1 +1820 10 5 9.6 8.9 8.9 1 +1820 10 6 8.0 7.3 7.3 1 +1820 10 7 5.8 5.1 5.1 1 +1820 10 8 6.1 5.4 5.4 1 +1820 10 9 5.3 4.6 4.6 1 +1820 10 10 7.4 6.7 6.7 1 +1820 10 11 8.4 7.7 7.7 1 +1820 10 12 6.8 6.1 6.1 1 +1820 10 13 1.1 0.4 0.4 1 +1820 10 14 4.1 3.4 3.4 1 +1820 10 15 5.4 4.7 4.7 1 +1820 10 16 8.6 7.9 7.9 1 +1820 10 17 9.4 8.7 8.7 1 +1820 10 18 8.4 7.7 7.7 1 +1820 10 19 6.9 6.2 6.2 1 +1820 10 20 7.8 7.1 7.1 1 +1820 10 21 7.6 6.9 6.9 1 +1820 10 22 7.4 6.7 6.7 1 +1820 10 23 5.7 5.0 5.0 1 +1820 10 24 5.7 5.0 5.0 1 +1820 10 25 4.9 4.2 4.2 1 +1820 10 26 7.6 6.9 6.9 1 +1820 10 27 7.6 6.9 6.9 1 +1820 10 28 9.6 8.9 8.9 1 +1820 10 29 8.9 8.2 8.2 1 +1820 10 30 7.2 6.5 6.5 1 +1820 10 31 7.7 7.0 7.0 1 +1820 11 1 9.1 8.4 8.4 1 +1820 11 2 8.7 8.0 8.0 1 +1820 11 3 7.7 7.0 7.0 1 +1820 11 4 3.9 3.2 3.2 1 +1820 11 5 2.5 1.8 1.8 1 +1820 11 6 2.7 2.0 2.0 1 +1820 11 7 3.7 3.0 3.0 1 +1820 11 8 3.7 3.0 3.0 1 +1820 11 9 3.2 2.5 2.5 1 +1820 11 10 2.1 1.4 1.4 1 +1820 11 11 -2.9 -3.6 -3.6 1 +1820 11 12 -5.3 -6.0 -6.0 1 +1820 11 13 -2.4 -3.1 -3.1 1 +1820 11 14 -5.8 -6.5 -6.5 1 +1820 11 15 -4.9 -5.6 -5.6 1 +1820 11 16 -3.8 -4.5 -4.5 1 +1820 11 17 0.4 -0.3 -0.3 1 +1820 11 18 -1.8 -2.5 -2.5 1 +1820 11 19 -0.8 -1.5 -1.5 1 +1820 11 20 -3.9 -4.6 -4.6 1 +1820 11 21 0.6 -0.1 -0.1 1 +1820 11 22 2.9 2.2 2.2 1 +1820 11 23 3.1 2.4 2.4 1 +1820 11 24 2.4 1.7 1.7 1 +1820 11 25 1.3 0.6 0.6 1 +1820 11 26 -3.3 -4.0 -4.0 1 +1820 11 27 1.2 0.5 0.5 1 +1820 11 28 2.1 1.4 1.4 1 +1820 11 29 2.4 1.7 1.7 1 +1820 11 30 3.7 3.0 3.0 1 +1820 12 1 -2.4 -3.1 -3.1 1 +1820 12 2 -5.1 -5.8 -5.8 1 +1820 12 3 -6.2 -6.9 -6.9 1 +1820 12 4 -5.4 -6.1 -6.1 1 +1820 12 5 -6.9 -7.6 -7.6 1 +1820 12 6 -9.3 -10.0 -10.0 1 +1820 12 7 -8.1 -8.8 -8.8 1 +1820 12 8 -0.9 -1.6 -1.6 1 +1820 12 9 2.1 1.4 1.4 1 +1820 12 10 1.1 0.4 0.4 1 +1820 12 11 4.2 3.5 3.5 1 +1820 12 12 -2.1 -2.8 -2.8 1 +1820 12 13 -8.0 -8.7 -8.7 1 +1820 12 14 -10.1 -10.8 -10.8 1 +1820 12 15 -6.4 -7.1 -7.1 1 +1820 12 16 -8.1 -8.8 -8.8 1 +1820 12 17 -5.9 -6.6 -6.6 1 +1820 12 18 -3.9 -4.6 -4.6 1 +1820 12 19 -2.2 -2.9 -2.9 1 +1820 12 20 -4.1 -4.8 -4.8 1 +1820 12 21 -3.1 -3.8 -3.8 1 +1820 12 22 -1.9 -2.6 -2.6 1 +1820 12 23 -4.7 -5.4 -5.4 1 +1820 12 24 -2.7 -3.4 -3.4 1 +1820 12 25 -1.4 -2.1 -2.1 1 +1820 12 26 -3.6 -4.3 -4.3 1 +1820 12 27 -4.2 -4.9 -4.9 1 +1820 12 28 -4.3 -5.0 -5.0 1 +1820 12 29 -7.7 -8.4 -8.4 1 +1820 12 30 -6.6 -7.3 -7.3 1 +1820 12 31 -7.9 -8.6 -8.6 1 +1821 1 1 -8.4 -9.1 -9.1 1 +1821 1 2 -8.8 -9.5 -9.5 1 +1821 1 3 -10.9 -11.6 -11.6 1 +1821 1 4 -16.4 -17.1 -17.1 1 +1821 1 5 -13.6 -14.3 -14.3 1 +1821 1 6 -6.9 -7.6 -7.6 1 +1821 1 7 -5.8 -6.5 -6.5 1 +1821 1 8 -6.1 -6.8 -6.8 1 +1821 1 9 -5.5 -6.2 -6.2 1 +1821 1 10 -0.6 -1.3 -1.3 1 +1821 1 11 -6.9 -7.6 -7.6 1 +1821 1 12 -9.6 -10.3 -10.3 1 +1821 1 13 -15.6 -16.3 -16.3 1 +1821 1 14 0.4 -0.3 -0.3 1 +1821 1 15 -5.1 -5.8 -5.8 1 +1821 1 16 -6.3 -7.0 -7.0 1 +1821 1 17 -6.6 -7.3 -7.3 1 +1821 1 18 1.1 0.4 0.4 1 +1821 1 19 3.4 2.7 2.7 1 +1821 1 20 1.7 1.0 1.0 1 +1821 1 21 -3.1 -3.8 -3.8 1 +1821 1 22 0.4 -0.3 -0.3 1 +1821 1 23 -2.6 -3.3 -3.3 1 +1821 1 24 0.4 -0.3 -0.3 1 +1821 1 25 1.8 1.1 1.1 1 +1821 1 26 0.4 -0.3 -0.3 1 +1821 1 27 1.2 0.5 0.5 1 +1821 1 28 -0.5 -1.2 -1.2 1 +1821 1 29 -1.8 -2.5 -2.5 1 +1821 1 30 0.6 -0.1 -0.1 1 +1821 1 31 2.7 2.0 2.0 1 +1821 2 1 2.8 2.1 2.1 1 +1821 2 2 3.7 3.0 3.0 1 +1821 2 3 5.5 4.8 4.8 1 +1821 2 4 0.8 0.1 0.1 1 +1821 2 5 -4.2 -4.9 -4.9 1 +1821 2 6 -4.0 -4.7 -4.7 1 +1821 2 7 3.2 2.5 2.5 1 +1821 2 8 3.9 3.2 3.2 1 +1821 2 9 3.2 2.5 2.5 1 +1821 2 10 1.5 0.8 0.8 1 +1821 2 11 -1.5 -2.2 -2.2 1 +1821 2 12 1.0 0.3 0.3 1 +1821 2 13 1.2 0.5 0.5 1 +1821 2 14 -3.5 -4.2 -4.2 1 +1821 2 15 -0.5 -1.2 -1.2 1 +1821 2 16 2.8 2.1 2.1 1 +1821 2 17 6.5 5.8 5.8 1 +1821 2 18 -2.2 -2.9 -2.9 1 +1821 2 19 -8.2 -8.9 -8.9 1 +1821 2 20 -3.4 -4.1 -4.1 1 +1821 2 21 -8.6 -9.3 -9.3 1 +1821 2 22 -15.7 -16.4 -16.4 1 +1821 2 23 -10.1 -10.8 -10.8 1 +1821 2 24 -10.8 -11.5 -11.5 1 +1821 2 25 -13.0 -13.7 -13.7 1 +1821 2 26 -12.3 -13.0 -13.0 1 +1821 2 27 -11.4 -12.1 -12.1 1 +1821 2 28 -8.6 -9.3 -9.3 1 +1821 3 1 -7.1 -7.8 -7.8 1 +1821 3 2 -6.1 -6.8 -6.8 1 +1821 3 3 -10.1 -10.8 -10.8 1 +1821 3 4 -18.3 -19.0 -19.0 1 +1821 3 5 -17.1 -17.8 -17.8 1 +1821 3 6 -9.1 -9.8 -9.8 1 +1821 3 7 -4.0 -4.7 -4.7 1 +1821 3 8 -1.4 -2.1 -2.1 1 +1821 3 9 -2.5 -3.2 -3.2 1 +1821 3 10 -9.0 -9.7 -9.7 1 +1821 3 11 -6.2 -6.9 -6.9 1 +1821 3 12 -3.5 -4.2 -4.2 1 +1821 3 13 -2.2 -2.9 -2.9 1 +1821 3 14 -1.2 -1.9 -1.9 1 +1821 3 15 0.1 -0.6 -0.6 1 +1821 3 16 -0.4 -1.1 -1.1 1 +1821 3 17 3.8 3.1 3.1 1 +1821 3 18 1.2 0.5 0.5 1 +1821 3 19 1.5 0.8 0.8 1 +1821 3 20 2.0 1.3 1.3 1 +1821 3 21 0.7 0.0 0.0 1 +1821 3 22 -2.2 -2.9 -2.9 1 +1821 3 23 -3.8 -4.5 -4.5 1 +1821 3 24 -2.2 -2.9 -2.9 1 +1821 3 25 0.3 -0.4 -0.4 1 +1821 3 26 -1.0 -1.7 -1.7 1 +1821 3 27 0.1 -0.6 -0.6 1 +1821 3 28 1.4 0.7 0.7 1 +1821 3 29 2.2 1.5 1.5 1 +1821 3 30 2.7 2.0 2.0 1 +1821 3 31 2.5 1.8 1.8 1 +1821 4 1 3.2 2.5 2.5 1 +1821 4 2 2.4 1.7 1.7 1 +1821 4 3 2.0 1.3 1.3 1 +1821 4 4 2.7 2.0 2.0 1 +1821 4 5 4.7 4.0 4.0 1 +1821 4 6 5.0 4.3 4.3 1 +1821 4 7 5.2 4.5 4.5 1 +1821 4 8 6.9 6.2 6.2 1 +1821 4 9 5.2 4.5 4.5 1 +1821 4 10 2.0 1.3 1.3 1 +1821 4 11 4.7 4.0 4.0 1 +1821 4 12 1.0 0.3 0.3 1 +1821 4 13 0.7 0.0 0.0 1 +1821 4 14 1.5 0.8 0.8 1 +1821 4 15 1.0 0.3 0.3 1 +1821 4 16 0.5 -0.2 -0.2 1 +1821 4 17 2.4 1.7 1.7 1 +1821 4 18 6.5 5.8 5.8 1 +1821 4 19 6.2 5.5 5.5 1 +1821 4 20 7.0 6.3 6.3 1 +1821 4 21 10.5 9.8 9.8 1 +1821 4 22 8.4 7.7 7.7 1 +1821 4 23 9.2 8.5 8.5 1 +1821 4 24 9.7 9.0 9.0 1 +1821 4 25 13.0 12.3 12.3 1 +1821 4 26 6.7 6.0 6.0 1 +1821 4 27 6.2 5.5 5.5 1 +1821 4 28 10.0 9.3 9.3 1 +1821 4 29 11.8 11.1 11.1 1 +1821 4 30 12.3 11.6 11.6 1 +1821 5 1 13.8 13.1 13.1 1 +1821 5 2 16.3 15.6 15.6 1 +1821 5 3 11.6 10.9 10.9 1 +1821 5 4 13.4 12.7 12.7 1 +1821 5 5 13.9 13.2 13.1 1 +1821 5 6 15.3 14.6 14.5 1 +1821 5 7 15.4 14.7 14.6 1 +1821 5 8 14.4 13.7 13.6 1 +1821 5 9 13.4 12.7 12.6 1 +1821 5 10 9.9 9.2 9.0 1 +1821 5 11 7.8 7.1 6.9 1 +1821 5 12 6.3 5.6 5.4 1 +1821 5 13 7.2 6.5 6.3 1 +1821 5 14 8.2 7.5 7.2 1 +1821 5 15 9.6 8.9 8.6 1 +1821 5 16 8.6 7.9 7.6 1 +1821 5 17 9.4 8.7 8.4 1 +1821 5 18 9.9 9.2 8.9 1 +1821 5 19 4.1 3.4 3.0 1 +1821 5 20 5.9 5.2 4.8 1 +1821 5 21 5.9 5.2 4.8 1 +1821 5 22 5.2 4.5 4.1 1 +1821 5 23 6.0 5.3 4.8 1 +1821 5 24 5.2 4.5 4.0 1 +1821 5 25 3.1 2.4 1.9 1 +1821 5 26 7.2 6.5 6.0 1 +1821 5 27 10.0 9.3 8.8 1 +1821 5 28 6.9 6.2 5.6 1 +1821 5 29 9.5 8.8 8.2 1 +1821 5 30 10.8 10.1 9.5 1 +1821 5 31 11.0 10.3 9.7 1 +1821 6 1 10.6 9.9 9.2 1 +1821 6 2 10.5 9.8 9.1 1 +1821 6 3 13.6 12.9 12.2 1 +1821 6 4 11.0 10.3 9.6 1 +1821 6 5 11.3 10.6 9.9 1 +1821 6 6 14.2 13.5 12.8 1 +1821 6 7 12.7 12.0 11.3 1 +1821 6 8 12.5 11.8 11.1 1 +1821 6 9 12.0 11.3 10.6 1 +1821 6 10 10.0 9.3 8.6 1 +1821 6 11 11.0 10.3 9.6 1 +1821 6 12 7.9 7.2 6.5 1 +1821 6 13 8.3 7.6 6.9 1 +1821 6 14 10.5 9.8 9.1 1 +1821 6 15 11.4 10.7 10.0 1 +1821 6 16 11.9 11.2 10.5 1 +1821 6 17 16.9 16.2 15.5 1 +1821 6 18 14.8 14.1 13.4 1 +1821 6 19 8.3 7.6 6.9 1 +1821 6 20 8.9 8.2 7.5 1 +1821 6 21 7.8 7.1 6.4 1 +1821 6 22 7.1 6.4 5.7 1 +1821 6 23 11.1 10.4 9.7 1 +1821 6 24 14.9 14.2 13.5 1 +1821 6 25 17.9 17.2 16.5 1 +1821 6 26 11.2 10.5 9.8 1 +1821 6 27 11.5 10.8 10.1 1 +1821 6 28 11.6 10.9 10.2 1 +1821 6 29 13.6 12.9 12.2 1 +1821 6 30 14.8 14.1 13.4 1 +1821 7 1 11.7 11.0 10.3 1 +1821 7 2 9.9 9.2 8.5 1 +1821 7 3 12.5 11.8 11.1 1 +1821 7 4 13.5 12.8 12.1 1 +1821 7 5 13.1 12.4 11.7 1 +1821 7 6 13.5 12.8 12.1 1 +1821 7 7 13.8 13.1 12.4 1 +1821 7 8 15.7 15.0 14.3 1 +1821 7 9 15.7 15.0 14.3 1 +1821 7 10 18.1 17.4 16.7 1 +1821 7 11 11.2 10.5 9.8 1 +1821 7 12 12.9 12.2 11.5 1 +1821 7 13 11.0 10.3 9.6 1 +1821 7 14 13.8 13.1 12.4 1 +1821 7 15 15.0 14.3 13.6 1 +1821 7 16 17.0 16.3 15.6 1 +1821 7 17 16.2 15.5 14.8 1 +1821 7 18 16.0 15.3 14.6 1 +1821 7 19 18.5 17.8 17.1 1 +1821 7 20 18.2 17.5 16.8 1 +1821 7 21 18.2 17.5 16.8 1 +1821 7 22 13.3 12.6 11.9 1 +1821 7 23 16.9 16.2 15.5 1 +1821 7 24 14.8 14.1 13.4 1 +1821 7 25 16.1 15.4 14.7 1 +1821 7 26 15.4 14.7 14.0 1 +1821 7 27 16.3 15.6 14.9 1 +1821 7 28 16.8 16.1 15.4 1 +1821 7 29 16.1 15.4 14.7 1 +1821 7 30 16.4 15.7 15.0 1 +1821 7 31 16.3 15.6 14.9 1 +1821 8 1 18.1 17.4 16.8 1 +1821 8 2 17.6 16.9 16.3 1 +1821 8 3 16.0 15.3 14.7 1 +1821 8 4 13.0 12.3 11.7 1 +1821 8 5 15.7 15.0 14.5 1 +1821 8 6 17.8 17.1 16.6 1 +1821 8 7 18.8 18.1 17.6 1 +1821 8 8 17.7 17.0 16.5 1 +1821 8 9 16.3 15.6 15.1 1 +1821 8 10 16.4 15.7 15.3 1 +1821 8 11 16.5 15.8 15.4 1 +1821 8 12 15.2 14.5 14.1 1 +1821 8 13 16.2 15.5 15.1 1 +1821 8 14 15.9 15.2 14.9 1 +1821 8 15 13.7 13.0 12.7 1 +1821 8 16 16.9 16.2 15.9 1 +1821 8 17 16.9 16.2 15.9 1 +1821 8 18 15.7 15.0 14.7 1 +1821 8 19 14.9 14.2 14.0 1 +1821 8 20 16.5 15.8 15.6 1 +1821 8 21 17.6 16.9 16.7 1 +1821 8 22 14.2 13.5 13.3 1 +1821 8 23 12.7 12.0 11.9 1 +1821 8 24 15.0 14.3 14.2 1 +1821 8 25 13.4 12.7 12.6 1 +1821 8 26 9.4 8.7 8.6 1 +1821 8 27 9.6 8.9 8.8 1 +1821 8 28 12.1 11.4 11.4 1 +1821 8 29 11.4 10.7 10.7 1 +1821 8 30 12.7 12.0 12.0 1 +1821 8 31 11.6 10.9 10.9 1 +1821 9 1 11.3 10.6 10.6 1 +1821 9 2 13.7 13.0 13.0 1 +1821 9 3 15.1 14.4 14.4 1 +1821 9 4 15.6 14.9 14.9 1 +1821 9 5 13.7 13.0 13.0 1 +1821 9 6 16.2 15.5 15.5 1 +1821 9 7 16.9 16.2 16.2 1 +1821 9 8 17.1 16.4 16.4 1 +1821 9 9 16.6 15.9 15.9 1 +1821 9 10 15.4 14.7 14.7 1 +1821 9 11 16.4 15.7 15.7 1 +1821 9 12 15.6 14.9 14.9 1 +1821 9 13 13.6 12.9 12.9 1 +1821 9 14 14.6 13.9 13.9 1 +1821 9 15 11.2 10.5 10.5 1 +1821 9 16 11.7 11.0 11.0 1 +1821 9 17 12.9 12.2 12.2 1 +1821 9 18 11.2 10.5 10.5 1 +1821 9 19 9.9 9.2 9.2 1 +1821 9 20 9.4 8.7 8.7 1 +1821 9 21 7.2 6.5 6.5 1 +1821 9 22 7.5 6.8 6.8 1 +1821 9 23 10.9 10.2 10.2 1 +1821 9 24 11.7 11.0 11.0 1 +1821 9 25 14.9 14.2 14.2 1 +1821 9 26 12.1 11.4 11.4 1 +1821 9 27 11.5 10.8 10.8 1 +1821 9 28 13.5 12.8 12.8 1 +1821 9 29 11.8 11.1 11.1 1 +1821 9 30 12.2 11.5 11.5 1 +1821 10 1 13.5 12.8 12.8 1 +1821 10 2 10.8 10.1 10.1 1 +1821 10 3 10.5 9.8 9.8 1 +1821 10 4 12.6 11.9 11.9 1 +1821 10 5 15.3 14.6 14.6 1 +1821 10 6 12.0 11.3 11.3 1 +1821 10 7 13.8 13.1 13.1 1 +1821 10 8 15.4 14.7 14.7 1 +1821 10 9 14.1 13.4 13.4 1 +1821 10 10 8.9 8.2 8.2 1 +1821 10 11 10.9 10.2 10.2 1 +1821 10 12 12.3 11.6 11.6 1 +1821 10 13 10.3 9.6 9.6 1 +1821 10 14 7.9 7.2 7.2 1 +1821 10 15 9.2 8.5 8.5 1 +1821 10 16 8.9 8.2 8.2 1 +1821 10 17 6.4 5.7 5.7 1 +1821 10 18 7.8 7.1 7.1 1 +1821 10 19 5.5 4.8 4.8 1 +1821 10 20 3.2 2.5 2.5 1 +1821 10 21 8.9 8.2 8.2 1 +1821 10 22 11.1 10.4 10.4 1 +1821 10 23 11.6 10.9 10.9 1 +1821 10 24 12.1 11.4 11.4 1 +1821 10 25 12.1 11.4 11.4 1 +1821 10 26 11.2 10.5 10.5 1 +1821 10 27 8.2 7.5 7.5 1 +1821 10 28 11.2 10.5 10.5 1 +1821 10 29 8.9 8.2 8.2 1 +1821 10 30 11.9 11.2 11.2 1 +1821 10 31 9.9 9.2 9.2 1 +1821 11 1 9.9 9.2 9.2 1 +1821 11 2 6.9 6.2 6.2 1 +1821 11 3 6.9 6.2 6.2 1 +1821 11 4 1.0 0.3 0.3 1 +1821 11 5 -1.8 -2.5 -2.5 1 +1821 11 6 1.2 0.5 0.5 1 +1821 11 7 2.5 1.8 1.8 1 +1821 11 8 1.7 1.0 1.0 1 +1821 11 9 0.4 -0.3 -0.3 1 +1821 11 10 0.5 -0.2 -0.2 1 +1821 11 11 -0.5 -1.2 -1.2 1 +1821 11 12 2.5 1.8 1.8 1 +1821 11 13 6.2 5.5 5.5 1 +1821 11 14 7.6 6.9 6.9 1 +1821 11 15 7.9 7.2 7.2 1 +1821 11 16 8.1 7.4 7.4 1 +1821 11 17 9.5 8.8 8.8 1 +1821 11 18 0.2 -0.5 -0.5 1 +1821 11 19 0.2 -0.5 -0.5 1 +1821 11 20 5.6 4.9 4.9 1 +1821 11 21 5.6 4.9 4.9 1 +1821 11 22 -0.6 -1.3 -1.3 1 +1821 11 23 -0.8 -1.5 -1.5 1 +1821 11 24 -0.9 -1.6 -1.6 1 +1821 11 25 2.3 1.6 1.6 1 +1821 11 26 3.3 2.6 2.6 1 +1821 11 27 7.9 7.2 7.2 1 +1821 11 28 2.9 2.2 2.2 1 +1821 11 29 5.1 4.4 4.4 1 +1821 11 30 -0.9 -1.6 -1.6 1 +1821 12 1 -1.1 -1.8 -1.8 1 +1821 12 2 -1.1 -1.8 -1.8 1 +1821 12 3 -1.6 -2.3 -2.3 1 +1821 12 4 0.9 0.2 0.2 1 +1821 12 5 -1.5 -2.2 -2.2 1 +1821 12 6 -3.7 -4.4 -4.4 1 +1821 12 7 -1.9 -2.6 -2.6 1 +1821 12 8 0.2 -0.5 -0.5 1 +1821 12 9 0.5 -0.2 -0.2 1 +1821 12 10 5.4 4.7 4.7 1 +1821 12 11 5.5 4.8 4.8 1 +1821 12 12 2.8 2.1 2.1 1 +1821 12 13 1.7 1.0 1.0 1 +1821 12 14 -1.8 -2.5 -2.5 1 +1821 12 15 1.2 0.5 0.5 1 +1821 12 16 4.0 3.3 3.3 1 +1821 12 17 4.1 3.4 3.4 1 +1821 12 18 4.9 4.2 4.2 1 +1821 12 19 4.7 4.0 4.0 1 +1821 12 20 4.6 3.9 3.9 1 +1821 12 21 3.9 3.2 3.2 1 +1821 12 22 2.3 1.6 1.6 1 +1821 12 23 2.2 1.5 1.5 1 +1821 12 24 4.3 3.6 3.6 1 +1821 12 25 3.6 2.9 2.9 1 +1821 12 26 5.1 4.4 4.4 1 +1821 12 27 2.5 1.8 1.8 1 +1821 12 28 3.5 2.8 2.8 1 +1821 12 29 2.6 1.9 1.9 1 +1821 12 30 1.9 1.2 1.2 1 +1821 12 31 1.7 1.0 1.0 1 +1822 1 1 -0.7 -1.4 -1.4 1 +1822 1 2 0.0 -0.7 -0.7 1 +1822 1 3 1.6 0.9 0.9 1 +1822 1 4 1.6 0.9 0.9 1 +1822 1 5 -0.1 -0.8 -0.8 1 +1822 1 6 -5.7 -6.4 -6.4 1 +1822 1 7 -4.2 -4.9 -4.9 1 +1822 1 8 -6.8 -7.5 -7.5 1 +1822 1 9 -4.6 -5.3 -5.3 1 +1822 1 10 1.2 0.5 0.5 1 +1822 1 11 -3.0 -3.7 -3.7 1 +1822 1 12 -2.6 -3.3 -3.3 1 +1822 1 13 2.4 1.7 1.7 1 +1822 1 14 0.9 0.2 0.2 1 +1822 1 15 -1.6 -2.3 -2.3 1 +1822 1 16 -7.7 -8.4 -8.4 1 +1822 1 17 -8.7 -9.4 -9.4 1 +1822 1 18 -1.8 -2.5 -2.5 1 +1822 1 19 -3.0 -3.7 -3.7 1 +1822 1 20 0.9 0.2 0.2 1 +1822 1 21 0.9 0.2 0.2 1 +1822 1 22 -1.4 -2.1 -2.1 1 +1822 1 23 3.7 3.0 3.0 1 +1822 1 24 -1.5 -2.2 -2.2 1 +1822 1 25 -1.5 -2.2 -2.2 1 +1822 1 26 -1.4 -2.1 -2.1 1 +1822 1 27 -5.3 -6.0 -6.0 1 +1822 1 28 2.6 1.9 1.9 1 +1822 1 29 1.9 1.2 1.2 1 +1822 1 30 -3.4 -4.1 -4.1 1 +1822 1 31 1.0 0.3 0.3 1 +1822 2 1 1.9 1.2 1.2 1 +1822 2 2 4.5 3.8 3.8 1 +1822 2 3 4.7 4.0 4.0 1 +1822 2 4 2.8 2.1 2.1 1 +1822 2 5 0.9 0.2 0.2 1 +1822 2 6 2.1 1.4 1.4 1 +1822 2 7 -0.2 -0.9 -0.9 1 +1822 2 8 2.3 1.6 1.6 1 +1822 2 9 4.2 3.5 3.5 1 +1822 2 10 2.4 1.7 1.7 1 +1822 2 11 2.1 1.4 1.4 1 +1822 2 12 1.7 1.0 1.0 1 +1822 2 13 1.6 0.9 0.9 1 +1822 2 14 1.5 0.8 0.8 1 +1822 2 15 1.7 1.0 1.0 1 +1822 2 16 2.0 1.3 1.3 1 +1822 2 17 1.9 1.2 1.2 1 +1822 2 18 3.8 3.1 3.1 1 +1822 2 19 4.2 3.5 3.5 1 +1822 2 20 6.2 5.5 5.5 1 +1822 2 21 1.4 0.7 0.7 1 +1822 2 22 3.3 2.6 2.6 1 +1822 2 23 4.7 4.0 4.0 1 +1822 2 24 4.9 4.2 4.2 1 +1822 2 25 2.5 1.8 1.8 1 +1822 2 26 4.6 3.9 3.9 1 +1822 2 27 4.8 4.1 4.1 1 +1822 2 28 2.4 1.7 1.7 1 +1822 3 1 3.9 3.2 3.2 1 +1822 3 2 3.3 2.6 2.6 1 +1822 3 3 2.5 1.8 1.8 1 +1822 3 4 5.7 5.0 5.0 1 +1822 3 5 5.3 4.6 4.6 1 +1822 3 6 6.4 5.7 5.7 1 +1822 3 7 5.3 4.6 4.6 1 +1822 3 8 1.8 1.1 1.1 1 +1822 3 9 -1.6 -2.3 -2.3 1 +1822 3 10 0.6 -0.1 -0.1 1 +1822 3 11 3.0 2.3 2.3 1 +1822 3 12 1.1 0.4 0.4 1 +1822 3 13 4.1 3.4 3.4 1 +1822 3 14 5.1 4.4 4.4 1 +1822 3 15 6.2 5.5 5.5 1 +1822 3 16 5.3 4.6 4.6 1 +1822 3 17 7.1 6.4 6.4 1 +1822 3 18 4.9 4.2 4.2 1 +1822 3 19 4.4 3.7 3.7 1 +1822 3 20 6.1 5.4 5.4 1 +1822 3 21 4.8 4.1 4.1 1 +1822 3 22 7.2 6.5 6.5 1 +1822 3 23 9.0 8.3 8.3 1 +1822 3 24 8.9 8.2 8.2 1 +1822 3 25 6.0 5.3 5.3 1 +1822 3 26 4.0 3.3 3.3 1 +1822 3 27 3.0 2.3 2.3 1 +1822 3 28 10.5 9.8 9.8 1 +1822 3 29 8.7 8.0 8.0 1 +1822 3 30 3.5 2.8 2.8 1 +1822 3 31 1.4 0.7 0.7 1 +1822 4 1 1.5 0.8 0.8 1 +1822 4 2 1.3 0.6 0.6 1 +1822 4 3 4.0 3.3 3.3 1 +1822 4 4 0.5 -0.2 -0.2 1 +1822 4 5 0.2 -0.5 -0.5 1 +1822 4 6 -1.6 -2.3 -2.3 1 +1822 4 7 -0.5 -1.2 -1.2 1 +1822 4 8 1.5 0.8 0.8 1 +1822 4 9 0.8 0.1 0.1 1 +1822 4 10 0.9 0.2 0.2 1 +1822 4 11 2.4 1.7 1.7 1 +1822 4 12 4.6 3.9 3.9 1 +1822 4 13 5.5 4.8 4.8 1 +1822 4 14 5.5 4.8 4.8 1 +1822 4 15 5.8 5.1 5.1 1 +1822 4 16 11.0 10.3 10.3 1 +1822 4 17 11.6 10.9 10.9 1 +1822 4 18 8.1 7.4 7.4 1 +1822 4 19 10.3 9.6 9.6 1 +1822 4 20 10.4 9.7 9.7 1 +1822 4 21 10.2 9.5 9.5 1 +1822 4 22 10.7 10.0 10.0 1 +1822 4 23 13.3 12.6 12.6 1 +1822 4 24 13.5 12.8 12.8 1 +1822 4 25 12.4 11.7 11.7 1 +1822 4 26 11.6 10.9 10.9 1 +1822 4 27 10.4 9.7 9.7 1 +1822 4 28 9.4 8.7 8.7 1 +1822 4 29 9.5 8.8 8.8 1 +1822 4 30 10.6 9.9 9.9 1 +1822 5 1 15.3 14.6 14.6 1 +1822 5 2 11.1 10.4 10.4 1 +1822 5 3 12.9 12.2 12.2 1 +1822 5 4 12.1 11.4 11.4 1 +1822 5 5 13.1 12.4 12.3 1 +1822 5 6 9.9 9.2 9.1 1 +1822 5 7 4.9 4.2 4.1 1 +1822 5 8 8.3 7.6 7.5 1 +1822 5 9 4.8 4.1 4.0 1 +1822 5 10 6.1 5.4 5.2 1 +1822 5 11 7.3 6.6 6.4 1 +1822 5 12 7.0 6.3 6.1 1 +1822 5 13 7.7 7.0 6.8 1 +1822 5 14 12.2 11.5 11.2 1 +1822 5 15 12.0 11.3 11.0 1 +1822 5 16 10.0 9.3 9.0 1 +1822 5 17 12.1 11.4 11.1 1 +1822 5 18 15.9 15.2 14.9 1 +1822 5 19 15.8 15.1 14.7 1 +1822 5 20 16.2 15.5 15.1 1 +1822 5 21 19.8 19.1 18.7 1 +1822 5 22 12.9 12.2 11.8 1 +1822 5 23 13.0 12.3 11.8 1 +1822 5 24 14.6 13.9 13.4 1 +1822 5 25 17.8 17.1 16.6 1 +1822 5 26 18.1 17.4 16.9 1 +1822 5 27 15.9 15.2 14.7 1 +1822 5 28 13.3 12.6 12.0 1 +1822 5 29 14.1 13.4 12.8 1 +1822 5 30 16.3 15.6 15.0 1 +1822 5 31 15.0 14.3 13.7 1 +1822 6 1 15.0 14.3 13.6 1 +1822 6 2 12.6 11.9 11.2 1 +1822 6 3 15.4 14.7 14.0 1 +1822 6 4 21.5 20.8 20.1 1 +1822 6 5 16.0 15.3 14.6 1 +1822 6 6 12.8 12.1 11.4 1 +1822 6 7 14.0 13.3 12.6 1 +1822 6 8 13.6 12.9 12.2 1 +1822 6 9 16.8 16.1 15.4 1 +1822 6 10 20.3 19.6 18.9 1 +1822 6 11 18.8 18.1 17.4 1 +1822 6 12 11.3 10.6 9.9 1 +1822 6 13 10.8 10.1 9.4 1 +1822 6 14 11.9 11.2 10.5 1 +1822 6 15 8.0 7.3 6.6 1 +1822 6 16 9.8 9.1 8.4 1 +1822 6 17 15.0 14.3 13.6 1 +1822 6 18 14.8 14.1 13.4 1 +1822 6 19 10.8 10.1 9.4 1 +1822 6 20 9.4 8.7 8.0 1 +1822 6 21 10.5 9.8 9.1 1 +1822 6 22 15.4 14.7 14.0 1 +1822 6 23 16.5 15.8 15.1 1 +1822 6 24 16.0 15.3 14.6 1 +1822 6 25 19.4 18.7 18.0 1 +1822 6 26 19.2 18.5 17.8 1 +1822 6 27 21.8 21.1 20.4 1 +1822 6 28 23.0 22.3 21.6 1 +1822 6 29 20.0 19.3 18.6 1 +1822 6 30 21.8 21.1 20.4 1 +1822 7 1 19.3 18.6 17.9 1 +1822 7 2 18.2 17.5 16.8 1 +1822 7 3 18.2 17.5 16.8 1 +1822 7 4 15.9 15.2 14.5 1 +1822 7 5 17.1 16.4 15.7 1 +1822 7 6 16.3 15.6 14.9 1 +1822 7 7 15.8 15.1 14.4 1 +1822 7 8 14.9 14.2 13.5 1 +1822 7 9 14.1 13.4 12.7 1 +1822 7 10 16.3 15.6 14.9 1 +1822 7 11 18.4 17.7 17.0 1 +1822 7 12 17.1 16.4 15.7 1 +1822 7 13 14.9 14.2 13.5 1 +1822 7 14 12.2 11.5 10.8 1 +1822 7 15 14.6 13.9 13.2 1 +1822 7 16 14.5 13.8 13.1 1 +1822 7 17 17.5 16.8 16.1 1 +1822 7 18 20.0 19.3 18.6 1 +1822 7 19 18.9 18.2 17.5 1 +1822 7 20 19.7 19.0 18.3 1 +1822 7 21 21.5 20.8 20.1 1 +1822 7 22 19.1 18.4 17.7 1 +1822 7 23 18.0 17.3 16.6 1 +1822 7 24 15.7 15.0 14.3 1 +1822 7 25 16.4 15.7 15.0 1 +1822 7 26 16.1 15.4 14.7 1 +1822 7 27 16.0 15.3 14.6 1 +1822 7 28 17.4 16.7 16.0 1 +1822 7 29 18.2 17.5 16.8 1 +1822 7 30 18.8 18.1 17.4 1 +1822 7 31 17.4 16.7 16.0 1 +1822 8 1 16.4 15.7 15.1 1 +1822 8 2 16.5 15.8 15.2 1 +1822 8 3 16.4 15.7 15.1 1 +1822 8 4 16.3 15.6 15.0 1 +1822 8 5 14.9 14.2 13.7 1 +1822 8 6 17.3 16.6 16.1 1 +1822 8 7 18.4 17.7 17.2 1 +1822 8 8 18.4 17.7 17.2 1 +1822 8 9 17.3 16.6 16.1 1 +1822 8 10 16.4 15.7 15.3 1 +1822 8 11 18.1 17.4 17.0 1 +1822 8 12 18.4 17.7 17.3 1 +1822 8 13 17.2 16.5 16.1 1 +1822 8 14 17.2 16.5 16.2 1 +1822 8 15 17.8 17.1 16.8 1 +1822 8 16 17.1 16.4 16.1 1 +1822 8 17 15.5 14.8 14.5 1 +1822 8 18 16.8 16.1 15.8 1 +1822 8 19 17.4 16.7 16.5 1 +1822 8 20 17.9 17.2 17.0 1 +1822 8 21 17.3 16.6 16.4 1 +1822 8 22 16.9 16.2 16.0 1 +1822 8 23 17.2 16.5 16.4 1 +1822 8 24 17.2 16.5 16.4 1 +1822 8 25 17.0 16.3 16.2 1 +1822 8 26 16.5 15.8 15.7 1 +1822 8 27 16.1 15.4 15.3 1 +1822 8 28 15.0 14.3 14.3 1 +1822 8 29 13.9 13.2 13.2 1 +1822 8 30 15.5 14.8 14.8 1 +1822 8 31 16.4 15.7 15.7 1 +1822 9 1 16.5 15.8 15.8 1 +1822 9 2 14.4 13.7 13.7 1 +1822 9 3 16.0 15.3 15.3 1 +1822 9 4 14.1 13.4 13.4 1 +1822 9 5 14.6 13.9 13.9 1 +1822 9 6 17.3 16.6 16.6 1 +1822 9 7 15.2 14.5 14.5 1 +1822 9 8 14.3 13.6 13.6 1 +1822 9 9 14.9 14.2 14.2 1 +1822 9 10 10.4 9.7 9.7 1 +1822 9 11 12.2 11.5 11.5 1 +1822 9 12 12.0 11.3 11.3 1 +1822 9 13 10.9 10.2 10.2 1 +1822 9 14 10.9 10.2 10.2 1 +1822 9 15 13.6 12.9 12.9 1 +1822 9 16 12.6 11.9 11.9 1 +1822 9 17 9.3 8.6 8.6 1 +1822 9 18 11.2 10.5 10.5 1 +1822 9 19 10.5 9.8 9.8 1 +1822 9 20 9.7 9.0 9.0 1 +1822 9 21 10.7 10.0 10.0 1 +1822 9 22 10.5 9.8 9.8 1 +1822 9 23 10.4 9.7 9.7 1 +1822 9 24 10.2 9.5 9.5 1 +1822 9 25 13.5 12.8 12.8 1 +1822 9 26 7.1 6.4 6.4 1 +1822 9 27 6.9 6.2 6.2 1 +1822 9 28 7.6 6.9 6.9 1 +1822 9 29 8.7 8.0 8.0 1 +1822 9 30 8.6 7.9 7.9 1 +1822 10 1 8.0 7.3 7.3 1 +1822 10 2 9.1 8.4 8.4 1 +1822 10 3 7.2 6.5 6.5 1 +1822 10 4 8.4 7.7 7.7 1 +1822 10 5 12.1 11.4 11.4 1 +1822 10 6 12.1 11.4 11.4 1 +1822 10 7 11.9 11.2 11.2 1 +1822 10 8 11.7 11.0 11.0 1 +1822 10 9 12.8 12.1 12.1 1 +1822 10 10 13.4 12.7 12.7 1 +1822 10 11 10.3 9.6 9.6 1 +1822 10 12 9.6 8.9 8.9 1 +1822 10 13 9.7 9.0 9.0 1 +1822 10 14 12.5 11.8 11.8 1 +1822 10 15 8.1 7.4 7.4 1 +1822 10 16 5.7 5.0 5.0 1 +1822 10 17 7.1 6.4 6.4 1 +1822 10 18 7.5 6.8 6.8 1 +1822 10 19 6.8 6.1 6.1 1 +1822 10 20 7.8 7.1 7.1 1 +1822 10 21 10.8 10.1 10.1 1 +1822 10 22 11.4 10.7 10.7 1 +1822 10 23 8.8 8.1 8.1 1 +1822 10 24 3.6 2.9 2.9 1 +1822 10 25 4.9 4.2 4.2 1 +1822 10 26 7.7 7.0 7.0 1 +1822 10 27 9.5 8.8 8.8 1 +1822 10 28 7.4 6.7 6.7 1 +1822 10 29 5.9 5.2 5.2 1 +1822 10 30 4.2 3.5 3.5 1 +1822 10 31 4.2 3.5 3.5 1 +1822 11 1 6.6 5.9 5.9 1 +1822 11 2 10.3 9.6 9.6 1 +1822 11 3 10.7 10.0 10.0 1 +1822 11 4 9.5 8.8 8.8 1 +1822 11 5 8.4 7.7 7.7 1 +1822 11 6 7.0 6.3 6.3 1 +1822 11 7 7.0 6.3 6.3 1 +1822 11 8 6.9 6.2 6.2 1 +1822 11 9 3.0 2.3 2.3 1 +1822 11 10 -2.1 -2.8 -2.8 1 +1822 11 11 -1.4 -2.1 -2.1 1 +1822 11 12 2.8 2.1 2.1 1 +1822 11 13 3.7 3.0 3.0 1 +1822 11 14 2.7 2.0 2.0 1 +1822 11 15 2.9 2.2 2.2 1 +1822 11 16 6.2 5.5 5.5 1 +1822 11 17 7.4 6.7 6.7 1 +1822 11 18 2.5 1.8 1.8 1 +1822 11 19 6.3 5.6 5.6 1 +1822 11 20 7.3 6.6 6.6 1 +1822 11 21 7.7 7.0 7.0 1 +1822 11 22 6.8 6.1 6.1 1 +1822 11 23 7.4 6.7 6.7 1 +1822 11 24 7.3 6.6 6.6 1 +1822 11 25 -1.1 -1.8 -1.8 1 +1822 11 26 0.2 -0.5 -0.5 1 +1822 11 27 5.0 4.3 4.3 1 +1822 11 28 6.9 6.2 6.2 1 +1822 11 29 5.8 5.1 5.1 1 +1822 11 30 4.0 3.3 3.3 1 +1822 12 1 3.8 3.1 3.1 1 +1822 12 2 4.9 4.2 4.2 1 +1822 12 3 5.6 4.9 4.9 1 +1822 12 4 4.2 3.5 3.5 1 +1822 12 5 4.0 3.3 3.3 1 +1822 12 6 5.4 4.7 4.7 1 +1822 12 7 5.7 5.0 5.0 1 +1822 12 8 2.9 2.2 2.2 1 +1822 12 9 4.4 3.7 3.7 1 +1822 12 10 4.2 3.5 3.5 1 +1822 12 11 1.6 0.9 0.9 1 +1822 12 12 0.4 -0.3 -0.3 1 +1822 12 13 -0.7 -1.4 -1.4 1 +1822 12 14 -0.1 -0.8 -0.8 1 +1822 12 15 -0.3 -1.0 -1.0 1 +1822 12 16 1.2 0.5 0.5 1 +1822 12 17 1.1 0.4 0.4 1 +1822 12 18 -1.6 -2.3 -2.3 1 +1822 12 19 -1.9 -2.6 -2.6 1 +1822 12 20 -1.0 -1.7 -1.7 1 +1822 12 21 -3.1 -3.8 -3.8 1 +1822 12 22 -1.3 -2.0 -2.0 1 +1822 12 23 -2.4 -3.1 -3.1 1 +1822 12 24 -4.2 -4.9 -4.9 1 +1822 12 25 -1.8 -2.5 -2.5 1 +1822 12 26 -3.2 -3.9 -3.9 1 +1822 12 27 -0.9 -1.6 -1.6 1 +1822 12 28 -4.8 -5.5 -5.5 1 +1822 12 29 -2.6 -3.3 -3.3 1 +1822 12 30 -2.6 -3.3 -3.3 1 +1822 12 31 -3.1 -3.8 -3.8 1 +1823 1 1 -1.5 -2.2 -2.2 1 +1823 1 2 -1.9 -2.6 -2.6 1 +1823 1 3 -1.1 -1.8 -1.8 1 +1823 1 4 -0.7 -1.4 -1.4 1 +1823 1 5 -3.2 -3.9 -3.9 1 +1823 1 6 -3.2 -3.9 -3.9 1 +1823 1 7 -3.9 -4.6 -4.6 1 +1823 1 8 -5.9 -6.6 -6.6 1 +1823 1 9 -7.2 -7.9 -7.9 1 +1823 1 10 -3.7 -4.4 -4.4 1 +1823 1 11 -6.8 -7.5 -7.5 1 +1823 1 12 -8.0 -8.7 -8.7 1 +1823 1 13 -8.1 -8.8 -8.8 1 +1823 1 14 -4.7 -5.4 -5.4 1 +1823 1 15 -8.3 -9.0 -9.0 1 +1823 1 16 -7.5 -8.2 -8.2 1 +1823 1 17 -5.1 -5.8 -5.8 1 +1823 1 18 -4.0 -4.7 -4.7 1 +1823 1 19 -6.5 -7.2 -7.2 1 +1823 1 20 -8.7 -9.4 -9.4 1 +1823 1 21 -12.2 -12.9 -12.9 1 +1823 1 22 -7.9 -8.6 -8.6 1 +1823 1 23 -5.2 -5.9 -5.9 1 +1823 1 24 -6.5 -7.2 -7.2 1 +1823 1 25 -7.1 -7.8 -7.8 1 +1823 1 26 -6.8 -7.5 -7.5 1 +1823 1 27 -7.9 -8.6 -8.6 1 +1823 1 28 -6.5 -7.2 -7.2 1 +1823 1 29 -4.9 -5.6 -5.6 1 +1823 1 30 -4.4 -5.1 -5.1 1 +1823 1 31 -8.3 -9.0 -9.0 1 +1823 2 1 -9.9 -10.6 -10.6 1 +1823 2 2 -13.9 -14.6 -14.6 1 +1823 2 3 -14.2 -14.9 -14.9 1 +1823 2 4 -14.9 -15.6 -15.6 1 +1823 2 5 -13.6 -14.3 -14.3 1 +1823 2 6 -17.2 -17.9 -17.9 1 +1823 2 7 -16.8 -17.5 -17.5 1 +1823 2 8 -11.8 -12.5 -12.5 1 +1823 2 9 -4.5 -5.2 -5.2 1 +1823 2 10 -4.2 -4.9 -4.9 1 +1823 2 11 -1.7 -2.4 -2.4 1 +1823 2 12 1.7 1.0 1.0 1 +1823 2 13 2.0 1.3 1.3 1 +1823 2 14 -0.4 -1.1 -1.1 1 +1823 2 15 -3.5 -4.2 -4.2 1 +1823 2 16 -1.9 -2.6 -2.6 1 +1823 2 17 -2.4 -3.1 -3.1 1 +1823 2 18 -2.2 -2.9 -2.9 1 +1823 2 19 -1.5 -2.2 -2.2 1 +1823 2 20 -4.1 -4.8 -4.8 1 +1823 2 21 -1.8 -2.5 -2.5 1 +1823 2 22 0.4 -0.3 -0.3 1 +1823 2 23 0.5 -0.2 -0.2 1 +1823 2 24 0.6 -0.1 -0.1 1 +1823 2 25 -0.1 -0.8 -0.8 1 +1823 2 26 -0.3 -1.0 -1.0 1 +1823 2 27 0.3 -0.4 -0.4 1 +1823 2 28 0.9 0.2 0.2 1 +1823 3 1 0.1 -0.6 -0.6 1 +1823 3 2 -1.9 -2.6 -2.6 1 +1823 3 3 2.0 1.3 1.3 1 +1823 3 4 1.2 0.5 0.5 1 +1823 3 5 0.8 0.1 0.1 1 +1823 3 6 -2.9 -3.6 -3.6 1 +1823 3 7 -1.7 -2.4 -2.4 1 +1823 3 8 -0.1 -0.8 -0.8 1 +1823 3 9 -0.4 -1.1 -1.1 1 +1823 3 10 1.4 0.7 0.7 1 +1823 3 11 1.0 0.3 0.3 1 +1823 3 12 -1.2 -1.9 -1.9 1 +1823 3 13 -1.2 -1.9 -1.9 1 +1823 3 14 0.9 0.2 0.2 1 +1823 3 15 1.6 0.9 0.9 1 +1823 3 16 1.5 0.8 0.8 1 +1823 3 17 0.5 -0.2 -0.2 1 +1823 3 18 1.1 0.4 0.4 1 +1823 3 19 0.4 -0.3 -0.3 1 +1823 3 20 -1.1 -1.8 -1.8 1 +1823 3 21 -0.9 -1.6 -1.6 1 +1823 3 22 0.2 -0.5 -0.5 1 +1823 3 23 2.1 1.4 1.4 1 +1823 3 24 2.7 2.0 2.0 1 +1823 3 25 1.9 1.2 1.2 1 +1823 3 26 0.5 -0.2 -0.2 1 +1823 3 27 1.3 0.6 0.6 1 +1823 3 28 0.5 -0.2 -0.2 1 +1823 3 29 -0.3 -1.0 -1.0 1 +1823 3 30 0.7 0.0 0.0 1 +1823 3 31 2.1 1.4 1.4 1 +1823 4 1 1.9 1.2 1.2 1 +1823 4 2 1.1 0.4 0.4 1 +1823 4 3 1.1 0.4 0.4 1 +1823 4 4 3.4 2.7 2.7 1 +1823 4 5 2.5 1.8 1.8 1 +1823 4 6 2.3 1.6 1.6 1 +1823 4 7 3.9 3.2 3.2 1 +1823 4 8 0.7 0.0 0.0 1 +1823 4 9 1.2 0.5 0.5 1 +1823 4 10 1.5 0.8 0.8 1 +1823 4 11 4.5 3.8 3.8 1 +1823 4 12 5.7 5.0 5.0 1 +1823 4 13 0.7 0.0 0.0 1 +1823 4 14 4.6 3.9 3.9 1 +1823 4 15 1.6 0.9 0.9 1 +1823 4 16 3.5 2.8 2.8 1 +1823 4 17 1.9 1.2 1.2 1 +1823 4 18 1.6 0.9 0.9 1 +1823 4 19 0.4 -0.3 -0.3 1 +1823 4 20 1.1 0.4 0.4 1 +1823 4 21 2.4 1.7 1.7 1 +1823 4 22 0.3 -0.4 -0.4 1 +1823 4 23 0.8 0.1 0.1 1 +1823 4 24 3.4 2.7 2.7 1 +1823 4 25 2.3 1.6 1.6 1 +1823 4 26 3.9 3.2 3.2 1 +1823 4 27 2.9 2.2 2.2 1 +1823 4 28 3.7 3.0 3.0 1 +1823 4 29 3.8 3.1 3.1 1 +1823 4 30 1.7 1.0 1.0 1 +1823 5 1 5.9 5.2 5.2 1 +1823 5 2 6.5 5.8 5.8 1 +1823 5 3 7.4 6.7 6.7 1 +1823 5 4 5.7 5.0 5.0 1 +1823 5 5 5.0 4.3 4.2 1 +1823 5 6 6.4 5.7 5.6 1 +1823 5 7 7.0 6.3 6.2 1 +1823 5 8 4.6 3.9 3.8 1 +1823 5 9 3.1 2.4 2.3 1 +1823 5 10 4.0 3.3 3.1 1 +1823 5 11 6.1 5.4 5.2 1 +1823 5 12 7.4 6.7 6.5 1 +1823 5 13 8.3 7.6 7.4 1 +1823 5 14 8.2 7.5 7.2 1 +1823 5 15 9.8 9.1 8.8 1 +1823 5 16 9.0 8.3 8.0 1 +1823 5 17 9.6 8.9 8.6 1 +1823 5 18 10.0 9.3 9.0 1 +1823 5 19 10.9 10.2 9.8 1 +1823 5 20 11.9 11.2 10.8 1 +1823 5 21 8.9 8.2 7.8 1 +1823 5 22 10.2 9.5 9.1 1 +1823 5 23 10.9 10.2 9.7 1 +1823 5 24 9.1 8.4 7.9 1 +1823 5 25 11.2 10.5 10.0 1 +1823 5 26 10.0 9.3 8.8 1 +1823 5 27 11.2 10.5 10.0 1 +1823 5 28 12.5 11.8 11.2 1 +1823 5 29 13.0 12.3 11.7 1 +1823 5 30 15.2 14.5 13.9 1 +1823 5 31 16.9 16.2 15.6 1 +1823 6 1 17.6 16.9 16.2 1 +1823 6 2 18.7 18.0 17.3 1 +1823 6 3 16.5 15.8 15.1 1 +1823 6 4 14.0 13.3 12.6 1 +1823 6 5 13.2 12.5 11.8 1 +1823 6 6 14.6 13.9 13.2 1 +1823 6 7 15.5 14.8 14.1 1 +1823 6 8 15.7 15.0 14.3 1 +1823 6 9 17.8 17.1 16.4 1 +1823 6 10 17.1 16.4 15.7 1 +1823 6 11 20.2 19.5 18.8 1 +1823 6 12 22.9 22.2 21.5 1 +1823 6 13 25.2 24.5 23.8 1 +1823 6 14 23.0 22.3 21.6 1 +1823 6 15 20.4 19.7 19.0 1 +1823 6 16 15.2 14.5 13.8 1 +1823 6 17 15.5 14.8 14.1 1 +1823 6 18 15.4 14.7 14.0 1 +1823 6 19 12.0 11.3 10.6 1 +1823 6 20 16.4 15.7 15.0 1 +1823 6 21 14.7 14.0 13.3 1 +1823 6 22 12.3 11.6 10.9 1 +1823 6 23 13.4 12.7 12.0 1 +1823 6 24 15.3 14.6 13.9 1 +1823 6 25 14.3 13.6 12.9 1 +1823 6 26 14.5 13.8 13.1 1 +1823 6 27 15.5 14.8 14.1 1 +1823 6 28 16.5 15.8 15.1 1 +1823 6 29 16.6 15.9 15.2 1 +1823 6 30 13.5 12.8 12.1 1 +1823 7 1 15.0 14.3 13.6 1 +1823 7 2 16.5 15.8 15.1 1 +1823 7 3 15.1 14.4 13.7 1 +1823 7 4 13.3 12.6 11.9 1 +1823 7 5 13.5 12.8 12.1 1 +1823 7 6 13.7 13.0 12.3 1 +1823 7 7 14.5 13.8 13.1 1 +1823 7 8 13.5 12.8 12.1 1 +1823 7 9 15.6 14.9 14.2 1 +1823 7 10 15.4 14.7 14.0 1 +1823 7 11 15.5 14.8 14.1 1 +1823 7 12 15.1 14.4 13.7 1 +1823 7 13 16.5 15.8 15.1 1 +1823 7 14 19.0 18.3 17.6 1 +1823 7 15 17.3 16.6 15.9 1 +1823 7 16 18.7 18.0 17.3 1 +1823 7 17 17.4 16.7 16.0 1 +1823 7 18 17.9 17.2 16.5 1 +1823 7 19 17.1 16.4 15.7 1 +1823 7 20 16.2 15.5 14.8 1 +1823 7 21 19.7 19.0 18.3 1 +1823 7 22 17.1 16.4 15.7 1 +1823 7 23 19.8 19.1 18.4 1 +1823 7 24 15.6 14.9 14.2 1 +1823 7 25 16.9 16.2 15.5 1 +1823 7 26 19.3 18.6 17.9 1 +1823 7 27 18.8 18.1 17.4 1 +1823 7 28 17.3 16.6 15.9 1 +1823 7 29 19.3 18.6 17.9 1 +1823 7 30 19.9 19.2 18.5 1 +1823 7 31 21.4 20.7 20.0 1 +1823 8 1 22.0 21.3 20.7 1 +1823 8 2 20.6 19.9 19.3 1 +1823 8 3 19.5 18.8 18.2 1 +1823 8 4 19.1 18.4 17.8 1 +1823 8 5 17.0 16.3 15.8 1 +1823 8 6 17.2 16.5 16.0 1 +1823 8 7 16.4 15.7 15.2 1 +1823 8 8 16.2 15.5 15.0 1 +1823 8 9 16.8 16.1 15.6 1 +1823 8 10 15.9 15.2 14.8 1 +1823 8 11 18.0 17.3 16.9 1 +1823 8 12 17.8 17.1 16.7 1 +1823 8 13 18.5 17.8 17.4 1 +1823 8 14 18.3 17.6 17.3 1 +1823 8 15 18.4 17.7 17.4 1 +1823 8 16 16.0 15.3 15.0 1 +1823 8 17 17.9 17.2 16.9 1 +1823 8 18 16.3 15.6 15.3 1 +1823 8 19 16.4 15.7 15.5 1 +1823 8 20 16.8 16.1 15.9 1 +1823 8 21 18.3 17.6 17.4 1 +1823 8 22 16.0 15.3 15.1 1 +1823 8 23 16.1 15.4 15.3 1 +1823 8 24 16.9 16.2 16.1 1 +1823 8 25 17.1 16.4 16.3 1 +1823 8 26 19.7 19.0 18.9 1 +1823 8 27 14.1 13.4 13.3 1 +1823 8 28 15.2 14.5 14.5 1 +1823 8 29 15.2 14.5 14.5 1 +1823 8 30 16.1 15.4 15.4 1 +1823 8 31 15.7 15.0 15.0 1 +1823 9 1 14.8 14.1 14.1 1 +1823 9 2 13.6 12.9 12.9 1 +1823 9 3 15.8 15.1 15.1 1 +1823 9 4 13.6 12.9 12.9 1 +1823 9 5 10.4 9.7 9.7 1 +1823 9 6 9.7 9.0 9.0 1 +1823 9 7 9.0 8.3 8.3 1 +1823 9 8 10.2 9.5 9.5 1 +1823 9 9 12.2 11.5 11.5 1 +1823 9 10 8.2 7.5 7.5 1 +1823 9 11 8.4 7.7 7.7 1 +1823 9 12 11.1 10.4 10.4 1 +1823 9 13 11.6 10.9 10.9 1 +1823 9 14 13.4 12.7 12.7 1 +1823 9 15 13.8 13.1 13.1 1 +1823 9 16 14.1 13.4 13.4 1 +1823 9 17 14.3 13.6 13.6 1 +1823 9 18 12.8 12.1 12.1 1 +1823 9 19 11.5 10.8 10.8 1 +1823 9 20 11.1 10.4 10.4 1 +1823 9 21 11.0 10.3 10.3 1 +1823 9 22 12.5 11.8 11.8 1 +1823 9 23 13.7 13.0 13.0 1 +1823 9 24 10.4 9.7 9.7 1 +1823 9 25 12.4 11.7 11.7 1 +1823 9 26 14.0 13.3 13.3 1 +1823 9 27 14.4 13.7 13.7 1 +1823 9 28 10.3 9.6 9.6 1 +1823 9 29 8.6 7.9 7.9 1 +1823 9 30 8.7 8.0 8.0 1 +1823 10 1 13.9 13.2 13.2 1 +1823 10 2 14.7 14.0 14.0 1 +1823 10 3 13.2 12.5 12.5 1 +1823 10 4 8.6 7.9 7.9 1 +1823 10 5 10.2 9.5 9.5 1 +1823 10 6 10.2 9.5 9.5 1 +1823 10 7 11.8 11.1 11.1 1 +1823 10 8 12.5 11.8 11.8 1 +1823 10 9 11.6 10.9 10.9 1 +1823 10 10 12.4 11.7 11.7 1 +1823 10 11 13.0 12.3 12.3 1 +1823 10 12 12.2 11.5 11.5 1 +1823 10 13 12.0 11.3 11.3 1 +1823 10 14 11.9 11.2 11.2 1 +1823 10 15 11.0 10.3 10.3 1 +1823 10 16 9.4 8.7 8.7 1 +1823 10 17 8.3 7.6 7.6 1 +1823 10 18 7.8 7.1 7.1 1 +1823 10 19 8.6 7.9 7.9 1 +1823 10 20 5.8 5.1 5.1 1 +1823 10 21 4.2 3.5 3.5 1 +1823 10 22 6.4 5.7 5.7 1 +1823 10 23 6.6 5.9 5.9 1 +1823 10 24 5.1 4.4 4.4 1 +1823 10 25 4.9 4.2 4.2 1 +1823 10 26 5.2 4.5 4.5 1 +1823 10 27 6.2 5.5 5.5 1 +1823 10 28 8.9 8.2 8.2 1 +1823 10 29 9.0 8.3 8.3 1 +1823 10 30 6.1 5.4 5.4 1 +1823 10 31 5.4 4.7 4.7 1 +1823 11 1 3.1 2.4 2.4 1 +1823 11 2 1.0 0.3 0.3 1 +1823 11 3 4.1 3.4 3.4 1 +1823 11 4 6.6 5.9 5.9 1 +1823 11 5 6.3 5.6 5.6 1 +1823 11 6 2.8 2.1 2.1 1 +1823 11 7 3.0 2.3 2.3 1 +1823 11 8 0.4 -0.3 -0.3 1 +1823 11 9 0.1 -0.6 -0.6 1 +1823 11 10 -1.2 -1.9 -1.9 1 +1823 11 11 3.6 2.9 2.9 1 +1823 11 12 4.5 3.8 3.8 1 +1823 11 13 4.3 3.6 3.6 1 +1823 11 14 2.2 1.5 1.5 1 +1823 11 15 2.4 1.7 1.7 1 +1823 11 16 4.5 3.8 3.8 1 +1823 11 17 4.9 4.2 4.2 1 +1823 11 18 1.9 1.2 1.2 1 +1823 11 19 0.2 -0.5 -0.5 1 +1823 11 20 3.0 2.3 2.3 1 +1823 11 21 2.0 1.3 1.3 1 +1823 11 22 4.8 4.1 4.1 1 +1823 11 23 1.1 0.4 0.4 1 +1823 11 24 7.2 6.5 6.5 1 +1823 11 25 4.1 3.4 3.4 1 +1823 11 26 4.5 3.8 3.8 1 +1823 11 27 1.0 0.3 0.3 1 +1823 11 28 7.6 6.9 6.9 1 +1823 11 29 4.0 3.3 3.3 1 +1823 11 30 7.0 6.3 6.3 1 +1823 12 1 6.1 5.4 5.4 1 +1823 12 2 5.7 5.0 5.0 1 +1823 12 3 5.9 5.2 5.2 1 +1823 12 4 4.2 3.5 3.5 1 +1823 12 5 1.1 0.4 0.4 1 +1823 12 6 -1.0 -1.7 -1.7 1 +1823 12 7 -1.3 -2.0 -2.0 1 +1823 12 8 5.6 4.9 4.9 1 +1823 12 9 1.3 0.6 0.6 1 +1823 12 10 0.0 -0.7 -0.7 1 +1823 12 11 -0.5 -1.2 -1.2 1 +1823 12 12 1.4 0.7 0.7 1 +1823 12 13 -2.1 -2.8 -2.8 1 +1823 12 14 -3.3 -4.0 -4.0 1 +1823 12 15 -7.0 -7.7 -7.7 1 +1823 12 16 -1.4 -2.1 -2.1 1 +1823 12 17 2.6 1.9 1.9 1 +1823 12 18 2.4 1.7 1.7 1 +1823 12 19 1.4 0.7 0.7 1 +1823 12 20 0.5 -0.2 -0.2 1 +1823 12 21 0.8 0.1 0.1 1 +1823 12 22 1.8 1.1 1.1 1 +1823 12 23 2.0 1.3 1.3 1 +1823 12 24 1.4 0.7 0.7 1 +1823 12 25 1.5 0.8 0.8 1 +1823 12 26 1.7 1.0 1.0 1 +1823 12 27 1.3 0.6 0.6 1 +1823 12 28 1.1 0.4 0.4 1 +1823 12 29 1.8 1.1 1.1 1 +1823 12 30 2.7 2.0 2.0 1 +1823 12 31 1.8 1.1 1.1 1 +1824 1 1 2.8 2.1 2.1 1 +1824 1 2 3.5 2.8 2.8 1 +1824 1 3 1.1 0.4 0.4 1 +1824 1 4 0.7 0.0 0.0 1 +1824 1 5 3.3 2.6 2.6 1 +1824 1 6 3.5 2.8 2.8 1 +1824 1 7 1.8 1.1 1.1 1 +1824 1 8 -0.1 -0.8 -0.8 1 +1824 1 9 5.0 4.3 4.3 1 +1824 1 10 5.8 5.1 5.1 1 +1824 1 11 2.2 1.5 1.5 1 +1824 1 12 2.5 1.8 1.8 1 +1824 1 13 1.1 0.4 0.4 1 +1824 1 14 2.0 1.3 1.3 1 +1824 1 15 -3.2 -3.9 -3.9 1 +1824 1 16 -2.4 -3.1 -3.1 1 +1824 1 17 2.2 1.5 1.5 1 +1824 1 18 0.0 -0.7 -0.7 1 +1824 1 19 2.0 1.3 1.3 1 +1824 1 20 -0.1 -0.8 -0.8 1 +1824 1 21 1.8 1.1 1.1 1 +1824 1 22 2.4 1.7 1.7 1 +1824 1 23 1.4 0.7 0.7 1 +1824 1 24 1.4 0.7 0.7 1 +1824 1 25 -0.6 -1.3 -1.3 1 +1824 1 26 4.9 4.2 4.2 1 +1824 1 27 5.7 5.0 5.0 1 +1824 1 28 3.0 2.3 2.3 1 +1824 1 29 -0.7 -1.4 -1.4 1 +1824 1 30 -3.7 -4.4 -4.4 1 +1824 1 31 0.6 -0.1 -0.1 1 +1824 2 1 1.2 0.5 0.5 1 +1824 2 2 1.7 1.0 1.0 1 +1824 2 3 2.0 1.3 1.3 1 +1824 2 4 0.8 0.1 0.1 1 +1824 2 5 0.4 -0.3 -0.3 1 +1824 2 6 1.5 0.8 0.8 1 +1824 2 7 1.2 0.5 0.5 1 +1824 2 8 3.5 2.8 2.8 1 +1824 2 9 2.2 1.5 1.5 1 +1824 2 10 1.1 0.4 0.4 1 +1824 2 11 0.3 -0.4 -0.4 1 +1824 2 12 -1.8 -2.5 -2.5 1 +1824 2 13 -1.9 -2.6 -2.6 1 +1824 2 14 -1.9 -2.6 -2.6 1 +1824 2 15 0.3 -0.4 -0.4 1 +1824 2 16 0.4 -0.3 -0.3 1 +1824 2 17 -0.2 -0.9 -0.9 1 +1824 2 18 0.8 0.1 0.1 1 +1824 2 19 0.8 0.1 0.1 1 +1824 2 20 1.4 0.7 0.7 1 +1824 2 21 1.7 1.0 1.0 1 +1824 2 22 1.3 0.6 0.6 1 +1824 2 23 -1.8 -2.5 -2.5 1 +1824 2 24 -1.3 -2.0 -2.0 1 +1824 2 25 -0.6 -1.3 -1.3 1 +1824 2 26 -1.2 -1.9 -1.9 1 +1824 2 27 -1.9 -2.6 -2.6 1 +1824 2 28 -1.2 -1.9 -1.9 1 +1824 2 29 1.9 1.2 1.2 1 +1824 3 1 0.0 -0.7 -0.7 1 +1824 3 2 -6.1 -6.8 -6.8 1 +1824 3 3 -7.5 -8.2 -8.2 1 +1824 3 4 -8.5 -9.2 -9.2 1 +1824 3 5 -2.1 -2.8 -2.8 1 +1824 3 6 -1.5 -2.2 -2.2 1 +1824 3 7 -2.4 -3.1 -3.1 1 +1824 3 8 4.4 3.7 3.7 1 +1824 3 9 5.0 4.3 4.3 1 +1824 3 10 3.9 3.2 3.2 1 +1824 3 11 2.0 1.3 1.3 1 +1824 3 12 1.3 0.6 0.6 1 +1824 3 13 0.4 -0.3 -0.3 1 +1824 3 14 1.3 0.6 0.6 1 +1824 3 15 0.7 0.0 0.0 1 +1824 3 16 1.4 0.7 0.7 1 +1824 3 17 -1.3 -2.0 -2.0 1 +1824 3 18 -0.6 -1.3 -1.3 1 +1824 3 19 1.6 0.9 0.9 1 +1824 3 20 2.3 1.6 1.6 1 +1824 3 21 1.7 1.0 1.0 1 +1824 3 22 0.7 0.0 0.0 1 +1824 3 23 0.4 -0.3 -0.3 1 +1824 3 24 0.6 -0.1 -0.1 1 +1824 3 25 1.1 0.4 0.4 1 +1824 3 26 -1.1 -1.8 -1.8 1 +1824 3 27 -3.4 -4.1 -4.1 1 +1824 3 28 -1.0 -1.7 -1.7 1 +1824 3 29 2.1 1.4 1.4 1 +1824 3 30 0.8 0.1 0.1 1 +1824 3 31 0.2 -0.5 -0.5 1 +1824 4 1 1.7 1.0 1.0 1 +1824 4 2 0.4 -0.3 -0.3 1 +1824 4 3 1.0 0.3 0.3 1 +1824 4 4 1.7 1.0 1.0 1 +1824 4 5 2.9 2.2 2.2 1 +1824 4 6 2.0 1.3 1.3 1 +1824 4 7 3.5 2.8 2.8 1 +1824 4 8 7.6 6.9 6.9 1 +1824 4 9 4.1 3.4 3.4 1 +1824 4 10 2.0 1.3 1.3 1 +1824 4 11 3.1 2.4 2.4 1 +1824 4 12 3.9 3.2 3.2 1 +1824 4 13 4.3 3.6 3.6 1 +1824 4 14 2.3 1.6 1.6 1 +1824 4 15 -0.9 -1.6 -1.6 1 +1824 4 16 1.0 0.3 0.3 1 +1824 4 17 2.5 1.8 1.8 1 +1824 4 18 3.7 3.0 3.0 1 +1824 4 19 3.1 2.4 2.4 1 +1824 4 20 4.9 4.2 4.2 1 +1824 4 21 8.0 7.3 7.3 1 +1824 4 22 11.6 10.9 10.9 1 +1824 4 23 11.8 11.1 11.1 1 +1824 4 24 10.8 10.1 10.1 1 +1824 4 25 9.3 8.6 8.6 1 +1824 4 26 10.6 9.9 9.9 1 +1824 4 27 10.0 9.3 9.3 1 +1824 4 28 11.6 10.9 10.9 1 +1824 4 29 13.7 13.0 13.0 1 +1824 4 30 16.7 16.0 16.0 1 +1824 5 1 17.9 17.2 17.2 1 +1824 5 2 14.8 14.1 14.1 1 +1824 5 3 14.0 13.3 13.3 1 +1824 5 4 14.6 13.9 13.9 1 +1824 5 5 13.1 12.4 12.3 1 +1824 5 6 7.0 6.3 6.2 1 +1824 5 7 6.3 5.6 5.5 1 +1824 5 8 8.3 7.6 7.5 1 +1824 5 9 8.0 7.3 7.2 1 +1824 5 10 7.7 7.0 6.8 1 +1824 5 11 5.7 5.0 4.8 1 +1824 5 12 6.7 6.0 5.8 1 +1824 5 13 5.2 4.5 4.3 1 +1824 5 14 8.0 7.3 7.0 1 +1824 5 15 8.4 7.7 7.4 1 +1824 5 16 7.1 6.4 6.1 1 +1824 5 17 8.9 8.2 7.9 1 +1824 5 18 9.4 8.7 8.4 1 +1824 5 19 5.5 4.8 4.4 1 +1824 5 20 7.5 6.8 6.4 1 +1824 5 21 7.8 7.1 6.7 1 +1824 5 22 9.6 8.9 8.5 1 +1824 5 23 9.0 8.3 7.8 1 +1824 5 24 9.2 8.5 8.0 1 +1824 5 25 9.3 8.6 8.1 1 +1824 5 26 12.3 11.6 11.1 1 +1824 5 27 7.7 7.0 6.5 1 +1824 5 28 11.7 11.0 10.4 1 +1824 5 29 12.5 11.8 11.2 1 +1824 5 30 11.4 10.7 10.1 1 +1824 5 31 10.9 10.2 9.6 1 +1824 6 1 11.9 11.2 10.5 1 +1824 6 2 15.1 14.4 13.7 1 +1824 6 3 18.2 17.5 16.8 1 +1824 6 4 19.9 19.2 18.5 1 +1824 6 5 16.2 15.5 14.8 1 +1824 6 6 17.9 17.2 16.5 1 +1824 6 7 16.2 15.5 14.8 1 +1824 6 8 11.4 10.7 10.0 1 +1824 6 9 9.6 8.9 8.2 1 +1824 6 10 9.0 8.3 7.6 1 +1824 6 11 9.7 9.0 8.3 1 +1824 6 12 10.8 10.1 9.4 1 +1824 6 13 10.5 9.8 9.1 1 +1824 6 14 11.7 11.0 10.3 1 +1824 6 15 12.5 11.8 11.1 1 +1824 6 16 14.7 14.0 13.3 1 +1824 6 17 14.0 13.3 12.6 1 +1824 6 18 13.7 13.0 12.3 1 +1824 6 19 13.1 12.4 11.7 1 +1824 6 20 13.9 13.2 12.5 1 +1824 6 21 14.4 13.7 13.0 1 +1824 6 22 17.0 16.3 15.6 1 +1824 6 23 16.8 16.1 15.4 1 +1824 6 24 18.0 17.3 16.6 1 +1824 6 25 21.2 20.5 19.8 1 +1824 6 26 21.1 20.4 19.7 1 +1824 6 27 19.6 18.9 18.2 1 +1824 6 28 19.4 18.7 18.0 1 +1824 6 29 17.8 17.1 16.4 1 +1824 6 30 17.5 16.8 16.1 1 +1824 7 1 21.2 20.5 19.8 1 +1824 7 2 20.7 20.0 19.3 1 +1824 7 3 19.4 18.7 18.0 1 +1824 7 4 18.3 17.6 16.9 1 +1824 7 5 17.4 16.7 16.0 1 +1824 7 6 15.5 14.8 14.1 1 +1824 7 7 15.7 15.0 14.3 1 +1824 7 8 18.1 17.4 16.7 1 +1824 7 9 19.1 18.4 17.7 1 +1824 7 10 18.6 17.9 17.2 1 +1824 7 11 17.6 16.9 16.2 1 +1824 7 12 17.6 16.9 16.2 1 +1824 7 13 17.8 17.1 16.4 1 +1824 7 14 17.2 16.5 15.8 1 +1824 7 15 16.6 15.9 15.2 1 +1824 7 16 20.6 19.9 19.2 1 +1824 7 17 18.7 18.0 17.3 1 +1824 7 18 17.1 16.4 15.7 1 +1824 7 19 14.4 13.7 13.0 1 +1824 7 20 15.6 14.9 14.2 1 +1824 7 21 12.5 11.8 11.1 1 +1824 7 22 14.3 13.6 12.9 1 +1824 7 23 18.6 17.9 17.2 1 +1824 7 24 16.7 16.0 15.3 1 +1824 7 25 16.8 16.1 15.4 1 +1824 7 26 14.6 13.9 13.2 1 +1824 7 27 16.3 15.6 14.9 1 +1824 7 28 17.9 17.2 16.5 1 +1824 7 29 18.0 17.3 16.6 1 +1824 7 30 17.5 16.8 16.1 1 +1824 7 31 17.8 17.1 16.4 1 +1824 8 1 18.7 18.0 17.4 1 +1824 8 2 17.8 17.1 16.5 1 +1824 8 3 17.6 16.9 16.3 1 +1824 8 4 17.9 17.2 16.6 1 +1824 8 5 16.1 15.4 14.9 1 +1824 8 6 15.0 14.3 13.8 1 +1824 8 7 17.2 16.5 16.0 1 +1824 8 8 17.7 17.0 16.5 1 +1824 8 9 16.8 16.1 15.6 1 +1824 8 10 17.2 16.5 16.1 1 +1824 8 11 16.3 15.6 15.2 1 +1824 8 12 17.0 16.3 15.9 1 +1824 8 13 16.8 16.1 15.7 1 +1824 8 14 16.7 16.0 15.7 1 +1824 8 15 15.6 14.9 14.6 1 +1824 8 16 17.0 16.3 16.0 1 +1824 8 17 16.0 15.3 15.0 1 +1824 8 18 16.1 15.4 15.1 1 +1824 8 19 15.2 14.5 14.3 1 +1824 8 20 15.0 14.3 14.1 1 +1824 8 21 15.7 15.0 14.8 1 +1824 8 22 15.5 14.8 14.6 1 +1824 8 23 16.0 15.3 15.2 1 +1824 8 24 14.9 14.2 14.1 1 +1824 8 25 15.7 15.0 14.9 1 +1824 8 26 15.6 14.9 14.8 1 +1824 8 27 17.7 17.0 16.9 1 +1824 8 28 19.3 18.6 18.6 1 +1824 8 29 18.7 18.0 18.0 1 +1824 8 30 19.1 18.4 18.4 1 +1824 8 31 18.6 17.9 17.9 1 +1824 9 1 18.9 18.2 18.2 1 +1824 9 2 19.1 18.4 18.4 1 +1824 9 3 17.3 16.6 16.6 1 +1824 9 4 18.2 17.5 17.5 1 +1824 9 5 19.6 18.9 18.9 1 +1824 9 6 17.3 16.6 16.6 1 +1824 9 7 17.5 16.8 16.8 1 +1824 9 8 17.3 16.6 16.6 1 +1824 9 9 14.8 14.1 14.1 1 +1824 9 10 17.9 17.2 17.2 1 +1824 9 11 14.8 14.1 14.1 1 +1824 9 12 15.6 14.9 14.9 1 +1824 9 13 16.7 16.0 16.0 1 +1824 9 14 14.5 13.8 13.8 1 +1824 9 15 16.3 15.6 15.6 1 +1824 9 16 16.2 15.5 15.5 1 +1824 9 17 14.6 13.9 13.9 1 +1824 9 18 14.4 13.7 13.7 1 +1824 9 19 15.2 14.5 14.5 1 +1824 9 20 16.5 15.8 15.8 1 +1824 9 21 15.4 14.7 14.7 1 +1824 9 22 16.2 15.5 15.5 1 +1824 9 23 16.5 15.8 15.8 1 +1824 9 24 16.7 16.0 16.0 1 +1824 9 25 16.4 15.7 15.7 1 +1824 9 26 12.1 11.4 11.4 1 +1824 9 27 8.9 8.2 8.2 1 +1824 9 28 8.3 7.6 7.6 1 +1824 9 29 8.4 7.7 7.7 1 +1824 9 30 10.1 9.4 9.4 1 +1824 10 1 12.8 12.1 12.1 1 +1824 10 2 14.3 13.6 13.6 1 +1824 10 3 13.0 12.3 12.3 1 +1824 10 4 13.3 12.6 12.6 1 +1824 10 5 12.4 11.7 11.7 1 +1824 10 6 12.4 11.7 11.7 1 +1824 10 7 13.2 12.5 12.5 1 +1824 10 8 13.0 12.3 12.3 1 +1824 10 9 6.5 5.8 5.8 1 +1824 10 10 1.0 0.3 0.3 1 +1824 10 11 1.0 0.3 0.3 1 +1824 10 12 1.8 1.1 1.1 1 +1824 10 13 2.8 2.1 2.1 1 +1824 10 14 1.9 1.2 1.2 1 +1824 10 15 2.0 1.3 1.3 1 +1824 10 16 2.8 2.1 2.1 1 +1824 10 17 -0.7 -1.4 -1.4 1 +1824 10 18 -0.5 -1.2 -1.2 1 +1824 10 19 0.1 -0.6 -0.6 1 +1824 10 20 3.4 2.7 2.7 1 +1824 10 21 1.8 1.1 1.1 1 +1824 10 22 0.9 0.2 0.2 1 +1824 10 23 5.5 4.8 4.8 1 +1824 10 24 5.8 5.1 5.1 1 +1824 10 25 7.8 7.1 7.1 1 +1824 10 26 10.4 9.7 9.7 1 +1824 10 27 8.9 8.2 8.2 1 +1824 10 28 8.2 7.5 7.5 1 +1824 10 29 6.3 5.6 5.6 1 +1824 10 30 2.3 1.6 1.6 1 +1824 10 31 -1.3 -2.0 -2.0 1 +1824 11 1 -0.8 -1.5 -1.5 1 +1824 11 2 0.8 0.1 0.1 1 +1824 11 3 4.6 3.9 3.9 1 +1824 11 4 3.7 3.0 3.0 1 +1824 11 5 2.2 1.5 1.5 1 +1824 11 6 1.9 1.2 1.2 1 +1824 11 7 1.5 0.8 0.8 1 +1824 11 8 5.1 4.4 4.4 1 +1824 11 9 6.8 6.1 6.1 1 +1824 11 10 5.6 4.9 4.9 1 +1824 11 11 4.4 3.7 3.7 1 +1824 11 12 1.7 1.0 1.0 1 +1824 11 13 0.1 -0.6 -0.6 1 +1824 11 14 3.1 2.4 2.4 1 +1824 11 15 0.6 -0.1 -0.1 1 +1824 11 16 0.0 -0.7 -0.7 1 +1824 11 17 1.2 0.5 0.5 1 +1824 11 18 7.7 7.0 7.0 1 +1824 11 19 4.0 3.3 3.3 1 +1824 11 20 3.2 2.5 2.5 1 +1824 11 21 0.0 -0.7 -0.7 1 +1824 11 22 2.5 1.8 1.8 1 +1824 11 23 2.0 1.3 1.3 1 +1824 11 24 5.0 4.3 4.3 1 +1824 11 25 3.3 2.6 2.6 1 +1824 11 26 -3.0 -3.7 -3.7 1 +1824 11 27 -6.0 -6.7 -6.7 1 +1824 11 28 -1.8 -2.5 -2.5 1 +1824 11 29 5.1 4.4 4.4 1 +1824 11 30 4.5 3.8 3.8 1 +1824 12 1 0.0 -0.7 -0.7 1 +1824 12 2 1.4 0.7 0.7 1 +1824 12 3 2.3 1.6 1.6 1 +1824 12 4 1.6 0.9 0.9 1 +1824 12 5 -1.8 -2.5 -2.5 1 +1824 12 6 -2.4 -3.1 -3.1 1 +1824 12 7 2.7 2.0 2.0 1 +1824 12 8 -0.3 -1.0 -1.0 1 +1824 12 9 -0.9 -1.6 -1.6 1 +1824 12 10 -2.3 -3.0 -3.0 1 +1824 12 11 -2.7 -3.4 -3.4 1 +1824 12 12 -3.8 -4.5 -4.5 1 +1824 12 13 1.6 0.9 0.9 1 +1824 12 14 0.1 -0.6 -0.6 1 +1824 12 15 4.3 3.6 3.6 1 +1824 12 16 -0.6 -1.3 -1.3 1 +1824 12 17 -6.3 -7.0 -7.0 1 +1824 12 18 -5.9 -6.6 -6.6 1 +1824 12 19 -1.3 -2.0 -2.0 1 +1824 12 20 1.6 0.9 0.9 1 +1824 12 21 -1.8 -2.5 -2.5 1 +1824 12 22 -0.1 -0.8 -0.8 1 +1824 12 23 -1.2 -1.9 -1.9 1 +1824 12 24 -8.6 -9.3 -9.3 1 +1824 12 25 0.6 -0.1 -0.1 1 +1824 12 26 0.6 -0.1 -0.1 1 +1824 12 27 -1.8 -2.5 -2.5 1 +1824 12 28 0.5 -0.2 -0.2 1 +1824 12 29 0.3 -0.4 -0.4 1 +1824 12 30 0.1 -0.6 -0.6 1 +1824 12 31 1.3 0.6 0.6 1 +1825 1 1 3.3 2.6 2.6 1 +1825 1 2 0.0 -0.7 -0.7 1 +1825 1 3 -2.7 -3.4 -3.4 1 +1825 1 4 -4.1 -4.8 -4.8 1 +1825 1 5 -5.5 -6.2 -6.2 1 +1825 1 6 -4.4 -5.1 -5.1 1 +1825 1 7 -2.4 -3.1 -3.1 1 +1825 1 8 -1.8 -2.5 -2.5 1 +1825 1 9 -1.8 -2.5 -2.5 1 +1825 1 10 -1.1 -1.8 -1.8 1 +1825 1 11 3.0 2.3 2.3 1 +1825 1 12 -3.8 -4.5 -4.5 1 +1825 1 13 -1.1 -1.8 -1.8 1 +1825 1 14 0.5 0.5 0.5 1 +1825 1 15 2.6 2.6 2.6 1 +1825 1 16 2.5 2.5 2.5 1 +1825 1 17 1.0 1.0 1.0 1 +1825 1 18 1.4 1.4 1.4 1 +1825 1 19 1.6 1.6 1.6 1 +1825 1 20 1.0 1.0 1.0 1 +1825 1 21 0.3 0.3 0.3 1 +1825 1 22 0.4 0.4 0.4 1 +1825 1 23 -0.2 -0.2 -0.2 1 +1825 1 24 -0.7 -0.7 -0.7 1 +1825 1 25 -1.4 -1.4 -1.4 1 +1825 1 26 -1.1 -1.1 -1.1 1 +1825 1 27 0.3 0.3 0.3 1 +1825 1 28 -0.2 -0.2 -0.2 1 +1825 1 29 1.8 1.8 1.8 1 +1825 1 30 3.8 3.8 3.8 1 +1825 1 31 -0.1 -0.1 -0.1 1 +1825 2 1 -0.1 -0.1 -0.1 1 +1825 2 2 -3.2 -3.2 -3.2 1 +1825 2 3 -1.5 -1.5 -1.5 1 +1825 2 4 -6.7 -6.7 -6.7 1 +1825 2 5 -9.3 -9.3 -9.3 1 +1825 2 6 -9.2 -9.2 -9.2 1 +1825 2 7 -8.0 -8.0 -8.0 1 +1825 2 8 -0.5 -0.5 -0.5 1 +1825 2 9 -0.1 -0.1 -0.1 1 +1825 2 10 0.9 0.9 0.9 1 +1825 2 11 -0.5 -0.5 -0.5 1 +1825 2 12 0.7 0.7 0.7 1 +1825 2 13 -0.8 -0.8 -0.8 1 +1825 2 14 -3.6 -3.6 -3.6 1 +1825 2 15 -2.5 -2.5 -2.5 1 +1825 2 16 0.8 0.8 0.8 1 +1825 2 17 0.0 0.0 0.0 1 +1825 2 18 0.9 0.9 0.9 1 +1825 2 19 1.8 1.8 1.8 1 +1825 2 20 -0.3 -0.3 -0.3 1 +1825 2 21 0.8 0.8 0.8 1 +1825 2 22 -0.9 -0.9 -0.9 1 +1825 2 23 -3.6 -3.6 -3.6 1 +1825 2 24 -4.4 -4.4 -4.4 1 +1825 2 25 -5.9 -5.9 -5.9 1 +1825 2 26 -6.3 -6.3 -6.3 1 +1825 2 27 -7.1 -7.1 -7.1 1 +1825 2 28 -6.5 -6.5 -6.5 1 +1825 3 1 -5.4 -5.4 -5.4 1 +1825 3 2 -2.6 -2.6 -2.6 1 +1825 3 3 -1.1 -1.1 -1.1 1 +1825 3 4 0.7 0.7 0.7 1 +1825 3 5 -1.7 -1.7 -1.7 1 +1825 3 6 -2.8 -2.8 -2.8 1 +1825 3 7 -2.1 -2.1 -2.1 1 +1825 3 8 -1.3 -1.3 -1.3 1 +1825 3 9 -0.8 -0.8 -0.8 1 +1825 3 10 -1.3 -1.3 -1.3 1 +1825 3 11 -0.9 -0.9 -0.9 1 +1825 3 12 -2.4 -2.4 -2.4 1 +1825 3 13 -4.4 -4.4 -4.4 1 +1825 3 14 -4.5 -4.5 -4.5 1 +1825 3 15 -4.0 -4.0 -4.0 1 +1825 3 16 -2.9 -2.9 -2.9 1 +1825 3 17 -0.7 -0.7 -0.7 1 +1825 3 18 0.2 0.2 0.2 1 +1825 3 19 -0.6 -0.6 -0.6 1 +1825 3 20 -1.5 -1.5 -1.5 1 +1825 3 21 2.5 2.5 2.5 1 +1825 3 22 5.6 5.6 5.6 1 +1825 3 23 2.8 2.8 2.8 1 +1825 3 24 2.9 2.9 2.9 1 +1825 3 25 2.2 2.2 2.2 1 +1825 3 26 -0.9 -0.9 -0.9 1 +1825 3 27 2.1 2.1 2.1 1 +1825 3 28 1.4 1.4 1.4 1 +1825 3 29 4.3 4.3 4.3 1 +1825 3 30 1.9 1.9 1.9 1 +1825 3 31 0.4 0.4 0.4 1 +1825 4 1 -1.0 -1.0 -1.0 1 +1825 4 2 -1.4 -1.4 -1.4 1 +1825 4 3 -1.9 -1.9 -1.9 1 +1825 4 4 0.4 0.4 0.4 1 +1825 4 5 2.7 2.7 2.7 1 +1825 4 6 6.0 6.0 6.0 1 +1825 4 7 5.4 5.4 5.4 1 +1825 4 8 6.0 6.0 6.0 1 +1825 4 9 8.3 8.3 8.3 1 +1825 4 10 6.7 6.7 6.7 1 +1825 4 11 8.7 8.7 8.7 1 +1825 4 12 4.5 4.5 4.5 1 +1825 4 13 3.1 3.1 3.1 1 +1825 4 14 1.5 1.5 1.5 1 +1825 4 15 2.2 2.2 2.2 1 +1825 4 16 0.9 0.9 0.9 1 +1825 4 17 0.0 0.0 0.0 1 +1825 4 18 0.0 0.0 0.0 1 +1825 4 19 -2.0 -2.0 -2.0 1 +1825 4 20 -1.5 -1.5 -1.5 1 +1825 4 21 -0.5 -0.5 -0.5 1 +1825 4 22 1.4 1.4 1.4 1 +1825 4 23 2.3 2.3 2.3 1 +1825 4 24 5.5 5.5 5.5 1 +1825 4 25 8.1 8.1 8.1 1 +1825 4 26 8.2 8.2 8.2 1 +1825 4 27 7.6 7.6 7.6 1 +1825 4 28 7.2 7.2 7.2 1 +1825 4 29 4.7 4.7 4.7 1 +1825 4 30 6.3 6.3 6.3 1 +1825 5 1 5.6 5.6 5.6 1 +1825 5 2 4.7 4.7 4.7 1 +1825 5 3 7.0 7.0 7.0 1 +1825 5 4 10.7 10.7 10.7 1 +1825 5 5 9.8 9.8 9.7 1 +1825 5 6 8.2 8.2 8.1 1 +1825 5 7 12.4 12.4 12.3 1 +1825 5 8 12.4 12.4 12.3 1 +1825 5 9 11.6 11.6 11.5 1 +1825 5 10 6.5 6.5 6.3 1 +1825 5 11 3.3 3.3 3.1 1 +1825 5 12 5.4 5.4 5.2 1 +1825 5 13 4.3 4.3 4.1 1 +1825 5 14 4.0 4.0 3.7 1 +1825 5 15 4.4 4.4 4.1 1 +1825 5 16 7.1 7.1 6.8 1 +1825 5 17 7.1 7.1 6.8 1 +1825 5 18 10.3 10.3 10.0 1 +1825 5 19 13.1 13.1 12.7 1 +1825 5 20 8.8 8.8 8.4 1 +1825 5 21 9.2 9.2 8.8 1 +1825 5 22 12.5 12.5 12.1 1 +1825 5 23 11.7 11.7 11.2 1 +1825 5 24 8.9 8.9 8.4 1 +1825 5 25 8.7 8.7 8.2 1 +1825 5 26 7.8 7.8 7.3 1 +1825 5 27 11.3 11.3 10.8 1 +1825 5 28 9.5 9.5 8.9 1 +1825 5 29 9.6 9.6 9.0 1 +1825 5 30 8.1 8.1 7.5 1 +1825 5 31 9.8 9.8 9.2 1 +1825 6 1 12.7 12.7 12.0 1 +1825 6 2 12.5 12.5 11.8 1 +1825 6 3 14.1 14.1 13.4 1 +1825 6 4 15.9 15.9 15.2 1 +1825 6 5 13.7 13.7 13.0 1 +1825 6 6 13.4 13.4 12.7 1 +1825 6 7 16.3 16.3 15.6 1 +1825 6 8 17.8 17.8 17.1 1 +1825 6 9 20.3 20.3 19.6 1 +1825 6 10 16.5 16.5 15.8 1 +1825 6 11 17.8 17.8 17.1 1 +1825 6 12 20.3 20.3 19.6 1 +1825 6 13 17.9 17.9 17.2 1 +1825 6 14 13.6 13.6 12.9 1 +1825 6 15 12.0 12.0 11.3 1 +1825 6 16 14.4 14.4 13.7 1 +1825 6 17 13.7 13.7 13.0 1 +1825 6 18 11.2 11.2 10.5 1 +1825 6 19 9.8 9.8 9.1 1 +1825 6 20 11.7 11.7 11.0 1 +1825 6 21 11.2 11.2 10.5 1 +1825 6 22 12.8 12.8 12.1 1 +1825 6 23 13.8 13.8 13.1 1 +1825 6 24 13.6 13.6 12.9 1 +1825 6 25 16.1 16.1 15.4 1 +1825 6 26 16.4 16.4 15.7 1 +1825 6 27 15.9 15.9 15.2 1 +1825 6 28 15.3 15.3 14.6 1 +1825 6 29 14.1 14.1 13.4 1 +1825 6 30 13.8 13.8 13.1 1 +1825 7 1 15.6 15.6 14.9 1 +1825 7 2 14.0 14.0 13.3 1 +1825 7 3 14.8 14.8 14.1 1 +1825 7 4 17.3 17.3 16.6 1 +1825 7 5 15.0 15.0 14.3 1 +1825 7 6 15.3 15.3 14.6 1 +1825 7 7 17.4 17.4 16.7 1 +1825 7 8 18.1 18.1 17.4 1 +1825 7 9 19.2 19.2 18.5 1 +1825 7 10 19.2 19.2 18.5 1 +1825 7 11 22.3 22.3 21.6 1 +1825 7 12 21.3 21.3 20.6 1 +1825 7 13 20.8 20.8 20.1 1 +1825 7 14 22.0 22.0 21.3 1 +1825 7 15 18.5 18.5 17.8 1 +1825 7 16 19.4 19.4 18.7 1 +1825 7 17 21.1 21.1 20.4 1 +1825 7 18 23.1 23.1 22.4 1 +1825 7 19 17.1 17.1 16.4 1 +1825 7 20 13.5 13.5 12.8 1 +1825 7 21 12.1 12.1 11.4 1 +1825 7 22 11.3 11.3 10.6 1 +1825 7 23 11.4 11.4 10.7 1 +1825 7 24 12.0 12.0 11.3 1 +1825 7 25 14.7 14.7 14.0 1 +1825 7 26 14.8 14.8 14.1 1 +1825 7 27 15.8 15.8 15.1 1 +1825 7 28 11.7 11.7 11.0 1 +1825 7 29 10.4 10.4 9.7 1 +1825 7 30 8.3 8.3 7.6 1 +1825 7 31 11.6 11.6 10.9 1 +1825 8 1 14.3 14.3 13.7 1 +1825 8 2 18.2 18.2 17.6 1 +1825 8 3 19.7 19.7 19.1 1 +1825 8 4 20.4 20.4 19.8 1 +1825 8 5 18.1 18.1 17.6 1 +1825 8 6 15.8 15.8 15.3 1 +1825 8 7 16.2 16.2 15.7 1 +1825 8 8 16.7 16.7 16.2 1 +1825 8 9 17.1 17.1 16.6 1 +1825 8 10 16.6 16.6 16.2 1 +1825 8 11 14.4 14.4 14.0 1 +1825 8 12 15.3 15.3 14.9 1 +1825 8 13 15.4 15.4 15.0 1 +1825 8 14 15.3 15.3 15.0 1 +1825 8 15 15.7 15.7 15.4 1 +1825 8 16 16.6 16.6 16.3 1 +1825 8 17 17.9 17.9 17.6 1 +1825 8 18 17.9 17.9 17.6 1 +1825 8 19 17.5 17.5 17.3 1 +1825 8 20 18.0 18.0 17.8 1 +1825 8 21 15.6 15.6 15.4 1 +1825 8 22 16.0 16.0 15.8 1 +1825 8 23 15.3 15.3 15.2 1 +1825 8 24 15.0 15.0 14.9 1 +1825 8 25 14.1 14.1 14.0 1 +1825 8 26 8.9 8.9 8.8 1 +1825 8 27 10.2 10.2 10.1 1 +1825 8 28 10.5 10.5 10.5 1 +1825 8 29 12.8 12.8 12.8 1 +1825 8 30 14.1 14.1 14.1 1 +1825 8 31 16.8 16.8 16.8 1 +1825 9 1 17.6 17.6 17.6 1 +1825 9 2 15.5 15.5 15.5 1 +1825 9 3 15.0 15.0 15.0 1 +1825 9 4 13.0 13.0 13.0 1 +1825 9 5 13.3 13.3 13.3 1 +1825 9 6 13.4 13.4 13.4 1 +1825 9 7 17.4 17.4 17.4 1 +1825 9 8 15.4 15.4 15.4 1 +1825 9 9 12.1 12.1 12.1 1 +1825 9 10 14.0 14.0 14.0 1 +1825 9 11 14.6 14.6 14.6 1 +1825 9 12 11.9 11.9 11.9 1 +1825 9 13 12.5 12.5 12.5 1 +1825 9 14 14.4 14.4 14.4 1 +1825 9 15 11.2 11.2 11.2 1 +1825 9 16 10.0 10.0 10.0 1 +1825 9 17 11.9 11.9 11.9 1 +1825 9 18 10.5 10.5 10.5 1 +1825 9 19 10.5 10.5 10.5 1 +1825 9 20 12.9 12.9 12.9 1 +1825 9 21 9.3 9.3 9.3 1 +1825 9 22 14.8 14.8 14.8 1 +1825 9 23 6.9 6.9 6.9 1 +1825 9 24 4.6 4.6 4.6 1 +1825 9 25 5.7 5.7 5.7 1 +1825 9 26 8.6 8.6 8.6 1 +1825 9 27 6.0 6.0 6.0 1 +1825 9 28 3.5 3.5 3.5 1 +1825 9 29 5.5 5.5 5.5 1 +1825 9 30 9.4 9.4 9.4 1 +1825 10 1 9.6 9.6 9.6 1 +1825 10 2 9.5 9.5 9.5 1 +1825 10 3 9.5 9.5 9.5 1 +1825 10 4 9.4 9.4 9.4 1 +1825 10 5 10.0 10.0 10.0 1 +1825 10 6 11.6 11.6 11.6 1 +1825 10 7 11.0 11.0 11.0 1 +1825 10 8 12.1 12.1 12.1 1 +1825 10 9 11.5 11.5 11.5 1 +1825 10 10 13.7 13.7 13.7 1 +1825 10 11 11.4 11.4 11.4 1 +1825 10 12 8.9 8.9 8.9 1 +1825 10 13 8.5 8.5 8.5 1 +1825 10 14 11.8 11.8 11.8 1 +1825 10 15 11.5 11.5 11.5 1 +1825 10 16 7.3 7.3 7.3 1 +1825 10 17 7.9 7.9 7.9 1 +1825 10 18 7.6 7.6 7.6 1 +1825 10 19 4.5 4.5 4.5 1 +1825 10 20 7.4 7.4 7.4 1 +1825 10 21 5.6 5.6 5.6 1 +1825 10 22 4.0 4.0 4.0 1 +1825 10 23 5.2 5.2 5.2 1 +1825 10 24 7.3 7.3 7.3 1 +1825 10 25 4.8 4.8 4.8 1 +1825 10 26 0.6 0.6 0.6 1 +1825 10 27 2.0 2.0 2.0 1 +1825 10 28 1.2 1.2 1.2 1 +1825 10 29 1.1 1.1 1.1 1 +1825 10 30 5.8 5.8 5.8 1 +1825 10 31 6.2 6.2 6.2 1 +1825 11 1 2.2 2.2 2.2 1 +1825 11 2 3.5 3.5 3.5 1 +1825 11 3 1.9 1.9 1.9 1 +1825 11 4 4.2 4.2 4.2 1 +1825 11 5 1.2 1.2 1.2 1 +1825 11 6 2.8 2.8 2.8 1 +1825 11 7 4.2 4.2 4.2 1 +1825 11 8 3.9 3.9 3.9 1 +1825 11 9 4.3 4.3 4.3 1 +1825 11 10 6.1 6.1 6.1 1 +1825 11 11 7.2 7.2 7.2 1 +1825 11 12 4.9 4.9 4.9 1 +1825 11 13 2.3 2.3 2.3 1 +1825 11 14 1.2 1.2 1.2 1 +1825 11 15 1.8 1.8 1.8 1 +1825 11 16 0.5 0.5 0.5 1 +1825 11 17 0.4 0.4 0.4 1 +1825 11 18 2.7 2.7 2.7 1 +1825 11 19 2.8 2.8 2.8 1 +1825 11 20 3.5 3.5 3.5 1 +1825 11 21 2.8 2.8 2.8 1 +1825 11 22 3.7 3.7 3.7 1 +1825 11 23 2.4 2.4 2.4 1 +1825 11 24 0.0 0.0 0.0 1 +1825 11 25 -1.0 -1.0 -1.0 1 +1825 11 26 0.4 0.4 0.4 1 +1825 11 27 1.8 1.8 1.8 1 +1825 11 28 -1.8 -1.8 -1.8 1 +1825 11 29 -3.8 -3.8 -3.8 1 +1825 11 30 -4.4 -4.4 -4.4 1 +1825 12 1 -8.4 -8.4 -8.4 1 +1825 12 2 -6.6 -6.6 -6.6 1 +1825 12 3 -1.3 -1.3 -1.3 1 +1825 12 4 -2.8 -2.8 -2.8 1 +1825 12 5 -4.1 -4.1 -4.1 1 +1825 12 6 -6.2 -6.2 -6.2 1 +1825 12 7 -1.1 -1.1 -1.1 1 +1825 12 8 -2.1 -2.1 -2.1 1 +1825 12 9 -0.4 -0.4 -0.4 1 +1825 12 10 0.0 0.0 0.0 1 +1825 12 11 -1.6 -1.6 -1.6 1 +1825 12 12 -1.6 -1.6 -1.6 1 +1825 12 13 1.6 1.6 1.6 1 +1825 12 14 2.4 2.4 2.4 1 +1825 12 15 2.9 2.9 2.9 1 +1825 12 16 2.0 2.0 2.0 1 +1825 12 17 3.1 3.1 3.1 1 +1825 12 18 2.0 2.0 2.0 1 +1825 12 19 2.7 2.7 2.7 1 +1825 12 20 3.2 3.2 3.2 1 +1825 12 21 3.2 3.2 3.2 1 +1825 12 22 3.3 3.3 3.3 1 +1825 12 23 2.7 2.7 2.7 1 +1825 12 24 2.6 2.6 2.6 1 +1825 12 25 2.7 2.7 2.7 1 +1825 12 26 2.5 2.5 2.5 1 +1825 12 27 1.0 1.0 1.0 1 +1825 12 28 0.7 0.7 0.7 1 +1825 12 29 0.4 0.4 0.4 1 +1825 12 30 -1.1 -1.1 -1.1 1 +1825 12 31 0.2 0.2 0.2 1 +1826 1 1 -0.2 -0.2 -0.2 1 +1826 1 2 -2.7 -2.7 -2.7 1 +1826 1 3 -2.9 -2.9 -2.9 1 +1826 1 4 -3.4 -3.4 -3.4 1 +1826 1 5 -6.7 -6.7 -6.7 1 +1826 1 6 -9.3 -9.3 -9.3 1 +1826 1 7 -8.3 -8.3 -8.3 1 +1826 1 8 -13.6 -13.6 -13.6 1 +1826 1 9 -14.1 -14.1 -14.1 1 +1826 1 10 -7.9 -7.9 -7.9 1 +1826 1 11 -7.3 -7.3 -7.3 1 +1826 1 12 -7.8 -7.8 -7.8 1 +1826 1 13 -6.4 -6.4 -6.4 1 +1826 1 14 -12.6 -12.6 -12.6 1 +1826 1 15 -15.3 -15.3 -15.3 1 +1826 1 16 -12.2 -12.2 -12.2 1 +1826 1 17 -13.4 -13.4 -13.4 1 +1826 1 18 -5.0 -5.0 -5.0 1 +1826 1 19 -2.7 -2.7 -2.7 1 +1826 1 20 -2.3 -2.3 -2.3 1 +1826 1 21 -2.7 -2.7 -2.7 1 +1826 1 22 -1.9 -1.9 -1.9 1 +1826 1 23 0.1 0.1 0.1 1 +1826 1 24 -3.4 -3.4 -3.4 1 +1826 1 25 -2.3 -2.3 -2.3 1 +1826 1 26 -2.2 -2.2 -2.2 1 +1826 1 27 -4.0 -4.0 -4.0 1 +1826 1 28 -0.3 -0.3 -0.3 1 +1826 1 29 0.4 0.4 0.4 1 +1826 1 30 -1.1 -1.1 -1.1 1 +1826 1 31 -3.4 -3.4 -3.4 1 +1826 2 1 1.7 1.7 1.7 1 +1826 2 2 1.7 1.7 1.7 1 +1826 2 3 -1.7 -1.7 -1.7 1 +1826 2 4 2.5 2.5 2.5 1 +1826 2 5 2.2 2.2 2.2 1 +1826 2 6 1.9 1.9 1.9 1 +1826 2 7 4.1 4.1 4.1 1 +1826 2 8 2.9 2.9 2.9 1 +1826 2 9 -0.1 -0.1 -0.1 1 +1826 2 10 1.0 1.0 1.0 1 +1826 2 11 0.0 0.0 0.0 1 +1826 2 12 -0.8 -0.8 -0.8 1 +1826 2 13 -1.1 -1.1 -1.1 1 +1826 2 14 -0.8 -0.8 -0.8 1 +1826 2 15 -1.1 -1.1 -1.1 1 +1826 2 16 -1.3 -1.3 -1.3 1 +1826 2 17 -0.1 -0.1 -0.1 1 +1826 2 18 0.7 0.7 0.7 1 +1826 2 19 0.5 0.5 0.5 1 +1826 2 20 0.1 0.1 0.1 1 +1826 2 21 0.6 0.6 0.6 1 +1826 2 22 -0.8 -0.8 -0.8 1 +1826 2 23 0.1 0.1 0.1 1 +1826 2 24 0.0 0.0 0.0 1 +1826 2 25 -1.8 -1.8 -1.8 1 +1826 2 26 -0.5 -0.5 -0.5 1 +1826 2 27 -0.3 -0.3 -0.3 1 +1826 2 28 -3.2 -3.2 -3.2 1 +1826 3 1 0.3 0.3 0.3 1 +1826 3 2 4.7 4.7 4.7 1 +1826 3 3 5.1 5.1 5.1 1 +1826 3 4 3.6 3.6 3.6 1 +1826 3 5 3.6 3.6 3.6 1 +1826 3 6 3.8 3.8 3.8 1 +1826 3 7 1.1 1.1 1.1 1 +1826 3 8 1.6 1.6 1.6 1 +1826 3 9 2.0 2.0 2.0 1 +1826 3 10 4.2 4.2 4.2 1 +1826 3 11 4.0 4.0 4.0 1 +1826 3 12 5.5 5.5 5.5 1 +1826 3 13 5.3 5.3 5.3 1 +1826 3 14 2.6 2.6 2.6 1 +1826 3 15 0.7 0.7 0.7 1 +1826 3 16 -1.2 -1.2 -1.2 1 +1826 3 17 -1.0 -1.0 -1.0 1 +1826 3 18 -4.2 -4.2 -4.2 1 +1826 3 19 -1.0 -1.0 -1.0 1 +1826 3 20 -0.5 -0.5 -0.5 1 +1826 3 21 -1.2 -1.2 -1.2 1 +1826 3 22 -0.9 -0.9 -0.9 1 +1826 3 23 -2.7 -2.7 -2.7 1 +1826 3 24 -2.4 -2.4 -2.4 1 +1826 3 25 -3.3 -3.3 -3.3 1 +1826 3 26 -3.0 -3.0 -3.0 1 +1826 3 27 -3.0 -3.0 -3.0 1 +1826 3 28 -0.6 -0.6 -0.6 1 +1826 3 29 1.8 1.8 1.8 1 +1826 3 30 1.0 1.0 1.0 1 +1826 3 31 1.6 1.6 1.6 1 +1826 4 1 1.1 1.1 1.1 1 +1826 4 2 -1.6 -1.6 -1.6 1 +1826 4 3 -1.0 -1.0 -1.0 1 +1826 4 4 -0.8 -0.8 -0.8 1 +1826 4 5 -2.1 -2.1 -2.1 1 +1826 4 6 0.1 0.1 0.1 1 +1826 4 7 1.2 1.2 1.2 1 +1826 4 8 2.9 2.9 2.9 1 +1826 4 9 4.1 4.1 4.1 1 +1826 4 10 5.3 5.3 5.3 1 +1826 4 11 5.4 5.4 5.4 1 +1826 4 12 6.0 6.0 6.0 1 +1826 4 13 2.4 2.4 2.4 1 +1826 4 14 1.3 1.3 1.3 1 +1826 4 15 1.2 1.2 1.2 1 +1826 4 16 3.3 3.3 3.3 1 +1826 4 17 -0.8 -0.8 -0.8 1 +1826 4 18 -1.0 -1.0 -1.0 1 +1826 4 19 1.3 1.3 1.3 1 +1826 4 20 4.9 4.9 4.9 1 +1826 4 21 5.7 5.7 5.7 1 +1826 4 22 5.8 5.8 5.8 1 +1826 4 23 5.7 5.7 5.7 1 +1826 4 24 7.1 7.1 7.1 1 +1826 4 25 6.1 6.1 6.1 1 +1826 4 26 5.0 5.0 5.0 1 +1826 4 27 3.9 3.9 3.9 1 +1826 4 28 3.1 3.1 3.1 1 +1826 4 29 4.7 4.7 4.7 1 +1826 4 30 3.8 3.8 3.8 1 +1826 5 1 5.6 5.6 5.6 1 +1826 5 2 6.2 6.2 6.2 1 +1826 5 3 7.7 7.7 7.7 1 +1826 5 4 7.2 7.2 7.2 1 +1826 5 5 6.1 6.1 6.0 1 +1826 5 6 5.4 5.4 5.3 1 +1826 5 7 6.5 6.5 6.4 1 +1826 5 8 8.8 8.8 8.7 1 +1826 5 9 10.4 10.4 10.3 1 +1826 5 10 10.9 10.9 10.7 1 +1826 5 11 12.6 12.6 12.4 1 +1826 5 12 7.0 7.0 6.8 1 +1826 5 13 3.7 3.7 3.5 1 +1826 5 14 4.1 4.1 3.8 1 +1826 5 15 6.8 6.8 6.5 1 +1826 5 16 8.3 8.3 8.0 1 +1826 5 17 5.4 5.4 5.1 1 +1826 5 18 4.2 4.2 3.9 1 +1826 5 19 8.7 8.7 8.3 1 +1826 5 20 11.6 11.6 11.2 1 +1826 5 21 11.2 11.2 10.8 1 +1826 5 22 12.5 12.5 12.1 1 +1826 5 23 16.3 16.3 15.8 1 +1826 5 24 14.4 14.4 13.9 1 +1826 5 25 16.0 16.0 15.5 1 +1826 5 26 17.6 17.6 17.1 1 +1826 5 27 17.2 17.2 16.7 1 +1826 5 28 17.7 17.7 17.1 1 +1826 5 29 19.1 19.1 18.5 1 +1826 5 30 17.3 17.3 16.7 1 +1826 5 31 10.6 10.6 10.0 1 +1826 6 1 13.0 13.0 12.3 1 +1826 6 2 11.9 11.9 11.2 1 +1826 6 3 12.2 12.2 11.5 1 +1826 6 4 14.5 14.5 13.8 1 +1826 6 5 12.1 12.1 11.4 1 +1826 6 6 13.5 13.5 12.8 1 +1826 6 7 17.6 17.6 16.9 1 +1826 6 8 19.8 19.8 19.1 1 +1826 6 9 20.0 20.0 19.3 1 +1826 6 10 21.5 21.5 20.8 1 +1826 6 11 19.6 19.6 18.9 1 +1826 6 12 20.8 20.8 20.1 1 +1826 6 13 22.4 22.4 21.7 1 +1826 6 14 21.5 21.5 20.8 1 +1826 6 15 19.6 19.6 18.9 1 +1826 6 16 13.0 13.0 12.3 1 +1826 6 17 12.2 12.2 11.5 1 +1826 6 18 16.6 16.6 15.9 1 +1826 6 19 15.2 15.2 14.5 1 +1826 6 20 12.9 12.9 12.2 1 +1826 6 21 17.5 17.5 16.8 1 +1826 6 22 17.0 17.0 16.3 1 +1826 6 23 20.0 20.0 19.3 1 +1826 6 24 22.9 22.9 22.2 1 +1826 6 25 19.6 19.6 18.9 1 +1826 6 26 20.4 20.4 19.7 1 +1826 6 27 18.4 18.4 17.7 1 +1826 6 28 18.5 18.5 17.8 1 +1826 6 29 24.0 24.0 23.3 1 +1826 6 30 20.0 20.0 19.3 1 +1826 7 1 17.9 17.9 17.2 1 +1826 7 2 21.1 21.1 20.4 1 +1826 7 3 20.3 20.3 19.6 1 +1826 7 4 23.5 23.5 22.8 1 +1826 7 5 24.2 24.2 23.5 1 +1826 7 6 25.0 25.0 24.3 1 +1826 7 7 25.4 25.4 24.7 1 +1826 7 8 21.7 21.7 21.0 1 +1826 7 9 24.4 24.4 23.7 1 +1826 7 10 24.4 24.4 23.7 1 +1826 7 11 24.1 24.1 23.4 1 +1826 7 12 21.5 21.5 20.8 1 +1826 7 13 20.5 20.5 19.8 1 +1826 7 14 22.6 22.6 21.9 1 +1826 7 15 22.6 22.6 21.9 1 +1826 7 16 21.0 21.0 20.3 1 +1826 7 17 19.2 19.2 18.5 1 +1826 7 18 18.2 18.2 17.5 1 +1826 7 19 18.1 18.1 17.4 1 +1826 7 20 17.4 17.4 16.7 1 +1826 7 21 18.6 18.6 17.9 1 +1826 7 22 20.5 20.5 19.8 1 +1826 7 23 22.2 22.2 21.5 1 +1826 7 24 19.7 19.7 19.0 1 +1826 7 25 22.6 22.6 21.9 1 +1826 7 26 17.3 17.3 16.6 1 +1826 7 27 15.3 15.3 14.6 1 +1826 7 28 18.8 18.8 18.1 1 +1826 7 29 20.3 20.3 19.6 1 +1826 7 30 20.9 20.9 20.2 1 +1826 7 31 23.8 23.8 23.1 1 +1826 8 1 24.0 24.0 23.4 1 +1826 8 2 20.9 20.9 20.3 1 +1826 8 3 20.7 20.7 20.1 1 +1826 8 4 22.3 22.3 21.7 1 +1826 8 5 18.5 18.5 18.0 1 +1826 8 6 13.4 13.4 12.9 1 +1826 8 7 12.9 12.9 12.4 1 +1826 8 8 13.8 13.8 13.3 1 +1826 8 9 17.7 17.7 17.2 1 +1826 8 10 18.9 18.9 18.5 1 +1826 8 11 17.6 17.6 17.2 1 +1826 8 12 18.5 18.5 18.1 1 +1826 8 13 17.1 17.1 16.7 1 +1826 8 14 15.8 15.8 15.5 1 +1826 8 15 17.3 17.3 17.0 1 +1826 8 16 16.4 16.4 16.1 1 +1826 8 17 17.9 17.9 17.6 1 +1826 8 18 18.4 18.4 18.1 1 +1826 8 19 18.2 18.2 18.0 1 +1826 8 20 17.6 17.6 17.4 1 +1826 8 21 17.3 17.3 17.1 1 +1826 8 22 19.1 19.1 18.9 1 +1826 8 23 19.3 19.3 19.2 1 +1826 8 24 20.2 20.2 20.1 1 +1826 8 25 20.2 20.2 20.1 1 +1826 8 26 21.7 21.7 21.6 1 +1826 8 27 20.7 20.7 20.6 1 +1826 8 28 19.4 19.4 19.4 1 +1826 8 29 18.7 18.7 18.7 1 +1826 8 30 18.2 18.2 18.2 1 +1826 8 31 18.6 18.6 18.6 1 +1826 9 1 19.4 19.4 19.4 1 +1826 9 2 21.3 21.3 21.3 1 +1826 9 3 19.7 19.7 19.7 1 +1826 9 4 19.2 19.2 19.2 1 +1826 9 5 16.7 16.7 16.7 1 +1826 9 6 15.0 15.0 15.0 1 +1826 9 7 15.3 15.3 15.3 1 +1826 9 8 16.2 16.2 16.2 1 +1826 9 9 15.3 15.3 15.3 1 +1826 9 10 13.3 13.3 13.3 1 +1826 9 11 12.0 12.0 12.0 1 +1826 9 12 13.2 13.2 13.2 1 +1826 9 13 15.5 15.5 15.5 1 +1826 9 14 15.1 15.1 15.1 1 +1826 9 15 12.6 12.6 12.6 1 +1826 9 16 12.5 12.5 12.5 1 +1826 9 17 10.7 10.7 10.7 1 +1826 9 18 8.8 8.8 8.8 1 +1826 9 19 6.8 6.8 6.8 1 +1826 9 20 6.7 6.7 6.7 1 +1826 9 21 4.9 4.9 4.9 1 +1826 9 22 4.9 4.9 4.9 1 +1826 9 23 7.1 7.1 7.1 1 +1826 9 24 8.3 8.3 8.3 1 +1826 9 25 6.2 6.2 6.2 1 +1826 9 26 9.1 9.1 9.1 1 +1826 9 27 9.3 9.3 9.3 1 +1826 9 28 10.6 10.6 10.6 1 +1826 9 29 10.6 10.6 10.6 1 +1826 9 30 10.5 10.5 10.5 1 +1826 10 1 11.2 11.2 11.2 1 +1826 10 2 10.0 10.0 10.0 1 +1826 10 3 10.1 10.1 10.1 1 +1826 10 4 11.6 11.6 11.6 1 +1826 10 5 10.1 10.1 10.1 1 +1826 10 6 9.8 9.8 9.8 1 +1826 10 7 8.1 8.1 8.1 1 +1826 10 8 10.6 10.6 10.6 1 +1826 10 9 11.5 11.5 11.5 1 +1826 10 10 11.6 11.6 11.6 1 +1826 10 11 9.6 9.6 9.6 1 +1826 10 12 9.7 9.7 9.7 1 +1826 10 13 9.5 9.5 9.5 1 +1826 10 14 5.3 5.3 5.3 1 +1826 10 15 9.2 9.2 9.2 1 +1826 10 16 8.2 8.2 8.2 1 +1826 10 17 11.2 11.2 11.2 1 +1826 10 18 8.0 8.0 8.0 1 +1826 10 19 3.7 3.7 3.7 1 +1826 10 20 5.6 5.6 5.6 1 +1826 10 21 3.9 3.9 3.9 1 +1826 10 22 4.3 4.3 4.3 1 +1826 10 23 4.8 4.8 4.8 1 +1826 10 24 7.4 7.4 7.4 1 +1826 10 25 9.0 9.0 9.0 1 +1826 10 26 9.3 9.3 9.3 1 +1826 10 27 8.1 8.1 8.1 1 +1826 10 28 7.1 7.1 7.1 1 +1826 10 29 5.4 5.4 5.4 1 +1826 10 30 5.1 5.1 5.1 1 +1826 10 31 4.3 4.3 4.3 1 +1826 11 1 5.9 5.9 5.9 1 +1826 11 2 4.0 4.0 4.0 1 +1826 11 3 3.7 3.7 3.7 1 +1826 11 4 4.1 4.1 4.1 1 +1826 11 5 4.2 4.2 4.2 1 +1826 11 6 5.3 5.3 5.3 1 +1826 11 7 2.8 2.8 2.8 1 +1826 11 8 0.8 0.8 0.8 1 +1826 11 9 -1.5 -1.5 -1.5 1 +1826 11 10 -1.4 -1.4 -1.4 1 +1826 11 11 -5.4 -5.4 -5.4 1 +1826 11 12 -0.8 -0.8 -0.8 1 +1826 11 13 -0.6 -0.6 -0.6 1 +1826 11 14 3.2 3.2 3.2 1 +1826 11 15 3.4 3.4 3.4 1 +1826 11 16 6.0 6.0 6.0 1 +1826 11 17 4.7 4.7 4.7 1 +1826 11 18 0.6 0.6 0.6 1 +1826 11 19 -1.4 -1.4 -1.4 1 +1826 11 20 -1.0 -1.0 -1.0 1 +1826 11 21 3.5 3.5 3.5 1 +1826 11 22 3.8 3.8 3.8 1 +1826 11 23 0.9 0.9 0.9 1 +1826 11 24 3.2 3.2 3.2 1 +1826 11 25 4.2 4.2 4.2 1 +1826 11 26 2.7 2.7 2.7 1 +1826 11 27 0.7 0.7 0.7 1 +1826 11 28 -0.6 -0.6 -0.6 1 +1826 11 29 -2.8 -2.8 -2.8 1 +1826 11 30 0.2 0.2 0.2 1 +1826 12 1 2.0 2.0 2.0 1 +1826 12 2 3.7 3.7 3.7 1 +1826 12 3 4.5 4.5 4.5 1 +1826 12 4 3.8 3.8 3.8 1 +1826 12 5 0.8 0.8 0.8 1 +1826 12 6 -0.8 -0.8 -0.8 1 +1826 12 7 -4.0 -4.0 -4.0 1 +1826 12 8 -1.3 -1.3 -1.3 1 +1826 12 9 0.0 0.0 0.0 1 +1826 12 10 -0.5 -0.5 -0.5 1 +1826 12 11 -1.4 -1.4 -1.4 1 +1826 12 12 0.0 0.0 0.0 1 +1826 12 13 0.8 0.8 0.8 1 +1826 12 14 1.2 1.2 1.2 1 +1826 12 15 0.6 0.6 0.6 1 +1826 12 16 1.0 1.0 1.0 1 +1826 12 17 -1.9 -1.9 -1.9 1 +1826 12 18 -3.5 -3.5 -3.5 1 +1826 12 19 -1.2 -1.2 -1.2 1 +1826 12 20 1.7 1.7 1.7 1 +1826 12 21 0.9 0.9 0.9 1 +1826 12 22 -1.5 -1.5 -1.5 1 +1826 12 23 -2.5 -2.5 -2.5 1 +1826 12 24 2.4 2.4 2.4 1 +1826 12 25 0.5 0.5 0.5 1 +1826 12 26 -0.8 -0.8 -0.8 1 +1826 12 27 -0.9 -0.9 -0.9 1 +1826 12 28 1.2 1.2 1.2 1 +1826 12 29 -0.7 -0.7 -0.7 1 +1826 12 30 -5.6 -5.6 -5.6 1 +1826 12 31 -2.3 -2.3 -2.3 1 +1827 1 1 -1.2 -1.2 -1.2 1 +1827 1 2 -6.6 -6.6 -6.6 1 +1827 1 3 -9.4 -9.4 -9.4 1 +1827 1 4 -13.7 -13.7 -13.7 1 +1827 1 5 -11.5 -11.5 -11.5 1 +1827 1 6 -5.0 -5.0 -5.0 1 +1827 1 7 1.0 1.0 1.0 1 +1827 1 8 -0.2 -0.2 -0.2 1 +1827 1 9 -0.8 -0.8 -0.8 1 +1827 1 10 -2.6 -2.6 -2.6 1 +1827 1 11 -7.3 -7.3 -7.3 1 +1827 1 12 -7.3 -7.3 -7.3 1 +1827 1 13 -10.2 -10.2 -10.2 1 +1827 1 14 -8.1 -8.1 -8.1 1 +1827 1 15 -7.8 -7.8 -7.8 1 +1827 1 16 -10.2 -10.2 -10.2 1 +1827 1 17 -6.9 -6.9 -6.9 1 +1827 1 18 -5.4 -5.4 -5.4 1 +1827 1 19 -5.6 -5.6 -5.6 1 +1827 1 20 -3.0 -3.0 -3.0 1 +1827 1 21 -3.4 -3.4 -3.4 1 +1827 1 22 -4.8 -4.8 -4.8 1 +1827 1 23 -3.2 -3.2 -3.2 1 +1827 1 24 -2.6 -2.6 -2.6 1 +1827 1 25 -1.0 -1.0 -1.0 1 +1827 1 26 -2.6 -2.6 -2.6 1 +1827 1 27 -4.6 -4.6 -4.6 1 +1827 1 28 -6.9 -6.9 -6.9 1 +1827 1 29 -1.3 -1.3 -1.3 1 +1827 1 30 -1.3 -1.3 -1.3 1 +1827 1 31 -6.1 -6.1 -6.1 1 +1827 2 1 -6.2 -6.2 -6.2 1 +1827 2 2 -11.7 -11.7 -11.7 1 +1827 2 3 -9.1 -9.1 -9.1 1 +1827 2 4 -2.8 -2.8 -2.8 1 +1827 2 5 0.3 0.3 0.3 1 +1827 2 6 -2.7 -2.7 -2.7 1 +1827 2 7 -5.2 -5.2 -5.2 1 +1827 2 8 -2.3 -2.3 -2.3 1 +1827 2 9 -1.5 -1.5 -1.5 1 +1827 2 10 -2.8 -2.8 -2.8 1 +1827 2 11 -2.4 -2.4 -2.4 1 +1827 2 12 -7.2 -7.2 -7.2 1 +1827 2 13 -6.2 -6.2 -6.2 1 +1827 2 14 -9.0 -9.0 -9.0 1 +1827 2 15 -11.1 -11.1 -11.1 1 +1827 2 16 -16.8 -16.8 -16.8 1 +1827 2 17 -14.8 -14.8 -14.8 1 +1827 2 18 -10.5 -10.5 -10.5 1 +1827 2 19 -6.6 -6.6 -6.6 1 +1827 2 20 -4.5 -4.5 -4.5 1 +1827 2 21 -6.8 -6.8 -6.8 1 +1827 2 22 -10.6 -10.6 -10.6 1 +1827 2 23 -10.5 -10.5 -10.5 1 +1827 2 24 -14.5 -14.5 -14.5 1 +1827 2 25 -13.0 -13.0 -13.0 1 +1827 2 26 -5.6 -5.6 -5.6 1 +1827 2 27 0.9 0.9 0.9 1 +1827 2 28 -3.9 -3.9 -3.9 1 +1827 3 1 -4.8 -4.8 -4.8 1 +1827 3 2 0.7 0.7 0.7 1 +1827 3 3 -0.1 -0.1 -0.1 1 +1827 3 4 1.7 1.7 1.7 1 +1827 3 5 0.4 0.4 0.4 1 +1827 3 6 -2.3 -2.3 -2.3 1 +1827 3 7 2.0 2.0 2.0 1 +1827 3 8 1.9 1.9 1.9 1 +1827 3 9 2.3 2.3 2.3 1 +1827 3 10 0.5 0.5 0.5 1 +1827 3 11 0.5 0.5 0.5 1 +1827 3 12 0.6 0.6 0.6 1 +1827 3 13 2.7 2.7 2.7 1 +1827 3 14 -4.3 -4.3 -4.3 1 +1827 3 15 -6.7 -6.7 -6.7 1 +1827 3 16 -7.7 -7.7 -7.7 1 +1827 3 17 -7.4 -7.4 -7.4 1 +1827 3 18 -6.4 -6.4 -6.4 1 +1827 3 19 -3.8 -3.8 -3.8 1 +1827 3 20 0.5 0.5 0.5 1 +1827 3 21 -0.6 -0.6 -0.6 1 +1827 3 22 0.4 0.4 0.4 1 +1827 3 23 -2.1 -2.1 -2.1 1 +1827 3 24 -3.5 -3.5 -3.5 1 +1827 3 25 -2.2 -2.2 -2.2 1 +1827 3 26 -5.4 -5.4 -5.4 1 +1827 3 27 -5.5 -5.5 -5.5 1 +1827 3 28 -3.8 -3.8 -3.8 1 +1827 3 29 1.3 1.3 1.3 1 +1827 3 30 2.0 2.0 2.0 1 +1827 3 31 1.5 1.5 1.5 1 +1827 4 1 0.9 0.9 0.9 1 +1827 4 2 0.9 0.9 0.9 1 +1827 4 3 0.1 0.1 0.1 1 +1827 4 4 2.3 2.3 2.3 1 +1827 4 5 5.0 5.0 5.0 1 +1827 4 6 6.5 6.5 6.5 1 +1827 4 7 5.6 5.6 5.6 1 +1827 4 8 5.6 5.6 5.6 1 +1827 4 9 5.9 5.9 5.9 1 +1827 4 10 6.6 6.6 6.6 1 +1827 4 11 6.7 6.7 6.7 1 +1827 4 12 7.3 7.3 7.3 1 +1827 4 13 6.8 6.8 6.8 1 +1827 4 14 7.8 7.8 7.8 1 +1827 4 15 6.8 6.8 6.8 1 +1827 4 16 4.1 4.1 4.1 1 +1827 4 17 4.6 4.6 4.6 1 +1827 4 18 6.4 6.4 6.4 1 +1827 4 19 7.1 7.1 7.1 1 +1827 4 20 8.6 8.6 8.6 1 +1827 4 21 6.5 6.5 6.5 1 +1827 4 22 1.1 1.1 1.1 1 +1827 4 23 -0.8 -0.8 -0.8 1 +1827 4 24 0.9 0.9 0.9 1 +1827 4 25 0.4 0.4 0.4 1 +1827 4 26 5.8 5.8 5.8 1 +1827 4 27 7.1 7.1 7.1 1 +1827 4 28 7.3 7.3 7.3 1 +1827 4 29 7.5 7.5 7.5 1 +1827 4 30 4.5 4.5 4.5 1 +1827 5 1 2.3 2.3 2.3 1 +1827 5 2 6.6 6.6 6.6 1 +1827 5 3 7.7 7.7 7.7 1 +1827 5 4 5.9 5.9 5.9 1 +1827 5 5 8.7 8.7 8.6 1 +1827 5 6 11.2 11.2 11.1 1 +1827 5 7 7.8 7.8 7.7 1 +1827 5 8 1.8 1.8 1.7 1 +1827 5 9 6.4 6.4 6.3 1 +1827 5 10 6.8 6.8 6.6 1 +1827 5 11 7.5 7.5 7.3 1 +1827 5 12 7.4 7.4 7.2 1 +1827 5 13 8.2 8.2 8.0 1 +1827 5 14 8.0 8.0 7.7 1 +1827 5 15 6.9 6.9 6.6 1 +1827 5 16 9.5 9.5 9.2 1 +1827 5 17 11.0 11.0 10.7 1 +1827 5 18 15.0 15.0 14.7 1 +1827 5 19 16.7 16.7 16.3 1 +1827 5 20 16.9 16.9 16.5 1 +1827 5 21 16.0 16.0 15.6 1 +1827 5 22 15.2 15.2 14.8 1 +1827 5 23 16.3 16.3 15.8 1 +1827 5 24 16.0 16.0 15.5 1 +1827 5 25 11.5 11.5 11.0 1 +1827 5 26 13.7 13.7 13.2 1 +1827 5 27 14.4 14.4 13.9 1 +1827 5 28 12.7 12.7 12.1 1 +1827 5 29 15.8 15.8 15.2 1 +1827 5 30 16.8 16.8 16.2 1 +1827 5 31 16.5 16.5 15.9 1 +1827 6 1 18.2 18.2 17.5 1 +1827 6 2 16.8 16.8 16.1 1 +1827 6 3 14.1 14.1 13.4 1 +1827 6 4 14.5 14.5 13.8 1 +1827 6 5 14.6 14.6 13.9 1 +1827 6 6 15.2 15.2 14.5 1 +1827 6 7 15.5 15.5 14.8 1 +1827 6 8 17.1 17.1 16.4 1 +1827 6 9 17.3 17.3 16.6 1 +1827 6 10 17.0 17.0 16.3 1 +1827 6 11 19.6 19.6 18.9 1 +1827 6 12 15.4 15.4 14.7 1 +1827 6 13 18.1 18.1 17.4 1 +1827 6 14 14.1 14.1 13.4 1 +1827 6 15 15.9 15.9 15.2 1 +1827 6 16 16.9 16.9 16.2 1 +1827 6 17 17.1 17.1 16.4 1 +1827 6 18 18.7 18.7 18.0 1 +1827 6 19 20.8 20.8 20.1 1 +1827 6 20 21.2 21.2 20.5 1 +1827 6 21 21.7 21.7 21.0 1 +1827 6 22 21.3 21.3 20.6 1 +1827 6 23 20.0 20.0 19.3 1 +1827 6 24 19.9 19.9 19.2 1 +1827 6 25 15.1 15.1 14.4 1 +1827 6 26 15.0 15.0 14.3 1 +1827 6 27 20.2 20.2 19.5 1 +1827 6 28 19.0 19.0 18.3 1 +1827 6 29 17.7 17.7 17.0 1 +1827 6 30 19.6 19.6 18.9 1 +1827 7 1 18.3 18.3 17.6 1 +1827 7 2 19.1 19.1 18.4 1 +1827 7 3 17.2 17.2 16.5 1 +1827 7 4 17.6 17.6 16.9 1 +1827 7 5 15.5 15.5 14.8 1 +1827 7 6 15.6 15.6 14.9 1 +1827 7 7 15.9 15.9 15.2 1 +1827 7 8 18.0 18.0 17.3 1 +1827 7 9 18.2 18.2 17.5 1 +1827 7 10 16.4 16.4 15.7 1 +1827 7 11 12.0 12.0 11.3 1 +1827 7 12 10.9 10.9 10.2 1 +1827 7 13 13.0 13.0 12.3 1 +1827 7 14 10.4 10.4 9.7 1 +1827 7 15 11.0 11.0 10.3 1 +1827 7 16 15.1 15.1 14.4 1 +1827 7 17 17.3 17.3 16.6 1 +1827 7 18 17.6 17.6 16.9 1 +1827 7 19 18.1 18.1 17.4 1 +1827 7 20 16.1 16.1 15.4 1 +1827 7 21 16.3 16.3 15.6 1 +1827 7 22 16.4 16.4 15.7 1 +1827 7 23 16.0 16.0 15.3 1 +1827 7 24 16.2 16.2 15.5 1 +1827 7 25 18.6 18.6 17.9 1 +1827 7 26 17.7 17.7 17.0 1 +1827 7 27 16.0 16.0 15.3 1 +1827 7 28 13.6 13.6 12.9 1 +1827 7 29 13.7 13.7 13.0 1 +1827 7 30 16.8 16.8 16.1 1 +1827 7 31 17.0 17.0 16.3 1 +1827 8 1 17.7 17.7 17.1 1 +1827 8 2 17.6 17.6 17.0 1 +1827 8 3 19.1 19.1 18.5 1 +1827 8 4 18.9 18.9 18.3 1 +1827 8 5 18.7 18.7 18.2 1 +1827 8 6 14.8 14.8 14.3 1 +1827 8 7 17.6 17.6 17.1 1 +1827 8 8 19.5 19.5 19.0 1 +1827 8 9 15.1 15.1 14.6 1 +1827 8 10 16.4 16.4 16.0 1 +1827 8 11 15.2 15.2 14.8 1 +1827 8 12 16.8 16.8 16.4 1 +1827 8 13 13.8 13.8 13.4 1 +1827 8 14 13.7 13.7 13.4 1 +1827 8 15 14.7 14.7 14.4 1 +1827 8 16 15.4 15.4 15.1 1 +1827 8 17 16.6 16.6 16.3 1 +1827 8 18 16.2 16.2 15.9 1 +1827 8 19 16.1 16.1 15.9 1 +1827 8 20 17.4 17.4 17.2 1 +1827 8 21 11.8 11.8 11.6 1 +1827 8 22 11.9 11.9 11.7 1 +1827 8 23 10.4 10.4 10.3 1 +1827 8 24 11.7 11.7 11.6 1 +1827 8 25 11.5 11.5 11.4 1 +1827 8 26 11.2 11.2 11.1 1 +1827 8 27 13.0 13.0 12.9 1 +1827 8 28 11.3 11.3 11.3 1 +1827 8 29 8.3 8.3 8.3 1 +1827 8 30 10.7 10.7 10.7 1 +1827 8 31 10.5 10.5 10.5 1 +1827 9 1 15.8 15.8 15.8 1 +1827 9 2 16.0 16.0 16.0 1 +1827 9 3 14.5 14.5 14.5 1 +1827 9 4 9.1 9.1 9.1 1 +1827 9 5 10.4 10.4 10.4 1 +1827 9 6 11.1 11.1 11.1 1 +1827 9 7 11.0 11.0 11.0 1 +1827 9 8 10.2 10.2 10.2 1 +1827 9 9 11.3 11.3 11.3 1 +1827 9 10 12.0 12.0 12.0 1 +1827 9 11 14.4 14.4 14.4 1 +1827 9 12 17.4 17.4 17.4 1 +1827 9 13 15.3 15.3 15.3 1 +1827 9 14 14.1 14.1 14.1 1 +1827 9 15 13.7 13.7 13.7 1 +1827 9 16 14.6 14.6 14.6 1 +1827 9 17 15.2 15.2 15.2 1 +1827 9 18 14.2 14.2 14.2 1 +1827 9 19 12.9 12.9 12.9 1 +1827 9 20 13.0 13.0 13.0 1 +1827 9 21 10.9 10.9 10.9 1 +1827 9 22 10.5 10.5 10.5 1 +1827 9 23 13.7 13.7 13.7 1 +1827 9 24 13.1 13.1 13.1 1 +1827 9 25 14.1 14.1 14.1 1 +1827 9 26 13.3 13.3 13.3 1 +1827 9 27 14.0 14.0 14.0 1 +1827 9 28 12.6 12.6 12.6 1 +1827 9 29 13.0 13.0 13.0 1 +1827 9 30 12.6 12.6 12.6 1 +1827 10 1 11.8 11.8 11.8 1 +1827 10 2 10.5 10.5 10.5 1 +1827 10 3 8.7 8.7 8.7 1 +1827 10 4 9.2 9.2 9.2 1 +1827 10 5 9.2 9.2 9.2 1 +1827 10 6 8.8 8.8 8.8 1 +1827 10 7 9.2 9.2 9.2 1 +1827 10 8 10.0 10.0 10.0 1 +1827 10 9 10.4 10.4 10.4 1 +1827 10 10 12.4 12.4 12.4 1 +1827 10 11 10.6 10.6 10.6 1 +1827 10 12 12.1 12.1 12.1 1 +1827 10 13 10.0 10.0 10.0 1 +1827 10 14 6.3 6.3 6.3 1 +1827 10 15 4.4 4.4 4.4 1 +1827 10 16 10.4 10.4 10.4 1 +1827 10 17 13.8 13.8 13.8 1 +1827 10 18 11.2 11.2 11.2 1 +1827 10 19 4.6 4.6 4.6 1 +1827 10 20 5.1 5.1 5.1 1 +1827 10 21 5.7 5.7 5.7 1 +1827 10 22 2.8 2.8 2.8 1 +1827 10 23 2.6 2.6 2.6 1 +1827 10 24 1.8 1.8 1.8 1 +1827 10 25 1.7 1.7 1.7 1 +1827 10 26 2.4 2.4 2.4 1 +1827 10 27 2.0 2.0 2.0 1 +1827 10 28 -1.4 -1.4 -1.4 1 +1827 10 29 -3.8 -3.8 -3.8 1 +1827 10 30 -1.0 -1.0 -1.0 1 +1827 10 31 1.8 1.8 1.8 1 +1827 11 1 0.1 0.1 0.1 1 +1827 11 2 0.0 0.0 0.0 1 +1827 11 3 -3.5 -3.5 -3.5 1 +1827 11 4 2.9 2.9 2.9 1 +1827 11 5 2.2 2.2 2.2 1 +1827 11 6 -1.0 -1.0 -1.0 1 +1827 11 7 -1.3 -1.3 -1.3 1 +1827 11 8 -0.6 -0.6 -0.6 1 +1827 11 9 -0.4 -0.4 -0.4 1 +1827 11 10 -3.0 -3.0 -3.0 1 +1827 11 11 -5.1 -5.1 -5.1 1 +1827 11 12 -1.3 -1.3 -1.3 1 +1827 11 13 -1.7 -1.7 -1.7 1 +1827 11 14 1.7 1.7 1.7 1 +1827 11 15 2.4 2.4 2.4 1 +1827 11 16 3.2 3.2 3.2 1 +1827 11 17 3.7 3.7 3.7 1 +1827 11 18 4.0 4.0 4.0 1 +1827 11 19 2.0 2.0 2.0 1 +1827 11 20 3.3 3.3 3.3 1 +1827 11 21 -1.7 -1.7 -1.7 1 +1827 11 22 -6.2 -6.2 -6.2 1 +1827 11 23 -4.9 -4.9 -4.9 1 +1827 11 24 -5.7 -5.7 -5.7 1 +1827 11 25 -7.6 -7.6 -7.6 1 +1827 11 26 -5.1 -5.1 -5.1 1 +1827 11 27 -2.3 -2.3 -2.3 1 +1827 11 28 1.0 1.0 1.0 1 +1827 11 29 2.3 2.3 2.3 1 +1827 11 30 1.1 1.1 1.1 1 +1827 12 1 -0.4 -0.4 -0.4 1 +1827 12 2 -1.7 -1.7 -1.7 1 +1827 12 3 -2.0 -2.0 -2.0 1 +1827 12 4 -0.5 -0.5 -0.5 1 +1827 12 5 -0.5 -0.5 -0.5 1 +1827 12 6 0.8 0.8 0.8 1 +1827 12 7 -1.6 -1.6 -1.6 1 +1827 12 8 2.7 2.7 2.7 1 +1827 12 9 0.7 0.7 0.7 1 +1827 12 10 -1.6 -1.6 -1.6 1 +1827 12 11 3.5 3.5 3.5 1 +1827 12 12 3.2 3.2 3.2 1 +1827 12 13 2.5 2.5 2.5 1 +1827 12 14 2.3 2.3 2.3 1 +1827 12 15 3.2 3.2 3.2 1 +1827 12 16 4.7 4.7 4.7 1 +1827 12 17 4.9 4.9 4.9 1 +1827 12 18 5.3 5.3 5.3 1 +1827 12 19 2.5 2.5 2.5 1 +1827 12 20 6.2 6.2 6.2 1 +1827 12 21 3.8 3.8 3.8 1 +1827 12 22 3.1 3.1 3.1 1 +1827 12 23 1.7 1.7 1.7 1 +1827 12 24 1.2 1.2 1.2 1 +1827 12 25 2.3 2.3 2.3 1 +1827 12 26 3.2 3.2 3.2 1 +1827 12 27 6.3 6.3 6.3 1 +1827 12 28 2.8 2.8 2.8 1 +1827 12 29 -0.4 -0.4 -0.4 1 +1827 12 30 1.3 1.3 1.3 1 +1827 12 31 0.6 0.6 0.6 1 +1828 1 1 0.2 0.2 0.2 1 +1828 1 2 -1.5 -1.5 -1.5 1 +1828 1 3 -2.1 -2.1 -2.1 1 +1828 1 4 -2.8 -2.8 -2.8 1 +1828 1 5 -1.4 -1.4 -1.4 1 +1828 1 6 -3.1 -3.1 -3.1 1 +1828 1 7 -4.0 -4.0 -4.0 1 +1828 1 8 -5.7 -5.7 -5.7 1 +1828 1 9 -2.7 -2.7 -2.7 1 +1828 1 10 -2.3 -2.3 -2.3 1 +1828 1 11 -3.5 -3.5 -3.5 1 +1828 1 12 -8.7 -8.7 -8.7 1 +1828 1 13 -12.4 -12.4 -12.4 1 +1828 1 14 -16.4 -16.4 -16.4 1 +1828 1 15 -13.5 -13.5 -13.5 1 +1828 1 16 -15.3 -15.3 -15.3 1 +1828 1 17 -14.1 -14.1 -14.1 1 +1828 1 18 -13.6 -13.6 -13.6 1 +1828 1 19 -5.0 -5.0 -5.0 1 +1828 1 20 2.3 2.3 2.3 1 +1828 1 21 -1.4 -1.4 -1.4 1 +1828 1 22 1.7 1.7 1.7 1 +1828 1 23 -2.7 -2.7 -2.7 1 +1828 1 24 -8.8 -8.8 -8.8 1 +1828 1 25 -2.0 -2.0 -2.0 1 +1828 1 26 2.2 2.2 2.2 1 +1828 1 27 -1.2 -1.2 -1.2 1 +1828 1 28 -2.1 -2.1 -2.1 1 +1828 1 29 0.1 0.1 0.1 1 +1828 1 30 -1.4 -1.4 -1.4 1 +1828 1 31 -3.0 -3.0 -3.0 1 +1828 2 1 0.1 0.1 0.1 1 +1828 2 2 1.5 1.5 1.5 1 +1828 2 3 -0.4 -0.4 -0.4 1 +1828 2 4 -1.6 -1.6 -1.6 1 +1828 2 5 -0.7 -0.7 -0.7 1 +1828 2 6 0.2 0.2 0.2 1 +1828 2 7 -2.5 -2.5 -2.5 1 +1828 2 8 -4.1 -4.1 -4.1 1 +1828 2 9 -4.3 -4.3 -4.3 1 +1828 2 10 -7.8 -7.8 -7.8 1 +1828 2 11 -8.9 -8.9 -8.9 1 +1828 2 12 -7.2 -7.2 -7.2 1 +1828 2 13 -7.9 -7.9 -7.9 1 +1828 2 14 -9.6 -9.6 -9.6 1 +1828 2 15 -4.8 -4.8 -4.8 1 +1828 2 16 -8.1 -8.1 -8.1 1 +1828 2 17 -9.5 -9.5 -9.5 1 +1828 2 18 -14.9 -14.9 -14.9 1 +1828 2 19 -8.6 -8.6 -8.6 1 +1828 2 20 -9.3 -9.3 -9.3 1 +1828 2 21 -6.1 -6.1 -6.1 1 +1828 2 22 -18.2 -18.2 -18.2 1 +1828 2 23 -10.9 -10.9 -10.9 1 +1828 2 24 -1.8 -1.8 -1.8 1 +1828 2 25 0.6 0.6 0.6 1 +1828 2 26 1.3 1.3 1.3 1 +1828 2 27 0.4 0.4 0.4 1 +1828 2 28 0.3 0.3 0.3 1 +1828 2 29 -7.5 -7.5 -7.5 1 +1828 3 1 -7.2 -7.2 -7.2 1 +1828 3 2 -5.2 -5.2 -5.2 1 +1828 3 3 -4.9 -4.9 -4.9 1 +1828 3 4 -9.7 -9.7 -9.7 1 +1828 3 5 -9.3 -9.3 -9.3 1 +1828 3 6 -12.1 -12.1 -12.1 1 +1828 3 7 -14.1 -14.1 -14.1 1 +1828 3 8 -5.8 -5.8 -5.8 1 +1828 3 9 -0.4 -0.4 -0.4 1 +1828 3 10 2.5 2.5 2.5 1 +1828 3 11 1.6 1.6 1.6 1 +1828 3 12 -1.0 -1.0 -1.0 1 +1828 3 13 0.6 0.6 0.6 1 +1828 3 14 0.7 0.7 0.7 1 +1828 3 15 1.7 1.7 1.7 1 +1828 3 16 0.7 0.7 0.7 1 +1828 3 17 -3.0 -3.0 -3.0 1 +1828 3 18 -4.0 -4.0 -4.0 1 +1828 3 19 -1.5 -1.5 -1.5 1 +1828 3 20 -0.3 -0.3 -0.3 1 +1828 3 21 0.8 0.8 0.8 1 +1828 3 22 0.2 0.2 0.2 1 +1828 3 23 1.5 1.5 1.5 1 +1828 3 24 2.3 2.3 2.3 1 +1828 3 25 1.6 1.6 1.6 1 +1828 3 26 0.1 0.1 0.1 1 +1828 3 27 -0.2 -0.2 -0.2 1 +1828 3 28 1.3 1.3 1.3 1 +1828 3 29 1.4 1.4 1.4 1 +1828 3 30 1.4 1.4 1.4 1 +1828 3 31 0.3 0.3 0.3 1 +1828 4 1 3.4 3.4 3.4 1 +1828 4 2 -2.0 -2.0 -2.0 1 +1828 4 3 -6.1 -6.1 -6.1 1 +1828 4 4 -8.1 -8.1 -8.1 1 +1828 4 5 -6.0 -6.0 -6.0 1 +1828 4 6 -5.6 -5.6 -5.6 1 +1828 4 7 -2.1 -2.1 -2.1 1 +1828 4 8 0.3 0.3 0.3 1 +1828 4 9 0.7 0.7 0.7 1 +1828 4 10 1.9 1.9 1.9 1 +1828 4 11 0.9 0.9 0.9 1 +1828 4 12 2.0 2.0 2.0 1 +1828 4 13 2.9 2.9 2.9 1 +1828 4 14 3.4 3.4 3.4 1 +1828 4 15 4.0 4.0 4.0 1 +1828 4 16 2.9 2.9 2.9 1 +1828 4 17 3.4 3.4 3.4 1 +1828 4 18 6.6 6.6 6.6 1 +1828 4 19 5.9 5.9 5.9 1 +1828 4 20 4.2 4.2 4.2 1 +1828 4 21 3.4 3.4 3.4 1 +1828 4 22 3.1 3.1 3.1 1 +1828 4 23 5.3 5.3 5.3 1 +1828 4 24 6.3 6.3 6.3 1 +1828 4 25 7.0 7.0 7.0 1 +1828 4 26 5.1 5.1 5.1 1 +1828 4 27 7.2 7.2 7.2 1 +1828 4 28 9.3 9.3 9.3 1 +1828 4 29 9.4 9.4 9.4 1 +1828 4 30 9.7 9.7 9.7 1 +1828 5 1 6.9 6.9 6.9 1 +1828 5 2 4.2 4.2 4.2 1 +1828 5 3 4.2 4.2 4.2 1 +1828 5 4 4.6 4.6 4.6 1 +1828 5 5 5.2 5.2 5.1 1 +1828 5 6 4.7 4.7 4.6 1 +1828 5 7 4.8 4.8 4.7 1 +1828 5 8 7.0 7.0 6.9 1 +1828 5 9 9.6 9.6 9.5 1 +1828 5 10 8.9 8.9 8.7 1 +1828 5 11 9.4 9.4 9.2 1 +1828 5 12 6.4 6.4 6.2 1 +1828 5 13 8.2 8.2 8.0 1 +1828 5 14 6.8 6.8 6.5 1 +1828 5 15 6.0 6.0 5.7 1 +1828 5 16 4.7 4.7 4.4 1 +1828 5 17 5.0 5.0 4.7 1 +1828 5 18 4.7 4.7 4.4 1 +1828 5 19 6.4 6.4 6.0 1 +1828 5 20 8.3 8.3 7.9 1 +1828 5 21 8.6 8.6 8.2 1 +1828 5 22 8.7 8.7 8.3 1 +1828 5 23 11.3 11.3 10.8 1 +1828 5 24 14.9 14.9 14.4 1 +1828 5 25 13.6 13.6 13.1 1 +1828 5 26 15.7 15.7 15.2 1 +1828 5 27 16.6 16.6 16.1 1 +1828 5 28 15.6 15.6 15.0 1 +1828 5 29 16.0 16.0 15.4 1 +1828 5 30 16.0 16.0 15.4 1 +1828 5 31 16.2 16.2 15.6 1 +1828 6 1 17.2 17.2 16.5 1 +1828 6 2 15.8 15.8 15.1 1 +1828 6 3 13.8 13.8 13.1 1 +1828 6 4 14.3 14.3 13.6 1 +1828 6 5 14.5 14.5 13.8 1 +1828 6 6 14.8 14.8 14.1 1 +1828 6 7 14.6 14.6 13.9 1 +1828 6 8 14.5 14.5 13.8 1 +1828 6 9 15.0 15.0 14.3 1 +1828 6 10 14.0 14.0 13.3 1 +1828 6 11 10.9 10.9 10.2 1 +1828 6 12 9.2 9.2 8.5 1 +1828 6 13 12.2 12.2 11.5 1 +1828 6 14 11.3 11.3 10.6 1 +1828 6 15 14.4 14.4 13.7 1 +1828 6 16 13.6 13.6 12.9 1 +1828 6 17 13.6 13.6 12.9 1 +1828 6 18 16.9 16.9 16.2 1 +1828 6 19 19.0 19.0 18.3 1 +1828 6 20 20.0 20.0 19.3 1 +1828 6 21 21.4 21.4 20.7 1 +1828 6 22 19.3 19.3 18.6 1 +1828 6 23 17.9 17.9 17.2 1 +1828 6 24 15.4 15.4 14.7 1 +1828 6 25 19.8 19.8 19.1 1 +1828 6 26 22.0 22.0 21.3 1 +1828 6 27 18.3 18.3 17.6 1 +1828 6 28 19.8 19.8 19.1 1 +1828 6 29 20.8 20.8 20.1 1 +1828 6 30 21.7 21.7 21.0 1 +1828 7 1 21.6 21.6 20.9 1 +1828 7 2 21.6 21.6 20.9 1 +1828 7 3 22.2 22.2 21.5 1 +1828 7 4 21.6 21.6 20.9 1 +1828 7 5 24.8 24.8 24.1 1 +1828 7 6 21.9 21.9 21.2 1 +1828 7 7 20.3 20.3 19.6 1 +1828 7 8 20.5 20.5 19.8 1 +1828 7 9 20.0 20.0 19.3 1 +1828 7 10 20.0 20.0 19.3 1 +1828 7 11 20.8 20.8 20.1 1 +1828 7 12 17.0 17.0 16.3 1 +1828 7 13 18.8 18.8 18.1 1 +1828 7 14 17.6 17.6 16.9 1 +1828 7 15 15.1 15.1 14.4 1 +1828 7 16 15.7 15.7 15.0 1 +1828 7 17 19.3 19.3 18.6 1 +1828 7 18 17.0 17.0 16.3 1 +1828 7 19 15.8 15.8 15.1 1 +1828 7 20 16.2 16.2 15.5 1 +1828 7 21 18.4 18.4 17.7 1 +1828 7 22 19.1 19.1 18.4 1 +1828 7 23 17.8 17.8 17.1 1 +1828 7 24 18.1 18.1 17.4 1 +1828 7 25 18.8 18.8 18.1 1 +1828 7 26 18.4 18.4 17.7 1 +1828 7 27 17.3 17.3 16.6 1 +1828 7 28 15.4 15.4 14.7 1 +1828 7 29 13.6 13.6 12.9 1 +1828 7 30 14.2 14.2 13.5 1 +1828 7 31 16.0 16.0 15.3 1 +1828 8 1 15.5 15.5 14.9 1 +1828 8 2 16.8 16.8 16.2 1 +1828 8 3 19.1 19.1 18.5 1 +1828 8 4 17.5 17.5 16.9 1 +1828 8 5 17.0 17.0 16.5 1 +1828 8 6 17.2 17.2 16.7 1 +1828 8 7 15.4 15.4 14.9 1 +1828 8 8 18.8 18.8 18.3 1 +1828 8 9 17.4 17.4 16.9 1 +1828 8 10 15.9 15.9 15.5 1 +1828 8 11 15.6 15.6 15.2 1 +1828 8 12 16.2 16.2 15.8 1 +1828 8 13 16.8 16.8 16.4 1 +1828 8 14 16.6 16.6 16.3 1 +1828 8 15 16.8 16.8 16.5 1 +1828 8 16 16.3 16.3 16.0 1 +1828 8 17 14.8 14.8 14.5 1 +1828 8 18 16.7 16.7 16.4 1 +1828 8 19 17.4 17.4 17.2 1 +1828 8 20 16.2 16.2 16.0 1 +1828 8 21 16.6 16.6 16.4 1 +1828 8 22 16.0 16.0 15.8 1 +1828 8 23 15.7 15.7 15.6 1 +1828 8 24 15.4 15.4 15.3 1 +1828 8 25 15.5 15.5 15.4 1 +1828 8 26 13.7 13.7 13.6 1 +1828 8 27 14.6 14.6 14.5 1 +1828 8 28 15.6 15.6 15.6 1 +1828 8 29 16.9 16.9 16.9 1 +1828 8 30 16.4 16.4 16.4 1 +1828 8 31 10.8 10.8 10.8 1 +1828 9 1 13.1 13.1 13.1 1 +1828 9 2 13.2 13.2 13.2 1 +1828 9 3 11.2 11.2 11.2 1 +1828 9 4 11.1 11.1 11.1 1 +1828 9 5 11.1 11.1 11.1 1 +1828 9 6 12.6 12.6 12.6 1 +1828 9 7 13.5 13.5 13.5 1 +1828 9 8 13.6 13.6 13.6 1 +1828 9 9 12.7 12.7 12.7 1 +1828 9 10 13.2 13.2 13.2 1 +1828 9 11 14.7 14.7 14.7 1 +1828 9 12 15.1 15.1 15.1 1 +1828 9 13 13.7 13.7 13.7 1 +1828 9 14 5.8 5.8 5.8 1 +1828 9 15 7.2 7.2 7.2 1 +1828 9 16 9.3 9.3 9.3 1 +1828 9 17 8.7 8.7 8.7 1 +1828 9 18 9.2 9.2 9.2 1 +1828 9 19 10.0 10.0 10.0 1 +1828 9 20 12.2 12.2 12.2 1 +1828 9 21 9.7 9.7 9.7 1 +1828 9 22 6.1 6.1 6.1 1 +1828 9 23 2.8 2.8 2.8 1 +1828 9 24 4.8 4.8 4.8 1 +1828 9 25 7.0 7.0 7.0 1 +1828 9 26 6.9 6.9 6.9 1 +1828 9 27 10.7 10.7 10.7 1 +1828 9 28 10.9 10.9 10.9 1 +1828 9 29 11.2 11.2 11.2 1 +1828 9 30 12.8 12.8 12.8 1 +1828 10 1 11.8 11.8 11.8 1 +1828 10 2 10.6 10.6 10.6 1 +1828 10 3 9.4 9.4 9.4 1 +1828 10 4 7.9 7.9 7.9 1 +1828 10 5 8.2 8.2 8.2 1 +1828 10 6 10.5 10.5 10.5 1 +1828 10 7 11.3 11.3 11.3 1 +1828 10 8 10.5 10.5 10.5 1 +1828 10 9 10.7 10.7 10.7 1 +1828 10 10 10.0 10.0 10.0 1 +1828 10 11 8.5 8.5 8.5 1 +1828 10 12 9.6 9.6 9.6 1 +1828 10 13 9.2 9.2 9.2 1 +1828 10 14 2.3 2.3 2.3 1 +1828 10 15 2.7 2.7 2.7 1 +1828 10 16 6.8 6.8 6.8 1 +1828 10 17 2.6 2.6 2.6 1 +1828 10 18 3.2 3.2 3.2 1 +1828 10 19 5.5 5.5 5.5 1 +1828 10 20 5.5 5.5 5.5 1 +1828 10 21 4.5 4.5 4.5 1 +1828 10 22 6.4 6.4 6.4 1 +1828 10 23 8.3 8.3 8.3 1 +1828 10 24 8.4 8.4 8.4 1 +1828 10 25 5.7 5.7 5.7 1 +1828 10 26 3.7 3.7 3.7 1 +1828 10 27 2.5 2.5 2.5 1 +1828 10 28 2.9 2.9 2.9 1 +1828 10 29 2.9 2.9 2.9 1 +1828 10 30 2.3 2.3 2.3 1 +1828 10 31 0.5 0.5 0.5 1 +1828 11 1 -2.0 -2.0 -2.0 1 +1828 11 2 0.8 0.8 0.8 1 +1828 11 3 0.5 0.5 0.5 1 +1828 11 4 3.2 3.2 3.2 1 +1828 11 5 2.0 2.0 2.0 1 +1828 11 6 -0.4 -0.4 -0.4 1 +1828 11 7 0.0 0.0 0.0 1 +1828 11 8 -1.3 -1.3 -1.3 1 +1828 11 9 3.6 3.6 3.6 1 +1828 11 10 2.7 2.7 2.7 1 +1828 11 11 2.3 2.3 2.3 1 +1828 11 12 1.1 1.1 1.1 1 +1828 11 13 2.1 2.1 2.1 1 +1828 11 14 2.6 2.6 2.6 1 +1828 11 15 0.6 0.6 0.6 1 +1828 11 16 0.5 0.5 0.5 1 +1828 11 17 2.0 2.0 2.0 1 +1828 11 18 -0.7 -0.7 -0.7 1 +1828 11 19 -6.5 -6.5 -6.5 1 +1828 11 20 1.0 1.0 1.0 1 +1828 11 21 3.6 3.6 3.6 1 +1828 11 22 6.5 6.5 6.5 1 +1828 11 23 4.9 4.9 4.9 1 +1828 11 24 4.0 4.0 4.0 1 +1828 11 25 4.3 4.3 4.3 1 +1828 11 26 5.3 5.3 5.3 1 +1828 11 27 6.7 6.7 6.7 1 +1828 11 28 4.8 4.8 4.8 1 +1828 11 29 -0.6 -0.6 -0.6 1 +1828 11 30 -5.9 -5.9 -5.9 1 +1828 12 1 -6.9 -6.9 -6.9 1 +1828 12 2 -6.2 -6.2 -6.2 1 +1828 12 3 0.8 0.8 0.8 1 +1828 12 4 3.6 3.6 3.6 1 +1828 12 5 0.3 0.3 0.3 1 +1828 12 6 -0.9 -0.9 -0.9 1 +1828 12 7 -0.3 -0.3 -0.3 1 +1828 12 8 -0.3 -0.3 -0.3 1 +1828 12 9 1.0 1.0 1.0 1 +1828 12 10 0.2 0.2 0.2 1 +1828 12 11 -0.9 -0.9 -0.9 1 +1828 12 12 2.2 2.2 2.2 1 +1828 12 13 3.2 3.2 3.2 1 +1828 12 14 0.6 0.6 0.6 1 +1828 12 15 0.0 0.0 0.0 1 +1828 12 16 0.5 0.5 0.5 1 +1828 12 17 1.0 1.0 1.0 1 +1828 12 18 3.0 3.0 3.0 1 +1828 12 19 0.0 0.0 0.0 1 +1828 12 20 -2.8 -2.8 -2.8 1 +1828 12 21 -8.8 -8.8 -8.8 1 +1828 12 22 -11.5 -11.5 -11.5 1 +1828 12 23 -13.2 -13.2 -13.2 1 +1828 12 24 -17.8 -17.8 -17.8 1 +1828 12 25 -15.8 -15.8 -15.8 1 +1828 12 26 -12.1 -12.1 -12.1 1 +1828 12 27 -5.8 -5.8 -5.8 1 +1828 12 28 -7.8 -7.8 -7.8 1 +1828 12 29 -9.7 -9.7 -9.7 1 +1828 12 30 -11.3 -11.3 -11.3 1 +1828 12 31 -3.8 -3.8 -3.8 1 +1829 1 1 -2.2 -2.2 -2.2 1 +1829 1 2 -2.1 -2.1 -2.1 1 +1829 1 3 -1.6 -1.6 -1.6 1 +1829 1 4 -5.3 -5.3 -5.3 1 +1829 1 5 -5.8 -5.8 -5.8 1 +1829 1 6 -4.8 -4.8 -4.8 1 +1829 1 7 -4.0 -4.0 -4.0 1 +1829 1 8 -1.2 -1.2 -1.2 1 +1829 1 9 -3.6 -3.6 -3.6 1 +1829 1 10 -3.8 -3.8 -3.8 1 +1829 1 11 -4.3 -4.3 -4.3 1 +1829 1 12 -4.5 -4.5 -4.5 1 +1829 1 13 -5.1 -5.1 -5.1 1 +1829 1 14 -4.1 -4.1 -4.1 1 +1829 1 15 -5.0 -5.0 -5.0 1 +1829 1 16 -4.8 -4.8 -4.8 1 +1829 1 17 -2.9 -2.9 -2.9 1 +1829 1 18 -2.7 -2.7 -2.7 1 +1829 1 19 -5.1 -5.1 -5.1 1 +1829 1 20 -12.3 -12.3 -12.3 1 +1829 1 21 -11.3 -11.3 -11.3 1 +1829 1 22 -11.9 -11.9 -11.9 1 +1829 1 23 -13.6 -13.6 -13.6 1 +1829 1 24 -11.9 -11.9 -11.9 1 +1829 1 25 -1.8 -1.8 -1.8 1 +1829 1 26 -3.4 -3.4 -3.4 1 +1829 1 27 -2.7 -2.7 -2.7 1 +1829 1 28 -1.4 -1.4 -1.4 1 +1829 1 29 -1.2 -1.2 -1.2 1 +1829 1 30 -4.3 -4.3 -4.3 1 +1829 1 31 -7.1 -7.1 -7.1 1 +1829 2 1 -10.8 -10.8 -10.8 1 +1829 2 2 -7.8 -7.8 -7.8 1 +1829 2 3 -10.5 -10.5 -10.5 1 +1829 2 4 -5.2 -5.2 -5.2 1 +1829 2 5 -5.8 -5.8 -5.8 1 +1829 2 6 -11.2 -11.2 -11.2 1 +1829 2 7 -10.9 -10.9 -10.9 1 +1829 2 8 -12.3 -12.3 -12.3 1 +1829 2 9 -13.0 -13.0 -13.0 1 +1829 2 10 -15.7 -15.7 -15.7 1 +1829 2 11 -9.3 -9.3 -9.3 1 +1829 2 12 -7.5 -7.5 -7.5 1 +1829 2 13 -4.6 -4.6 -4.6 1 +1829 2 14 -4.4 -4.4 -4.4 1 +1829 2 15 1.7 1.7 1.7 1 +1829 2 16 -9.4 -9.4 -9.4 1 +1829 2 17 -9.6 -9.6 -9.6 1 +1829 2 18 -8.5 -8.5 -8.5 1 +1829 2 19 -10.6 -10.6 -10.6 1 +1829 2 20 -10.1 -10.1 -10.1 1 +1829 2 21 -14.5 -14.5 -14.5 1 +1829 2 22 -18.6 -18.6 -18.6 1 +1829 2 23 -17.0 -17.0 -17.0 1 +1829 2 24 -16.0 -16.0 -16.0 1 +1829 2 25 -15.6 -15.6 -15.6 1 +1829 2 26 -11.0 -11.0 -11.0 1 +1829 2 27 -6.8 -6.8 -6.8 1 +1829 2 28 -7.0 -7.0 -7.0 1 +1829 3 1 -5.3 -5.3 -5.3 1 +1829 3 2 -2.4 -2.4 -2.4 1 +1829 3 3 -1.9 -1.9 -1.9 1 +1829 3 4 -1.0 -1.0 -1.0 1 +1829 3 5 1.2 1.2 1.2 1 +1829 3 6 -2.8 -2.8 -2.8 1 +1829 3 7 -0.8 -0.8 -0.8 1 +1829 3 8 -3.1 -3.1 -3.1 1 +1829 3 9 -4.3 -4.3 -4.3 1 +1829 3 10 -7.3 -7.3 -7.3 1 +1829 3 11 -6.0 -6.0 -6.0 1 +1829 3 12 -5.9 -5.9 -5.9 1 +1829 3 13 -7.4 -7.4 -7.4 1 +1829 3 14 -8.9 -8.9 -8.9 1 +1829 3 15 -6.9 -6.9 -6.9 1 +1829 3 16 -5.6 -5.6 -5.6 1 +1829 3 17 -1.2 -1.2 -1.2 1 +1829 3 18 -4.7 -4.7 -4.7 1 +1829 3 19 -1.8 -1.8 -1.8 1 +1829 3 20 -2.8 -2.8 -2.8 1 +1829 3 21 2.4 2.4 2.4 1 +1829 3 22 -6.8 -6.8 -6.8 1 +1829 3 23 -8.3 -8.3 -8.3 1 +1829 3 24 -3.6 -3.6 -3.6 1 +1829 3 25 -1.7 -1.7 -1.7 1 +1829 3 26 -6.0 -6.0 -6.0 1 +1829 3 27 -11.1 -11.1 -11.1 1 +1829 3 28 -8.3 -8.3 -8.3 1 +1829 3 29 -8.5 -8.5 -8.5 1 +1829 3 30 -9.8 -9.8 -9.8 1 +1829 3 31 -8.1 -8.1 -8.1 1 +1829 4 1 -6.6 -6.6 -6.6 1 +1829 4 2 -5.4 -5.4 -5.4 1 +1829 4 3 -3.7 -3.7 -3.7 1 +1829 4 4 -2.2 -2.2 -2.2 1 +1829 4 5 0.5 0.5 0.5 1 +1829 4 6 -1.5 -1.5 -1.5 1 +1829 4 7 -2.0 -2.0 -2.0 1 +1829 4 8 -5.2 -5.2 -5.2 1 +1829 4 9 -9.7 -9.7 -9.7 1 +1829 4 10 -9.4 -9.4 -9.4 1 +1829 4 11 -5.7 -5.7 -5.7 1 +1829 4 12 -6.9 -6.9 -6.9 1 +1829 4 13 -7.5 -7.5 -7.5 1 +1829 4 14 -3.8 -3.8 -3.8 1 +1829 4 15 0.3 0.3 0.3 1 +1829 4 16 1.2 1.2 1.2 1 +1829 4 17 0.5 0.5 0.5 1 +1829 4 18 0.9 0.9 0.9 1 +1829 4 19 1.9 1.9 1.9 1 +1829 4 20 1.4 1.4 1.4 1 +1829 4 21 4.2 4.2 4.2 1 +1829 4 22 2.9 2.9 2.9 1 +1829 4 23 2.3 2.3 2.3 1 +1829 4 24 2.2 2.2 2.2 1 +1829 4 25 2.6 2.6 2.6 1 +1829 4 26 2.2 2.2 2.2 1 +1829 4 27 3.7 3.7 3.7 1 +1829 4 28 4.2 4.2 4.2 1 +1829 4 29 0.9 0.9 0.9 1 +1829 4 30 1.3 1.3 1.3 1 +1829 5 1 2.6 2.6 2.6 1 +1829 5 2 2.5 2.5 2.5 1 +1829 5 3 4.6 4.6 4.6 1 +1829 5 4 5.6 5.6 5.6 1 +1829 5 5 6.9 6.9 6.8 1 +1829 5 6 6.3 6.3 6.2 1 +1829 5 7 10.6 10.6 10.5 1 +1829 5 8 7.0 7.0 6.9 1 +1829 5 9 7.9 7.9 7.8 1 +1829 5 10 7.7 7.7 7.5 1 +1829 5 11 7.0 7.0 6.8 1 +1829 5 12 6.4 6.4 6.2 1 +1829 5 13 5.6 5.6 5.4 1 +1829 5 14 6.7 6.7 6.4 1 +1829 5 15 7.8 7.8 7.5 1 +1829 5 16 8.5 8.5 8.2 1 +1829 5 17 12.2 12.2 11.9 1 +1829 5 18 12.3 12.3 12.0 1 +1829 5 19 13.4 13.4 13.0 1 +1829 5 20 14.0 14.0 13.6 1 +1829 5 21 9.0 9.0 8.6 1 +1829 5 22 9.2 9.2 8.8 1 +1829 5 23 12.7 12.7 12.2 1 +1829 5 24 13.2 13.2 12.7 1 +1829 5 25 13.7 13.7 13.2 1 +1829 5 26 13.8 13.8 13.3 1 +1829 5 27 15.6 15.6 15.1 1 +1829 5 28 18.1 18.1 17.5 1 +1829 5 29 12.1 12.1 11.5 1 +1829 5 30 5.2 5.2 4.6 1 +1829 5 31 4.8 4.8 4.2 1 +1829 6 1 5.8 5.8 5.1 1 +1829 6 2 6.7 6.7 6.0 1 +1829 6 3 3.7 3.7 3.0 1 +1829 6 4 4.5 4.5 3.8 1 +1829 6 5 5.0 5.0 4.3 1 +1829 6 6 8.0 8.0 7.3 1 +1829 6 7 11.7 11.7 11.0 1 +1829 6 8 10.8 10.8 10.1 1 +1829 6 9 12.3 12.3 11.6 1 +1829 6 10 12.2 12.2 11.5 1 +1829 6 11 14.5 14.5 13.8 1 +1829 6 12 19.4 19.4 18.7 1 +1829 6 13 16.2 16.2 15.5 1 +1829 6 14 17.1 17.1 16.4 1 +1829 6 15 19.2 19.2 18.5 1 +1829 6 16 21.6 21.6 20.9 1 +1829 6 17 18.6 18.6 17.9 1 +1829 6 18 19.0 19.0 18.3 1 +1829 6 19 20.1 20.1 19.4 1 +1829 6 20 20.5 20.5 19.8 1 +1829 6 21 21.5 21.5 20.8 1 +1829 6 22 23.2 23.2 22.5 1 +1829 6 23 24.1 24.1 23.4 1 +1829 6 24 24.0 24.0 23.3 1 +1829 6 25 20.6 20.6 19.9 1 +1829 6 26 21.2 21.2 20.5 1 +1829 6 27 17.8 17.8 17.1 1 +1829 6 28 17.9 17.9 17.2 1 +1829 6 29 17.8 17.8 17.1 1 +1829 6 30 21.6 21.6 20.9 1 +1829 7 1 19.6 19.6 18.9 1 +1829 7 2 19.4 19.4 18.7 1 +1829 7 3 20.1 20.1 19.4 1 +1829 7 4 18.1 18.1 17.4 1 +1829 7 5 17.7 17.7 17.0 1 +1829 7 6 17.6 17.6 16.9 1 +1829 7 7 16.3 16.3 15.6 1 +1829 7 8 16.5 16.5 15.8 1 +1829 7 9 17.9 17.9 17.2 1 +1829 7 10 17.5 17.5 16.8 1 +1829 7 11 18.0 18.0 17.3 1 +1829 7 12 18.4 18.4 17.7 1 +1829 7 13 18.6 18.6 17.9 1 +1829 7 14 19.8 19.8 19.1 1 +1829 7 15 18.9 18.9 18.2 1 +1829 7 16 17.6 17.6 16.9 1 +1829 7 17 13.8 13.8 13.1 1 +1829 7 18 16.5 16.5 15.8 1 +1829 7 19 16.3 16.3 15.6 1 +1829 7 20 17.2 17.2 16.5 1 +1829 7 21 17.9 17.9 17.2 1 +1829 7 22 18.9 18.9 18.2 1 +1829 7 23 19.0 19.0 18.3 1 +1829 7 24 19.0 19.0 18.3 1 +1829 7 25 18.3 18.3 17.6 1 +1829 7 26 16.8 16.8 16.1 1 +1829 7 27 15.8 15.8 15.1 1 +1829 7 28 12.6 12.6 11.9 1 +1829 7 29 16.4 16.4 15.7 1 +1829 7 30 14.9 14.9 14.2 1 +1829 7 31 17.6 17.6 16.9 1 +1829 8 1 15.4 15.4 14.8 1 +1829 8 2 14.1 14.1 13.5 1 +1829 8 3 16.5 16.5 15.9 1 +1829 8 4 18.1 18.1 17.5 1 +1829 8 5 18.1 18.1 17.6 1 +1829 8 6 15.0 15.0 14.5 1 +1829 8 7 15.3 15.3 14.8 1 +1829 8 8 15.3 15.3 14.8 1 +1829 8 9 16.9 16.9 16.4 1 +1829 8 10 18.5 18.5 18.1 1 +1829 8 11 14.9 14.9 14.5 1 +1829 8 12 12.4 12.4 12.0 1 +1829 8 13 13.5 13.5 13.1 1 +1829 8 14 11.3 11.3 11.0 1 +1829 8 15 9.9 9.9 9.6 1 +1829 8 16 10.8 10.8 10.5 1 +1829 8 17 10.7 10.7 10.4 1 +1829 8 18 12.2 12.2 11.9 1 +1829 8 19 12.8 12.8 12.6 1 +1829 8 20 13.4 13.4 13.2 1 +1829 8 21 9.8 9.8 9.6 1 +1829 8 22 13.1 13.1 12.9 1 +1829 8 23 14.7 14.7 14.6 1 +1829 8 24 15.5 15.5 15.4 1 +1829 8 25 14.4 14.4 14.3 1 +1829 8 26 13.7 13.7 13.6 1 +1829 8 27 12.9 12.9 12.8 1 +1829 8 28 14.1 14.1 14.1 1 +1829 8 29 14.7 14.7 14.7 1 +1829 8 30 11.7 11.7 11.7 1 +1829 8 31 15.3 15.3 15.3 1 +1829 9 1 15.1 15.1 15.1 1 +1829 9 2 14.3 14.3 14.3 1 +1829 9 3 13.2 13.2 13.2 1 +1829 9 4 10.8 10.8 10.8 1 +1829 9 5 10.4 10.4 10.4 1 +1829 9 6 11.4 11.4 11.4 1 +1829 9 7 12.1 12.1 12.1 1 +1829 9 8 12.1 12.1 12.1 1 +1829 9 9 9.8 9.8 9.8 1 +1829 9 10 10.1 10.1 10.1 1 +1829 9 11 10.5 10.5 10.5 1 +1829 9 12 13.4 13.4 13.4 1 +1829 9 13 12.4 12.4 12.4 1 +1829 9 14 11.0 11.0 11.0 1 +1829 9 15 13.1 13.1 13.1 1 +1829 9 16 11.2 11.2 11.2 1 +1829 9 17 10.7 10.7 10.7 1 +1829 9 18 10.7 10.7 10.7 1 +1829 9 19 10.7 10.7 10.7 1 +1829 9 20 12.4 12.4 12.4 1 +1829 9 21 11.9 11.9 11.9 1 +1829 9 22 11.0 11.0 11.0 1 +1829 9 23 11.0 11.0 11.0 1 +1829 9 24 10.9 10.9 10.9 1 +1829 9 25 8.8 8.8 8.8 1 +1829 9 26 7.7 7.7 7.7 1 +1829 9 27 9.1 9.1 9.1 1 +1829 9 28 8.8 8.8 8.8 1 +1829 9 29 10.4 10.4 10.4 1 +1829 9 30 8.8 8.8 8.8 1 +1829 10 1 10.1 10.1 10.1 1 +1829 10 2 9.9 9.9 9.9 1 +1829 10 3 9.8 9.8 9.8 1 +1829 10 4 11.2 11.2 11.2 1 +1829 10 5 10.6 10.6 10.6 1 +1829 10 6 10.0 10.0 10.0 1 +1829 10 7 8.4 8.4 8.4 1 +1829 10 8 7.7 7.7 7.7 1 +1829 10 9 5.4 5.4 5.4 1 +1829 10 10 4.0 4.0 4.0 1 +1829 10 11 11.2 11.2 11.2 1 +1829 10 12 5.4 5.4 5.4 1 +1829 10 13 0.5 0.5 0.5 1 +1829 10 14 -1.2 -1.2 -1.2 1 +1829 10 15 -0.8 -0.8 -0.8 1 +1829 10 16 1.4 1.4 1.4 1 +1829 10 17 -0.4 -0.4 -0.4 1 +1829 10 18 -0.8 -0.8 -0.8 1 +1829 10 19 -0.9 -0.9 -0.9 1 +1829 10 20 3.8 3.8 3.8 1 +1829 10 21 5.0 5.0 5.0 1 +1829 10 22 7.9 7.9 7.9 1 +1829 10 23 6.7 6.7 6.7 1 +1829 10 24 3.7 3.7 3.7 1 +1829 10 25 5.1 5.1 5.1 1 +1829 10 26 4.7 4.7 4.7 1 +1829 10 27 4.0 4.0 4.0 1 +1829 10 28 -1.8 -1.8 -1.8 1 +1829 10 29 -2.5 -2.5 -2.5 1 +1829 10 30 -1.4 -1.4 -1.4 1 +1829 10 31 -1.8 -1.8 -1.8 1 +1829 11 1 -5.3 -5.3 -5.3 1 +1829 11 2 -2.5 -2.5 -2.5 1 +1829 11 3 -3.5 -3.5 -3.5 1 +1829 11 4 0.4 0.4 0.4 1 +1829 11 5 2.6 2.6 2.6 1 +1829 11 6 1.7 1.7 1.7 1 +1829 11 7 3.1 3.1 3.1 1 +1829 11 8 -2.1 -2.1 -2.1 1 +1829 11 9 -2.0 -2.0 -2.0 1 +1829 11 10 -7.3 -7.3 -7.3 1 +1829 11 11 -8.4 -8.4 -8.4 1 +1829 11 12 -3.7 -3.7 -3.7 1 +1829 11 13 -5.5 -5.5 -5.5 1 +1829 11 14 -4.1 -4.1 -4.1 1 +1829 11 15 -4.0 -4.0 -4.0 1 +1829 11 16 -5.9 -5.9 -5.9 1 +1829 11 17 -7.7 -7.7 -7.7 1 +1829 11 18 -2.2 -2.2 -2.2 1 +1829 11 19 -2.8 -2.8 -2.8 1 +1829 11 20 -0.6 -0.6 -0.6 1 +1829 11 21 0.6 0.6 0.6 1 +1829 11 22 3.3 3.3 3.3 1 +1829 11 23 -3.9 -3.9 -3.9 1 +1829 11 24 -5.9 -5.9 -5.9 1 +1829 11 25 -5.3 -5.3 -5.3 1 +1829 11 26 -4.1 -4.1 -4.1 1 +1829 11 27 -2.2 -2.2 -2.2 1 +1829 11 28 -1.2 -1.2 -1.2 1 +1829 11 29 -5.2 -5.2 -5.2 1 +1829 11 30 -6.5 -6.5 -6.5 1 +1829 12 1 -8.2 -8.2 -8.2 1 +1829 12 2 -9.2 -9.2 -9.2 1 +1829 12 3 -7.6 -7.6 -7.6 1 +1829 12 4 -7.9 -7.9 -7.9 1 +1829 12 5 -3.8 -3.8 -3.8 1 +1829 12 6 -2.1 -2.1 -2.1 1 +1829 12 7 -3.3 -3.3 -3.3 1 +1829 12 8 -4.1 -4.1 -4.1 1 +1829 12 9 -2.4 -2.4 -2.4 1 +1829 12 10 -2.0 -2.0 -2.0 1 +1829 12 11 -2.0 -2.0 -2.0 1 +1829 12 12 -3.9 -3.9 -3.9 1 +1829 12 13 -1.7 -1.7 -1.7 1 +1829 12 14 1.6 1.6 1.6 1 +1829 12 15 -0.8 -0.8 -0.8 1 +1829 12 16 -2.8 -2.8 -2.8 1 +1829 12 17 -2.2 -2.2 -2.2 1 +1829 12 18 -3.3 -3.3 -3.3 1 +1829 12 19 -3.7 -3.7 -3.7 1 +1829 12 20 -3.2 -3.2 -3.2 1 +1829 12 21 -4.0 -4.0 -4.0 1 +1829 12 22 -6.3 -6.3 -6.3 1 +1829 12 23 -8.7 -8.7 -8.7 1 +1829 12 24 -9.1 -9.1 -9.1 1 +1829 12 25 -13.1 -13.1 -13.1 1 +1829 12 26 -13.5 -13.5 -13.5 1 +1829 12 27 -11.4 -11.4 -11.4 1 +1829 12 28 -8.6 -8.6 -8.6 1 +1829 12 29 -8.6 -8.6 -8.6 1 +1829 12 30 -10.4 -10.4 -10.4 1 +1829 12 31 -4.4 -4.4 -4.4 1 +1830 1 1 -4.8 -4.8 -4.8 1 +1830 1 2 -3.4 -3.4 -3.4 1 +1830 1 3 -4.9 -4.9 -4.9 1 +1830 1 4 -1.2 -1.2 -1.2 1 +1830 1 5 -1.0 -1.0 -1.0 1 +1830 1 6 -4.7 -4.7 -4.7 1 +1830 1 7 -1.1 -1.1 -1.1 1 +1830 1 8 -5.3 -5.3 -5.3 1 +1830 1 9 -8.1 -8.1 -8.1 1 +1830 1 10 -1.5 -1.5 -1.5 1 +1830 1 11 -3.5 -3.5 -3.5 1 +1830 1 12 -5.4 -5.4 -5.4 1 +1830 1 13 -4.1 -4.1 -4.1 1 +1830 1 14 -7.9 -7.9 -7.9 1 +1830 1 15 -7.1 -7.1 -7.1 1 +1830 1 16 -6.1 -6.1 -6.1 1 +1830 1 17 -5.2 -5.2 -5.2 1 +1830 1 18 -4.5 -4.5 -4.5 1 +1830 1 19 -4.9 -4.9 -4.9 1 +1830 1 20 -4.7 -4.7 -4.7 1 +1830 1 21 -4.6 -4.6 -4.6 1 +1830 1 22 -8.0 -8.0 -8.0 1 +1830 1 23 -8.6 -8.6 -8.6 1 +1830 1 24 -7.1 -7.1 -7.1 1 +1830 1 25 -3.7 -3.7 -3.7 1 +1830 1 26 -5.6 -5.6 -5.6 1 +1830 1 27 -3.7 -3.7 -3.7 1 +1830 1 28 -5.2 -5.2 -5.2 1 +1830 1 29 -10.8 -10.8 -10.8 1 +1830 1 30 -13.6 -13.6 -13.6 1 +1830 1 31 -12.9 -12.9 -12.9 1 +1830 2 1 -11.1 -11.1 -11.1 1 +1830 2 2 -11.1 -11.1 -11.1 1 +1830 2 3 -11.0 -11.0 -11.0 1 +1830 2 4 -9.8 -9.8 -9.8 1 +1830 2 5 -10.0 -10.0 -10.0 1 +1830 2 6 -12.0 -12.0 -12.0 1 +1830 2 7 -13.0 -13.0 -13.0 1 +1830 2 8 -13.5 -13.5 -13.5 1 +1830 2 9 -8.2 -8.2 -8.2 1 +1830 2 10 -4.1 -4.1 -4.1 1 +1830 2 11 -3.5 -3.5 -3.5 1 +1830 2 12 -4.1 -4.1 -4.1 1 +1830 2 13 -3.2 -3.2 -3.2 1 +1830 2 14 -3.3 -3.3 -3.3 1 +1830 2 15 -2.8 -2.8 -2.8 1 +1830 2 16 -0.7 -0.7 -0.7 1 +1830 2 17 -1.4 -1.4 -1.4 1 +1830 2 18 -5.1 -5.1 -5.1 1 +1830 2 19 -9.0 -9.0 -9.0 1 +1830 2 20 -12.0 -12.0 -12.0 1 +1830 2 21 -11.9 -11.9 -11.9 1 +1830 2 22 -9.2 -9.2 -9.2 1 +1830 2 23 -13.6 -13.6 -13.6 1 +1830 2 24 -14.2 -14.2 -14.2 1 +1830 2 25 -6.8 -6.8 -6.8 1 +1830 2 26 1.3 1.3 1.3 1 +1830 2 27 1.3 1.3 1.3 1 +1830 2 28 -0.9 -0.9 -0.9 1 +1830 3 1 -7.4 -7.4 -7.4 1 +1830 3 2 -7.7 -7.7 -7.7 1 +1830 3 3 -0.8 -0.8 -0.8 1 +1830 3 4 2.0 2.0 2.0 1 +1830 3 5 -0.2 -0.2 -0.2 1 +1830 3 6 -0.7 -0.7 -0.7 1 +1830 3 7 0.0 0.0 0.0 1 +1830 3 8 -1.3 -1.3 -1.3 1 +1830 3 9 -3.0 -3.0 -3.0 1 +1830 3 10 -2.7 -2.7 -2.7 1 +1830 3 11 0.2 0.2 0.2 1 +1830 3 12 -1.4 -1.4 -1.4 1 +1830 3 13 0.8 0.8 0.8 1 +1830 3 14 -0.9 -0.9 -0.9 1 +1830 3 15 2.4 2.4 2.4 1 +1830 3 16 2.7 2.7 2.7 1 +1830 3 17 0.4 0.4 0.4 1 +1830 3 18 2.2 2.2 2.2 1 +1830 3 19 3.6 3.6 3.6 1 +1830 3 20 2.3 2.3 2.3 1 +1830 3 21 -0.3 -0.3 -0.3 1 +1830 3 22 -1.2 -1.2 -1.2 1 +1830 3 23 0.1 0.1 0.1 1 +1830 3 24 1.7 1.7 1.7 1 +1830 3 25 1.5 1.5 1.5 1 +1830 3 26 0.1 0.1 0.1 1 +1830 3 27 2.5 2.5 2.5 1 +1830 3 28 2.9 2.9 2.9 1 +1830 3 29 6.9 6.9 6.9 1 +1830 3 30 3.9 3.9 3.9 1 +1830 3 31 -1.4 -1.4 -1.4 1 +1830 4 1 0.0 0.0 0.0 1 +1830 4 2 -1.4 -1.4 -1.4 1 +1830 4 3 -1.4 -1.4 -1.4 1 +1830 4 4 -1.0 -1.0 -1.0 1 +1830 4 5 -2.3 -2.3 -2.3 1 +1830 4 6 0.5 0.5 0.5 1 +1830 4 7 -1.5 -1.5 -1.5 1 +1830 4 8 0.0 0.0 0.0 1 +1830 4 9 2.0 2.0 2.0 1 +1830 4 10 2.0 2.0 2.0 1 +1830 4 11 1.9 1.9 1.9 1 +1830 4 12 2.9 2.9 2.9 1 +1830 4 13 2.8 2.8 2.8 1 +1830 4 14 3.4 3.4 3.4 1 +1830 4 15 2.5 2.5 2.5 1 +1830 4 16 2.7 2.7 2.7 1 +1830 4 17 2.4 2.4 2.4 1 +1830 4 18 4.5 4.5 4.5 1 +1830 4 19 5.1 5.1 5.1 1 +1830 4 20 2.6 2.6 2.6 1 +1830 4 21 2.9 2.9 2.9 1 +1830 4 22 5.6 5.6 5.6 1 +1830 4 23 3.3 3.3 3.3 1 +1830 4 24 7.1 7.1 7.1 1 +1830 4 25 7.7 7.7 7.7 1 +1830 4 26 6.8 6.8 6.8 1 +1830 4 27 6.3 6.3 6.3 1 +1830 4 28 5.2 5.2 5.2 1 +1830 4 29 8.3 8.3 8.3 1 +1830 4 30 10.2 10.2 10.2 1 +1830 5 1 5.8 5.8 5.8 1 +1830 5 2 3.5 3.5 3.5 1 +1830 5 3 5.3 5.3 5.3 1 +1830 5 4 9.1 9.1 9.1 1 +1830 5 5 10.4 10.4 10.3 1 +1830 5 6 10.3 10.3 10.2 1 +1830 5 7 7.6 7.6 7.5 1 +1830 5 8 1.6 1.6 1.5 1 +1830 5 9 0.6 0.6 0.5 1 +1830 5 10 3.6 3.6 3.4 1 +1830 5 11 6.6 6.6 6.4 1 +1830 5 12 7.4 7.4 7.2 1 +1830 5 13 7.7 7.7 7.5 1 +1830 5 14 6.6 6.6 6.3 1 +1830 5 15 10.2 10.2 9.9 1 +1830 5 16 10.8 10.8 10.5 1 +1830 5 17 10.9 10.9 10.6 1 +1830 5 18 13.6 13.6 13.3 1 +1830 5 19 10.8 10.8 10.4 1 +1830 5 20 5.5 5.5 5.1 1 +1830 5 21 7.5 7.5 7.1 1 +1830 5 22 9.4 9.4 9.0 1 +1830 5 23 7.5 7.5 7.0 1 +1830 5 24 8.5 8.5 8.0 1 +1830 5 25 9.3 9.3 8.8 1 +1830 5 26 10.0 10.0 9.5 1 +1830 5 27 6.4 6.4 5.9 1 +1830 5 28 7.9 7.9 7.3 1 +1830 5 29 4.7 4.7 4.1 1 +1830 5 30 8.2 8.2 7.6 1 +1830 5 31 7.0 7.0 6.4 1 +1830 6 1 12.0 12.0 11.3 1 +1830 6 2 11.1 11.1 10.4 1 +1830 6 3 11.0 11.0 10.3 1 +1830 6 4 13.6 13.6 12.9 1 +1830 6 5 14.0 14.0 13.3 1 +1830 6 6 13.9 13.9 13.2 1 +1830 6 7 9.0 9.0 8.3 1 +1830 6 8 13.0 13.0 12.3 1 +1830 6 9 12.0 12.0 11.3 1 +1830 6 10 11.9 11.9 11.2 1 +1830 6 11 13.8 13.8 13.1 1 +1830 6 12 16.1 16.1 15.4 1 +1830 6 13 15.4 15.4 14.7 1 +1830 6 14 14.5 14.5 13.8 1 +1830 6 15 13.9 13.9 13.2 1 +1830 6 16 11.6 11.6 10.9 1 +1830 6 17 10.5 10.5 9.8 1 +1830 6 18 13.7 13.7 13.0 1 +1830 6 19 14.3 14.3 13.6 1 +1830 6 20 15.2 15.2 14.5 1 +1830 6 21 11.5 11.5 10.8 1 +1830 6 22 12.6 12.6 11.9 1 +1830 6 23 14.1 14.1 13.4 1 +1830 6 24 14.2 14.2 13.5 1 +1830 6 25 14.0 14.0 13.3 1 +1830 6 26 12.3 12.3 11.6 1 +1830 6 27 14.4 14.4 13.7 1 +1830 6 28 14.2 14.2 13.5 1 +1830 6 29 16.0 16.0 15.3 1 +1830 6 30 17.2 17.2 16.5 1 +1830 7 1 16.5 16.5 15.8 1 +1830 7 2 16.2 16.2 15.5 1 +1830 7 3 15.5 15.5 14.8 1 +1830 7 4 14.8 14.8 14.1 1 +1830 7 5 17.3 17.3 16.6 1 +1830 7 6 18.5 18.5 17.8 1 +1830 7 7 16.6 16.6 15.9 1 +1830 7 8 16.6 16.6 15.9 1 +1830 7 9 18.3 18.3 17.6 1 +1830 7 10 15.5 15.5 14.8 1 +1830 7 11 14.9 14.9 14.2 1 +1830 7 12 17.0 17.0 16.3 1 +1830 7 13 16.4 16.4 15.7 1 +1830 7 14 16.4 16.4 15.7 1 +1830 7 15 18.3 18.3 17.6 1 +1830 7 16 18.7 18.7 18.0 1 +1830 7 17 19.8 19.8 19.1 1 +1830 7 18 18.1 18.1 17.4 1 +1830 7 19 20.1 20.1 19.4 1 +1830 7 20 17.4 17.4 16.7 1 +1830 7 21 16.1 16.1 15.4 1 +1830 7 22 18.9 18.9 18.2 1 +1830 7 23 20.0 20.0 19.3 1 +1830 7 24 17.3 17.3 16.6 1 +1830 7 25 16.6 16.6 15.9 1 +1830 7 26 20.9 20.9 20.2 1 +1830 7 27 21.5 21.5 20.8 1 +1830 7 28 22.3 22.3 21.6 1 +1830 7 29 21.7 21.7 21.0 1 +1830 7 30 16.6 16.6 15.9 1 +1830 7 31 19.1 19.1 18.4 1 +1830 8 1 19.2 19.2 18.6 1 +1830 8 2 18.3 18.3 17.7 1 +1830 8 3 17.5 17.5 16.9 1 +1830 8 4 17.1 17.1 16.5 1 +1830 8 5 16.7 16.7 16.2 1 +1830 8 6 15.7 15.7 15.2 1 +1830 8 7 15.7 15.7 15.2 1 +1830 8 8 14.1 14.1 13.6 1 +1830 8 9 13.9 13.9 13.4 1 +1830 8 10 15.5 15.5 15.1 1 +1830 8 11 16.5 16.5 16.1 1 +1830 8 12 14.2 14.2 13.8 1 +1830 8 13 16.3 16.3 15.9 1 +1830 8 14 16.1 16.1 15.8 1 +1830 8 15 14.7 14.7 14.4 1 +1830 8 16 15.6 15.6 15.3 1 +1830 8 17 14.6 14.6 14.3 1 +1830 8 18 13.1 13.1 12.8 1 +1830 8 19 15.2 15.2 15.0 1 +1830 8 20 15.7 15.7 15.5 1 +1830 8 21 14.5 14.5 14.3 1 +1830 8 22 12.9 12.9 12.7 1 +1830 8 23 14.0 14.0 13.9 1 +1830 8 24 13.5 13.5 13.4 1 +1830 8 25 14.2 14.2 14.1 1 +1830 8 26 14.0 14.0 13.9 1 +1830 8 27 13.0 13.0 12.9 1 +1830 8 28 12.7 12.7 12.7 1 +1830 8 29 12.6 12.6 12.6 1 +1830 8 30 12.7 12.7 12.7 1 +1830 8 31 9.4 9.4 9.4 1 +1830 9 1 8.0 8.0 8.0 1 +1830 9 2 9.8 9.8 9.8 1 +1830 9 3 9.0 9.0 9.0 1 +1830 9 4 9.1 9.1 9.1 1 +1830 9 5 9.3 9.3 9.3 1 +1830 9 6 9.1 9.1 9.1 1 +1830 9 7 7.7 7.7 7.7 1 +1830 9 8 9.9 9.9 9.9 1 +1830 9 9 9.0 9.0 9.0 1 +1830 9 10 8.2 8.2 8.2 1 +1830 9 11 9.6 9.6 9.6 1 +1830 9 12 9.9 9.9 9.9 1 +1830 9 13 10.6 10.6 10.6 1 +1830 9 14 9.0 9.0 9.0 1 +1830 9 15 9.0 9.0 9.0 1 +1830 9 16 8.2 8.2 8.2 1 +1830 9 17 9.5 9.5 9.5 1 +1830 9 18 11.5 11.5 11.5 1 +1830 9 19 12.8 12.8 12.8 1 +1830 9 20 11.6 11.6 11.6 1 +1830 9 21 12.4 12.4 12.4 1 +1830 9 22 13.5 13.5 13.5 1 +1830 9 23 13.1 13.1 13.1 1 +1830 9 24 11.8 11.8 11.8 1 +1830 9 25 10.8 10.8 10.8 1 +1830 9 26 10.9 10.9 10.9 1 +1830 9 27 11.3 11.3 11.3 1 +1830 9 28 9.8 9.8 9.8 1 +1830 9 29 10.7 10.7 10.7 1 +1830 9 30 9.0 9.0 9.0 1 +1830 10 1 10.2 10.2 10.2 1 +1830 10 2 10.3 10.3 10.3 1 +1830 10 3 10.5 10.5 10.5 1 +1830 10 4 10.9 10.9 10.9 1 +1830 10 5 8.6 8.6 8.6 1 +1830 10 6 7.7 7.7 7.7 1 +1830 10 7 7.1 7.1 7.1 1 +1830 10 8 6.4 6.4 6.4 1 +1830 10 9 7.3 7.3 7.3 1 +1830 10 10 4.2 4.2 4.2 1 +1830 10 11 5.8 5.8 5.8 1 +1830 10 12 2.7 2.7 2.7 1 +1830 10 13 3.2 3.2 3.2 1 +1830 10 14 7.1 7.1 7.1 1 +1830 10 15 6.7 6.7 6.7 1 +1830 10 16 5.2 5.2 5.2 1 +1830 10 17 7.7 7.7 7.7 1 +1830 10 18 6.4 6.4 6.4 1 +1830 10 19 7.2 7.2 7.2 1 +1830 10 20 9.0 9.0 9.0 1 +1830 10 21 13.6 13.6 13.6 1 +1830 10 22 11.7 11.7 11.7 1 +1830 10 23 6.2 6.2 6.2 1 +1830 10 24 5.0 5.0 5.0 1 +1830 10 25 9.7 9.7 9.7 1 +1830 10 26 3.7 3.7 3.7 1 +1830 10 27 1.5 1.5 1.5 1 +1830 10 28 1.3 1.3 1.3 1 +1830 10 29 1.1 1.1 1.1 1 +1830 10 30 -2.5 -2.5 -2.5 1 +1830 10 31 -0.5 -0.5 -0.5 1 +1830 11 1 -1.0 -1.0 -1.0 1 +1830 11 2 -1.5 -1.5 -1.5 1 +1830 11 3 -0.3 -0.3 -0.3 1 +1830 11 4 5.6 5.6 5.6 1 +1830 11 5 6.3 6.3 6.3 1 +1830 11 6 6.3 6.3 6.3 1 +1830 11 7 7.9 7.9 7.9 1 +1830 11 8 7.6 7.6 7.6 1 +1830 11 9 3.9 3.9 3.9 1 +1830 11 10 3.6 3.6 3.6 1 +1830 11 11 5.5 5.5 5.5 1 +1830 11 12 6.0 6.0 6.0 1 +1830 11 13 4.5 4.5 4.5 1 +1830 11 14 4.3 4.3 4.3 1 +1830 11 15 5.8 5.8 5.8 1 +1830 11 16 5.4 5.4 5.4 1 +1830 11 17 6.5 6.5 6.5 1 +1830 11 18 4.7 4.7 4.7 1 +1830 11 19 1.5 1.5 1.5 1 +1830 11 20 -0.4 -0.4 -0.4 1 +1830 11 21 1.7 1.7 1.7 1 +1830 11 22 2.3 2.3 2.3 1 +1830 11 23 3.6 3.6 3.6 1 +1830 11 24 2.4 2.4 2.4 1 +1830 11 25 0.6 0.6 0.6 1 +1830 11 26 -1.5 -1.5 -1.5 1 +1830 11 27 -0.2 -0.2 -0.2 1 +1830 11 28 -1.0 -1.0 -1.0 1 +1830 11 29 0.1 0.1 0.1 1 +1830 11 30 0.0 0.0 0.0 1 +1830 12 1 -0.2 -0.2 -0.2 1 +1830 12 2 -0.6 -0.6 -0.6 1 +1830 12 3 -0.4 -0.4 -0.4 1 +1830 12 4 -0.2 -0.2 -0.2 1 +1830 12 5 -3.0 -3.0 -3.0 1 +1830 12 6 -4.4 -4.4 -4.4 1 +1830 12 7 -3.5 -3.5 -3.5 1 +1830 12 8 -2.0 -2.0 -2.0 1 +1830 12 9 0.8 0.8 0.8 1 +1830 12 10 2.1 2.1 2.1 1 +1830 12 11 3.5 3.5 3.5 1 +1830 12 12 2.8 2.8 2.8 1 +1830 12 13 -5.2 -5.2 -5.2 1 +1830 12 14 -5.3 -5.3 -5.3 1 +1830 12 15 -4.0 -4.0 -4.0 1 +1830 12 16 -2.4 -2.4 -2.4 1 +1830 12 17 -2.2 -2.2 -2.2 1 +1830 12 18 -8.4 -8.4 -8.4 1 +1830 12 19 -5.5 -5.5 -5.5 1 +1830 12 20 -1.4 -1.4 -1.4 1 +1830 12 21 -4.5 -4.5 -4.5 1 +1830 12 22 -0.3 -0.3 -0.3 1 +1830 12 23 -0.7 -0.7 -0.7 1 +1830 12 24 -8.3 -8.3 -8.3 1 +1830 12 25 -4.9 -4.9 -4.9 1 +1830 12 26 -2.7 -2.7 -2.7 1 +1830 12 27 -7.9 -7.9 -7.9 1 +1830 12 28 -3.4 -3.4 -3.4 1 +1830 12 29 -6.3 -6.3 -6.3 1 +1830 12 30 -8.4 -8.4 -8.4 1 +1830 12 31 -6.9 -6.9 -6.9 1 +1831 1 1 0.5 0.5 0.5 1 +1831 1 2 -2.2 -2.2 -2.2 1 +1831 1 3 -1.1 -1.1 -1.1 1 +1831 1 4 0.1 0.1 0.1 1 +1831 1 5 -5.7 -5.7 -5.7 1 +1831 1 6 -11.4 -11.4 -11.4 1 +1831 1 7 -8.0 -8.0 -8.0 1 +1831 1 8 -3.5 -3.5 -3.5 1 +1831 1 9 -5.1 -5.1 -5.1 1 +1831 1 10 -10.4 -10.4 -10.4 1 +1831 1 11 -5.0 -5.0 -5.0 1 +1831 1 12 -7.1 -7.1 -7.1 1 +1831 1 13 -8.1 -8.1 -8.1 1 +1831 1 14 -3.5 -3.5 -3.5 1 +1831 1 15 -9.9 -9.9 -9.9 1 +1831 1 16 -5.1 -5.1 -5.1 1 +1831 1 17 -5.0 -5.0 -5.0 1 +1831 1 18 -10.6 -10.6 -10.6 1 +1831 1 19 -12.0 -12.0 -12.0 1 +1831 1 20 -9.9 -9.9 -9.9 1 +1831 1 21 -9.6 -9.6 -9.6 1 +1831 1 22 -8.0 -8.0 -8.0 1 +1831 1 23 -11.2 -11.2 -11.2 1 +1831 1 24 -15.8 -15.8 -15.8 1 +1831 1 25 -10.9 -10.9 -10.9 1 +1831 1 26 -9.9 -9.9 -9.9 1 +1831 1 27 -16.8 -16.8 -16.8 1 +1831 1 28 -16.5 -16.5 -16.5 1 +1831 1 29 -11.0 -11.0 -11.0 1 +1831 1 30 -14.2 -14.2 -14.2 1 +1831 1 31 -15.1 -15.1 -15.1 1 +1831 2 1 -13.4 -13.4 -13.4 1 +1831 2 2 -15.0 -15.0 -15.0 1 +1831 2 3 -11.9 -11.9 -11.9 1 +1831 2 4 -7.0 -7.0 -7.0 1 +1831 2 5 -1.5 -1.5 -1.5 1 +1831 2 6 -2.1 -2.1 -2.1 1 +1831 2 7 -10.3 -10.3 -10.3 1 +1831 2 8 -0.2 -0.2 -0.2 1 +1831 2 9 2.2 2.2 2.2 1 +1831 2 10 2.4 2.4 2.4 1 +1831 2 11 1.5 1.5 1.5 1 +1831 2 12 -0.3 -0.3 -0.3 1 +1831 2 13 -4.7 -4.7 -4.7 1 +1831 2 14 -4.1 -4.1 -4.1 1 +1831 2 15 -0.3 -0.3 -0.3 1 +1831 2 16 -1.3 -1.3 -1.3 1 +1831 2 17 -0.2 -0.2 -0.2 1 +1831 2 18 0.4 0.4 0.4 1 +1831 2 19 -0.5 -0.5 -0.5 1 +1831 2 20 -4.9 -4.9 -4.9 1 +1831 2 21 -6.6 -6.6 -6.6 1 +1831 2 22 -6.8 -6.8 -6.8 1 +1831 2 23 -4.0 -4.0 -4.0 1 +1831 2 24 -5.2 -5.2 -5.2 1 +1831 2 25 -6.8 -6.8 -6.8 1 +1831 2 26 -3.2 -3.2 -3.2 1 +1831 2 27 -1.6 -1.6 -1.6 1 +1831 2 28 -0.8 -0.8 -0.8 1 +1831 3 1 -3.4 -3.4 -3.4 1 +1831 3 2 -8.1 -8.1 -8.1 1 +1831 3 3 -5.6 -5.6 -5.6 1 +1831 3 4 -3.8 -3.8 -3.8 1 +1831 3 5 -5.3 -5.3 -5.3 1 +1831 3 6 -4.1 -4.1 -4.1 1 +1831 3 7 -3.1 -3.1 -3.1 1 +1831 3 8 -3.4 -3.4 -3.4 1 +1831 3 9 -7.2 -7.2 -7.2 1 +1831 3 10 -8.0 -8.0 -8.0 1 +1831 3 11 -10.3 -10.3 -10.3 1 +1831 3 12 -11.7 -11.7 -11.7 1 +1831 3 13 -8.9 -8.9 -8.9 1 +1831 3 14 -3.9 -3.9 -3.9 1 +1831 3 15 0.6 0.6 0.6 1 +1831 3 16 -3.2 -3.2 -3.2 1 +1831 3 17 -2.3 -2.3 -2.3 1 +1831 3 18 -2.5 -2.5 -2.5 1 +1831 3 19 -2.6 -2.6 -2.6 1 +1831 3 20 -1.7 -1.7 -1.7 1 +1831 3 21 -3.3 -3.3 -3.3 1 +1831 3 22 -7.0 -7.0 -7.0 1 +1831 3 23 -5.0 -5.0 -5.0 1 +1831 3 24 -3.2 -3.2 -3.2 1 +1831 3 25 -2.7 -2.7 -2.7 1 +1831 3 26 -1.5 -1.5 -1.5 1 +1831 3 27 -1.3 -1.3 -1.3 1 +1831 3 28 -1.0 -1.0 -1.0 1 +1831 3 29 -1.7 -1.7 -1.7 1 +1831 3 30 -0.8 -0.8 -0.8 1 +1831 3 31 1.0 1.0 1.0 1 +1831 4 1 0.6 0.6 0.6 1 +1831 4 2 1.6 1.6 1.6 1 +1831 4 3 -1.6 -1.6 -1.6 1 +1831 4 4 0.0 0.0 0.0 1 +1831 4 5 -1.1 -1.1 -1.1 1 +1831 4 6 -1.8 -1.8 -1.8 1 +1831 4 7 -2.4 -2.4 -2.4 1 +1831 4 8 0.8 0.8 0.8 1 +1831 4 9 5.0 5.0 5.0 1 +1831 4 10 6.9 6.9 6.9 1 +1831 4 11 7.0 7.0 7.0 1 +1831 4 12 6.6 6.6 6.6 1 +1831 4 13 4.8 4.8 4.8 1 +1831 4 14 5.7 5.7 5.7 1 +1831 4 15 4.0 4.0 4.0 1 +1831 4 16 3.0 3.0 3.0 1 +1831 4 17 4.8 4.8 4.8 1 +1831 4 18 7.0 7.0 7.0 1 +1831 4 19 9.4 9.4 9.4 1 +1831 4 20 4.7 4.7 4.7 1 +1831 4 21 4.5 4.5 4.5 1 +1831 4 22 6.2 6.2 6.2 1 +1831 4 23 2.6 2.6 2.6 1 +1831 4 24 3.8 3.8 3.8 1 +1831 4 25 6.2 6.2 6.2 1 +1831 4 26 8.6 8.6 8.6 1 +1831 4 27 8.3 8.3 8.3 1 +1831 4 28 7.3 7.3 7.3 1 +1831 4 29 4.4 4.4 4.4 1 +1831 4 30 3.9 3.9 3.9 1 +1831 5 1 5.6 5.6 5.6 1 +1831 5 2 6.1 6.1 6.1 1 +1831 5 3 7.5 7.5 7.5 1 +1831 5 4 5.3 5.3 5.3 1 +1831 5 5 7.0 7.0 6.9 1 +1831 5 6 6.4 6.4 6.3 1 +1831 5 7 5.0 5.0 4.9 1 +1831 5 8 4.8 4.8 4.7 1 +1831 5 9 3.9 3.9 3.8 1 +1831 5 10 2.8 2.8 2.6 1 +1831 5 11 7.7 7.7 7.5 1 +1831 5 12 2.6 2.6 2.4 1 +1831 5 13 2.1 2.1 1.9 1 +1831 5 14 1.3 1.3 1.0 1 +1831 5 15 5.6 5.6 5.3 1 +1831 5 16 6.9 6.9 6.6 1 +1831 5 17 11.3 11.3 11.0 1 +1831 5 18 14.5 14.5 14.2 1 +1831 5 19 13.4 13.4 13.0 1 +1831 5 20 12.2 12.2 11.8 1 +1831 5 21 11.4 11.4 11.0 1 +1831 5 22 13.2 13.2 12.8 1 +1831 5 23 15.1 15.1 14.6 1 +1831 5 24 16.0 16.0 15.5 1 +1831 5 25 17.9 17.9 17.4 1 +1831 5 26 11.1 11.1 10.6 1 +1831 5 27 8.7 8.7 8.2 1 +1831 5 28 7.5 7.5 6.9 1 +1831 5 29 8.8 8.8 8.2 1 +1831 5 30 9.6 9.6 9.0 1 +1831 5 31 11.4 11.4 10.8 1 +1831 6 1 14.3 14.3 13.6 1 +1831 6 2 15.3 15.3 14.6 1 +1831 6 3 11.5 11.5 10.8 1 +1831 6 4 10.8 10.8 10.1 1 +1831 6 5 11.7 11.7 11.0 1 +1831 6 6 14.0 14.0 13.3 1 +1831 6 7 10.5 10.5 9.8 1 +1831 6 8 9.0 9.0 8.3 1 +1831 6 9 8.1 8.1 7.4 1 +1831 6 10 9.9 9.9 9.2 1 +1831 6 11 7.3 7.3 6.6 1 +1831 6 12 8.2 8.2 7.5 1 +1831 6 13 10.2 10.2 9.5 1 +1831 6 14 15.7 15.7 15.0 1 +1831 6 15 19.5 19.5 18.8 1 +1831 6 16 18.3 18.3 17.6 1 +1831 6 17 17.0 17.0 16.3 1 +1831 6 18 19.5 19.5 18.8 1 +1831 6 19 20.5 20.5 19.8 1 +1831 6 20 22.2 22.2 21.5 1 +1831 6 21 20.5 20.5 19.8 1 +1831 6 22 18.8 18.8 18.1 1 +1831 6 23 17.8 17.8 17.1 1 +1831 6 24 15.7 15.7 15.0 1 +1831 6 25 17.0 17.0 16.3 1 +1831 6 26 16.5 16.5 15.8 1 +1831 6 27 16.8 16.8 16.1 1 +1831 6 28 19.0 19.0 18.3 1 +1831 6 29 15.5 15.5 14.8 1 +1831 6 30 17.0 17.0 16.3 1 +1831 7 1 12.5 12.5 11.8 1 +1831 7 2 13.7 13.7 13.0 1 +1831 7 3 14.6 14.6 13.9 1 +1831 7 4 17.4 17.4 16.7 1 +1831 7 5 19.7 19.7 19.0 1 +1831 7 6 21.0 21.0 20.3 1 +1831 7 7 18.2 18.2 17.5 1 +1831 7 8 18.4 18.4 17.7 1 +1831 7 9 18.9 18.9 18.2 1 +1831 7 10 20.6 20.6 19.9 1 +1831 7 11 20.7 20.7 20.0 1 +1831 7 12 19.2 19.2 18.5 1 +1831 7 13 21.4 21.4 20.7 1 +1831 7 14 21.1 21.1 20.4 1 +1831 7 15 19.6 19.6 18.9 1 +1831 7 16 19.2 19.2 18.5 1 +1831 7 17 19.1 19.1 18.4 1 +1831 7 18 20.1 20.1 19.4 1 +1831 7 19 18.6 18.6 17.9 1 +1831 7 20 17.9 17.9 17.2 1 +1831 7 21 19.5 19.5 18.8 1 +1831 7 22 20.2 20.2 19.5 1 +1831 7 23 14.9 14.9 14.2 1 +1831 7 24 16.5 16.5 15.8 1 +1831 7 25 17.6 17.6 16.9 1 +1831 7 26 17.6 17.6 16.9 1 +1831 7 27 18.8 18.8 18.1 1 +1831 7 28 19.8 19.8 19.1 1 +1831 7 29 20.7 20.7 20.0 1 +1831 7 30 20.5 20.5 19.8 1 +1831 7 31 21.1 21.1 20.4 1 +1831 8 1 21.6 21.6 21.0 1 +1831 8 2 20.9 20.9 20.3 1 +1831 8 3 20.1 20.1 19.5 1 +1831 8 4 23.1 23.1 22.5 1 +1831 8 5 19.3 19.3 18.8 1 +1831 8 6 16.0 16.0 15.5 1 +1831 8 7 17.9 17.9 17.4 1 +1831 8 8 18.8 18.8 18.3 1 +1831 8 9 18.3 18.3 17.8 1 +1831 8 10 17.4 17.4 17.0 1 +1831 8 11 19.5 19.5 19.1 1 +1831 8 12 14.1 14.1 13.7 1 +1831 8 13 14.7 14.7 14.3 1 +1831 8 14 13.4 13.4 13.1 1 +1831 8 15 15.0 15.0 14.7 1 +1831 8 16 15.6 15.6 15.3 1 +1831 8 17 14.2 14.2 13.9 1 +1831 8 18 13.6 13.6 13.3 1 +1831 8 19 14.2 14.2 14.0 1 +1831 8 20 14.6 14.6 14.4 1 +1831 8 21 15.9 15.9 15.7 1 +1831 8 22 13.2 13.2 13.0 1 +1831 8 23 13.9 13.9 13.8 1 +1831 8 24 12.4 12.4 12.3 1 +1831 8 25 12.8 12.8 12.7 1 +1831 8 26 14.9 14.9 14.8 1 +1831 8 27 15.9 15.9 15.8 1 +1831 8 28 17.6 17.6 17.6 1 +1831 8 29 15.1 15.1 15.1 1 +1831 8 30 13.6 13.6 13.6 1 +1831 8 31 14.3 14.3 14.3 1 +1831 9 1 14.2 14.2 14.2 1 +1831 9 2 12.4 12.4 12.4 1 +1831 9 3 11.0 11.0 11.0 1 +1831 9 4 9.5 9.5 9.5 1 +1831 9 5 8.9 8.9 8.9 1 +1831 9 6 9.2 9.2 9.2 1 +1831 9 7 11.2 11.2 11.2 1 +1831 9 8 10.8 10.8 10.8 1 +1831 9 9 11.2 11.2 11.2 1 +1831 9 10 11.6 11.6 11.6 1 +1831 9 11 11.3 11.3 11.3 1 +1831 9 12 9.2 9.2 9.2 1 +1831 9 13 7.4 7.4 7.4 1 +1831 9 14 7.6 7.6 7.6 1 +1831 9 15 8.1 8.1 8.1 1 +1831 9 16 8.5 8.5 8.5 1 +1831 9 17 7.5 7.5 7.5 1 +1831 9 18 9.7 9.7 9.7 1 +1831 9 19 9.2 9.2 9.2 1 +1831 9 20 9.7 9.7 9.7 1 +1831 9 21 9.0 9.0 9.0 1 +1831 9 22 9.1 9.1 9.1 1 +1831 9 23 10.1 10.1 10.1 1 +1831 9 24 12.1 12.1 12.1 1 +1831 9 25 13.8 13.8 13.8 1 +1831 9 26 12.9 12.9 12.9 1 +1831 9 27 11.2 11.2 11.2 1 +1831 9 28 10.5 10.5 10.5 1 +1831 9 29 12.0 12.0 12.0 1 +1831 9 30 11.0 11.0 11.0 1 +1831 10 1 9.5 9.5 9.5 1 +1831 10 2 8.1 8.1 8.1 1 +1831 10 3 6.7 6.7 6.7 1 +1831 10 4 8.6 8.6 8.6 1 +1831 10 5 8.4 8.4 8.4 1 +1831 10 6 8.6 8.6 8.6 1 +1831 10 7 10.2 10.2 10.2 1 +1831 10 8 11.5 11.5 11.5 1 +1831 10 9 10.8 10.8 10.8 1 +1831 10 10 11.0 11.0 11.0 1 +1831 10 11 11.3 11.3 11.3 1 +1831 10 12 10.1 10.1 10.1 1 +1831 10 13 5.2 5.2 5.2 1 +1831 10 14 7.5 7.5 7.5 1 +1831 10 15 14.0 14.0 14.0 1 +1831 10 16 10.5 10.5 10.5 1 +1831 10 17 0.7 0.7 0.7 1 +1831 10 18 1.6 1.6 1.6 1 +1831 10 19 7.8 7.8 7.8 1 +1831 10 20 9.3 9.3 9.3 1 +1831 10 21 7.0 7.0 7.0 1 +1831 10 22 8.3 8.3 8.3 1 +1831 10 23 8.6 8.6 8.6 1 +1831 10 24 10.1 10.1 10.1 1 +1831 10 25 8.9 8.9 8.9 1 +1831 10 26 9.8 9.8 9.8 1 +1831 10 27 10.7 10.7 10.7 1 +1831 10 28 10.5 10.5 10.5 1 +1831 10 29 9.1 9.1 9.1 1 +1831 10 30 7.5 7.5 7.5 1 +1831 10 31 7.5 7.5 7.5 1 +1831 11 1 6.0 6.0 6.0 1 +1831 11 2 9.0 9.0 9.0 1 +1831 11 3 7.9 7.9 7.9 1 +1831 11 4 7.2 7.2 7.2 1 +1831 11 5 4.6 4.6 4.6 1 +1831 11 6 3.9 3.9 3.9 1 +1831 11 7 4.3 4.3 4.3 1 +1831 11 8 6.5 6.5 6.5 1 +1831 11 9 6.4 6.4 6.4 1 +1831 11 10 3.4 3.4 3.4 1 +1831 11 11 -0.9 -0.9 -0.9 1 +1831 11 12 3.7 3.7 3.7 1 +1831 11 13 2.6 2.6 2.6 1 +1831 11 14 2.2 2.2 2.2 1 +1831 11 15 -0.2 -0.2 -0.2 1 +1831 11 16 1.6 1.6 1.6 1 +1831 11 17 0.7 0.7 0.7 1 +1831 11 18 -2.5 -2.5 -2.5 1 +1831 11 19 0.4 0.4 0.4 1 +1831 11 20 0.4 0.4 0.4 1 +1831 11 21 -1.4 -1.4 -1.4 1 +1831 11 22 -4.3 -4.3 -4.3 1 +1831 11 23 -8.5 -8.5 -8.5 1 +1831 11 24 -8.8 -8.8 -8.8 1 +1831 11 25 -3.0 -3.0 -3.0 1 +1831 11 26 -3.2 -3.2 -3.2 1 +1831 11 27 -4.2 -4.2 -4.2 1 +1831 11 28 -5.4 -5.4 -5.4 1 +1831 11 29 -0.9 -0.9 -0.9 1 +1831 11 30 -2.8 -2.8 -2.8 1 +1831 12 1 -2.1 -2.1 -2.1 1 +1831 12 2 -2.0 -2.0 -2.0 1 +1831 12 3 -5.1 -5.1 -5.1 1 +1831 12 4 -4.3 -4.3 -4.3 1 +1831 12 5 -6.3 -6.3 -6.3 1 +1831 12 6 2.4 2.4 2.4 1 +1831 12 7 -1.1 -1.1 -1.1 1 +1831 12 8 1.2 1.2 1.2 1 +1831 12 9 -3.6 -3.6 -3.6 1 +1831 12 10 -0.3 -0.3 -0.3 1 +1831 12 11 -1.6 -1.6 -1.6 1 +1831 12 12 2.6 2.6 2.6 1 +1831 12 13 4.1 4.1 4.1 1 +1831 12 14 5.4 5.4 5.4 1 +1831 12 15 2.9 2.9 2.9 1 +1831 12 16 1.2 1.2 1.2 1 +1831 12 17 3.4 3.4 3.4 1 +1831 12 18 3.1 3.1 3.1 1 +1831 12 19 2.0 2.0 2.0 1 +1831 12 20 -0.5 -0.5 -0.5 1 +1831 12 21 -0.9 -0.9 -0.9 1 +1831 12 22 -0.6 -0.6 -0.6 1 +1831 12 23 0.9 0.9 0.9 1 +1831 12 24 0.7 0.7 0.7 1 +1831 12 25 -0.2 -0.2 -0.2 1 +1831 12 26 -0.7 -0.7 -0.7 1 +1831 12 27 -0.5 -0.5 -0.5 1 +1831 12 28 -2.8 -2.8 -2.8 1 +1831 12 29 -2.9 -2.9 -2.9 1 +1831 12 30 -2.5 -2.5 -2.5 1 +1831 12 31 -1.0 -1.0 -1.0 1 +1832 1 1 -2.2 -2.2 -2.2 1 +1832 1 2 -4.3 -4.3 -4.3 1 +1832 1 3 -2.8 -2.8 -2.8 1 +1832 1 4 -3.0 -3.0 -3.0 1 +1832 1 5 -3.0 -3.0 -3.0 1 +1832 1 6 -1.9 -1.9 -1.9 1 +1832 1 7 -3.5 -3.5 -3.5 1 +1832 1 8 -4.8 -4.8 -4.8 1 +1832 1 9 -3.8 -3.8 -3.8 1 +1832 1 10 -4.3 -4.3 -4.3 1 +1832 1 11 -4.4 -4.4 -4.4 1 +1832 1 12 -5.9 -5.9 -5.9 1 +1832 1 13 -7.0 -7.0 -7.0 1 +1832 1 14 -7.9 -7.9 -7.9 1 +1832 1 15 -5.8 -5.8 -5.8 1 +1832 1 16 2.5 2.5 2.5 1 +1832 1 17 -1.1 -1.1 -1.1 1 +1832 1 18 -1.7 -1.7 -1.7 1 +1832 1 19 -3.3 -3.3 -3.3 1 +1832 1 20 2.1 2.1 2.1 1 +1832 1 21 1.9 1.9 1.9 1 +1832 1 22 0.7 0.7 0.7 1 +1832 1 23 2.3 2.3 2.3 1 +1832 1 24 3.3 3.3 3.3 1 +1832 1 25 -0.1 -0.1 -0.1 1 +1832 1 26 -0.5 -0.5 -0.5 1 +1832 1 27 1.4 1.4 1.4 1 +1832 1 28 1.4 1.4 1.4 1 +1832 1 29 -3.4 -3.4 -3.4 1 +1832 1 30 -2.1 -2.1 -2.1 1 +1832 1 31 -3.0 -3.0 -3.0 1 +1832 2 1 -2.7 -2.7 -2.7 1 +1832 2 2 0.1 0.1 0.1 1 +1832 2 3 1.6 1.6 1.6 1 +1832 2 4 2.4 2.4 2.4 1 +1832 2 5 3.1 3.1 3.1 1 +1832 2 6 4.3 4.3 4.3 1 +1832 2 7 -0.4 -0.4 -0.4 1 +1832 2 8 1.0 1.0 1.0 1 +1832 2 9 1.3 1.3 1.3 1 +1832 2 10 0.3 0.3 0.3 1 +1832 2 11 -1.8 -1.8 -1.8 1 +1832 2 12 -3.0 -3.0 -3.0 1 +1832 2 13 -5.6 -5.6 -5.6 1 +1832 2 14 -6.1 -6.1 -6.1 1 +1832 2 15 -2.1 -2.1 -2.1 1 +1832 2 16 0.1 0.1 0.1 1 +1832 2 17 -2.2 -2.2 -2.2 1 +1832 2 18 -2.8 -2.8 -2.8 1 +1832 2 19 -0.8 -0.8 -0.8 1 +1832 2 20 0.1 0.1 0.1 1 +1832 2 21 -1.3 -1.3 -1.3 1 +1832 2 22 -3.4 -3.4 -3.4 1 +1832 2 23 -2.5 -2.5 -2.5 1 +1832 2 24 -3.5 -3.5 -3.5 1 +1832 2 25 -0.4 -0.4 -0.4 1 +1832 2 26 -1.4 -1.4 -1.4 1 +1832 2 27 0.3 0.3 0.3 1 +1832 2 28 -1.0 -1.0 -1.0 1 +1832 2 29 -0.5 -0.5 -0.5 1 +1832 3 1 -1.0 -1.0 -1.0 1 +1832 3 2 -0.7 -0.7 -0.7 1 +1832 3 3 -2.3 -2.3 -2.3 1 +1832 3 4 -2.1 -2.1 -2.1 1 +1832 3 5 -1.5 -1.5 -1.5 1 +1832 3 6 -1.9 -1.9 -1.9 1 +1832 3 7 -1.5 -1.5 -1.5 1 +1832 3 8 -1.7 -1.7 -1.7 1 +1832 3 9 -3.0 -3.0 -3.0 1 +1832 3 10 0.0 0.0 0.0 1 +1832 3 11 3.5 3.5 3.5 1 +1832 3 12 2.5 2.5 2.5 1 +1832 3 13 0.8 0.8 0.8 1 +1832 3 14 0.0 0.0 0.0 1 +1832 3 15 -0.2 -0.2 -0.2 1 +1832 3 16 -0.8 -0.8 -0.8 1 +1832 3 17 -0.9 -0.9 -0.9 1 +1832 3 18 2.3 2.3 2.3 1 +1832 3 19 3.8 3.8 3.8 1 +1832 3 20 1.6 1.6 1.6 1 +1832 3 21 -1.2 -1.2 -1.2 1 +1832 3 22 1.2 1.2 1.2 1 +1832 3 23 4.3 4.3 4.3 1 +1832 3 24 1.1 1.1 1.1 1 +1832 3 25 -3.8 -3.8 -3.8 1 +1832 3 26 0.1 0.1 0.1 1 +1832 3 27 -3.2 -3.2 -3.2 1 +1832 3 28 0.4 0.4 0.4 1 +1832 3 29 6.2 6.2 6.2 1 +1832 3 30 8.1 8.1 8.1 1 +1832 3 31 5.4 5.4 5.4 1 +1832 4 1 5.1 5.1 5.1 1 +1832 4 2 7.4 7.4 7.4 1 +1832 4 3 1.8 1.8 1.8 1 +1832 4 4 1.8 1.8 1.8 1 +1832 4 5 1.5 1.5 1.5 1 +1832 4 6 2.9 2.9 2.9 1 +1832 4 7 6.6 6.6 6.6 1 +1832 4 8 3.4 3.4 3.4 1 +1832 4 9 4.2 4.2 4.2 1 +1832 4 10 5.2 5.2 5.2 1 +1832 4 11 5.4 5.4 5.4 1 +1832 4 12 8.5 8.5 8.5 1 +1832 4 13 7.1 7.1 7.1 1 +1832 4 14 4.9 4.9 4.9 1 +1832 4 15 9.0 9.0 9.0 1 +1832 4 16 7.5 7.5 7.5 1 +1832 4 17 3.4 3.4 3.4 1 +1832 4 18 2.5 2.5 2.5 1 +1832 4 19 4.2 4.2 4.2 1 +1832 4 20 6.2 6.2 6.2 1 +1832 4 21 5.6 5.6 5.6 1 +1832 4 22 3.8 3.8 3.8 1 +1832 4 23 2.7 2.7 2.7 1 +1832 4 24 0.9 0.9 0.9 1 +1832 4 25 4.1 4.1 4.1 1 +1832 4 26 2.1 2.1 2.1 1 +1832 4 27 1.3 1.3 1.3 1 +1832 4 28 2.7 2.7 2.7 1 +1832 4 29 5.1 5.1 5.1 1 +1832 4 30 5.1 5.1 5.1 1 +1832 5 1 4.3 4.3 4.3 1 +1832 5 2 2.1 2.1 2.1 1 +1832 5 3 4.5 4.5 4.5 1 +1832 5 4 6.0 6.0 6.0 1 +1832 5 5 5.0 5.0 4.9 1 +1832 5 6 5.9 5.9 5.8 1 +1832 5 7 7.8 7.8 7.7 1 +1832 5 8 6.0 6.0 5.9 1 +1832 5 9 4.8 4.8 4.7 1 +1832 5 10 2.1 2.1 1.9 1 +1832 5 11 3.4 3.4 3.2 1 +1832 5 12 4.9 4.9 4.7 1 +1832 5 13 3.9 3.9 3.7 1 +1832 5 14 4.6 4.6 4.3 1 +1832 5 15 4.1 4.1 3.8 1 +1832 5 16 5.3 5.3 5.0 1 +1832 5 17 9.0 9.0 8.7 1 +1832 5 18 7.8 7.8 7.5 1 +1832 5 19 7.4 7.4 7.0 1 +1832 5 20 10.8 10.8 10.4 1 +1832 5 21 9.6 9.6 9.2 1 +1832 5 22 9.4 9.4 9.0 1 +1832 5 23 6.7 6.7 6.2 1 +1832 5 24 7.0 7.0 6.5 1 +1832 5 25 6.0 6.0 5.5 1 +1832 5 26 2.4 2.4 1.9 1 +1832 5 27 3.6 3.6 3.1 1 +1832 5 28 4.6 4.6 4.0 1 +1832 5 29 9.4 9.4 8.8 1 +1832 5 30 12.0 12.0 11.4 1 +1832 5 31 10.8 10.8 10.2 1 +1832 6 1 16.4 16.4 15.7 1 +1832 6 2 15.9 15.9 15.2 1 +1832 6 3 13.5 13.5 12.8 1 +1832 6 4 13.2 13.2 12.5 1 +1832 6 5 14.4 14.4 13.7 1 +1832 6 6 14.5 14.5 13.8 1 +1832 6 7 15.8 15.8 15.1 1 +1832 6 8 15.4 15.4 14.7 1 +1832 6 9 9.5 9.5 8.8 1 +1832 6 10 9.2 9.2 8.5 1 +1832 6 11 12.3 12.3 11.6 1 +1832 6 12 11.6 11.6 10.9 1 +1832 6 13 11.0 11.0 10.3 1 +1832 6 14 11.9 11.9 11.2 1 +1832 6 15 12.9 12.9 12.2 1 +1832 6 16 10.2 10.2 9.5 1 +1832 6 17 11.2 11.2 10.5 1 +1832 6 18 7.5 7.5 6.8 1 +1832 6 19 9.8 9.8 9.1 1 +1832 6 20 11.2 11.2 10.5 1 +1832 6 21 13.0 13.0 12.3 1 +1832 6 22 15.7 15.7 15.0 1 +1832 6 23 16.4 16.4 15.7 1 +1832 6 24 13.2 13.2 12.5 1 +1832 6 25 13.3 13.3 12.6 1 +1832 6 26 12.7 12.7 12.0 1 +1832 6 27 12.7 12.7 12.0 1 +1832 6 28 13.0 13.0 12.3 1 +1832 6 29 8.4 8.4 7.7 1 +1832 6 30 12.6 12.6 11.9 1 +1832 7 1 12.9 12.9 12.2 1 +1832 7 2 10.4 10.4 9.7 1 +1832 7 3 7.9 7.9 7.2 1 +1832 7 4 10.0 10.0 9.3 1 +1832 7 5 9.3 9.3 8.6 1 +1832 7 6 9.8 9.8 9.1 1 +1832 7 7 11.3 11.3 10.6 1 +1832 7 8 13.3 13.3 12.6 1 +1832 7 9 14.2 14.2 13.5 1 +1832 7 10 16.9 16.9 16.2 1 +1832 7 11 17.5 17.5 16.8 1 +1832 7 12 17.1 17.1 16.4 1 +1832 7 13 18.4 18.4 17.7 1 +1832 7 14 17.6 17.6 16.9 1 +1832 7 15 12.1 12.1 11.4 1 +1832 7 16 12.1 12.1 11.4 1 +1832 7 17 14.3 14.3 13.6 1 +1832 7 18 11.1 11.1 10.4 1 +1832 7 19 10.6 10.6 9.9 1 +1832 7 20 11.7 11.7 11.0 1 +1832 7 21 15.0 15.0 14.3 1 +1832 7 22 12.6 12.6 11.9 1 +1832 7 23 13.3 13.3 12.6 1 +1832 7 24 7.0 7.0 6.3 1 +1832 7 25 9.4 9.4 8.7 1 +1832 7 26 10.8 10.8 10.1 1 +1832 7 27 11.1 11.1 10.4 1 +1832 7 28 16.0 16.0 15.3 1 +1832 7 29 16.5 16.5 15.8 1 +1832 7 30 15.5 15.5 14.8 1 +1832 7 31 15.8 15.8 15.1 1 +1832 8 1 17.5 17.5 16.9 1 +1832 8 2 16.8 16.8 16.2 1 +1832 8 3 14.1 14.1 13.5 1 +1832 8 4 14.2 14.2 13.6 1 +1832 8 5 14.3 14.3 13.8 1 +1832 8 6 13.9 13.9 13.4 1 +1832 8 7 13.3 13.3 12.8 1 +1832 8 8 13.9 13.9 13.4 1 +1832 8 9 16.5 16.5 16.0 1 +1832 8 10 16.8 16.8 16.4 1 +1832 8 11 17.4 17.4 17.0 1 +1832 8 12 16.7 16.7 16.3 1 +1832 8 13 16.7 16.7 16.3 1 +1832 8 14 16.0 16.0 15.7 1 +1832 8 15 15.6 15.6 15.3 1 +1832 8 16 14.1 14.1 13.8 1 +1832 8 17 14.5 14.5 14.2 1 +1832 8 18 14.6 14.6 14.3 1 +1832 8 19 15.1 15.1 14.9 1 +1832 8 20 15.3 15.3 15.1 1 +1832 8 21 12.2 12.2 12.0 1 +1832 8 22 15.1 15.1 14.9 1 +1832 8 23 14.6 14.6 14.5 1 +1832 8 24 14.2 14.2 14.1 1 +1832 8 25 12.7 12.7 12.6 1 +1832 8 26 13.7 13.7 13.6 1 +1832 8 27 13.2 13.2 13.1 1 +1832 8 28 14.1 14.1 14.1 1 +1832 8 29 12.7 12.7 12.7 1 +1832 8 30 13.7 13.7 13.7 1 +1832 8 31 15.2 15.2 15.2 1 +1832 9 1 14.7 14.7 14.7 1 +1832 9 2 14.9 14.9 14.9 1 +1832 9 3 12.1 12.1 12.1 1 +1832 9 4 11.7 11.7 11.7 1 +1832 9 5 6.9 6.9 6.9 1 +1832 9 6 3.5 3.5 3.5 1 +1832 9 7 7.3 7.3 7.3 1 +1832 9 8 10.1 10.1 10.1 1 +1832 9 9 14.0 14.0 14.0 1 +1832 9 10 14.6 14.6 14.6 1 +1832 9 11 13.7 13.7 13.7 1 +1832 9 12 12.4 12.4 12.4 1 +1832 9 13 12.6 12.6 12.6 1 +1832 9 14 11.7 11.7 11.7 1 +1832 9 15 8.1 8.1 8.1 1 +1832 9 16 8.2 8.2 8.2 1 +1832 9 17 9.5 9.5 9.5 1 +1832 9 18 13.7 13.7 13.7 1 +1832 9 19 8.8 8.8 8.8 1 +1832 9 20 3.6 3.6 3.6 1 +1832 9 21 3.5 3.5 3.5 1 +1832 9 22 6.8 6.8 6.8 1 +1832 9 23 10.4 10.4 10.4 1 +1832 9 24 12.7 12.7 12.7 1 +1832 9 25 6.6 6.6 6.6 1 +1832 9 26 7.9 7.9 7.9 1 +1832 9 27 6.1 6.1 6.1 1 +1832 9 28 8.2 8.2 8.2 1 +1832 9 29 4.4 4.4 4.4 1 +1832 9 30 4.3 4.3 4.3 1 +1832 10 1 10.4 10.4 10.4 1 +1832 10 2 11.6 11.6 11.6 1 +1832 10 3 9.4 9.4 9.4 1 +1832 10 4 10.5 10.5 10.5 1 +1832 10 5 10.9 10.9 10.9 1 +1832 10 6 10.1 10.1 10.1 1 +1832 10 7 10.7 10.7 10.7 1 +1832 10 8 9.9 9.9 9.9 1 +1832 10 9 9.3 9.3 9.3 1 +1832 10 10 9.2 9.2 9.2 1 +1832 10 11 9.5 9.5 9.5 1 +1832 10 12 8.9 8.9 8.9 1 +1832 10 13 6.9 6.9 6.9 1 +1832 10 14 5.9 5.9 5.9 1 +1832 10 15 2.3 2.3 2.3 1 +1832 10 16 7.8 7.8 7.8 1 +1832 10 17 9.6 9.6 9.6 1 +1832 10 18 9.8 9.8 9.8 1 +1832 10 19 6.6 6.6 6.6 1 +1832 10 20 5.1 5.1 5.1 1 +1832 10 21 6.9 6.9 6.9 1 +1832 10 22 9.8 9.8 9.8 1 +1832 10 23 6.5 6.5 6.5 1 +1832 10 24 4.7 4.7 4.7 1 +1832 10 25 5.1 5.1 5.1 1 +1832 10 26 5.2 5.2 5.2 1 +1832 10 27 3.7 3.7 3.7 1 +1832 10 28 4.1 4.1 4.1 1 +1832 10 29 6.4 6.4 6.4 1 +1832 10 30 6.5 6.5 6.5 1 +1832 10 31 6.3 6.3 6.3 1 +1832 11 1 5.2 5.2 5.2 1 +1832 11 2 2.6 2.6 2.6 1 +1832 11 3 0.4 0.4 0.4 1 +1832 11 4 0.4 0.4 0.4 1 +1832 11 5 0.0 0.0 0.0 1 +1832 11 6 -2.2 -2.2 -2.2 1 +1832 11 7 1.7 1.7 1.7 1 +1832 11 8 2.6 2.6 2.6 1 +1832 11 9 1.6 1.6 1.6 1 +1832 11 10 1.6 1.6 1.6 1 +1832 11 11 2.5 2.5 2.5 1 +1832 11 12 3.2 3.2 3.2 1 +1832 11 13 3.1 3.1 3.1 1 +1832 11 14 3.3 3.3 3.3 1 +1832 11 15 4.6 4.6 4.6 1 +1832 11 16 4.2 4.2 4.2 1 +1832 11 17 2.7 2.7 2.7 1 +1832 11 18 3.2 3.2 3.2 1 +1832 11 19 2.5 2.5 2.5 1 +1832 11 20 0.4 0.4 0.4 1 +1832 11 21 1.0 1.0 1.0 1 +1832 11 22 -1.0 -1.0 -1.0 1 +1832 11 23 -0.6 -0.6 -0.6 1 +1832 11 24 0.2 0.2 0.2 1 +1832 11 25 -1.6 -1.6 -1.6 1 +1832 11 26 -0.7 -0.7 -0.7 1 +1832 11 27 -0.3 -0.3 -0.3 1 +1832 11 28 0.1 0.1 0.1 1 +1832 11 29 1.7 1.7 1.7 1 +1832 11 30 1.7 1.7 1.7 1 +1832 12 1 2.7 2.7 2.7 1 +1832 12 2 2.6 2.6 2.6 1 +1832 12 3 1.3 1.3 1.3 1 +1832 12 4 -1.2 -1.2 -1.2 1 +1832 12 5 -1.4 -1.4 -1.4 1 +1832 12 6 -1.5 -1.5 -1.5 1 +1832 12 7 -2.2 -2.2 -2.2 1 +1832 12 8 1.7 1.7 1.7 1 +1832 12 9 2.7 2.7 2.7 1 +1832 12 10 -1.1 -1.1 -1.1 1 +1832 12 11 0.1 0.1 0.1 1 +1832 12 12 -0.8 -0.8 -0.8 1 +1832 12 13 2.6 2.6 2.6 1 +1832 12 14 -0.1 -0.1 -0.1 1 +1832 12 15 0.2 0.2 0.2 1 +1832 12 16 0.2 0.2 0.2 1 +1832 12 17 1.2 1.2 1.2 1 +1832 12 18 2.5 2.5 2.5 1 +1832 12 19 -1.7 -1.7 -1.7 1 +1832 12 20 -4.8 -4.8 -4.8 1 +1832 12 21 -5.4 -5.4 -5.4 1 +1832 12 22 -2.8 -2.8 -2.8 1 +1832 12 23 1.1 1.1 1.1 1 +1832 12 24 2.8 2.8 2.8 1 +1832 12 25 3.4 3.4 3.4 1 +1832 12 26 2.7 2.7 2.7 1 +1832 12 27 1.9 1.9 1.9 1 +1832 12 28 0.9 0.9 0.9 1 +1832 12 29 -1.0 -1.0 -1.0 1 +1832 12 30 -2.2 -2.2 -2.2 1 +1832 12 31 -2.3 -2.3 -2.3 1 +1833 1 1 -1.4 -1.4 -1.4 1 +1833 1 2 -2.7 -2.7 -2.7 1 +1833 1 3 -1.4 -1.4 -1.4 1 +1833 1 4 0.7 0.7 0.7 1 +1833 1 5 1.0 1.0 1.0 1 +1833 1 6 0.4 0.4 0.4 1 +1833 1 7 -2.0 -2.0 -2.0 1 +1833 1 8 -0.1 -0.1 -0.1 1 +1833 1 9 -0.2 -0.2 -0.2 1 +1833 1 10 -2.7 -2.7 -2.7 1 +1833 1 11 -4.4 -4.4 -4.4 1 +1833 1 12 -5.8 -5.8 -5.8 1 +1833 1 13 -6.9 -6.9 -6.9 1 +1833 1 14 -1.3 -1.3 -1.3 1 +1833 1 15 1.8 1.8 1.8 1 +1833 1 16 -1.7 -1.7 -1.7 1 +1833 1 17 -1.2 -1.2 -1.2 1 +1833 1 18 -1.5 -1.5 -1.5 1 +1833 1 19 -3.6 -3.6 -3.6 1 +1833 1 20 -3.5 -3.5 -3.5 1 +1833 1 21 -2.4 -2.4 -2.4 1 +1833 1 22 -4.2 -4.2 -4.2 1 +1833 1 23 -6.6 -6.6 -6.6 1 +1833 1 24 -4.6 -4.6 -4.6 1 +1833 1 25 -2.4 -2.4 -2.4 1 +1833 1 26 -3.3 -3.3 -3.3 1 +1833 1 27 -0.8 -0.8 -0.8 1 +1833 1 28 -0.1 -0.1 -0.1 1 +1833 1 29 -4.2 -4.2 -4.2 1 +1833 1 30 -6.7 -6.7 -6.7 1 +1833 1 31 -9.5 -9.5 -9.5 1 +1833 2 1 -11.3 -11.3 -11.3 1 +1833 2 2 -14.7 -14.7 -14.7 1 +1833 2 3 -3.2 -3.2 -3.2 1 +1833 2 4 -6.1 -6.1 -6.1 1 +1833 2 5 -5.5 -5.5 -5.5 1 +1833 2 6 -2.3 -2.3 -2.3 1 +1833 2 7 1.8 1.8 1.8 1 +1833 2 8 2.6 2.6 2.6 1 +1833 2 9 3.2 3.2 3.2 1 +1833 2 10 1.8 1.8 1.8 1 +1833 2 11 -0.1 -0.1 -0.1 1 +1833 2 12 -0.5 -0.5 -0.5 1 +1833 2 13 1.4 1.4 1.4 1 +1833 2 14 0.7 0.7 0.7 1 +1833 2 15 0.9 0.9 0.9 1 +1833 2 16 1.1 1.1 1.1 1 +1833 2 17 0.5 0.5 0.5 1 +1833 2 18 0.0 0.0 0.0 1 +1833 2 19 0.2 0.2 0.2 1 +1833 2 20 -0.7 -0.7 -0.7 1 +1833 2 21 -0.1 -0.1 -0.1 1 +1833 2 22 -0.9 -0.9 -0.9 1 +1833 2 23 -2.8 -2.8 -2.8 1 +1833 2 24 -3.4 -3.4 -3.4 1 +1833 2 25 -4.3 -4.3 -4.3 1 +1833 2 26 -5.0 -5.0 -5.0 1 +1833 2 27 -4.3 -4.3 -4.3 1 +1833 2 28 -0.4 -0.4 -0.4 1 +1833 3 1 0.8 0.8 0.8 1 +1833 3 2 1.3 1.3 1.3 1 +1833 3 3 -0.1 -0.1 -0.1 1 +1833 3 4 -1.1 -1.1 -1.1 1 +1833 3 5 -3.8 -3.8 -3.8 1 +1833 3 6 -6.1 -6.1 -6.1 1 +1833 3 7 -5.6 -5.6 -5.6 1 +1833 3 8 -1.1 -1.1 -1.1 1 +1833 3 9 -2.5 -2.5 -2.5 1 +1833 3 10 -3.9 -3.9 -3.9 1 +1833 3 11 -7.7 -7.7 -7.7 1 +1833 3 12 -11.6 -11.6 -11.6 1 +1833 3 13 -6.0 -6.0 -6.0 1 +1833 3 14 -5.1 -5.1 -5.1 1 +1833 3 15 -2.4 -2.4 -2.4 1 +1833 3 16 -4.5 -4.5 -4.5 1 +1833 3 17 -4.4 -4.4 -4.4 1 +1833 3 18 -4.4 -4.4 -4.4 1 +1833 3 19 -4.8 -4.8 -4.8 1 +1833 3 20 -2.4 -2.4 -2.4 1 +1833 3 21 -0.5 -0.5 -0.5 1 +1833 3 22 -0.7 -0.7 -0.7 1 +1833 3 23 0.2 0.2 0.2 1 +1833 3 24 -1.5 -1.5 -1.5 1 +1833 3 25 -1.2 -1.2 -1.2 1 +1833 3 26 0.3 0.3 0.3 1 +1833 3 27 2.0 2.0 2.0 1 +1833 3 28 1.3 1.3 1.3 1 +1833 3 29 2.4 2.4 2.4 1 +1833 3 30 -2.0 -2.0 -2.0 1 +1833 3 31 -2.9 -2.9 -2.9 1 +1833 4 1 -1.9 -1.9 -1.9 1 +1833 4 2 1.2 1.2 1.2 1 +1833 4 3 -1.0 -1.0 -1.0 1 +1833 4 4 -1.0 -1.0 -1.0 1 +1833 4 5 -0.3 -0.3 -0.3 1 +1833 4 6 -1.5 -1.5 -1.5 1 +1833 4 7 -0.5 -0.5 -0.5 1 +1833 4 8 1.6 1.6 1.6 1 +1833 4 9 1.9 1.9 1.9 1 +1833 4 10 2.0 2.0 2.0 1 +1833 4 11 2.4 2.4 2.4 1 +1833 4 12 1.6 1.6 1.6 1 +1833 4 13 0.9 0.9 0.9 1 +1833 4 14 1.0 1.0 1.0 1 +1833 4 15 0.1 0.1 0.1 1 +1833 4 16 1.0 1.0 1.0 1 +1833 4 17 2.5 2.5 2.5 1 +1833 4 18 4.1 4.1 4.1 1 +1833 4 19 2.1 2.1 2.1 1 +1833 4 20 1.6 1.6 1.6 1 +1833 4 21 1.1 1.1 1.1 1 +1833 4 22 4.3 4.3 4.3 1 +1833 4 23 2.5 2.5 2.5 1 +1833 4 24 2.7 2.7 2.7 1 +1833 4 25 0.8 0.8 0.8 1 +1833 4 26 0.4 0.4 0.4 1 +1833 4 27 0.8 0.8 0.8 1 +1833 4 28 -1.0 -1.0 -1.0 1 +1833 4 29 0.8 0.8 0.8 1 +1833 4 30 1.2 1.2 1.2 1 +1833 5 1 6.2 6.2 6.2 1 +1833 5 2 7.5 7.5 7.5 1 +1833 5 3 9.2 9.2 9.2 1 +1833 5 4 13.9 13.9 13.9 1 +1833 5 5 14.9 14.9 14.8 1 +1833 5 6 11.9 11.9 11.8 1 +1833 5 7 12.9 12.9 12.8 1 +1833 5 8 9.2 9.2 9.1 1 +1833 5 9 7.3 7.3 7.2 1 +1833 5 10 5.7 5.7 5.5 1 +1833 5 11 10.3 10.3 10.1 1 +1833 5 12 12.8 12.8 12.6 1 +1833 5 13 12.8 12.8 12.6 1 +1833 5 14 10.3 10.3 10.0 1 +1833 5 15 13.1 13.1 12.8 1 +1833 5 16 17.4 17.4 17.1 1 +1833 5 17 17.5 17.5 17.2 1 +1833 5 18 18.1 18.1 17.8 1 +1833 5 19 14.9 14.9 14.5 1 +1833 5 20 12.0 12.0 11.6 1 +1833 5 21 12.8 12.8 12.4 1 +1833 5 22 15.5 15.5 15.1 1 +1833 5 23 17.3 17.3 16.8 1 +1833 5 24 12.9 12.9 12.4 1 +1833 5 25 12.9 12.9 12.4 1 +1833 5 26 6.1 6.1 5.6 1 +1833 5 27 8.7 8.7 8.2 1 +1833 5 28 10.7 10.7 10.1 1 +1833 5 29 5.7 5.7 5.1 1 +1833 5 30 8.0 8.0 7.4 1 +1833 5 31 10.6 10.6 10.0 1 +1833 6 1 13.2 13.2 12.5 1 +1833 6 2 12.2 12.2 11.5 1 +1833 6 3 11.1 11.1 10.4 1 +1833 6 4 11.3 11.3 10.6 1 +1833 6 5 10.8 10.8 10.1 1 +1833 6 6 13.3 13.3 12.6 1 +1833 6 7 17.9 17.9 17.2 1 +1833 6 8 18.0 18.0 17.3 1 +1833 6 9 15.3 15.3 14.6 1 +1833 6 10 13.2 13.2 12.5 1 +1833 6 11 14.0 14.0 13.3 1 +1833 6 12 10.7 10.7 10.0 1 +1833 6 13 13.9 13.9 13.2 1 +1833 6 14 13.5 13.5 12.8 1 +1833 6 15 16.5 16.5 15.8 1 +1833 6 16 13.1 13.1 12.4 1 +1833 6 17 13.0 13.0 12.3 1 +1833 6 18 15.7 15.7 15.0 1 +1833 6 19 15.5 15.5 14.8 1 +1833 6 20 16.2 16.2 15.5 1 +1833 6 21 15.7 15.7 15.0 1 +1833 6 22 15.2 15.2 14.5 1 +1833 6 23 14.6 14.6 13.9 1 +1833 6 24 15.3 15.3 14.6 1 +1833 6 25 16.2 16.2 15.5 1 +1833 6 26 18.0 18.0 17.3 1 +1833 6 27 15.5 15.5 14.8 1 +1833 6 28 17.5 17.5 16.8 1 +1833 6 29 18.7 18.7 18.0 1 +1833 6 30 19.4 19.4 18.7 1 +1833 7 1 19.9 19.9 19.2 1 +1833 7 2 20.9 20.9 20.2 1 +1833 7 3 16.7 16.7 16.0 1 +1833 7 4 17.8 17.8 17.1 1 +1833 7 5 17.0 17.0 16.3 1 +1833 7 6 19.6 19.6 18.9 1 +1833 7 7 20.3 20.3 19.6 1 +1833 7 8 17.4 17.4 16.7 1 +1833 7 9 17.9 17.9 17.2 1 +1833 7 10 16.8 16.8 16.1 1 +1833 7 11 13.2 13.2 12.5 1 +1833 7 12 12.0 12.0 11.3 1 +1833 7 13 13.4 13.4 12.7 1 +1833 7 14 16.1 16.1 15.4 1 +1833 7 15 15.7 15.7 15.0 1 +1833 7 16 16.9 16.9 16.2 1 +1833 7 17 14.9 14.9 14.2 1 +1833 7 18 11.0 11.0 10.3 1 +1833 7 19 13.1 13.1 12.4 1 +1833 7 20 16.5 16.5 15.8 1 +1833 7 21 15.2 15.2 14.5 1 +1833 7 22 14.8 14.8 14.1 1 +1833 7 23 15.9 15.9 15.2 1 +1833 7 24 15.4 15.4 14.7 1 +1833 7 25 14.3 14.3 13.6 1 +1833 7 26 14.4 14.4 13.7 1 +1833 7 27 14.8 14.8 14.1 1 +1833 7 28 16.7 16.7 16.0 1 +1833 7 29 17.2 17.2 16.5 1 +1833 7 30 15.6 15.6 14.9 1 +1833 7 31 12.5 12.5 11.8 1 +1833 8 1 15.8 15.8 15.2 1 +1833 8 2 16.7 16.7 16.1 1 +1833 8 3 10.5 10.5 9.9 1 +1833 8 4 10.6 10.6 10.0 1 +1833 8 5 9.7 9.7 9.2 1 +1833 8 6 7.8 7.8 7.3 1 +1833 8 7 9.4 9.4 8.9 1 +1833 8 8 11.2 11.2 10.7 1 +1833 8 9 12.3 12.3 11.8 1 +1833 8 10 14.2 14.2 13.8 1 +1833 8 11 13.1 13.1 12.7 1 +1833 8 12 11.4 11.4 11.0 1 +1833 8 13 12.6 12.6 12.2 1 +1833 8 14 14.0 14.0 13.7 1 +1833 8 15 13.6 13.6 13.3 1 +1833 8 16 13.2 13.2 12.9 1 +1833 8 17 13.4 13.4 13.1 1 +1833 8 18 14.6 14.6 14.3 1 +1833 8 19 11.8 11.8 11.6 1 +1833 8 20 14.2 14.2 14.0 1 +1833 8 21 13.1 13.1 12.9 1 +1833 8 22 12.3 12.3 12.1 1 +1833 8 23 12.0 12.0 11.9 1 +1833 8 24 11.4 11.4 11.3 1 +1833 8 25 9.3 9.3 9.2 1 +1833 8 26 11.2 11.2 11.1 1 +1833 8 27 11.9 11.9 11.8 1 +1833 8 28 13.8 13.8 13.8 1 +1833 8 29 10.2 10.2 10.2 1 +1833 8 30 11.7 11.7 11.7 1 +1833 8 31 12.3 12.3 12.3 1 +1833 9 1 13.3 13.3 13.3 1 +1833 9 2 13.7 13.7 13.7 1 +1833 9 3 9.8 9.8 9.8 1 +1833 9 4 8.4 8.4 8.4 1 +1833 9 5 8.9 8.9 8.9 1 +1833 9 6 11.8 11.8 11.8 1 +1833 9 7 12.6 12.6 12.6 1 +1833 9 8 12.8 12.8 12.8 1 +1833 9 9 12.7 12.7 12.7 1 +1833 9 10 12.1 12.1 12.1 1 +1833 9 11 14.4 14.4 14.4 1 +1833 9 12 14.4 14.4 14.4 1 +1833 9 13 14.6 14.6 14.6 1 +1833 9 14 14.9 14.9 14.9 1 +1833 9 15 12.7 12.7 12.7 1 +1833 9 16 12.4 12.4 12.4 1 +1833 9 17 13.3 13.3 13.3 1 +1833 9 18 12.1 12.1 12.1 1 +1833 9 19 12.0 12.0 12.0 1 +1833 9 20 12.9 12.9 12.9 1 +1833 9 21 10.9 10.9 10.9 1 +1833 9 22 10.1 10.1 10.1 1 +1833 9 23 10.8 10.8 10.8 1 +1833 9 24 11.4 11.4 11.4 1 +1833 9 25 12.9 12.9 12.9 1 +1833 9 26 12.0 12.0 12.0 1 +1833 9 27 12.0 12.0 12.0 1 +1833 9 28 11.6 11.6 11.6 1 +1833 9 29 10.7 10.7 10.7 1 +1833 9 30 10.3 10.3 10.3 1 +1833 10 1 9.7 9.7 9.7 1 +1833 10 2 10.1 10.1 10.1 1 +1833 10 3 9.7 9.7 9.7 1 +1833 10 4 9.4 9.4 9.4 1 +1833 10 5 7.2 7.2 7.2 1 +1833 10 6 8.3 8.3 8.3 1 +1833 10 7 10.1 10.1 10.1 1 +1833 10 8 10.5 10.5 10.5 1 +1833 10 9 8.3 8.3 8.3 1 +1833 10 10 6.3 6.3 6.3 1 +1833 10 11 6.8 6.8 6.8 1 +1833 10 12 8.3 8.3 8.3 1 +1833 10 13 8.5 8.5 8.5 1 +1833 10 14 4.1 4.1 4.1 1 +1833 10 15 9.1 9.1 9.1 1 +1833 10 16 8.8 8.8 8.8 1 +1833 10 17 8.2 8.2 8.2 1 +1833 10 18 7.4 7.4 7.4 1 +1833 10 19 7.7 7.7 7.7 1 +1833 10 20 9.1 9.1 9.1 1 +1833 10 21 8.8 8.8 8.8 1 +1833 10 22 9.5 9.5 9.5 1 +1833 10 23 10.8 10.8 10.8 1 +1833 10 24 10.4 10.4 10.4 1 +1833 10 25 8.7 8.7 8.7 1 +1833 10 26 9.2 9.2 9.2 1 +1833 10 27 9.3 9.3 9.3 1 +1833 10 28 8.9 8.9 8.9 1 +1833 10 29 8.2 8.2 8.2 1 +1833 10 30 7.8 7.8 7.8 1 +1833 10 31 7.2 7.2 7.2 1 +1833 11 1 7.8 7.8 7.8 1 +1833 11 2 5.5 5.5 5.5 1 +1833 11 3 1.6 1.6 1.6 1 +1833 11 4 0.0 0.0 0.0 1 +1833 11 5 -1.1 -1.1 -1.1 1 +1833 11 6 3.8 3.8 3.8 1 +1833 11 7 3.8 3.8 3.8 1 +1833 11 8 0.3 0.3 0.3 1 +1833 11 9 -1.8 -1.8 -1.8 1 +1833 11 10 -2.5 -2.5 -2.5 1 +1833 11 11 -0.1 -0.1 -0.1 1 +1833 11 12 3.6 3.6 3.6 1 +1833 11 13 6.6 6.6 6.6 1 +1833 11 14 5.9 5.9 5.9 1 +1833 11 15 5.5 5.5 5.5 1 +1833 11 16 1.7 1.7 1.7 1 +1833 11 17 1.0 1.0 1.0 1 +1833 11 18 0.6 0.6 0.6 1 +1833 11 19 3.6 3.6 3.6 1 +1833 11 20 2.5 2.5 2.5 1 +1833 11 21 5.0 5.0 5.0 1 +1833 11 22 5.0 5.0 5.0 1 +1833 11 23 5.0 5.0 5.0 1 +1833 11 24 4.4 4.4 4.4 1 +1833 11 25 4.4 4.4 4.4 1 +1833 11 26 2.5 2.5 2.5 1 +1833 11 27 -1.7 -1.7 -1.7 1 +1833 11 28 -0.5 -0.5 -0.5 1 +1833 11 29 1.6 1.6 1.6 1 +1833 11 30 1.8 1.8 1.8 1 +1833 12 1 4.5 4.5 4.5 1 +1833 12 2 3.9 3.9 3.9 1 +1833 12 3 2.5 2.5 2.5 1 +1833 12 4 0.8 0.8 0.8 1 +1833 12 5 4.7 4.7 4.7 1 +1833 12 6 1.9 1.9 1.9 1 +1833 12 7 3.0 3.0 3.0 1 +1833 12 8 2.9 2.9 2.9 1 +1833 12 9 -0.2 -0.2 -0.2 1 +1833 12 10 0.0 0.0 0.0 1 +1833 12 11 -1.9 -1.9 -1.9 1 +1833 12 12 -3.1 -3.1 -3.1 1 +1833 12 13 -7.1 -7.1 -7.1 1 +1833 12 14 -12.0 -12.0 -12.0 1 +1833 12 15 -5.4 -5.4 -5.4 1 +1833 12 16 -3.6 -3.6 -3.6 1 +1833 12 17 -0.3 -0.3 -0.3 1 +1833 12 18 -8.0 -8.0 -8.0 1 +1833 12 19 -7.9 -7.9 -7.9 1 +1833 12 20 2.4 2.4 2.4 1 +1833 12 21 -1.6 -1.6 -1.6 1 +1833 12 22 -4.8 -4.8 -4.8 1 +1833 12 23 -3.8 -3.8 -3.8 1 +1833 12 24 -2.9 -2.9 -2.9 1 +1833 12 25 -7.7 -7.7 -7.7 1 +1833 12 26 -8.8 -8.8 -8.8 1 +1833 12 27 -6.8 -6.8 -6.8 1 +1833 12 28 -0.5 -0.5 -0.5 1 +1833 12 29 0.2 0.2 0.2 1 +1833 12 30 0.8 0.8 0.8 1 +1833 12 31 -1.2 -1.2 -1.2 1 +1834 1 1 -3.6 -3.6 -3.6 1 +1834 1 2 -5.7 -5.7 -5.7 1 +1834 1 3 -9.9 -9.9 -9.9 1 +1834 1 4 -8.6 -8.6 -8.6 1 +1834 1 5 -13.3 -13.3 -13.3 1 +1834 1 6 -9.0 -9.0 -9.0 1 +1834 1 7 -1.1 -1.1 -1.1 1 +1834 1 8 -1.3 -1.3 -1.3 1 +1834 1 9 -2.9 -2.9 -2.9 1 +1834 1 10 -3.9 -3.9 -3.9 1 +1834 1 11 -4.0 -4.0 -4.0 1 +1834 1 12 -5.5 -5.5 -5.5 1 +1834 1 13 -6.3 -6.3 -6.3 1 +1834 1 14 -3.4 -3.4 -3.4 1 +1834 1 15 0.1 0.1 0.1 1 +1834 1 16 -0.8 -0.8 -0.8 1 +1834 1 17 -0.6 -0.6 -0.6 1 +1834 1 18 1.4 1.4 1.4 1 +1834 1 19 1.6 1.6 1.6 1 +1834 1 20 1.1 1.1 1.1 1 +1834 1 21 -1.4 -1.4 -1.4 1 +1834 1 22 -0.5 -0.5 -0.5 1 +1834 1 23 -3.0 -3.0 -3.0 1 +1834 1 24 -2.9 -2.9 -2.9 1 +1834 1 25 -3.4 -3.4 -3.4 1 +1834 1 26 -9.1 -9.1 -9.1 1 +1834 1 27 -4.3 -4.3 -4.3 1 +1834 1 28 -0.7 -0.7 -0.7 1 +1834 1 29 -0.9 -0.9 -0.9 1 +1834 1 30 -7.1 -7.1 -7.1 1 +1834 1 31 -6.6 -6.6 -6.6 1 +1834 2 1 -0.7 -0.7 -0.7 1 +1834 2 2 0.8 0.8 0.8 1 +1834 2 3 -1.1 -1.1 -1.1 1 +1834 2 4 -1.0 -1.0 -1.0 1 +1834 2 5 -1.4 -1.4 -1.4 1 +1834 2 6 -1.6 -1.6 -1.6 1 +1834 2 7 -2.2 -2.2 -2.2 1 +1834 2 8 -4.3 -4.3 -4.3 1 +1834 2 9 -5.0 -5.0 -5.0 1 +1834 2 10 -1.1 -1.1 -1.1 1 +1834 2 11 -0.9 -0.9 -0.9 1 +1834 2 12 -0.5 -0.5 -0.5 1 +1834 2 13 0.8 0.8 0.8 1 +1834 2 14 0.0 0.0 0.0 1 +1834 2 15 -0.4 -0.4 -0.4 1 +1834 2 16 0.6 0.6 0.6 1 +1834 2 17 2.1 2.1 2.1 1 +1834 2 18 3.3 3.3 3.3 1 +1834 2 19 5.4 5.4 5.4 1 +1834 2 20 2.5 2.5 2.5 1 +1834 2 21 0.0 0.0 0.0 1 +1834 2 22 -3.3 -3.3 -3.3 1 +1834 2 23 -3.5 -3.5 -3.5 1 +1834 2 24 3.6 3.6 3.6 1 +1834 2 25 2.2 2.2 2.2 1 +1834 2 26 4.0 4.0 4.0 1 +1834 2 27 5.2 5.2 5.2 1 +1834 2 28 0.2 0.2 0.2 1 +1834 3 1 -0.5 -0.5 -0.5 1 +1834 3 2 4.9 4.9 4.9 1 +1834 3 3 -1.2 -1.2 -1.2 1 +1834 3 4 2.9 2.9 2.9 1 +1834 3 5 5.7 5.7 5.7 1 +1834 3 6 4.2 4.2 4.2 1 +1834 3 7 4.4 4.4 4.4 1 +1834 3 8 4.3 4.3 4.3 1 +1834 3 9 1.4 1.4 1.4 1 +1834 3 10 -0.5 -0.5 -0.5 1 +1834 3 11 -4.3 -4.3 -4.3 1 +1834 3 12 -0.2 -0.2 -0.2 1 +1834 3 13 1.5 1.5 1.5 1 +1834 3 14 3.4 3.4 3.4 1 +1834 3 15 2.6 2.6 2.6 1 +1834 3 16 -0.7 -0.7 -0.7 1 +1834 3 17 -3.0 -3.0 -3.0 1 +1834 3 18 -1.0 -1.0 -1.0 1 +1834 3 19 3.1 3.1 3.1 1 +1834 3 20 1.5 1.5 1.5 1 +1834 3 21 0.3 0.3 0.3 1 +1834 3 22 -0.7 -0.7 -0.7 1 +1834 3 23 0.8 0.8 0.8 1 +1834 3 24 -1.0 -1.0 -1.0 1 +1834 3 25 -3.0 -3.0 -3.0 1 +1834 3 26 -2.9 -2.9 -2.9 1 +1834 3 27 -1.8 -1.8 -1.8 1 +1834 3 28 1.5 1.5 1.5 1 +1834 3 29 1.3 1.3 1.3 1 +1834 3 30 1.2 1.2 1.2 1 +1834 3 31 1.4 1.4 1.4 1 +1834 4 1 0.5 0.5 0.5 1 +1834 4 2 2.4 2.4 2.4 1 +1834 4 3 3.6 3.6 3.6 1 +1834 4 4 2.2 2.2 2.2 1 +1834 4 5 3.3 3.3 3.3 1 +1834 4 6 3.9 3.9 3.9 1 +1834 4 7 1.5 1.5 1.5 1 +1834 4 8 0.3 0.3 0.3 1 +1834 4 9 0.1 0.1 0.1 1 +1834 4 10 1.1 1.1 1.1 1 +1834 4 11 1.7 1.7 1.7 1 +1834 4 12 0.2 0.2 0.2 1 +1834 4 13 4.6 4.6 4.6 1 +1834 4 14 5.4 5.4 5.4 1 +1834 4 15 5.9 5.9 5.9 1 +1834 4 16 7.6 7.6 7.6 1 +1834 4 17 6.3 6.3 6.3 1 +1834 4 18 8.0 8.0 8.0 1 +1834 4 19 8.4 8.4 8.4 1 +1834 4 20 7.0 7.0 7.0 1 +1834 4 21 4.4 4.4 4.4 1 +1834 4 22 4.3 4.3 4.3 1 +1834 4 23 2.3 2.3 2.3 1 +1834 4 24 4.7 4.7 4.7 1 +1834 4 25 1.2 1.2 1.2 1 +1834 4 26 3.5 3.5 3.5 1 +1834 4 27 5.4 5.4 5.4 1 +1834 4 28 6.7 6.7 6.7 1 +1834 4 29 2.2 2.2 2.2 1 +1834 4 30 3.4 3.4 3.4 1 +1834 5 1 5.4 5.4 5.4 1 +1834 5 2 7.1 7.1 7.1 1 +1834 5 3 5.6 5.6 5.6 1 +1834 5 4 8.1 8.1 8.1 1 +1834 5 5 11.9 11.9 11.8 1 +1834 5 6 14.7 14.7 14.6 1 +1834 5 7 14.4 14.4 14.3 1 +1834 5 8 12.3 12.3 12.2 1 +1834 5 9 11.3 11.3 11.2 1 +1834 5 10 6.4 6.4 6.2 1 +1834 5 11 6.9 6.9 6.7 1 +1834 5 12 10.2 10.2 10.0 1 +1834 5 13 10.4 10.4 10.2 1 +1834 5 14 6.0 6.0 5.7 1 +1834 5 15 11.9 11.9 11.6 1 +1834 5 16 10.4 10.4 10.1 1 +1834 5 17 9.6 9.6 9.3 1 +1834 5 18 11.8 11.8 11.5 1 +1834 5 19 13.9 13.9 13.5 1 +1834 5 20 13.0 13.0 12.6 1 +1834 5 21 10.9 10.9 10.5 1 +1834 5 22 11.7 11.7 11.3 1 +1834 5 23 14.8 14.8 14.3 1 +1834 5 24 12.9 12.9 12.4 1 +1834 5 25 5.6 5.6 5.1 1 +1834 5 26 8.1 8.1 7.6 1 +1834 5 27 7.1 7.1 6.6 1 +1834 5 28 3.6 3.6 3.0 1 +1834 5 29 5.0 5.0 4.4 1 +1834 5 30 6.0 6.0 5.4 1 +1834 5 31 6.4 6.4 5.8 1 +1834 6 1 5.9 5.9 5.2 1 +1834 6 2 11.6 11.6 10.9 1 +1834 6 3 16.5 16.5 15.8 1 +1834 6 4 15.2 15.2 14.5 1 +1834 6 5 12.4 12.4 11.7 1 +1834 6 6 12.9 12.9 12.2 1 +1834 6 7 15.2 15.2 14.5 1 +1834 6 8 15.0 15.0 14.3 1 +1834 6 9 15.2 15.2 14.5 1 +1834 6 10 13.7 13.7 13.0 1 +1834 6 11 14.5 14.5 13.8 1 +1834 6 12 15.9 15.9 15.2 1 +1834 6 13 13.4 13.4 12.7 1 +1834 6 14 12.3 12.3 11.6 1 +1834 6 15 14.1 14.1 13.4 1 +1834 6 16 14.9 14.9 14.2 1 +1834 6 17 14.4 14.4 13.7 1 +1834 6 18 14.5 14.5 13.8 1 +1834 6 19 15.7 15.7 15.0 1 +1834 6 20 14.3 14.3 13.6 1 +1834 6 21 14.9 14.9 14.2 1 +1834 6 22 16.6 16.6 15.9 1 +1834 6 23 16.2 16.2 15.5 1 +1834 6 24 16.6 16.6 15.9 1 +1834 6 25 16.7 16.7 16.0 1 +1834 6 26 16.2 16.2 15.5 1 +1834 6 27 15.3 15.3 14.6 1 +1834 6 28 11.5 11.5 10.8 1 +1834 6 29 12.8 12.8 12.1 1 +1834 6 30 15.8 15.8 15.1 1 +1834 7 1 17.6 17.6 16.9 1 +1834 7 2 20.1 20.1 19.4 1 +1834 7 3 18.1 18.1 17.4 1 +1834 7 4 16.2 16.2 15.5 1 +1834 7 5 16.1 16.1 15.4 1 +1834 7 6 17.1 17.1 16.4 1 +1834 7 7 20.6 20.6 19.9 1 +1834 7 8 22.0 22.0 21.3 1 +1834 7 9 22.2 22.2 21.5 1 +1834 7 10 21.0 21.0 20.3 1 +1834 7 11 18.9 18.9 18.2 1 +1834 7 12 18.7 18.7 18.0 1 +1834 7 13 21.2 21.2 20.5 1 +1834 7 14 21.4 21.4 20.7 1 +1834 7 15 18.7 18.7 18.0 1 +1834 7 16 15.4 15.4 14.7 1 +1834 7 17 15.8 15.8 15.1 1 +1834 7 18 16.7 16.7 16.0 1 +1834 7 19 15.6 15.6 14.9 1 +1834 7 20 18.9 18.9 18.2 1 +1834 7 21 19.8 19.8 19.1 1 +1834 7 22 18.6 18.6 17.9 1 +1834 7 23 19.7 19.7 19.0 1 +1834 7 24 21.2 21.2 20.5 1 +1834 7 25 21.4 21.4 20.7 1 +1834 7 26 22.9 22.9 22.2 1 +1834 7 27 24.7 24.7 24.0 1 +1834 7 28 26.3 26.3 25.6 1 +1834 7 29 24.7 24.7 24.0 1 +1834 7 30 22.6 22.6 21.9 1 +1834 7 31 22.0 22.0 21.3 1 +1834 8 1 20.5 20.5 19.9 1 +1834 8 2 17.8 17.8 17.2 1 +1834 8 3 15.0 15.0 14.4 1 +1834 8 4 14.1 14.1 13.5 1 +1834 8 5 17.8 17.8 17.3 1 +1834 8 6 19.3 19.3 18.8 1 +1834 8 7 19.5 19.5 19.0 1 +1834 8 8 20.1 20.1 19.6 1 +1834 8 9 19.4 19.4 18.9 1 +1834 8 10 18.2 18.2 17.8 1 +1834 8 11 16.2 16.2 15.8 1 +1834 8 12 18.3 18.3 17.9 1 +1834 8 13 20.4 20.4 20.0 1 +1834 8 14 20.5 20.5 20.2 1 +1834 8 15 20.6 20.6 20.3 1 +1834 8 16 21.8 21.8 21.5 1 +1834 8 17 20.9 20.9 20.6 1 +1834 8 18 21.0 21.0 20.7 1 +1834 8 19 22.2 22.2 22.0 1 +1834 8 20 21.2 21.2 21.0 1 +1834 8 21 22.0 22.0 21.8 1 +1834 8 22 22.0 22.0 21.8 1 +1834 8 23 20.9 20.9 20.8 1 +1834 8 24 19.6 19.6 19.5 1 +1834 8 25 20.7 20.7 20.6 1 +1834 8 26 17.6 17.6 17.5 1 +1834 8 27 17.8 17.8 17.7 1 +1834 8 28 21.0 21.0 21.0 1 +1834 8 29 16.6 16.6 16.6 1 +1834 8 30 18.2 18.2 18.2 1 +1834 8 31 20.8 20.8 20.8 1 +1834 9 1 21.5 21.5 21.5 1 +1834 9 2 18.9 18.9 18.9 1 +1834 9 3 17.7 17.7 17.7 1 +1834 9 4 15.6 15.6 15.6 1 +1834 9 5 16.2 16.2 16.2 1 +1834 9 6 16.9 16.9 16.9 1 +1834 9 7 12.8 12.8 12.8 1 +1834 9 8 13.7 13.7 13.7 1 +1834 9 9 16.5 16.5 16.5 1 +1834 9 10 15.2 15.2 15.2 1 +1834 9 11 11.8 11.8 11.8 1 +1834 9 12 10.2 10.2 10.2 1 +1834 9 13 9.4 9.4 9.4 1 +1834 9 14 10.3 10.3 10.3 1 +1834 9 15 11.6 11.6 11.6 1 +1834 9 16 11.0 11.0 11.0 1 +1834 9 17 11.7 11.7 11.7 1 +1834 9 18 14.0 14.0 14.0 1 +1834 9 19 14.7 14.7 14.7 1 +1834 9 20 14.9 14.9 14.9 1 +1834 9 21 13.2 13.2 13.2 1 +1834 9 22 7.2 7.2 7.2 1 +1834 9 23 3.6 3.6 3.6 1 +1834 9 24 4.2 4.2 4.2 1 +1834 9 25 3.8 3.8 3.8 1 +1834 9 26 5.5 5.5 5.5 1 +1834 9 27 7.9 7.9 7.9 1 +1834 9 28 2.5 2.5 2.5 1 +1834 9 29 2.1 2.1 2.1 1 +1834 9 30 1.5 1.5 1.5 1 +1834 10 1 1.7 1.7 1.7 1 +1834 10 2 1.7 1.7 1.7 1 +1834 10 3 4.2 4.2 4.2 1 +1834 10 4 9.4 9.4 9.4 1 +1834 10 5 10.4 10.4 10.4 1 +1834 10 6 11.2 11.2 11.2 1 +1834 10 7 11.5 11.5 11.5 1 +1834 10 8 12.0 12.0 12.0 1 +1834 10 9 13.5 13.5 13.5 1 +1834 10 10 10.8 10.8 10.8 1 +1834 10 11 7.6 7.6 7.6 1 +1834 10 12 4.9 4.9 4.9 1 +1834 10 13 9.8 9.8 9.8 1 +1834 10 14 11.8 11.8 11.8 1 +1834 10 15 10.9 10.9 10.9 1 +1834 10 16 7.6 7.6 7.6 1 +1834 10 17 8.5 8.5 8.5 1 +1834 10 18 9.0 9.0 9.0 1 +1834 10 19 5.7 5.7 5.7 1 +1834 10 20 5.7 5.7 5.7 1 +1834 10 21 4.9 4.9 4.9 1 +1834 10 22 3.5 3.5 3.5 1 +1834 10 23 3.9 3.9 3.9 1 +1834 10 24 4.2 4.2 4.2 1 +1834 10 25 1.8 1.8 1.8 1 +1834 10 26 0.8 0.8 0.8 1 +1834 10 27 2.0 2.0 2.0 1 +1834 10 28 1.5 1.5 1.5 1 +1834 10 29 0.2 0.2 0.2 1 +1834 10 30 4.7 4.7 4.7 1 +1834 10 31 4.5 4.5 4.5 1 +1834 11 1 0.2 0.2 0.2 1 +1834 11 2 0.4 0.4 0.4 1 +1834 11 3 3.4 3.4 3.4 1 +1834 11 4 4.1 4.1 4.1 1 +1834 11 5 10.2 10.2 10.2 1 +1834 11 6 7.8 7.8 7.8 1 +1834 11 7 -0.1 -0.1 -0.1 1 +1834 11 8 3.4 3.4 3.4 1 +1834 11 9 4.6 4.6 4.6 1 +1834 11 10 2.4 2.4 2.4 1 +1834 11 11 -4.3 -4.3 -4.3 1 +1834 11 12 -4.9 -4.9 -4.9 1 +1834 11 13 -2.9 -2.9 -2.9 1 +1834 11 14 -4.2 -4.2 -4.2 1 +1834 11 15 0.5 0.5 0.5 1 +1834 11 16 -1.7 -1.7 -1.7 1 +1834 11 17 -3.1 -3.1 -3.1 1 +1834 11 18 -3.6 -3.6 -3.6 1 +1834 11 19 -0.1 -0.1 -0.1 1 +1834 11 20 1.3 1.3 1.3 1 +1834 11 21 2.5 2.5 2.5 1 +1834 11 22 -2.2 -2.2 -2.2 1 +1834 11 23 -1.3 -1.3 -1.3 1 +1834 11 24 -2.9 -2.9 -2.9 1 +1834 11 25 1.3 1.3 1.3 1 +1834 11 26 2.6 2.6 2.6 1 +1834 11 27 2.6 2.6 2.6 1 +1834 11 28 -2.3 -2.3 -2.3 1 +1834 11 29 3.0 3.0 3.0 1 +1834 11 30 3.2 3.2 3.2 1 +1834 12 1 -1.2 -1.2 -1.2 1 +1834 12 2 1.0 1.0 1.0 1 +1834 12 3 -4.7 -4.7 -4.7 1 +1834 12 4 -2.8 -2.8 -2.8 1 +1834 12 5 3.7 3.7 3.7 1 +1834 12 6 4.2 4.2 4.2 1 +1834 12 7 4.6 4.6 4.6 1 +1834 12 8 4.3 4.3 4.3 1 +1834 12 9 0.4 0.4 0.4 1 +1834 12 10 -2.1 -2.1 -2.1 1 +1834 12 11 -2.5 -2.5 -2.5 1 +1834 12 12 -1.7 -1.7 -1.7 1 +1834 12 13 -0.7 -0.7 -0.7 1 +1834 12 14 -2.1 -2.1 -2.1 1 +1834 12 15 -1.9 -1.9 -1.9 1 +1834 12 16 -1.2 -1.2 -1.2 1 +1834 12 17 -1.2 -1.2 -1.2 1 +1834 12 18 -3.3 -3.3 -3.3 1 +1834 12 19 -0.5 -0.5 -0.5 1 +1834 12 20 -1.1 -1.1 -1.1 1 +1834 12 21 -1.3 -1.3 -1.3 1 +1834 12 22 -4.8 -4.8 -4.8 1 +1834 12 23 -4.3 -4.3 -4.3 1 +1834 12 24 -7.8 -7.8 -7.8 1 +1834 12 25 -4.3 -4.3 -4.3 1 +1834 12 26 -3.4 -3.4 -3.4 1 +1834 12 27 -4.4 -4.4 -4.4 1 +1834 12 28 -0.5 -0.5 -0.5 1 +1834 12 29 1.6 1.6 1.6 1 +1834 12 30 0.6 0.6 0.6 1 +1834 12 31 2.3 2.3 2.3 1 +1835 1 1 1.3 1.3 1.3 1 +1835 1 2 -4.1 -4.1 -4.1 1 +1835 1 3 -1.0 -1.0 -1.0 1 +1835 1 4 -0.8 -0.8 -0.8 1 +1835 1 5 1.0 1.0 1.0 1 +1835 1 6 3.4 3.4 3.4 1 +1835 1 7 -0.9 -0.9 -0.9 1 +1835 1 8 -7.4 -7.4 -7.4 1 +1835 1 9 -1.3 -1.3 -1.3 1 +1835 1 10 -0.9 -0.9 -0.9 1 +1835 1 11 -5.5 -5.5 -5.5 1 +1835 1 12 -8.7 -8.7 -8.7 1 +1835 1 13 -6.6 -6.6 -6.6 1 +1835 1 14 -0.6 -0.6 -0.6 1 +1835 1 15 2.3 2.3 2.3 1 +1835 1 16 3.6 3.6 3.6 1 +1835 1 17 -0.3 -0.3 -0.3 1 +1835 1 18 -6.3 -6.3 -6.3 1 +1835 1 19 -1.5 -1.5 -1.5 1 +1835 1 20 -5.7 -5.7 -5.7 1 +1835 1 21 -11.7 -11.7 -11.7 1 +1835 1 22 -8.1 -8.1 -8.1 1 +1835 1 23 0.5 0.5 0.5 1 +1835 1 24 3.2 3.2 3.2 1 +1835 1 25 1.2 1.2 1.2 1 +1835 1 26 -2.1 -2.1 -2.1 1 +1835 1 27 -1.5 -1.5 -1.5 1 +1835 1 28 0.7 0.7 0.7 1 +1835 1 29 5.1 5.1 5.1 1 +1835 1 30 -0.6 -0.6 -0.6 1 +1835 1 31 -2.9 -2.9 -2.9 1 +1835 2 1 0.2 0.2 0.2 1 +1835 2 2 2.5 2.5 2.5 1 +1835 2 3 3.8 3.8 3.8 1 +1835 2 4 1.0 1.0 1.0 1 +1835 2 5 3.8 3.8 3.8 1 +1835 2 6 -0.6 -0.6 -0.6 1 +1835 2 7 -2.8 -2.8 -2.8 1 +1835 2 8 1.9 1.9 1.9 1 +1835 2 9 -0.1 -0.1 -0.1 1 +1835 2 10 -2.3 -2.3 -2.3 1 +1835 2 11 -1.8 -1.8 -1.8 1 +1835 2 12 1.9 1.9 1.9 1 +1835 2 13 -0.7 -0.7 -0.7 1 +1835 2 14 -5.3 -5.3 -5.3 1 +1835 2 15 -4.0 -4.0 -4.0 1 +1835 2 16 -2.0 -2.0 -2.0 1 +1835 2 17 -2.5 -2.5 -2.5 1 +1835 2 18 -2.5 -2.5 -2.5 1 +1835 2 19 -1.5 -1.5 -1.5 1 +1835 2 20 -0.1 -0.1 -0.1 1 +1835 2 21 -0.1 -0.1 -0.1 1 +1835 2 22 0.6 0.6 0.6 1 +1835 2 23 0.4 0.4 0.4 1 +1835 2 24 1.1 1.1 1.1 1 +1835 2 25 -2.3 -2.3 -2.3 1 +1835 2 26 1.8 1.8 1.8 1 +1835 2 27 1.6 1.6 1.6 1 +1835 2 28 1.3 1.3 1.3 1 +1835 3 1 -1.1 -1.1 -1.1 1 +1835 3 2 -1.2 -1.2 -1.2 1 +1835 3 3 0.2 0.2 0.2 1 +1835 3 4 -1.6 -1.6 -1.6 1 +1835 3 5 -5.2 -5.2 -5.2 1 +1835 3 6 -1.8 -1.8 -1.8 1 +1835 3 7 -1.9 -1.9 -1.9 1 +1835 3 8 -1.6 -1.6 -1.6 1 +1835 3 9 -0.8 -0.8 -0.8 1 +1835 3 10 0.5 0.5 0.5 1 +1835 3 11 0.9 0.9 0.9 1 +1835 3 12 2.1 2.1 2.1 1 +1835 3 13 1.2 1.2 1.2 1 +1835 3 14 -0.2 -0.2 -0.2 1 +1835 3 15 1.1 1.1 1.1 1 +1835 3 16 1.5 1.5 1.5 1 +1835 3 17 1.1 1.1 1.1 1 +1835 3 18 0.7 0.7 0.7 1 +1835 3 19 0.2 0.2 0.2 1 +1835 3 20 -0.8 -0.8 -0.8 1 +1835 3 21 -0.1 -0.1 -0.1 1 +1835 3 22 1.2 1.2 1.2 1 +1835 3 23 -0.2 -0.2 -0.2 1 +1835 3 24 -0.7 -0.7 -0.7 1 +1835 3 25 1.2 1.2 1.2 1 +1835 3 26 5.3 5.3 5.3 1 +1835 3 27 -1.9 -1.9 -1.9 1 +1835 3 28 -4.5 -4.5 -4.5 1 +1835 3 29 -3.3 -3.3 -3.3 1 +1835 3 30 1.9 1.9 1.9 1 +1835 3 31 -2.6 -2.6 -2.6 1 +1835 4 1 -6.5 -6.5 -6.5 1 +1835 4 2 -2.4 -2.4 -2.4 1 +1835 4 3 -0.5 -0.5 -0.5 1 +1835 4 4 0.6 0.6 0.6 1 +1835 4 5 -0.8 -0.8 -0.8 1 +1835 4 6 -0.3 -0.3 -0.3 1 +1835 4 7 3.4 3.4 3.4 1 +1835 4 8 8.9 8.9 8.9 1 +1835 4 9 6.0 6.0 6.0 1 +1835 4 10 3.2 3.2 3.2 1 +1835 4 11 2.4 2.4 2.4 1 +1835 4 12 2.2 2.2 2.2 1 +1835 4 13 6.8 6.8 6.8 1 +1835 4 14 8.5 8.5 8.5 1 +1835 4 15 5.3 5.3 5.3 1 +1835 4 16 1.3 1.3 1.3 1 +1835 4 17 -0.1 -0.1 -0.1 1 +1835 4 18 0.6 0.6 0.6 1 +1835 4 19 0.2 0.2 0.2 1 +1835 4 20 2.6 2.6 2.6 1 +1835 4 21 8.4 8.4 8.4 1 +1835 4 22 9.6 9.6 9.6 1 +1835 4 23 4.6 4.6 4.6 1 +1835 4 24 5.3 5.3 5.3 1 +1835 4 25 5.4 5.4 5.4 1 +1835 4 26 6.1 6.1 6.1 1 +1835 4 27 4.5 4.5 4.5 1 +1835 4 28 5.2 5.2 5.2 1 +1835 4 29 4.7 4.7 4.7 1 +1835 4 30 6.1 6.1 6.1 1 +1835 5 1 6.0 6.0 6.0 1 +1835 5 2 6.7 6.7 6.7 1 +1835 5 3 9.8 9.8 9.8 1 +1835 5 4 11.0 11.0 11.0 1 +1835 5 5 10.0 10.0 9.9 1 +1835 5 6 3.8 3.8 3.7 1 +1835 5 7 4.4 4.4 4.3 1 +1835 5 8 6.2 6.2 6.1 1 +1835 5 9 8.8 8.8 8.7 1 +1835 5 10 8.8 8.8 8.6 1 +1835 5 11 10.4 10.4 10.2 1 +1835 5 12 8.7 8.7 8.5 1 +1835 5 13 4.4 4.4 4.2 1 +1835 5 14 3.9 3.9 3.6 1 +1835 5 15 1.9 1.9 1.6 1 +1835 5 16 0.9 0.9 0.6 1 +1835 5 17 1.6 1.6 1.3 1 +1835 5 18 0.8 0.8 0.5 1 +1835 5 19 1.6 1.6 1.2 1 +1835 5 20 4.8 4.8 4.4 1 +1835 5 21 6.9 6.9 6.5 1 +1835 5 22 6.9 6.9 6.5 1 +1835 5 23 7.0 7.0 6.5 1 +1835 5 24 9.2 9.2 8.7 1 +1835 5 25 4.9 4.9 4.4 1 +1835 5 26 2.9 2.9 2.4 1 +1835 5 27 2.5 2.5 2.0 1 +1835 5 28 6.3 6.3 5.7 1 +1835 5 29 8.4 8.4 7.8 1 +1835 5 30 7.5 7.5 6.9 1 +1835 5 31 9.5 9.5 8.9 1 +1835 6 1 11.8 11.8 11.1 1 +1835 6 2 13.4 13.4 12.7 1 +1835 6 3 14.6 14.6 13.9 1 +1835 6 4 15.8 15.8 15.1 1 +1835 6 5 18.8 18.8 18.1 1 +1835 6 6 17.3 17.3 16.6 1 +1835 6 7 20.9 20.9 20.2 1 +1835 6 8 20.0 20.0 19.3 1 +1835 6 9 17.5 17.5 16.8 1 +1835 6 10 15.7 15.7 15.0 1 +1835 6 11 20.4 20.4 19.7 1 +1835 6 12 14.5 14.5 13.8 1 +1835 6 13 16.1 16.1 15.4 1 +1835 6 14 14.0 14.0 13.3 1 +1835 6 15 12.7 12.7 12.0 1 +1835 6 16 15.2 15.2 14.5 1 +1835 6 17 18.7 18.7 18.0 1 +1835 6 18 16.4 16.4 15.7 1 +1835 6 19 11.5 11.5 10.8 1 +1835 6 20 10.0 10.0 9.3 1 +1835 6 21 10.3 10.3 9.6 1 +1835 6 22 12.1 12.1 11.4 1 +1835 6 23 17.7 17.7 17.0 1 +1835 6 24 17.2 17.2 16.5 1 +1835 6 25 16.2 16.2 15.5 1 +1835 6 26 15.7 15.7 15.0 1 +1835 6 27 16.8 16.8 16.1 1 +1835 6 28 18.3 18.3 17.6 1 +1835 6 29 18.3 18.3 17.6 1 +1835 6 30 12.5 12.5 11.8 1 +1835 7 1 10.8 10.8 10.1 1 +1835 7 2 12.5 12.5 11.8 1 +1835 7 3 16.6 16.6 15.9 1 +1835 7 4 18.5 18.5 17.8 1 +1835 7 5 18.6 18.6 17.9 1 +1835 7 6 19.3 19.3 18.6 1 +1835 7 7 16.5 16.5 15.8 1 +1835 7 8 16.2 16.2 15.5 1 +1835 7 9 16.7 16.7 16.0 1 +1835 7 10 17.8 17.8 17.1 1 +1835 7 11 16.1 16.1 15.4 1 +1835 7 12 15.4 15.4 14.7 1 +1835 7 13 15.3 15.3 14.6 1 +1835 7 14 14.0 14.0 13.3 1 +1835 7 15 14.8 14.8 14.1 1 +1835 7 16 16.0 16.0 15.3 1 +1835 7 17 17.6 17.6 16.9 1 +1835 7 18 18.8 18.8 18.1 1 +1835 7 19 19.8 19.8 19.1 1 +1835 7 20 22.4 22.4 21.7 1 +1835 7 21 19.9 19.9 19.2 1 +1835 7 22 15.0 15.0 14.3 1 +1835 7 23 13.4 13.4 12.7 1 +1835 7 24 13.6 13.6 12.9 1 +1835 7 25 13.7 13.7 13.0 1 +1835 7 26 18.1 18.1 17.4 1 +1835 7 27 17.2 17.2 16.5 1 +1835 7 28 15.0 15.0 14.3 1 +1835 7 29 13.8 13.8 13.1 1 +1835 7 30 14.6 14.6 13.9 1 +1835 7 31 14.1 14.1 13.4 1 +1835 8 1 9.9 9.9 9.3 1 +1835 8 2 13.2 13.2 12.6 1 +1835 8 3 13.6 13.6 13.0 1 +1835 8 4 15.9 15.9 15.3 1 +1835 8 5 16.6 16.6 16.1 1 +1835 8 6 16.7 16.7 16.2 1 +1835 8 7 14.3 14.3 13.8 1 +1835 8 8 10.9 10.9 10.4 1 +1835 8 9 9.4 9.4 8.9 1 +1835 8 10 11.2 11.2 10.8 1 +1835 8 11 13.6 13.6 13.2 1 +1835 8 12 16.2 16.2 15.8 1 +1835 8 13 15.6 15.6 15.2 1 +1835 8 14 13.4 13.4 13.1 1 +1835 8 15 13.8 13.8 13.5 1 +1835 8 16 15.5 15.5 15.2 1 +1835 8 17 16.2 16.2 15.9 1 +1835 8 18 13.9 13.9 13.6 1 +1835 8 19 16.5 16.5 16.3 1 +1835 8 20 13.3 13.3 13.1 1 +1835 8 21 13.7 13.7 13.5 1 +1835 8 22 14.1 14.1 13.9 1 +1835 8 23 13.8 13.8 13.7 1 +1835 8 24 11.7 11.7 11.6 1 +1835 8 25 10.4 10.4 10.3 1 +1835 8 26 11.5 11.5 11.4 1 +1835 8 27 12.5 12.5 12.4 1 +1835 8 28 12.3 12.3 12.3 1 +1835 8 29 13.1 13.1 13.1 1 +1835 8 30 11.8 11.8 11.8 1 +1835 8 31 11.0 11.0 11.0 1 +1835 9 1 12.7 12.7 12.7 1 +1835 9 2 14.1 14.1 14.1 1 +1835 9 3 11.4 11.4 11.4 1 +1835 9 4 11.3 11.3 11.3 1 +1835 9 5 12.7 12.7 12.7 1 +1835 9 6 13.8 13.8 13.8 1 +1835 9 7 11.5 11.5 11.5 1 +1835 9 8 12.2 12.2 12.2 1 +1835 9 9 12.7 12.7 12.7 1 +1835 9 10 13.2 13.2 13.2 1 +1835 9 11 12.9 12.9 12.9 1 +1835 9 12 12.2 12.2 12.2 1 +1835 9 13 13.0 13.0 13.0 1 +1835 9 14 13.6 13.6 13.6 1 +1835 9 15 13.6 13.6 13.6 1 +1835 9 16 13.2 13.2 13.2 1 +1835 9 17 12.6 12.6 12.6 1 +1835 9 18 11.4 11.4 11.4 1 +1835 9 19 12.2 12.2 12.2 1 +1835 9 20 13.8 13.8 13.8 1 +1835 9 21 14.4 14.4 14.4 1 +1835 9 22 13.2 13.2 13.2 1 +1835 9 23 10.9 10.9 10.9 1 +1835 9 24 15.5 15.5 15.5 1 +1835 9 25 13.8 13.8 13.8 1 +1835 9 26 10.7 10.7 10.7 1 +1835 9 27 13.8 13.8 13.8 1 +1835 9 28 14.3 14.3 14.3 1 +1835 9 29 12.3 12.3 12.3 1 +1835 9 30 11.1 11.1 11.1 1 +1835 10 1 13.3 13.3 13.3 1 +1835 10 2 12.9 12.9 12.9 1 +1835 10 3 12.9 12.9 12.9 1 +1835 10 4 12.1 12.1 12.1 1 +1835 10 5 11.5 11.5 11.5 1 +1835 10 6 10.7 10.7 10.7 1 +1835 10 7 4.2 4.2 4.2 1 +1835 10 8 2.8 2.8 2.8 1 +1835 10 9 6.0 6.0 6.0 1 +1835 10 10 10.6 10.6 10.6 1 +1835 10 11 10.0 10.0 10.0 1 +1835 10 12 6.8 6.8 6.8 1 +1835 10 13 7.4 7.4 7.4 1 +1835 10 14 5.3 5.3 5.3 1 +1835 10 15 4.2 4.2 4.2 1 +1835 10 16 3.0 3.0 3.0 1 +1835 10 17 3.3 3.3 3.3 1 +1835 10 18 2.5 2.5 2.5 1 +1835 10 19 3.4 3.4 3.4 1 +1835 10 20 7.6 7.6 7.6 1 +1835 10 21 7.9 7.9 7.9 1 +1835 10 22 6.8 6.8 6.8 1 +1835 10 23 4.2 4.2 4.2 1 +1835 10 24 3.8 3.8 3.8 1 +1835 10 25 6.8 6.8 6.8 1 +1835 10 26 8.9 8.9 8.9 1 +1835 10 27 7.9 7.9 7.9 1 +1835 10 28 6.2 6.2 6.2 1 +1835 10 29 5.2 5.2 5.2 1 +1835 10 30 5.0 5.0 5.0 1 +1835 10 31 3.5 3.5 3.5 1 +1835 11 1 0.5 0.5 0.5 1 +1835 11 2 -2.5 -2.5 -2.5 1 +1835 11 3 -3.6 -3.6 -3.6 1 +1835 11 4 -2.0 -2.0 -2.0 1 +1835 11 5 0.1 0.1 0.1 1 +1835 11 6 0.9 0.9 0.9 1 +1835 11 7 -1.2 -1.2 -1.2 1 +1835 11 8 -1.1 -1.1 -1.1 1 +1835 11 9 -1.5 -1.5 -1.5 1 +1835 11 10 -1.4 -1.4 -1.4 1 +1835 11 11 -1.1 -1.1 -1.1 1 +1835 11 12 -2.1 -2.1 -2.1 1 +1835 11 13 0.2 0.2 0.2 1 +1835 11 14 -2.2 -2.2 -2.2 1 +1835 11 15 -1.8 -1.8 -1.8 1 +1835 11 16 1.2 1.2 1.2 1 +1835 11 17 3.4 3.4 3.4 1 +1835 11 18 -0.6 -0.6 -0.6 1 +1835 11 19 -2.0 -2.0 -2.0 1 +1835 11 20 -6.5 -6.5 -6.5 1 +1835 11 21 0.9 0.9 0.9 1 +1835 11 22 0.1 0.1 0.1 1 +1835 11 23 -2.9 -2.9 -2.9 1 +1835 11 24 -6.6 -6.6 -6.6 1 +1835 11 25 2.1 2.1 2.1 1 +1835 11 26 1.2 1.2 1.2 1 +1835 11 27 3.0 3.0 3.0 1 +1835 11 28 3.2 3.2 3.2 1 +1835 11 29 3.0 3.0 3.0 1 +1835 11 30 1.9 1.9 1.9 1 +1835 12 1 4.3 4.3 4.3 1 +1835 12 2 3.5 3.5 3.5 1 +1835 12 3 5.3 5.3 5.3 1 +1835 12 4 3.8 3.8 3.8 1 +1835 12 5 1.3 1.3 1.3 1 +1835 12 6 -3.8 -3.8 -3.8 1 +1835 12 7 -5.8 -5.8 -5.8 1 +1835 12 8 -8.8 -8.8 -8.8 1 +1835 12 9 -11.3 -11.3 -11.3 1 +1835 12 10 -10.8 -10.8 -10.8 1 +1835 12 11 -2.6 -2.6 -2.6 1 +1835 12 12 1.2 1.2 1.2 1 +1835 12 13 -0.6 -0.6 -0.6 1 +1835 12 14 3.3 3.3 3.3 1 +1835 12 15 1.5 1.5 1.5 1 +1835 12 16 -0.5 -0.5 -0.5 1 +1835 12 17 -2.1 -2.1 -2.1 1 +1835 12 18 -7.2 -7.2 -7.2 1 +1835 12 19 -8.2 -8.2 -8.2 1 +1835 12 20 -7.4 -7.4 -7.4 1 +1835 12 21 -2.0 -2.0 -2.0 1 +1835 12 22 -1.8 -1.8 -1.8 1 +1835 12 23 -4.4 -4.4 -4.4 1 +1835 12 24 -6.3 -6.3 -6.3 1 +1835 12 25 -14.2 -14.2 -14.2 1 +1835 12 26 -13.1 -13.1 -13.1 1 +1835 12 27 -5.9 -5.9 -5.9 1 +1835 12 28 -2.2 -2.2 -2.2 1 +1835 12 29 -7.0 -7.0 -7.0 1 +1835 12 30 -11.2 -11.2 -11.2 1 +1835 12 31 -14.7 -14.7 -14.7 1 +1836 1 1 -17.3 -17.3 -17.3 1 +1836 1 2 -17.3 -17.3 -17.3 1 +1836 1 3 -6.4 -6.4 -6.4 1 +1836 1 4 -2.6 -2.6 -2.6 1 +1836 1 5 -8.4 -8.4 -8.4 1 +1836 1 6 -3.9 -3.9 -3.9 1 +1836 1 7 2.1 2.1 2.1 1 +1836 1 8 -2.0 -2.0 -2.0 1 +1836 1 9 -7.0 -7.0 -7.0 1 +1836 1 10 -6.4 -6.4 -6.4 1 +1836 1 11 -2.0 -2.0 -2.0 1 +1836 1 12 0.2 0.2 0.2 1 +1836 1 13 -1.2 -1.2 -1.2 1 +1836 1 14 0.2 0.2 0.2 1 +1836 1 15 1.7 1.7 1.7 1 +1836 1 16 -10.2 -10.2 -10.2 1 +1836 1 17 -8.9 -8.9 -8.9 1 +1836 1 18 -9.8 -9.8 -9.8 1 +1836 1 19 -12.8 -12.8 -12.8 1 +1836 1 20 -12.1 -12.1 -12.1 1 +1836 1 21 -3.0 -3.0 -3.0 1 +1836 1 22 -0.8 -0.8 -0.8 1 +1836 1 23 1.3 1.3 1.3 1 +1836 1 24 0.7 0.7 0.7 1 +1836 1 25 -3.6 -3.6 -3.6 1 +1836 1 26 1.3 1.3 1.3 1 +1836 1 27 2.1 2.1 2.1 1 +1836 1 28 2.3 2.3 2.3 1 +1836 1 29 0.5 0.5 0.5 1 +1836 1 30 -0.7 -0.7 -0.7 1 +1836 1 31 -2.4 -2.4 -2.4 1 +1836 2 1 -0.8 -0.8 -0.8 1 +1836 2 2 1.3 1.3 1.3 1 +1836 2 3 0.5 0.5 0.5 1 +1836 2 4 -0.1 -0.1 -0.1 1 +1836 2 5 -1.1 -1.1 -1.1 1 +1836 2 6 0.0 0.0 0.0 1 +1836 2 7 -4.6 -4.6 -4.6 1 +1836 2 8 -10.2 -10.2 -10.2 1 +1836 2 9 -1.0 -1.0 -1.0 1 +1836 2 10 -1.1 -1.1 -1.1 1 +1836 2 11 -4.5 -4.5 -4.5 1 +1836 2 12 -6.9 -6.9 -6.9 1 +1836 2 13 -8.1 -8.1 -8.1 1 +1836 2 14 -6.3 -6.3 -6.3 1 +1836 2 15 2.3 2.3 2.3 1 +1836 2 16 2.3 2.3 2.3 1 +1836 2 17 -3.7 -3.7 -3.7 1 +1836 2 18 -11.0 -11.0 -11.0 1 +1836 2 19 -8.5 -8.5 -8.5 1 +1836 2 20 -6.2 -6.2 -6.2 1 +1836 2 21 0.4 0.4 0.4 1 +1836 2 22 2.6 2.6 2.6 1 +1836 2 23 -1.2 -1.2 -1.2 1 +1836 2 24 -0.2 -0.2 -0.2 1 +1836 2 25 -0.5 -0.5 -0.5 1 +1836 2 26 -4.6 -4.6 -4.6 1 +1836 2 27 -6.0 -6.0 -6.0 1 +1836 2 28 -4.9 -4.9 -4.9 1 +1836 2 29 0.5 0.5 0.5 1 +1836 3 1 -2.6 -2.6 -2.6 1 +1836 3 2 -0.1 -0.1 -0.1 1 +1836 3 3 1.1 1.1 1.1 1 +1836 3 4 1.4 1.4 1.4 1 +1836 3 5 1.5 1.5 1.5 1 +1836 3 6 2.4 2.4 2.4 1 +1836 3 7 1.9 1.9 1.9 1 +1836 3 8 0.9 0.9 0.9 1 +1836 3 9 0.7 0.7 0.7 1 +1836 3 10 1.1 1.1 1.1 1 +1836 3 11 2.5 2.5 2.5 1 +1836 3 12 2.1 2.1 2.1 1 +1836 3 13 3.2 3.2 3.2 1 +1836 3 14 2.1 2.1 2.1 1 +1836 3 15 2.1 2.1 2.1 1 +1836 3 16 0.2 0.2 0.2 1 +1836 3 17 -2.9 -2.9 -2.9 1 +1836 3 18 -4.5 -4.5 -4.5 1 +1836 3 19 -0.9 -0.9 -0.9 1 +1836 3 20 4.2 4.2 4.2 1 +1836 3 21 6.2 6.2 6.2 1 +1836 3 22 6.8 6.8 6.8 1 +1836 3 23 4.0 4.0 4.0 1 +1836 3 24 2.4 2.4 2.4 1 +1836 3 25 3.4 3.4 3.4 1 +1836 3 26 2.9 2.9 2.9 1 +1836 3 27 3.0 3.0 3.0 1 +1836 3 28 1.9 1.9 1.9 1 +1836 3 29 0.8 0.8 0.8 1 +1836 3 30 2.7 2.7 2.7 1 +1836 3 31 0.4 0.4 0.4 1 +1836 4 1 1.9 1.9 1.9 1 +1836 4 2 2.0 2.0 2.0 1 +1836 4 3 0.8 0.8 0.8 1 +1836 4 4 -0.6 -0.6 -0.6 1 +1836 4 5 -1.6 -1.6 -1.6 1 +1836 4 6 0.4 0.4 0.4 1 +1836 4 7 2.4 2.4 2.4 1 +1836 4 8 1.4 1.4 1.4 1 +1836 4 9 3.2 3.2 3.2 1 +1836 4 10 2.8 2.8 2.8 1 +1836 4 11 4.2 4.2 4.2 1 +1836 4 12 4.1 4.1 4.1 1 +1836 4 13 4.8 4.8 4.8 1 +1836 4 14 4.0 4.0 4.0 1 +1836 4 15 4.1 4.1 4.1 1 +1836 4 16 3.7 3.7 3.7 1 +1836 4 17 5.2 5.2 5.2 1 +1836 4 18 5.6 5.6 5.6 1 +1836 4 19 4.9 4.9 4.9 1 +1836 4 20 4.5 4.5 4.5 1 +1836 4 21 6.2 6.2 6.2 1 +1836 4 22 7.5 7.5 7.5 1 +1836 4 23 6.1 6.1 6.1 1 +1836 4 24 5.8 5.8 5.8 1 +1836 4 25 6.8 6.8 6.8 1 +1836 4 26 6.2 6.2 6.2 1 +1836 4 27 4.2 4.2 4.2 1 +1836 4 28 4.9 4.9 4.9 1 +1836 4 29 3.3 3.3 3.3 1 +1836 4 30 4.6 4.6 4.6 1 +1836 5 1 3.2 3.2 3.2 1 +1836 5 2 4.6 4.6 4.6 1 +1836 5 3 5.5 5.5 5.5 1 +1836 5 4 6.3 6.3 6.3 1 +1836 5 5 2.9 2.9 2.8 1 +1836 5 6 5.9 5.9 5.8 1 +1836 5 7 5.6 5.6 5.5 1 +1836 5 8 2.3 2.3 2.2 1 +1836 5 9 0.6 0.6 0.5 1 +1836 5 10 4.0 4.0 3.8 1 +1836 5 11 7.3 7.3 7.1 1 +1836 5 12 8.3 8.3 8.1 1 +1836 5 13 9.7 9.7 9.5 1 +1836 5 14 7.3 7.3 7.0 1 +1836 5 15 8.7 8.7 8.4 1 +1836 5 16 12.2 12.2 11.9 1 +1836 5 17 11.5 11.5 11.2 1 +1836 5 18 9.4 9.4 9.1 1 +1836 5 19 6.1 6.1 5.7 1 +1836 5 20 8.7 8.7 8.3 1 +1836 5 21 3.0 3.0 2.6 1 +1836 5 22 4.1 4.1 3.7 1 +1836 5 23 4.9 4.9 4.4 1 +1836 5 24 2.5 2.5 2.0 1 +1836 5 25 5.1 5.1 4.6 1 +1836 5 26 7.3 7.3 6.8 1 +1836 5 27 9.5 9.5 9.0 1 +1836 5 28 11.5 11.5 10.9 1 +1836 5 29 13.5 13.5 12.9 1 +1836 5 30 12.1 12.1 11.5 1 +1836 5 31 14.6 14.6 14.0 1 +1836 6 1 7.5 7.5 6.8 1 +1836 6 2 8.0 8.0 7.3 1 +1836 6 3 8.4 8.4 7.7 1 +1836 6 4 12.8 12.8 12.1 1 +1836 6 5 12.3 12.3 11.6 1 +1836 6 6 10.1 10.1 9.4 1 +1836 6 7 11.2 11.2 10.5 1 +1836 6 8 14.1 14.1 13.4 1 +1836 6 9 15.6 15.6 14.9 1 +1836 6 10 15.9 15.9 15.2 1 +1836 6 11 18.4 18.4 17.7 1 +1836 6 12 19.2 19.2 18.5 1 +1836 6 13 15.2 15.2 14.5 1 +1836 6 14 16.2 16.2 15.5 1 +1836 6 15 18.9 18.9 18.2 1 +1836 6 16 17.9 17.9 17.2 1 +1836 6 17 17.0 17.0 16.3 1 +1836 6 18 18.7 18.7 18.0 1 +1836 6 19 15.8 15.8 15.1 1 +1836 6 20 7.5 7.5 6.8 1 +1836 6 21 9.4 9.4 8.7 1 +1836 6 22 10.4 10.4 9.7 1 +1836 6 23 12.9 12.9 12.2 1 +1836 6 24 16.2 16.2 15.5 1 +1836 6 25 15.7 15.7 15.0 1 +1836 6 26 13.6 13.6 12.9 1 +1836 6 27 12.9 12.9 12.2 1 +1836 6 28 14.3 14.3 13.6 1 +1836 6 29 16.0 16.0 15.3 1 +1836 6 30 10.4 10.4 9.7 1 +1836 7 1 12.0 12.0 11.3 1 +1836 7 2 15.2 15.2 14.5 1 +1836 7 3 13.7 13.7 13.0 1 +1836 7 4 12.6 12.6 11.9 1 +1836 7 5 13.6 13.6 12.9 1 +1836 7 6 14.4 14.4 13.7 1 +1836 7 7 17.2 17.2 16.5 1 +1836 7 8 20.2 20.2 19.5 1 +1836 7 9 15.7 15.7 15.0 1 +1836 7 10 13.5 13.5 12.8 1 +1836 7 11 13.3 13.3 12.6 1 +1836 7 12 14.5 14.5 13.8 1 +1836 7 13 15.3 15.3 14.6 1 +1836 7 14 16.4 16.4 15.7 1 +1836 7 15 16.0 16.0 15.3 1 +1836 7 16 15.2 15.2 14.5 1 +1836 7 17 15.3 15.3 14.6 1 +1836 7 18 12.7 12.7 12.0 1 +1836 7 19 13.6 13.6 12.9 1 +1836 7 20 13.5 13.5 12.8 1 +1836 7 21 13.9 13.9 13.2 1 +1836 7 22 14.1 14.1 13.4 1 +1836 7 23 15.3 15.3 14.6 1 +1836 7 24 12.5 12.5 11.8 1 +1836 7 25 14.7 14.7 14.0 1 +1836 7 26 15.7 15.7 15.0 1 +1836 7 27 17.2 17.2 16.5 1 +1836 7 28 17.0 17.0 16.3 1 +1836 7 29 19.3 19.3 18.6 1 +1836 7 30 19.4 19.4 18.7 1 +1836 7 31 16.4 16.4 15.7 1 +1836 8 1 14.8 14.8 14.2 1 +1836 8 2 14.8 14.8 14.2 1 +1836 8 3 13.7 13.7 13.1 1 +1836 8 4 12.3 12.3 11.7 1 +1836 8 5 11.5 11.5 11.0 1 +1836 8 6 13.3 13.3 12.8 1 +1836 8 7 14.6 14.6 14.1 1 +1836 8 8 14.7 14.7 14.2 1 +1836 8 9 16.7 16.7 16.2 1 +1836 8 10 14.4 14.4 14.0 1 +1836 8 11 14.3 14.3 13.9 1 +1836 8 12 15.8 15.8 15.4 1 +1836 8 13 15.9 15.9 15.5 1 +1836 8 14 15.9 15.9 15.6 1 +1836 8 15 17.2 17.2 16.9 1 +1836 8 16 12.8 12.8 12.5 1 +1836 8 17 13.9 13.9 13.6 1 +1836 8 18 14.5 14.5 14.2 1 +1836 8 19 15.0 15.0 14.8 1 +1836 8 20 12.9 12.9 12.7 1 +1836 8 21 14.3 14.3 14.1 1 +1836 8 22 13.6 13.6 13.4 1 +1836 8 23 13.7 13.7 13.6 1 +1836 8 24 11.2 11.2 11.1 1 +1836 8 25 12.2 12.2 12.1 1 +1836 8 26 12.6 12.6 12.5 1 +1836 8 27 12.8 12.8 12.7 1 +1836 8 28 12.7 12.7 12.7 1 +1836 8 29 12.2 12.2 12.2 1 +1836 8 30 9.4 9.4 9.4 1 +1836 8 31 10.2 10.2 10.2 1 +1836 9 1 13.1 13.1 13.1 1 +1836 9 2 14.2 14.2 14.2 1 +1836 9 3 12.2 12.2 12.2 1 +1836 9 4 11.5 11.5 11.5 1 +1836 9 5 14.2 14.2 14.2 1 +1836 9 6 13.1 13.1 13.1 1 +1836 9 7 12.6 12.6 12.6 1 +1836 9 8 11.4 11.4 11.4 1 +1836 9 9 13.2 13.2 13.2 1 +1836 9 10 10.1 10.1 10.1 1 +1836 9 11 9.6 9.6 9.6 1 +1836 9 12 8.9 8.9 8.9 1 +1836 9 13 8.4 8.4 8.4 1 +1836 9 14 8.2 8.2 8.2 1 +1836 9 15 9.1 9.1 9.1 1 +1836 9 16 10.2 10.2 10.2 1 +1836 9 17 9.8 9.8 9.8 1 +1836 9 18 9.5 9.5 9.5 1 +1836 9 19 6.1 6.1 6.1 1 +1836 9 20 3.4 3.4 3.4 1 +1836 9 21 1.8 1.8 1.8 1 +1836 9 22 3.1 3.1 3.1 1 +1836 9 23 4.6 4.6 4.6 1 +1836 9 24 5.3 5.3 5.3 1 +1836 9 25 6.4 6.4 6.4 1 +1836 9 26 6.3 6.3 6.3 1 +1836 9 27 3.3 3.3 3.3 1 +1836 9 28 3.8 3.8 3.8 1 +1836 9 29 9.2 9.2 9.2 1 +1836 9 30 11.5 11.5 11.5 1 +1836 10 1 9.5 9.5 9.5 1 +1836 10 2 9.2 9.2 9.2 1 +1836 10 3 6.9 6.9 6.9 1 +1836 10 4 9.2 9.2 9.2 1 +1836 10 5 7.5 7.5 7.5 1 +1836 10 6 7.8 7.8 7.8 1 +1836 10 7 9.4 9.4 9.4 1 +1836 10 8 10.3 10.3 10.3 1 +1836 10 9 10.2 10.2 10.2 1 +1836 10 10 8.9 8.9 8.9 1 +1836 10 11 10.4 10.4 10.4 1 +1836 10 12 11.4 11.4 11.4 1 +1836 10 13 10.9 10.9 10.9 1 +1836 10 14 10.9 10.9 10.9 1 +1836 10 15 10.2 10.2 10.2 1 +1836 10 16 10.1 10.1 10.1 1 +1836 10 17 7.8 7.8 7.8 1 +1836 10 18 5.8 5.8 5.8 1 +1836 10 19 7.8 7.8 7.8 1 +1836 10 20 6.5 6.5 6.5 1 +1836 10 21 6.1 6.1 6.1 1 +1836 10 22 4.6 4.6 4.6 1 +1836 10 23 6.0 6.0 6.0 1 +1836 10 24 7.6 7.6 7.6 1 +1836 10 25 6.6 6.6 6.6 1 +1836 10 26 4.7 4.7 4.7 1 +1836 10 27 0.7 0.7 0.7 1 +1836 10 28 -2.8 -2.8 -2.8 1 +1836 10 29 -5.7 -5.7 -5.7 1 +1836 10 30 -2.5 -2.5 -2.5 1 +1836 10 31 -3.5 -3.5 -3.5 1 +1836 11 1 -3.1 -3.1 -3.1 1 +1836 11 2 2.3 2.3 2.3 1 +1836 11 3 3.4 3.4 3.4 1 +1836 11 4 3.2 3.2 3.2 1 +1836 11 5 3.1 3.1 3.1 1 +1836 11 6 1.4 1.4 1.4 1 +1836 11 7 1.8 1.8 1.8 1 +1836 11 8 0.6 0.6 0.6 1 +1836 11 9 -2.5 -2.5 -2.5 1 +1836 11 10 -2.4 -2.4 -2.4 1 +1836 11 11 0.3 0.3 0.3 1 +1836 11 12 1.9 1.9 1.9 1 +1836 11 13 2.2 2.2 2.2 1 +1836 11 14 4.5 4.5 4.5 1 +1836 11 15 3.9 3.9 3.9 1 +1836 11 16 2.3 2.3 2.3 1 +1836 11 17 3.2 3.2 3.2 1 +1836 11 18 2.3 2.3 2.3 1 +1836 11 19 1.0 1.0 1.0 1 +1836 11 20 0.7 0.7 0.7 1 +1836 11 21 -1.8 -1.8 -1.8 1 +1836 11 22 -3.0 -3.0 -3.0 1 +1836 11 23 -3.1 -3.1 -3.1 1 +1836 11 24 -2.1 -2.1 -2.1 1 +1836 11 25 -3.3 -3.3 -3.3 1 +1836 11 26 -6.8 -6.8 -6.8 1 +1836 11 27 -8.1 -8.1 -8.1 1 +1836 11 28 -1.3 -1.3 -1.3 1 +1836 11 29 3.7 3.7 3.7 1 +1836 11 30 -2.2 -2.2 -2.2 1 +1836 12 1 -3.3 -3.3 -3.3 1 +1836 12 2 -1.7 -1.7 -1.7 1 +1836 12 3 3.8 3.8 3.8 1 +1836 12 4 3.1 3.1 3.1 1 +1836 12 5 -2.1 -2.1 -2.1 1 +1836 12 6 -4.0 -4.0 -4.0 1 +1836 12 7 -5.3 -5.3 -5.3 1 +1836 12 8 3.3 3.3 3.3 1 +1836 12 9 2.2 2.2 2.2 1 +1836 12 10 1.1 1.1 1.1 1 +1836 12 11 -2.1 -2.1 -2.1 1 +1836 12 12 -3.2 -3.2 -3.2 1 +1836 12 13 -2.7 -2.7 -2.7 1 +1836 12 14 2.2 2.2 2.2 1 +1836 12 15 0.3 0.3 0.3 1 +1836 12 16 -4.7 -4.7 -4.7 1 +1836 12 17 -1.1 -1.1 -1.1 1 +1836 12 18 2.3 2.3 2.3 1 +1836 12 19 4.9 4.9 4.9 1 +1836 12 20 3.3 3.3 3.3 1 +1836 12 21 -1.3 -1.3 -1.3 1 +1836 12 22 -3.5 -3.5 -3.5 1 +1836 12 23 -5.8 -5.8 -5.8 1 +1836 12 24 -11.1 -11.1 -11.1 1 +1836 12 25 -14.3 -14.3 -14.3 1 +1836 12 26 -11.6 -11.6 -11.6 1 +1836 12 27 -9.2 -9.2 -9.2 1 +1836 12 28 -6.9 -6.9 -6.9 1 +1836 12 29 -5.5 -5.5 -5.5 1 +1836 12 30 -7.8 -7.8 -7.8 1 +1836 12 31 -9.3 -9.3 -9.3 1 +1837 1 1 -10.4 -10.4 -10.4 1 +1837 1 2 -5.9 -5.9 -5.9 1 +1837 1 3 -9.9 -9.9 -9.9 1 +1837 1 4 -11.5 -11.5 -11.5 1 +1837 1 5 -10.0 -10.0 -10.0 1 +1837 1 6 -2.4 -2.4 -2.4 1 +1837 1 7 -0.8 -0.8 -0.8 1 +1837 1 8 -3.9 -3.9 -3.9 1 +1837 1 9 -1.4 -1.4 -1.4 1 +1837 1 10 -4.5 -4.5 -4.5 1 +1837 1 11 -8.3 -8.3 -8.3 1 +1837 1 12 -11.5 -11.5 -11.5 1 +1837 1 13 -13.0 -13.0 -13.0 1 +1837 1 14 -9.4 -9.4 -9.4 1 +1837 1 15 -8.5 -8.5 -8.5 1 +1837 1 16 0.0 0.0 0.0 1 +1837 1 17 -2.9 -2.9 -2.9 1 +1837 1 18 2.2 2.2 2.2 1 +1837 1 19 -1.0 -1.0 -1.0 1 +1837 1 20 -0.1 -0.1 -0.1 1 +1837 1 21 -0.2 -0.2 -0.2 1 +1837 1 22 -0.4 -0.4 -0.4 1 +1837 1 23 0.2 0.2 0.2 1 +1837 1 24 0.3 0.3 0.3 1 +1837 1 25 -1.0 -1.0 -1.0 1 +1837 1 26 -5.0 -5.0 -5.0 1 +1837 1 27 -6.5 -6.5 -6.5 1 +1837 1 28 -7.2 -7.2 -7.2 1 +1837 1 29 -10.9 -10.9 -10.9 1 +1837 1 30 -6.7 -6.7 -6.7 1 +1837 1 31 -9.8 -9.8 -9.8 1 +1837 2 1 -10.8 -10.8 -10.8 1 +1837 2 2 -5.3 -5.3 -5.3 1 +1837 2 3 -3.8 -3.8 -3.8 1 +1837 2 4 -1.3 -1.3 -1.3 1 +1837 2 5 -2.3 -2.3 -2.3 1 +1837 2 6 -2.8 -2.8 -2.8 1 +1837 2 7 -5.3 -5.3 -5.3 1 +1837 2 8 -1.1 -1.1 -1.1 1 +1837 2 9 -2.2 -2.2 -2.2 1 +1837 2 10 -0.4 -0.4 -0.4 1 +1837 2 11 -0.3 -0.3 -0.3 1 +1837 2 12 -0.5 -0.5 -0.5 1 +1837 2 13 0.0 0.0 0.0 1 +1837 2 14 0.4 0.4 0.4 1 +1837 2 15 -1.7 -1.7 -1.7 1 +1837 2 16 0.0 0.0 0.0 1 +1837 2 17 2.8 2.8 2.8 1 +1837 2 18 0.5 0.5 0.5 1 +1837 2 19 -0.5 -0.5 -0.5 1 +1837 2 20 0.6 0.6 0.6 1 +1837 2 21 1.6 1.6 1.6 1 +1837 2 22 1.9 1.9 1.9 1 +1837 2 23 1.2 1.2 1.2 1 +1837 2 24 0.2 0.2 0.2 1 +1837 2 25 -0.8 -0.8 -0.8 1 +1837 2 26 -1.7 -1.7 -1.7 1 +1837 2 27 -3.0 -3.0 -3.0 1 +1837 2 28 -1.6 -1.6 -1.6 1 +1837 3 1 -2.1 -2.1 -2.1 1 +1837 3 2 -2.8 -2.8 -2.8 1 +1837 3 3 -2.0 -2.0 -2.0 1 +1837 3 4 -5.5 -5.5 -5.5 1 +1837 3 5 -9.8 -9.8 -9.8 1 +1837 3 6 -8.7 -8.7 -8.7 1 +1837 3 7 -7.1 -7.1 -7.1 1 +1837 3 8 -5.0 -5.0 -5.0 1 +1837 3 9 0.7 0.7 0.7 1 +1837 3 10 -0.3 -0.3 -0.3 1 +1837 3 11 2.1 2.1 2.1 1 +1837 3 12 1.5 1.5 1.5 1 +1837 3 13 0.4 0.4 0.4 1 +1837 3 14 -2.1 -2.1 -2.1 1 +1837 3 15 -1.4 -1.4 -1.4 1 +1837 3 16 0.1 0.1 0.1 1 +1837 3 17 -0.7 -0.7 -0.7 1 +1837 3 18 -2.0 -2.0 -2.0 1 +1837 3 19 -5.4 -5.4 -5.4 1 +1837 3 20 -9.3 -9.3 -9.3 1 +1837 3 21 -10.8 -10.8 -10.8 1 +1837 3 22 -11.4 -11.4 -11.4 1 +1837 3 23 -10.2 -10.2 -10.2 1 +1837 3 24 -5.6 -5.6 -5.6 1 +1837 3 25 -3.5 -3.5 -3.5 1 +1837 3 26 -1.5 -1.5 -1.5 1 +1837 3 27 -1.1 -1.1 -1.1 1 +1837 3 28 -1.7 -1.7 -1.7 1 +1837 3 29 -6.8 -6.8 -6.8 1 +1837 3 30 -5.9 -5.9 -5.9 1 +1837 3 31 -6.1 -6.1 -6.1 1 +1837 4 1 -7.3 -7.3 -7.3 1 +1837 4 2 -6.9 -6.9 -6.9 1 +1837 4 3 -6.8 -6.8 -6.8 1 +1837 4 4 -4.1 -4.1 -4.1 1 +1837 4 5 -3.4 -3.4 -3.4 1 +1837 4 6 -4.5 -4.5 -4.5 1 +1837 4 7 -7.2 -7.2 -7.2 1 +1837 4 8 -7.5 -7.5 -7.5 1 +1837 4 9 -5.4 -5.4 -5.4 1 +1837 4 10 -4.2 -4.2 -4.2 1 +1837 4 11 -2.9 -2.9 -2.9 1 +1837 4 12 0.0 0.0 0.0 1 +1837 4 13 0.9 0.9 0.9 1 +1837 4 14 2.4 2.4 2.4 1 +1837 4 15 2.4 2.4 2.4 1 +1837 4 16 1.6 1.6 1.6 1 +1837 4 17 3.2 3.2 3.2 1 +1837 4 18 2.9 2.9 2.9 1 +1837 4 19 2.4 2.4 2.4 1 +1837 4 20 3.8 3.8 3.8 1 +1837 4 21 5.9 5.9 5.9 1 +1837 4 22 3.8 3.8 3.8 1 +1837 4 23 5.5 5.5 5.5 1 +1837 4 24 7.0 7.0 7.0 1 +1837 4 25 8.1 8.1 8.1 1 +1837 4 26 7.9 7.9 7.9 1 +1837 4 27 7.3 7.3 7.3 1 +1837 4 28 4.7 4.7 4.7 1 +1837 4 29 5.7 5.7 5.7 1 +1837 4 30 5.5 5.5 5.5 1 +1837 5 1 6.9 6.9 6.9 1 +1837 5 2 7.6 7.6 7.6 1 +1837 5 3 6.8 6.8 6.8 1 +1837 5 4 5.0 5.0 5.0 1 +1837 5 5 4.0 4.0 3.9 1 +1837 5 6 5.5 5.5 5.4 1 +1837 5 7 3.3 3.3 3.2 1 +1837 5 8 4.0 4.0 3.9 1 +1837 5 9 3.2 3.2 3.1 1 +1837 5 10 4.2 4.2 4.0 1 +1837 5 11 4.3 4.3 4.1 1 +1837 5 12 6.3 6.3 6.1 1 +1837 5 13 7.2 7.2 7.0 1 +1837 5 14 6.5 6.5 6.2 1 +1837 5 15 7.8 7.8 7.5 1 +1837 5 16 11.2 11.2 10.9 1 +1837 5 17 8.9 8.9 8.6 1 +1837 5 18 5.5 5.5 5.2 1 +1837 5 19 4.2 4.2 3.8 1 +1837 5 20 5.6 5.6 5.2 1 +1837 5 21 5.7 5.7 5.3 1 +1837 5 22 5.5 5.5 5.1 1 +1837 5 23 7.7 7.7 7.2 1 +1837 5 24 8.1 8.1 7.6 1 +1837 5 25 9.5 9.5 9.0 1 +1837 5 26 11.6 11.6 11.1 1 +1837 5 27 11.8 11.8 11.3 1 +1837 5 28 13.8 13.8 13.2 1 +1837 5 29 15.3 15.3 14.7 1 +1837 5 30 15.3 15.3 14.7 1 +1837 5 31 12.5 12.5 11.9 1 +1837 6 1 9.6 9.6 8.9 1 +1837 6 2 10.8 10.8 10.1 1 +1837 6 3 3.4 3.4 2.7 1 +1837 6 4 1.4 1.4 0.7 1 +1837 6 5 4.3 4.3 3.6 1 +1837 6 6 5.2 5.2 4.5 1 +1837 6 7 5.4 5.4 4.7 1 +1837 6 8 7.0 7.0 6.3 1 +1837 6 9 10.1 10.1 9.4 1 +1837 6 10 11.3 11.3 10.6 1 +1837 6 11 11.0 11.0 10.3 1 +1837 6 12 13.2 13.2 12.5 1 +1837 6 13 13.7 13.7 13.0 1 +1837 6 14 11.6 11.6 10.9 1 +1837 6 15 10.5 10.5 9.8 1 +1837 6 16 13.0 13.0 12.3 1 +1837 6 17 13.3 13.3 12.6 1 +1837 6 18 15.7 15.7 15.0 1 +1837 6 19 17.7 17.7 17.0 1 +1837 6 20 20.6 20.6 19.9 1 +1837 6 21 21.3 21.3 20.6 1 +1837 6 22 21.5 21.5 20.8 1 +1837 6 23 21.1 21.1 20.4 1 +1837 6 24 21.6 21.6 20.9 1 +1837 6 25 23.2 23.2 22.5 1 +1837 6 26 14.6 14.6 13.9 1 +1837 6 27 12.4 12.4 11.7 1 +1837 6 28 16.5 16.5 15.8 1 +1837 6 29 14.3 14.3 13.6 1 +1837 6 30 11.3 11.3 10.6 1 +1837 7 1 9.1 9.1 8.4 1 +1837 7 2 9.0 9.0 8.3 1 +1837 7 3 7.8 7.8 7.1 1 +1837 7 4 8.6 8.6 7.9 1 +1837 7 5 12.3 12.3 11.6 1 +1837 7 6 13.4 13.4 12.7 1 +1837 7 7 13.0 13.0 12.3 1 +1837 7 8 12.0 12.0 11.3 1 +1837 7 9 13.6 13.6 12.9 1 +1837 7 10 15.0 15.0 14.3 1 +1837 7 11 11.9 11.9 11.2 1 +1837 7 12 10.6 10.6 9.9 1 +1837 7 13 11.4 11.4 10.7 1 +1837 7 14 15.9 15.9 15.2 1 +1837 7 15 15.6 15.6 14.9 1 +1837 7 16 15.1 15.1 14.4 1 +1837 7 17 15.3 15.3 14.6 1 +1837 7 18 15.9 15.9 15.2 1 +1837 7 19 18.8 18.8 18.1 1 +1837 7 20 19.2 19.2 18.5 1 +1837 7 21 21.8 21.8 21.1 1 +1837 7 22 20.3 20.3 19.6 1 +1837 7 23 21.0 21.0 20.3 1 +1837 7 24 11.8 11.8 11.1 1 +1837 7 25 12.0 12.0 11.3 1 +1837 7 26 13.8 13.8 13.1 1 +1837 7 27 14.7 14.7 14.0 1 +1837 7 28 18.4 18.4 17.7 1 +1837 7 29 17.9 17.9 17.2 1 +1837 7 30 17.9 17.9 17.2 1 +1837 7 31 16.7 16.7 16.0 1 +1837 8 1 14.9 14.9 14.3 1 +1837 8 2 12.6 12.6 12.0 1 +1837 8 3 16.6 16.6 16.0 1 +1837 8 4 19.2 19.2 18.6 1 +1837 8 5 19.6 19.6 19.1 1 +1837 8 6 17.5 17.5 17.0 1 +1837 8 7 16.2 16.2 15.7 1 +1837 8 8 17.3 17.3 16.8 1 +1837 8 9 19.2 19.2 18.7 1 +1837 8 10 19.2 19.2 18.8 1 +1837 8 11 18.5 18.5 18.1 1 +1837 8 12 19.2 19.2 18.8 1 +1837 8 13 20.5 20.5 20.1 1 +1837 8 14 18.0 18.0 17.7 1 +1837 8 15 16.9 16.9 16.6 1 +1837 8 16 17.9 17.9 17.6 1 +1837 8 17 17.1 17.1 16.8 1 +1837 8 18 18.6 18.6 18.3 1 +1837 8 19 22.2 22.2 22.0 1 +1837 8 20 17.2 17.2 17.0 1 +1837 8 21 18.3 18.3 18.1 1 +1837 8 22 16.3 16.3 16.1 1 +1837 8 23 14.7 14.7 14.6 1 +1837 8 24 11.1 11.1 11.0 1 +1837 8 25 10.1 10.1 10.0 1 +1837 8 26 9.5 9.5 9.4 1 +1837 8 27 10.5 10.5 10.4 1 +1837 8 28 6.8 6.8 6.8 1 +1837 8 29 10.8 10.8 10.8 1 +1837 8 30 11.6 11.6 11.6 1 +1837 8 31 12.4 12.4 12.4 1 +1837 9 1 12.5 12.5 12.5 1 +1837 9 2 10.9 10.9 10.9 1 +1837 9 3 9.9 9.9 9.9 1 +1837 9 4 9.2 9.2 9.2 1 +1837 9 5 7.8 7.8 7.8 1 +1837 9 6 8.6 8.6 8.6 1 +1837 9 7 9.3 9.3 9.3 1 +1837 9 8 13.6 13.6 13.6 1 +1837 9 9 11.4 11.4 11.4 1 +1837 9 10 13.1 13.1 13.1 1 +1837 9 11 13.0 13.0 13.0 1 +1837 9 12 11.2 11.2 11.2 1 +1837 9 13 12.4 12.4 12.4 1 +1837 9 14 13.3 13.3 13.3 1 +1837 9 15 13.9 13.9 13.9 1 +1837 9 16 11.2 11.2 11.2 1 +1837 9 17 10.7 10.7 10.7 1 +1837 9 18 9.6 9.6 9.6 1 +1837 9 19 11.1 11.1 11.1 1 +1837 9 20 10.7 10.7 10.7 1 +1837 9 21 9.4 9.4 9.4 1 +1837 9 22 8.3 8.3 8.3 1 +1837 9 23 6.2 6.2 6.2 1 +1837 9 24 6.9 6.9 6.9 1 +1837 9 25 10.4 10.4 10.4 1 +1837 9 26 8.3 8.3 8.3 1 +1837 9 27 8.3 8.3 8.3 1 +1837 9 28 9.4 9.4 9.4 1 +1837 9 29 7.7 7.7 7.7 1 +1837 9 30 5.2 5.2 5.2 1 +1837 10 1 3.0 3.0 3.0 1 +1837 10 2 5.2 5.2 5.2 1 +1837 10 3 6.8 6.8 6.8 1 +1837 10 4 9.1 9.1 9.1 1 +1837 10 5 11.1 11.1 11.1 1 +1837 10 6 5.1 5.1 5.1 1 +1837 10 7 8.0 8.0 8.0 1 +1837 10 8 9.6 9.6 9.6 1 +1837 10 9 8.9 8.9 8.9 1 +1837 10 10 8.7 8.7 8.7 1 +1837 10 11 11.7 11.7 11.7 1 +1837 10 12 9.8 9.8 9.8 1 +1837 10 13 5.2 5.2 5.2 1 +1837 10 14 5.1 5.1 5.1 1 +1837 10 15 8.7 8.7 8.7 1 +1837 10 16 6.5 6.5 6.5 1 +1837 10 17 6.8 6.8 6.8 1 +1837 10 18 5.2 5.2 5.2 1 +1837 10 19 3.9 3.9 3.9 1 +1837 10 20 8.3 8.3 8.3 1 +1837 10 21 3.7 3.7 3.7 1 +1837 10 22 6.1 6.1 6.1 1 +1837 10 23 6.7 6.7 6.7 1 +1837 10 24 4.1 4.1 4.1 1 +1837 10 25 1.5 1.5 1.5 1 +1837 10 26 1.8 1.8 1.8 1 +1837 10 27 7.7 7.7 7.7 1 +1837 10 28 6.0 6.0 6.0 1 +1837 10 29 6.7 6.7 6.7 1 +1837 10 30 6.8 6.8 6.8 1 +1837 10 31 6.6 6.6 6.6 1 +1837 11 1 5.5 5.5 5.5 1 +1837 11 2 5.6 5.6 5.6 1 +1837 11 3 4.0 4.0 4.0 1 +1837 11 4 3.9 3.9 3.9 1 +1837 11 5 3.6 3.6 3.6 1 +1837 11 6 2.1 2.1 2.1 1 +1837 11 7 3.1 3.1 3.1 1 +1837 11 8 7.4 7.4 7.4 1 +1837 11 9 5.2 5.2 5.2 1 +1837 11 10 2.4 2.4 2.4 1 +1837 11 11 4.6 4.6 4.6 1 +1837 11 12 4.5 4.5 4.5 1 +1837 11 13 2.2 2.2 2.2 1 +1837 11 14 0.4 0.4 0.4 1 +1837 11 15 -2.5 -2.5 -2.5 1 +1837 11 16 -0.3 -0.3 -0.3 1 +1837 11 17 -2.1 -2.1 -2.1 1 +1837 11 18 -1.3 -1.3 -1.3 1 +1837 11 19 1.2 1.2 1.2 1 +1837 11 20 2.2 2.2 2.2 1 +1837 11 21 2.2 2.2 2.2 1 +1837 11 22 0.7 0.7 0.7 1 +1837 11 23 3.6 3.6 3.6 1 +1837 11 24 5.3 5.3 5.3 1 +1837 11 25 1.8 1.8 1.8 1 +1837 11 26 0.4 0.4 0.4 1 +1837 11 27 3.0 3.0 3.0 1 +1837 11 28 2.1 2.1 2.1 1 +1837 11 29 1.8 1.8 1.8 1 +1837 11 30 0.1 0.1 0.1 1 +1837 12 1 1.4 1.4 1.4 1 +1837 12 2 2.3 2.3 2.3 1 +1837 12 3 0.3 0.3 0.3 1 +1837 12 4 2.8 2.8 2.8 1 +1837 12 5 1.9 1.9 1.9 1 +1837 12 6 1.8 1.8 1.8 1 +1837 12 7 0.5 0.5 0.5 1 +1837 12 8 -1.2 -1.2 -1.2 1 +1837 12 9 -3.5 -3.5 -3.5 1 +1837 12 10 -8.2 -8.2 -8.2 1 +1837 12 11 -3.1 -3.1 -3.1 1 +1837 12 12 -2.2 -2.2 -2.2 1 +1837 12 13 -7.7 -7.7 -7.7 1 +1837 12 14 -1.1 -1.1 -1.1 1 +1837 12 15 1.6 1.6 1.6 1 +1837 12 16 3.1 3.1 3.1 1 +1837 12 17 2.8 2.8 2.8 1 +1837 12 18 3.5 3.5 3.5 1 +1837 12 19 2.1 2.1 2.1 1 +1837 12 20 -5.3 -5.3 -5.3 1 +1837 12 21 -10.5 -10.5 -10.5 1 +1837 12 22 -11.3 -11.3 -11.3 1 +1837 12 23 -3.7 -3.7 -3.7 1 +1837 12 24 -2.1 -2.1 -2.1 1 +1837 12 25 -2.7 -2.7 -2.7 1 +1837 12 26 -2.4 -2.4 -2.4 1 +1837 12 27 -2.7 -2.7 -2.7 1 +1837 12 28 -1.1 -1.1 -1.1 1 +1837 12 29 -2.0 -2.0 -2.0 1 +1837 12 30 -4.2 -4.2 -4.2 1 +1837 12 31 -3.7 -3.7 -3.7 1 +1838 1 1 -0.7 -0.7 -0.7 1 +1838 1 2 -0.2 -0.2 -0.2 1 +1838 1 3 -1.8 -1.8 -1.8 1 +1838 1 4 -2.1 -2.1 -2.1 1 +1838 1 5 -2.3 -2.3 -2.3 1 +1838 1 6 -4.1 -4.1 -4.1 1 +1838 1 7 -7.8 -7.8 -7.8 1 +1838 1 8 -7.5 -7.5 -7.5 1 +1838 1 9 -11.9 -11.9 -11.9 1 +1838 1 10 -7.4 -7.4 -7.4 1 +1838 1 11 -4.4 -4.4 -4.4 1 +1838 1 12 -5.1 -5.1 -5.1 1 +1838 1 13 -5.9 -5.9 -5.9 1 +1838 1 14 -3.6 -3.6 -3.6 1 +1838 1 15 -5.7 -5.7 -5.7 1 +1838 1 16 -7.0 -7.0 -7.0 1 +1838 1 17 -8.4 -8.4 -8.4 1 +1838 1 18 -12.6 -12.6 -12.6 1 +1838 1 19 -10.7 -10.7 -10.7 1 +1838 1 20 -4.8 -4.8 -4.8 1 +1838 1 21 -4.6 -4.6 -4.6 1 +1838 1 22 -7.0 -7.0 -7.0 1 +1838 1 23 -8.6 -8.6 -8.6 1 +1838 1 24 -8.7 -8.7 -8.7 1 +1838 1 25 -11.7 -11.7 -11.7 1 +1838 1 26 -12.8 -12.8 -12.8 1 +1838 1 27 -10.2 -10.2 -10.2 1 +1838 1 28 -16.1 -16.1 -16.1 1 +1838 1 29 -12.0 -12.0 -12.0 1 +1838 1 30 -14.5 -14.5 -14.5 1 +1838 1 31 -20.9 -20.9 -20.9 1 +1838 2 1 -15.2 -15.2 -15.2 1 +1838 2 2 -12.5 -12.5 -12.5 1 +1838 2 3 -11.9 -11.9 -11.9 1 +1838 2 4 -7.6 -7.6 -7.6 1 +1838 2 5 -3.3 -3.3 -3.3 1 +1838 2 6 -1.0 -1.0 -1.0 1 +1838 2 7 -4.5 -4.5 -4.5 1 +1838 2 8 -7.5 -7.5 -7.5 1 +1838 2 9 -5.9 -5.9 -5.9 1 +1838 2 10 -12.8 -12.8 -12.8 1 +1838 2 11 -15.6 -15.6 -15.6 1 +1838 2 12 -18.8 -18.8 -18.8 1 +1838 2 13 -10.6 -10.6 -10.6 1 +1838 2 14 -15.1 -15.1 -15.1 1 +1838 2 15 -16.9 -16.9 -16.9 1 +1838 2 16 -17.2 -17.2 -17.2 1 +1838 2 17 -15.1 -15.1 -15.1 1 +1838 2 18 -16.9 -16.9 -16.9 1 +1838 2 19 -14.8 -14.8 -14.8 1 +1838 2 20 -9.5 -9.5 -9.5 1 +1838 2 21 -8.9 -8.9 -8.9 1 +1838 2 22 -9.2 -9.2 -9.2 1 +1838 2 23 -13.9 -13.9 -13.9 1 +1838 2 24 -13.3 -13.3 -13.3 1 +1838 2 25 -14.9 -14.9 -14.9 1 +1838 2 26 -12.0 -12.0 -12.0 1 +1838 2 27 -12.8 -12.8 -12.8 1 +1838 2 28 -9.6 -9.6 -9.6 1 +1838 3 1 -10.1 -10.1 -10.1 1 +1838 3 2 -9.3 -9.3 -9.3 1 +1838 3 3 -8.3 -8.3 -8.3 1 +1838 3 4 -7.9 -7.9 -7.9 1 +1838 3 5 -6.6 -6.6 -6.6 1 +1838 3 6 -2.6 -2.6 -2.6 1 +1838 3 7 -0.6 -0.6 -0.6 1 +1838 3 8 -0.9 -0.9 -0.9 1 +1838 3 9 -1.8 -1.8 -1.8 1 +1838 3 10 -7.7 -7.7 -7.7 1 +1838 3 11 -3.5 -3.5 -3.5 1 +1838 3 12 -6.3 -6.3 -6.3 1 +1838 3 13 -5.9 -5.9 -5.9 1 +1838 3 14 -3.2 -3.2 -3.2 1 +1838 3 15 -0.7 -0.7 -0.7 1 +1838 3 16 -0.6 -0.6 -0.6 1 +1838 3 17 -4.4 -4.4 -4.4 1 +1838 3 18 -3.3 -3.3 -3.3 1 +1838 3 19 -2.5 -2.5 -2.5 1 +1838 3 20 -3.9 -3.9 -3.9 1 +1838 3 21 -5.1 -5.1 -5.1 1 +1838 3 22 -6.1 -6.1 -6.1 1 +1838 3 23 -7.6 -7.6 -7.6 1 +1838 3 24 -4.9 -4.9 -4.9 1 +1838 3 25 -2.8 -2.8 -2.8 1 +1838 3 26 -3.5 -3.5 -3.5 1 +1838 3 27 -6.8 -6.8 -6.8 1 +1838 3 28 -3.8 -3.8 -3.8 1 +1838 3 29 2.9 2.9 2.9 1 +1838 3 30 -0.3 -0.3 -0.3 1 +1838 3 31 -3.5 -3.5 -3.5 1 +1838 4 1 -6.0 -6.0 -6.0 1 +1838 4 2 -5.4 -5.4 -5.4 1 +1838 4 3 -5.7 -5.7 -5.7 1 +1838 4 4 -4.8 -4.8 -4.8 1 +1838 4 5 -3.5 -3.5 -3.5 1 +1838 4 6 -5.4 -5.4 -5.4 1 +1838 4 7 -4.4 -4.4 -4.4 1 +1838 4 8 -5.3 -5.3 -5.3 1 +1838 4 9 -3.0 -3.0 -3.0 1 +1838 4 10 -0.9 -0.9 -0.9 1 +1838 4 11 2.5 2.5 2.5 1 +1838 4 12 3.7 3.7 3.7 1 +1838 4 13 3.4 3.4 3.4 1 +1838 4 14 0.6 0.6 0.6 1 +1838 4 15 0.4 0.4 0.4 1 +1838 4 16 0.8 0.8 0.8 1 +1838 4 17 0.8 0.8 0.8 1 +1838 4 18 0.1 0.1 0.1 1 +1838 4 19 0.4 0.4 0.4 1 +1838 4 20 1.1 1.1 1.1 1 +1838 4 21 0.6 0.6 0.6 1 +1838 4 22 2.5 2.5 2.5 1 +1838 4 23 1.7 1.7 1.7 1 +1838 4 24 4.8 4.8 4.8 1 +1838 4 25 5.3 5.3 5.3 1 +1838 4 26 3.9 3.9 3.9 1 +1838 4 27 0.7 0.7 0.7 1 +1838 4 28 -1.2 -1.2 -1.2 1 +1838 4 29 1.8 1.8 1.8 1 +1838 4 30 1.4 1.4 1.4 1 +1838 5 1 3.7 3.7 3.7 1 +1838 5 2 6.3 6.3 6.3 1 +1838 5 3 8.4 8.4 8.4 1 +1838 5 4 8.9 8.9 8.9 1 +1838 5 5 13.3 13.3 13.2 1 +1838 5 6 10.9 10.9 10.8 1 +1838 5 7 9.6 9.6 9.5 1 +1838 5 8 6.4 6.4 6.3 1 +1838 5 9 0.8 0.8 0.7 1 +1838 5 10 3.4 3.4 3.2 1 +1838 5 11 4.4 4.4 4.2 1 +1838 5 12 1.9 1.9 1.7 1 +1838 5 13 2.1 2.1 1.9 1 +1838 5 14 -0.1 -0.1 -0.4 1 +1838 5 15 4.1 4.1 3.8 1 +1838 5 16 4.6 4.6 4.3 1 +1838 5 17 5.3 5.3 5.0 1 +1838 5 18 6.0 6.0 5.7 1 +1838 5 19 6.0 6.0 5.6 1 +1838 5 20 8.2 8.2 7.8 1 +1838 5 21 9.0 9.0 8.6 1 +1838 5 22 9.2 9.2 8.8 1 +1838 5 23 9.8 9.8 9.3 1 +1838 5 24 10.1 10.1 9.6 1 +1838 5 25 10.9 10.9 10.4 1 +1838 5 26 11.5 11.5 11.0 1 +1838 5 27 14.6 14.6 14.1 1 +1838 5 28 14.2 14.2 13.6 1 +1838 5 29 15.0 15.0 14.4 1 +1838 5 30 12.4 12.4 11.8 1 +1838 5 31 15.1 15.1 14.5 1 +1838 6 1 6.7 6.7 6.0 1 +1838 6 2 6.3 6.3 5.6 1 +1838 6 3 11.0 11.0 10.3 1 +1838 6 4 12.5 12.5 11.8 1 +1838 6 5 12.5 12.5 11.8 1 +1838 6 6 11.8 11.8 11.1 1 +1838 6 7 10.4 10.4 9.7 1 +1838 6 8 12.8 12.8 12.1 1 +1838 6 9 14.7 14.7 14.0 1 +1838 6 10 14.9 14.9 14.2 1 +1838 6 11 15.7 15.7 15.0 1 +1838 6 12 16.9 16.9 16.2 1 +1838 6 13 19.4 19.4 18.7 1 +1838 6 14 19.5 19.5 18.8 1 +1838 6 15 17.8 17.8 17.1 1 +1838 6 16 15.7 15.7 15.0 1 +1838 6 17 13.6 13.6 12.9 1 +1838 6 18 14.2 14.2 13.5 1 +1838 6 19 16.0 16.0 15.3 1 +1838 6 20 17.6 17.6 16.9 1 +1838 6 21 14.0 14.0 13.3 1 +1838 6 22 14.2 14.2 13.5 1 +1838 6 23 12.6 12.6 11.9 1 +1838 6 24 15.1 15.1 14.4 1 +1838 6 25 14.4 14.4 13.7 1 +1838 6 26 15.9 15.9 15.2 1 +1838 6 27 19.8 19.8 19.1 1 +1838 6 28 19.1 19.1 18.4 1 +1838 6 29 20.0 20.0 19.3 1 +1838 6 30 21.8 21.8 21.1 1 +1838 7 1 20.7 20.7 20.0 1 +1838 7 2 15.0 15.0 14.3 1 +1838 7 3 16.4 16.4 15.7 1 +1838 7 4 21.0 21.0 20.3 1 +1838 7 5 19.6 19.6 18.9 1 +1838 7 6 20.0 20.0 19.3 1 +1838 7 7 15.2 15.2 14.5 1 +1838 7 8 12.1 12.1 11.4 1 +1838 7 9 14.4 14.4 13.7 1 +1838 7 10 16.2 16.2 15.5 1 +1838 7 11 17.2 17.2 16.5 1 +1838 7 12 18.8 18.8 18.1 1 +1838 7 13 19.3 19.3 18.6 1 +1838 7 14 21.1 21.1 20.4 1 +1838 7 15 19.7 19.7 19.0 1 +1838 7 16 18.9 18.9 18.2 1 +1838 7 17 13.6 13.6 12.9 1 +1838 7 18 14.1 14.1 13.4 1 +1838 7 19 15.3 15.3 14.6 1 +1838 7 20 16.5 16.5 15.8 1 +1838 7 21 18.2 18.2 17.5 1 +1838 7 22 12.1 12.1 11.4 1 +1838 7 23 11.3 11.3 10.6 1 +1838 7 24 14.1 14.1 13.4 1 +1838 7 25 15.5 15.5 14.8 1 +1838 7 26 15.0 15.0 14.3 1 +1838 7 27 15.7 15.7 15.0 1 +1838 7 28 16.5 16.5 15.8 1 +1838 7 29 14.8 14.8 14.1 1 +1838 7 30 15.8 15.8 15.1 1 +1838 7 31 15.5 15.5 14.8 1 +1838 8 1 15.6 15.6 15.0 1 +1838 8 2 16.7 16.7 16.1 1 +1838 8 3 16.9 16.9 16.3 1 +1838 8 4 17.7 17.7 17.1 1 +1838 8 5 17.6 17.6 17.1 1 +1838 8 6 16.4 16.4 15.9 1 +1838 8 7 16.3 16.3 15.8 1 +1838 8 8 15.2 15.2 14.7 1 +1838 8 9 13.9 13.9 13.4 1 +1838 8 10 14.7 14.7 14.3 1 +1838 8 11 14.7 14.7 14.3 1 +1838 8 12 16.6 16.6 16.2 1 +1838 8 13 15.3 15.3 14.9 1 +1838 8 14 13.7 13.7 13.4 1 +1838 8 15 11.8 11.8 11.5 1 +1838 8 16 12.8 12.8 12.5 1 +1838 8 17 11.9 11.9 11.6 1 +1838 8 18 11.3 11.3 11.0 1 +1838 8 19 10.7 10.7 10.5 1 +1838 8 20 11.8 11.8 11.6 1 +1838 8 21 12.2 12.2 12.0 1 +1838 8 22 13.9 13.9 13.7 1 +1838 8 23 13.8 13.8 13.7 1 +1838 8 24 15.1 15.1 15.0 1 +1838 8 25 11.9 11.9 11.8 1 +1838 8 26 12.8 12.8 12.7 1 +1838 8 27 13.2 13.2 13.1 1 +1838 8 28 13.9 13.9 13.9 1 +1838 8 29 16.5 16.5 16.5 1 +1838 8 30 15.6 15.6 15.6 1 +1838 8 31 13.3 13.3 13.3 1 +1838 9 1 12.3 12.3 12.3 1 +1838 9 2 13.1 13.1 13.1 1 +1838 9 3 12.8 12.8 12.8 1 +1838 9 4 11.5 11.5 11.5 1 +1838 9 5 11.8 11.8 11.8 1 +1838 9 6 12.7 12.7 12.7 1 +1838 9 7 15.8 15.8 15.8 1 +1838 9 8 13.8 13.8 13.8 1 +1838 9 9 14.7 14.7 14.7 1 +1838 9 10 11.3 11.3 11.3 1 +1838 9 11 11.2 11.2 11.2 1 +1838 9 12 11.4 11.4 11.4 1 +1838 9 13 12.6 12.6 12.6 1 +1838 9 14 13.9 13.9 13.9 1 +1838 9 15 13.4 13.4 13.4 1 +1838 9 16 14.1 14.1 14.1 1 +1838 9 17 15.8 15.8 15.8 1 +1838 9 18 14.4 14.4 14.4 1 +1838 9 19 13.3 13.3 13.3 1 +1838 9 20 11.8 11.8 11.8 1 +1838 9 21 15.0 15.0 15.0 1 +1838 9 22 15.2 15.2 15.2 1 +1838 9 23 14.9 14.9 14.9 1 +1838 9 24 13.3 13.3 13.3 1 +1838 9 25 13.8 13.8 13.8 1 +1838 9 26 14.0 14.0 14.0 1 +1838 9 27 10.9 10.9 10.9 1 +1838 9 28 11.3 11.3 11.3 1 +1838 9 29 11.7 11.7 11.7 1 +1838 9 30 10.0 10.0 10.0 1 +1838 10 1 8.4 8.4 8.4 1 +1838 10 2 9.8 9.8 9.8 1 +1838 10 3 8.2 8.2 8.2 1 +1838 10 4 8.9 8.9 8.9 1 +1838 10 5 11.3 11.3 11.3 1 +1838 10 6 6.6 6.6 6.6 1 +1838 10 7 7.8 7.8 7.8 1 +1838 10 8 4.5 4.5 4.5 1 +1838 10 9 6.1 6.1 6.1 1 +1838 10 10 7.2 7.2 7.2 1 +1838 10 11 7.2 7.2 7.2 1 +1838 10 12 6.4 6.4 6.4 1 +1838 10 13 -0.2 -0.2 -0.2 1 +1838 10 14 -0.3 -0.3 -0.3 1 +1838 10 15 4.4 4.4 4.4 1 +1838 10 16 5.6 5.6 5.6 1 +1838 10 17 4.8 4.8 4.8 1 +1838 10 18 4.6 4.6 4.6 1 +1838 10 19 1.2 1.2 1.2 1 +1838 10 20 1.2 1.2 1.2 1 +1838 10 21 2.9 2.9 2.9 1 +1838 10 22 1.5 1.5 1.5 1 +1838 10 23 1.1 1.1 1.1 1 +1838 10 24 4.0 4.0 4.0 1 +1838 10 25 2.4 2.4 2.4 1 +1838 10 26 2.3 2.3 2.3 1 +1838 10 27 1.8 1.8 1.8 1 +1838 10 28 4.6 4.6 4.6 1 +1838 10 29 5.1 5.1 5.1 1 +1838 10 30 6.9 6.9 6.9 1 +1838 10 31 4.2 4.2 4.2 1 +1838 11 1 3.9 3.9 3.9 1 +1838 11 2 5.6 5.6 5.6 1 +1838 11 3 6.1 6.1 6.1 1 +1838 11 4 6.5 6.5 6.5 1 +1838 11 5 6.6 6.6 6.6 1 +1838 11 6 7.8 7.8 7.8 1 +1838 11 7 6.0 6.0 6.0 1 +1838 11 8 6.1 6.1 6.1 1 +1838 11 9 7.2 7.2 7.2 1 +1838 11 10 6.9 6.9 6.9 1 +1838 11 11 3.6 3.6 3.6 1 +1838 11 12 -0.5 -0.5 -0.5 1 +1838 11 13 5.4 5.4 5.4 1 +1838 11 14 2.5 2.5 2.5 1 +1838 11 15 0.8 0.8 0.8 1 +1838 11 16 2.7 2.7 2.7 1 +1838 11 17 -2.4 -2.4 -2.4 1 +1838 11 18 -7.3 -7.3 -7.3 1 +1838 11 19 -5.1 -5.1 -5.1 1 +1838 11 20 -1.4 -1.4 -1.4 1 +1838 11 21 -6.0 -6.0 -6.0 1 +1838 11 22 -7.1 -7.1 -7.1 1 +1838 11 23 -6.9 -6.9 -6.9 1 +1838 11 24 -8.3 -8.3 -8.3 1 +1838 11 25 -8.1 -8.1 -8.1 1 +1838 11 26 -8.3 -8.3 -8.3 1 +1838 11 27 -4.8 -4.8 -4.8 1 +1838 11 28 -5.7 -5.7 -5.7 1 +1838 11 29 -1.7 -1.7 -1.7 1 +1838 11 30 2.9 2.9 2.9 1 +1838 12 1 2.7 2.7 2.7 1 +1838 12 2 -2.6 -2.6 -2.6 1 +1838 12 3 1.9 1.9 1.9 1 +1838 12 4 2.3 2.3 2.3 1 +1838 12 5 2.9 2.9 2.9 1 +1838 12 6 -2.7 -2.7 -2.7 1 +1838 12 7 -3.8 -3.8 -3.8 1 +1838 12 8 -3.4 -3.4 -3.4 1 +1838 12 9 -1.8 -1.8 -1.8 1 +1838 12 10 0.1 0.1 0.1 1 +1838 12 11 -2.6 -2.6 -2.6 1 +1838 12 12 -4.9 -4.9 -4.9 1 +1838 12 13 2.6 2.6 2.6 1 +1838 12 14 0.4 0.4 0.4 1 +1838 12 15 -2.7 -2.7 -2.7 1 +1838 12 16 -3.3 -3.3 -3.3 1 +1838 12 17 -3.2 -3.2 -3.2 1 +1838 12 18 -1.1 -1.1 -1.1 1 +1838 12 19 0.5 0.5 0.5 1 +1838 12 20 -1.7 -1.7 -1.7 1 +1838 12 21 -3.0 -3.0 -3.0 1 +1838 12 22 -4.9 -4.9 -4.9 1 +1838 12 23 -2.8 -2.8 -2.8 1 +1838 12 24 -0.9 -0.9 -0.9 1 +1838 12 25 -1.1 -1.1 -1.1 1 +1838 12 26 -0.3 -0.3 -0.3 1 +1838 12 27 0.5 0.5 0.5 1 +1838 12 28 -0.9 -0.9 -0.9 1 +1838 12 29 0.6 0.6 0.6 1 +1838 12 30 2.6 2.6 2.6 1 +1838 12 31 0.9 0.9 0.9 1 +1839 1 1 -2.4 -2.4 -2.4 1 +1839 1 2 -4.4 -4.4 -4.4 1 +1839 1 3 -7.5 -7.5 -7.5 1 +1839 1 4 0.8 0.8 0.8 1 +1839 1 5 -1.5 -1.5 -1.5 1 +1839 1 6 -0.4 -0.4 -0.4 1 +1839 1 7 -3.1 -3.1 -3.1 1 +1839 1 8 0.3 0.3 0.3 1 +1839 1 9 -2.1 -2.1 -2.1 1 +1839 1 10 -7.3 -7.3 -7.3 1 +1839 1 11 -2.2 -2.2 -2.2 1 +1839 1 12 1.1 1.1 1.1 1 +1839 1 13 -0.3 -0.3 -0.3 1 +1839 1 14 -1.5 -1.5 -1.5 1 +1839 1 15 -5.8 -5.8 -5.8 1 +1839 1 16 -4.1 -4.1 -4.1 1 +1839 1 17 -5.7 -5.7 -5.7 1 +1839 1 18 -8.9 -8.9 -8.9 1 +1839 1 19 -8.9 -8.9 -8.9 1 +1839 1 20 -3.7 -3.7 -3.7 1 +1839 1 21 -9.0 -9.0 -9.0 1 +1839 1 22 -11.1 -11.1 -11.1 1 +1839 1 23 -7.4 -7.4 -7.4 1 +1839 1 24 -3.7 -3.7 -3.7 1 +1839 1 25 -2.9 -2.9 -2.9 1 +1839 1 26 -4.5 -4.5 -4.5 1 +1839 1 27 -4.5 -4.5 -4.5 1 +1839 1 28 -4.3 -4.3 -4.3 1 +1839 1 29 -3.0 -3.0 -3.0 1 +1839 1 30 -4.1 -4.1 -4.1 1 +1839 1 31 -6.0 -6.0 -6.0 1 +1839 2 1 -7.2 -7.2 -7.2 1 +1839 2 2 -11.2 -11.2 -11.2 1 +1839 2 3 -10.8 -10.8 -10.8 1 +1839 2 4 -14.8 -14.8 -14.8 1 +1839 2 5 -5.0 -5.0 -5.0 1 +1839 2 6 -6.4 -6.4 -6.4 1 +1839 2 7 -0.7 -0.7 -0.7 1 +1839 2 8 -0.4 -0.4 -0.4 1 +1839 2 9 0.2 0.2 0.2 1 +1839 2 10 2.2 2.2 2.2 1 +1839 2 11 0.5 0.5 0.5 1 +1839 2 12 2.4 2.4 2.4 1 +1839 2 13 -0.1 -0.1 -0.1 1 +1839 2 14 -0.8 -0.8 -0.8 1 +1839 2 15 0.7 0.7 0.7 1 +1839 2 16 1.1 1.1 1.1 1 +1839 2 17 0.6 0.6 0.6 1 +1839 2 18 -0.1 -0.1 -0.1 1 +1839 2 19 -4.0 -4.0 -4.0 1 +1839 2 20 -7.8 -7.8 -7.8 1 +1839 2 21 -7.6 -7.6 -7.6 1 +1839 2 22 -6.6 -6.6 -6.6 1 +1839 2 23 -3.1 -3.1 -3.1 1 +1839 2 24 -4.1 -4.1 -4.1 1 +1839 2 25 -3.0 -3.0 -3.0 1 +1839 2 26 -1.7 -1.7 -1.7 1 +1839 2 27 -5.0 -5.0 -5.0 1 +1839 2 28 -3.4 -3.4 -3.4 1 +1839 3 1 -3.0 -3.0 -3.0 1 +1839 3 2 -5.5 -5.5 -5.5 1 +1839 3 3 -3.8 -3.8 -3.8 1 +1839 3 4 -6.3 -6.3 -6.3 1 +1839 3 5 -7.8 -7.8 -7.8 1 +1839 3 6 -10.5 -10.5 -10.5 1 +1839 3 7 -14.1 -14.1 -14.1 1 +1839 3 8 -12.5 -12.5 -12.5 1 +1839 3 9 -2.8 -2.8 -2.8 1 +1839 3 10 -3.1 -3.1 -3.1 1 +1839 3 11 -5.1 -5.1 -5.1 1 +1839 3 12 -11.9 -11.9 -11.9 1 +1839 3 13 -8.9 -8.9 -8.9 1 +1839 3 14 -10.9 -10.9 -10.9 1 +1839 3 15 -10.7 -10.7 -10.7 1 +1839 3 16 -5.0 -5.0 -5.0 1 +1839 3 17 -10.6 -10.6 -10.6 1 +1839 3 18 -7.6 -7.6 -7.6 1 +1839 3 19 -6.7 -6.7 -6.7 1 +1839 3 20 -3.6 -3.6 -3.6 1 +1839 3 21 -4.2 -4.2 -4.2 1 +1839 3 22 -4.3 -4.3 -4.3 1 +1839 3 23 -3.0 -3.0 -3.0 1 +1839 3 24 -3.1 -3.1 -3.1 1 +1839 3 25 0.9 0.9 0.9 1 +1839 3 26 -2.7 -2.7 -2.7 1 +1839 3 27 -4.2 -4.2 -4.2 1 +1839 3 28 -5.8 -5.8 -5.8 1 +1839 3 29 -7.4 -7.4 -7.4 1 +1839 3 30 -5.5 -5.5 -5.5 1 +1839 3 31 -2.1 -2.1 -2.1 1 +1839 4 1 -6.7 -6.7 -6.7 1 +1839 4 2 -6.5 -6.5 -6.5 1 +1839 4 3 -3.0 -3.0 -3.0 1 +1839 4 4 0.1 0.1 0.1 1 +1839 4 5 0.0 0.0 0.0 1 +1839 4 6 -0.2 -0.2 -0.2 1 +1839 4 7 -2.4 -2.4 -2.4 1 +1839 4 8 -2.0 -2.0 -2.0 1 +1839 4 9 0.7 0.7 0.7 1 +1839 4 10 4.6 4.6 4.6 1 +1839 4 11 4.5 4.5 4.5 1 +1839 4 12 0.6 0.6 0.6 1 +1839 4 13 3.4 3.4 3.4 1 +1839 4 14 -1.8 -1.8 -1.8 1 +1839 4 15 -1.3 -1.3 -1.3 1 +1839 4 16 -2.4 -2.4 -2.4 1 +1839 4 17 -4.9 -4.9 -4.9 1 +1839 4 18 -4.1 -4.1 -4.1 1 +1839 4 19 -2.7 -2.7 -2.7 1 +1839 4 20 0.1 0.1 0.1 1 +1839 4 21 1.9 1.9 1.9 1 +1839 4 22 0.6 0.6 0.6 1 +1839 4 23 1.7 1.7 1.7 1 +1839 4 24 1.4 1.4 1.4 1 +1839 4 25 1.6 1.6 1.6 1 +1839 4 26 1.0 1.0 1.0 1 +1839 4 27 1.2 1.2 1.2 1 +1839 4 28 3.5 3.5 3.5 1 +1839 4 29 6.9 6.9 6.9 1 +1839 4 30 8.6 8.6 8.6 1 +1839 5 1 9.0 9.0 9.0 1 +1839 5 2 10.7 10.7 10.7 1 +1839 5 3 8.0 8.0 8.0 1 +1839 5 4 9.1 9.1 9.1 1 +1839 5 5 8.4 8.4 8.3 1 +1839 5 6 6.5 6.5 6.4 1 +1839 5 7 6.1 6.1 6.0 1 +1839 5 8 11.6 11.6 11.5 1 +1839 5 9 13.4 13.4 13.3 1 +1839 5 10 11.3 11.3 11.1 1 +1839 5 11 8.0 8.0 7.8 1 +1839 5 12 7.8 7.8 7.6 1 +1839 5 13 6.8 6.8 6.6 1 +1839 5 14 8.4 8.4 8.1 1 +1839 5 15 9.3 9.3 9.0 1 +1839 5 16 10.9 10.9 10.6 1 +1839 5 17 10.0 10.0 9.7 1 +1839 5 18 13.5 13.5 13.2 1 +1839 5 19 14.9 14.9 14.5 1 +1839 5 20 15.9 15.9 15.5 1 +1839 5 21 13.8 13.8 13.4 1 +1839 5 22 10.9 10.9 10.5 1 +1839 5 23 11.1 11.1 10.6 1 +1839 5 24 11.2 11.2 10.7 1 +1839 5 25 10.9 10.9 10.4 1 +1839 5 26 13.8 13.8 13.3 1 +1839 5 27 15.8 15.8 15.3 1 +1839 5 28 17.1 17.1 16.5 1 +1839 5 29 16.0 16.0 15.4 1 +1839 5 30 14.6 14.6 14.0 1 +1839 5 31 11.8 11.8 11.2 1 +1839 6 1 9.4 9.4 8.7 1 +1839 6 2 9.3 9.3 8.6 1 +1839 6 3 9.8 9.8 9.1 1 +1839 6 4 10.9 10.9 10.2 1 +1839 6 5 10.1 10.1 9.4 1 +1839 6 6 13.4 13.4 12.7 1 +1839 6 7 16.4 16.4 15.7 1 +1839 6 8 18.0 18.0 17.3 1 +1839 6 9 16.6 16.6 15.9 1 +1839 6 10 16.5 16.5 15.8 1 +1839 6 11 15.5 15.5 14.8 1 +1839 6 12 13.8 13.8 13.1 1 +1839 6 13 13.3 13.3 12.6 1 +1839 6 14 11.6 11.6 10.9 1 +1839 6 15 13.3 13.3 12.6 1 +1839 6 16 12.5 12.5 11.8 1 +1839 6 17 14.5 14.5 13.8 1 +1839 6 18 22.3 22.3 21.6 1 +1839 6 19 22.4 22.4 21.7 1 +1839 6 20 19.7 19.7 19.0 1 +1839 6 21 14.9 14.9 14.2 1 +1839 6 22 16.2 16.2 15.5 1 +1839 6 23 15.4 15.4 14.7 1 +1839 6 24 14.7 14.7 14.0 1 +1839 6 25 13.9 13.9 13.2 1 +1839 6 26 14.8 14.8 14.1 1 +1839 6 27 15.2 15.2 14.5 1 +1839 6 28 18.6 18.6 17.9 1 +1839 6 29 17.7 17.7 17.0 1 +1839 6 30 14.5 14.5 13.8 1 +1839 7 1 10.5 10.5 9.8 1 +1839 7 2 11.1 11.1 10.4 1 +1839 7 3 14.6 14.6 13.9 1 +1839 7 4 16.0 16.0 15.3 1 +1839 7 5 15.5 15.5 14.8 1 +1839 7 6 16.8 16.8 16.1 1 +1839 7 7 15.4 15.4 14.7 1 +1839 7 8 19.8 19.8 19.1 1 +1839 7 9 20.2 20.2 19.5 1 +1839 7 10 22.4 22.4 21.7 1 +1839 7 11 20.8 20.8 20.1 1 +1839 7 12 21.0 21.0 20.3 1 +1839 7 13 22.4 22.4 21.7 1 +1839 7 14 17.4 17.4 16.7 1 +1839 7 15 20.2 20.2 19.5 1 +1839 7 16 19.2 19.2 18.5 1 +1839 7 17 19.2 19.2 18.5 1 +1839 7 18 18.2 18.2 17.5 1 +1839 7 19 21.3 21.3 20.6 1 +1839 7 20 22.5 22.5 21.8 1 +1839 7 21 18.2 18.2 17.5 1 +1839 7 22 19.1 19.1 18.4 1 +1839 7 23 18.4 18.4 17.7 1 +1839 7 24 18.5 18.5 17.8 1 +1839 7 25 17.1 17.1 16.4 1 +1839 7 26 17.8 17.8 17.1 1 +1839 7 27 18.2 18.2 17.5 1 +1839 7 28 18.5 18.5 17.8 1 +1839 7 29 17.1 17.1 16.4 1 +1839 7 30 16.1 16.1 15.4 1 +1839 7 31 16.7 16.7 16.0 1 +1839 8 1 16.9 16.9 16.3 1 +1839 8 2 18.0 18.0 17.4 1 +1839 8 3 20.6 20.6 20.0 1 +1839 8 4 20.8 20.8 20.2 1 +1839 8 5 21.9 21.9 21.4 1 +1839 8 6 18.2 18.2 17.7 1 +1839 8 7 18.0 18.0 17.5 1 +1839 8 8 17.9 17.9 17.4 1 +1839 8 9 16.9 16.9 16.4 1 +1839 8 10 17.7 17.7 17.3 1 +1839 8 11 15.5 15.5 15.1 1 +1839 8 12 13.5 13.5 13.1 1 +1839 8 13 11.5 11.5 11.1 1 +1839 8 14 13.4 13.4 13.1 1 +1839 8 15 13.4 13.4 13.1 1 +1839 8 16 13.5 13.5 13.2 1 +1839 8 17 12.6 12.6 12.3 1 +1839 8 18 15.8 15.8 15.5 1 +1839 8 19 15.6 15.6 15.4 1 +1839 8 20 15.2 15.2 15.0 1 +1839 8 21 14.3 14.3 14.1 1 +1839 8 22 12.2 12.2 12.0 1 +1839 8 23 10.4 10.4 10.3 1 +1839 8 24 11.7 11.7 11.6 1 +1839 8 25 12.8 12.8 12.7 1 +1839 8 26 14.5 14.5 14.4 1 +1839 8 27 15.4 15.4 15.3 1 +1839 8 28 15.0 15.0 15.0 1 +1839 8 29 12.6 12.6 12.6 1 +1839 8 30 14.8 14.8 14.8 1 +1839 8 31 15.3 15.3 15.3 1 +1839 9 1 17.0 17.0 17.0 1 +1839 9 2 15.3 15.3 15.3 1 +1839 9 3 14.1 14.1 14.1 1 +1839 9 4 14.4 14.4 14.4 1 +1839 9 5 14.0 14.0 14.0 1 +1839 9 6 14.0 14.0 14.0 1 +1839 9 7 14.9 14.9 14.9 1 +1839 9 8 14.0 14.0 14.0 1 +1839 9 9 14.7 14.7 14.7 1 +1839 9 10 15.8 15.8 15.8 1 +1839 9 11 12.8 12.8 12.8 1 +1839 9 12 12.7 12.7 12.7 1 +1839 9 13 11.8 11.8 11.8 1 +1839 9 14 12.6 12.6 12.6 1 +1839 9 15 8.9 8.9 8.9 1 +1839 9 16 10.4 10.4 10.4 1 +1839 9 17 9.5 9.5 9.5 1 +1839 9 18 8.2 8.2 8.2 1 +1839 9 19 12.0 12.0 12.0 1 +1839 9 20 10.4 10.4 10.4 1 +1839 9 21 10.2 10.2 10.2 1 +1839 9 22 10.3 10.3 10.3 1 +1839 9 23 10.3 10.3 10.3 1 +1839 9 24 11.6 11.6 11.6 1 +1839 9 25 11.5 11.5 11.5 1 +1839 9 26 10.5 10.5 10.5 1 +1839 9 27 13.4 13.4 13.4 1 +1839 9 28 10.7 10.7 10.7 1 +1839 9 29 10.5 10.5 10.5 1 +1839 9 30 12.0 12.0 12.0 1 +1839 10 1 9.4 9.4 9.4 1 +1839 10 2 7.8 7.8 7.8 1 +1839 10 3 11.4 11.4 11.4 1 +1839 10 4 8.3 8.3 8.3 1 +1839 10 5 7.9 7.9 7.9 1 +1839 10 6 6.2 6.2 6.2 1 +1839 10 7 6.2 6.2 6.2 1 +1839 10 8 8.5 8.5 8.5 1 +1839 10 9 8.4 8.4 8.4 1 +1839 10 10 11.3 11.3 11.3 1 +1839 10 11 11.4 11.4 11.4 1 +1839 10 12 11.1 11.1 11.1 1 +1839 10 13 9.4 9.4 9.4 1 +1839 10 14 10.8 10.8 10.8 1 +1839 10 15 10.1 10.1 10.1 1 +1839 10 16 10.1 10.1 10.1 1 +1839 10 17 10.3 10.3 10.3 1 +1839 10 18 8.6 8.6 8.6 1 +1839 10 19 8.4 8.4 8.4 1 +1839 10 20 8.3 8.3 8.3 1 +1839 10 21 8.1 8.1 8.1 1 +1839 10 22 8.3 8.3 8.3 1 +1839 10 23 8.3 8.3 8.3 1 +1839 10 24 6.2 6.2 6.2 1 +1839 10 25 4.7 4.7 4.7 1 +1839 10 26 4.0 4.0 4.0 1 +1839 10 27 1.5 1.5 1.5 1 +1839 10 28 0.7 0.7 0.7 1 +1839 10 29 1.7 1.7 1.7 1 +1839 10 30 2.3 2.3 2.3 1 +1839 10 31 1.9 1.9 1.9 1 +1839 11 1 1.7 1.7 1.7 1 +1839 11 2 2.5 2.5 2.5 1 +1839 11 3 0.6 0.6 0.6 1 +1839 11 4 1.2 1.2 1.2 1 +1839 11 5 1.7 1.7 1.7 1 +1839 11 6 -0.5 -0.5 -0.5 1 +1839 11 7 -2.1 -2.1 -2.1 1 +1839 11 8 -1.4 -1.4 -1.4 1 +1839 11 9 1.5 1.5 1.5 1 +1839 11 10 3.6 3.6 3.6 1 +1839 11 11 4.9 4.9 4.9 1 +1839 11 12 6.7 6.7 6.7 1 +1839 11 13 5.3 5.3 5.3 1 +1839 11 14 2.8 2.8 2.8 1 +1839 11 15 0.9 0.9 0.9 1 +1839 11 16 0.9 0.9 0.9 1 +1839 11 17 4.1 4.1 4.1 1 +1839 11 18 3.8 3.8 3.8 1 +1839 11 19 2.0 2.0 2.0 1 +1839 11 20 2.7 2.7 2.7 1 +1839 11 21 1.4 1.4 1.4 1 +1839 11 22 1.1 1.1 1.1 1 +1839 11 23 -0.2 -0.2 -0.2 1 +1839 11 24 -0.2 -0.2 -0.2 1 +1839 11 25 1.6 1.6 1.6 1 +1839 11 26 2.5 2.5 2.5 1 +1839 11 27 -0.2 -0.2 -0.2 1 +1839 11 28 -1.4 -1.4 -1.4 1 +1839 11 29 -2.9 -2.9 -2.9 1 +1839 11 30 -6.6 -6.6 -6.6 1 +1839 12 1 -5.2 -5.2 -5.2 1 +1839 12 2 -5.2 -5.2 -5.2 1 +1839 12 3 -7.9 -7.9 -7.9 1 +1839 12 4 -4.4 -4.4 -4.4 1 +1839 12 5 -3.7 -3.7 -3.7 1 +1839 12 6 -2.6 -2.6 -2.6 1 +1839 12 7 -3.7 -3.7 -3.7 1 +1839 12 8 -1.9 -1.9 -1.9 1 +1839 12 9 -0.6 -0.6 -0.6 1 +1839 12 10 -0.6 -0.6 -0.6 1 +1839 12 11 -1.7 -1.7 -1.7 1 +1839 12 12 -2.3 -2.3 -2.3 1 +1839 12 13 -1.7 -1.7 -1.7 1 +1839 12 14 -2.0 -2.0 -2.0 1 +1839 12 15 -3.6 -3.6 -3.6 1 +1839 12 16 -1.9 -1.9 -1.9 1 +1839 12 17 -6.3 -6.3 -6.3 1 +1839 12 18 -5.7 -5.7 -5.7 1 +1839 12 19 -5.1 -5.1 -5.1 1 +1839 12 20 -5.1 -5.1 -5.1 1 +1839 12 21 -4.8 -4.8 -4.8 1 +1839 12 22 -3.2 -3.2 -3.2 1 +1839 12 23 -3.4 -3.4 -3.4 1 +1839 12 24 -1.6 -1.6 -1.6 1 +1839 12 25 2.4 2.4 2.4 1 +1839 12 26 2.1 2.1 2.1 1 +1839 12 27 1.1 1.1 1.1 1 +1839 12 28 -0.9 -0.9 -0.9 1 +1839 12 29 -8.1 -8.1 -8.1 1 +1839 12 30 -5.5 -5.5 -5.5 1 +1839 12 31 -5.1 -5.1 -5.1 1 +1840 1 1 -6.2 -6.2 -6.2 1 +1840 1 2 -4.2 -4.2 -4.2 1 +1840 1 3 -3.0 -3.0 -3.0 1 +1840 1 4 -5.6 -5.6 -5.6 1 +1840 1 5 -13.3 -13.3 -13.3 1 +1840 1 6 -14.4 -14.4 -14.4 1 +1840 1 7 -7.6 -7.6 -7.6 1 +1840 1 8 -10.0 -10.0 -10.0 1 +1840 1 9 -14.6 -14.6 -14.6 1 +1840 1 10 -9.3 -9.3 -9.3 1 +1840 1 11 -2.4 -2.4 -2.4 1 +1840 1 12 1.3 1.3 1.3 1 +1840 1 13 2.2 2.2 2.2 1 +1840 1 14 -0.7 -0.7 -0.7 1 +1840 1 15 0.6 0.6 0.6 1 +1840 1 16 2.0 2.0 2.0 1 +1840 1 17 1.7 1.7 1.7 1 +1840 1 18 -7.5 -7.5 -7.5 1 +1840 1 19 1.4 1.4 1.4 1 +1840 1 20 0.7 0.7 0.7 1 +1840 1 21 -1.2 -1.2 -1.2 1 +1840 1 22 -3.7 -3.7 -3.7 1 +1840 1 23 -6.7 -6.7 -6.7 1 +1840 1 24 -1.9 -1.9 -1.9 1 +1840 1 25 2.3 2.3 2.3 1 +1840 1 26 0.5 0.5 0.5 1 +1840 1 27 2.2 2.2 2.2 1 +1840 1 28 -1.0 -1.0 -1.0 1 +1840 1 29 -0.6 -0.6 -0.6 1 +1840 1 30 -6.3 -6.3 -6.3 1 +1840 1 31 -5.8 -5.8 -5.8 1 +1840 2 1 -4.5 -4.5 -4.5 1 +1840 2 2 -4.2 -4.2 -4.2 1 +1840 2 3 -3.7 -3.7 -3.7 1 +1840 2 4 -2.4 -2.4 -2.4 1 +1840 2 5 -1.8 -1.8 -1.8 1 +1840 2 6 -3.9 -3.9 -3.9 1 +1840 2 7 -3.1 -3.1 -3.1 1 +1840 2 8 -0.6 -0.6 -0.6 1 +1840 2 9 0.7 0.7 0.7 1 +1840 2 10 0.1 0.1 0.1 1 +1840 2 11 0.4 0.4 0.4 1 +1840 2 12 1.6 1.6 1.6 1 +1840 2 13 -0.1 -0.1 -0.1 1 +1840 2 14 -1.1 -1.1 -1.1 1 +1840 2 15 -1.0 -1.0 -1.0 1 +1840 2 16 -1.9 -1.9 -1.9 1 +1840 2 17 -2.2 -2.2 -2.2 1 +1840 2 18 -6.0 -6.0 -6.0 1 +1840 2 19 -10.1 -10.1 -10.1 1 +1840 2 20 -8.9 -8.9 -8.9 1 +1840 2 21 -6.3 -6.3 -6.3 1 +1840 2 22 -3.2 -3.2 -3.2 1 +1840 2 23 -2.8 -2.8 -2.8 1 +1840 2 24 -4.0 -4.0 -4.0 1 +1840 2 25 -2.3 -2.3 -2.3 1 +1840 2 26 -3.3 -3.3 -3.3 1 +1840 2 27 -2.0 -2.0 -2.0 1 +1840 2 28 -6.7 -6.7 -6.7 1 +1840 2 29 -4.1 -4.1 -4.1 1 +1840 3 1 -1.8 -1.8 -1.8 1 +1840 3 2 -1.4 -1.4 -1.4 1 +1840 3 3 -3.0 -3.0 -3.0 1 +1840 3 4 0.7 0.7 0.7 1 +1840 3 5 -1.6 -1.6 -1.6 1 +1840 3 6 0.7 0.7 0.7 1 +1840 3 7 0.0 0.0 0.0 1 +1840 3 8 0.9 0.9 0.9 1 +1840 3 9 -3.9 -3.9 -3.9 1 +1840 3 10 -6.4 -6.4 -6.4 1 +1840 3 11 0.1 0.1 0.1 1 +1840 3 12 0.7 0.7 0.7 1 +1840 3 13 0.3 0.3 0.3 1 +1840 3 14 -1.6 -1.6 -1.6 1 +1840 3 15 -1.8 -1.8 -1.8 1 +1840 3 16 -3.2 -3.2 -3.2 1 +1840 3 17 -0.8 -0.8 -0.8 1 +1840 3 18 -3.1 -3.1 -3.1 1 +1840 3 19 -2.8 -2.8 -2.8 1 +1840 3 20 0.5 0.5 0.5 1 +1840 3 21 -4.2 -4.2 -4.2 1 +1840 3 22 -3.9 -3.9 -3.9 1 +1840 3 23 -4.1 -4.1 -4.1 1 +1840 3 24 -3.8 -3.8 -3.8 1 +1840 3 25 -5.4 -5.4 -5.4 1 +1840 3 26 -5.4 -5.4 -5.4 1 +1840 3 27 -3.0 -3.0 -3.0 1 +1840 3 28 -1.6 -1.6 -1.6 1 +1840 3 29 -0.8 -0.8 -0.8 1 +1840 3 30 0.5 0.5 0.5 1 +1840 3 31 3.1 3.1 3.1 1 +1840 4 1 3.3 3.3 3.3 1 +1840 4 2 0.2 0.2 0.2 1 +1840 4 3 0.4 0.4 0.4 1 +1840 4 4 0.8 0.8 0.8 1 +1840 4 5 0.9 0.9 0.9 1 +1840 4 6 2.3 2.3 2.3 1 +1840 4 7 3.7 3.7 3.7 1 +1840 4 8 3.3 3.3 3.3 1 +1840 4 9 2.0 2.0 2.0 1 +1840 4 10 3.9 3.9 3.9 1 +1840 4 11 7.1 7.1 7.1 1 +1840 4 12 6.5 6.5 6.5 1 +1840 4 13 3.9 3.9 3.9 1 +1840 4 14 3.8 3.8 3.8 1 +1840 4 15 4.5 4.5 4.5 1 +1840 4 16 7.2 7.2 7.2 1 +1840 4 17 6.1 6.1 6.1 1 +1840 4 18 5.4 5.4 5.4 1 +1840 4 19 3.4 3.4 3.4 1 +1840 4 20 1.5 1.5 1.5 1 +1840 4 21 2.7 2.7 2.7 1 +1840 4 22 3.3 3.3 3.3 1 +1840 4 23 4.6 4.6 4.6 1 +1840 4 24 8.6 8.6 8.6 1 +1840 4 25 13.0 13.0 13.0 1 +1840 4 26 13.6 13.6 13.6 1 +1840 4 27 10.9 10.9 10.9 1 +1840 4 28 9.6 9.6 9.6 1 +1840 4 29 12.6 12.6 12.6 1 +1840 4 30 9.5 9.5 9.5 1 +1840 5 1 5.3 5.3 5.3 1 +1840 5 2 4.5 4.5 4.5 1 +1840 5 3 4.1 4.1 4.1 1 +1840 5 4 7.5 7.5 7.5 1 +1840 5 5 4.4 4.4 4.3 1 +1840 5 6 5.1 5.1 5.0 1 +1840 5 7 7.1 7.1 7.0 1 +1840 5 8 5.6 5.6 5.5 1 +1840 5 9 2.4 2.4 2.3 1 +1840 5 10 4.1 4.1 3.9 1 +1840 5 11 3.1 3.1 2.9 1 +1840 5 12 5.0 5.0 4.8 1 +1840 5 13 4.1 4.1 3.9 1 +1840 5 14 5.4 5.4 5.1 1 +1840 5 15 5.8 5.8 5.5 1 +1840 5 16 6.9 6.9 6.6 1 +1840 5 17 6.4 6.4 6.1 1 +1840 5 18 8.2 8.2 7.9 1 +1840 5 19 10.2 10.2 9.8 1 +1840 5 20 9.6 9.6 9.2 1 +1840 5 21 6.3 6.3 5.9 1 +1840 5 22 4.2 4.2 3.8 1 +1840 5 23 7.3 7.3 6.8 1 +1840 5 24 10.6 10.6 10.1 1 +1840 5 25 10.1 10.1 9.6 1 +1840 5 26 7.6 7.6 7.1 1 +1840 5 27 9.8 9.8 9.3 1 +1840 5 28 10.1 10.1 9.5 1 +1840 5 29 9.3 9.3 8.7 1 +1840 5 30 5.9 5.9 5.3 1 +1840 5 31 10.2 10.2 9.6 1 +1840 6 1 14.9 14.9 14.2 1 +1840 6 2 16.7 16.7 16.0 1 +1840 6 3 14.8 14.8 14.1 1 +1840 6 4 16.7 16.7 16.0 1 +1840 6 5 15.3 15.3 14.6 1 +1840 6 6 15.4 15.4 14.7 1 +1840 6 7 14.2 14.2 13.5 1 +1840 6 8 18.9 18.9 18.2 1 +1840 6 9 21.0 21.0 20.3 1 +1840 6 10 18.3 18.3 17.6 1 +1840 6 11 19.2 19.2 18.5 1 +1840 6 12 13.8 13.8 13.1 1 +1840 6 13 11.9 11.9 11.2 1 +1840 6 14 15.0 15.0 14.3 1 +1840 6 15 12.1 12.1 11.4 1 +1840 6 16 13.0 13.0 12.3 1 +1840 6 17 15.4 15.4 14.7 1 +1840 6 18 14.2 14.2 13.5 1 +1840 6 19 13.1 13.1 12.4 1 +1840 6 20 13.3 13.3 12.6 1 +1840 6 21 14.5 14.5 13.8 1 +1840 6 22 14.1 14.1 13.4 1 +1840 6 23 13.6 13.6 12.9 1 +1840 6 24 13.1 13.1 12.4 1 +1840 6 25 13.0 13.0 12.3 1 +1840 6 26 12.7 12.7 12.0 1 +1840 6 27 12.1 12.1 11.4 1 +1840 6 28 12.1 12.1 11.4 1 +1840 6 29 15.0 15.0 14.3 1 +1840 6 30 15.0 15.0 14.3 1 +1840 7 1 14.1 14.1 13.4 1 +1840 7 2 14.1 14.1 13.4 1 +1840 7 3 16.5 16.5 15.8 1 +1840 7 4 15.9 15.9 15.2 1 +1840 7 5 15.2 15.2 14.5 1 +1840 7 6 15.2 15.2 14.5 1 +1840 7 7 15.5 15.5 14.8 1 +1840 7 8 13.7 13.7 13.0 1 +1840 7 9 17.0 17.0 16.3 1 +1840 7 10 13.5 13.5 12.8 1 +1840 7 11 13.9 13.9 13.2 1 +1840 7 12 13.5 13.5 12.8 1 +1840 7 13 13.9 13.9 13.2 1 +1840 7 14 16.3 16.3 15.6 1 +1840 7 15 13.5 13.5 12.8 1 +1840 7 16 15.3 15.3 14.6 1 +1840 7 17 13.8 13.8 13.1 1 +1840 7 18 12.8 12.8 12.1 1 +1840 7 19 14.5 14.5 13.8 1 +1840 7 20 15.8 15.8 15.1 1 +1840 7 21 15.6 15.6 14.9 1 +1840 7 22 17.3 17.3 16.6 1 +1840 7 23 14.9 14.9 14.2 1 +1840 7 24 15.1 15.1 14.4 1 +1840 7 25 14.9 14.9 14.2 1 +1840 7 26 16.2 16.2 15.5 1 +1840 7 27 17.8 17.8 17.1 1 +1840 7 28 18.2 18.2 17.5 1 +1840 7 29 16.6 16.6 15.9 1 +1840 7 30 16.8 16.8 16.1 1 +1840 7 31 15.8 15.8 15.1 1 +1840 8 1 15.7 15.7 15.1 1 +1840 8 2 14.3 14.3 13.7 1 +1840 8 3 13.8 13.8 13.2 1 +1840 8 4 15.7 15.7 15.1 1 +1840 8 5 14.6 14.6 14.1 1 +1840 8 6 13.7 13.7 13.2 1 +1840 8 7 13.8 13.8 13.3 1 +1840 8 8 14.0 14.0 13.5 1 +1840 8 9 15.4 15.4 14.9 1 +1840 8 10 17.2 17.2 16.8 1 +1840 8 11 17.4 17.4 17.0 1 +1840 8 12 15.8 15.8 15.4 1 +1840 8 13 16.3 16.3 15.9 1 +1840 8 14 16.7 16.7 16.4 1 +1840 8 15 15.4 15.4 15.1 1 +1840 8 16 15.0 15.0 14.7 1 +1840 8 17 14.8 14.8 14.5 1 +1840 8 18 15.5 15.5 15.2 1 +1840 8 19 16.2 16.2 16.0 1 +1840 8 20 17.0 17.0 16.8 1 +1840 8 21 17.3 17.3 17.1 1 +1840 8 22 18.5 18.5 18.3 1 +1840 8 23 17.3 17.3 17.2 1 +1840 8 24 15.6 15.6 15.5 1 +1840 8 25 14.2 14.2 14.1 1 +1840 8 26 15.4 15.4 15.3 1 +1840 8 27 15.4 15.4 15.3 1 +1840 8 28 15.7 15.7 15.7 1 +1840 8 29 14.2 14.2 14.2 1 +1840 8 30 14.3 14.3 14.3 1 +1840 8 31 15.7 15.7 15.7 1 +1840 9 1 15.0 15.0 15.0 1 +1840 9 2 15.7 15.7 15.7 1 +1840 9 3 17.3 17.3 17.3 1 +1840 9 4 17.9 17.9 17.9 1 +1840 9 5 16.2 16.2 16.2 1 +1840 9 6 14.9 14.9 14.9 1 +1840 9 7 14.3 14.3 14.3 1 +1840 9 8 14.6 14.6 14.6 1 +1840 9 9 13.4 13.4 13.4 1 +1840 9 10 12.0 12.0 12.0 1 +1840 9 11 11.1 11.1 11.1 1 +1840 9 12 11.1 11.1 11.1 1 +1840 9 13 8.6 8.6 8.6 1 +1840 9 14 9.7 9.7 9.7 1 +1840 9 15 9.6 9.6 9.6 1 +1840 9 16 10.0 10.0 10.0 1 +1840 9 17 10.6 10.6 10.6 1 +1840 9 18 9.0 9.0 9.0 1 +1840 9 19 8.3 8.3 8.3 1 +1840 9 20 12.1 12.1 12.1 1 +1840 9 21 10.6 10.6 10.6 1 +1840 9 22 10.3 10.3 10.3 1 +1840 9 23 11.6 11.6 11.6 1 +1840 9 24 11.5 11.5 11.5 1 +1840 9 25 12.7 12.7 12.7 1 +1840 9 26 12.5 12.5 12.5 1 +1840 9 27 11.6 11.6 11.6 1 +1840 9 28 12.1 12.1 12.1 1 +1840 9 29 12.9 12.9 12.9 1 +1840 9 30 12.2 12.2 12.2 1 +1840 10 1 9.6 9.6 9.6 1 +1840 10 2 9.6 9.6 9.6 1 +1840 10 3 8.1 8.1 8.1 1 +1840 10 4 7.1 7.1 7.1 1 +1840 10 5 6.7 6.7 6.7 1 +1840 10 6 8.6 8.6 8.6 1 +1840 10 7 6.2 6.2 6.2 1 +1840 10 8 5.5 5.5 5.5 1 +1840 10 9 7.3 7.3 7.3 1 +1840 10 10 5.0 5.0 5.0 1 +1840 10 11 3.6 3.6 3.6 1 +1840 10 12 4.1 4.1 4.1 1 +1840 10 13 5.5 5.5 5.5 1 +1840 10 14 6.2 6.2 6.2 1 +1840 10 15 3.3 3.3 3.3 1 +1840 10 16 1.3 1.3 1.3 1 +1840 10 17 3.6 3.6 3.6 1 +1840 10 18 2.0 2.0 2.0 1 +1840 10 19 2.6 2.6 2.6 1 +1840 10 20 2.7 2.7 2.7 1 +1840 10 21 -0.1 -0.1 -0.1 1 +1840 10 22 -0.2 -0.2 -0.2 1 +1840 10 23 0.6 0.6 0.6 1 +1840 10 24 0.7 0.7 0.7 1 +1840 10 25 0.7 0.7 0.7 1 +1840 10 26 4.8 4.8 4.8 1 +1840 10 27 0.8 0.8 0.8 1 +1840 10 28 5.9 5.9 5.9 1 +1840 10 29 6.5 6.5 6.5 1 +1840 10 30 5.9 5.9 5.9 1 +1840 10 31 6.3 6.3 6.3 1 +1840 11 1 6.1 6.1 6.1 1 +1840 11 2 5.1 5.1 5.1 1 +1840 11 3 5.9 5.9 5.9 1 +1840 11 4 5.7 5.7 5.7 1 +1840 11 5 6.5 6.5 6.5 1 +1840 11 6 6.5 6.5 6.5 1 +1840 11 7 5.0 5.0 5.0 1 +1840 11 8 4.2 4.2 4.2 1 +1840 11 9 6.7 6.7 6.7 1 +1840 11 10 5.2 5.2 5.2 1 +1840 11 11 4.6 4.6 4.6 1 +1840 11 12 2.9 2.9 2.9 1 +1840 11 13 -2.3 -2.3 -2.3 1 +1840 11 14 1.1 1.1 1.1 1 +1840 11 15 4.6 4.6 4.6 1 +1840 11 16 2.7 2.7 2.7 1 +1840 11 17 2.2 2.2 2.2 1 +1840 11 18 0.5 0.5 0.5 1 +1840 11 19 -1.8 -1.8 -1.8 1 +1840 11 20 -5.5 -5.5 -5.5 1 +1840 11 21 -7.5 -7.5 -7.5 1 +1840 11 22 -2.2 -2.2 -2.2 1 +1840 11 23 -1.5 -1.5 -1.5 1 +1840 11 24 -1.5 -1.5 -1.5 1 +1840 11 25 -2.5 -2.5 -2.5 1 +1840 11 26 1.4 1.4 1.4 1 +1840 11 27 -0.6 -0.6 -0.6 1 +1840 11 28 -0.8 -0.8 -0.8 1 +1840 11 29 0.2 0.2 0.2 1 +1840 11 30 0.6 0.6 0.6 1 +1840 12 1 0.9 0.9 0.9 1 +1840 12 2 -0.4 -0.4 -0.4 1 +1840 12 3 -1.5 -1.5 -1.5 1 +1840 12 4 1.6 1.6 1.6 1 +1840 12 5 1.8 1.8 1.8 1 +1840 12 6 -0.3 -0.3 -0.3 1 +1840 12 7 1.2 1.2 1.2 1 +1840 12 8 0.8 0.8 0.8 1 +1840 12 9 -2.1 -2.1 -2.1 1 +1840 12 10 -3.1 -3.1 -3.1 1 +1840 12 11 -4.0 -4.0 -4.0 1 +1840 12 12 -7.0 -7.0 -7.0 1 +1840 12 13 -10.1 -10.1 -10.1 1 +1840 12 14 -7.0 -7.0 -7.0 1 +1840 12 15 -9.9 -9.9 -9.9 1 +1840 12 16 -4.2 -4.2 -4.2 1 +1840 12 17 -3.2 -3.2 -3.2 1 +1840 12 18 -4.3 -4.3 -4.3 1 +1840 12 19 -3.0 -3.0 -3.0 1 +1840 12 20 -10.7 -10.7 -10.7 1 +1840 12 21 -5.8 -5.8 -5.8 1 +1840 12 22 -5.4 -5.4 -5.4 1 +1840 12 23 -3.8 -3.8 -3.8 1 +1840 12 24 -5.1 -5.1 -5.1 1 +1840 12 25 -6.5 -6.5 -6.5 1 +1840 12 26 -6.2 -6.2 -6.2 1 +1840 12 27 -1.4 -1.4 -1.4 1 +1840 12 28 -5.0 -5.0 -5.0 1 +1840 12 29 -4.8 -4.8 -4.8 1 +1840 12 30 -6.7 -6.7 -6.7 1 +1840 12 31 -3.2 -3.2 -3.2 1 +1841 1 1 -6.1 -6.1 -6.1 1 +1841 1 2 -5.4 -5.4 -5.4 1 +1841 1 3 -8.8 -8.8 -8.8 1 +1841 1 4 -5.9 -5.9 -5.9 1 +1841 1 5 -7.8 -7.8 -7.8 1 +1841 1 6 -8.1 -8.1 -8.1 1 +1841 1 7 -10.2 -10.2 -10.2 1 +1841 1 8 -0.8 -0.8 -0.8 1 +1841 1 9 -0.4 -0.4 -0.4 1 +1841 1 10 -2.8 -2.8 -2.8 1 +1841 1 11 -2.0 -2.0 -2.0 1 +1841 1 12 0.1 0.1 0.1 1 +1841 1 13 0.7 0.7 0.7 1 +1841 1 14 -2.8 -2.8 -2.8 1 +1841 1 15 -4.1 -4.1 -4.1 1 +1841 1 16 -9.8 -9.8 -9.8 1 +1841 1 17 -6.9 -6.9 -6.9 1 +1841 1 18 -10.0 -10.0 -10.0 1 +1841 1 19 -13.7 -13.7 -13.7 1 +1841 1 20 -16.0 -16.0 -16.0 1 +1841 1 21 -20.4 -20.4 -20.4 1 +1841 1 22 -5.7 -5.7 -5.7 1 +1841 1 23 -0.6 -0.6 -0.6 1 +1841 1 24 -4.5 -4.5 -4.5 1 +1841 1 25 -5.0 -5.0 -5.0 1 +1841 1 26 -12.5 -12.5 -12.5 1 +1841 1 27 -3.1 -3.1 -3.1 1 +1841 1 28 -2.2 -2.2 -2.2 1 +1841 1 29 -5.4 -5.4 -5.4 1 +1841 1 30 -10.4 -10.4 -10.4 1 +1841 1 31 -8.9 -8.9 -8.9 1 +1841 2 1 -11.8 -11.8 -11.8 1 +1841 2 2 -17.0 -17.0 -17.0 1 +1841 2 3 -14.0 -14.0 -14.0 1 +1841 2 4 -9.5 -9.5 -9.5 1 +1841 2 5 -14.1 -14.1 -14.1 1 +1841 2 6 -13.4 -13.4 -13.4 1 +1841 2 7 -13.8 -13.8 -13.8 1 +1841 2 8 -9.1 -9.1 -9.1 1 +1841 2 9 -12.8 -12.8 -12.8 1 +1841 2 10 -13.2 -13.2 -13.2 1 +1841 2 11 -11.1 -11.1 -11.1 1 +1841 2 12 -4.5 -4.5 -4.5 1 +1841 2 13 -2.7 -2.7 -2.7 1 +1841 2 14 -0.3 -0.3 -0.3 1 +1841 2 15 -1.2 -1.2 -1.2 1 +1841 2 16 -2.1 -2.1 -2.1 1 +1841 2 17 -2.6 -2.6 -2.6 1 +1841 2 18 -0.4 -0.4 -0.4 1 +1841 2 19 -1.4 -1.4 -1.4 1 +1841 2 20 -1.1 -1.1 -1.1 1 +1841 2 21 -0.2 -0.2 -0.2 1 +1841 2 22 0.2 0.2 0.2 1 +1841 2 23 -1.5 -1.5 -1.5 1 +1841 2 24 -2.8 -2.8 -2.8 1 +1841 2 25 -2.1 -2.1 -2.1 1 +1841 2 26 -5.8 -5.8 -5.8 1 +1841 2 27 -4.3 -4.3 -4.3 1 +1841 2 28 -4.6 -4.6 -4.6 1 +1841 3 1 -5.6 -5.6 -5.6 1 +1841 3 2 -6.3 -6.3 -6.3 1 +1841 3 3 -5.1 -5.1 -5.1 1 +1841 3 4 -4.0 -4.0 -4.0 1 +1841 3 5 -3.6 -3.6 -3.6 1 +1841 3 6 -0.1 -0.1 -0.1 1 +1841 3 7 1.5 1.5 1.5 1 +1841 3 8 1.8 1.8 1.8 1 +1841 3 9 -3.8 -3.8 -3.8 1 +1841 3 10 1.1 1.1 1.1 1 +1841 3 11 2.4 2.4 2.4 1 +1841 3 12 4.6 4.6 4.6 1 +1841 3 13 -0.2 -0.2 -0.2 1 +1841 3 14 -2.1 -2.1 -2.1 1 +1841 3 15 -1.6 -1.6 -1.6 1 +1841 3 16 -3.6 -3.6 -3.6 1 +1841 3 17 0.5 0.5 0.5 1 +1841 3 18 0.8 0.8 0.8 1 +1841 3 19 2.3 2.3 2.3 1 +1841 3 20 1.4 1.4 1.4 1 +1841 3 21 2.4 2.4 2.4 1 +1841 3 22 0.8 0.8 0.8 1 +1841 3 23 1.1 1.1 1.1 1 +1841 3 24 -0.9 -0.9 -0.9 1 +1841 3 25 -3.3 -3.3 -3.3 1 +1841 3 26 0.9 0.9 0.9 1 +1841 3 27 3.3 3.3 3.3 1 +1841 3 28 4.0 4.0 4.0 1 +1841 3 29 1.4 1.4 1.4 1 +1841 3 30 5.3 5.3 5.3 1 +1841 3 31 5.5 5.5 5.5 1 +1841 4 1 3.8 3.8 3.8 1 +1841 4 2 3.5 3.5 3.5 1 +1841 4 3 1.3 1.3 1.3 1 +1841 4 4 1.4 1.4 1.4 1 +1841 4 5 0.9 0.9 0.9 1 +1841 4 6 0.9 0.9 0.9 1 +1841 4 7 0.3 0.3 0.3 1 +1841 4 8 -0.3 -0.3 -0.3 1 +1841 4 9 0.2 0.2 0.2 1 +1841 4 10 0.4 0.4 0.4 1 +1841 4 11 1.0 1.0 1.0 1 +1841 4 12 0.3 0.3 0.3 1 +1841 4 13 1.7 1.7 1.7 1 +1841 4 14 3.9 3.9 3.9 1 +1841 4 15 3.2 3.2 3.2 1 +1841 4 16 2.3 2.3 2.3 1 +1841 4 17 3.8 3.8 3.8 1 +1841 4 18 6.5 6.5 6.5 1 +1841 4 19 4.9 4.9 4.9 1 +1841 4 20 4.3 4.3 4.3 1 +1841 4 21 6.5 6.5 6.5 1 +1841 4 22 6.3 6.3 6.3 1 +1841 4 23 3.9 3.9 3.9 1 +1841 4 24 4.6 4.6 4.6 1 +1841 4 25 7.0 7.0 7.0 1 +1841 4 26 9.0 9.0 9.0 1 +1841 4 27 13.5 13.5 13.5 1 +1841 4 28 15.1 15.1 15.1 1 +1841 4 29 9.4 9.4 9.4 1 +1841 4 30 6.9 6.9 6.9 1 +1841 5 1 7.5 7.5 7.5 1 +1841 5 2 5.3 5.3 5.3 1 +1841 5 3 4.4 4.4 4.4 1 +1841 5 4 6.6 6.6 6.6 1 +1841 5 5 7.6 7.6 7.5 1 +1841 5 6 6.4 6.4 6.3 1 +1841 5 7 10.1 10.1 10.0 1 +1841 5 8 7.1 7.1 7.0 1 +1841 5 9 7.8 7.8 7.7 1 +1841 5 10 9.9 9.9 9.7 1 +1841 5 11 12.6 12.6 12.4 1 +1841 5 12 13.5 13.5 13.3 1 +1841 5 13 10.2 10.2 10.0 1 +1841 5 14 7.0 7.0 6.7 1 +1841 5 15 6.6 6.6 6.3 1 +1841 5 16 9.8 9.8 9.5 1 +1841 5 17 9.4 9.4 9.1 1 +1841 5 18 14.5 14.5 14.2 1 +1841 5 19 13.1 13.1 12.7 1 +1841 5 20 8.7 8.7 8.3 1 +1841 5 21 11.3 11.3 10.9 1 +1841 5 22 14.6 14.6 14.2 1 +1841 5 23 14.5 14.5 14.0 1 +1841 5 24 18.1 18.1 17.6 1 +1841 5 25 18.7 18.7 18.2 1 +1841 5 26 13.1 13.1 12.6 1 +1841 5 27 15.3 15.3 14.8 1 +1841 5 28 18.0 18.0 17.4 1 +1841 5 29 20.1 20.1 19.5 1 +1841 5 30 22.5 22.5 21.9 1 +1841 5 31 22.9 22.9 22.3 1 +1841 6 1 22.6 22.6 21.9 1 +1841 6 2 20.1 20.1 19.4 1 +1841 6 3 16.6 16.6 15.9 1 +1841 6 4 13.8 13.8 13.1 1 +1841 6 5 10.6 10.6 9.9 1 +1841 6 6 7.6 7.6 6.9 1 +1841 6 7 12.5 12.5 11.8 1 +1841 6 8 11.3 11.3 10.6 1 +1841 6 9 12.0 12.0 11.3 1 +1841 6 10 14.5 14.5 13.8 1 +1841 6 11 13.3 13.3 12.6 1 +1841 6 12 13.3 13.3 12.6 1 +1841 6 13 12.7 12.7 12.0 1 +1841 6 14 11.5 11.5 10.8 1 +1841 6 15 12.8 12.8 12.1 1 +1841 6 16 11.7 11.7 11.0 1 +1841 6 17 13.8 13.8 13.1 1 +1841 6 18 16.1 16.1 15.4 1 +1841 6 19 11.2 11.2 10.5 1 +1841 6 20 16.1 16.1 15.4 1 +1841 6 21 16.2 16.2 15.5 1 +1841 6 22 16.9 16.9 16.2 1 +1841 6 23 16.8 16.8 16.1 1 +1841 6 24 13.5 13.5 12.8 1 +1841 6 25 12.5 12.5 11.8 1 +1841 6 26 13.4 13.4 12.7 1 +1841 6 27 16.8 16.8 16.1 1 +1841 6 28 16.4 16.4 15.7 1 +1841 6 29 17.2 17.2 16.5 1 +1841 6 30 15.0 15.0 14.3 1 +1841 7 1 17.9 17.9 17.2 1 +1841 7 2 16.7 16.7 16.0 1 +1841 7 3 16.3 16.3 15.6 1 +1841 7 4 16.8 16.8 16.1 1 +1841 7 5 15.3 15.3 14.6 1 +1841 7 6 14.3 14.3 13.6 1 +1841 7 7 11.4 11.4 10.7 1 +1841 7 8 13.3 13.3 12.6 1 +1841 7 9 14.1 14.1 13.4 1 +1841 7 10 12.9 12.9 12.2 1 +1841 7 11 15.2 15.2 14.5 1 +1841 7 12 15.7 15.7 15.0 1 +1841 7 13 11.7 11.7 11.0 1 +1841 7 14 13.4 13.4 12.7 1 +1841 7 15 13.3 13.3 12.6 1 +1841 7 16 14.6 14.6 13.9 1 +1841 7 17 14.5 14.5 13.8 1 +1841 7 18 16.0 16.0 15.3 1 +1841 7 19 12.5 12.5 11.8 1 +1841 7 20 12.3 12.3 11.6 1 +1841 7 21 13.5 13.5 12.8 1 +1841 7 22 13.6 13.6 12.9 1 +1841 7 23 14.8 14.8 14.1 1 +1841 7 24 14.9 14.9 14.2 1 +1841 7 25 17.9 17.9 17.2 1 +1841 7 26 15.4 15.4 14.7 1 +1841 7 27 18.3 18.3 17.6 1 +1841 7 28 15.3 15.3 14.6 1 +1841 7 29 13.0 13.0 12.3 1 +1841 7 30 13.8 13.8 13.1 1 +1841 7 31 14.0 14.0 13.3 1 +1841 8 1 15.2 15.2 14.6 1 +1841 8 2 12.2 12.2 11.6 1 +1841 8 3 14.0 14.0 13.4 1 +1841 8 4 14.2 14.2 13.6 1 +1841 8 5 13.1 13.1 12.6 1 +1841 8 6 15.2 15.2 14.7 1 +1841 8 7 14.6 14.6 14.1 1 +1841 8 8 15.6 15.6 15.1 1 +1841 8 9 15.2 15.2 14.7 1 +1841 8 10 16.2 16.2 15.8 1 +1841 8 11 14.9 14.9 14.5 1 +1841 8 12 15.1 15.1 14.7 1 +1841 8 13 15.3 15.3 14.9 1 +1841 8 14 14.7 14.7 14.4 1 +1841 8 15 14.9 14.9 14.6 1 +1841 8 16 15.8 15.8 15.5 1 +1841 8 17 15.8 15.8 15.5 1 +1841 8 18 16.5 16.5 16.2 1 +1841 8 19 16.0 16.0 15.8 1 +1841 8 20 16.0 16.0 15.8 1 +1841 8 21 15.9 15.9 15.7 1 +1841 8 22 18.0 18.0 17.8 1 +1841 8 23 17.1 17.1 17.0 1 +1841 8 24 16.1 16.1 16.0 1 +1841 8 25 17.4 17.4 17.3 1 +1841 8 26 15.4 15.4 15.3 1 +1841 8 27 16.1 16.1 16.0 1 +1841 8 28 17.1 17.1 17.1 1 +1841 8 29 15.0 15.0 15.0 1 +1841 8 30 15.9 15.9 15.9 1 +1841 8 31 18.5 18.5 18.5 1 +1841 9 1 14.9 14.9 14.9 1 +1841 9 2 13.1 13.1 13.1 1 +1841 9 3 12.3 12.3 12.3 1 +1841 9 4 13.3 13.3 13.3 1 +1841 9 5 15.2 15.2 15.2 1 +1841 9 6 14.3 14.3 14.3 1 +1841 9 7 13.1 13.1 13.1 1 +1841 9 8 13.0 13.0 13.0 1 +1841 9 9 13.9 13.9 13.9 1 +1841 9 10 13.2 13.2 13.2 1 +1841 9 11 13.6 13.6 13.6 1 +1841 9 12 16.3 16.3 16.3 1 +1841 9 13 14.2 14.2 14.2 1 +1841 9 14 14.6 14.6 14.6 1 +1841 9 15 13.9 13.9 13.9 1 +1841 9 16 13.8 13.8 13.8 1 +1841 9 17 13.3 13.3 13.3 1 +1841 9 18 8.8 8.8 8.8 1 +1841 9 19 5.4 5.4 5.4 1 +1841 9 20 7.0 7.0 7.0 1 +1841 9 21 11.4 11.4 11.4 1 +1841 9 22 7.8 7.8 7.8 1 +1841 9 23 5.2 5.2 5.2 1 +1841 9 24 4.2 4.2 4.2 1 +1841 9 25 6.6 6.6 6.6 1 +1841 9 26 7.1 7.1 7.1 1 +1841 9 27 6.6 6.6 6.6 1 +1841 9 28 7.7 7.7 7.7 1 +1841 9 29 12.8 12.8 12.8 1 +1841 9 30 14.1 14.1 14.1 1 +1841 10 1 14.3 14.3 14.3 1 +1841 10 2 12.2 12.2 12.2 1 +1841 10 3 6.4 6.4 6.4 1 +1841 10 4 3.0 3.0 3.0 1 +1841 10 5 5.0 5.0 5.0 1 +1841 10 6 9.6 9.6 9.6 1 +1841 10 7 9.2 9.2 9.2 1 +1841 10 8 7.4 7.4 7.4 1 +1841 10 9 6.7 6.7 6.7 1 +1841 10 10 5.2 5.2 5.2 1 +1841 10 11 6.5 6.5 6.5 1 +1841 10 12 9.6 9.6 9.6 1 +1841 10 13 10.1 10.1 10.1 1 +1841 10 14 7.1 7.1 7.1 1 +1841 10 15 9.4 9.4 9.4 1 +1841 10 16 4.7 4.7 4.7 1 +1841 10 17 2.9 2.9 2.9 1 +1841 10 18 2.9 2.9 2.9 1 +1841 10 19 2.6 2.6 2.6 1 +1841 10 20 5.3 5.3 5.3 1 +1841 10 21 6.7 6.7 6.7 1 +1841 10 22 3.7 3.7 3.7 1 +1841 10 23 2.5 2.5 2.5 1 +1841 10 24 7.1 7.1 7.1 1 +1841 10 25 8.7 8.7 8.7 1 +1841 10 26 6.8 6.8 6.8 1 +1841 10 27 3.8 3.8 3.8 1 +1841 10 28 0.3 0.3 0.3 1 +1841 10 29 1.0 1.0 1.0 1 +1841 10 30 2.8 2.8 2.8 1 +1841 10 31 4.1 4.1 4.1 1 +1841 11 1 3.0 3.0 3.0 1 +1841 11 2 5.0 5.0 5.0 1 +1841 11 3 5.0 5.0 5.0 1 +1841 11 4 4.2 4.2 4.2 1 +1841 11 5 4.6 4.6 4.6 1 +1841 11 6 3.8 3.8 3.8 1 +1841 11 7 7.2 7.2 7.2 1 +1841 11 8 6.6 6.6 6.6 1 +1841 11 9 1.2 1.2 1.2 1 +1841 11 10 3.4 3.4 3.4 1 +1841 11 11 -0.8 -0.8 -0.8 1 +1841 11 12 -3.8 -3.8 -3.8 1 +1841 11 13 -7.2 -7.2 -7.2 1 +1841 11 14 -6.6 -6.6 -6.6 1 +1841 11 15 0.3 0.3 0.3 1 +1841 11 16 1.3 1.3 1.3 1 +1841 11 17 -6.6 -6.6 -6.6 1 +1841 11 18 -5.6 -5.6 -5.6 1 +1841 11 19 -7.0 -7.0 -7.0 1 +1841 11 20 -1.8 -1.8 -1.8 1 +1841 11 21 2.1 2.1 2.1 1 +1841 11 22 3.6 3.6 3.6 1 +1841 11 23 5.5 5.5 5.5 1 +1841 11 24 2.9 2.9 2.9 1 +1841 11 25 1.0 1.0 1.0 1 +1841 11 26 0.2 0.2 0.2 1 +1841 11 27 0.9 0.9 0.9 1 +1841 11 28 -1.7 -1.7 -1.7 1 +1841 11 29 -0.5 -0.5 -0.5 1 +1841 11 30 4.4 4.4 4.4 1 +1841 12 1 6.7 6.7 6.7 1 +1841 12 2 4.2 4.2 4.2 1 +1841 12 3 1.3 1.3 1.3 1 +1841 12 4 1.9 1.9 1.9 1 +1841 12 5 3.3 3.3 3.3 1 +1841 12 6 1.7 1.7 1.7 1 +1841 12 7 3.9 3.9 3.9 1 +1841 12 8 3.9 3.9 3.9 1 +1841 12 9 3.3 3.3 3.3 1 +1841 12 10 -0.8 -0.8 -0.8 1 +1841 12 11 1.0 1.0 1.0 1 +1841 12 12 -3.1 -3.1 -3.1 1 +1841 12 13 2.4 2.4 2.4 1 +1841 12 14 4.3 4.3 4.3 1 +1841 12 15 1.1 1.1 1.1 1 +1841 12 16 3.0 3.0 3.0 1 +1841 12 17 2.8 2.8 2.8 1 +1841 12 18 2.9 2.9 2.9 1 +1841 12 19 1.3 1.3 1.3 1 +1841 12 20 1.7 1.7 1.7 1 +1841 12 21 1.1 1.1 1.1 1 +1841 12 22 0.2 0.2 0.2 1 +1841 12 23 -0.8 -0.8 -0.8 1 +1841 12 24 1.0 1.0 1.0 1 +1841 12 25 2.7 2.7 2.7 1 +1841 12 26 2.8 2.8 2.8 1 +1841 12 27 3.1 3.1 3.1 1 +1841 12 28 0.0 0.0 0.0 1 +1841 12 29 -0.3 -0.3 -0.3 1 +1841 12 30 1.4 1.4 1.4 1 +1841 12 31 0.6 0.6 0.6 1 +1842 1 1 1.2 1.2 1.2 1 +1842 1 2 -1.5 -1.5 -1.5 1 +1842 1 3 -3.0 -3.0 -3.0 1 +1842 1 4 -2.8 -2.8 -2.8 1 +1842 1 5 -3.6 -3.6 -3.6 1 +1842 1 6 -7.3 -7.3 -7.3 1 +1842 1 7 -9.5 -9.5 -9.5 1 +1842 1 8 -5.2 -5.2 -5.2 1 +1842 1 9 -6.1 -6.1 -6.1 1 +1842 1 10 -4.6 -4.6 -4.6 1 +1842 1 11 -2.8 -2.8 -2.8 1 +1842 1 12 -2.4 -2.4 -2.4 1 +1842 1 13 -0.3 -0.3 -0.3 1 +1842 1 14 0.0 0.0 0.0 1 +1842 1 15 -1.0 -1.0 -1.0 1 +1842 1 16 -0.3 -0.3 -0.3 1 +1842 1 17 0.3 0.3 0.3 1 +1842 1 18 0.6 0.6 0.6 1 +1842 1 19 0.0 0.0 0.0 1 +1842 1 20 -0.6 -0.6 -0.6 1 +1842 1 21 -1.1 -1.1 -1.1 1 +1842 1 22 -3.1 -3.1 -3.1 1 +1842 1 23 -4.0 -4.0 -4.0 1 +1842 1 24 -3.0 -3.0 -3.0 1 +1842 1 25 -3.5 -3.5 -3.5 1 +1842 1 26 -2.5 -2.5 -2.5 1 +1842 1 27 -2.3 -2.3 -2.3 1 +1842 1 28 0.2 0.2 0.2 1 +1842 1 29 0.6 0.6 0.6 1 +1842 1 30 0.0 0.0 0.0 1 +1842 1 31 -0.9 -0.9 -0.9 1 +1842 2 1 -3.5 -3.5 -3.5 1 +1842 2 2 -1.5 -1.5 -1.5 1 +1842 2 3 -3.8 -3.8 -3.8 1 +1842 2 4 0.2 0.2 0.2 1 +1842 2 5 -0.3 -0.3 -0.3 1 +1842 2 6 -0.8 -0.8 -0.8 1 +1842 2 7 -1.9 -1.9 -1.9 1 +1842 2 8 -1.3 -1.3 -1.3 1 +1842 2 9 -1.8 -1.8 -1.8 1 +1842 2 10 -1.4 -1.4 -1.4 1 +1842 2 11 2.0 2.0 2.0 1 +1842 2 12 3.6 3.6 3.6 1 +1842 2 13 3.9 3.9 3.9 1 +1842 2 14 1.7 1.7 1.7 1 +1842 2 15 0.9 0.9 0.9 1 +1842 2 16 2.8 2.8 2.8 1 +1842 2 17 3.3 3.3 3.3 1 +1842 2 18 1.7 1.7 1.7 1 +1842 2 19 2.3 2.3 2.3 1 +1842 2 20 3.7 3.7 3.7 1 +1842 2 21 1.8 1.8 1.8 1 +1842 2 22 0.9 0.9 0.9 1 +1842 2 23 -1.6 -1.6 -1.6 1 +1842 2 24 -0.2 -0.2 -0.2 1 +1842 2 25 0.0 0.0 0.0 1 +1842 2 26 1.0 1.0 1.0 1 +1842 2 27 1.5 1.5 1.5 1 +1842 2 28 0.3 0.3 0.3 1 +1842 3 1 0.9 0.9 0.9 1 +1842 3 2 2.4 2.4 2.4 1 +1842 3 3 -0.7 -0.7 -0.7 1 +1842 3 4 0.4 0.4 0.4 1 +1842 3 5 -3.9 -3.9 -3.9 1 +1842 3 6 -5.2 -5.2 -5.2 1 +1842 3 7 -3.3 -3.3 -3.3 1 +1842 3 8 -0.8 -0.8 -0.8 1 +1842 3 9 0.7 0.7 0.7 1 +1842 3 10 0.9 0.9 0.9 1 +1842 3 11 -0.1 -0.1 -0.1 1 +1842 3 12 0.3 0.3 0.3 1 +1842 3 13 0.4 0.4 0.4 1 +1842 3 14 1.3 1.3 1.3 1 +1842 3 15 3.0 3.0 3.0 1 +1842 3 16 4.4 4.4 4.4 1 +1842 3 17 2.9 2.9 2.9 1 +1842 3 18 1.0 1.0 1.0 1 +1842 3 19 1.1 1.1 1.1 1 +1842 3 20 0.3 0.3 0.3 1 +1842 3 21 0.4 0.4 0.4 1 +1842 3 22 -3.7 -3.7 -3.7 1 +1842 3 23 -5.1 -5.1 -5.1 1 +1842 3 24 -2.9 -2.9 -2.9 1 +1842 3 25 2.5 2.5 2.5 1 +1842 3 26 2.3 2.3 2.3 1 +1842 3 27 2.4 2.4 2.4 1 +1842 3 28 -0.8 -0.8 -0.8 1 +1842 3 29 0.3 0.3 0.3 1 +1842 3 30 3.2 3.2 3.2 1 +1842 3 31 2.4 2.4 2.4 1 +1842 4 1 0.4 0.4 0.4 1 +1842 4 2 0.3 0.3 0.3 1 +1842 4 3 -0.8 -0.8 -0.8 1 +1842 4 4 0.5 0.5 0.5 1 +1842 4 5 5.6 5.6 5.6 1 +1842 4 6 6.0 6.0 6.0 1 +1842 4 7 0.4 0.4 0.4 1 +1842 4 8 -4.1 -4.1 -4.1 1 +1842 4 9 -1.8 -1.8 -1.8 1 +1842 4 10 1.5 1.5 1.5 1 +1842 4 11 0.5 0.5 0.5 1 +1842 4 12 0.8 0.8 0.8 1 +1842 4 13 1.6 1.6 1.6 1 +1842 4 14 2.7 2.7 2.7 1 +1842 4 15 -1.7 -1.7 -1.7 1 +1842 4 16 0.7 0.7 0.7 1 +1842 4 17 5.3 5.3 5.3 1 +1842 4 18 1.8 1.8 1.8 1 +1842 4 19 7.0 7.0 7.0 1 +1842 4 20 8.9 8.9 8.9 1 +1842 4 21 7.9 7.9 7.9 1 +1842 4 22 9.0 9.0 9.0 1 +1842 4 23 5.6 5.6 5.6 1 +1842 4 24 1.7 1.7 1.7 1 +1842 4 25 2.6 2.6 2.6 1 +1842 4 26 6.5 6.5 6.5 1 +1842 4 27 10.3 10.3 10.3 1 +1842 4 28 4.9 4.9 4.9 1 +1842 4 29 5.2 5.2 5.2 1 +1842 4 30 8.8 8.8 8.8 1 +1842 5 1 7.2 7.2 7.2 1 +1842 5 2 10.1 10.1 10.1 1 +1842 5 3 12.6 12.6 12.6 1 +1842 5 4 11.7 11.7 11.7 1 +1842 5 5 10.5 10.5 10.4 1 +1842 5 6 10.1 10.1 10.0 1 +1842 5 7 9.8 9.8 9.7 1 +1842 5 8 8.1 8.1 8.0 1 +1842 5 9 10.2 10.2 10.1 1 +1842 5 10 11.2 11.2 11.0 1 +1842 5 11 9.8 9.8 9.6 1 +1842 5 12 9.2 9.2 9.0 1 +1842 5 13 7.8 7.8 7.6 1 +1842 5 14 6.2 6.2 5.9 1 +1842 5 15 7.6 7.6 7.3 1 +1842 5 16 7.9 7.9 7.6 1 +1842 5 17 8.1 8.1 7.8 1 +1842 5 18 10.1 10.1 9.8 1 +1842 5 19 10.8 10.8 10.4 1 +1842 5 20 9.8 9.8 9.4 1 +1842 5 21 7.5 7.5 7.1 1 +1842 5 22 11.1 11.1 10.7 1 +1842 5 23 13.3 13.3 12.8 1 +1842 5 24 13.9 13.9 13.4 1 +1842 5 25 13.6 13.6 13.1 1 +1842 5 26 11.4 11.4 10.9 1 +1842 5 27 15.4 15.4 14.9 1 +1842 5 28 17.1 17.1 16.5 1 +1842 5 29 18.7 18.7 18.1 1 +1842 5 30 16.9 16.9 16.3 1 +1842 5 31 17.6 17.6 17.0 1 +1842 6 1 15.2 15.2 14.5 1 +1842 6 2 13.1 13.1 12.4 1 +1842 6 3 10.5 10.5 9.8 1 +1842 6 4 13.7 13.7 13.0 1 +1842 6 5 15.9 15.9 15.2 1 +1842 6 6 17.7 17.7 17.0 1 +1842 6 7 19.0 19.0 18.3 1 +1842 6 8 20.7 20.7 20.0 1 +1842 6 9 19.3 19.3 18.6 1 +1842 6 10 13.5 13.5 12.8 1 +1842 6 11 18.4 18.4 17.7 1 +1842 6 12 17.7 17.7 17.0 1 +1842 6 13 13.7 13.7 13.0 1 +1842 6 14 15.6 15.6 14.9 1 +1842 6 15 10.9 10.9 10.2 1 +1842 6 16 9.4 9.4 8.7 1 +1842 6 17 9.0 9.0 8.3 1 +1842 6 18 9.4 9.4 8.7 1 +1842 6 19 12.5 12.5 11.8 1 +1842 6 20 12.3 12.3 11.6 1 +1842 6 21 13.9 13.9 13.2 1 +1842 6 22 15.1 15.1 14.4 1 +1842 6 23 14.4 14.4 13.7 1 +1842 6 24 14.1 14.1 13.4 1 +1842 6 25 13.2 13.2 12.5 1 +1842 6 26 12.5 12.5 11.8 1 +1842 6 27 11.5 11.5 10.8 1 +1842 6 28 12.4 12.4 11.7 1 +1842 6 29 12.9 12.9 12.2 1 +1842 6 30 13.2 13.2 12.5 1 +1842 7 1 13.4 13.4 12.7 1 +1842 7 2 10.4 10.4 9.7 1 +1842 7 3 12.0 12.0 11.3 1 +1842 7 4 14.5 14.5 13.8 1 +1842 7 5 15.2 15.2 14.5 1 +1842 7 6 16.0 16.0 15.3 1 +1842 7 7 16.6 16.6 15.9 1 +1842 7 8 17.0 17.0 16.3 1 +1842 7 9 17.6 17.6 16.9 1 +1842 7 10 18.8 18.8 18.1 1 +1842 7 11 17.5 17.5 16.8 1 +1842 7 12 17.6 17.6 16.9 1 +1842 7 13 15.5 15.5 14.8 1 +1842 7 14 18.5 18.5 17.8 1 +1842 7 15 16.0 16.0 15.3 1 +1842 7 16 14.3 14.3 13.6 1 +1842 7 17 13.4 13.4 12.7 1 +1842 7 18 15.3 15.3 14.6 1 +1842 7 19 11.9 11.9 11.2 1 +1842 7 20 13.1 13.1 12.4 1 +1842 7 21 14.4 14.4 13.7 1 +1842 7 22 13.7 13.7 13.0 1 +1842 7 23 13.7 13.7 13.0 1 +1842 7 24 14.7 14.7 14.0 1 +1842 7 25 12.2 12.2 11.5 1 +1842 7 26 12.5 12.5 11.8 1 +1842 7 27 15.2 15.2 14.5 1 +1842 7 28 14.5 14.5 13.8 1 +1842 7 29 14.0 14.0 13.3 1 +1842 7 30 14.8 14.8 14.1 1 +1842 7 31 17.8 17.8 17.1 1 +1842 8 1 18.7 18.7 18.1 1 +1842 8 2 17.2 17.2 16.6 1 +1842 8 3 16.7 16.7 16.1 1 +1842 8 4 16.3 16.3 15.7 1 +1842 8 5 17.1 17.1 16.6 1 +1842 8 6 19.6 19.6 19.1 1 +1842 8 7 18.2 18.2 17.7 1 +1842 8 8 17.6 17.6 17.1 1 +1842 8 9 17.4 17.4 16.9 1 +1842 8 10 18.6 18.6 18.2 1 +1842 8 11 19.4 19.4 19.0 1 +1842 8 12 19.8 19.8 19.4 1 +1842 8 13 18.2 18.2 17.8 1 +1842 8 14 20.2 20.2 19.9 1 +1842 8 15 19.9 19.9 19.6 1 +1842 8 16 19.6 19.6 19.3 1 +1842 8 17 16.3 16.3 16.0 1 +1842 8 18 17.4 17.4 17.1 1 +1842 8 19 20.2 20.2 20.0 1 +1842 8 20 19.5 19.5 19.3 1 +1842 8 21 18.8 18.8 18.6 1 +1842 8 22 19.4 19.4 19.2 1 +1842 8 23 18.2 18.2 18.1 1 +1842 8 24 19.9 19.9 19.8 1 +1842 8 25 20.1 20.1 20.0 1 +1842 8 26 18.6 18.6 18.5 1 +1842 8 27 19.0 19.0 18.9 1 +1842 8 28 19.6 19.6 19.6 1 +1842 8 29 19.8 19.8 19.8 1 +1842 8 30 20.0 20.0 20.0 1 +1842 8 31 20.1 20.1 20.1 1 +1842 9 1 20.2 20.2 20.2 1 +1842 9 2 17.7 17.7 17.7 1 +1842 9 3 17.1 17.1 17.1 1 +1842 9 4 8.8 8.8 8.8 1 +1842 9 5 7.8 7.8 7.8 1 +1842 9 6 8.9 8.9 8.9 1 +1842 9 7 12.4 12.4 12.4 1 +1842 9 8 7.7 7.7 7.7 1 +1842 9 9 9.4 9.4 9.4 1 +1842 9 10 9.0 9.0 9.0 1 +1842 9 11 9.9 9.9 9.9 1 +1842 9 12 10.5 10.5 10.5 1 +1842 9 13 10.6 10.6 10.6 1 +1842 9 14 11.6 11.6 11.6 1 +1842 9 15 11.2 11.2 11.2 1 +1842 9 16 11.2 11.2 11.2 1 +1842 9 17 11.8 11.8 11.8 1 +1842 9 18 12.7 12.7 12.7 1 +1842 9 19 12.6 12.6 12.6 1 +1842 9 20 15.6 15.6 15.6 1 +1842 9 21 14.1 14.1 14.1 1 +1842 9 22 13.0 13.0 13.0 1 +1842 9 23 12.8 12.8 12.8 1 +1842 9 24 10.2 10.2 10.2 1 +1842 9 25 5.1 5.1 5.1 1 +1842 9 26 4.6 4.6 4.6 1 +1842 9 27 4.0 4.0 4.0 1 +1842 9 28 5.5 5.5 5.5 1 +1842 9 29 4.0 4.0 4.0 1 +1842 9 30 5.0 5.0 5.0 1 +1842 10 1 7.3 7.3 7.3 1 +1842 10 2 9.5 9.5 9.5 1 +1842 10 3 4.8 4.8 4.8 1 +1842 10 4 1.0 1.0 1.0 1 +1842 10 5 1.7 1.7 1.7 1 +1842 10 6 1.8 1.8 1.8 1 +1842 10 7 3.7 3.7 3.7 1 +1842 10 8 7.1 7.1 7.1 1 +1842 10 9 7.5 7.5 7.5 1 +1842 10 10 4.9 4.9 4.9 1 +1842 10 11 7.0 7.0 7.0 1 +1842 10 12 4.3 4.3 4.3 1 +1842 10 13 4.3 4.3 4.3 1 +1842 10 14 6.6 6.6 6.6 1 +1842 10 15 11.0 11.0 11.0 1 +1842 10 16 6.4 6.4 6.4 1 +1842 10 17 6.1 6.1 6.1 1 +1842 10 18 8.1 8.1 8.1 1 +1842 10 19 8.5 8.5 8.5 1 +1842 10 20 6.3 6.3 6.3 1 +1842 10 21 3.5 3.5 3.5 1 +1842 10 22 1.1 1.1 1.1 1 +1842 10 23 3.9 3.9 3.9 1 +1842 10 24 5.5 5.5 5.5 1 +1842 10 25 6.7 6.7 6.7 1 +1842 10 26 4.7 4.7 4.7 1 +1842 10 27 6.5 6.5 6.5 1 +1842 10 28 6.2 6.2 6.2 1 +1842 10 29 1.3 1.3 1.3 1 +1842 10 30 2.4 2.4 2.4 1 +1842 10 31 3.4 3.4 3.4 1 +1842 11 1 1.5 1.5 1.5 1 +1842 11 2 -0.3 -0.3 -0.3 1 +1842 11 3 -0.8 -0.8 -0.8 1 +1842 11 4 -1.0 -1.0 -1.0 1 +1842 11 5 0.0 0.0 0.0 1 +1842 11 6 -1.4 -1.4 -1.4 1 +1842 11 7 0.4 0.4 0.4 1 +1842 11 8 1.2 1.2 1.2 1 +1842 11 9 2.3 2.3 2.3 1 +1842 11 10 2.3 2.3 2.3 1 +1842 11 11 3.3 3.3 3.3 1 +1842 11 12 4.3 4.3 4.3 1 +1842 11 13 5.6 5.6 5.6 1 +1842 11 14 2.3 2.3 2.3 1 +1842 11 15 -2.7 -2.7 -2.7 1 +1842 11 16 -3.4 -3.4 -3.4 1 +1842 11 17 -4.2 -4.2 -4.2 1 +1842 11 18 -0.7 -0.7 -0.7 1 +1842 11 19 -1.4 -1.4 -1.4 1 +1842 11 20 -0.2 -0.2 -0.2 1 +1842 11 21 -1.8 -1.8 -1.8 1 +1842 11 22 -5.9 -5.9 -5.9 1 +1842 11 23 -12.7 -12.7 -12.7 1 +1842 11 24 -11.0 -11.0 -11.0 1 +1842 11 25 -3.1 -3.1 -3.1 1 +1842 11 26 -0.9 -0.9 -0.9 1 +1842 11 27 -1.9 -1.9 -1.9 1 +1842 11 28 -4.5 -4.5 -4.5 1 +1842 11 29 3.0 3.0 3.0 1 +1842 11 30 2.6 2.6 2.6 1 +1842 12 1 0.0 0.0 0.0 1 +1842 12 2 2.2 2.2 2.2 1 +1842 12 3 7.2 7.2 7.2 1 +1842 12 4 3.4 3.4 3.4 1 +1842 12 5 6.5 6.5 6.5 1 +1842 12 6 2.2 2.2 2.2 1 +1842 12 7 0.5 0.5 0.5 1 +1842 12 8 3.0 3.0 3.0 1 +1842 12 9 1.0 1.0 1.0 1 +1842 12 10 -0.1 -0.1 -0.1 1 +1842 12 11 0.0 0.0 0.0 1 +1842 12 12 -1.2 -1.2 -1.2 1 +1842 12 13 1.3 1.3 1.3 1 +1842 12 14 7.1 7.1 7.1 1 +1842 12 15 3.4 3.4 3.4 1 +1842 12 16 6.3 6.3 6.3 1 +1842 12 17 2.2 2.2 2.2 1 +1842 12 18 1.7 1.7 1.7 1 +1842 12 19 -1.0 -1.0 -1.0 1 +1842 12 20 0.0 0.0 0.0 1 +1842 12 21 4.0 4.0 4.0 1 +1842 12 22 1.6 1.6 1.6 1 +1842 12 23 4.4 4.4 4.4 1 +1842 12 24 1.3 1.3 1.3 1 +1842 12 25 2.0 2.0 2.0 1 +1842 12 26 6.8 6.8 6.8 1 +1842 12 27 5.6 5.6 5.6 1 +1842 12 28 3.3 3.3 3.3 1 +1842 12 29 1.7 1.7 1.7 1 +1842 12 30 -2.0 -2.0 -2.0 1 +1842 12 31 -2.0 -2.0 -2.0 1 +1843 1 1 -3.3 -3.3 -3.3 1 +1843 1 2 -6.2 -6.2 -6.2 1 +1843 1 3 -11.2 -11.2 -11.2 1 +1843 1 4 -3.8 -3.8 -3.8 1 +1843 1 5 0.0 0.0 0.0 1 +1843 1 6 -2.8 -2.8 -2.8 1 +1843 1 7 -1.9 -1.9 -1.9 1 +1843 1 8 1.1 1.1 1.1 1 +1843 1 9 -3.0 -3.0 -3.0 1 +1843 1 10 -1.5 -1.5 -1.5 1 +1843 1 11 -0.3 -0.3 -0.3 1 +1843 1 12 -1.1 -1.1 -1.1 1 +1843 1 13 0.3 0.3 0.3 1 +1843 1 14 2.0 2.0 2.0 1 +1843 1 15 1.3 1.3 1.3 1 +1843 1 16 0.4 0.4 0.4 1 +1843 1 17 0.4 0.4 0.4 1 +1843 1 18 2.0 2.0 2.0 1 +1843 1 19 2.9 2.9 2.9 1 +1843 1 20 2.7 2.7 2.7 1 +1843 1 21 1.9 1.9 1.9 1 +1843 1 22 0.8 0.8 0.8 1 +1843 1 23 1.4 1.4 1.4 1 +1843 1 24 0.0 0.0 0.0 1 +1843 1 25 -1.1 -1.1 -1.1 1 +1843 1 26 -0.2 -0.2 -0.2 1 +1843 1 27 2.0 2.0 2.0 1 +1843 1 28 5.3 5.3 5.3 1 +1843 1 29 1.4 1.4 1.4 1 +1843 1 30 -2.1 -2.1 -2.1 1 +1843 1 31 -2.9 -2.9 -2.9 1 +1843 2 1 1.5 1.5 1.5 1 +1843 2 2 1.8 1.8 1.8 1 +1843 2 3 0.3 0.3 0.3 1 +1843 2 4 2.4 2.4 2.4 1 +1843 2 5 1.0 1.0 1.0 1 +1843 2 6 1.5 1.5 1.5 1 +1843 2 7 0.3 0.3 0.3 1 +1843 2 8 -2.0 -2.0 -2.0 1 +1843 2 9 -1.5 -1.5 -1.5 1 +1843 2 10 -4.2 -4.2 -4.2 1 +1843 2 11 -4.3 -4.3 -4.3 1 +1843 2 12 -1.1 -1.1 -1.1 1 +1843 2 13 -2.0 -2.0 -2.0 1 +1843 2 14 -1.8 -1.8 -1.8 1 +1843 2 15 -9.3 -9.3 -9.3 1 +1843 2 16 -7.2 -7.2 -7.2 1 +1843 2 17 -6.1 -6.1 -6.1 1 +1843 2 18 -7.7 -7.7 -7.7 1 +1843 2 19 -5.2 -5.2 -5.2 1 +1843 2 20 -5.0 -5.0 -5.0 1 +1843 2 21 -7.3 -7.3 -7.3 1 +1843 2 22 -5.5 -5.5 -5.5 1 +1843 2 23 -3.8 -3.8 -3.8 1 +1843 2 24 -4.4 -4.4 -4.4 1 +1843 2 25 -5.2 -5.2 -5.2 1 +1843 2 26 -5.3 -5.3 -5.3 1 +1843 2 27 -5.4 -5.4 -5.4 1 +1843 2 28 -5.7 -5.7 -5.7 1 +1843 3 1 -5.7 -5.7 -5.7 1 +1843 3 2 -6.5 -6.5 -6.5 1 +1843 3 3 -8.4 -8.4 -8.4 1 +1843 3 4 -2.4 -2.4 -2.4 1 +1843 3 5 -2.1 -2.1 -2.1 1 +1843 3 6 2.9 2.9 2.9 1 +1843 3 7 0.0 0.0 0.0 1 +1843 3 8 -1.2 -1.2 -1.2 1 +1843 3 9 -0.3 -0.3 -0.3 1 +1843 3 10 0.5 0.5 0.5 1 +1843 3 11 0.4 0.4 0.4 1 +1843 3 12 0.6 0.6 0.6 1 +1843 3 13 0.3 0.3 0.3 1 +1843 3 14 -3.5 -3.5 -3.5 1 +1843 3 15 -4.7 -4.7 -4.7 1 +1843 3 16 -4.8 -4.8 -4.8 1 +1843 3 17 -4.2 -4.2 -4.2 1 +1843 3 18 -4.7 -4.7 -4.7 1 +1843 3 19 -7.5 -7.5 -7.5 1 +1843 3 20 -5.1 -5.1 -5.1 1 +1843 3 21 -1.8 -1.8 -1.8 1 +1843 3 22 -0.5 -0.5 -0.5 1 +1843 3 23 -2.3 -2.3 -2.3 1 +1843 3 24 -1.0 -1.0 -1.0 1 +1843 3 25 -2.3 -2.3 -2.3 1 +1843 3 26 -5.2 -5.2 -5.2 1 +1843 3 27 -0.4 -0.4 -0.4 1 +1843 3 28 1.5 1.5 1.5 1 +1843 3 29 1.5 1.5 1.5 1 +1843 3 30 0.1 0.1 0.1 1 +1843 3 31 1.4 1.4 1.4 1 +1843 4 1 1.5 1.5 1.5 1 +1843 4 2 -1.4 -1.4 -1.4 1 +1843 4 3 -2.3 -2.3 -2.3 1 +1843 4 4 -3.5 -3.5 -3.5 1 +1843 4 5 -4.8 -4.8 -4.8 1 +1843 4 6 -0.8 -0.8 -0.8 1 +1843 4 7 2.0 2.0 2.0 1 +1843 4 8 -1.5 -1.5 -1.5 1 +1843 4 9 -2.9 -2.9 -2.9 1 +1843 4 10 -2.8 -2.8 -2.8 1 +1843 4 11 -3.2 -3.2 -3.2 1 +1843 4 12 -7.2 -7.2 -7.2 1 +1843 4 13 -3.4 -3.4 -3.4 1 +1843 4 14 -1.2 -1.2 -1.2 1 +1843 4 15 -0.8 -0.8 -0.8 1 +1843 4 16 2.9 2.9 2.9 1 +1843 4 17 4.6 4.6 4.6 1 +1843 4 18 3.2 3.2 3.2 1 +1843 4 19 4.2 4.2 4.2 1 +1843 4 20 2.3 2.3 2.3 1 +1843 4 21 2.4 2.4 2.4 1 +1843 4 22 0.5 0.5 0.5 1 +1843 4 23 2.1 2.1 2.1 1 +1843 4 24 3.4 3.4 3.4 1 +1843 4 25 2.7 2.7 2.7 1 +1843 4 26 5.0 5.0 5.0 1 +1843 4 27 7.6 7.6 7.6 1 +1843 4 28 7.6 7.6 7.6 1 +1843 4 29 7.4 7.4 7.4 1 +1843 4 30 8.7 8.7 8.7 1 +1843 5 1 10.8 10.8 10.8 1 +1843 5 2 8.1 8.1 8.1 1 +1843 5 3 4.8 4.8 4.8 1 +1843 5 4 5.5 5.5 5.5 1 +1843 5 5 4.7 4.7 4.6 1 +1843 5 6 4.6 4.6 4.5 1 +1843 5 7 4.4 4.4 4.3 1 +1843 5 8 5.1 5.1 5.0 1 +1843 5 9 3.8 3.8 3.7 1 +1843 5 10 3.7 3.7 3.5 1 +1843 5 11 5.5 5.5 5.3 1 +1843 5 12 2.7 2.7 2.5 1 +1843 5 13 1.8 1.8 1.6 1 +1843 5 14 2.9 2.9 2.6 1 +1843 5 15 2.2 2.2 1.9 1 +1843 5 16 1.8 1.8 1.5 1 +1843 5 17 3.8 3.8 3.5 1 +1843 5 18 4.5 4.5 4.2 1 +1843 5 19 5.2 5.2 4.8 1 +1843 5 20 6.5 6.5 6.1 1 +1843 5 21 8.9 8.9 8.5 1 +1843 5 22 7.7 7.7 7.3 1 +1843 5 23 7.9 7.9 7.4 1 +1843 5 24 10.2 10.2 9.7 1 +1843 5 25 13.5 13.5 13.0 1 +1843 5 26 12.2 12.2 11.7 1 +1843 5 27 10.8 10.8 10.3 1 +1843 5 28 11.1 11.1 10.5 1 +1843 5 29 10.4 10.4 9.8 1 +1843 5 30 5.6 5.6 5.0 1 +1843 5 31 7.5 7.5 6.9 1 +1843 6 1 7.5 7.5 6.8 1 +1843 6 2 8.6 8.6 7.9 1 +1843 6 3 11.6 11.6 10.9 1 +1843 6 4 15.0 15.0 14.3 1 +1843 6 5 10.8 10.8 10.1 1 +1843 6 6 12.0 12.0 11.3 1 +1843 6 7 11.8 11.8 11.1 1 +1843 6 8 12.1 12.1 11.4 1 +1843 6 9 11.8 11.8 11.1 1 +1843 6 10 12.0 12.0 11.3 1 +1843 6 11 14.1 14.1 13.4 1 +1843 6 12 17.2 17.2 16.5 1 +1843 6 13 14.9 14.9 14.2 1 +1843 6 14 13.6 13.6 12.9 1 +1843 6 15 15.7 15.7 15.0 1 +1843 6 16 16.6 16.6 15.9 1 +1843 6 17 19.1 19.1 18.4 1 +1843 6 18 16.3 16.3 15.6 1 +1843 6 19 9.7 9.7 9.0 1 +1843 6 20 10.1 10.1 9.4 1 +1843 6 21 13.6 13.6 12.9 1 +1843 6 22 16.2 16.2 15.5 1 +1843 6 23 12.4 12.4 11.7 1 +1843 6 24 11.6 11.6 10.9 1 +1843 6 25 14.0 14.0 13.3 1 +1843 6 26 13.0 13.0 12.3 1 +1843 6 27 12.1 12.1 11.4 1 +1843 6 28 11.1 11.1 10.4 1 +1843 6 29 9.6 9.6 8.9 1 +1843 6 30 12.4 12.4 11.7 1 +1843 7 1 14.7 14.7 14.0 1 +1843 7 2 16.4 16.4 15.7 1 +1843 7 3 15.2 15.2 14.5 1 +1843 7 4 19.0 19.0 18.3 1 +1843 7 5 20.4 20.4 19.7 1 +1843 7 6 20.4 20.4 19.7 1 +1843 7 7 21.4 21.4 20.7 1 +1843 7 8 21.4 21.4 20.7 1 +1843 7 9 22.3 22.3 21.6 1 +1843 7 10 20.2 20.2 19.5 1 +1843 7 11 18.6 18.6 17.9 1 +1843 7 12 19.3 19.3 18.6 1 +1843 7 13 21.7 21.7 21.0 1 +1843 7 14 22.1 22.1 21.4 1 +1843 7 15 20.4 20.4 19.7 1 +1843 7 16 18.9 18.9 18.2 1 +1843 7 17 16.8 16.8 16.1 1 +1843 7 18 16.4 16.4 15.7 1 +1843 7 19 13.1 13.1 12.4 1 +1843 7 20 16.0 16.0 15.3 1 +1843 7 21 15.8 15.8 15.1 1 +1843 7 22 13.9 13.9 13.2 1 +1843 7 23 12.5 12.5 11.8 1 +1843 7 24 12.6 12.6 11.9 1 +1843 7 25 15.6 15.6 14.9 1 +1843 7 26 15.0 15.0 14.3 1 +1843 7 27 12.9 12.9 12.2 1 +1843 7 28 13.0 13.0 12.3 1 +1843 7 29 14.9 14.9 14.2 1 +1843 7 30 14.6 14.6 13.9 1 +1843 7 31 15.7 15.7 15.0 1 +1843 8 1 15.5 15.5 14.9 1 +1843 8 2 16.5 16.5 15.9 1 +1843 8 3 17.6 17.6 17.0 1 +1843 8 4 15.8 15.8 15.2 1 +1843 8 5 18.3 18.3 17.8 1 +1843 8 6 17.0 17.0 16.5 1 +1843 8 7 16.4 16.4 15.9 1 +1843 8 8 17.3 17.3 16.8 1 +1843 8 9 19.0 19.0 18.5 1 +1843 8 10 21.3 21.3 20.9 1 +1843 8 11 22.4 22.4 22.0 1 +1843 8 12 21.8 21.8 21.4 1 +1843 8 13 19.1 19.1 18.7 1 +1843 8 14 17.2 17.2 16.9 1 +1843 8 15 16.6 16.6 16.3 1 +1843 8 16 17.2 17.2 16.9 1 +1843 8 17 18.7 18.7 18.4 1 +1843 8 18 19.5 19.5 19.2 1 +1843 8 19 20.0 20.0 19.8 1 +1843 8 20 20.2 20.2 20.0 1 +1843 8 21 19.8 19.8 19.6 1 +1843 8 22 20.1 20.1 19.9 1 +1843 8 23 19.7 19.7 19.6 1 +1843 8 24 20.4 20.4 20.3 1 +1843 8 25 21.2 21.2 21.1 1 +1843 8 26 21.2 21.2 21.1 1 +1843 8 27 21.0 21.0 20.9 1 +1843 8 28 18.5 18.5 18.5 1 +1843 8 29 17.6 17.6 17.6 1 +1843 8 30 17.2 17.2 17.2 1 +1843 8 31 15.5 15.5 15.5 1 +1843 9 1 14.0 14.0 14.0 1 +1843 9 2 11.3 11.3 11.3 1 +1843 9 3 11.7 11.7 11.7 1 +1843 9 4 12.3 12.3 12.3 1 +1843 9 5 11.3 11.3 11.3 1 +1843 9 6 10.8 10.8 10.8 1 +1843 9 7 13.2 13.2 13.2 1 +1843 9 8 16.1 16.1 16.1 1 +1843 9 9 16.2 16.2 16.2 1 +1843 9 10 11.5 11.5 11.5 1 +1843 9 11 9.4 9.4 9.4 1 +1843 9 12 13.0 13.0 13.0 1 +1843 9 13 15.7 15.7 15.7 1 +1843 9 14 16.4 16.4 16.4 1 +1843 9 15 16.5 16.5 16.5 1 +1843 9 16 16.1 16.1 16.1 1 +1843 9 17 15.8 15.8 15.8 1 +1843 9 18 15.4 15.4 15.4 1 +1843 9 19 16.5 16.5 16.5 1 +1843 9 20 12.9 12.9 12.9 1 +1843 9 21 13.2 13.2 13.2 1 +1843 9 22 12.2 12.2 12.2 1 +1843 9 23 12.4 12.4 12.4 1 +1843 9 24 10.8 10.8 10.8 1 +1843 9 25 3.6 3.6 3.6 1 +1843 9 26 2.7 2.7 2.7 1 +1843 9 27 3.4 3.4 3.4 1 +1843 9 28 4.5 4.5 4.5 1 +1843 9 29 7.4 7.4 7.4 1 +1843 9 30 8.1 8.1 8.1 1 +1843 10 1 6.1 6.1 6.1 1 +1843 10 2 8.6 8.6 8.6 1 +1843 10 3 5.3 5.3 5.3 1 +1843 10 4 2.3 2.3 2.3 1 +1843 10 5 2.8 2.8 2.8 1 +1843 10 6 2.8 2.8 2.8 1 +1843 10 7 8.1 8.1 8.1 1 +1843 10 8 9.6 9.6 9.6 1 +1843 10 9 4.0 4.0 4.0 1 +1843 10 10 3.7 3.7 3.7 1 +1843 10 11 3.1 3.1 3.1 1 +1843 10 12 4.6 4.6 4.6 1 +1843 10 13 3.4 3.4 3.4 1 +1843 10 14 2.1 2.1 2.1 1 +1843 10 15 2.0 2.0 2.0 1 +1843 10 16 1.2 1.2 1.2 1 +1843 10 17 2.3 2.3 2.3 1 +1843 10 18 1.0 1.0 1.0 1 +1843 10 19 0.3 0.3 0.3 1 +1843 10 20 -1.3 -1.3 -1.3 1 +1843 10 21 0.8 0.8 0.8 1 +1843 10 22 4.3 4.3 4.3 1 +1843 10 23 6.4 6.4 6.4 1 +1843 10 24 5.5 5.5 5.5 1 +1843 10 25 4.9 4.9 4.9 1 +1843 10 26 3.1 3.1 3.1 1 +1843 10 27 2.2 2.2 2.2 1 +1843 10 28 4.1 4.1 4.1 1 +1843 10 29 5.1 5.1 5.1 1 +1843 10 30 7.2 7.2 7.2 1 +1843 10 31 9.1 9.1 9.1 1 +1843 11 1 9.0 9.0 9.0 1 +1843 11 2 7.9 7.9 7.9 1 +1843 11 3 6.2 6.2 6.2 1 +1843 11 4 6.3 6.3 6.3 1 +1843 11 5 7.3 7.3 7.3 1 +1843 11 6 7.2 7.2 7.2 1 +1843 11 7 8.3 8.3 8.3 1 +1843 11 8 5.0 5.0 5.0 1 +1843 11 9 3.8 3.8 3.8 1 +1843 11 10 1.1 1.1 1.1 1 +1843 11 11 0.0 0.0 0.0 1 +1843 11 12 0.3 0.3 0.3 1 +1843 11 13 -1.2 -1.2 -1.2 1 +1843 11 14 -1.1 -1.1 -1.1 1 +1843 11 15 0.4 0.4 0.4 1 +1843 11 16 1.6 1.6 1.6 1 +1843 11 17 -0.3 -0.3 -0.3 1 +1843 11 18 0.5 0.5 0.5 1 +1843 11 19 0.9 0.9 0.9 1 +1843 11 20 1.5 1.5 1.5 1 +1843 11 21 0.9 0.9 0.9 1 +1843 11 22 3.6 3.6 3.6 1 +1843 11 23 0.2 0.2 0.2 1 +1843 11 24 -1.5 -1.5 -1.5 1 +1843 11 25 -8.3 -8.3 -8.3 1 +1843 11 26 -1.7 -1.7 -1.7 1 +1843 11 27 4.4 4.4 4.4 1 +1843 11 28 3.3 3.3 3.3 1 +1843 11 29 -1.5 -1.5 -1.5 1 +1843 11 30 -2.8 -2.8 -2.8 1 +1843 12 1 -1.8 -1.8 -1.8 1 +1843 12 2 0.1 0.1 0.1 1 +1843 12 3 0.9 0.9 0.9 1 +1843 12 4 1.6 1.6 1.6 1 +1843 12 5 1.7 1.7 1.7 1 +1843 12 6 2.8 2.8 2.8 1 +1843 12 7 0.7 0.7 0.7 1 +1843 12 8 0.2 0.2 0.2 1 +1843 12 9 -0.7 -0.7 -0.7 1 +1843 12 10 -2.1 -2.1 -2.1 1 +1843 12 11 1.0 1.0 1.0 1 +1843 12 12 0.2 0.2 0.2 1 +1843 12 13 1.9 1.9 1.9 1 +1843 12 14 3.8 3.8 3.8 1 +1843 12 15 3.6 3.6 3.6 1 +1843 12 16 -3.2 -3.2 -3.2 1 +1843 12 17 -2.0 -2.0 -2.0 1 +1843 12 18 -2.2 -2.2 -2.2 1 +1843 12 19 1.9 1.9 1.9 1 +1843 12 20 0.5 0.5 0.5 1 +1843 12 21 -0.6 -0.6 -0.6 1 +1843 12 22 0.5 0.5 0.5 1 +1843 12 23 3.9 3.9 3.9 1 +1843 12 24 1.6 1.6 1.6 1 +1843 12 25 3.3 3.3 3.3 1 +1843 12 26 4.6 4.6 4.6 1 +1843 12 27 4.1 4.1 4.1 1 +1843 12 28 4.4 4.4 4.4 1 +1843 12 29 4.9 4.9 4.9 1 +1843 12 30 6.0 6.0 6.0 1 +1843 12 31 2.0 2.0 2.0 1 +1844 1 1 1.9 1.9 1.9 1 +1844 1 2 0.6 0.6 0.6 1 +1844 1 3 -10.6 -10.6 -10.6 1 +1844 1 4 -1.4 -1.4 -1.4 1 +1844 1 5 -12.8 -12.8 -12.8 1 +1844 1 6 -12.5 -12.5 -12.5 1 +1844 1 7 -10.2 -10.2 -10.2 1 +1844 1 8 -13.4 -13.4 -13.4 1 +1844 1 9 -10.9 -10.9 -10.9 1 +1844 1 10 -9.3 -9.3 -9.3 1 +1844 1 11 -3.7 -3.7 -3.7 1 +1844 1 12 -0.7 -0.7 -0.7 1 +1844 1 13 -3.8 -3.8 -3.8 1 +1844 1 14 -4.7 -4.7 -4.7 1 +1844 1 15 -1.3 -1.3 -1.3 1 +1844 1 16 -0.4 -0.4 -0.4 1 +1844 1 17 -1.4 -1.4 -1.4 1 +1844 1 18 -4.5 -4.5 -4.5 1 +1844 1 19 -2.5 -2.5 -2.5 1 +1844 1 20 -6.9 -6.9 -6.9 1 +1844 1 21 -9.2 -9.2 -9.2 1 +1844 1 22 -8.3 -8.3 -8.3 1 +1844 1 23 -8.0 -8.0 -8.0 1 +1844 1 24 -1.9 -1.9 -1.9 1 +1844 1 25 -2.2 -2.2 -2.2 1 +1844 1 26 -1.6 -1.6 -1.6 1 +1844 1 27 -5.5 -5.5 -5.5 1 +1844 1 28 -6.7 -6.7 -6.7 1 +1844 1 29 -4.1 -4.1 -4.1 1 +1844 1 30 -0.4 -0.4 -0.4 1 +1844 1 31 -0.1 -0.1 -0.1 1 +1844 2 1 -3.7 -3.7 -3.7 1 +1844 2 2 -6.7 -6.7 -6.7 1 +1844 2 3 -4.5 -4.5 -4.5 1 +1844 2 4 -4.4 -4.4 -4.4 1 +1844 2 5 -2.4 -2.4 -2.4 1 +1844 2 6 -2.7 -2.7 -2.7 1 +1844 2 7 -7.7 -7.7 -7.7 1 +1844 2 8 -6.0 -6.0 -6.0 1 +1844 2 9 -14.4 -14.4 -14.4 1 +1844 2 10 -13.0 -13.0 -13.0 1 +1844 2 11 -11.9 -11.9 -11.9 1 +1844 2 12 -15.4 -15.4 -15.4 1 +1844 2 13 -10.8 -10.8 -10.8 1 +1844 2 14 -0.9 -0.9 -0.9 1 +1844 2 15 1.4 1.4 1.4 1 +1844 2 16 1.1 1.1 1.1 1 +1844 2 17 -5.8 -5.8 -5.8 1 +1844 2 18 -15.1 -15.1 -15.1 1 +1844 2 19 -12.5 -12.5 -12.5 1 +1844 2 20 -17.1 -17.1 -17.1 1 +1844 2 21 -21.4 -21.4 -21.4 1 +1844 2 22 -21.9 -21.9 -21.9 1 +1844 2 23 -20.9 -20.9 -20.9 1 +1844 2 24 -17.0 -17.0 -17.0 1 +1844 2 25 -15.9 -15.9 -15.9 1 +1844 2 26 -18.0 -18.0 -18.0 1 +1844 2 27 -16.4 -16.4 -16.4 1 +1844 2 28 -15.6 -15.6 -15.6 1 +1844 2 29 -15.5 -15.5 -15.5 1 +1844 3 1 -6.2 -6.2 -6.2 1 +1844 3 2 -2.3 -2.3 -2.3 1 +1844 3 3 -0.5 -0.5 -0.5 1 +1844 3 4 -0.9 -0.9 -0.9 1 +1844 3 5 -3.9 -3.9 -3.9 1 +1844 3 6 -8.2 -8.2 -8.2 1 +1844 3 7 -10.8 -10.8 -10.8 1 +1844 3 8 -9.5 -9.5 -9.5 1 +1844 3 9 -3.9 -3.9 -3.9 1 +1844 3 10 -3.3 -3.3 -3.3 1 +1844 3 11 -3.5 -3.5 -3.5 1 +1844 3 12 -3.5 -3.5 -3.5 1 +1844 3 13 -6.3 -6.3 -6.3 1 +1844 3 14 -6.4 -6.4 -6.4 1 +1844 3 15 -7.9 -7.9 -7.9 1 +1844 3 16 -8.7 -8.7 -8.7 1 +1844 3 17 -4.2 -4.2 -4.2 1 +1844 3 18 -2.1 -2.1 -2.1 1 +1844 3 19 -5.4 -5.4 -5.4 1 +1844 3 20 -7.8 -7.8 -7.8 1 +1844 3 21 -9.0 -9.0 -9.0 1 +1844 3 22 -11.2 -11.2 -11.2 1 +1844 3 23 -8.6 -8.6 -8.6 1 +1844 3 24 -8.8 -8.8 -8.8 1 +1844 3 25 -3.0 -3.0 -3.0 1 +1844 3 26 -2.4 -2.4 -2.4 1 +1844 3 27 -3.4 -3.4 -3.4 1 +1844 3 28 -2.4 -2.4 -2.4 1 +1844 3 29 1.0 1.0 1.0 1 +1844 3 30 4.1 4.1 4.1 1 +1844 3 31 5.4 5.4 5.4 1 +1844 4 1 2.3 2.3 2.3 1 +1844 4 2 1.6 1.6 1.6 1 +1844 4 3 2.2 2.2 2.2 1 +1844 4 4 5.4 5.4 5.4 1 +1844 4 5 2.2 2.2 2.2 1 +1844 4 6 2.0 2.0 2.0 1 +1844 4 7 -0.1 -0.1 -0.1 1 +1844 4 8 1.4 1.4 1.4 1 +1844 4 9 1.5 1.5 1.5 1 +1844 4 10 6.0 6.0 6.0 1 +1844 4 11 7.6 7.6 7.6 1 +1844 4 12 6.8 6.8 6.8 1 +1844 4 13 4.1 4.1 4.1 1 +1844 4 14 3.7 3.7 3.7 1 +1844 4 15 3.1 3.1 3.1 1 +1844 4 16 7.0 7.0 7.0 1 +1844 4 17 8.2 8.2 8.2 1 +1844 4 18 6.3 6.3 6.3 1 +1844 4 19 8.6 8.6 8.6 1 +1844 4 20 8.3 8.3 8.3 1 +1844 4 21 6.5 6.5 6.5 1 +1844 4 22 4.3 4.3 4.3 1 +1844 4 23 6.7 6.7 6.7 1 +1844 4 24 5.5 5.5 5.5 1 +1844 4 25 5.2 5.2 5.2 1 +1844 4 26 5.3 5.3 5.3 1 +1844 4 27 5.0 5.0 5.0 1 +1844 4 28 3.1 3.1 3.1 1 +1844 4 29 4.2 4.2 4.2 1 +1844 4 30 7.1 7.1 7.1 1 +1844 5 1 8.4 8.4 8.4 1 +1844 5 2 7.0 7.0 7.0 1 +1844 5 3 8.4 8.4 8.4 1 +1844 5 4 10.8 10.8 10.8 1 +1844 5 5 10.4 10.4 10.3 1 +1844 5 6 11.1 11.1 11.0 1 +1844 5 7 12.0 12.0 11.9 1 +1844 5 8 12.4 12.4 12.3 1 +1844 5 9 13.0 13.0 12.9 1 +1844 5 10 12.7 12.7 12.5 1 +1844 5 11 13.0 13.0 12.8 1 +1844 5 12 12.9 12.9 12.7 1 +1844 5 13 12.9 12.9 12.7 1 +1844 5 14 11.9 11.9 11.6 1 +1844 5 15 3.5 3.5 3.2 1 +1844 5 16 6.4 6.4 6.1 1 +1844 5 17 7.5 7.5 7.2 1 +1844 5 18 10.8 10.8 10.5 1 +1844 5 19 9.5 9.5 9.1 1 +1844 5 20 10.2 10.2 9.8 1 +1844 5 21 9.4 9.4 9.0 1 +1844 5 22 7.1 7.1 6.7 1 +1844 5 23 11.3 11.3 10.8 1 +1844 5 24 10.8 10.8 10.3 1 +1844 5 25 9.2 9.2 8.7 1 +1844 5 26 7.3 7.3 6.8 1 +1844 5 27 10.7 10.7 10.2 1 +1844 5 28 8.3 8.3 7.7 1 +1844 5 29 11.2 11.2 10.6 1 +1844 5 30 4.5 4.5 3.9 1 +1844 5 31 7.1 7.1 6.5 1 +1844 6 1 12.4 12.4 11.7 1 +1844 6 2 6.6 6.6 5.9 1 +1844 6 3 7.2 7.2 6.5 1 +1844 6 4 10.6 10.6 9.9 1 +1844 6 5 9.9 9.9 9.2 1 +1844 6 6 11.7 11.7 11.0 1 +1844 6 7 11.6 11.6 10.9 1 +1844 6 8 11.3 11.3 10.6 1 +1844 6 9 14.5 14.5 13.8 1 +1844 6 10 17.9 17.9 17.2 1 +1844 6 11 15.4 15.4 14.7 1 +1844 6 12 16.3 16.3 15.6 1 +1844 6 13 16.7 16.7 16.0 1 +1844 6 14 13.5 13.5 12.8 1 +1844 6 15 10.7 10.7 10.0 1 +1844 6 16 11.6 11.6 10.9 1 +1844 6 17 14.4 14.4 13.7 1 +1844 6 18 15.3 15.3 14.6 1 +1844 6 19 17.6 17.6 16.9 1 +1844 6 20 16.5 16.5 15.8 1 +1844 6 21 11.9 11.9 11.2 1 +1844 6 22 15.1 15.1 14.4 1 +1844 6 23 18.2 18.2 17.5 1 +1844 6 24 14.2 14.2 13.5 1 +1844 6 25 11.4 11.4 10.7 1 +1844 6 26 8.5 8.5 7.8 1 +1844 6 27 8.1 8.1 7.4 1 +1844 6 28 9.1 9.1 8.4 1 +1844 6 29 10.3 10.3 9.6 1 +1844 6 30 11.7 11.7 11.0 1 +1844 7 1 14.3 14.3 13.6 1 +1844 7 2 14.1 14.1 13.4 1 +1844 7 3 14.8 14.8 14.1 1 +1844 7 4 13.5 13.5 12.8 1 +1844 7 5 14.5 14.5 13.8 1 +1844 7 6 17.8 17.8 17.1 1 +1844 7 7 16.9 16.9 16.2 1 +1844 7 8 17.5 17.5 16.8 1 +1844 7 9 16.8 16.8 16.1 1 +1844 7 10 17.0 17.0 16.3 1 +1844 7 11 15.3 15.3 14.6 1 +1844 7 12 14.6 14.6 13.9 1 +1844 7 13 14.4 14.4 13.7 1 +1844 7 14 13.4 13.4 12.7 1 +1844 7 15 11.4 11.4 10.7 1 +1844 7 16 12.3 12.3 11.6 1 +1844 7 17 11.0 11.0 10.3 1 +1844 7 18 11.9 11.9 11.2 1 +1844 7 19 11.1 11.1 10.4 1 +1844 7 20 14.1 14.1 13.4 1 +1844 7 21 15.4 15.4 14.7 1 +1844 7 22 14.4 14.4 13.7 1 +1844 7 23 14.1 14.1 13.4 1 +1844 7 24 13.8 13.8 13.1 1 +1844 7 25 12.5 12.5 11.8 1 +1844 7 26 12.4 12.4 11.7 1 +1844 7 27 12.3 12.3 11.6 1 +1844 7 28 13.6 13.6 12.9 1 +1844 7 29 14.9 14.9 14.2 1 +1844 7 30 14.3 14.3 13.6 1 +1844 7 31 13.7 13.7 13.0 1 +1844 8 1 14.0 14.0 13.4 1 +1844 8 2 13.1 13.1 12.5 1 +1844 8 3 14.8 14.8 14.2 1 +1844 8 4 15.4 15.4 14.8 1 +1844 8 5 16.3 16.3 15.8 1 +1844 8 6 16.8 16.8 16.3 1 +1844 8 7 14.4 14.4 13.9 1 +1844 8 8 15.7 15.7 15.2 1 +1844 8 9 13.1 13.1 12.6 1 +1844 8 10 13.2 13.2 12.8 1 +1844 8 11 14.4 14.4 14.0 1 +1844 8 12 14.9 14.9 14.5 1 +1844 8 13 14.9 14.9 14.5 1 +1844 8 14 15.5 15.5 15.2 1 +1844 8 15 16.1 16.1 15.8 1 +1844 8 16 16.6 16.6 16.3 1 +1844 8 17 17.6 17.6 17.3 1 +1844 8 18 14.3 14.3 14.0 1 +1844 8 19 14.6 14.6 14.4 1 +1844 8 20 14.0 14.0 13.8 1 +1844 8 21 14.2 14.2 14.0 1 +1844 8 22 14.9 14.9 14.7 1 +1844 8 23 14.1 14.1 14.0 1 +1844 8 24 16.0 16.0 15.9 1 +1844 8 25 16.3 16.3 16.2 1 +1844 8 26 15.5 15.5 15.4 1 +1844 8 27 12.2 12.2 12.1 1 +1844 8 28 12.5 12.5 12.5 1 +1844 8 29 12.6 12.6 12.6 1 +1844 8 30 13.6 13.6 13.6 1 +1844 8 31 13.3 13.3 13.3 1 +1844 9 1 15.1 15.1 15.1 1 +1844 9 2 14.9 14.9 14.9 1 +1844 9 3 16.9 16.9 16.9 1 +1844 9 4 16.7 16.7 16.7 1 +1844 9 5 16.5 16.5 16.5 1 +1844 9 6 17.8 17.8 17.8 1 +1844 9 7 14.2 14.2 14.2 1 +1844 9 8 15.5 15.5 15.5 1 +1844 9 9 14.6 14.6 14.6 1 +1844 9 10 14.6 14.6 14.6 1 +1844 9 11 12.8 12.8 12.8 1 +1844 9 12 12.2 12.2 12.2 1 +1844 9 13 12.1 12.1 12.1 1 +1844 9 14 9.3 9.3 9.3 1 +1844 9 15 8.1 8.1 8.1 1 +1844 9 16 10.3 10.3 10.3 1 +1844 9 17 14.2 14.2 14.2 1 +1844 9 18 8.7 8.7 8.7 1 +1844 9 19 7.0 7.0 7.0 1 +1844 9 20 7.3 7.3 7.3 1 +1844 9 21 7.5 7.5 7.5 1 +1844 9 22 9.4 9.4 9.4 1 +1844 9 23 10.0 10.0 10.0 1 +1844 9 24 9.5 9.5 9.5 1 +1844 9 25 8.8 8.8 8.8 1 +1844 9 26 11.2 11.2 11.2 1 +1844 9 27 9.8 9.8 9.8 1 +1844 9 28 11.7 11.7 11.7 1 +1844 9 29 9.2 9.2 9.2 1 +1844 9 30 5.2 5.2 5.2 1 +1844 10 1 5.2 5.2 5.2 1 +1844 10 2 8.8 8.8 8.8 1 +1844 10 3 9.2 9.2 9.2 1 +1844 10 4 4.6 4.6 4.6 1 +1844 10 5 6.2 6.2 6.2 1 +1844 10 6 4.3 4.3 4.3 1 +1844 10 7 5.0 5.0 5.0 1 +1844 10 8 3.8 3.8 3.8 1 +1844 10 9 3.0 3.0 3.0 1 +1844 10 10 5.6 5.6 5.6 1 +1844 10 11 7.8 7.8 7.8 1 +1844 10 12 8.8 8.8 8.8 1 +1844 10 13 8.5 8.5 8.5 1 +1844 10 14 7.8 7.8 7.8 1 +1844 10 15 7.8 7.8 7.8 1 +1844 10 16 9.8 9.8 9.8 1 +1844 10 17 9.8 9.8 9.8 1 +1844 10 18 8.2 8.2 8.2 1 +1844 10 19 6.4 6.4 6.4 1 +1844 10 20 6.8 6.8 6.8 1 +1844 10 21 7.4 7.4 7.4 1 +1844 10 22 5.1 5.1 5.1 1 +1844 10 23 7.1 7.1 7.1 1 +1844 10 24 6.9 6.9 6.9 1 +1844 10 25 6.6 6.6 6.6 1 +1844 10 26 8.4 8.4 8.4 1 +1844 10 27 6.3 6.3 6.3 1 +1844 10 28 3.2 3.2 3.2 1 +1844 10 29 2.7 2.7 2.7 1 +1844 10 30 1.5 1.5 1.5 1 +1844 10 31 0.1 0.1 0.1 1 +1844 11 1 1.5 1.5 1.5 1 +1844 11 2 1.4 1.4 1.4 1 +1844 11 3 0.6 0.6 0.6 1 +1844 11 4 1.2 1.2 1.2 1 +1844 11 5 3.0 3.0 3.0 1 +1844 11 6 1.4 1.4 1.4 1 +1844 11 7 0.9 0.9 0.9 1 +1844 11 8 -1.2 -1.2 -1.2 1 +1844 11 9 2.7 2.7 2.7 1 +1844 11 10 -1.2 -1.2 -1.2 1 +1844 11 11 -1.0 -1.0 -1.0 1 +1844 11 12 0.3 0.3 0.3 1 +1844 11 13 -3.1 -3.1 -3.1 1 +1844 11 14 -9.1 -9.1 -9.1 1 +1844 11 15 -4.2 -4.2 -4.2 1 +1844 11 16 -0.1 -0.1 -0.1 1 +1844 11 17 -5.0 -5.0 -5.0 1 +1844 11 18 -2.1 -2.1 -2.1 1 +1844 11 19 1.9 1.9 1.9 1 +1844 11 20 1.3 1.3 1.3 1 +1844 11 21 3.1 3.1 3.1 1 +1844 11 22 0.5 0.5 0.5 1 +1844 11 23 -0.3 -0.3 -0.3 1 +1844 11 24 0.9 0.9 0.9 1 +1844 11 25 2.4 2.4 2.4 1 +1844 11 26 3.0 3.0 3.0 1 +1844 11 27 3.3 3.3 3.3 1 +1844 11 28 3.0 3.0 3.0 1 +1844 11 29 0.7 0.7 0.7 1 +1844 11 30 -1.5 -1.5 -1.5 1 +1844 12 1 -4.7 -4.7 -4.7 1 +1844 12 2 -1.0 -1.0 -1.0 1 +1844 12 3 -1.4 -1.4 -1.4 1 +1844 12 4 -2.3 -2.3 -2.3 1 +1844 12 5 -3.9 -3.9 -3.9 1 +1844 12 6 -2.1 -2.1 -2.1 1 +1844 12 7 -2.0 -2.0 -2.0 1 +1844 12 8 -2.3 -2.3 -2.3 1 +1844 12 9 -3.0 -3.0 -3.0 1 +1844 12 10 -2.8 -2.8 -2.8 1 +1844 12 11 -4.8 -4.8 -4.8 1 +1844 12 12 -5.5 -5.5 -5.5 1 +1844 12 13 -4.9 -4.9 -4.9 1 +1844 12 14 -4.2 -4.2 -4.2 1 +1844 12 15 -2.7 -2.7 -2.7 1 +1844 12 16 -2.0 -2.0 -2.0 1 +1844 12 17 0.4 0.4 0.4 1 +1844 12 18 0.5 0.5 0.5 1 +1844 12 19 -3.2 -3.2 -3.2 1 +1844 12 20 -9.5 -9.5 -9.5 1 +1844 12 21 -6.2 -6.2 -6.2 1 +1844 12 22 -2.9 -2.9 -2.9 1 +1844 12 23 -5.2 -5.2 -5.2 1 +1844 12 24 -8.4 -8.4 -8.4 1 +1844 12 25 -9.2 -9.2 -9.2 1 +1844 12 26 -8.2 -8.2 -8.2 1 +1844 12 27 -7.3 -7.3 -7.3 1 +1844 12 28 -1.5 -1.5 -1.5 1 +1844 12 29 -1.9 -1.9 -1.9 1 +1844 12 30 -2.3 -2.3 -2.3 1 +1844 12 31 -5.7 -5.7 -5.7 1 +1845 1 1 -4.9 -4.9 -4.9 1 +1845 1 2 -0.7 -0.7 -0.7 1 +1845 1 3 -2.2 -2.2 -2.2 1 +1845 1 4 -0.9 -0.9 -0.9 1 +1845 1 5 1.4 1.4 1.4 1 +1845 1 6 4.5 4.5 4.5 1 +1845 1 7 -0.6 -0.6 -0.6 1 +1845 1 8 -1.0 -1.0 -1.0 1 +1845 1 9 0.1 0.1 0.1 1 +1845 1 10 0.4 0.4 0.4 1 +1845 1 11 -0.2 -0.2 -0.2 1 +1845 1 12 0.5 0.5 0.5 1 +1845 1 13 0.9 0.9 0.9 1 +1845 1 14 0.5 0.5 0.5 1 +1845 1 15 0.5 0.5 0.5 1 +1845 1 16 -1.5 -1.5 -1.5 1 +1845 1 17 -1.8 -1.8 -1.8 1 +1845 1 18 -3.9 -3.9 -3.9 1 +1845 1 19 -2.2 -2.2 -2.2 1 +1845 1 20 -1.1 -1.1 -1.1 1 +1845 1 21 -0.7 -0.7 -0.7 1 +1845 1 22 -3.0 -3.0 -3.0 1 +1845 1 23 1.6 1.6 1.6 1 +1845 1 24 2.3 2.3 2.3 1 +1845 1 25 0.1 0.1 0.1 1 +1845 1 26 0.9 0.9 0.9 1 +1845 1 27 1.3 1.3 1.3 1 +1845 1 28 -0.3 -0.3 -0.3 1 +1845 1 29 0.2 0.2 0.2 1 +1845 1 30 -0.6 -0.6 -0.6 1 +1845 1 31 -1.9 -1.9 -1.9 1 +1845 2 1 -2.0 -2.0 -2.0 1 +1845 2 2 -2.2 -2.2 -2.2 1 +1845 2 3 -2.5 -2.5 -2.5 1 +1845 2 4 -6.0 -6.0 -6.0 1 +1845 2 5 -5.4 -5.4 -5.4 1 +1845 2 6 -6.8 -6.8 -6.8 1 +1845 2 7 -10.5 -10.5 -10.5 1 +1845 2 8 -14.8 -14.8 -14.8 1 +1845 2 9 -15.4 -15.4 -15.4 1 +1845 2 10 -11.7 -11.7 -11.7 1 +1845 2 11 -10.3 -10.3 -10.3 1 +1845 2 12 -9.3 -9.3 -9.3 1 +1845 2 13 -9.9 -9.9 -9.9 1 +1845 2 14 -4.0 -4.0 -4.0 1 +1845 2 15 -2.9 -2.9 -2.9 1 +1845 2 16 -7.7 -7.7 -7.7 1 +1845 2 17 -10.5 -10.5 -10.5 1 +1845 2 18 -14.6 -14.6 -14.6 1 +1845 2 19 -13.5 -13.5 -13.5 1 +1845 2 20 -12.5 -12.5 -12.5 1 +1845 2 21 -9.8 -9.8 -9.8 1 +1845 2 22 -9.9 -9.9 -9.9 1 +1845 2 23 -14.1 -14.1 -14.1 1 +1845 2 24 -9.9 -9.9 -9.9 1 +1845 2 25 -5.4 -5.4 -5.4 1 +1845 2 26 -9.6 -9.6 -9.6 1 +1845 2 27 -7.9 -7.9 -7.9 1 +1845 2 28 -11.2 -11.2 -11.2 1 +1845 3 1 -9.8 -9.8 -9.8 1 +1845 3 2 -10.1 -10.1 -10.1 1 +1845 3 3 -8.8 -8.8 -8.8 1 +1845 3 4 -10.3 -10.3 -10.3 1 +1845 3 5 -11.2 -11.2 -11.2 1 +1845 3 6 -6.3 -6.3 -6.3 1 +1845 3 7 -3.2 -3.2 -3.2 1 +1845 3 8 -0.4 -0.4 -0.4 1 +1845 3 9 1.9 1.9 1.9 1 +1845 3 10 -1.7 -1.7 -1.7 1 +1845 3 11 -12.0 -12.0 -12.0 1 +1845 3 12 -13.9 -13.9 -13.9 1 +1845 3 13 -16.7 -16.7 -16.7 1 +1845 3 14 -16.4 -16.4 -16.4 1 +1845 3 15 -14.5 -14.5 -14.5 1 +1845 3 16 -4.9 -4.9 -4.9 1 +1845 3 17 -6.9 -6.9 -6.9 1 +1845 3 18 -4.6 -4.6 -4.6 1 +1845 3 19 -3.2 -3.2 -3.2 1 +1845 3 20 -5.7 -5.7 -5.7 1 +1845 3 21 -7.6 -7.6 -7.6 1 +1845 3 22 -4.7 -4.7 -4.7 1 +1845 3 23 0.5 0.5 0.5 1 +1845 3 24 1.1 1.1 1.1 1 +1845 3 25 -1.0 -1.0 -1.0 1 +1845 3 26 0.7 0.7 0.7 1 +1845 3 27 1.0 1.0 1.0 1 +1845 3 28 0.2 0.2 0.2 1 +1845 3 29 -2.3 -2.3 -2.3 1 +1845 3 30 -5.0 -5.0 -5.0 1 +1845 3 31 -5.3 -5.3 -5.3 1 +1845 4 1 0.5 0.5 0.5 1 +1845 4 2 2.7 2.7 2.7 1 +1845 4 3 1.4 1.4 1.4 1 +1845 4 4 -3.7 -3.7 -3.7 1 +1845 4 5 -0.3 -0.3 -0.3 1 +1845 4 6 0.5 0.5 0.5 1 +1845 4 7 -2.4 -2.4 -2.4 1 +1845 4 8 -2.3 -2.3 -2.3 1 +1845 4 9 -2.4 -2.4 -2.4 1 +1845 4 10 -1.3 -1.3 -1.3 1 +1845 4 11 0.5 0.5 0.5 1 +1845 4 12 -1.5 -1.5 -1.5 1 +1845 4 13 -0.6 -0.6 -0.6 1 +1845 4 14 -1.4 -1.4 -1.4 1 +1845 4 15 1.6 1.6 1.6 1 +1845 4 16 1.7 1.7 1.7 1 +1845 4 17 5.8 5.8 5.8 1 +1845 4 18 9.1 9.1 9.1 1 +1845 4 19 6.6 6.6 6.6 1 +1845 4 20 7.5 7.5 7.5 1 +1845 4 21 8.5 8.5 8.5 1 +1845 4 22 9.2 9.2 9.2 1 +1845 4 23 10.1 10.1 10.1 1 +1845 4 24 7.3 7.3 7.3 1 +1845 4 25 9.7 9.7 9.7 1 +1845 4 26 8.3 8.3 8.3 1 +1845 4 27 7.9 7.9 7.9 1 +1845 4 28 4.6 4.6 4.6 1 +1845 4 29 0.7 0.7 0.7 1 +1845 4 30 2.0 2.0 2.0 1 +1845 5 1 3.6 3.6 3.6 1 +1845 5 2 1.8 1.8 1.8 1 +1845 5 3 5.1 5.1 5.1 1 +1845 5 4 5.7 5.7 5.7 1 +1845 5 5 4.4 4.4 4.3 1 +1845 5 6 2.1 2.1 2.0 1 +1845 5 7 3.0 3.0 2.9 1 +1845 5 8 5.1 5.1 5.0 1 +1845 5 9 2.1 2.1 2.0 1 +1845 5 10 5.5 5.5 5.3 1 +1845 5 11 4.4 4.4 4.2 1 +1845 5 12 3.3 3.3 3.1 1 +1845 5 13 5.1 5.1 4.9 1 +1845 5 14 8.1 8.1 7.8 1 +1845 5 15 9.3 9.3 9.0 1 +1845 5 16 11.4 11.4 11.1 1 +1845 5 17 5.8 5.8 5.5 1 +1845 5 18 6.7 6.7 6.4 1 +1845 5 19 5.2 5.2 4.8 1 +1845 5 20 10.6 10.6 10.2 1 +1845 5 21 10.7 10.7 10.3 1 +1845 5 22 10.2 10.2 9.8 1 +1845 5 23 12.0 12.0 11.5 1 +1845 5 24 9.1 9.1 8.6 1 +1845 5 25 12.3 12.3 11.8 1 +1845 5 26 14.5 14.5 14.0 1 +1845 5 27 5.6 5.6 5.1 1 +1845 5 28 6.7 6.7 6.1 1 +1845 5 29 9.6 9.6 9.0 1 +1845 5 30 12.9 12.9 12.3 1 +1845 5 31 12.4 12.4 11.8 1 +1845 6 1 12.2 12.2 11.5 1 +1845 6 2 12.6 12.6 11.9 1 +1845 6 3 11.5 11.5 10.8 1 +1845 6 4 13.3 13.3 12.6 1 +1845 6 5 12.7 12.7 12.0 1 +1845 6 6 16.2 16.2 15.5 1 +1845 6 7 17.9 17.9 17.2 1 +1845 6 8 19.5 19.5 18.8 1 +1845 6 9 16.8 16.8 16.1 1 +1845 6 10 14.1 14.1 13.4 1 +1845 6 11 17.2 17.2 16.5 1 +1845 6 12 16.8 16.8 16.1 1 +1845 6 13 19.2 19.2 18.5 1 +1845 6 14 16.8 16.8 16.1 1 +1845 6 15 10.7 10.7 10.0 1 +1845 6 16 12.0 12.0 11.3 1 +1845 6 17 13.7 13.7 13.0 1 +1845 6 18 17.1 17.1 16.4 1 +1845 6 19 16.5 16.5 15.8 1 +1845 6 20 17.5 17.5 16.8 1 +1845 6 21 15.3 15.3 14.6 1 +1845 6 22 13.1 13.1 12.4 1 +1845 6 23 12.1 12.1 11.4 1 +1845 6 24 13.4 13.4 12.7 1 +1845 6 25 14.3 14.3 13.6 1 +1845 6 26 13.9 13.9 13.2 1 +1845 6 27 15.9 15.9 15.2 1 +1845 6 28 16.6 16.6 15.9 1 +1845 6 29 14.7 14.7 14.0 1 +1845 6 30 15.8 15.8 15.1 1 +1845 7 1 16.9 16.9 16.2 1 +1845 7 2 15.5 15.5 14.8 1 +1845 7 3 17.4 17.4 16.7 1 +1845 7 4 23.4 23.4 22.7 1 +1845 7 5 23.1 23.1 22.4 1 +1845 7 6 18.0 18.0 17.3 1 +1845 7 7 18.9 18.9 18.2 1 +1845 7 8 18.7 18.7 18.0 1 +1845 7 9 17.6 17.6 16.9 1 +1845 7 10 16.3 16.3 15.6 1 +1845 7 11 16.3 16.3 15.6 1 +1845 7 12 17.6 17.6 16.9 1 +1845 7 13 16.2 16.2 15.5 1 +1845 7 14 14.2 14.2 13.5 1 +1845 7 15 14.8 14.8 14.1 1 +1845 7 16 16.7 16.7 16.0 1 +1845 7 17 14.9 14.9 14.2 1 +1845 7 18 18.8 18.8 18.1 1 +1845 7 19 19.1 19.1 18.4 1 +1845 7 20 21.0 21.0 20.3 1 +1845 7 21 21.9 21.9 21.2 1 +1845 7 22 22.0 22.0 21.3 1 +1845 7 23 12.8 12.8 12.1 1 +1845 7 24 17.1 17.1 16.4 1 +1845 7 25 18.4 18.4 17.7 1 +1845 7 26 16.9 16.9 16.2 1 +1845 7 27 17.5 17.5 16.8 1 +1845 7 28 14.2 14.2 13.5 1 +1845 7 29 16.1 16.1 15.4 1 +1845 7 30 17.0 17.0 16.3 1 +1845 7 31 15.8 15.8 15.1 1 +1845 8 1 15.9 15.9 15.3 1 +1845 8 2 17.3 17.3 16.7 1 +1845 8 3 19.0 19.0 18.4 1 +1845 8 4 17.8 17.8 17.2 1 +1845 8 5 18.5 18.5 18.0 1 +1845 8 6 17.7 17.7 17.2 1 +1845 8 7 17.8 17.8 17.3 1 +1845 8 8 19.9 19.9 19.4 1 +1845 8 9 18.8 18.8 18.3 1 +1845 8 10 18.3 18.3 17.9 1 +1845 8 11 18.1 18.1 17.7 1 +1845 8 12 17.8 17.8 17.4 1 +1845 8 13 16.8 16.8 16.4 1 +1845 8 14 15.5 15.5 15.2 1 +1845 8 15 15.8 15.8 15.5 1 +1845 8 16 15.4 15.4 15.1 1 +1845 8 17 14.8 14.8 14.5 1 +1845 8 18 13.6 13.6 13.3 1 +1845 8 19 15.5 15.5 15.3 1 +1845 8 20 14.5 14.5 14.3 1 +1845 8 21 15.0 15.0 14.8 1 +1845 8 22 14.2 14.2 14.0 1 +1845 8 23 12.1 12.1 12.0 1 +1845 8 24 14.4 14.4 14.3 1 +1845 8 25 13.9 13.9 13.8 1 +1845 8 26 14.8 14.8 14.7 1 +1845 8 27 14.5 14.5 14.4 1 +1845 8 28 17.2 17.2 17.2 1 +1845 8 29 16.8 16.8 16.8 1 +1845 8 30 16.9 16.9 16.9 1 +1845 8 31 11.9 11.9 11.9 1 +1845 9 1 11.5 11.5 11.5 1 +1845 9 2 12.0 12.0 12.0 1 +1845 9 3 9.4 9.4 9.4 1 +1845 9 4 7.9 7.9 7.9 1 +1845 9 5 10.1 10.1 10.1 1 +1845 9 6 8.9 8.9 8.9 1 +1845 9 7 12.4 12.4 12.4 1 +1845 9 8 10.3 10.3 10.3 1 +1845 9 9 11.5 11.5 11.5 1 +1845 9 10 10.6 10.6 10.6 1 +1845 9 11 9.6 9.6 9.6 1 +1845 9 12 11.0 11.0 11.0 1 +1845 9 13 12.0 12.0 12.0 1 +1845 9 14 11.9 11.9 11.9 1 +1845 9 15 12.9 12.9 12.9 1 +1845 9 16 12.9 12.9 12.9 1 +1845 9 17 12.6 12.6 12.6 1 +1845 9 18 15.4 15.4 15.4 1 +1845 9 19 14.4 14.4 14.4 1 +1845 9 20 12.6 12.6 12.6 1 +1845 9 21 10.3 10.3 10.3 1 +1845 9 22 13.8 13.8 13.8 1 +1845 9 23 12.2 12.2 12.2 1 +1845 9 24 9.6 9.6 9.6 1 +1845 9 25 9.7 9.7 9.7 1 +1845 9 26 10.1 10.1 10.1 1 +1845 9 27 11.0 11.0 11.0 1 +1845 9 28 10.6 10.6 10.6 1 +1845 9 29 10.2 10.2 10.2 1 +1845 9 30 8.3 8.3 8.3 1 +1845 10 1 7.4 7.4 7.4 1 +1845 10 2 7.7 7.7 7.7 1 +1845 10 3 6.2 6.2 6.2 1 +1845 10 4 6.4 6.4 6.4 1 +1845 10 5 8.9 8.9 8.9 1 +1845 10 6 6.6 6.6 6.6 1 +1845 10 7 3.8 3.8 3.8 1 +1845 10 8 3.7 3.7 3.7 1 +1845 10 9 4.0 4.0 4.0 1 +1845 10 10 4.2 4.2 4.2 1 +1845 10 11 3.7 3.7 3.7 1 +1845 10 12 2.2 2.2 2.2 1 +1845 10 13 2.6 2.6 2.6 1 +1845 10 14 3.4 3.4 3.4 1 +1845 10 15 9.1 9.1 9.1 1 +1845 10 16 7.0 7.0 7.0 1 +1845 10 17 7.0 7.0 7.0 1 +1845 10 18 5.4 5.4 5.4 1 +1845 10 19 4.7 4.7 4.7 1 +1845 10 20 3.2 3.2 3.2 1 +1845 10 21 2.5 2.5 2.5 1 +1845 10 22 -0.2 -0.2 -0.2 1 +1845 10 23 4.8 4.8 4.8 1 +1845 10 24 5.6 5.6 5.6 1 +1845 10 25 7.2 7.2 7.2 1 +1845 10 26 5.2 5.2 5.2 1 +1845 10 27 3.0 3.0 3.0 1 +1845 10 28 0.5 0.5 0.5 1 +1845 10 29 2.1 2.1 2.1 1 +1845 10 30 3.2 3.2 3.2 1 +1845 10 31 3.6 3.6 3.6 1 +1845 11 1 4.0 4.0 4.0 1 +1845 11 2 -0.5 -0.5 -0.5 1 +1845 11 3 -1.9 -1.9 -1.9 1 +1845 11 4 1.4 1.4 1.4 1 +1845 11 5 0.1 0.1 0.1 1 +1845 11 6 2.7 2.7 2.7 1 +1845 11 7 3.1 3.1 3.1 1 +1845 11 8 4.0 4.0 4.0 1 +1845 11 9 4.8 4.8 4.8 1 +1845 11 10 4.1 4.1 4.1 1 +1845 11 11 3.8 3.8 3.8 1 +1845 11 12 4.8 4.8 4.8 1 +1845 11 13 5.3 5.3 5.3 1 +1845 11 14 3.8 3.8 3.8 1 +1845 11 15 -0.4 -0.4 -0.4 1 +1845 11 16 1.8 1.8 1.8 1 +1845 11 17 2.3 2.3 2.3 1 +1845 11 18 4.6 4.6 4.6 1 +1845 11 19 5.9 5.9 5.9 1 +1845 11 20 6.6 6.6 6.6 1 +1845 11 21 6.1 6.1 6.1 1 +1845 11 22 4.4 4.4 4.4 1 +1845 11 23 5.7 5.7 5.7 1 +1845 11 24 1.6 1.6 1.6 1 +1845 11 25 -1.2 -1.2 -1.2 1 +1845 11 26 3.0 3.0 3.0 1 +1845 11 27 4.2 4.2 4.2 1 +1845 11 28 3.2 3.2 3.2 1 +1845 11 29 3.6 3.6 3.6 1 +1845 11 30 3.3 3.3 3.3 1 +1845 12 1 3.4 3.4 3.4 1 +1845 12 2 2.9 2.9 2.9 1 +1845 12 3 3.3 3.3 3.3 1 +1845 12 4 2.9 2.9 2.9 1 +1845 12 5 0.1 0.1 0.1 1 +1845 12 6 0.9 0.9 0.9 1 +1845 12 7 0.2 0.2 0.2 1 +1845 12 8 -2.5 -2.5 -2.5 1 +1845 12 9 -3.4 -3.4 -3.4 1 +1845 12 10 -2.8 -2.8 -2.8 1 +1845 12 11 -5.6 -5.6 -5.6 1 +1845 12 12 -6.9 -6.9 -6.9 1 +1845 12 13 -7.6 -7.6 -7.6 1 +1845 12 14 -9.0 -9.0 -9.0 1 +1845 12 15 -0.9 -0.9 -0.9 1 +1845 12 16 -5.5 -5.5 -5.5 1 +1845 12 17 -6.4 -6.4 -6.4 1 +1845 12 18 -9.9 -9.9 -9.9 1 +1845 12 19 -4.2 -4.2 -4.2 1 +1845 12 20 -0.3 -0.3 -0.3 1 +1845 12 21 1.7 1.7 1.7 1 +1845 12 22 0.6 0.6 0.6 1 +1845 12 23 0.2 0.2 0.2 1 +1845 12 24 -1.7 -1.7 -1.7 1 +1845 12 25 1.9 1.9 1.9 1 +1845 12 26 -0.1 -0.1 -0.1 1 +1845 12 27 1.9 1.9 1.9 1 +1845 12 28 -2.2 -2.2 -2.2 1 +1845 12 29 -6.1 -6.1 -6.1 1 +1845 12 30 0.3 0.3 0.3 1 +1845 12 31 0.4 0.4 0.4 1 +1846 1 1 -0.6 -0.6 -0.6 1 +1846 1 2 -1.8 -1.8 -1.8 1 +1846 1 3 -4.9 -4.9 -4.9 1 +1846 1 4 -5.2 -5.2 -5.2 1 +1846 1 5 -5.2 -5.2 -5.2 1 +1846 1 6 -6.5 -6.5 -6.5 1 +1846 1 7 -0.5 -0.5 -0.5 1 +1846 1 8 3.0 3.0 3.0 1 +1846 1 9 0.9 0.9 0.9 1 +1846 1 10 1.5 1.5 1.5 1 +1846 1 11 0.1 0.1 0.1 1 +1846 1 12 -1.6 -1.6 -1.6 1 +1846 1 13 -2.1 -2.1 -2.1 1 +1846 1 14 -4.0 -4.0 -4.0 1 +1846 1 15 -4.5 -4.5 -4.5 1 +1846 1 16 -2.8 -2.8 -2.8 1 +1846 1 17 -1.6 -1.6 -1.6 1 +1846 1 18 -1.9 -1.9 -1.9 1 +1846 1 19 -1.0 -1.0 -1.0 1 +1846 1 20 -0.6 -0.6 -0.6 1 +1846 1 21 0.7 0.7 0.7 1 +1846 1 22 0.7 0.7 0.7 1 +1846 1 23 -0.6 -0.6 -0.6 1 +1846 1 24 -5.3 -5.3 -5.3 1 +1846 1 25 -8.7 -8.7 -8.7 1 +1846 1 26 -8.9 -8.9 -8.9 1 +1846 1 27 -12.7 -12.7 -12.7 1 +1846 1 28 -11.5 -11.5 -11.5 1 +1846 1 29 -9.0 -9.0 -9.0 1 +1846 1 30 -9.1 -9.1 -9.1 1 +1846 1 31 -5.0 -5.0 -5.0 1 +1846 2 1 -1.2 -1.2 -1.2 1 +1846 2 2 -3.3 -3.3 -3.3 1 +1846 2 3 -5.8 -5.8 -5.8 1 +1846 2 4 -2.8 -2.8 -2.8 1 +1846 2 5 -3.8 -3.8 -3.8 1 +1846 2 6 -3.6 -3.6 -3.6 1 +1846 2 7 -8.9 -8.9 -8.9 1 +1846 2 8 -11.8 -11.8 -11.8 1 +1846 2 9 -12.4 -12.4 -12.4 1 +1846 2 10 -8.5 -8.5 -8.5 1 +1846 2 11 -4.3 -4.3 -4.3 1 +1846 2 12 -6.6 -6.6 -6.6 1 +1846 2 13 -6.5 -6.5 -6.5 1 +1846 2 14 -11.2 -11.2 -11.2 1 +1846 2 15 -11.7 -11.7 -11.7 1 +1846 2 16 -12.3 -12.3 -12.3 1 +1846 2 17 -4.9 -4.9 -4.9 1 +1846 2 18 -10.7 -10.7 -10.7 1 +1846 2 19 -8.1 -8.1 -8.1 1 +1846 2 20 -3.9 -3.9 -3.9 1 +1846 2 21 -1.0 -1.0 -1.0 1 +1846 2 22 -0.3 -0.3 -0.3 1 +1846 2 23 4.1 4.1 4.1 1 +1846 2 24 1.7 1.7 1.7 1 +1846 2 25 1.8 1.8 1.8 1 +1846 2 26 4.6 4.6 4.6 1 +1846 2 27 1.9 1.9 1.9 1 +1846 2 28 3.4 3.4 3.4 1 +1846 3 1 2.6 2.6 2.6 1 +1846 3 2 2.1 2.1 2.1 1 +1846 3 3 -0.1 -0.1 -0.1 1 +1846 3 4 1.3 1.3 1.3 1 +1846 3 5 3.4 3.4 3.4 1 +1846 3 6 3.6 3.6 3.6 1 +1846 3 7 1.5 1.5 1.5 1 +1846 3 8 2.8 2.8 2.8 1 +1846 3 9 1.3 1.3 1.3 1 +1846 3 10 1.0 1.0 1.0 1 +1846 3 11 0.2 0.2 0.2 1 +1846 3 12 1.4 1.4 1.4 1 +1846 3 13 3.1 3.1 3.1 1 +1846 3 14 2.8 2.8 2.8 1 +1846 3 15 0.3 0.3 0.3 1 +1846 3 16 0.6 0.6 0.6 1 +1846 3 17 3.0 3.0 3.0 1 +1846 3 18 2.5 2.5 2.5 1 +1846 3 19 1.0 1.0 1.0 1 +1846 3 20 -1.5 -1.5 -1.5 1 +1846 3 21 2.1 2.1 2.1 1 +1846 3 22 1.2 1.2 1.2 1 +1846 3 23 0.4 0.4 0.4 1 +1846 3 24 1.3 1.3 1.3 1 +1846 3 25 2.2 2.2 2.2 1 +1846 3 26 4.0 4.0 4.0 1 +1846 3 27 1.4 1.4 1.4 1 +1846 3 28 1.6 1.6 1.6 1 +1846 3 29 1.7 1.7 1.7 1 +1846 3 30 0.7 0.7 0.7 1 +1846 3 31 -0.4 -0.4 -0.4 1 +1846 4 1 2.0 2.0 2.0 1 +1846 4 2 1.2 1.2 1.2 1 +1846 4 3 1.7 1.7 1.7 1 +1846 4 4 4.6 4.6 4.6 1 +1846 4 5 3.8 3.8 3.8 1 +1846 4 6 1.6 1.6 1.6 1 +1846 4 7 0.7 0.7 0.7 1 +1846 4 8 1.9 1.9 1.9 1 +1846 4 9 1.9 1.9 1.9 1 +1846 4 10 1.9 1.9 1.9 1 +1846 4 11 2.4 2.4 2.4 1 +1846 4 12 3.7 3.7 3.7 1 +1846 4 13 2.4 2.4 2.4 1 +1846 4 14 2.1 2.1 2.1 1 +1846 4 15 3.0 3.0 3.0 1 +1846 4 16 4.0 4.0 4.0 1 +1846 4 17 3.8 3.8 3.8 1 +1846 4 18 3.5 3.5 3.5 1 +1846 4 19 4.1 4.1 4.1 1 +1846 4 20 3.9 3.9 3.9 1 +1846 4 21 5.7 5.7 5.7 1 +1846 4 22 7.4 7.4 7.4 1 +1846 4 23 6.3 6.3 6.3 1 +1846 4 24 3.5 3.5 3.5 1 +1846 4 25 3.5 3.5 3.5 1 +1846 4 26 1.9 1.9 1.9 1 +1846 4 27 0.5 0.5 0.5 1 +1846 4 28 1.6 1.6 1.6 1 +1846 4 29 3.5 3.5 3.5 1 +1846 4 30 3.7 3.7 3.7 1 +1846 5 1 2.7 2.7 2.7 1 +1846 5 2 3.0 3.0 3.0 1 +1846 5 3 2.0 2.0 2.0 1 +1846 5 4 -0.1 -0.1 -0.1 1 +1846 5 5 2.2 2.2 2.1 1 +1846 5 6 2.7 2.7 2.6 1 +1846 5 7 1.8 1.8 1.7 1 +1846 5 8 3.4 3.4 3.3 1 +1846 5 9 4.6 4.6 4.5 1 +1846 5 10 4.4 4.4 4.2 1 +1846 5 11 6.1 6.1 5.9 1 +1846 5 12 7.5 7.5 7.3 1 +1846 5 13 6.8 6.8 6.6 1 +1846 5 14 7.6 7.6 7.3 1 +1846 5 15 11.2 11.2 10.9 1 +1846 5 16 13.4 13.4 13.1 1 +1846 5 17 10.3 10.3 10.0 1 +1846 5 18 9.3 9.3 9.0 1 +1846 5 19 6.2 6.2 5.8 1 +1846 5 20 10.6 10.6 10.2 1 +1846 5 21 11.1 11.1 10.7 1 +1846 5 22 13.1 13.1 12.7 1 +1846 5 23 13.8 13.8 13.3 1 +1846 5 24 11.7 11.7 11.2 1 +1846 5 25 6.9 6.9 6.4 1 +1846 5 26 9.3 9.3 8.8 1 +1846 5 27 10.6 10.6 10.1 1 +1846 5 28 6.9 6.9 6.3 1 +1846 5 29 7.9 7.9 7.3 1 +1846 5 30 11.9 11.9 11.3 1 +1846 5 31 9.0 9.0 8.4 1 +1846 6 1 10.2 10.2 9.5 1 +1846 6 2 9.0 9.0 8.3 1 +1846 6 3 11.2 11.2 10.5 1 +1846 6 4 11.6 11.6 10.9 1 +1846 6 5 12.2 12.2 11.5 1 +1846 6 6 13.7 13.7 13.0 1 +1846 6 7 14.2 14.2 13.5 1 +1846 6 8 12.0 12.0 11.3 1 +1846 6 9 14.2 14.2 13.5 1 +1846 6 10 17.4 17.4 16.7 1 +1846 6 11 17.8 17.8 17.1 1 +1846 6 12 13.6 13.6 12.9 1 +1846 6 13 16.8 16.8 16.1 1 +1846 6 14 15.3 15.3 14.6 1 +1846 6 15 14.1 14.1 13.4 1 +1846 6 16 15.7 15.7 15.0 1 +1846 6 17 18.2 18.2 17.5 1 +1846 6 18 20.5 20.5 19.8 1 +1846 6 19 18.7 18.7 18.0 1 +1846 6 20 19.9 19.9 19.2 1 +1846 6 21 14.1 14.1 13.4 1 +1846 6 22 13.6 13.6 12.9 1 +1846 6 23 13.2 13.2 12.5 1 +1846 6 24 9.6 9.6 8.9 1 +1846 6 25 9.7 9.7 9.0 1 +1846 6 26 12.2 12.2 11.5 1 +1846 6 27 12.2 12.2 11.5 1 +1846 6 28 15.9 15.9 15.2 1 +1846 6 29 19.0 19.0 18.3 1 +1846 6 30 17.6 17.6 16.9 1 +1846 7 1 16.1 16.1 15.4 1 +1846 7 2 16.0 16.0 15.3 1 +1846 7 3 15.2 15.2 14.5 1 +1846 7 4 18.7 18.7 18.0 1 +1846 7 5 20.9 20.9 20.2 1 +1846 7 6 21.2 21.2 20.5 1 +1846 7 7 17.1 17.1 16.4 1 +1846 7 8 15.0 15.0 14.3 1 +1846 7 9 15.6 15.6 14.9 1 +1846 7 10 15.8 15.8 15.1 1 +1846 7 11 16.3 16.3 15.6 1 +1846 7 12 16.6 16.6 15.9 1 +1846 7 13 14.2 14.2 13.5 1 +1846 7 14 18.4 18.4 17.7 1 +1846 7 15 17.6 17.6 16.9 1 +1846 7 16 16.9 16.9 16.2 1 +1846 7 17 15.7 15.7 15.0 1 +1846 7 18 17.3 17.3 16.6 1 +1846 7 19 18.1 18.1 17.4 1 +1846 7 20 18.1 18.1 17.4 1 +1846 7 21 18.4 18.4 17.7 1 +1846 7 22 18.2 18.2 17.5 1 +1846 7 23 18.6 18.6 17.9 1 +1846 7 24 20.1 20.1 19.4 1 +1846 7 25 21.1 21.1 20.4 1 +1846 7 26 20.6 20.6 19.9 1 +1846 7 27 19.6 19.6 18.9 1 +1846 7 28 20.2 20.2 19.5 1 +1846 7 29 21.5 21.5 20.8 1 +1846 7 30 23.1 23.1 22.4 1 +1846 7 31 23.9 23.9 23.2 1 +1846 8 1 24.2 24.2 23.6 1 +1846 8 2 24.8 24.8 24.2 1 +1846 8 3 25.3 25.3 24.7 1 +1846 8 4 24.8 24.8 24.2 1 +1846 8 5 24.8 24.8 24.3 1 +1846 8 6 24.4 24.4 23.9 1 +1846 8 7 26.0 26.0 25.5 1 +1846 8 8 22.5 22.5 22.0 1 +1846 8 9 22.1 22.1 21.6 1 +1846 8 10 21.7 21.7 21.3 1 +1846 8 11 21.9 21.9 21.5 1 +1846 8 12 20.7 20.7 20.3 1 +1846 8 13 20.2 20.2 19.8 1 +1846 8 14 19.8 19.8 19.5 1 +1846 8 15 21.1 21.1 20.8 1 +1846 8 16 21.7 21.7 21.4 1 +1846 8 17 22.1 22.1 21.8 1 +1846 8 18 20.7 20.7 20.4 1 +1846 8 19 20.8 20.8 20.6 1 +1846 8 20 21.6 21.6 21.4 1 +1846 8 21 22.6 22.6 22.4 1 +1846 8 22 22.8 22.8 22.6 1 +1846 8 23 17.9 17.9 17.8 1 +1846 8 24 15.3 15.3 15.2 1 +1846 8 25 14.6 14.6 14.5 1 +1846 8 26 16.2 16.2 16.1 1 +1846 8 27 16.6 16.6 16.5 1 +1846 8 28 16.7 16.7 16.7 1 +1846 8 29 17.7 17.7 17.7 1 +1846 8 30 18.8 18.8 18.8 1 +1846 8 31 18.9 18.9 18.9 1 +1846 9 1 18.4 18.4 18.4 1 +1846 9 2 18.9 18.9 18.9 1 +1846 9 3 18.0 18.0 18.0 1 +1846 9 4 19.1 19.1 19.1 1 +1846 9 5 17.1 17.1 17.1 1 +1846 9 6 18.4 18.4 18.4 1 +1846 9 7 17.2 17.2 17.2 1 +1846 9 8 17.0 17.0 17.0 1 +1846 9 9 17.8 17.8 17.8 1 +1846 9 10 17.6 17.6 17.6 1 +1846 9 11 18.0 18.0 18.0 1 +1846 9 12 13.7 13.7 13.7 1 +1846 9 13 10.2 10.2 10.2 1 +1846 9 14 12.8 12.8 12.8 1 +1846 9 15 10.9 10.9 10.9 1 +1846 9 16 9.9 9.9 9.9 1 +1846 9 17 8.3 8.3 8.3 1 +1846 9 18 7.9 7.9 7.9 1 +1846 9 19 7.0 7.0 7.0 1 +1846 9 20 5.8 5.8 5.8 1 +1846 9 21 8.3 8.3 8.3 1 +1846 9 22 7.1 7.1 7.1 1 +1846 9 23 6.5 6.5 6.5 1 +1846 9 24 7.3 7.3 7.3 1 +1846 9 25 10.3 10.3 10.3 1 +1846 9 26 13.4 13.4 13.4 1 +1846 9 27 12.7 12.7 12.7 1 +1846 9 28 8.9 8.9 8.9 1 +1846 9 29 11.3 11.3 11.3 1 +1846 9 30 11.4 11.4 11.4 1 +1846 10 1 12.6 12.6 12.6 1 +1846 10 2 14.4 14.4 14.4 1 +1846 10 3 12.5 12.5 12.5 1 +1846 10 4 13.2 13.2 13.2 1 +1846 10 5 9.3 9.3 9.3 1 +1846 10 6 8.3 8.3 8.3 1 +1846 10 7 10.9 10.9 10.9 1 +1846 10 8 12.3 12.3 12.3 1 +1846 10 9 11.6 11.6 11.6 1 +1846 10 10 11.7 11.7 11.7 1 +1846 10 11 12.9 12.9 12.9 1 +1846 10 12 9.1 9.1 9.1 1 +1846 10 13 9.0 9.0 9.0 1 +1846 10 14 11.3 11.3 11.3 1 +1846 10 15 11.2 11.2 11.2 1 +1846 10 16 11.3 11.3 11.3 1 +1846 10 17 10.9 10.9 10.9 1 +1846 10 18 11.2 11.2 11.2 1 +1846 10 19 10.9 10.9 10.9 1 +1846 10 20 11.6 11.6 11.6 1 +1846 10 21 12.5 12.5 12.5 1 +1846 10 22 10.9 10.9 10.9 1 +1846 10 23 9.8 9.8 9.8 1 +1846 10 24 9.7 9.7 9.7 1 +1846 10 25 10.9 10.9 10.9 1 +1846 10 26 11.4 11.4 11.4 1 +1846 10 27 9.9 9.9 9.9 1 +1846 10 28 9.6 9.6 9.6 1 +1846 10 29 8.9 8.9 8.9 1 +1846 10 30 6.8 6.8 6.8 1 +1846 10 31 7.7 7.7 7.7 1 +1846 11 1 6.4 6.4 6.4 1 +1846 11 2 7.5 7.5 7.5 1 +1846 11 3 6.8 6.8 6.8 1 +1846 11 4 5.4 5.4 5.4 1 +1846 11 5 6.3 6.3 6.3 1 +1846 11 6 5.7 5.7 5.7 1 +1846 11 7 4.1 4.1 4.1 1 +1846 11 8 3.9 3.9 3.9 1 +1846 11 9 3.3 3.3 3.3 1 +1846 11 10 3.6 3.6 3.6 1 +1846 11 11 4.3 4.3 4.3 1 +1846 11 12 2.8 2.8 2.8 1 +1846 11 13 6.0 6.0 6.0 1 +1846 11 14 3.1 3.1 3.1 1 +1846 11 15 -0.8 -0.8 -0.8 1 +1846 11 16 -1.7 -1.7 -1.7 1 +1846 11 17 -0.2 -0.2 -0.2 1 +1846 11 18 -1.0 -1.0 -1.0 1 +1846 11 19 2.6 2.6 2.6 1 +1846 11 20 6.0 6.0 6.0 1 +1846 11 21 7.0 7.0 7.0 1 +1846 11 22 6.7 6.7 6.7 1 +1846 11 23 5.5 5.5 5.5 1 +1846 11 24 2.8 2.8 2.8 1 +1846 11 25 3.6 3.6 3.6 1 +1846 11 26 3.0 3.0 3.0 1 +1846 11 27 -0.6 -0.6 -0.6 1 +1846 11 28 -1.4 -1.4 -1.4 1 +1846 11 29 -4.2 -4.2 -4.2 1 +1846 11 30 -8.4 -8.4 -8.4 1 +1846 12 1 -7.4 -7.4 -7.4 1 +1846 12 2 0.3 0.3 0.3 1 +1846 12 3 -2.2 -2.2 -2.2 1 +1846 12 4 -7.4 -7.4 -7.4 1 +1846 12 5 -5.4 -5.4 -5.4 1 +1846 12 6 -2.8 -2.8 -2.8 1 +1846 12 7 -1.0 -1.0 -1.0 1 +1846 12 8 -0.7 -0.7 -0.7 1 +1846 12 9 0.9 0.9 0.9 1 +1846 12 10 -1.3 -1.3 -1.3 1 +1846 12 11 -4.6 -4.6 -4.6 1 +1846 12 12 -10.9 -10.9 -10.9 1 +1846 12 13 -10.8 -10.8 -10.8 1 +1846 12 14 -7.0 -7.0 -7.0 1 +1846 12 15 -8.1 -8.1 -8.1 1 +1846 12 16 -11.3 -11.3 -11.3 1 +1846 12 17 -7.7 -7.7 -7.7 1 +1846 12 18 -11.7 -11.7 -11.7 1 +1846 12 19 -6.2 -6.2 -6.2 1 +1846 12 20 -9.4 -9.4 -9.4 1 +1846 12 21 -7.7 -7.7 -7.7 1 +1846 12 22 -4.1 -4.1 -4.1 1 +1846 12 23 -8.2 -8.2 -8.2 1 +1846 12 24 -10.0 -10.0 -10.0 1 +1846 12 25 -8.8 -8.8 -8.8 1 +1846 12 26 -11.3 -11.3 -11.3 1 +1846 12 27 -8.4 -8.4 -8.4 1 +1846 12 28 -12.4 -12.4 -12.4 1 +1846 12 29 -2.2 -2.2 -2.2 1 +1846 12 30 1.2 1.2 1.2 1 +1846 12 31 2.1 2.1 2.1 1 +1847 1 1 -3.5 -3.5 -3.5 1 +1847 1 2 -4.4 -4.4 -4.4 1 +1847 1 3 -3.0 -3.0 -3.0 1 +1847 1 4 -1.5 -1.5 -1.5 1 +1847 1 5 -3.4 -3.4 -3.4 1 +1847 1 6 -4.1 -4.1 -4.1 1 +1847 1 7 -2.2 -2.2 -2.2 1 +1847 1 8 -5.9 -5.9 -5.9 1 +1847 1 9 -6.5 -6.5 -6.5 1 +1847 1 10 -3.4 -3.4 -3.4 1 +1847 1 11 -3.0 -3.0 -3.0 1 +1847 1 12 -6.5 -6.5 -6.5 1 +1847 1 13 -7.1 -7.1 -7.1 1 +1847 1 14 -7.0 -7.0 -7.0 1 +1847 1 15 -8.5 -8.5 -8.5 1 +1847 1 16 -8.9 -8.9 -8.9 1 +1847 1 17 -5.0 -5.0 -5.0 1 +1847 1 18 -4.4 -4.4 -4.4 1 +1847 1 19 -7.1 -7.1 -7.1 1 +1847 1 20 -4.6 -4.6 -4.6 1 +1847 1 21 -8.5 -8.5 -8.5 1 +1847 1 22 -5.4 -5.4 -5.4 1 +1847 1 23 -2.8 -2.8 -2.8 1 +1847 1 24 -2.0 -2.0 -2.0 1 +1847 1 25 0.1 0.1 0.1 1 +1847 1 26 1.1 1.1 1.1 1 +1847 1 27 0.6 0.6 0.6 1 +1847 1 28 0.3 0.3 0.3 1 +1847 1 29 0.5 0.5 0.5 1 +1847 1 30 -1.7 -1.7 -1.7 1 +1847 1 31 -5.4 -5.4 -5.4 1 +1847 2 1 -9.0 -9.0 -9.0 1 +1847 2 2 -9.8 -9.8 -9.8 1 +1847 2 3 -11.8 -11.8 -11.8 1 +1847 2 4 -5.4 -5.4 -5.4 1 +1847 2 5 -3.3 -3.3 -3.3 1 +1847 2 6 1.0 1.0 1.0 1 +1847 2 7 -1.1 -1.1 -1.1 1 +1847 2 8 -5.4 -5.4 -5.4 1 +1847 2 9 -7.4 -7.4 -7.4 1 +1847 2 10 -9.2 -9.2 -9.2 1 +1847 2 11 -11.2 -11.2 -11.2 1 +1847 2 12 -11.4 -11.4 -11.4 1 +1847 2 13 -12.4 -12.4 -12.4 1 +1847 2 14 -14.3 -14.3 -14.3 1 +1847 2 15 -1.9 -1.9 -1.9 1 +1847 2 16 -3.3 -3.3 -3.3 1 +1847 2 17 -3.9 -3.9 -3.9 1 +1847 2 18 -2.6 -2.6 -2.6 1 +1847 2 19 1.7 1.7 1.7 1 +1847 2 20 -1.7 -1.7 -1.7 1 +1847 2 21 -1.6 -1.6 -1.6 1 +1847 2 22 -2.6 -2.6 -2.6 1 +1847 2 23 -6.2 -6.2 -6.2 1 +1847 2 24 -8.5 -8.5 -8.5 1 +1847 2 25 -9.6 -9.6 -9.6 1 +1847 2 26 -9.1 -9.1 -9.1 1 +1847 2 27 0.3 0.3 0.3 1 +1847 2 28 0.5 0.5 0.5 1 +1847 3 1 0.9 0.9 0.9 1 +1847 3 2 1.2 1.2 1.2 1 +1847 3 3 0.5 0.5 0.5 1 +1847 3 4 2.3 2.3 2.3 1 +1847 3 5 -0.1 -0.1 -0.1 1 +1847 3 6 1.1 1.1 1.1 1 +1847 3 7 -3.4 -3.4 -3.4 1 +1847 3 8 -9.6 -9.6 -9.6 1 +1847 3 9 -12.6 -12.6 -12.6 1 +1847 3 10 -11.7 -11.7 -11.7 1 +1847 3 11 -9.6 -9.6 -9.6 1 +1847 3 12 -3.7 -3.7 -3.7 1 +1847 3 13 -7.2 -7.2 -7.2 1 +1847 3 14 -5.0 -5.0 -5.0 1 +1847 3 15 2.5 2.5 2.5 1 +1847 3 16 3.6 3.6 3.6 1 +1847 3 17 3.8 3.8 3.8 1 +1847 3 18 5.8 5.8 5.8 1 +1847 3 19 4.7 4.7 4.7 1 +1847 3 20 4.1 4.1 4.1 1 +1847 3 21 4.0 4.0 4.0 1 +1847 3 22 4.0 4.0 4.0 1 +1847 3 23 0.0 0.0 0.0 1 +1847 3 24 -0.7 -0.7 -0.7 1 +1847 3 25 -1.3 -1.3 -1.3 1 +1847 3 26 -0.4 -0.4 -0.4 1 +1847 3 27 -1.0 -1.0 -1.0 1 +1847 3 28 -0.5 -0.5 -0.5 1 +1847 3 29 -2.9 -2.9 -2.9 1 +1847 3 30 -2.3 -2.3 -2.3 1 +1847 3 31 -3.2 -3.2 -3.2 1 +1847 4 1 -2.6 -2.6 -2.6 1 +1847 4 2 -0.8 -0.8 -0.8 1 +1847 4 3 -0.4 -0.4 -0.4 1 +1847 4 4 -3.8 -3.8 -3.8 1 +1847 4 5 -1.8 -1.8 -1.8 1 +1847 4 6 -1.3 -1.3 -1.3 1 +1847 4 7 -3.2 -3.2 -3.2 1 +1847 4 8 -1.9 -1.9 -1.9 1 +1847 4 9 -3.2 -3.2 -3.2 1 +1847 4 10 -6.5 -6.5 -6.5 1 +1847 4 11 -3.2 -3.2 -3.2 1 +1847 4 12 0.4 0.4 0.4 1 +1847 4 13 -0.8 -0.8 -0.8 1 +1847 4 14 -2.1 -2.1 -2.1 1 +1847 4 15 -0.8 -0.8 -0.8 1 +1847 4 16 -0.4 -0.4 -0.4 1 +1847 4 17 -0.3 -0.3 -0.3 1 +1847 4 18 1.0 1.0 1.0 1 +1847 4 19 3.5 3.5 3.5 1 +1847 4 20 4.2 4.2 4.2 1 +1847 4 21 3.8 3.8 3.8 1 +1847 4 22 2.5 2.5 2.5 1 +1847 4 23 1.7 1.7 1.7 1 +1847 4 24 2.9 2.9 2.9 1 +1847 4 25 2.0 2.0 2.0 1 +1847 4 26 1.3 1.3 1.3 1 +1847 4 27 1.1 1.1 1.1 1 +1847 4 28 2.1 2.1 2.1 1 +1847 4 29 5.6 5.6 5.6 1 +1847 4 30 4.8 4.8 4.8 1 +1847 5 1 2.2 2.2 2.2 1 +1847 5 2 3.4 3.4 3.4 1 +1847 5 3 4.0 4.0 4.0 1 +1847 5 4 6.2 6.2 6.2 1 +1847 5 5 5.7 5.7 5.6 1 +1847 5 6 4.0 4.0 3.9 1 +1847 5 7 7.7 7.7 7.6 1 +1847 5 8 13.0 13.0 12.9 1 +1847 5 9 12.4 12.4 12.3 1 +1847 5 10 7.1 7.1 6.9 1 +1847 5 11 3.3 3.3 3.1 1 +1847 5 12 4.9 4.9 4.7 1 +1847 5 13 7.9 7.9 7.7 1 +1847 5 14 8.8 8.8 8.5 1 +1847 5 15 9.0 9.0 8.7 1 +1847 5 16 2.9 2.9 2.6 1 +1847 5 17 3.8 3.8 3.5 1 +1847 5 18 3.2 3.2 2.9 1 +1847 5 19 4.6 4.6 4.2 1 +1847 5 20 7.9 7.9 7.5 1 +1847 5 21 5.7 5.7 5.3 1 +1847 5 22 9.7 9.7 9.3 1 +1847 5 23 8.7 8.7 8.2 1 +1847 5 24 7.7 7.7 7.2 1 +1847 5 25 7.3 7.3 6.8 1 +1847 5 26 6.1 6.1 5.6 1 +1847 5 27 9.0 9.0 8.5 1 +1847 5 28 9.8 9.8 9.2 1 +1847 5 29 11.6 11.6 11.0 1 +1847 5 30 14.9 14.9 14.3 1 +1847 5 31 12.6 12.6 12.0 1 +1847 6 1 13.9 13.9 13.2 1 +1847 6 2 14.7 14.7 14.0 1 +1847 6 3 14.8 14.8 14.1 1 +1847 6 4 18.1 18.1 17.4 1 +1847 6 5 11.4 11.4 10.7 1 +1847 6 6 11.5 11.5 10.8 1 +1847 6 7 9.5 9.5 8.8 1 +1847 6 8 13.7 13.7 13.0 1 +1847 6 9 9.1 9.1 8.4 1 +1847 6 10 10.1 10.1 9.4 1 +1847 6 11 11.3 11.3 10.6 1 +1847 6 12 12.2 12.2 11.5 1 +1847 6 13 9.9 9.9 9.2 1 +1847 6 14 10.8 10.8 10.1 1 +1847 6 15 11.6 11.6 10.9 1 +1847 6 16 13.3 13.3 12.6 1 +1847 6 17 13.4 13.4 12.7 1 +1847 6 18 13.8 13.8 13.1 1 +1847 6 19 15.7 15.7 15.0 1 +1847 6 20 15.9 15.9 15.2 1 +1847 6 21 15.9 15.9 15.2 1 +1847 6 22 18.2 18.2 17.5 1 +1847 6 23 19.3 19.3 18.6 1 +1847 6 24 20.0 20.0 19.3 1 +1847 6 25 19.8 19.8 19.1 1 +1847 6 26 18.4 18.4 17.7 1 +1847 6 27 16.6 16.6 15.9 1 +1847 6 28 17.8 17.8 17.1 1 +1847 6 29 20.0 20.0 19.3 1 +1847 6 30 15.8 15.8 15.1 1 +1847 7 1 14.2 14.2 13.5 1 +1847 7 2 14.8 14.8 14.1 1 +1847 7 3 16.3 16.3 15.6 1 +1847 7 4 10.2 10.2 9.5 1 +1847 7 5 12.1 12.1 11.4 1 +1847 7 6 14.1 14.1 13.4 1 +1847 7 7 12.3 12.3 11.6 1 +1847 7 8 17.1 17.1 16.4 1 +1847 7 9 19.1 19.1 18.4 1 +1847 7 10 15.1 15.1 14.4 1 +1847 7 11 15.2 15.2 14.5 1 +1847 7 12 12.8 12.8 12.1 1 +1847 7 13 12.0 12.0 11.3 1 +1847 7 14 14.2 14.2 13.5 1 +1847 7 15 13.2 13.2 12.5 1 +1847 7 16 17.0 17.0 16.3 1 +1847 7 17 19.4 19.4 18.7 1 +1847 7 18 20.5 20.5 19.8 1 +1847 7 19 19.4 19.4 18.7 1 +1847 7 20 17.3 17.3 16.6 1 +1847 7 21 18.8 18.8 18.1 1 +1847 7 22 21.0 21.0 20.3 1 +1847 7 23 16.3 16.3 15.6 1 +1847 7 24 14.3 14.3 13.6 1 +1847 7 25 15.9 15.9 15.2 1 +1847 7 26 14.8 14.8 14.1 1 +1847 7 27 18.0 18.0 17.3 1 +1847 7 28 16.3 16.3 15.6 1 +1847 7 29 15.9 15.9 15.2 1 +1847 7 30 18.1 18.1 17.4 1 +1847 7 31 19.5 19.5 18.8 1 +1847 8 1 19.6 19.6 19.0 1 +1847 8 2 20.0 20.0 19.4 1 +1847 8 3 19.0 19.0 18.4 1 +1847 8 4 18.0 18.0 17.4 1 +1847 8 5 17.9 17.9 17.4 1 +1847 8 6 17.5 17.5 17.0 1 +1847 8 7 17.9 17.9 17.4 1 +1847 8 8 20.0 20.0 19.5 1 +1847 8 9 20.3 20.3 19.8 1 +1847 8 10 20.2 20.2 19.8 1 +1847 8 11 18.6 18.6 18.2 1 +1847 8 12 18.3 18.3 17.9 1 +1847 8 13 20.3 20.3 19.9 1 +1847 8 14 16.7 16.7 16.4 1 +1847 8 15 19.0 19.0 18.7 1 +1847 8 16 19.5 19.5 19.2 1 +1847 8 17 19.0 19.0 18.7 1 +1847 8 18 19.9 19.9 19.6 1 +1847 8 19 19.7 19.7 19.5 1 +1847 8 20 19.3 19.3 19.1 1 +1847 8 21 17.6 17.6 17.4 1 +1847 8 22 16.8 16.8 16.6 1 +1847 8 23 19.7 19.7 19.6 1 +1847 8 24 12.4 12.4 12.3 1 +1847 8 25 12.2 12.2 12.1 1 +1847 8 26 15.2 15.2 15.1 1 +1847 8 27 13.2 13.2 13.1 1 +1847 8 28 14.6 14.6 14.6 1 +1847 8 29 16.8 16.8 16.8 1 +1847 8 30 14.9 14.9 14.9 1 +1847 8 31 15.2 15.2 15.2 1 +1847 9 1 15.4 15.4 15.4 1 +1847 9 2 16.7 16.7 16.7 1 +1847 9 3 15.9 15.9 15.9 1 +1847 9 4 13.9 13.9 13.9 1 +1847 9 5 13.5 13.5 13.5 1 +1847 9 6 11.8 11.8 11.8 1 +1847 9 7 11.2 11.2 11.2 1 +1847 9 8 11.6 11.6 11.6 1 +1847 9 9 13.2 13.2 13.2 1 +1847 9 10 13.3 13.3 13.3 1 +1847 9 11 13.4 13.4 13.4 1 +1847 9 12 12.0 12.0 12.0 1 +1847 9 13 14.5 14.5 14.5 1 +1847 9 14 15.3 15.3 15.3 1 +1847 9 15 12.2 12.2 12.2 1 +1847 9 16 11.5 11.5 11.5 1 +1847 9 17 12.6 12.6 12.6 1 +1847 9 18 10.9 10.9 10.9 1 +1847 9 19 11.5 11.5 11.5 1 +1847 9 20 10.3 10.3 10.3 1 +1847 9 21 10.6 10.6 10.6 1 +1847 9 22 8.2 8.2 8.2 1 +1847 9 23 10.0 10.0 10.0 1 +1847 9 24 11.2 11.2 11.2 1 +1847 9 25 8.4 8.4 8.4 1 +1847 9 26 6.1 6.1 6.1 1 +1847 9 27 8.6 8.6 8.6 1 +1847 9 28 7.2 7.2 7.2 1 +1847 9 29 7.3 7.3 7.3 1 +1847 9 30 8.6 8.6 8.6 1 +1847 10 1 9.3 9.3 9.3 1 +1847 10 2 5.1 5.1 5.1 1 +1847 10 3 1.4 1.4 1.4 1 +1847 10 4 1.2 1.2 1.2 1 +1847 10 5 2.2 2.2 2.2 1 +1847 10 6 2.2 2.2 2.2 1 +1847 10 7 1.4 1.4 1.4 1 +1847 10 8 3.5 3.5 3.5 1 +1847 10 9 3.3 3.3 3.3 1 +1847 10 10 3.3 3.3 3.3 1 +1847 10 11 5.4 5.4 5.4 1 +1847 10 12 8.2 8.2 8.2 1 +1847 10 13 4.7 4.7 4.7 1 +1847 10 14 3.1 3.1 3.1 1 +1847 10 15 2.3 2.3 2.3 1 +1847 10 16 3.2 3.2 3.2 1 +1847 10 17 7.6 7.6 7.6 1 +1847 10 18 10.4 10.4 10.4 1 +1847 10 19 10.1 10.1 10.1 1 +1847 10 20 10.8 10.8 10.8 1 +1847 10 21 6.9 6.9 6.9 1 +1847 10 22 5.6 5.6 5.6 1 +1847 10 23 8.4 8.4 8.4 1 +1847 10 24 5.6 5.6 5.6 1 +1847 10 25 5.3 5.3 5.3 1 +1847 10 26 3.7 3.7 3.7 1 +1847 10 27 1.9 1.9 1.9 1 +1847 10 28 3.7 3.7 3.7 1 +1847 10 29 6.1 6.1 6.1 1 +1847 10 30 4.9 4.9 4.9 1 +1847 10 31 5.6 5.6 5.6 1 +1847 11 1 2.8 2.8 2.8 1 +1847 11 2 7.8 7.8 7.8 1 +1847 11 3 7.0 7.0 7.0 1 +1847 11 4 1.8 1.8 1.8 1 +1847 11 5 3.5 3.5 3.5 1 +1847 11 6 5.0 5.0 5.0 1 +1847 11 7 7.7 7.7 7.7 1 +1847 11 8 8.5 8.5 8.5 1 +1847 11 9 8.2 8.2 8.2 1 +1847 11 10 6.0 6.0 6.0 1 +1847 11 11 8.2 8.2 8.2 1 +1847 11 12 6.9 6.9 6.9 1 +1847 11 13 4.1 4.1 4.1 1 +1847 11 14 5.6 5.6 5.6 1 +1847 11 15 6.2 6.2 6.2 1 +1847 11 16 5.6 5.6 5.6 1 +1847 11 17 0.8 0.8 0.8 1 +1847 11 18 -0.2 -0.2 -0.2 1 +1847 11 19 3.3 3.3 3.3 1 +1847 11 20 5.7 5.7 5.7 1 +1847 11 21 3.8 3.8 3.8 1 +1847 11 22 4.3 4.3 4.3 1 +1847 11 23 5.1 5.1 5.1 1 +1847 11 24 4.9 4.9 4.9 1 +1847 11 25 6.3 6.3 6.3 1 +1847 11 26 5.1 5.1 5.1 1 +1847 11 27 4.8 4.8 4.8 1 +1847 11 28 4.1 4.1 4.1 1 +1847 11 29 4.1 4.1 4.1 1 +1847 11 30 4.4 4.4 4.4 1 +1847 12 1 4.0 4.0 4.0 1 +1847 12 2 -0.4 -0.4 -0.4 1 +1847 12 3 2.1 2.1 2.1 1 +1847 12 4 2.4 2.4 2.4 1 +1847 12 5 4.1 4.1 4.1 1 +1847 12 6 3.0 3.0 3.0 1 +1847 12 7 4.6 4.6 4.6 1 +1847 12 8 4.5 4.5 4.5 1 +1847 12 9 3.1 3.1 3.1 1 +1847 12 10 5.4 5.4 5.4 1 +1847 12 11 5.1 5.1 5.1 1 +1847 12 12 2.9 2.9 2.9 1 +1847 12 13 2.8 2.8 2.8 1 +1847 12 14 3.2 3.2 3.2 1 +1847 12 15 1.6 1.6 1.6 1 +1847 12 16 0.8 0.8 0.8 1 +1847 12 17 1.4 1.4 1.4 1 +1847 12 18 -0.1 -0.1 -0.1 1 +1847 12 19 -2.8 -2.8 -2.8 1 +1847 12 20 -3.0 -3.0 -3.0 1 +1847 12 21 -4.0 -4.0 -4.0 1 +1847 12 22 -3.4 -3.4 -3.4 1 +1847 12 23 -4.2 -4.2 -4.2 1 +1847 12 24 -3.6 -3.6 -3.6 1 +1847 12 25 -0.7 -0.7 -0.7 1 +1847 12 26 -2.3 -2.3 -2.3 1 +1847 12 27 -5.3 -5.3 -5.3 1 +1847 12 28 -3.8 -3.8 -3.8 1 +1847 12 29 -4.8 -4.8 -4.8 1 +1847 12 30 -3.3 -3.3 -3.3 1 +1847 12 31 -4.4 -4.4 -4.4 1 +1848 1 1 -5.1 -5.1 -5.1 1 +1848 1 2 -5.0 -5.0 -5.0 1 +1848 1 3 -6.7 -6.7 -6.7 1 +1848 1 4 -5.0 -5.0 -5.0 1 +1848 1 5 -5.1 -5.1 -5.1 1 +1848 1 6 -6.4 -6.4 -6.4 1 +1848 1 7 -7.1 -7.1 -7.1 1 +1848 1 8 -6.9 -6.9 -6.9 1 +1848 1 9 -9.0 -9.0 -9.0 1 +1848 1 10 -9.3 -9.3 -9.3 1 +1848 1 11 -6.3 -6.3 -6.3 1 +1848 1 12 -2.6 -2.6 -2.6 1 +1848 1 13 -3.8 -3.8 -3.8 1 +1848 1 14 -4.6 -4.6 -4.6 1 +1848 1 15 -5.1 -5.1 -5.1 1 +1848 1 16 -2.5 -2.5 -2.5 1 +1848 1 17 -3.9 -3.9 -3.9 1 +1848 1 18 -5.4 -5.4 -5.4 1 +1848 1 19 -9.4 -9.4 -9.4 1 +1848 1 20 -8.9 -8.9 -8.9 1 +1848 1 21 -7.5 -7.5 -7.5 1 +1848 1 22 -6.3 -6.3 -6.3 1 +1848 1 23 -6.5 -6.5 -6.5 1 +1848 1 24 -10.1 -10.1 -10.1 1 +1848 1 25 -10.7 -10.7 -10.7 1 +1848 1 26 -7.7 -7.7 -7.7 1 +1848 1 27 -5.4 -5.4 -5.4 1 +1848 1 28 -10.3 -10.3 -10.3 1 +1848 1 29 -12.6 -12.6 -12.6 1 +1848 1 30 -7.2 -7.2 -7.2 1 +1848 1 31 -0.2 -0.2 -0.2 1 +1848 2 1 -3.1 -3.1 -3.1 1 +1848 2 2 -6.6 -6.6 -6.6 1 +1848 2 3 -3.0 -3.0 -3.0 1 +1848 2 4 3.1 3.1 3.1 1 +1848 2 5 -0.4 -0.4 -0.4 1 +1848 2 6 -7.5 -7.5 -7.5 1 +1848 2 7 -6.8 -6.8 -6.8 1 +1848 2 8 -10.2 -10.2 -10.2 1 +1848 2 9 -4.9 -4.9 -4.9 1 +1848 2 10 -0.4 -0.4 -0.4 1 +1848 2 11 1.2 1.2 1.2 1 +1848 2 12 0.4 0.4 0.4 1 +1848 2 13 0.2 0.2 0.2 1 +1848 2 14 4.2 4.2 4.2 1 +1848 2 15 2.1 2.1 2.1 1 +1848 2 16 2.7 2.7 2.7 1 +1848 2 17 -4.1 -4.1 -4.1 1 +1848 2 18 -8.1 -8.1 -8.1 1 +1848 2 19 -5.9 -5.9 -5.9 1 +1848 2 20 -1.5 -1.5 -1.5 1 +1848 2 21 0.2 0.2 0.2 1 +1848 2 22 -7.2 -7.2 -7.2 1 +1848 2 23 -2.2 -2.2 -2.2 1 +1848 2 24 -1.8 -1.8 -1.8 1 +1848 2 25 -4.4 -4.4 -4.4 1 +1848 2 26 -2.3 -2.3 -2.3 1 +1848 2 27 -3.7 -3.7 -3.7 1 +1848 2 28 -3.2 -3.2 -3.2 1 +1848 2 29 0.4 0.4 0.4 1 +1848 3 1 -0.1 -0.1 -0.1 1 +1848 3 2 -1.7 -1.7 -1.7 1 +1848 3 3 -2.9 -2.9 -2.9 1 +1848 3 4 -4.5 -4.5 -4.5 1 +1848 3 5 -4.3 -4.3 -4.3 1 +1848 3 6 -4.0 -4.0 -4.0 1 +1848 3 7 -3.8 -3.8 -3.8 1 +1848 3 8 -4.4 -4.4 -4.4 1 +1848 3 9 -6.6 -6.6 -6.6 1 +1848 3 10 -3.8 -3.8 -3.8 1 +1848 3 11 -2.2 -2.2 -2.2 1 +1848 3 12 0.3 0.3 0.3 1 +1848 3 13 0.7 0.7 0.7 1 +1848 3 14 1.7 1.7 1.7 1 +1848 3 15 2.1 2.1 2.1 1 +1848 3 16 2.0 2.0 2.0 1 +1848 3 17 1.5 1.5 1.5 1 +1848 3 18 1.2 1.2 1.2 1 +1848 3 19 1.2 1.2 1.2 1 +1848 3 20 1.6 1.6 1.6 1 +1848 3 21 0.6 0.6 0.6 1 +1848 3 22 2.5 2.5 2.5 1 +1848 3 23 2.3 2.3 2.3 1 +1848 3 24 1.7 1.7 1.7 1 +1848 3 25 1.0 1.0 1.0 1 +1848 3 26 1.0 1.0 1.0 1 +1848 3 27 1.3 1.3 1.3 1 +1848 3 28 1.6 1.6 1.6 1 +1848 3 29 2.8 2.8 2.8 1 +1848 3 30 3.5 3.5 3.5 1 +1848 3 31 3.8 3.8 3.8 1 +1848 4 1 5.3 5.3 5.3 1 +1848 4 2 6.1 6.1 6.1 1 +1848 4 3 8.4 8.4 8.4 1 +1848 4 4 6.0 6.0 6.0 1 +1848 4 5 2.8 2.8 2.8 1 +1848 4 6 4.8 4.8 4.8 1 +1848 4 7 4.1 4.1 4.1 1 +1848 4 8 3.8 3.8 3.8 1 +1848 4 9 1.5 1.5 1.5 1 +1848 4 10 -0.4 -0.4 -0.4 1 +1848 4 11 1.0 1.0 1.0 1 +1848 4 12 2.4 2.4 2.4 1 +1848 4 13 4.5 4.5 4.5 1 +1848 4 14 3.9 3.9 3.9 1 +1848 4 15 1.3 1.3 1.3 1 +1848 4 16 1.8 1.8 1.8 1 +1848 4 17 2.7 2.7 2.7 1 +1848 4 18 2.3 2.3 2.3 1 +1848 4 19 4.9 4.9 4.9 1 +1848 4 20 6.1 6.1 6.1 1 +1848 4 21 7.9 7.9 7.9 1 +1848 4 22 9.6 9.6 9.6 1 +1848 4 23 2.7 2.7 2.7 1 +1848 4 24 2.0 2.0 2.0 1 +1848 4 25 0.7 0.7 0.7 1 +1848 4 26 2.3 2.3 2.3 1 +1848 4 27 5.6 5.6 5.6 1 +1848 4 28 5.1 5.1 5.1 1 +1848 4 29 6.6 6.6 6.6 1 +1848 4 30 6.2 6.2 6.2 1 +1848 5 1 6.9 6.9 6.9 1 +1848 5 2 5.8 5.8 5.8 1 +1848 5 3 3.6 3.6 3.6 1 +1848 5 4 3.4 3.4 3.4 1 +1848 5 5 7.8 7.8 7.7 1 +1848 5 6 11.5 11.5 11.4 1 +1848 5 7 12.9 12.9 12.8 1 +1848 5 8 14.1 14.1 14.0 1 +1848 5 9 14.9 14.9 14.8 1 +1848 5 10 13.2 13.2 13.0 1 +1848 5 11 11.8 11.8 11.6 1 +1848 5 12 14.4 14.4 14.2 1 +1848 5 13 12.1 12.1 11.9 1 +1848 5 14 15.3 15.3 15.0 1 +1848 5 15 10.6 10.6 10.3 1 +1848 5 16 8.7 8.7 8.4 1 +1848 5 17 17.0 17.0 16.7 1 +1848 5 18 16.3 16.3 16.0 1 +1848 5 19 18.0 18.0 17.6 1 +1848 5 20 18.6 18.6 18.2 1 +1848 5 21 15.4 15.4 15.0 1 +1848 5 22 13.3 13.3 12.9 1 +1848 5 23 11.6 11.6 11.1 1 +1848 5 24 9.4 9.4 8.9 1 +1848 5 25 9.4 9.4 8.9 1 +1848 5 26 6.3 6.3 5.8 1 +1848 5 27 4.3 4.3 3.8 1 +1848 5 28 8.0 8.0 7.4 1 +1848 5 29 11.3 11.3 10.7 1 +1848 5 30 8.3 8.3 7.7 1 +1848 5 31 12.7 12.7 12.1 1 +1848 6 1 12.0 12.0 11.3 1 +1848 6 2 11.8 11.8 11.1 1 +1848 6 3 6.8 6.8 6.1 1 +1848 6 4 8.5 8.5 7.8 1 +1848 6 5 14.2 14.2 13.5 1 +1848 6 6 17.3 17.3 16.6 1 +1848 6 7 13.6 13.6 12.9 1 +1848 6 8 16.8 16.8 16.1 1 +1848 6 9 12.4 12.4 11.7 1 +1848 6 10 15.9 15.9 15.2 1 +1848 6 11 17.9 17.9 17.2 1 +1848 6 12 18.1 18.1 17.4 1 +1848 6 13 17.9 17.9 17.2 1 +1848 6 14 18.9 18.9 18.2 1 +1848 6 15 17.2 17.2 16.5 1 +1848 6 16 18.1 18.1 17.4 1 +1848 6 17 18.2 18.2 17.5 1 +1848 6 18 20.9 20.9 20.2 1 +1848 6 19 16.8 16.8 16.1 1 +1848 6 20 21.6 21.6 20.9 1 +1848 6 21 15.0 15.0 14.3 1 +1848 6 22 10.5 10.5 9.8 1 +1848 6 23 9.7 9.7 9.0 1 +1848 6 24 14.0 14.0 13.3 1 +1848 6 25 16.0 16.0 15.3 1 +1848 6 26 17.3 17.3 16.6 1 +1848 6 27 15.4 15.4 14.7 1 +1848 6 28 16.6 16.6 15.9 1 +1848 6 29 16.7 16.7 16.0 1 +1848 6 30 15.0 15.0 14.3 1 +1848 7 1 17.5 17.5 16.8 1 +1848 7 2 18.4 18.4 17.7 1 +1848 7 3 16.8 16.8 16.1 1 +1848 7 4 17.0 17.0 16.3 1 +1848 7 5 14.4 14.4 13.7 1 +1848 7 6 16.8 16.8 16.1 1 +1848 7 7 18.1 18.1 17.4 1 +1848 7 8 14.3 14.3 13.6 1 +1848 7 9 16.7 16.7 16.0 1 +1848 7 10 13.7 13.7 13.0 1 +1848 7 11 13.5 13.5 12.8 1 +1848 7 12 20.9 20.9 20.2 1 +1848 7 13 19.5 19.5 18.8 1 +1848 7 14 19.2 19.2 18.5 1 +1848 7 15 16.0 16.0 15.3 1 +1848 7 16 18.2 18.2 17.5 1 +1848 7 17 13.3 13.3 12.6 1 +1848 7 18 14.4 14.4 13.7 1 +1848 7 19 15.9 15.9 15.2 1 +1848 7 20 18.8 18.8 18.1 1 +1848 7 21 19.1 19.1 18.4 1 +1848 7 22 17.0 17.0 16.3 1 +1848 7 23 17.6 17.6 16.9 1 +1848 7 24 19.2 19.2 18.5 1 +1848 7 25 16.9 16.9 16.2 1 +1848 7 26 15.7 15.7 15.0 1 +1848 7 27 18.2 18.2 17.5 1 +1848 7 28 18.0 18.0 17.3 1 +1848 7 29 16.7 16.7 16.0 1 +1848 7 30 16.4 16.4 15.7 1 +1848 7 31 16.6 16.6 15.9 1 +1848 8 1 17.3 17.3 16.7 1 +1848 8 2 17.1 17.1 16.5 1 +1848 8 3 15.6 15.6 15.0 1 +1848 8 4 17.1 17.1 16.5 1 +1848 8 5 13.8 13.8 13.3 1 +1848 8 6 16.3 16.3 15.8 1 +1848 8 7 14.5 14.5 14.0 1 +1848 8 8 14.9 14.9 14.4 1 +1848 8 9 14.2 14.2 13.7 1 +1848 8 10 13.4 13.4 13.0 1 +1848 8 11 14.5 14.5 14.1 1 +1848 8 12 15.6 15.6 15.2 1 +1848 8 13 15.6 15.6 15.2 1 +1848 8 14 11.6 11.6 11.3 1 +1848 8 15 13.2 13.2 12.9 1 +1848 8 16 12.7 12.7 12.4 1 +1848 8 17 14.6 14.6 14.3 1 +1848 8 18 13.8 13.8 13.5 1 +1848 8 19 15.1 15.1 14.9 1 +1848 8 20 14.4 14.4 14.2 1 +1848 8 21 12.2 12.2 12.0 1 +1848 8 22 12.5 12.5 12.3 1 +1848 8 23 11.8 11.8 11.7 1 +1848 8 24 13.4 13.4 13.3 1 +1848 8 25 13.9 13.9 13.8 1 +1848 8 26 13.3 13.3 13.2 1 +1848 8 27 13.6 13.6 13.5 1 +1848 8 28 16.5 16.5 16.5 1 +1848 8 29 16.0 16.0 16.0 1 +1848 8 30 14.2 14.2 14.2 1 +1848 8 31 14.2 14.2 14.2 1 +1848 9 1 12.6 12.6 12.6 1 +1848 9 2 11.2 11.2 11.2 1 +1848 9 3 8.3 8.3 8.3 1 +1848 9 4 12.8 12.8 12.8 1 +1848 9 5 14.6 14.6 14.6 1 +1848 9 6 14.6 14.6 14.6 1 +1848 9 7 14.6 14.6 14.6 1 +1848 9 8 15.6 15.6 15.6 1 +1848 9 9 14.0 14.0 14.0 1 +1848 9 10 12.7 12.7 12.7 1 +1848 9 11 11.1 11.1 11.1 1 +1848 9 12 10.0 10.0 10.0 1 +1848 9 13 7.4 7.4 7.4 1 +1848 9 14 9.3 9.3 9.3 1 +1848 9 15 7.2 7.2 7.2 1 +1848 9 16 9.0 9.0 9.0 1 +1848 9 17 12.4 12.4 12.4 1 +1848 9 18 10.6 10.6 10.6 1 +1848 9 19 6.8 6.8 6.8 1 +1848 9 20 7.5 7.5 7.5 1 +1848 9 21 10.7 10.7 10.7 1 +1848 9 22 10.7 10.7 10.7 1 +1848 9 23 9.1 9.1 9.1 1 +1848 9 24 11.6 11.6 11.6 1 +1848 9 25 13.9 13.9 13.9 1 +1848 9 26 12.5 12.5 12.5 1 +1848 9 27 12.7 12.7 12.7 1 +1848 9 28 11.8 11.8 11.8 1 +1848 9 29 11.0 11.0 11.0 1 +1848 9 30 11.4 11.4 11.4 1 +1848 10 1 11.5 11.5 11.5 1 +1848 10 2 11.2 11.2 11.2 1 +1848 10 3 10.1 10.1 10.1 1 +1848 10 4 10.8 10.8 10.8 1 +1848 10 5 10.8 10.8 10.8 1 +1848 10 6 10.7 10.7 10.7 1 +1848 10 7 13.5 13.5 13.5 1 +1848 10 8 8.8 8.8 8.8 1 +1848 10 9 10.3 10.3 10.3 1 +1848 10 10 8.5 8.5 8.5 1 +1848 10 11 8.4 8.4 8.4 1 +1848 10 12 5.4 5.4 5.4 1 +1848 10 13 4.1 4.1 4.1 1 +1848 10 14 4.5 4.5 4.5 1 +1848 10 15 3.8 3.8 3.8 1 +1848 10 16 5.2 5.2 5.2 1 +1848 10 17 5.8 5.8 5.8 1 +1848 10 18 1.4 1.4 1.4 1 +1848 10 19 -1.5 -1.5 -1.5 1 +1848 10 20 -1.0 -1.0 -1.0 1 +1848 10 21 -0.7 -0.7 -0.7 1 +1848 10 22 3.3 3.3 3.3 1 +1848 10 23 4.2 4.2 4.2 1 +1848 10 24 6.0 6.0 6.0 1 +1848 10 25 9.5 9.5 9.5 1 +1848 10 26 6.8 6.8 6.8 1 +1848 10 27 4.8 4.8 4.8 1 +1848 10 28 7.1 7.1 7.1 1 +1848 10 29 7.4 7.4 7.4 1 +1848 10 30 8.7 8.7 8.7 1 +1848 10 31 5.8 5.8 5.8 1 +1848 11 1 4.8 4.8 4.8 1 +1848 11 2 1.2 1.2 1.2 1 +1848 11 3 4.4 4.4 4.4 1 +1848 11 4 1.4 1.4 1.4 1 +1848 11 5 -2.0 -2.0 -2.0 1 +1848 11 6 -3.6 -3.6 -3.6 1 +1848 11 7 -3.4 -3.4 -3.4 1 +1848 11 8 -1.7 -1.7 -1.7 1 +1848 11 9 -4.5 -4.5 -4.5 1 +1848 11 10 -2.7 -2.7 -2.7 1 +1848 11 11 -1.5 -1.5 -1.5 1 +1848 11 12 -0.3 -0.3 -0.3 1 +1848 11 13 -0.1 -0.1 -0.1 1 +1848 11 14 -2.9 -2.9 -2.9 1 +1848 11 15 -6.8 -6.8 -6.8 1 +1848 11 16 -8.9 -8.9 -8.9 1 +1848 11 17 -7.5 -7.5 -7.5 1 +1848 11 18 -5.6 -5.6 -5.6 1 +1848 11 19 -10.8 -10.8 -10.8 1 +1848 11 20 -1.6 -1.6 -1.6 1 +1848 11 21 5.6 5.6 5.6 1 +1848 11 22 1.5 1.5 1.5 1 +1848 11 23 4.1 4.1 4.1 1 +1848 11 24 4.2 4.2 4.2 1 +1848 11 25 1.0 1.0 1.0 1 +1848 11 26 -1.9 -1.9 -1.9 1 +1848 11 27 3.6 3.6 3.6 1 +1848 11 28 4.6 4.6 4.6 1 +1848 11 29 4.8 4.8 4.8 1 +1848 11 30 0.7 0.7 0.7 1 +1848 12 1 -0.5 -0.5 -0.5 1 +1848 12 2 1.0 1.0 1.0 1 +1848 12 3 3.3 3.3 3.3 1 +1848 12 4 2.5 2.5 2.5 1 +1848 12 5 4.8 4.8 4.8 1 +1848 12 6 4.5 4.5 4.5 1 +1848 12 7 2.6 2.6 2.6 1 +1848 12 8 -0.8 -0.8 -0.8 1 +1848 12 9 -2.7 -2.7 -2.7 1 +1848 12 10 -0.8 -0.8 -0.8 1 +1848 12 11 2.0 2.0 2.0 1 +1848 12 12 3.5 3.5 3.5 1 +1848 12 13 2.1 2.1 2.1 1 +1848 12 14 3.1 3.1 3.1 1 +1848 12 15 2.3 2.3 2.3 1 +1848 12 16 3.9 3.9 3.9 1 +1848 12 17 1.7 1.7 1.7 1 +1848 12 18 -5.5 -5.5 -5.5 1 +1848 12 19 -8.6 -8.6 -8.6 1 +1848 12 20 -9.1 -9.1 -9.1 1 +1848 12 21 -8.6 -8.6 -8.6 1 +1848 12 22 -8.2 -8.2 -8.2 1 +1848 12 23 -7.5 -7.5 -7.5 1 +1848 12 24 -5.9 -5.9 -5.9 1 +1848 12 25 -1.4 -1.4 -1.4 1 +1848 12 26 0.0 0.0 0.0 1 +1848 12 27 -1.1 -1.1 -1.1 1 +1848 12 28 -1.3 -1.3 -1.3 1 +1848 12 29 -4.6 -4.6 -4.6 1 +1848 12 30 -8.6 -8.6 -8.6 1 +1848 12 31 -4.9 -4.9 -4.9 1 +1849 1 1 -7.0 -7.0 -7.0 1 +1849 1 2 -6.6 -6.6 -6.6 1 +1849 1 3 -2.2 -2.2 -2.2 1 +1849 1 4 -8.2 -8.2 -8.2 1 +1849 1 5 -11.0 -11.0 -11.0 1 +1849 1 6 -13.0 -13.0 -13.0 1 +1849 1 7 -14.9 -14.9 -14.9 1 +1849 1 8 -15.5 -15.5 -15.5 1 +1849 1 9 -12.4 -12.4 -12.4 1 +1849 1 10 -9.5 -9.5 -9.5 1 +1849 1 11 -11.3 -11.3 -11.3 1 +1849 1 12 -12.6 -12.6 -12.6 1 +1849 1 13 -6.6 -6.6 -6.6 1 +1849 1 14 -1.1 -1.1 -1.1 1 +1849 1 15 -7.8 -7.8 -7.8 1 +1849 1 16 -4.0 -4.0 -4.0 1 +1849 1 17 0.9 0.9 0.9 1 +1849 1 18 1.5 1.5 1.5 1 +1849 1 19 3.8 3.8 3.8 1 +1849 1 20 -2.4 -2.4 -2.4 1 +1849 1 21 -0.9 -0.9 -0.9 1 +1849 1 22 4.6 4.6 4.6 1 +1849 1 23 0.2 0.2 0.2 1 +1849 1 24 -2.9 -2.9 -2.9 1 +1849 1 25 -3.2 -3.2 -3.2 1 +1849 1 26 2.4 2.4 2.4 1 +1849 1 27 -8.2 -8.2 -8.2 1 +1849 1 28 -12.4 -12.4 -12.4 1 +1849 1 29 -11.1 -11.1 -11.1 1 +1849 1 30 -9.6 -9.6 -9.6 1 +1849 1 31 -3.2 -3.2 -3.2 1 +1849 2 1 -5.8 -5.8 -5.8 1 +1849 2 2 -6.0 -6.0 -6.0 1 +1849 2 3 0.5 0.5 0.5 1 +1849 2 4 0.8 0.8 0.8 1 +1849 2 5 -1.8 -1.8 -1.8 1 +1849 2 6 -4.1 -4.1 -4.1 1 +1849 2 7 1.7 1.7 1.7 1 +1849 2 8 3.2 3.2 3.2 1 +1849 2 9 2.5 2.5 2.5 1 +1849 2 10 0.2 0.2 0.2 1 +1849 2 11 2.4 2.4 2.4 1 +1849 2 12 -0.4 -0.4 -0.4 1 +1849 2 13 1.3 1.3 1.3 1 +1849 2 14 1.0 1.0 1.0 1 +1849 2 15 -0.1 -0.1 -0.1 1 +1849 2 16 -0.7 -0.7 -0.7 1 +1849 2 17 1.5 1.5 1.5 1 +1849 2 18 3.8 3.8 3.8 1 +1849 2 19 -0.2 -0.2 -0.2 1 +1849 2 20 -3.5 -3.5 -3.5 1 +1849 2 21 -5.3 -5.3 -5.3 1 +1849 2 22 -6.5 -6.5 -6.5 1 +1849 2 23 -6.0 -6.0 -6.0 1 +1849 2 24 -3.6 -3.6 -3.6 1 +1849 2 25 -6.4 -6.4 -6.4 1 +1849 2 26 -8.2 -8.2 -8.2 1 +1849 2 27 -5.9 -5.9 -5.9 1 +1849 2 28 -5.4 -5.4 -5.4 1 +1849 3 1 1.3 1.3 1.3 1 +1849 3 2 -2.7 -2.7 -2.7 1 +1849 3 3 -4.5 -4.5 -4.5 1 +1849 3 4 -2.0 -2.0 -2.0 1 +1849 3 5 4.1 4.1 4.1 1 +1849 3 6 3.5 3.5 3.5 1 +1849 3 7 3.9 3.9 3.9 1 +1849 3 8 -1.9 -1.9 -1.9 1 +1849 3 9 -6.2 -6.2 -6.2 1 +1849 3 10 -4.8 -4.8 -4.8 1 +1849 3 11 1.1 1.1 1.1 1 +1849 3 12 1.4 1.4 1.4 1 +1849 3 13 -3.4 -3.4 -3.4 1 +1849 3 14 -8.4 -8.4 -8.4 1 +1849 3 15 -9.5 -9.5 -9.5 1 +1849 3 16 -4.0 -4.0 -4.0 1 +1849 3 17 0.2 0.2 0.2 1 +1849 3 18 -3.4 -3.4 -3.4 1 +1849 3 19 -2.0 -2.0 -2.0 1 +1849 3 20 -1.9 -1.9 -1.9 1 +1849 3 21 -1.5 -1.5 -1.5 1 +1849 3 22 -2.4 -2.4 -2.4 1 +1849 3 23 -2.5 -2.5 -2.5 1 +1849 3 24 -2.1 -2.1 -2.1 1 +1849 3 25 -0.1 -0.1 -0.1 1 +1849 3 26 -0.4 -0.4 -0.4 1 +1849 3 27 -0.4 -0.4 -0.4 1 +1849 3 28 -2.1 -2.1 -2.1 1 +1849 3 29 -0.6 -0.6 -0.6 1 +1849 3 30 -0.5 -0.5 -0.5 1 +1849 3 31 -0.2 -0.2 -0.2 1 +1849 4 1 0.4 0.4 0.4 1 +1849 4 2 1.0 1.0 1.0 1 +1849 4 3 1.0 1.0 1.0 1 +1849 4 4 0.9 0.9 0.9 1 +1849 4 5 -0.1 -0.1 -0.1 1 +1849 4 6 0.6 0.6 0.6 1 +1849 4 7 0.6 0.6 0.6 1 +1849 4 8 0.1 0.1 0.1 1 +1849 4 9 0.1 0.1 0.1 1 +1849 4 10 -0.6 -0.6 -0.6 1 +1849 4 11 0.4 0.4 0.4 1 +1849 4 12 -2.0 -2.0 -2.0 1 +1849 4 13 -1.8 -1.8 -1.8 1 +1849 4 14 -0.2 -0.2 -0.2 1 +1849 4 15 -0.7 -0.7 -0.7 1 +1849 4 16 -0.5 -0.5 -0.5 1 +1849 4 17 3.1 3.1 3.1 1 +1849 4 18 2.5 2.5 2.5 1 +1849 4 19 1.2 1.2 1.2 1 +1849 4 20 2.3 2.3 2.3 1 +1849 4 21 3.7 3.7 3.7 1 +1849 4 22 1.0 1.0 1.0 1 +1849 4 23 1.0 1.0 1.0 1 +1849 4 24 2.2 2.2 2.2 1 +1849 4 25 4.0 4.0 4.0 1 +1849 4 26 6.5 6.5 6.5 1 +1849 4 27 7.8 7.8 7.8 1 +1849 4 28 8.0 8.0 8.0 1 +1849 4 29 7.9 7.9 7.9 1 +1849 4 30 8.9 8.9 8.9 1 +1849 5 1 9.7 9.7 9.7 1 +1849 5 2 9.8 9.8 9.8 1 +1849 5 3 9.2 9.2 9.2 1 +1849 5 4 8.6 8.6 8.6 1 +1849 5 5 3.5 3.5 3.4 1 +1849 5 6 1.1 1.1 1.0 1 +1849 5 7 2.5 2.5 2.4 1 +1849 5 8 4.4 4.4 4.3 1 +1849 5 9 5.3 5.3 5.2 1 +1849 5 10 5.0 5.0 4.8 1 +1849 5 11 5.7 5.7 5.5 1 +1849 5 12 4.9 4.9 4.7 1 +1849 5 13 4.6 4.6 4.4 1 +1849 5 14 4.2 4.2 3.9 1 +1849 5 15 6.7 6.7 6.4 1 +1849 5 16 11.0 11.0 10.7 1 +1849 5 17 10.8 10.8 10.5 1 +1849 5 18 11.3 11.3 11.0 1 +1849 5 19 13.2 13.2 12.8 1 +1849 5 20 10.3 10.3 9.9 1 +1849 5 21 7.9 7.9 7.5 1 +1849 5 22 9.5 9.5 9.1 1 +1849 5 23 11.2 11.2 10.7 1 +1849 5 24 14.8 14.8 14.3 1 +1849 5 25 16.6 16.6 16.1 1 +1849 5 26 17.1 17.1 16.6 1 +1849 5 27 19.4 19.4 18.9 1 +1849 5 28 19.4 19.4 18.8 1 +1849 5 29 14.9 14.9 14.3 1 +1849 5 30 15.2 15.2 14.6 1 +1849 5 31 17.0 17.0 16.4 1 +1849 6 1 18.3 18.3 17.6 1 +1849 6 2 16.2 16.2 15.5 1 +1849 6 3 15.4 15.4 14.7 1 +1849 6 4 16.1 16.1 15.4 1 +1849 6 5 17.5 17.5 16.8 1 +1849 6 6 12.4 12.4 11.7 1 +1849 6 7 12.8 12.8 12.1 1 +1849 6 8 12.8 12.8 12.1 1 +1849 6 9 9.8 9.8 9.1 1 +1849 6 10 8.9 8.9 8.2 1 +1849 6 11 10.4 10.4 9.7 1 +1849 6 12 12.3 12.3 11.6 1 +1849 6 13 12.2 12.2 11.5 1 +1849 6 14 9.2 9.2 8.5 1 +1849 6 15 13.4 13.4 12.7 1 +1849 6 16 14.3 14.3 13.6 1 +1849 6 17 8.5 8.5 7.8 1 +1849 6 18 10.5 10.5 9.8 1 +1849 6 19 12.4 12.4 11.7 1 +1849 6 20 11.6 11.6 10.9 1 +1849 6 21 11.8 11.8 11.1 1 +1849 6 22 9.1 9.1 8.4 1 +1849 6 23 13.8 13.8 13.1 1 +1849 6 24 14.6 14.6 13.9 1 +1849 6 25 16.0 16.0 15.3 1 +1849 6 26 14.9 14.9 14.2 1 +1849 6 27 17.1 17.1 16.4 1 +1849 6 28 13.3 13.3 12.6 1 +1849 6 29 9.8 9.8 9.1 1 +1849 6 30 11.6 11.6 10.9 1 +1849 7 1 9.2 9.2 8.5 1 +1849 7 2 11.8 11.8 11.1 1 +1849 7 3 13.2 13.2 12.5 1 +1849 7 4 12.6 12.6 11.9 1 +1849 7 5 13.4 13.4 12.7 1 +1849 7 6 15.2 15.2 14.5 1 +1849 7 7 17.1 17.1 16.4 1 +1849 7 8 20.0 20.0 19.3 1 +1849 7 9 18.8 18.8 18.1 1 +1849 7 10 15.9 15.9 15.2 1 +1849 7 11 15.9 15.9 15.2 1 +1849 7 12 17.3 17.3 16.6 1 +1849 7 13 17.1 17.1 16.4 1 +1849 7 14 15.1 15.1 14.4 1 +1849 7 15 16.5 16.5 15.8 1 +1849 7 16 17.6 17.6 16.9 1 +1849 7 17 15.6 15.6 14.9 1 +1849 7 18 16.5 16.5 15.8 1 +1849 7 19 16.8 16.8 16.1 1 +1849 7 20 16.5 16.5 15.8 1 +1849 7 21 16.3 16.3 15.6 1 +1849 7 22 16.3 16.3 15.6 1 +1849 7 23 16.7 16.7 16.0 1 +1849 7 24 15.3 15.3 14.6 1 +1849 7 25 16.0 16.0 15.3 1 +1849 7 26 16.3 16.3 15.6 1 +1849 7 27 16.5 16.5 15.8 1 +1849 7 28 16.4 16.4 15.7 1 +1849 7 29 16.8 16.8 16.1 1 +1849 7 30 18.1 18.1 17.4 1 +1849 7 31 16.5 16.5 15.8 1 +1849 8 1 13.3 13.3 12.7 1 +1849 8 2 16.2 16.2 15.6 1 +1849 8 3 15.2 15.2 14.6 1 +1849 8 4 17.3 17.3 16.7 1 +1849 8 5 18.3 18.3 17.8 1 +1849 8 6 19.4 19.4 18.9 1 +1849 8 7 18.5 18.5 18.0 1 +1849 8 8 15.6 15.6 15.1 1 +1849 8 9 18.6 18.6 18.1 1 +1849 8 10 18.4 18.4 18.0 1 +1849 8 11 15.4 15.4 15.0 1 +1849 8 12 16.5 16.5 16.1 1 +1849 8 13 16.7 16.7 16.3 1 +1849 8 14 16.3 16.3 16.0 1 +1849 8 15 16.4 16.4 16.1 1 +1849 8 16 16.4 16.4 16.1 1 +1849 8 17 16.0 16.0 15.7 1 +1849 8 18 14.1 14.1 13.8 1 +1849 8 19 10.9 10.9 10.7 1 +1849 8 20 12.6 12.6 12.4 1 +1849 8 21 14.9 14.9 14.7 1 +1849 8 22 17.0 17.0 16.8 1 +1849 8 23 16.8 16.8 16.7 1 +1849 8 24 16.4 16.4 16.3 1 +1849 8 25 15.5 15.5 15.4 1 +1849 8 26 14.7 14.7 14.6 1 +1849 8 27 15.0 15.0 14.9 1 +1849 8 28 14.3 14.3 14.3 1 +1849 8 29 13.2 13.2 13.2 1 +1849 8 30 14.3 14.3 14.3 1 +1849 8 31 14.4 14.4 14.4 1 +1849 9 1 14.2 14.2 14.2 1 +1849 9 2 15.1 15.1 15.1 1 +1849 9 3 14.1 14.1 14.1 1 +1849 9 4 14.1 14.1 14.1 1 +1849 9 5 15.2 15.2 15.2 1 +1849 9 6 14.0 14.0 14.0 1 +1849 9 7 7.4 7.4 7.4 1 +1849 9 8 7.7 7.7 7.7 1 +1849 9 9 10.6 10.6 10.6 1 +1849 9 10 9.5 9.5 9.5 1 +1849 9 11 13.1 13.1 13.1 1 +1849 9 12 14.8 14.8 14.8 1 +1849 9 13 12.8 12.8 12.8 1 +1849 9 14 12.8 12.8 12.8 1 +1849 9 15 12.1 12.1 12.1 1 +1849 9 16 12.0 12.0 12.0 1 +1849 9 17 12.6 12.6 12.6 1 +1849 9 18 13.5 13.5 13.5 1 +1849 9 19 11.9 11.9 11.9 1 +1849 9 20 12.0 12.0 12.0 1 +1849 9 21 9.6 9.6 9.6 1 +1849 9 22 11.2 11.2 11.2 1 +1849 9 23 12.0 12.0 12.0 1 +1849 9 24 11.6 11.6 11.6 1 +1849 9 25 11.9 11.9 11.9 1 +1849 9 26 7.5 7.5 7.5 1 +1849 9 27 4.8 4.8 4.8 1 +1849 9 28 7.4 7.4 7.4 1 +1849 9 29 7.3 7.3 7.3 1 +1849 9 30 7.6 7.6 7.6 1 +1849 10 1 5.9 5.9 5.9 1 +1849 10 2 4.1 4.1 4.1 1 +1849 10 3 5.4 5.4 5.4 1 +1849 10 4 6.4 6.4 6.4 1 +1849 10 5 5.1 5.1 5.1 1 +1849 10 6 3.4 3.4 3.4 1 +1849 10 7 2.3 2.3 2.3 1 +1849 10 8 3.7 3.7 3.7 1 +1849 10 9 4.0 4.0 4.0 1 +1849 10 10 0.7 0.7 0.7 1 +1849 10 11 -0.3 -0.3 -0.3 1 +1849 10 12 -0.3 -0.3 -0.3 1 +1849 10 13 -0.2 -0.2 -0.2 1 +1849 10 14 0.7 0.7 0.7 1 +1849 10 15 4.4 4.4 4.4 1 +1849 10 16 5.1 5.1 5.1 1 +1849 10 17 5.8 5.8 5.8 1 +1849 10 18 5.6 5.6 5.6 1 +1849 10 19 11.7 11.7 11.7 1 +1849 10 20 7.9 7.9 7.9 1 +1849 10 21 6.9 6.9 6.9 1 +1849 10 22 6.6 6.6 6.6 1 +1849 10 23 7.4 7.4 7.4 1 +1849 10 24 8.1 8.1 8.1 1 +1849 10 25 6.1 6.1 6.1 1 +1849 10 26 8.3 8.3 8.3 1 +1849 10 27 6.0 6.0 6.0 1 +1849 10 28 6.2 6.2 6.2 1 +1849 10 29 4.6 4.6 4.6 1 +1849 10 30 7.0 7.0 7.0 1 +1849 10 31 7.5 7.5 7.5 1 +1849 11 1 5.5 5.5 5.5 1 +1849 11 2 5.3 5.3 5.3 1 +1849 11 3 5.6 5.6 5.6 1 +1849 11 4 6.4 6.4 6.4 1 +1849 11 5 8.9 8.9 8.9 1 +1849 11 6 8.0 8.0 8.0 1 +1849 11 7 4.9 4.9 4.9 1 +1849 11 8 0.8 0.8 0.8 1 +1849 11 9 1.7 1.7 1.7 1 +1849 11 10 0.6 0.6 0.6 1 +1849 11 11 -1.2 -1.2 -1.2 1 +1849 11 12 4.2 4.2 4.2 1 +1849 11 13 7.6 7.6 7.6 1 +1849 11 14 7.3 7.3 7.3 1 +1849 11 15 5.8 5.8 5.8 1 +1849 11 16 0.6 0.6 0.6 1 +1849 11 17 -1.7 -1.7 -1.7 1 +1849 11 18 -3.8 -3.8 -3.8 1 +1849 11 19 1.2 1.2 1.2 1 +1849 11 20 -1.3 -1.3 -1.3 1 +1849 11 21 -1.0 -1.0 -1.0 1 +1849 11 22 -1.3 -1.3 -1.3 1 +1849 11 23 -0.5 -0.5 -0.5 1 +1849 11 24 1.1 1.1 1.1 1 +1849 11 25 -4.9 -4.9 -4.9 1 +1849 11 26 -8.5 -8.5 -8.5 1 +1849 11 27 -7.0 -7.0 -7.0 1 +1849 11 28 -4.1 -4.1 -4.1 1 +1849 11 29 -7.5 -7.5 -7.5 1 +1849 11 30 -1.2 -1.2 -1.2 1 +1849 12 1 0.9 0.9 0.9 1 +1849 12 2 0.4 0.4 0.4 1 +1849 12 3 -0.2 -0.2 -0.2 1 +1849 12 4 -2.4 -2.4 -2.4 1 +1849 12 5 -1.8 -1.8 -1.8 1 +1849 12 6 -1.0 -1.0 -1.0 1 +1849 12 7 -1.9 -1.9 -1.9 1 +1849 12 8 -2.3 -2.3 -2.3 1 +1849 12 9 -0.7 -0.7 -0.7 1 +1849 12 10 -0.2 -0.2 -0.2 1 +1849 12 11 -4.7 -4.7 -4.7 1 +1849 12 12 -6.1 -6.1 -6.1 1 +1849 12 13 -6.5 -6.5 -6.5 1 +1849 12 14 -5.1 -5.1 -5.1 1 +1849 12 15 -1.8 -1.8 -1.8 1 +1849 12 16 -1.3 -1.3 -1.3 1 +1849 12 17 2.5 2.5 2.5 1 +1849 12 18 -1.0 -1.0 -1.0 1 +1849 12 19 -5.9 -5.9 -5.9 1 +1849 12 20 -6.9 -6.9 -6.9 1 +1849 12 21 -9.3 -9.3 -9.3 1 +1849 12 22 -10.1 -10.1 -10.1 1 +1849 12 23 -4.5 -4.5 -4.5 1 +1849 12 24 -6.4 -6.4 -6.4 1 +1849 12 25 -1.5 -1.5 -1.5 1 +1849 12 26 -1.7 -1.7 -1.7 1 +1849 12 27 -0.4 -0.4 -0.4 1 +1849 12 28 1.2 1.2 1.2 1 +1849 12 29 -0.8 -0.8 -0.8 1 +1849 12 30 -5.6 -5.6 -5.6 1 +1849 12 31 -6.4 -6.4 -6.4 1 +1850 1 1 -7.5 -7.5 -7.5 1 +1850 1 2 -7.9 -7.9 -7.9 1 +1850 1 3 -8.0 -8.0 -8.0 1 +1850 1 4 -4.6 -4.6 -4.6 1 +1850 1 5 -1.6 -1.6 -1.6 1 +1850 1 6 -2.3 -2.3 -2.3 1 +1850 1 7 -2.3 -2.3 -2.3 1 +1850 1 8 -2.6 -2.6 -2.6 1 +1850 1 9 -3.0 -3.0 -3.0 1 +1850 1 10 -5.3 -5.3 -5.3 1 +1850 1 11 -5.7 -5.7 -5.7 1 +1850 1 12 -7.5 -7.5 -7.5 1 +1850 1 13 -8.2 -8.2 -8.2 1 +1850 1 14 -7.8 -7.8 -7.8 1 +1850 1 15 -7.9 -7.9 -7.9 1 +1850 1 16 -9.7 -9.7 -9.7 1 +1850 1 17 -9.4 -9.4 -9.4 1 +1850 1 18 -9.9 -9.9 -9.9 1 +1850 1 19 -12.2 -12.2 -12.2 1 +1850 1 20 -17.2 -17.2 -17.2 1 +1850 1 21 -12.4 -12.4 -12.4 1 +1850 1 22 -7.6 -7.6 -7.6 1 +1850 1 23 -6.0 -6.0 -6.0 1 +1850 1 24 -6.8 -6.8 -6.8 1 +1850 1 25 -8.4 -8.4 -8.4 1 +1850 1 26 -16.8 -16.8 -16.8 1 +1850 1 27 -20.4 -20.4 -20.4 1 +1850 1 28 -8.6 -8.6 -8.6 1 +1850 1 29 -8.9 -8.9 -8.9 1 +1850 1 30 -15.5 -15.5 -15.5 1 +1850 1 31 -16.0 -16.0 -16.0 1 +1850 2 1 -10.1 -10.1 -10.1 1 +1850 2 2 -5.2 -5.2 -5.2 1 +1850 2 3 -5.9 -5.9 -5.9 1 +1850 2 4 -8.4 -8.4 -8.4 1 +1850 2 5 -4.8 -4.8 -4.8 1 +1850 2 6 0.2 0.2 0.2 1 +1850 2 7 0.8 0.8 0.8 1 +1850 2 8 -0.6 -0.6 -0.6 1 +1850 2 9 -0.9 -0.9 -0.9 1 +1850 2 10 -0.1 -0.1 -0.1 1 +1850 2 11 -4.0 -4.0 -4.0 1 +1850 2 12 -1.1 -1.1 -1.1 1 +1850 2 13 -2.7 -2.7 -2.7 1 +1850 2 14 -9.8 -9.8 -9.8 1 +1850 2 15 1.2 1.2 1.2 1 +1850 2 16 1.3 1.3 1.3 1 +1850 2 17 -1.7 -1.7 -1.7 1 +1850 2 18 -1.3 -1.3 -1.3 1 +1850 2 19 4.0 4.0 4.0 1 +1850 2 20 4.3 4.3 4.3 1 +1850 2 21 1.4 1.4 1.4 1 +1850 2 22 -1.7 -1.7 -1.7 1 +1850 2 23 -2.6 -2.6 -2.6 1 +1850 2 24 -0.3 -0.3 -0.3 1 +1850 2 25 -3.9 -3.9 -3.9 1 +1850 2 26 1.6 1.6 1.6 1 +1850 2 27 -0.3 -0.3 -0.3 1 +1850 2 28 2.9 2.9 2.9 1 +1850 3 1 4.0 4.0 4.0 1 +1850 3 2 3.7 3.7 3.7 1 +1850 3 3 5.7 5.7 5.7 1 +1850 3 4 -1.1 -1.1 -1.1 1 +1850 3 5 -5.0 -5.0 -5.0 1 +1850 3 6 4.2 4.2 4.2 1 +1850 3 7 3.7 3.7 3.7 1 +1850 3 8 3.3 3.3 3.3 1 +1850 3 9 -2.5 -2.5 -2.5 1 +1850 3 10 -0.1 -0.1 -0.1 1 +1850 3 11 0.7 0.7 0.7 1 +1850 3 12 -2.6 -2.6 -2.6 1 +1850 3 13 3.5 3.5 3.5 1 +1850 3 14 -4.8 -4.8 -4.8 1 +1850 3 15 -9.4 -9.4 -9.4 1 +1850 3 16 -9.3 -9.3 -9.3 1 +1850 3 17 -9.3 -9.3 -9.3 1 +1850 3 18 -6.3 -6.3 -6.3 1 +1850 3 19 -5.4 -5.4 -5.4 1 +1850 3 20 -5.1 -5.1 -5.1 1 +1850 3 21 -9.5 -9.5 -9.5 1 +1850 3 22 -13.2 -13.2 -13.2 1 +1850 3 23 -9.2 -9.2 -9.2 1 +1850 3 24 -9.1 -9.1 -9.1 1 +1850 3 25 -9.5 -9.5 -9.5 1 +1850 3 26 -6.1 -6.1 -6.1 1 +1850 3 27 -5.1 -5.1 -5.1 1 +1850 3 28 -3.7 -3.7 -3.7 1 +1850 3 29 -5.5 -5.5 -5.5 1 +1850 3 30 -6.5 -6.5 -6.5 1 +1850 3 31 -9.0 -9.0 -9.0 1 +1850 4 1 -7.7 -7.7 -7.7 1 +1850 4 2 -6.3 -6.3 -6.3 1 +1850 4 3 -5.3 -5.3 -5.3 1 +1850 4 4 -4.4 -4.4 -4.4 1 +1850 4 5 0.0 0.0 0.0 1 +1850 4 6 2.8 2.8 2.8 1 +1850 4 7 3.7 3.7 3.7 1 +1850 4 8 1.6 1.6 1.6 1 +1850 4 9 1.9 1.9 1.9 1 +1850 4 10 1.8 1.8 1.8 1 +1850 4 11 0.9 0.9 0.9 1 +1850 4 12 1.2 1.2 1.2 1 +1850 4 13 1.0 1.0 1.0 1 +1850 4 14 2.6 2.6 2.6 1 +1850 4 15 2.2 2.2 2.2 1 +1850 4 16 4.1 4.1 4.1 1 +1850 4 17 5.1 5.1 5.1 1 +1850 4 18 5.7 5.7 5.7 1 +1850 4 19 6.8 6.8 6.8 1 +1850 4 20 6.0 6.0 6.0 1 +1850 4 21 7.8 7.8 7.8 1 +1850 4 22 9.8 9.8 9.8 1 +1850 4 23 8.1 8.1 8.1 1 +1850 4 24 6.8 6.8 6.8 1 +1850 4 25 1.0 1.0 1.0 1 +1850 4 26 1.8 1.8 1.8 1 +1850 4 27 3.1 3.1 3.1 1 +1850 4 28 3.1 3.1 3.1 1 +1850 4 29 7.7 7.7 7.7 1 +1850 4 30 7.0 7.0 7.0 1 +1850 5 1 2.2 2.2 2.2 1 +1850 5 2 0.4 0.4 0.4 1 +1850 5 3 3.4 3.4 3.4 1 +1850 5 4 6.4 6.4 6.4 1 +1850 5 5 4.3 4.3 4.2 1 +1850 5 6 4.3 4.3 4.2 1 +1850 5 7 4.9 4.9 4.8 1 +1850 5 8 6.1 6.1 6.0 1 +1850 5 9 8.2 8.2 8.1 1 +1850 5 10 9.2 9.2 9.0 1 +1850 5 11 9.2 9.2 9.0 1 +1850 5 12 9.9 9.9 9.7 1 +1850 5 13 8.2 8.2 8.0 1 +1850 5 14 10.3 10.3 10.0 1 +1850 5 15 6.2 6.2 5.9 1 +1850 5 16 7.7 7.7 7.4 1 +1850 5 17 9.8 9.8 9.5 1 +1850 5 18 10.2 10.2 9.9 1 +1850 5 19 16.7 16.7 16.3 1 +1850 5 20 16.7 16.7 16.3 1 +1850 5 21 16.4 16.4 16.0 1 +1850 5 22 16.5 16.5 16.1 1 +1850 5 23 16.9 16.9 16.4 1 +1850 5 24 15.5 15.5 15.0 1 +1850 5 25 17.9 17.9 17.4 1 +1850 5 26 16.4 16.4 15.9 1 +1850 5 27 16.0 16.0 15.5 1 +1850 5 28 16.5 16.5 15.9 1 +1850 5 29 13.1 13.1 12.5 1 +1850 5 30 15.2 15.2 14.6 1 +1850 5 31 17.1 17.1 16.5 1 +1850 6 1 17.3 17.3 16.6 1 +1850 6 2 17.7 17.7 17.0 1 +1850 6 3 18.0 18.0 17.3 1 +1850 6 4 20.1 20.1 19.4 1 +1850 6 5 18.8 18.8 18.1 1 +1850 6 6 19.7 19.7 19.0 1 +1850 6 7 15.0 15.0 14.3 1 +1850 6 8 16.8 16.8 16.1 1 +1850 6 9 15.8 15.8 15.1 1 +1850 6 10 17.0 17.0 16.3 1 +1850 6 11 17.8 17.8 17.1 1 +1850 6 12 15.1 15.1 14.4 1 +1850 6 13 16.5 16.5 15.8 1 +1850 6 14 15.1 15.1 14.4 1 +1850 6 15 14.1 14.1 13.4 1 +1850 6 16 9.7 9.7 9.0 1 +1850 6 17 12.7 12.7 12.0 1 +1850 6 18 15.0 15.0 14.3 1 +1850 6 19 15.4 15.4 14.7 1 +1850 6 20 17.9 17.9 17.2 1 +1850 6 21 18.3 18.3 17.6 1 +1850 6 22 20.0 20.0 19.3 1 +1850 6 23 18.4 18.4 17.7 1 +1850 6 24 16.1 16.1 15.4 1 +1850 6 25 20.6 20.6 19.9 1 +1850 6 26 16.9 16.9 16.2 1 +1850 6 27 12.0 12.0 11.3 1 +1850 6 28 12.9 12.9 12.2 1 +1850 6 29 15.6 15.6 14.9 1 +1850 6 30 14.1 14.1 13.4 1 +1850 7 1 15.3 15.3 14.6 1 +1850 7 2 16.8 16.8 16.1 1 +1850 7 3 16.8 16.8 16.1 1 +1850 7 4 17.6 17.6 16.9 1 +1850 7 5 14.2 14.2 13.5 1 +1850 7 6 13.8 13.8 13.1 1 +1850 7 7 15.5 15.5 14.8 1 +1850 7 8 12.7 12.7 12.0 1 +1850 7 9 12.3 12.3 11.6 1 +1850 7 10 14.3 14.3 13.6 1 +1850 7 11 15.1 15.1 14.4 1 +1850 7 12 17.1 17.1 16.4 1 +1850 7 13 19.0 19.0 18.3 1 +1850 7 14 19.5 19.5 18.8 1 +1850 7 15 20.4 20.4 19.7 1 +1850 7 16 18.3 18.3 17.6 1 +1850 7 17 18.8 18.8 18.1 1 +1850 7 18 20.5 20.5 19.8 1 +1850 7 19 22.8 22.8 22.1 1 +1850 7 20 20.9 20.9 20.2 1 +1850 7 21 18.0 18.0 17.3 1 +1850 7 22 18.2 18.2 17.5 1 +1850 7 23 18.4 18.4 17.7 1 +1850 7 24 18.5 18.5 17.8 1 +1850 7 25 19.0 19.0 18.3 1 +1850 7 26 15.8 15.8 15.1 1 +1850 7 27 15.7 15.7 15.0 1 +1850 7 28 18.4 18.4 17.7 1 +1850 7 29 21.5 21.5 20.8 1 +1850 7 30 20.8 20.8 20.1 1 +1850 7 31 23.3 23.3 22.6 1 +1850 8 1 16.7 16.7 16.1 1 +1850 8 2 18.1 18.1 17.5 1 +1850 8 3 19.6 19.6 19.0 1 +1850 8 4 19.5 19.5 18.9 1 +1850 8 5 19.5 19.5 19.0 1 +1850 8 6 22.8 22.8 22.3 1 +1850 8 7 23.0 23.0 22.5 1 +1850 8 8 20.9 20.9 20.4 1 +1850 8 9 18.9 18.9 18.4 1 +1850 8 10 20.9 20.9 20.5 1 +1850 8 11 19.2 19.2 18.8 1 +1850 8 12 21.0 21.0 20.6 1 +1850 8 13 20.8 20.8 20.4 1 +1850 8 14 20.9 20.9 20.6 1 +1850 8 15 23.6 23.6 23.3 1 +1850 8 16 24.6 24.6 24.3 1 +1850 8 17 20.4 20.4 20.1 1 +1850 8 18 13.0 13.0 12.7 1 +1850 8 19 15.2 15.2 15.0 1 +1850 8 20 15.8 15.8 15.6 1 +1850 8 21 14.3 14.3 14.1 1 +1850 8 22 12.7 12.7 12.5 1 +1850 8 23 14.9 14.9 14.8 1 +1850 8 24 13.5 13.5 13.4 1 +1850 8 25 13.4 13.4 13.3 1 +1850 8 26 14.3 14.3 14.2 1 +1850 8 27 13.9 13.9 13.8 1 +1850 8 28 12.2 12.2 12.2 1 +1850 8 29 11.5 11.5 11.5 1 +1850 8 30 13.0 13.0 13.0 1 +1850 8 31 10.4 10.4 10.4 1 +1850 9 1 12.0 12.0 12.0 1 +1850 9 2 13.4 13.4 13.4 1 +1850 9 3 10.2 10.2 10.2 1 +1850 9 4 10.0 10.0 10.0 1 +1850 9 5 10.4 10.4 10.4 1 +1850 9 6 10.4 10.4 10.4 1 +1850 9 7 7.2 7.2 7.2 1 +1850 9 8 7.6 7.6 7.6 1 +1850 9 9 7.6 7.6 7.6 1 +1850 9 10 8.7 8.7 8.7 1 +1850 9 11 7.9 7.9 7.9 1 +1850 9 12 10.5 10.5 10.5 1 +1850 9 13 9.7 9.7 9.7 1 +1850 9 14 11.6 11.6 11.6 1 +1850 9 15 12.3 12.3 12.3 1 +1850 9 16 11.3 11.3 11.3 1 +1850 9 17 9.1 9.1 9.1 1 +1850 9 18 12.3 12.3 12.3 1 +1850 9 19 10.8 10.8 10.8 1 +1850 9 20 9.6 9.6 9.6 1 +1850 9 21 12.9 12.9 12.9 1 +1850 9 22 12.8 12.8 12.8 1 +1850 9 23 13.2 13.2 13.2 1 +1850 9 24 12.8 12.8 12.8 1 +1850 9 25 13.0 13.0 13.0 1 +1850 9 26 10.4 10.4 10.4 1 +1850 9 27 8.7 8.7 8.7 1 +1850 9 28 11.2 11.2 11.2 1 +1850 9 29 11.0 11.0 11.0 1 +1850 9 30 9.4 9.4 9.4 1 +1850 10 1 12.2 12.2 12.2 1 +1850 10 2 11.9 11.9 11.9 1 +1850 10 3 12.0 12.0 12.0 1 +1850 10 4 9.3 9.3 9.3 1 +1850 10 5 9.8 9.8 9.8 1 +1850 10 6 10.8 10.8 10.8 1 +1850 10 7 10.0 10.0 10.0 1 +1850 10 8 11.6 11.6 11.6 1 +1850 10 9 11.5 11.5 11.5 1 +1850 10 10 6.1 6.1 6.1 1 +1850 10 11 3.6 3.6 3.6 1 +1850 10 12 0.1 0.1 0.1 1 +1850 10 13 0.7 0.7 0.7 1 +1850 10 14 1.2 1.2 1.2 1 +1850 10 15 2.6 2.6 2.6 1 +1850 10 16 1.7 1.7 1.7 1 +1850 10 17 1.8 1.8 1.8 1 +1850 10 18 2.1 2.1 2.1 1 +1850 10 19 2.0 2.0 2.0 1 +1850 10 20 1.7 1.7 1.7 1 +1850 10 21 0.1 0.1 0.1 1 +1850 10 22 -1.2 -1.2 -1.2 1 +1850 10 23 1.1 1.1 1.1 1 +1850 10 24 1.8 1.8 1.8 1 +1850 10 25 2.7 2.7 2.7 1 +1850 10 26 1.0 1.0 1.0 1 +1850 10 27 -0.1 -0.1 -0.1 1 +1850 10 28 0.8 0.8 0.8 1 +1850 10 29 4.6 4.6 4.6 1 +1850 10 30 4.3 4.3 4.3 1 +1850 10 31 5.3 5.3 5.3 1 +1850 11 1 2.3 2.3 2.3 1 +1850 11 2 5.8 5.8 5.8 1 +1850 11 3 5.5 5.5 5.5 1 +1850 11 4 6.8 6.8 6.8 1 +1850 11 5 5.4 5.4 5.4 1 +1850 11 6 2.6 2.6 2.6 1 +1850 11 7 -0.5 -0.5 -0.5 1 +1850 11 8 5.7 5.7 5.7 1 +1850 11 9 -1.6 -1.6 -1.6 1 +1850 11 10 -1.7 -1.7 -1.7 1 +1850 11 11 -3.2 -3.2 -3.2 1 +1850 11 12 -2.9 -2.9 -2.9 1 +1850 11 13 -2.5 -2.5 -2.5 1 +1850 11 14 -1.7 -1.7 -1.7 1 +1850 11 15 -3.2 -3.2 -3.2 1 +1850 11 16 -5.8 -5.8 -5.8 1 +1850 11 17 -6.1 -6.1 -6.1 1 +1850 11 18 -4.7 -4.7 -4.7 1 +1850 11 19 -4.6 -4.6 -4.6 1 +1850 11 20 -2.7 -2.7 -2.7 1 +1850 11 21 -2.2 -2.2 -2.2 1 +1850 11 22 -4.1 -4.1 -4.1 1 +1850 11 23 -3.0 -3.0 -3.0 1 +1850 11 24 3.6 3.6 3.6 1 +1850 11 25 5.8 5.8 5.8 1 +1850 11 26 4.6 4.6 4.6 1 +1850 11 27 -1.7 -1.7 -1.7 1 +1850 11 28 -5.4 -5.4 -5.4 1 +1850 11 29 -4.6 -4.6 -4.6 1 +1850 11 30 -1.4 -1.4 -1.4 1 +1850 12 1 -1.6 -1.6 -1.6 1 +1850 12 2 -2.3 -2.3 -2.3 1 +1850 12 3 0.9 0.9 0.9 1 +1850 12 4 0.2 0.2 0.2 1 +1850 12 5 1.6 1.6 1.6 1 +1850 12 6 2.8 2.8 2.8 1 +1850 12 7 5.1 5.1 5.1 1 +1850 12 8 5.6 5.6 5.6 1 +1850 12 9 -1.3 -1.3 -1.3 1 +1850 12 10 -1.3 -1.3 -1.3 1 +1850 12 11 -1.6 -1.6 -1.6 1 +1850 12 12 3.5 3.5 3.5 1 +1850 12 13 3.2 3.2 3.2 1 +1850 12 14 2.6 2.6 2.6 1 +1850 12 15 2.4 2.4 2.4 1 +1850 12 16 0.9 0.9 0.9 1 +1850 12 17 2.3 2.3 2.3 1 +1850 12 18 -1.3 -1.3 -1.3 1 +1850 12 19 -6.2 -6.2 -6.2 1 +1850 12 20 -7.2 -7.2 -7.2 1 +1850 12 21 -6.7 -6.7 -6.7 1 +1850 12 22 0.5 0.5 0.5 1 +1850 12 23 3.9 3.9 3.9 1 +1850 12 24 4.0 4.0 4.0 1 +1850 12 25 3.4 3.4 3.4 1 +1850 12 26 0.4 0.4 0.4 1 +1850 12 27 -0.8 -0.8 -0.8 1 +1850 12 28 0.9 0.9 0.9 1 +1850 12 29 -0.1 -0.1 -0.1 1 +1850 12 30 -5.2 -5.2 -5.2 1 +1850 12 31 -5.7 -5.7 -5.7 1 +1851 1 1 0.2 0.2 0.2 1 +1851 1 2 2.5 2.5 2.5 1 +1851 1 3 2.1 2.1 2.1 1 +1851 1 4 -2.3 -2.3 -2.3 1 +1851 1 5 -3.9 -3.9 -3.9 1 +1851 1 6 -5.2 -5.2 -5.2 1 +1851 1 7 -8.0 -8.0 -8.0 1 +1851 1 8 -8.6 -8.6 -8.6 1 +1851 1 9 -5.2 -5.2 -5.2 1 +1851 1 10 -4.5 -4.5 -4.5 1 +1851 1 11 -2.4 -2.4 -2.4 1 +1851 1 12 1.6 1.6 1.6 1 +1851 1 13 1.8 1.8 1.8 1 +1851 1 14 1.5 1.5 1.5 1 +1851 1 15 -1.3 -1.3 -1.3 1 +1851 1 16 -0.7 -0.7 -0.7 1 +1851 1 17 -0.6 -0.6 -0.6 1 +1851 1 18 1.4 1.4 1.4 1 +1851 1 19 1.3 1.3 1.3 1 +1851 1 20 1.7 1.7 1.7 1 +1851 1 21 1.8 1.8 1.8 1 +1851 1 22 1.8 1.8 1.8 1 +1851 1 23 0.7 0.7 0.7 1 +1851 1 24 -3.1 -3.1 -3.1 1 +1851 1 25 -0.1 -0.1 -0.1 1 +1851 1 26 -2.1 -2.1 -2.1 1 +1851 1 27 -3.4 -3.4 -3.4 1 +1851 1 28 -6.3 -6.3 -6.3 1 +1851 1 29 -7.9 -7.9 -7.9 1 +1851 1 30 -4.1 -4.1 -4.1 1 +1851 1 31 -3.8 -3.8 -3.8 1 +1851 2 1 -5.6 -5.6 -5.6 1 +1851 2 2 -10.0 -10.0 -10.0 1 +1851 2 3 -5.2 -5.2 -5.2 1 +1851 2 4 -2.5 -2.5 -2.5 1 +1851 2 5 0.5 0.5 0.5 1 +1851 2 6 1.1 1.1 1.1 1 +1851 2 7 1.7 1.7 1.7 1 +1851 2 8 0.9 0.9 0.9 1 +1851 2 9 0.4 0.4 0.4 1 +1851 2 10 0.1 0.1 0.1 1 +1851 2 11 4.0 4.0 4.0 1 +1851 2 12 0.4 0.4 0.4 1 +1851 2 13 -3.1 -3.1 -3.1 1 +1851 2 14 -3.0 -3.0 -3.0 1 +1851 2 15 0.4 0.4 0.4 1 +1851 2 16 3.5 3.5 3.5 1 +1851 2 17 1.4 1.4 1.4 1 +1851 2 18 2.4 2.4 2.4 1 +1851 2 19 4.6 4.6 4.6 1 +1851 2 20 1.5 1.5 1.5 1 +1851 2 21 -6.7 -6.7 -6.7 1 +1851 2 22 -8.2 -8.2 -8.2 1 +1851 2 23 -3.8 -3.8 -3.8 1 +1851 2 24 -3.2 -3.2 -3.2 1 +1851 2 25 -7.8 -7.8 -7.8 1 +1851 2 26 -5.4 -5.4 -5.4 1 +1851 2 27 -7.7 -7.7 -7.7 1 +1851 2 28 -10.9 -10.9 -10.9 1 +1851 3 1 -10.3 -10.3 -10.3 1 +1851 3 2 -12.8 -12.8 -12.8 1 +1851 3 3 -6.3 -6.3 -6.3 1 +1851 3 4 -11.4 -11.4 -11.4 1 +1851 3 5 -4.7 -4.7 -4.7 1 +1851 3 6 -5.9 -5.9 -5.9 1 +1851 3 7 -7.4 -7.4 -7.4 1 +1851 3 8 -6.2 -6.2 -6.2 1 +1851 3 9 -3.9 -3.9 -3.9 1 +1851 3 10 -1.8 -1.8 -1.8 1 +1851 3 11 -2.2 -2.2 -2.2 1 +1851 3 12 0.2 0.2 0.2 1 +1851 3 13 -1.6 -1.6 -1.6 1 +1851 3 14 0.0 0.0 0.0 1 +1851 3 15 0.3 0.3 0.3 1 +1851 3 16 0.0 0.0 0.0 1 +1851 3 17 -1.1 -1.1 -1.1 1 +1851 3 18 -0.6 -0.6 -0.6 1 +1851 3 19 -1.3 -1.3 -1.3 1 +1851 3 20 -2.4 -2.4 -2.4 1 +1851 3 21 -4.0 -4.0 -4.0 1 +1851 3 22 -2.6 -2.6 -2.6 1 +1851 3 23 -2.5 -2.5 -2.5 1 +1851 3 24 -5.0 -5.0 -5.0 1 +1851 3 25 -3.8 -3.8 -3.8 1 +1851 3 26 -4.5 -4.5 -4.5 1 +1851 3 27 -3.6 -3.6 -3.6 1 +1851 3 28 -0.7 -0.7 -0.7 1 +1851 3 29 1.7 1.7 1.7 1 +1851 3 30 -0.7 -0.7 -0.7 1 +1851 3 31 -1.4 -1.4 -1.4 1 +1851 4 1 -0.2 -0.2 -0.2 1 +1851 4 2 -1.5 -1.5 -1.5 1 +1851 4 3 -1.1 -1.1 -1.1 1 +1851 4 4 -0.8 -0.8 -0.8 1 +1851 4 5 0.5 0.5 0.5 1 +1851 4 6 1.6 1.6 1.6 1 +1851 4 7 2.0 2.0 2.0 1 +1851 4 8 1.5 1.5 1.5 1 +1851 4 9 3.4 3.4 3.4 1 +1851 4 10 5.3 5.3 5.3 1 +1851 4 11 6.5 6.5 6.5 1 +1851 4 12 6.6 6.6 6.6 1 +1851 4 13 3.7 3.7 3.7 1 +1851 4 14 6.6 6.6 6.6 1 +1851 4 15 7.4 7.4 7.4 1 +1851 4 16 6.5 6.5 6.5 1 +1851 4 17 5.1 5.1 5.1 1 +1851 4 18 5.5 5.5 5.5 1 +1851 4 19 8.3 8.3 8.3 1 +1851 4 20 4.7 4.7 4.7 1 +1851 4 21 6.5 6.5 6.5 1 +1851 4 22 4.8 4.8 4.8 1 +1851 4 23 2.4 2.4 2.4 1 +1851 4 24 4.4 4.4 4.4 1 +1851 4 25 3.5 3.5 3.5 1 +1851 4 26 4.1 4.1 4.1 1 +1851 4 27 4.2 4.2 4.2 1 +1851 4 28 7.8 7.8 7.8 1 +1851 4 29 6.4 6.4 6.4 1 +1851 4 30 4.4 4.4 4.4 1 +1851 5 1 2.4 2.4 2.4 1 +1851 5 2 1.3 1.3 1.3 1 +1851 5 3 4.1 4.1 4.1 1 +1851 5 4 3.6 3.6 3.6 1 +1851 5 5 4.1 4.1 4.0 1 +1851 5 6 3.8 3.8 3.7 1 +1851 5 7 6.6 6.6 6.5 1 +1851 5 8 5.4 5.4 5.3 1 +1851 5 9 6.5 6.5 6.4 1 +1851 5 10 2.5 2.5 2.3 1 +1851 5 11 4.0 4.0 3.8 1 +1851 5 12 5.6 5.6 5.4 1 +1851 5 13 4.8 4.8 4.6 1 +1851 5 14 6.7 6.7 6.4 1 +1851 5 15 10.0 10.0 9.7 1 +1851 5 16 9.9 9.9 9.6 1 +1851 5 17 11.0 11.0 10.7 1 +1851 5 18 9.3 9.3 9.0 1 +1851 5 19 10.6 10.6 10.2 1 +1851 5 20 10.7 10.7 10.3 1 +1851 5 21 10.7 10.7 10.3 1 +1851 5 22 10.4 10.4 10.0 1 +1851 5 23 12.7 12.7 12.2 1 +1851 5 24 10.1 10.1 9.6 1 +1851 5 25 10.6 10.6 10.1 1 +1851 5 26 6.5 6.5 6.0 1 +1851 5 27 9.7 9.7 9.2 1 +1851 5 28 11.7 11.7 11.1 1 +1851 5 29 8.8 8.8 8.2 1 +1851 5 30 12.7 12.7 12.1 1 +1851 5 31 9.3 9.3 8.7 1 +1851 6 1 13.4 13.4 12.7 1 +1851 6 2 15.4 15.4 14.7 1 +1851 6 3 13.7 13.7 13.0 1 +1851 6 4 16.3 16.3 15.6 1 +1851 6 5 14.6 14.6 13.9 1 +1851 6 6 11.4 11.4 10.7 1 +1851 6 7 16.0 16.0 15.3 1 +1851 6 8 13.6 13.6 12.9 1 +1851 6 9 13.0 13.0 12.3 1 +1851 6 10 12.7 12.7 12.0 1 +1851 6 11 12.4 12.4 11.7 1 +1851 6 12 12.2 12.2 11.5 1 +1851 6 13 14.4 14.4 13.7 1 +1851 6 14 13.9 13.9 13.2 1 +1851 6 15 14.3 14.3 13.6 1 +1851 6 16 13.1 13.1 12.4 1 +1851 6 17 14.2 14.2 13.5 1 +1851 6 18 12.3 12.3 11.6 1 +1851 6 19 12.3 12.3 11.6 1 +1851 6 20 13.5 13.5 12.8 1 +1851 6 21 12.2 12.2 11.5 1 +1851 6 22 16.4 16.4 15.7 1 +1851 6 23 16.4 16.4 15.7 1 +1851 6 24 13.9 13.9 13.2 1 +1851 6 25 11.7 11.7 11.0 1 +1851 6 26 13.9 13.9 13.2 1 +1851 6 27 17.8 17.8 17.1 1 +1851 6 28 17.8 17.8 17.1 1 +1851 6 29 18.3 18.3 17.6 1 +1851 6 30 19.4 19.4 18.7 1 +1851 7 1 22.8 22.8 22.1 1 +1851 7 2 21.9 21.9 21.2 1 +1851 7 3 15.2 15.2 14.5 1 +1851 7 4 16.4 16.4 15.7 1 +1851 7 5 17.5 17.5 16.8 1 +1851 7 6 11.6 11.6 10.9 1 +1851 7 7 12.0 12.0 11.3 1 +1851 7 8 14.9 14.9 14.2 1 +1851 7 9 13.7 13.7 13.0 1 +1851 7 10 12.0 12.0 11.3 1 +1851 7 11 14.7 14.7 14.0 1 +1851 7 12 16.0 16.0 15.3 1 +1851 7 13 17.2 17.2 16.5 1 +1851 7 14 17.9 17.9 17.2 1 +1851 7 15 17.5 17.5 16.8 1 +1851 7 16 16.9 16.9 16.2 1 +1851 7 17 16.3 16.3 15.6 1 +1851 7 18 18.3 18.3 17.6 1 +1851 7 19 14.1 14.1 13.4 1 +1851 7 20 16.2 16.2 15.5 1 +1851 7 21 17.1 17.1 16.4 1 +1851 7 22 17.4 17.4 16.7 1 +1851 7 23 17.3 17.3 16.6 1 +1851 7 24 17.7 17.7 17.0 1 +1851 7 25 14.7 14.7 14.0 1 +1851 7 26 17.4 17.4 16.7 1 +1851 7 27 17.2 17.2 16.5 1 +1851 7 28 16.7 16.7 16.0 1 +1851 7 29 19.3 19.3 18.6 1 +1851 7 30 18.7 18.7 18.0 1 +1851 7 31 19.6 19.6 18.9 1 +1851 8 1 20.2 20.2 19.6 1 +1851 8 2 18.6 18.6 18.0 1 +1851 8 3 18.9 18.9 18.3 1 +1851 8 4 18.1 18.1 17.5 1 +1851 8 5 14.7 14.7 14.2 1 +1851 8 6 13.4 13.4 12.9 1 +1851 8 7 17.6 17.6 17.1 1 +1851 8 8 18.7 18.7 18.2 1 +1851 8 9 16.4 16.4 15.9 1 +1851 8 10 13.5 13.5 13.1 1 +1851 8 11 11.6 11.6 11.2 1 +1851 8 12 13.2 13.2 12.8 1 +1851 8 13 14.8 14.8 14.4 1 +1851 8 14 15.7 15.7 15.4 1 +1851 8 15 16.7 16.7 16.4 1 +1851 8 16 16.5 16.5 16.2 1 +1851 8 17 13.6 13.6 13.3 1 +1851 8 18 9.8 9.8 9.5 1 +1851 8 19 12.7 12.7 12.5 1 +1851 8 20 14.0 14.0 13.8 1 +1851 8 21 16.4 16.4 16.2 1 +1851 8 22 16.5 16.5 16.3 1 +1851 8 23 18.3 18.3 18.2 1 +1851 8 24 16.4 16.4 16.3 1 +1851 8 25 15.4 15.4 15.3 1 +1851 8 26 13.5 13.5 13.4 1 +1851 8 27 12.8 12.8 12.7 1 +1851 8 28 14.2 14.2 14.2 1 +1851 8 29 13.3 13.3 13.3 1 +1851 8 30 12.4 12.4 12.4 1 +1851 8 31 12.9 12.9 12.9 1 +1851 9 1 14.0 14.0 14.0 1 +1851 9 2 14.7 14.7 14.7 1 +1851 9 3 15.2 15.2 15.2 1 +1851 9 4 18.0 18.0 18.0 1 +1851 9 5 17.3 17.3 17.3 1 +1851 9 6 9.6 9.6 9.6 1 +1851 9 7 7.6 7.6 7.6 1 +1851 9 8 7.3 7.3 7.3 1 +1851 9 9 11.2 11.2 11.2 1 +1851 9 10 10.3 10.3 10.3 1 +1851 9 11 8.0 8.0 8.0 1 +1851 9 12 8.3 8.3 8.3 1 +1851 9 13 8.8 8.8 8.8 1 +1851 9 14 10.1 10.1 10.1 1 +1851 9 15 11.3 11.3 11.3 1 +1851 9 16 9.9 9.9 9.9 1 +1851 9 17 12.9 12.9 12.9 1 +1851 9 18 12.5 12.5 12.5 1 +1851 9 19 11.8 11.8 11.8 1 +1851 9 20 12.3 12.3 12.3 1 +1851 9 21 10.7 10.7 10.7 1 +1851 9 22 11.0 11.0 11.0 1 +1851 9 23 11.4 11.4 11.4 1 +1851 9 24 12.5 12.5 12.5 1 +1851 9 25 11.1 11.1 11.1 1 +1851 9 26 13.7 13.7 13.7 1 +1851 9 27 13.3 13.3 13.3 1 +1851 9 28 8.3 8.3 8.3 1 +1851 9 29 10.2 10.2 10.2 1 +1851 9 30 11.3 11.3 11.3 1 +1851 10 1 12.8 12.8 12.8 1 +1851 10 2 12.4 12.4 12.4 1 +1851 10 3 14.2 14.2 14.2 1 +1851 10 4 14.3 14.3 14.3 1 +1851 10 5 14.7 14.7 14.7 1 +1851 10 6 13.5 13.5 13.5 1 +1851 10 7 11.1 11.1 11.1 1 +1851 10 8 10.6 10.6 10.6 1 +1851 10 9 9.2 9.2 9.2 1 +1851 10 10 8.9 8.9 8.9 1 +1851 10 11 8.7 8.7 8.7 1 +1851 10 12 8.1 8.1 8.1 1 +1851 10 13 8.3 8.3 8.3 1 +1851 10 14 10.7 10.7 10.7 1 +1851 10 15 8.7 8.7 8.7 1 +1851 10 16 11.2 11.2 11.2 1 +1851 10 17 8.3 8.3 8.3 1 +1851 10 18 8.3 8.3 8.3 1 +1851 10 19 10.3 10.3 10.3 1 +1851 10 20 7.2 7.2 7.2 1 +1851 10 21 6.3 6.3 6.3 1 +1851 10 22 8.8 8.8 8.8 1 +1851 10 23 10.9 10.9 10.9 1 +1851 10 24 7.5 7.5 7.5 1 +1851 10 25 3.2 3.2 3.2 1 +1851 10 26 2.3 2.3 2.3 1 +1851 10 27 2.2 2.2 2.2 1 +1851 10 28 2.8 2.8 2.8 1 +1851 10 29 3.9 3.9 3.9 1 +1851 10 30 -2.1 -2.1 -2.1 1 +1851 10 31 1.9 1.9 1.9 1 +1851 11 1 2.2 2.2 2.2 1 +1851 11 2 5.2 5.2 5.2 1 +1851 11 3 4.4 4.4 4.4 1 +1851 11 4 7.0 7.0 7.0 1 +1851 11 5 7.6 7.6 7.6 1 +1851 11 6 6.0 6.0 6.0 1 +1851 11 7 5.8 5.8 5.8 1 +1851 11 8 5.4 5.4 5.4 1 +1851 11 9 4.1 4.1 4.1 1 +1851 11 10 8.0 8.0 8.0 1 +1851 11 11 6.0 6.0 6.0 1 +1851 11 12 3.7 3.7 3.7 1 +1851 11 13 3.7 3.7 3.7 1 +1851 11 14 -1.8 -1.8 -1.8 1 +1851 11 15 -3.1 -3.1 -3.1 1 +1851 11 16 -3.4 -3.4 -3.4 1 +1851 11 17 -0.6 -0.6 -0.6 1 +1851 11 18 1.1 1.1 1.1 1 +1851 11 19 -0.7 -0.7 -0.7 1 +1851 11 20 -1.6 -1.6 -1.6 1 +1851 11 21 0.0 0.0 0.0 1 +1851 11 22 -1.2 -1.2 -1.2 1 +1851 11 23 -2.4 -2.4 -2.4 1 +1851 11 24 0.6 0.6 0.6 1 +1851 11 25 4.3 4.3 4.3 1 +1851 11 26 3.0 3.0 3.0 1 +1851 11 27 2.0 2.0 2.0 1 +1851 11 28 0.9 0.9 0.9 1 +1851 11 29 0.5 0.5 0.5 1 +1851 11 30 -2.1 -2.1 -2.1 1 +1851 12 1 -0.7 -0.7 -0.7 1 +1851 12 2 -0.9 -0.9 -0.9 1 +1851 12 3 -8.0 -8.0 -8.0 1 +1851 12 4 -7.9 -7.9 -7.9 1 +1851 12 5 -5.8 -5.8 -5.8 1 +1851 12 6 1.9 1.9 1.9 1 +1851 12 7 1.6 1.6 1.6 1 +1851 12 8 5.1 5.1 5.1 1 +1851 12 9 3.5 3.5 3.5 1 +1851 12 10 3.8 3.8 3.8 1 +1851 12 11 2.9 2.9 2.9 1 +1851 12 12 1.0 1.0 1.0 1 +1851 12 13 1.5 1.5 1.5 1 +1851 12 14 2.1 2.1 2.1 1 +1851 12 15 0.2 0.2 0.2 1 +1851 12 16 2.6 2.6 2.6 1 +1851 12 17 -0.8 -0.8 -0.8 1 +1851 12 18 -0.2 -0.2 -0.2 1 +1851 12 19 5.1 5.1 5.1 1 +1851 12 20 4.6 4.6 4.6 1 +1851 12 21 5.2 5.2 5.2 1 +1851 12 22 0.8 0.8 0.8 1 +1851 12 23 0.6 0.6 0.6 1 +1851 12 24 -1.9 -1.9 -1.9 1 +1851 12 25 -2.6 -2.6 -2.6 1 +1851 12 26 -4.5 -4.5 -4.5 1 +1851 12 27 -1.7 -1.7 -1.7 1 +1851 12 28 1.2 1.2 1.2 1 +1851 12 29 1.1 1.1 1.1 1 +1851 12 30 3.8 3.8 3.8 1 +1851 12 31 -1.6 -1.6 -1.6 1 +1852 1 1 -11.1 -11.1 -11.1 1 +1852 1 2 -3.4 -3.4 -3.4 1 +1852 1 3 2.4 2.4 2.4 1 +1852 1 4 1.5 1.5 1.5 1 +1852 1 5 -7.8 -7.8 -7.8 1 +1852 1 6 2.8 2.8 2.8 1 +1852 1 7 3.5 3.5 3.5 1 +1852 1 8 1.8 1.8 1.8 1 +1852 1 9 2.5 2.5 2.5 1 +1852 1 10 0.9 0.9 0.9 1 +1852 1 11 -6.5 -6.5 -6.5 1 +1852 1 12 2.2 2.2 2.2 1 +1852 1 13 2.3 2.3 2.3 1 +1852 1 14 -2.1 -2.1 -2.1 1 +1852 1 15 -4.6 -4.6 -4.6 1 +1852 1 16 0.3 0.3 0.3 1 +1852 1 17 2.4 2.4 2.4 1 +1852 1 18 -0.7 -0.7 -0.7 1 +1852 1 19 -6.2 -6.2 -6.2 1 +1852 1 20 -1.6 -1.6 -1.6 1 +1852 1 21 1.0 1.0 1.0 1 +1852 1 22 1.5 1.5 1.5 1 +1852 1 23 1.6 1.6 1.6 1 +1852 1 24 1.6 1.6 1.6 1 +1852 1 25 2.1 2.1 2.1 1 +1852 1 26 0.9 0.9 0.9 1 +1852 1 27 -3.7 -3.7 -3.7 1 +1852 1 28 -11.1 -11.1 -11.1 1 +1852 1 29 -12.3 -12.3 -12.3 1 +1852 1 30 -5.0 -5.0 -5.0 1 +1852 1 31 -4.2 -4.2 -4.2 1 +1852 2 1 -6.1 -6.1 -6.1 1 +1852 2 2 -7.3 -7.3 -7.3 1 +1852 2 3 -2.9 -2.9 -2.9 1 +1852 2 4 1.3 1.3 1.3 1 +1852 2 5 0.5 0.5 0.5 1 +1852 2 6 -5.8 -5.8 -5.8 1 +1852 2 7 -9.0 -9.0 -9.0 1 +1852 2 8 -8.1 -8.1 -8.1 1 +1852 2 9 -2.5 -2.5 -2.5 1 +1852 2 10 -6.4 -6.4 -6.4 1 +1852 2 11 -14.2 -14.2 -14.2 1 +1852 2 12 -8.9 -8.9 -8.9 1 +1852 2 13 -4.4 -4.4 -4.4 1 +1852 2 14 -1.5 -1.5 -1.5 1 +1852 2 15 1.1 1.1 1.1 1 +1852 2 16 1.7 1.7 1.7 1 +1852 2 17 -2.3 -2.3 -2.3 1 +1852 2 18 -4.3 -4.3 -4.3 1 +1852 2 19 -4.5 -4.5 -4.5 1 +1852 2 20 -6.9 -6.9 -6.9 1 +1852 2 21 -4.3 -4.3 -4.3 1 +1852 2 22 -5.6 -5.6 -5.6 1 +1852 2 23 -7.0 -7.0 -7.0 1 +1852 2 24 -3.9 -3.9 -3.9 1 +1852 2 25 -1.3 -1.3 -1.3 1 +1852 2 26 -3.3 -3.3 -3.3 1 +1852 2 27 -3.5 -3.5 -3.5 1 +1852 2 28 -5.6 -5.6 -5.6 1 +1852 2 29 -4.8 -4.8 -4.8 1 +1852 3 1 -7.1 -7.1 -7.1 1 +1852 3 2 -6.3 -6.3 -6.3 1 +1852 3 3 -7.8 -7.8 -7.8 1 +1852 3 4 -6.1 -6.1 -6.1 1 +1852 3 5 -3.2 -3.2 -3.2 1 +1852 3 6 3.5 3.5 3.5 1 +1852 3 7 5.0 5.0 5.0 1 +1852 3 8 3.6 3.6 3.6 1 +1852 3 9 0.2 0.2 0.2 1 +1852 3 10 -2.8 -2.8 -2.8 1 +1852 3 11 -3.4 -3.4 -3.4 1 +1852 3 12 -3.7 -3.7 -3.7 1 +1852 3 13 -2.3 -2.3 -2.3 1 +1852 3 14 1.7 1.7 1.7 1 +1852 3 15 1.3 1.3 1.3 1 +1852 3 16 2.1 2.1 2.1 1 +1852 3 17 -0.9 -0.9 -0.9 1 +1852 3 18 0.7 0.7 0.7 1 +1852 3 19 1.4 1.4 1.4 1 +1852 3 20 2.1 2.1 2.1 1 +1852 3 21 2.0 2.0 2.0 1 +1852 3 22 3.6 3.6 3.6 1 +1852 3 23 0.2 0.2 0.2 1 +1852 3 24 -4.2 -4.2 -4.2 1 +1852 3 25 -5.4 -5.4 -5.4 1 +1852 3 26 -4.8 -4.8 -4.8 1 +1852 3 27 -5.9 -5.9 -5.9 1 +1852 3 28 -2.0 -2.0 -2.0 1 +1852 3 29 -2.2 -2.2 -2.2 1 +1852 3 30 -0.1 -0.1 -0.1 1 +1852 3 31 0.6 0.6 0.6 1 +1852 4 1 -1.1 -1.1 -1.1 1 +1852 4 2 -0.9 -0.9 -0.9 1 +1852 4 3 -2.3 -2.3 -2.3 1 +1852 4 4 1.1 1.1 1.1 1 +1852 4 5 4.7 4.7 4.7 1 +1852 4 6 7.1 7.1 7.1 1 +1852 4 7 5.4 5.4 5.4 1 +1852 4 8 0.8 0.8 0.8 1 +1852 4 9 0.8 0.8 0.8 1 +1852 4 10 -0.8 -0.8 -0.8 1 +1852 4 11 -2.5 -2.5 -2.5 1 +1852 4 12 1.8 1.8 1.8 1 +1852 4 13 1.8 1.8 1.8 1 +1852 4 14 0.2 0.2 0.2 1 +1852 4 15 -2.5 -2.5 -2.5 1 +1852 4 16 -4.9 -4.9 -4.9 1 +1852 4 17 -4.1 -4.1 -4.1 1 +1852 4 18 -3.5 -3.5 -3.5 1 +1852 4 19 -3.2 -3.2 -3.2 1 +1852 4 20 0.1 0.1 0.1 1 +1852 4 21 1.1 1.1 1.1 1 +1852 4 22 1.4 1.4 1.4 1 +1852 4 23 2.2 2.2 2.2 1 +1852 4 24 4.2 4.2 4.2 1 +1852 4 25 5.7 5.7 5.7 1 +1852 4 26 1.1 1.1 1.1 1 +1852 4 27 1.2 1.2 1.2 1 +1852 4 28 1.5 1.5 1.5 1 +1852 4 29 1.2 1.2 1.2 1 +1852 4 30 2.0 2.0 2.0 1 +1852 5 1 1.0 1.0 1.0 1 +1852 5 2 1.7 1.7 1.7 1 +1852 5 3 3.6 3.6 3.6 1 +1852 5 4 5.9 5.9 5.9 1 +1852 5 5 6.9 6.9 6.8 1 +1852 5 6 6.3 6.3 6.2 1 +1852 5 7 7.5 7.5 7.4 1 +1852 5 8 4.2 4.2 4.1 1 +1852 5 9 7.8 7.8 7.7 1 +1852 5 10 12.1 12.1 11.9 1 +1852 5 11 13.4 13.4 13.2 1 +1852 5 12 11.2 11.2 11.0 1 +1852 5 13 12.7 12.7 12.5 1 +1852 5 14 12.4 12.4 12.1 1 +1852 5 15 10.6 10.6 10.3 1 +1852 5 16 11.2 11.2 10.9 1 +1852 5 17 14.7 14.7 14.4 1 +1852 5 18 14.3 14.3 14.0 1 +1852 5 19 15.0 15.0 14.6 1 +1852 5 20 17.8 17.8 17.4 1 +1852 5 21 12.2 12.2 11.8 1 +1852 5 22 13.8 13.8 13.4 1 +1852 5 23 13.1 13.1 12.6 1 +1852 5 24 14.4 14.4 13.9 1 +1852 5 25 15.5 15.5 15.0 1 +1852 5 26 14.6 14.6 14.1 1 +1852 5 27 11.4 11.4 10.9 1 +1852 5 28 11.1 11.1 10.5 1 +1852 5 29 13.0 13.0 12.4 1 +1852 5 30 15.9 15.9 15.3 1 +1852 5 31 13.7 13.7 13.1 1 +1852 6 1 13.8 13.8 13.1 1 +1852 6 2 15.2 15.2 14.5 1 +1852 6 3 15.2 15.2 14.5 1 +1852 6 4 15.7 15.7 15.0 1 +1852 6 5 17.9 17.9 17.2 1 +1852 6 6 16.9 16.9 16.2 1 +1852 6 7 15.3 15.3 14.6 1 +1852 6 8 16.5 16.5 15.8 1 +1852 6 9 19.4 19.4 18.7 1 +1852 6 10 15.6 15.6 14.9 1 +1852 6 11 11.8 11.8 11.1 1 +1852 6 12 13.8 13.8 13.1 1 +1852 6 13 12.8 12.8 12.1 1 +1852 6 14 14.1 14.1 13.4 1 +1852 6 15 16.0 16.0 15.3 1 +1852 6 16 11.7 11.7 11.0 1 +1852 6 17 16.4 16.4 15.7 1 +1852 6 18 15.9 15.9 15.2 1 +1852 6 19 18.0 18.0 17.3 1 +1852 6 20 19.7 19.7 19.0 1 +1852 6 21 17.7 17.7 17.0 1 +1852 6 22 17.7 17.7 17.0 1 +1852 6 23 16.4 16.4 15.7 1 +1852 6 24 17.9 17.9 17.2 1 +1852 6 25 16.3 16.3 15.6 1 +1852 6 26 16.4 16.4 15.7 1 +1852 6 27 17.0 17.0 16.3 1 +1852 6 28 17.2 17.2 16.5 1 +1852 6 29 15.0 15.0 14.3 1 +1852 6 30 17.0 17.0 16.3 1 +1852 7 1 17.5 17.5 16.8 1 +1852 7 2 18.6 18.6 17.9 1 +1852 7 3 17.1 17.1 16.4 1 +1852 7 4 16.3 16.3 15.6 1 +1852 7 5 18.5 18.5 17.8 1 +1852 7 6 20.2 20.2 19.5 1 +1852 7 7 23.9 23.9 23.2 1 +1852 7 8 24.5 24.5 23.8 1 +1852 7 9 25.3 25.3 24.6 1 +1852 7 10 26.5 26.5 25.8 1 +1852 7 11 25.4 25.4 24.7 1 +1852 7 12 19.2 19.2 18.5 1 +1852 7 13 17.5 17.5 16.8 1 +1852 7 14 18.0 18.0 17.3 1 +1852 7 15 20.2 20.2 19.5 1 +1852 7 16 17.7 17.7 17.0 1 +1852 7 17 20.6 20.6 19.9 1 +1852 7 18 15.5 15.5 14.8 1 +1852 7 19 15.4 15.4 14.7 1 +1852 7 20 18.0 18.0 17.3 1 +1852 7 21 20.9 20.9 20.2 1 +1852 7 22 21.3 21.3 20.6 1 +1852 7 23 17.3 17.3 16.6 1 +1852 7 24 20.1 20.1 19.4 1 +1852 7 25 19.2 19.2 18.5 1 +1852 7 26 18.1 18.1 17.4 1 +1852 7 27 19.5 19.5 18.8 1 +1852 7 28 21.1 21.1 20.4 1 +1852 7 29 21.1 21.1 20.4 1 +1852 7 30 22.1 22.1 21.4 1 +1852 7 31 15.9 15.9 15.2 1 +1852 8 1 16.4 16.4 15.8 1 +1852 8 2 16.3 16.3 15.7 1 +1852 8 3 17.5 17.5 16.9 1 +1852 8 4 18.0 18.0 17.4 1 +1852 8 5 19.0 19.0 18.5 1 +1852 8 6 20.5 20.5 20.0 1 +1852 8 7 19.4 19.4 18.9 1 +1852 8 8 19.5 19.5 19.0 1 +1852 8 9 20.5 20.5 20.0 1 +1852 8 10 18.0 18.0 17.6 1 +1852 8 11 18.3 18.3 17.9 1 +1852 8 12 20.0 20.0 19.6 1 +1852 8 13 18.7 18.7 18.3 1 +1852 8 14 18.8 18.8 18.5 1 +1852 8 15 18.0 18.0 17.7 1 +1852 8 16 17.1 17.1 16.8 1 +1852 8 17 19.0 19.0 18.7 1 +1852 8 18 19.7 19.7 19.4 1 +1852 8 19 19.3 19.3 19.1 1 +1852 8 20 18.9 18.9 18.7 1 +1852 8 21 19.3 19.3 19.1 1 +1852 8 22 17.6 17.6 17.4 1 +1852 8 23 17.2 17.2 17.1 1 +1852 8 24 15.0 15.0 14.9 1 +1852 8 25 14.1 14.1 14.0 1 +1852 8 26 14.4 14.4 14.3 1 +1852 8 27 16.6 16.6 16.5 1 +1852 8 28 17.1 17.1 17.1 1 +1852 8 29 16.9 16.9 16.9 1 +1852 8 30 18.1 18.1 18.1 1 +1852 8 31 16.9 16.9 16.9 1 +1852 9 1 17.7 17.7 17.7 1 +1852 9 2 19.1 19.1 19.1 1 +1852 9 3 17.4 17.4 17.4 1 +1852 9 4 18.4 18.4 18.4 1 +1852 9 5 17.2 17.2 17.2 1 +1852 9 6 15.6 15.6 15.6 1 +1852 9 7 17.2 17.2 17.2 1 +1852 9 8 15.9 15.9 15.9 1 +1852 9 9 17.0 17.0 17.0 1 +1852 9 10 17.6 17.6 17.6 1 +1852 9 11 14.4 14.4 14.4 1 +1852 9 12 11.9 11.9 11.9 1 +1852 9 13 10.4 10.4 10.4 1 +1852 9 14 9.3 9.3 9.3 1 +1852 9 15 11.9 11.9 11.9 1 +1852 9 16 10.0 10.0 10.0 1 +1852 9 17 10.2 10.2 10.2 1 +1852 9 18 10.2 10.2 10.2 1 +1852 9 19 10.4 10.4 10.4 1 +1852 9 20 9.4 9.4 9.4 1 +1852 9 21 9.2 9.2 9.2 1 +1852 9 22 7.6 7.6 7.6 1 +1852 9 23 10.2 10.2 10.2 1 +1852 9 24 13.5 13.5 13.5 1 +1852 9 25 12.6 12.6 12.6 1 +1852 9 26 10.8 10.8 10.8 1 +1852 9 27 9.6 9.6 9.6 1 +1852 9 28 6.6 6.6 6.6 1 +1852 9 29 10.1 10.1 10.1 1 +1852 9 30 11.7 11.7 11.7 1 +1852 10 1 10.3 10.3 10.3 1 +1852 10 2 9.6 9.6 9.6 1 +1852 10 3 6.7 6.7 6.7 1 +1852 10 4 2.6 2.6 2.6 1 +1852 10 5 7.4 7.4 7.4 1 +1852 10 6 7.7 7.7 7.7 1 +1852 10 7 7.0 7.0 7.0 1 +1852 10 8 4.7 4.7 4.7 1 +1852 10 9 5.0 5.0 5.0 1 +1852 10 10 3.8 3.8 3.8 1 +1852 10 11 5.6 5.6 5.6 1 +1852 10 12 3.4 3.4 3.4 1 +1852 10 13 4.6 4.6 4.6 1 +1852 10 14 3.9 3.9 3.9 1 +1852 10 15 0.5 0.5 0.5 1 +1852 10 16 3.9 3.9 3.9 1 +1852 10 17 1.8 1.8 1.8 1 +1852 10 18 -0.6 -0.6 -0.6 1 +1852 10 19 0.5 0.5 0.5 1 +1852 10 20 8.7 8.7 8.7 1 +1852 10 21 5.6 5.6 5.6 1 +1852 10 22 2.5 2.5 2.5 1 +1852 10 23 0.6 0.6 0.6 1 +1852 10 24 0.5 0.5 0.5 1 +1852 10 25 0.8 0.8 0.8 1 +1852 10 26 -0.1 -0.1 -0.1 1 +1852 10 27 -1.3 -1.3 -1.3 1 +1852 10 28 -1.2 -1.2 -1.2 1 +1852 10 29 -0.6 -0.6 -0.6 1 +1852 10 30 -3.9 -3.9 -3.9 1 +1852 10 31 -5.1 -5.1 -5.1 1 +1852 11 1 -1.6 -1.6 -1.6 1 +1852 11 2 1.0 1.0 1.0 1 +1852 11 3 3.1 3.1 3.1 1 +1852 11 4 4.2 4.2 4.2 1 +1852 11 5 -0.1 -0.1 -0.1 1 +1852 11 6 -1.2 -1.2 -1.2 1 +1852 11 7 1.0 1.0 1.0 1 +1852 11 8 9.2 9.2 9.2 1 +1852 11 9 -1.5 -1.5 -1.5 1 +1852 11 10 -3.5 -3.5 -3.5 1 +1852 11 11 -5.3 -5.3 -5.3 1 +1852 11 12 -8.5 -8.5 -8.5 1 +1852 11 13 -3.6 -3.6 -3.6 1 +1852 11 14 -8.5 -8.5 -8.5 1 +1852 11 15 -7.9 -7.9 -7.9 1 +1852 11 16 -0.6 -0.6 -0.6 1 +1852 11 17 2.9 2.9 2.9 1 +1852 11 18 2.4 2.4 2.4 1 +1852 11 19 4.1 4.1 4.1 1 +1852 11 20 -1.2 -1.2 -1.2 1 +1852 11 21 -2.8 -2.8 -2.8 1 +1852 11 22 -1.9 -1.9 -1.9 1 +1852 11 23 2.4 2.4 2.4 1 +1852 11 24 2.2 2.2 2.2 1 +1852 11 25 -2.5 -2.5 -2.5 1 +1852 11 26 -6.0 -6.0 -6.0 1 +1852 11 27 0.5 0.5 0.5 1 +1852 11 28 2.7 2.7 2.7 1 +1852 11 29 3.2 3.2 3.2 1 +1852 11 30 2.7 2.7 2.7 1 +1852 12 1 2.1 2.1 2.1 1 +1852 12 2 2.8 2.8 2.8 1 +1852 12 3 0.7 0.7 0.7 1 +1852 12 4 -2.4 -2.4 -2.4 1 +1852 12 5 -3.6 -3.6 -3.6 1 +1852 12 6 -5.6 -5.6 -5.6 1 +1852 12 7 -5.7 -5.7 -5.7 1 +1852 12 8 -5.3 -5.3 -5.3 1 +1852 12 9 -1.1 -1.1 -1.1 1 +1852 12 10 -1.1 -1.1 -1.1 1 +1852 12 11 3.1 3.1 3.1 1 +1852 12 12 5.8 5.8 5.8 1 +1852 12 13 5.0 5.0 5.0 1 +1852 12 14 2.5 2.5 2.5 1 +1852 12 15 4.6 4.6 4.6 1 +1852 12 16 4.5 4.5 4.5 1 +1852 12 17 2.7 2.7 2.7 1 +1852 12 18 -5.0 -5.0 -5.0 1 +1852 12 19 -6.6 -6.6 -6.6 1 +1852 12 20 -1.8 -1.8 -1.8 1 +1852 12 21 -1.2 -1.2 -1.2 1 +1852 12 22 -7.5 -7.5 -7.5 1 +1852 12 23 -8.2 -8.2 -8.2 1 +1852 12 24 -6.7 -6.7 -6.7 1 +1852 12 25 1.3 1.3 1.3 1 +1852 12 26 1.9 1.9 1.9 1 +1852 12 27 3.3 3.3 3.3 1 +1852 12 28 5.1 5.1 5.1 1 +1852 12 29 1.5 1.5 1.5 1 +1852 12 30 0.5 0.5 0.5 1 +1852 12 31 4.7 4.7 4.7 1 +1853 1 1 5.3 5.3 5.3 1 +1853 1 2 4.1 4.1 4.1 1 +1853 1 3 3.5 3.5 3.5 1 +1853 1 4 3.9 3.9 3.9 1 +1853 1 5 4.5 4.5 4.5 1 +1853 1 6 3.2 3.2 3.2 1 +1853 1 7 2.3 2.3 2.3 1 +1853 1 8 3.3 3.3 3.3 1 +1853 1 9 2.5 2.5 2.5 1 +1853 1 10 2.7 2.7 2.7 1 +1853 1 11 2.7 2.7 2.7 1 +1853 1 12 2.8 2.8 2.8 1 +1853 1 13 -1.0 -1.0 -1.0 1 +1853 1 14 -5.6 -5.6 -5.6 1 +1853 1 15 -6.9 -6.9 -6.9 1 +1853 1 16 -5.9 -5.9 -5.9 1 +1853 1 17 -3.3 -3.3 -3.3 1 +1853 1 18 -3.1 -3.1 -3.1 1 +1853 1 19 -4.8 -4.8 -4.8 1 +1853 1 20 -3.0 -3.0 -3.0 1 +1853 1 21 0.9 0.9 0.9 1 +1853 1 22 0.0 0.0 0.0 1 +1853 1 23 1.1 1.1 1.1 1 +1853 1 24 -0.5 -0.5 -0.5 1 +1853 1 25 0.4 0.4 0.4 1 +1853 1 26 -0.9 -0.9 -0.9 1 +1853 1 27 -4.4 -4.4 -4.4 1 +1853 1 28 -5.7 -5.7 -5.7 1 +1853 1 29 -5.4 -5.4 -5.4 1 +1853 1 30 -1.2 -1.2 -1.2 1 +1853 1 31 -0.6 -0.6 -0.6 1 +1853 2 1 -0.3 -0.3 -0.3 1 +1853 2 2 -0.8 -0.8 -0.8 1 +1853 2 3 -3.4 -3.4 -3.4 1 +1853 2 4 -2.9 -2.9 -2.9 1 +1853 2 5 -3.9 -3.9 -3.9 1 +1853 2 6 -3.8 -3.8 -3.8 1 +1853 2 7 -3.8 -3.8 -3.8 1 +1853 2 8 -3.9 -3.9 -3.9 1 +1853 2 9 -7.3 -7.3 -7.3 1 +1853 2 10 -11.2 -11.2 -11.2 1 +1853 2 11 -11.7 -11.7 -11.7 1 +1853 2 12 -11.3 -11.3 -11.3 1 +1853 2 13 -11.8 -11.8 -11.8 1 +1853 2 14 -9.1 -9.1 -9.1 1 +1853 2 15 -8.4 -8.4 -8.4 1 +1853 2 16 -9.1 -9.1 -9.1 1 +1853 2 17 -10.7 -10.7 -10.7 1 +1853 2 18 -11.8 -11.8 -11.8 1 +1853 2 19 -5.0 -5.0 -5.0 1 +1853 2 20 -7.8 -7.8 -7.8 1 +1853 2 21 -9.6 -9.6 -9.6 1 +1853 2 22 -7.9 -7.9 -7.9 1 +1853 2 23 -4.7 -4.7 -4.7 1 +1853 2 24 -6.3 -6.3 -6.3 1 +1853 2 25 -4.2 -4.2 -4.2 1 +1853 2 26 -8.9 -8.9 -8.9 1 +1853 2 27 -10.6 -10.6 -10.6 1 +1853 2 28 -10.2 -10.2 -10.2 1 +1853 3 1 -11.1 -11.1 -11.1 1 +1853 3 2 -12.8 -12.8 -12.8 1 +1853 3 3 -2.5 -2.5 -2.5 1 +1853 3 4 -3.2 -3.2 -3.2 1 +1853 3 5 -7.1 -7.1 -7.1 1 +1853 3 6 -9.4 -9.4 -9.4 1 +1853 3 7 -3.6 -3.6 -3.6 1 +1853 3 8 -2.6 -2.6 -2.6 1 +1853 3 9 -5.8 -5.8 -5.8 1 +1853 3 10 1.4 1.4 1.4 1 +1853 3 11 1.7 1.7 1.7 1 +1853 3 12 -1.4 -1.4 -1.4 1 +1853 3 13 -5.9 -5.9 -5.9 1 +1853 3 14 -16.9 -16.9 -16.9 1 +1853 3 15 -18.1 -18.1 -18.1 1 +1853 3 16 -18.5 -18.5 -18.5 1 +1853 3 17 -17.0 -17.0 -17.0 1 +1853 3 18 -12.7 -12.7 -12.7 1 +1853 3 19 -8.2 -8.2 -8.2 1 +1853 3 20 -5.3 -5.3 -5.3 1 +1853 3 21 -4.2 -4.2 -4.2 1 +1853 3 22 -7.2 -7.2 -7.2 1 +1853 3 23 -10.9 -10.9 -10.9 1 +1853 3 24 -13.2 -13.2 -13.2 1 +1853 3 25 -15.2 -15.2 -15.2 1 +1853 3 26 -10.1 -10.1 -10.1 1 +1853 3 27 -6.6 -6.6 -6.6 1 +1853 3 28 -1.4 -1.4 -1.4 1 +1853 3 29 0.6 0.6 0.6 1 +1853 3 30 1.9 1.9 1.9 1 +1853 3 31 -3.4 -3.4 -3.4 1 +1853 4 1 -0.5 -0.5 -0.5 1 +1853 4 2 -3.0 -3.0 -3.0 1 +1853 4 3 -3.3 -3.3 -3.3 1 +1853 4 4 -4.2 -4.2 -4.2 1 +1853 4 5 -1.6 -1.6 -1.6 1 +1853 4 6 1.1 1.1 1.1 1 +1853 4 7 3.4 3.4 3.4 1 +1853 4 8 4.0 4.0 4.0 1 +1853 4 9 0.2 0.2 0.2 1 +1853 4 10 -2.4 -2.4 -2.4 1 +1853 4 11 -4.6 -4.6 -4.6 1 +1853 4 12 -4.9 -4.9 -4.9 1 +1853 4 13 -5.9 -5.9 -5.9 1 +1853 4 14 -4.4 -4.4 -4.4 1 +1853 4 15 -2.1 -2.1 -2.1 1 +1853 4 16 -0.6 -0.6 -0.6 1 +1853 4 17 0.7 0.7 0.7 1 +1853 4 18 -0.1 -0.1 -0.1 1 +1853 4 19 -0.5 -0.5 -0.5 1 +1853 4 20 0.7 0.7 0.7 1 +1853 4 21 1.4 1.4 1.4 1 +1853 4 22 3.0 3.0 3.0 1 +1853 4 23 2.7 2.7 2.7 1 +1853 4 24 2.0 2.0 2.0 1 +1853 4 25 2.6 2.6 2.6 1 +1853 4 26 1.1 1.1 1.1 1 +1853 4 27 5.1 5.1 5.1 1 +1853 4 28 6.8 6.8 6.8 1 +1853 4 29 4.9 4.9 4.9 1 +1853 4 30 4.8 4.8 4.8 1 +1853 5 1 7.9 7.9 7.9 1 +1853 5 2 7.2 7.2 7.2 1 +1853 5 3 5.5 5.5 5.5 1 +1853 5 4 6.4 6.4 6.4 1 +1853 5 5 6.2 6.2 6.1 1 +1853 5 6 5.2 5.2 5.1 1 +1853 5 7 2.3 2.3 2.2 1 +1853 5 8 3.4 3.4 3.3 1 +1853 5 9 3.5 3.5 3.4 1 +1853 5 10 7.1 7.1 6.9 1 +1853 5 11 6.7 6.7 6.5 1 +1853 5 12 6.0 6.0 5.8 1 +1853 5 13 6.7 6.7 6.5 1 +1853 5 14 6.4 6.4 6.1 1 +1853 5 15 7.6 7.6 7.3 1 +1853 5 16 8.8 8.8 8.5 1 +1853 5 17 7.2 7.2 6.9 1 +1853 5 18 9.8 9.8 9.5 1 +1853 5 19 7.6 7.6 7.2 1 +1853 5 20 9.7 9.7 9.3 1 +1853 5 21 11.0 11.0 10.6 1 +1853 5 22 12.0 12.0 11.6 1 +1853 5 23 12.3 12.3 11.8 1 +1853 5 24 16.2 16.2 15.7 1 +1853 5 25 18.6 18.6 18.1 1 +1853 5 26 16.4 16.4 15.9 1 +1853 5 27 16.3 16.3 15.8 1 +1853 5 28 19.9 19.9 19.3 1 +1853 5 29 19.6 19.6 19.0 1 +1853 5 30 19.6 19.6 19.0 1 +1853 5 31 17.9 17.9 17.3 1 +1853 6 1 13.5 13.5 12.8 1 +1853 6 2 15.4 15.4 14.7 1 +1853 6 3 16.5 16.5 15.8 1 +1853 6 4 17.8 17.8 17.1 1 +1853 6 5 15.2 15.2 14.5 1 +1853 6 6 14.3 14.3 13.6 1 +1853 6 7 11.4 11.4 10.7 1 +1853 6 8 13.8 13.8 13.1 1 +1853 6 9 17.6 17.6 16.9 1 +1853 6 10 17.8 17.8 17.1 1 +1853 6 11 13.4 13.4 12.7 1 +1853 6 12 16.0 16.0 15.3 1 +1853 6 13 18.2 18.2 17.5 1 +1853 6 14 16.6 16.6 15.9 1 +1853 6 15 16.3 16.3 15.6 1 +1853 6 16 17.6 17.6 16.9 1 +1853 6 17 17.0 17.0 16.3 1 +1853 6 18 19.2 19.2 18.5 1 +1853 6 19 21.8 21.8 21.1 1 +1853 6 20 18.3 18.3 17.6 1 +1853 6 21 19.4 19.4 18.7 1 +1853 6 22 20.9 20.9 20.2 1 +1853 6 23 20.2 20.2 19.5 1 +1853 6 24 17.8 17.8 17.1 1 +1853 6 25 18.9 18.9 18.2 1 +1853 6 26 16.4 16.4 15.7 1 +1853 6 27 12.9 12.9 12.2 1 +1853 6 28 17.9 17.9 17.2 1 +1853 6 29 17.7 17.7 17.0 1 +1853 6 30 17.9 17.9 17.2 1 +1853 7 1 18.6 18.6 17.9 1 +1853 7 2 16.9 16.9 16.2 1 +1853 7 3 17.3 17.3 16.6 1 +1853 7 4 18.9 18.9 18.2 1 +1853 7 5 20.2 20.2 19.5 1 +1853 7 6 18.4 18.4 17.7 1 +1853 7 7 19.8 19.8 19.1 1 +1853 7 8 17.9 17.9 17.2 1 +1853 7 9 15.1 15.1 14.4 1 +1853 7 10 16.2 16.2 15.5 1 +1853 7 11 17.8 17.8 17.1 1 +1853 7 12 20.7 20.7 20.0 1 +1853 7 13 19.8 19.8 19.1 1 +1853 7 14 18.4 18.4 17.7 1 +1853 7 15 19.1 19.1 18.4 1 +1853 7 16 18.5 18.5 17.8 1 +1853 7 17 20.3 20.3 19.6 1 +1853 7 18 18.0 18.0 17.3 1 +1853 7 19 18.9 18.9 18.2 1 +1853 7 20 17.8 17.8 17.1 1 +1853 7 21 18.0 18.0 17.3 1 +1853 7 22 19.7 19.7 19.0 1 +1853 7 23 21.7 21.7 21.0 1 +1853 7 24 22.4 22.4 21.7 1 +1853 7 25 22.2 22.2 21.5 1 +1853 7 26 21.2 21.2 20.5 1 +1853 7 27 18.3 18.3 17.6 1 +1853 7 28 19.4 19.4 18.7 1 +1853 7 29 19.6 19.6 18.9 1 +1853 7 30 17.8 17.8 17.1 1 +1853 7 31 16.2 16.2 15.5 1 +1853 8 1 15.0 15.0 14.4 1 +1853 8 2 15.1 15.1 14.5 1 +1853 8 3 14.8 14.8 14.2 1 +1853 8 4 16.1 16.1 15.5 1 +1853 8 5 14.8 14.8 14.3 1 +1853 8 6 13.7 13.7 13.2 1 +1853 8 7 15.8 15.8 15.3 1 +1853 8 8 16.0 16.0 15.5 1 +1853 8 9 16.2 16.2 15.7 1 +1853 8 10 17.5 17.5 17.1 1 +1853 8 11 16.3 16.3 15.9 1 +1853 8 12 18.4 18.4 18.0 1 +1853 8 13 13.9 13.9 13.5 1 +1853 8 14 15.6 15.6 15.3 1 +1853 8 15 12.8 12.8 12.5 1 +1853 8 16 12.8 12.8 12.5 1 +1853 8 17 14.6 14.6 14.3 1 +1853 8 18 15.6 15.6 15.3 1 +1853 8 19 13.3 13.3 13.1 1 +1853 8 20 14.5 14.5 14.3 1 +1853 8 21 16.1 16.1 15.9 1 +1853 8 22 17.2 17.2 17.0 1 +1853 8 23 17.0 17.0 16.9 1 +1853 8 24 14.5 14.5 14.4 1 +1853 8 25 15.5 15.5 15.4 1 +1853 8 26 16.2 16.2 16.1 1 +1853 8 27 15.1 15.1 15.0 1 +1853 8 28 15.3 15.3 15.3 1 +1853 8 29 16.4 16.4 16.4 1 +1853 8 30 15.4 15.4 15.4 1 +1853 8 31 12.8 12.8 12.8 1 +1853 9 1 13.0 13.0 13.0 1 +1853 9 2 14.1 14.1 14.1 1 +1853 9 3 13.4 13.4 13.4 1 +1853 9 4 11.0 11.0 11.0 1 +1853 9 5 12.3 12.3 12.3 1 +1853 9 6 13.9 13.9 13.9 1 +1853 9 7 13.1 13.1 13.1 1 +1853 9 8 12.5 12.5 12.5 1 +1853 9 9 13.0 13.0 13.0 1 +1853 9 10 14.3 14.3 14.3 1 +1853 9 11 13.0 13.0 13.0 1 +1853 9 12 14.2 14.2 14.2 1 +1853 9 13 15.0 15.0 15.0 1 +1853 9 14 13.2 13.2 13.2 1 +1853 9 15 13.4 13.4 13.4 1 +1853 9 16 11.7 11.7 11.7 1 +1853 9 17 12.2 12.2 12.2 1 +1853 9 18 13.3 13.3 13.3 1 +1853 9 19 11.5 11.5 11.5 1 +1853 9 20 14.7 14.7 14.7 1 +1853 9 21 12.9 12.9 12.9 1 +1853 9 22 13.5 13.5 13.5 1 +1853 9 23 14.8 14.8 14.8 1 +1853 9 24 12.6 12.6 12.6 1 +1853 9 25 10.5 10.5 10.5 1 +1853 9 26 10.7 10.7 10.7 1 +1853 9 27 10.0 10.0 10.0 1 +1853 9 28 8.7 8.7 8.7 1 +1853 9 29 11.0 11.0 11.0 1 +1853 9 30 6.6 6.6 6.6 1 +1853 10 1 6.7 6.7 6.7 1 +1853 10 2 5.0 5.0 5.0 1 +1853 10 3 4.6 4.6 4.6 1 +1853 10 4 5.2 5.2 5.2 1 +1853 10 5 8.6 8.6 8.6 1 +1853 10 6 8.1 8.1 8.1 1 +1853 10 7 8.0 8.0 8.0 1 +1853 10 8 7.7 7.7 7.7 1 +1853 10 9 7.7 7.7 7.7 1 +1853 10 10 7.0 7.0 7.0 1 +1853 10 11 7.0 7.0 7.0 1 +1853 10 12 4.4 4.4 4.4 1 +1853 10 13 3.2 3.2 3.2 1 +1853 10 14 1.5 1.5 1.5 1 +1853 10 15 5.8 5.8 5.8 1 +1853 10 16 8.9 8.9 8.9 1 +1853 10 17 7.8 7.8 7.8 1 +1853 10 18 8.0 8.0 8.0 1 +1853 10 19 6.1 6.1 6.1 1 +1853 10 20 3.2 3.2 3.2 1 +1853 10 21 4.1 4.1 4.1 1 +1853 10 22 7.5 7.5 7.5 1 +1853 10 23 11.0 11.0 11.0 1 +1853 10 24 11.4 11.4 11.4 1 +1853 10 25 10.4 10.4 10.4 1 +1853 10 26 8.9 8.9 8.9 1 +1853 10 27 9.1 9.1 9.1 1 +1853 10 28 7.7 7.7 7.7 1 +1853 10 29 8.8 8.8 8.8 1 +1853 10 30 9.4 9.4 9.4 1 +1853 10 31 3.6 3.6 3.6 1 +1853 11 1 5.2 5.2 5.2 1 +1853 11 2 7.6 7.6 7.6 1 +1853 11 3 7.0 7.0 7.0 1 +1853 11 4 3.0 3.0 3.0 1 +1853 11 5 1.1 1.1 1.1 1 +1853 11 6 1.5 1.5 1.5 1 +1853 11 7 4.5 4.5 4.5 1 +1853 11 8 3.8 3.8 3.8 1 +1853 11 9 3.9 3.9 3.9 1 +1853 11 10 1.9 1.9 1.9 1 +1853 11 11 2.9 2.9 2.9 1 +1853 11 12 4.0 4.0 4.0 1 +1853 11 13 3.2 3.2 3.2 1 +1853 11 14 3.8 3.8 3.8 1 +1853 11 15 3.6 3.6 3.6 1 +1853 11 16 4.1 4.1 4.1 1 +1853 11 17 3.6 3.6 3.6 1 +1853 11 18 3.8 3.8 3.8 1 +1853 11 19 1.5 1.5 1.5 1 +1853 11 20 3.2 3.2 3.2 1 +1853 11 21 1.8 1.8 1.8 1 +1853 11 22 1.8 1.8 1.8 1 +1853 11 23 -1.0 -1.0 -1.0 1 +1853 11 24 0.7 0.7 0.7 1 +1853 11 25 1.8 1.8 1.8 1 +1853 11 26 1.2 1.2 1.2 1 +1853 11 27 0.1 0.1 0.1 1 +1853 11 28 -0.8 -0.8 -0.8 1 +1853 11 29 -0.5 -0.5 -0.5 1 +1853 11 30 2.1 2.1 2.1 1 +1853 12 1 2.4 2.4 2.4 1 +1853 12 2 2.4 2.4 2.4 1 +1853 12 3 1.7 1.7 1.7 1 +1853 12 4 0.5 0.5 0.5 1 +1853 12 5 3.0 3.0 3.0 1 +1853 12 6 2.0 2.0 2.0 1 +1853 12 7 -3.0 -3.0 -3.0 1 +1853 12 8 -3.9 -3.9 -3.9 1 +1853 12 9 -0.9 -0.9 -0.9 1 +1853 12 10 -1.1 -1.1 -1.1 1 +1853 12 11 -1.5 -1.5 -1.5 1 +1853 12 12 -4.2 -4.2 -4.2 1 +1853 12 13 -0.9 -0.9 -0.9 1 +1853 12 14 0.5 0.5 0.5 1 +1853 12 15 0.0 0.0 0.0 1 +1853 12 16 0.2 0.2 0.2 1 +1853 12 17 0.0 0.0 0.0 1 +1853 12 18 -1.5 -1.5 -1.5 1 +1853 12 19 -0.7 -0.7 -0.7 1 +1853 12 20 -2.0 -2.0 -2.0 1 +1853 12 21 -4.0 -4.0 -4.0 1 +1853 12 22 -2.9 -2.9 -2.9 1 +1853 12 23 -3.5 -3.5 -3.5 1 +1853 12 24 -4.9 -4.9 -4.9 1 +1853 12 25 -2.5 -2.5 -2.5 1 +1853 12 26 -2.2 -2.2 -2.2 1 +1853 12 27 -8.5 -8.5 -8.5 1 +1853 12 28 -6.7 -6.7 -6.7 1 +1853 12 29 -8.9 -8.9 -8.9 1 +1853 12 30 -4.1 -4.1 -4.1 1 +1853 12 31 -4.4 -4.4 -4.4 1 +1854 1 1 -7.7 -7.7 -7.7 1 +1854 1 2 -7.6 -7.6 -7.6 1 +1854 1 3 -5.2 -5.2 -5.2 1 +1854 1 4 -6.8 -6.8 -6.8 1 +1854 1 5 -5.9 -5.9 -5.9 1 +1854 1 6 -5.8 -5.8 -5.8 1 +1854 1 7 -10.0 -10.0 -10.0 1 +1854 1 8 -19.1 -19.1 -19.1 1 +1854 1 9 -11.8 -11.8 -11.8 1 +1854 1 10 -8.4 -8.4 -8.4 1 +1854 1 11 -9.6 -9.6 -9.6 1 +1854 1 12 -8.6 -8.6 -8.6 1 +1854 1 13 -5.7 -5.7 -5.7 1 +1854 1 14 -7.7 -7.7 -7.7 1 +1854 1 15 -5.7 -5.7 -5.7 1 +1854 1 16 -7.8 -7.8 -7.8 1 +1854 1 17 -4.9 -4.9 -4.9 1 +1854 1 18 0.3 0.3 0.3 1 +1854 1 19 0.9 0.9 0.9 1 +1854 1 20 1.1 1.1 1.1 1 +1854 1 21 -0.7 -0.7 -0.7 1 +1854 1 22 0.1 0.1 0.1 1 +1854 1 23 0.2 0.2 0.2 1 +1854 1 24 -0.7 -0.7 -0.7 1 +1854 1 25 -0.8 -0.8 -0.8 1 +1854 1 26 1.5 1.5 1.5 1 +1854 1 27 -1.0 -1.0 -1.0 1 +1854 1 28 1.7 1.7 1.7 1 +1854 1 29 0.2 0.2 0.2 1 +1854 1 30 0.2 0.2 0.2 1 +1854 1 31 0.0 0.0 0.0 1 +1854 2 1 -3.2 -3.2 -3.2 1 +1854 2 2 -1.2 -1.2 -1.2 1 +1854 2 3 -1.3 -1.3 -1.3 1 +1854 2 4 -0.6 -0.6 -0.6 1 +1854 2 5 -0.2 -0.2 -0.2 1 +1854 2 6 0.6 0.6 0.6 1 +1854 2 7 -2.7 -2.7 -2.7 1 +1854 2 8 -6.1 -6.1 -6.1 1 +1854 2 9 -7.6 -7.6 -7.6 1 +1854 2 10 -10.2 -10.2 -10.2 1 +1854 2 11 -9.2 -9.2 -9.2 1 +1854 2 12 -11.5 -11.5 -11.5 1 +1854 2 13 -9.3 -9.3 -9.3 1 +1854 2 14 -0.1 -0.1 -0.1 1 +1854 2 15 -1.2 -1.2 -1.2 1 +1854 2 16 -8.5 -8.5 -8.5 1 +1854 2 17 -2.6 -2.6 -2.6 1 +1854 2 18 -0.1 -0.1 -0.1 1 +1854 2 19 -6.5 -6.5 -6.5 1 +1854 2 20 -4.7 -4.7 -4.7 1 +1854 2 21 -1.4 -1.4 -1.4 1 +1854 2 22 -1.7 -1.7 -1.7 1 +1854 2 23 -1.0 -1.0 -1.0 1 +1854 2 24 -1.9 -1.9 -1.9 1 +1854 2 25 0.0 0.0 0.0 1 +1854 2 26 -1.1 -1.1 -1.1 1 +1854 2 27 -4.6 -4.6 -4.6 1 +1854 2 28 0.5 0.5 0.5 1 +1854 3 1 1.8 1.8 1.8 1 +1854 3 2 3.8 3.8 3.8 1 +1854 3 3 2.6 2.6 2.6 1 +1854 3 4 3.3 3.3 3.3 1 +1854 3 5 0.7 0.7 0.7 1 +1854 3 6 -5.2 -5.2 -5.2 1 +1854 3 7 -4.1 -4.1 -4.1 1 +1854 3 8 1.2 1.2 1.2 1 +1854 3 9 3.0 3.0 3.0 1 +1854 3 10 4.6 4.6 4.6 1 +1854 3 11 4.9 4.9 4.9 1 +1854 3 12 2.3 2.3 2.3 1 +1854 3 13 4.1 4.1 4.1 1 +1854 3 14 0.7 0.7 0.7 1 +1854 3 15 0.9 0.9 0.9 1 +1854 3 16 -0.2 -0.2 -0.2 1 +1854 3 17 -1.1 -1.1 -1.1 1 +1854 3 18 -1.3 -1.3 -1.3 1 +1854 3 19 -2.2 -2.2 -2.2 1 +1854 3 20 -0.6 -0.6 -0.6 1 +1854 3 21 -0.3 -0.3 -0.3 1 +1854 3 22 5.2 5.2 5.2 1 +1854 3 23 0.5 0.5 0.5 1 +1854 3 24 -1.9 -1.9 -1.9 1 +1854 3 25 0.1 0.1 0.1 1 +1854 3 26 -1.3 -1.3 -1.3 1 +1854 3 27 0.4 0.4 0.4 1 +1854 3 28 3.4 3.4 3.4 1 +1854 3 29 2.1 2.1 2.1 1 +1854 3 30 3.4 3.4 3.4 1 +1854 3 31 3.5 3.5 3.5 1 +1854 4 1 8.0 8.0 8.0 1 +1854 4 2 8.7 8.7 8.7 1 +1854 4 3 2.0 2.0 2.0 1 +1854 4 4 3.1 3.1 3.1 1 +1854 4 5 6.7 6.7 6.7 1 +1854 4 6 5.9 5.9 5.9 1 +1854 4 7 2.0 2.0 2.0 1 +1854 4 8 4.0 4.0 4.0 1 +1854 4 9 6.9 6.9 6.9 1 +1854 4 10 1.7 1.7 1.7 1 +1854 4 11 1.4 1.4 1.4 1 +1854 4 12 1.0 1.0 1.0 1 +1854 4 13 5.3 5.3 5.3 1 +1854 4 14 7.8 7.8 7.8 1 +1854 4 15 8.8 8.8 8.8 1 +1854 4 16 2.3 2.3 2.3 1 +1854 4 17 4.4 4.4 4.4 1 +1854 4 18 9.6 9.6 9.6 1 +1854 4 19 11.4 11.4 11.4 1 +1854 4 20 10.0 10.0 10.0 1 +1854 4 21 10.4 10.4 10.4 1 +1854 4 22 4.5 4.5 4.5 1 +1854 4 23 -0.6 -0.6 -0.6 1 +1854 4 24 -0.6 -0.6 -0.6 1 +1854 4 25 4.3 4.3 4.3 1 +1854 4 26 1.7 1.7 1.7 1 +1854 4 27 3.8 3.8 3.8 1 +1854 4 28 3.0 3.0 3.0 1 +1854 4 29 1.2 1.2 1.2 1 +1854 4 30 3.0 3.0 3.0 1 +1854 5 1 4.0 4.0 4.0 1 +1854 5 2 8.8 8.8 8.8 1 +1854 5 3 9.5 9.5 9.5 1 +1854 5 4 7.6 7.6 7.6 1 +1854 5 5 9.2 9.2 9.1 1 +1854 5 6 7.0 7.0 6.9 1 +1854 5 7 7.8 7.8 7.7 1 +1854 5 8 7.8 7.8 7.7 1 +1854 5 9 11.6 11.6 11.5 1 +1854 5 10 12.4 12.4 12.2 1 +1854 5 11 14.2 14.2 14.0 1 +1854 5 12 14.4 14.4 14.2 1 +1854 5 13 13.4 13.4 13.2 1 +1854 5 14 14.7 14.7 14.4 1 +1854 5 15 12.1 12.1 11.8 1 +1854 5 16 9.4 9.4 9.1 1 +1854 5 17 9.5 9.5 9.2 1 +1854 5 18 10.6 10.6 10.3 1 +1854 5 19 11.0 11.0 10.6 1 +1854 5 20 11.1 11.1 10.7 1 +1854 5 21 12.2 12.2 11.8 1 +1854 5 22 13.0 13.0 12.6 1 +1854 5 23 13.9 13.9 13.4 1 +1854 5 24 11.5 11.5 11.0 1 +1854 5 25 12.1 12.1 11.6 1 +1854 5 26 12.3 12.3 11.8 1 +1854 5 27 14.3 14.3 13.8 1 +1854 5 28 11.1 11.1 10.5 1 +1854 5 29 12.9 12.9 12.3 1 +1854 5 30 12.4 12.4 11.8 1 +1854 5 31 13.7 13.7 13.1 1 +1854 6 1 15.3 15.3 14.6 1 +1854 6 2 10.6 10.6 9.9 1 +1854 6 3 4.5 4.5 3.8 1 +1854 6 4 9.6 9.6 8.9 1 +1854 6 5 8.8 8.8 8.1 1 +1854 6 6 8.2 8.2 7.5 1 +1854 6 7 8.2 8.2 7.5 1 +1854 6 8 11.4 11.4 10.7 1 +1854 6 9 12.6 12.6 11.9 1 +1854 6 10 10.4 10.4 9.7 1 +1854 6 11 12.1 12.1 11.4 1 +1854 6 12 10.4 10.4 9.7 1 +1854 6 13 15.7 15.7 15.0 1 +1854 6 14 15.4 15.4 14.7 1 +1854 6 15 15.6 15.6 14.9 1 +1854 6 16 14.8 14.8 14.1 1 +1854 6 17 17.1 17.1 16.4 1 +1854 6 18 20.4 20.4 19.7 1 +1854 6 19 21.6 21.6 20.9 1 +1854 6 20 21.2 21.2 20.5 1 +1854 6 21 21.3 21.3 20.6 1 +1854 6 22 17.4 17.4 16.7 1 +1854 6 23 19.6 19.6 18.9 1 +1854 6 24 18.9 18.9 18.2 1 +1854 6 25 17.9 17.9 17.2 1 +1854 6 26 19.2 19.2 18.5 1 +1854 6 27 21.8 21.8 21.1 1 +1854 6 28 18.8 18.8 18.1 1 +1854 6 29 17.9 17.9 17.2 1 +1854 6 30 16.6 16.6 15.9 1 +1854 7 1 18.6 18.6 17.9 1 +1854 7 2 21.1 21.1 20.4 1 +1854 7 3 17.8 17.8 17.1 1 +1854 7 4 19.3 19.3 18.6 1 +1854 7 5 19.3 19.3 18.6 1 +1854 7 6 20.7 20.7 20.0 1 +1854 7 7 21.9 21.9 21.2 1 +1854 7 8 24.7 24.7 24.0 1 +1854 7 9 23.2 23.2 22.5 1 +1854 7 10 20.0 20.0 19.3 1 +1854 7 11 14.2 14.2 13.5 1 +1854 7 12 17.7 17.7 17.0 1 +1854 7 13 17.3 17.3 16.6 1 +1854 7 14 19.6 19.6 18.9 1 +1854 7 15 20.3 20.3 19.6 1 +1854 7 16 21.5 21.5 20.8 1 +1854 7 17 22.7 22.7 22.0 1 +1854 7 18 18.9 18.9 18.2 1 +1854 7 19 22.5 22.5 21.8 1 +1854 7 20 22.7 22.7 22.0 1 +1854 7 21 20.4 20.4 19.7 1 +1854 7 22 23.1 23.1 22.4 1 +1854 7 23 23.3 23.3 22.6 1 +1854 7 24 22.2 22.2 21.5 1 +1854 7 25 19.7 19.7 19.0 1 +1854 7 26 18.0 18.0 17.3 1 +1854 7 27 14.3 14.3 13.6 1 +1854 7 28 11.8 11.8 11.1 1 +1854 7 29 14.9 14.9 14.2 1 +1854 7 30 18.3 18.3 17.6 1 +1854 7 31 19.5 19.5 18.8 1 +1854 8 1 19.5 19.5 18.9 1 +1854 8 2 19.2 19.2 18.6 1 +1854 8 3 18.7 18.7 18.1 1 +1854 8 4 19.2 19.2 18.6 1 +1854 8 5 20.1 20.1 19.6 1 +1854 8 6 20.0 20.0 19.5 1 +1854 8 7 17.3 17.3 16.8 1 +1854 8 8 17.4 17.4 16.9 1 +1854 8 9 20.1 20.1 19.6 1 +1854 8 10 18.8 18.8 18.4 1 +1854 8 11 20.5 20.5 20.1 1 +1854 8 12 19.7 19.7 19.3 1 +1854 8 13 19.0 19.0 18.6 1 +1854 8 14 21.2 21.2 20.9 1 +1854 8 15 22.2 22.2 21.9 1 +1854 8 16 21.9 21.9 21.6 1 +1854 8 17 20.8 20.8 20.5 1 +1854 8 18 18.9 18.9 18.6 1 +1854 8 19 19.2 19.2 19.0 1 +1854 8 20 19.2 19.2 19.0 1 +1854 8 21 19.6 19.6 19.4 1 +1854 8 22 19.7 19.7 19.5 1 +1854 8 23 18.8 18.8 18.7 1 +1854 8 24 15.6 15.6 15.5 1 +1854 8 25 16.2 16.2 16.1 1 +1854 8 26 13.7 13.7 13.6 1 +1854 8 27 15.9 15.9 15.8 1 +1854 8 28 17.4 17.4 17.4 1 +1854 8 29 16.4 16.4 16.4 1 +1854 8 30 15.5 15.5 15.5 1 +1854 8 31 16.1 16.1 16.1 1 +1854 9 1 13.4 13.4 13.4 1 +1854 9 2 14.0 14.0 14.0 1 +1854 9 3 14.4 14.4 14.4 1 +1854 9 4 18.0 18.0 18.0 1 +1854 9 5 12.9 12.9 12.9 1 +1854 9 6 9.8 9.8 9.8 1 +1854 9 7 8.5 8.5 8.5 1 +1854 9 8 8.5 8.5 8.5 1 +1854 9 9 7.6 7.6 7.6 1 +1854 9 10 7.5 7.5 7.5 1 +1854 9 11 10.4 10.4 10.4 1 +1854 9 12 15.6 15.6 15.6 1 +1854 9 13 16.3 16.3 16.3 1 +1854 9 14 16.8 16.8 16.8 1 +1854 9 15 15.7 15.7 15.7 1 +1854 9 16 13.7 13.7 13.7 1 +1854 9 17 14.4 14.4 14.4 1 +1854 9 18 14.3 14.3 14.3 1 +1854 9 19 11.3 11.3 11.3 1 +1854 9 20 9.8 9.8 9.8 1 +1854 9 21 8.9 8.9 8.9 1 +1854 9 22 8.6 8.6 8.6 1 +1854 9 23 5.7 5.7 5.7 1 +1854 9 24 9.3 9.3 9.3 1 +1854 9 25 6.3 6.3 6.3 1 +1854 9 26 7.7 7.7 7.7 1 +1854 9 27 12.2 12.2 12.2 1 +1854 9 28 12.6 12.6 12.6 1 +1854 9 29 14.0 14.0 14.0 1 +1854 9 30 11.0 11.0 11.0 1 +1854 10 1 8.1 8.1 8.1 1 +1854 10 2 12.8 12.8 12.8 1 +1854 10 3 8.2 8.2 8.2 1 +1854 10 4 5.0 5.0 5.0 1 +1854 10 5 5.8 5.8 5.8 1 +1854 10 6 7.1 7.1 7.1 1 +1854 10 7 3.8 3.8 3.8 1 +1854 10 8 3.8 3.8 3.8 1 +1854 10 9 7.1 7.1 7.1 1 +1854 10 10 7.3 7.3 7.3 1 +1854 10 11 9.1 9.1 9.1 1 +1854 10 12 11.1 11.1 11.1 1 +1854 10 13 8.3 8.3 8.3 1 +1854 10 14 7.4 7.4 7.4 1 +1854 10 15 5.6 5.6 5.6 1 +1854 10 16 6.6 6.6 6.6 1 +1854 10 17 8.6 8.6 8.6 1 +1854 10 18 7.8 7.8 7.8 1 +1854 10 19 9.9 9.9 9.9 1 +1854 10 20 7.8 7.8 7.8 1 +1854 10 21 9.0 9.0 9.0 1 +1854 10 22 8.1 8.1 8.1 1 +1854 10 23 7.9 7.9 7.9 1 +1854 10 24 5.6 5.6 5.6 1 +1854 10 25 5.4 5.4 5.4 1 +1854 10 26 6.7 6.7 6.7 1 +1854 10 27 5.1 5.1 5.1 1 +1854 10 28 1.1 1.1 1.1 1 +1854 10 29 5.5 5.5 5.5 1 +1854 10 30 5.7 5.7 5.7 1 +1854 10 31 5.3 5.3 5.3 1 +1854 11 1 6.6 6.6 6.6 1 +1854 11 2 8.5 8.5 8.5 1 +1854 11 3 6.7 6.7 6.7 1 +1854 11 4 4.8 4.8 4.8 1 +1854 11 5 -0.2 -0.2 -0.2 1 +1854 11 6 -1.9 -1.9 -1.9 1 +1854 11 7 3.4 3.4 3.4 1 +1854 11 8 6.0 6.0 6.0 1 +1854 11 9 -0.7 -0.7 -0.7 1 +1854 11 10 -4.4 -4.4 -4.4 1 +1854 11 11 -5.8 -5.8 -5.8 1 +1854 11 12 -4.8 -4.8 -4.8 1 +1854 11 13 -1.3 -1.3 -1.3 1 +1854 11 14 0.9 0.9 0.9 1 +1854 11 15 0.9 0.9 0.9 1 +1854 11 16 -0.3 -0.3 -0.3 1 +1854 11 17 -1.4 -1.4 -1.4 1 +1854 11 18 -0.3 -0.3 -0.3 1 +1854 11 19 -2.8 -2.8 -2.8 1 +1854 11 20 -4.1 -4.1 -4.1 1 +1854 11 21 -4.2 -4.2 -4.2 1 +1854 11 22 -3.3 -3.3 -3.3 1 +1854 11 23 -3.6 -3.6 -3.6 1 +1854 11 24 -5.7 -5.7 -5.7 1 +1854 11 25 -4.7 -4.7 -4.7 1 +1854 11 26 -6.2 -6.2 -6.2 1 +1854 11 27 -0.2 -0.2 -0.2 1 +1854 11 28 0.0 0.0 0.0 1 +1854 11 29 1.4 1.4 1.4 1 +1854 11 30 1.3 1.3 1.3 1 +1854 12 1 -0.8 -0.8 -0.8 1 +1854 12 2 -3.8 -3.8 -3.8 1 +1854 12 3 -3.7 -3.7 -3.7 1 +1854 12 4 -8.1 -8.1 -8.1 1 +1854 12 5 -0.2 -0.2 -0.2 1 +1854 12 6 2.8 2.8 2.8 1 +1854 12 7 -1.3 -1.3 -1.3 1 +1854 12 8 -2.4 -2.4 -2.4 1 +1854 12 9 2.5 2.5 2.5 1 +1854 12 10 -1.9 -1.9 -1.9 1 +1854 12 11 -3.5 -3.5 -3.5 1 +1854 12 12 0.7 0.7 0.7 1 +1854 12 13 0.4 0.4 0.4 1 +1854 12 14 0.2 0.2 0.2 1 +1854 12 15 -0.5 -0.5 -0.5 1 +1854 12 16 -4.2 -4.2 -4.2 1 +1854 12 17 -6.3 -6.3 -6.3 1 +1854 12 18 0.4 0.4 0.4 1 +1854 12 19 0.5 0.5 0.5 1 +1854 12 20 1.5 1.5 1.5 1 +1854 12 21 -1.4 -1.4 -1.4 1 +1854 12 22 0.1 0.1 0.1 1 +1854 12 23 -7.4 -7.4 -7.4 1 +1854 12 24 -7.5 -7.5 -7.5 1 +1854 12 25 -4.7 -4.7 -4.7 1 +1854 12 26 -0.3 -0.3 -0.3 1 +1854 12 27 -6.6 -6.6 -6.6 1 +1854 12 28 -5.2 -5.2 -5.2 1 +1854 12 29 -5.1 -5.1 -5.1 1 +1854 12 30 -4.7 -4.7 -4.7 1 +1854 12 31 -1.3 -1.3 -1.3 1 +1855 1 1 -2.6 -2.6 -2.6 1 +1855 1 2 -2.4 -2.4 -2.4 1 +1855 1 3 -10.9 -10.9 -10.9 1 +1855 1 4 -7.5 -7.5 -7.5 1 +1855 1 5 2.6 2.6 2.6 1 +1855 1 6 1.6 1.6 1.6 1 +1855 1 7 -0.2 -0.2 -0.2 1 +1855 1 8 2.4 2.4 2.4 1 +1855 1 9 2.3 2.3 2.3 1 +1855 1 10 -4.3 -4.3 -4.3 1 +1855 1 11 -1.8 -1.8 -1.8 1 +1855 1 12 -2.6 -2.6 -2.6 1 +1855 1 13 -6.1 -6.1 -6.1 1 +1855 1 14 -7.8 -7.8 -7.8 1 +1855 1 15 -8.0 -8.0 -8.0 1 +1855 1 16 -7.7 -7.7 -7.7 1 +1855 1 17 -9.6 -9.6 -9.6 1 +1855 1 18 -9.9 -9.9 -9.9 1 +1855 1 19 -2.5 -2.5 -2.5 1 +1855 1 20 -5.8 -5.8 -5.8 1 +1855 1 21 -4.1 -4.1 -4.1 1 +1855 1 22 -1.9 -1.9 -1.9 1 +1855 1 23 -2.8 -2.8 -2.8 1 +1855 1 24 -2.9 -2.9 -2.9 1 +1855 1 25 -4.2 -4.2 -4.2 1 +1855 1 26 -6.1 -6.1 -6.1 1 +1855 1 27 -12.8 -12.8 -12.8 1 +1855 1 28 -8.8 -8.8 -8.8 1 +1855 1 29 -14.8 -14.8 -14.8 1 +1855 1 30 -19.6 -19.6 -19.6 1 +1855 1 31 -12.5 -12.5 -12.5 1 +1855 2 1 -9.7 -9.7 -9.7 1 +1855 2 2 -3.5 -3.5 -3.5 1 +1855 2 3 -2.5 -2.5 -2.5 1 +1855 2 4 -5.5 -5.5 -5.5 1 +1855 2 5 -3.8 -3.8 -3.8 1 +1855 2 6 -5.3 -5.3 -5.3 1 +1855 2 7 -8.7 -8.7 -8.7 1 +1855 2 8 -15.0 -15.0 -15.0 1 +1855 2 9 -15.4 -15.4 -15.4 1 +1855 2 10 -6.9 -6.9 -6.9 1 +1855 2 11 -9.7 -9.7 -9.7 1 +1855 2 12 -14.0 -14.0 -14.0 1 +1855 2 13 -15.0 -15.0 -15.0 1 +1855 2 14 -18.2 -18.2 -18.2 1 +1855 2 15 -14.1 -14.1 -14.1 1 +1855 2 16 -15.8 -15.8 -15.8 1 +1855 2 17 -14.1 -14.1 -14.1 1 +1855 2 18 -13.9 -13.9 -13.9 1 +1855 2 19 -15.1 -15.1 -15.1 1 +1855 2 20 -13.2 -13.2 -13.2 1 +1855 2 21 -11.4 -11.4 -11.4 1 +1855 2 22 -8.3 -8.3 -8.3 1 +1855 2 23 -10.4 -10.4 -10.4 1 +1855 2 24 -10.2 -10.2 -10.2 1 +1855 2 25 -7.6 -7.6 -7.6 1 +1855 2 26 -12.8 -12.8 -12.8 1 +1855 2 27 -13.7 -13.7 -13.7 1 +1855 2 28 -13.7 -13.7 -13.7 1 +1855 3 1 -6.1 -6.1 -6.1 1 +1855 3 2 -2.6 -2.6 -2.6 1 +1855 3 3 0.1 0.1 0.1 1 +1855 3 4 2.0 2.0 2.0 1 +1855 3 5 1.4 1.4 1.4 1 +1855 3 6 -0.4 -0.4 -0.4 1 +1855 3 7 -0.3 -0.3 -0.3 1 +1855 3 8 -4.8 -4.8 -4.8 1 +1855 3 9 -5.7 -5.7 -5.7 1 +1855 3 10 -6.6 -6.6 -6.6 1 +1855 3 11 -8.1 -8.1 -8.1 1 +1855 3 12 -8.3 -8.3 -8.3 1 +1855 3 13 -5.4 -5.4 -5.4 1 +1855 3 14 -5.5 -5.5 -5.5 1 +1855 3 15 -5.2 -5.2 -5.2 1 +1855 3 16 -1.4 -1.4 -1.4 1 +1855 3 17 -3.2 -3.2 -3.2 1 +1855 3 18 -1.6 -1.6 -1.6 1 +1855 3 19 1.2 1.2 1.2 1 +1855 3 20 0.0 0.0 0.0 1 +1855 3 21 -4.7 -4.7 -4.7 1 +1855 3 22 -7.3 -7.3 -7.3 1 +1855 3 23 -5.7 -5.7 -5.7 1 +1855 3 24 -8.3 -8.3 -8.3 1 +1855 3 25 -8.7 -8.7 -8.7 1 +1855 3 26 -4.0 -4.0 -4.0 1 +1855 3 27 -3.3 -3.3 -3.3 1 +1855 3 28 -2.6 -2.6 -2.6 1 +1855 3 29 0.5 0.5 0.5 1 +1855 3 30 3.5 3.5 3.5 1 +1855 3 31 -3.0 -3.0 -3.0 1 +1855 4 1 -1.5 -1.5 -1.5 1 +1855 4 2 -0.9 -0.9 -0.9 1 +1855 4 3 2.4 2.4 2.4 1 +1855 4 4 3.5 3.5 3.5 1 +1855 4 5 2.7 2.7 2.7 1 +1855 4 6 2.3 2.3 2.3 1 +1855 4 7 5.1 5.1 5.1 1 +1855 4 8 3.0 3.0 3.0 1 +1855 4 9 0.4 0.4 0.4 1 +1855 4 10 0.8 0.8 0.8 1 +1855 4 11 1.5 1.5 1.5 1 +1855 4 12 0.8 0.8 0.8 1 +1855 4 13 0.5 0.5 0.5 1 +1855 4 14 2.3 2.3 2.3 1 +1855 4 15 3.1 3.1 3.1 1 +1855 4 16 5.1 5.1 5.1 1 +1855 4 17 5.2 5.2 5.2 1 +1855 4 18 3.4 3.4 3.4 1 +1855 4 19 5.4 5.4 5.4 1 +1855 4 20 6.9 6.9 6.9 1 +1855 4 21 0.4 0.4 0.4 1 +1855 4 22 0.8 0.8 0.8 1 +1855 4 23 4.2 4.2 4.2 1 +1855 4 24 5.2 5.2 5.2 1 +1855 4 25 4.0 4.0 4.0 1 +1855 4 26 1.6 1.6 1.6 1 +1855 4 27 1.7 1.7 1.7 1 +1855 4 28 4.5 4.5 4.5 1 +1855 4 29 3.6 3.6 3.6 1 +1855 4 30 3.4 3.4 3.4 1 +1855 5 1 4.5 4.5 4.5 1 +1855 5 2 8.5 8.5 8.5 1 +1855 5 3 7.5 7.5 7.5 1 +1855 5 4 7.2 7.2 7.2 1 +1855 5 5 4.0 4.0 3.9 1 +1855 5 6 3.8 3.8 3.7 1 +1855 5 7 5.0 5.0 4.9 1 +1855 5 8 5.0 5.0 4.9 1 +1855 5 9 6.4 6.4 6.3 1 +1855 5 10 5.1 5.1 4.9 1 +1855 5 11 6.4 6.4 6.2 1 +1855 5 12 6.1 6.1 5.9 1 +1855 5 13 10.2 10.2 10.0 1 +1855 5 14 7.7 7.7 7.4 1 +1855 5 15 8.6 8.6 8.3 1 +1855 5 16 8.2 8.2 7.9 1 +1855 5 17 11.8 11.8 11.5 1 +1855 5 18 9.5 9.5 9.2 1 +1855 5 19 10.2 10.2 9.8 1 +1855 5 20 9.5 9.5 9.1 1 +1855 5 21 11.3 11.3 10.9 1 +1855 5 22 12.7 12.7 12.3 1 +1855 5 23 13.0 13.0 12.5 1 +1855 5 24 10.7 10.7 10.2 1 +1855 5 25 9.7 9.7 9.2 1 +1855 5 26 15.2 15.2 14.7 1 +1855 5 27 12.0 12.0 11.5 1 +1855 5 28 5.6 5.6 5.0 1 +1855 5 29 3.5 3.5 2.9 1 +1855 5 30 3.8 3.8 3.2 1 +1855 5 31 6.2 6.2 5.6 1 +1855 6 1 9.1 9.1 8.4 1 +1855 6 2 13.0 13.0 12.3 1 +1855 6 3 14.5 14.5 13.8 1 +1855 6 4 13.5 13.5 12.8 1 +1855 6 5 14.2 14.2 13.5 1 +1855 6 6 16.2 16.2 15.5 1 +1855 6 7 18.1 18.1 17.4 1 +1855 6 8 19.0 19.0 18.3 1 +1855 6 9 19.2 19.2 18.5 1 +1855 6 10 17.8 17.8 17.1 1 +1855 6 11 15.9 15.9 15.2 1 +1855 6 12 16.6 16.6 15.9 1 +1855 6 13 16.8 16.8 16.1 1 +1855 6 14 17.1 17.1 16.4 1 +1855 6 15 15.1 15.1 14.4 1 +1855 6 16 16.7 16.7 16.0 1 +1855 6 17 16.1 16.1 15.4 1 +1855 6 18 13.5 13.5 12.8 1 +1855 6 19 12.7 12.7 12.0 1 +1855 6 20 12.9 12.9 12.2 1 +1855 6 21 14.6 14.6 13.9 1 +1855 6 22 17.5 17.5 16.8 1 +1855 6 23 17.5 17.5 16.8 1 +1855 6 24 16.7 16.7 16.0 1 +1855 6 25 12.8 12.8 12.1 1 +1855 6 26 13.2 13.2 12.5 1 +1855 6 27 15.0 15.0 14.3 1 +1855 6 28 15.8 15.8 15.1 1 +1855 6 29 17.8 17.8 17.1 1 +1855 6 30 18.9 18.9 18.2 1 +1855 7 1 20.1 20.1 19.4 1 +1855 7 2 21.5 21.5 20.8 1 +1855 7 3 20.9 20.9 20.2 1 +1855 7 4 21.9 21.9 21.2 1 +1855 7 5 21.4 21.4 20.7 1 +1855 7 6 22.7 22.7 22.0 1 +1855 7 7 20.5 20.5 19.8 1 +1855 7 8 20.8 20.8 20.1 1 +1855 7 9 19.9 19.9 19.2 1 +1855 7 10 19.5 19.5 18.8 1 +1855 7 11 19.6 19.6 18.9 1 +1855 7 12 21.8 21.8 21.1 1 +1855 7 13 24.0 24.0 23.3 1 +1855 7 14 22.4 22.4 21.7 1 +1855 7 15 23.5 23.5 22.8 1 +1855 7 16 20.5 20.5 19.8 1 +1855 7 17 19.1 19.1 18.4 1 +1855 7 18 22.2 22.2 21.5 1 +1855 7 19 18.9 18.9 18.2 1 +1855 7 20 20.0 20.0 19.3 1 +1855 7 21 21.9 21.9 21.2 1 +1855 7 22 21.3 21.3 20.6 1 +1855 7 23 22.4 22.4 21.7 1 +1855 7 24 21.7 21.7 21.0 1 +1855 7 25 21.2 21.2 20.5 1 +1855 7 26 22.6 22.6 21.9 1 +1855 7 27 22.3 22.3 21.6 1 +1855 7 28 21.5 21.5 20.8 1 +1855 7 29 22.6 22.6 21.9 1 +1855 7 30 24.0 24.0 23.3 1 +1855 7 31 21.4 21.4 20.7 1 +1855 8 1 16.1 16.1 15.5 1 +1855 8 2 19.3 19.3 18.7 1 +1855 8 3 18.3 18.3 17.7 1 +1855 8 4 16.1 16.1 15.5 1 +1855 8 5 16.0 16.0 15.5 1 +1855 8 6 16.1 16.1 15.6 1 +1855 8 7 12.5 12.5 12.0 1 +1855 8 8 15.5 15.5 15.0 1 +1855 8 9 17.1 17.1 16.6 1 +1855 8 10 17.5 17.5 17.1 1 +1855 8 11 19.5 19.5 19.1 1 +1855 8 12 18.8 18.8 18.4 1 +1855 8 13 19.0 19.0 18.6 1 +1855 8 14 15.4 15.4 15.1 1 +1855 8 15 13.9 13.9 13.6 1 +1855 8 16 11.7 11.7 11.4 1 +1855 8 17 12.4 12.4 12.1 1 +1855 8 18 12.8 12.8 12.5 1 +1855 8 19 16.1 16.1 15.9 1 +1855 8 20 16.2 16.2 16.0 1 +1855 8 21 14.4 14.4 14.2 1 +1855 8 22 13.7 13.7 13.5 1 +1855 8 23 14.2 14.2 14.1 1 +1855 8 24 13.6 13.6 13.5 1 +1855 8 25 15.2 15.2 15.1 1 +1855 8 26 16.3 16.3 16.2 1 +1855 8 27 14.7 14.7 14.6 1 +1855 8 28 15.3 15.3 15.3 1 +1855 8 29 16.0 16.0 16.0 1 +1855 8 30 17.4 17.4 17.4 1 +1855 8 31 13.6 13.6 13.6 1 +1855 9 1 13.4 13.4 13.4 1 +1855 9 2 12.2 12.2 12.2 1 +1855 9 3 12.4 12.4 12.4 1 +1855 9 4 13.5 13.5 13.5 1 +1855 9 5 9.5 9.5 9.5 1 +1855 9 6 7.2 7.2 7.2 1 +1855 9 7 9.7 9.7 9.7 1 +1855 9 8 12.4 12.4 12.4 1 +1855 9 9 11.0 11.0 11.0 1 +1855 9 10 9.6 9.6 9.6 1 +1855 9 11 10.8 10.8 10.8 1 +1855 9 12 11.9 11.9 11.9 1 +1855 9 13 8.4 8.4 8.4 1 +1855 9 14 8.1 8.1 8.1 1 +1855 9 15 8.3 8.3 8.3 1 +1855 9 16 6.0 6.0 6.0 1 +1855 9 17 10.5 10.5 10.5 1 +1855 9 18 12.0 12.0 12.0 1 +1855 9 19 12.3 12.3 12.3 1 +1855 9 20 11.7 11.7 11.7 1 +1855 9 21 14.6 14.6 14.6 1 +1855 9 22 17.2 17.2 17.2 1 +1855 9 23 14.7 14.7 14.7 1 +1855 9 24 7.1 7.1 7.1 1 +1855 9 25 7.2 7.2 7.2 1 +1855 9 26 9.6 9.6 9.6 1 +1855 9 27 11.0 11.0 11.0 1 +1855 9 28 10.9 10.9 10.9 1 +1855 9 29 14.3 14.3 14.3 1 +1855 9 30 14.3 14.3 14.3 1 +1855 10 1 12.4 12.4 12.4 1 +1855 10 2 12.6 12.6 12.6 1 +1855 10 3 8.6 8.6 8.6 1 +1855 10 4 9.8 9.8 9.8 1 +1855 10 5 12.4 12.4 12.4 1 +1855 10 6 14.0 14.0 14.0 1 +1855 10 7 14.0 14.0 14.0 1 +1855 10 8 10.5 10.5 10.5 1 +1855 10 9 9.6 9.6 9.6 1 +1855 10 10 9.2 9.2 9.2 1 +1855 10 11 4.7 4.7 4.7 1 +1855 10 12 3.6 3.6 3.6 1 +1855 10 13 2.0 2.0 2.0 1 +1855 10 14 2.4 2.4 2.4 1 +1855 10 15 7.4 7.4 7.4 1 +1855 10 16 8.3 8.3 8.3 1 +1855 10 17 5.4 5.4 5.4 1 +1855 10 18 8.3 8.3 8.3 1 +1855 10 19 9.1 9.1 9.1 1 +1855 10 20 2.7 2.7 2.7 1 +1855 10 21 6.3 6.3 6.3 1 +1855 10 22 6.4 6.4 6.4 1 +1855 10 23 7.8 7.8 7.8 1 +1855 10 24 9.2 9.2 9.2 1 +1855 10 25 5.3 5.3 5.3 1 +1855 10 26 9.3 9.3 9.3 1 +1855 10 27 10.4 10.4 10.4 1 +1855 10 28 5.7 5.7 5.7 1 +1855 10 29 4.6 4.6 4.6 1 +1855 10 30 5.9 5.9 5.9 1 +1855 10 31 9.6 9.6 9.6 1 +1855 11 1 4.9 4.9 4.9 1 +1855 11 2 1.1 1.1 1.1 1 +1855 11 3 -0.5 -0.5 -0.5 1 +1855 11 4 -1.0 -1.0 -1.0 1 +1855 11 5 -3.1 -3.1 -3.1 1 +1855 11 6 2.8 2.8 2.8 1 +1855 11 7 4.2 4.2 4.2 1 +1855 11 8 7.4 7.4 7.4 1 +1855 11 9 7.6 7.6 7.6 1 +1855 11 10 6.9 6.9 6.9 1 +1855 11 11 7.1 7.1 7.1 1 +1855 11 12 5.6 5.6 5.6 1 +1855 11 13 2.6 2.6 2.6 1 +1855 11 14 4.5 4.5 4.5 1 +1855 11 15 6.2 6.2 6.2 1 +1855 11 16 5.7 5.7 5.7 1 +1855 11 17 3.0 3.0 3.0 1 +1855 11 18 2.5 2.5 2.5 1 +1855 11 19 -0.9 -0.9 -0.9 1 +1855 11 20 -1.9 -1.9 -1.9 1 +1855 11 21 -2.0 -2.0 -2.0 1 +1855 11 22 -1.4 -1.4 -1.4 1 +1855 11 23 -2.7 -2.7 -2.7 1 +1855 11 24 -2.1 -2.1 -2.1 1 +1855 11 25 -5.5 -5.5 -5.5 1 +1855 11 26 0.1 0.1 0.1 1 +1855 11 27 -0.5 -0.5 -0.5 1 +1855 11 28 -0.4 -0.4 -0.4 1 +1855 11 29 -0.2 -0.2 -0.2 1 +1855 11 30 -3.9 -3.9 -3.9 1 +1855 12 1 -6.9 -6.9 -6.9 1 +1855 12 2 -10.4 -10.4 -10.4 1 +1855 12 3 -11.9 -11.9 -11.9 1 +1855 12 4 -3.9 -3.9 -3.9 1 +1855 12 5 1.6 1.6 1.6 1 +1855 12 6 0.6 0.6 0.6 1 +1855 12 7 -3.9 -3.9 -3.9 1 +1855 12 8 -5.3 -5.3 -5.3 1 +1855 12 9 -5.6 -5.6 -5.6 1 +1855 12 10 -11.2 -11.2 -11.2 1 +1855 12 11 -5.7 -5.7 -5.7 1 +1855 12 12 -5.2 -5.2 -5.2 1 +1855 12 13 -11.4 -11.4 -11.4 1 +1855 12 14 -17.3 -17.3 -17.3 1 +1855 12 15 -11.0 -11.0 -11.0 1 +1855 12 16 -8.9 -8.9 -8.9 1 +1855 12 17 -11.8 -11.8 -11.8 1 +1855 12 18 -19.1 -19.1 -19.1 1 +1855 12 19 -10.7 -10.7 -10.7 1 +1855 12 20 -4.3 -4.3 -4.3 1 +1855 12 21 -5.7 -5.7 -5.7 1 +1855 12 22 -3.6 -3.6 -3.6 1 +1855 12 23 -4.6 -4.6 -4.6 1 +1855 12 24 -1.1 -1.1 -1.1 1 +1855 12 25 -0.2 -0.2 -0.2 1 +1855 12 26 0.4 0.4 0.4 1 +1855 12 27 1.7 1.7 1.7 1 +1855 12 28 3.0 3.0 3.0 1 +1855 12 29 1.5 1.5 1.5 1 +1855 12 30 2.4 2.4 2.4 1 +1855 12 31 2.0 2.0 2.0 1 +1856 1 1 1.4 1.4 1.4 1 +1856 1 2 -0.8 -0.8 -0.8 1 +1856 1 3 -1.2 -1.2 -1.2 1 +1856 1 4 -4.4 -4.4 -4.4 1 +1856 1 5 -2.0 -2.0 -2.0 1 +1856 1 6 -3.9 -3.9 -3.9 1 +1856 1 7 -5.7 -5.7 -5.7 1 +1856 1 8 -4.9 -4.9 -4.9 1 +1856 1 9 -8.5 -8.5 -8.5 1 +1856 1 10 -15.2 -15.2 -15.2 1 +1856 1 11 -20.9 -20.9 -20.9 1 +1856 1 12 -19.5 -19.5 -19.5 1 +1856 1 13 -10.6 -10.6 -10.6 1 +1856 1 14 3.7 3.7 3.7 1 +1856 1 15 -1.5 -1.5 -1.5 1 +1856 1 16 -2.1 -2.1 -2.1 1 +1856 1 17 -1.1 -1.1 -1.1 1 +1856 1 18 0.5 0.5 0.5 1 +1856 1 19 -5.0 -5.0 -5.0 1 +1856 1 20 -1.2 -1.2 -1.2 1 +1856 1 21 1.3 1.3 1.3 1 +1856 1 22 -7.3 -7.3 -7.3 1 +1856 1 23 -6.7 -6.7 -6.7 1 +1856 1 24 -1.2 -1.2 -1.2 1 +1856 1 25 1.0 1.0 1.0 1 +1856 1 26 1.4 1.4 1.4 1 +1856 1 27 0.6 0.6 0.6 1 +1856 1 28 0.1 0.1 0.1 1 +1856 1 29 -0.9 -0.9 -0.9 1 +1856 1 30 -3.3 -3.3 -3.3 1 +1856 1 31 -8.7 -8.7 -8.7 1 +1856 2 1 -8.0 -8.0 -8.0 1 +1856 2 2 -8.8 -8.8 -8.8 1 +1856 2 3 -6.4 -6.4 -6.4 1 +1856 2 4 -0.3 -0.3 -0.3 1 +1856 2 5 -1.8 -1.8 -1.8 1 +1856 2 6 -0.6 -0.6 -0.6 1 +1856 2 7 1.3 1.3 1.3 1 +1856 2 8 -1.5 -1.5 -1.5 1 +1856 2 9 -3.9 -3.9 -3.9 1 +1856 2 10 -1.2 -1.2 -1.2 1 +1856 2 11 -6.3 -6.3 -6.3 1 +1856 2 12 -8.6 -8.6 -8.6 1 +1856 2 13 -16.4 -16.4 -16.4 1 +1856 2 14 -11.6 -11.6 -11.6 1 +1856 2 15 -11.9 -11.9 -11.9 1 +1856 2 16 -13.6 -13.6 -13.6 1 +1856 2 17 -11.7 -11.7 -11.7 1 +1856 2 18 -11.3 -11.3 -11.3 1 +1856 2 19 -10.6 -10.6 -10.6 1 +1856 2 20 -7.7 -7.7 -7.7 1 +1856 2 21 -9.6 -9.6 -9.6 1 +1856 2 22 -6.8 -6.8 -6.8 1 +1856 2 23 -3.5 -3.5 -3.5 1 +1856 2 24 -4.6 -4.6 -4.6 1 +1856 2 25 -2.8 -2.8 -2.8 1 +1856 2 26 0.3 0.3 0.3 1 +1856 2 27 0.6 0.6 0.6 1 +1856 2 28 0.4 0.4 0.4 1 +1856 2 29 3.1 3.1 3.1 1 +1856 3 1 5.3 5.3 5.3 1 +1856 3 2 3.9 3.9 3.9 1 +1856 3 3 -1.2 -1.2 -1.2 1 +1856 3 4 -6.1 -6.1 -6.1 1 +1856 3 5 -3.0 -3.0 -3.0 1 +1856 3 6 -13.2 -13.2 -13.2 1 +1856 3 7 -10.6 -10.6 -10.6 1 +1856 3 8 0.4 0.4 0.4 1 +1856 3 9 -1.4 -1.4 -1.4 1 +1856 3 10 -4.3 -4.3 -4.3 1 +1856 3 11 -7.4 -7.4 -7.4 1 +1856 3 12 -7.2 -7.2 -7.2 1 +1856 3 13 -6.3 -6.3 -6.3 1 +1856 3 14 -2.8 -2.8 -2.8 1 +1856 3 15 0.4 0.4 0.4 1 +1856 3 16 -0.3 -0.3 -0.3 1 +1856 3 17 2.1 2.1 2.1 1 +1856 3 18 1.5 1.5 1.5 1 +1856 3 19 2.5 2.5 2.5 1 +1856 3 20 1.7 1.7 1.7 1 +1856 3 21 -0.1 -0.1 -0.1 1 +1856 3 22 0.7 0.7 0.7 1 +1856 3 23 1.6 1.6 1.6 1 +1856 3 24 2.7 2.7 2.7 1 +1856 3 25 -9.8 -9.8 -9.8 1 +1856 3 26 -8.7 -8.7 -8.7 1 +1856 3 27 -3.2 -3.2 -3.2 1 +1856 3 28 -8.4 -8.4 -8.4 1 +1856 3 29 -3.6 -3.6 -3.6 1 +1856 3 30 5.1 5.1 5.1 1 +1856 3 31 0.9 0.9 0.9 1 +1856 4 1 1.4 1.4 1.4 1 +1856 4 2 -0.8 -0.8 -0.8 1 +1856 4 3 0.2 0.2 0.2 1 +1856 4 4 4.2 4.2 4.2 1 +1856 4 5 5.6 5.6 5.6 1 +1856 4 6 1.8 1.8 1.8 1 +1856 4 7 1.0 1.0 1.0 1 +1856 4 8 2.4 2.4 2.4 1 +1856 4 9 3.5 3.5 3.5 1 +1856 4 10 2.7 2.7 2.7 1 +1856 4 11 2.9 2.9 2.9 1 +1856 4 12 4.5 4.5 4.5 1 +1856 4 13 3.8 3.8 3.8 1 +1856 4 14 3.7 3.7 3.7 1 +1856 4 15 2.7 2.7 2.7 1 +1856 4 16 6.3 6.3 6.3 1 +1856 4 17 7.4 7.4 7.4 1 +1856 4 18 1.1 1.1 1.1 1 +1856 4 19 0.1 0.1 0.1 1 +1856 4 20 2.1 2.1 2.1 1 +1856 4 21 5.5 5.5 5.5 1 +1856 4 22 8.0 8.0 8.0 1 +1856 4 23 9.6 9.6 9.6 1 +1856 4 24 10.5 10.5 10.5 1 +1856 4 25 10.8 10.8 10.8 1 +1856 4 26 9.7 9.7 9.7 1 +1856 4 27 6.2 6.2 6.2 1 +1856 4 28 3.8 3.8 3.8 1 +1856 4 29 2.5 2.5 2.5 1 +1856 4 30 0.6 0.6 0.6 1 +1856 5 1 0.0 0.0 0.0 1 +1856 5 2 1.4 1.4 1.4 1 +1856 5 3 1.0 1.0 1.0 1 +1856 5 4 -0.3 -0.3 -0.3 1 +1856 5 5 1.1 1.1 1.0 1 +1856 5 6 1.4 1.4 1.3 1 +1856 5 7 4.0 4.0 3.9 1 +1856 5 8 3.6 3.6 3.5 1 +1856 5 9 5.2 5.2 5.1 1 +1856 5 10 5.2 5.2 5.0 1 +1856 5 11 8.6 8.6 8.4 1 +1856 5 12 10.7 10.7 10.5 1 +1856 5 13 13.1 13.1 12.9 1 +1856 5 14 14.7 14.7 14.4 1 +1856 5 15 11.8 11.8 11.5 1 +1856 5 16 11.7 11.7 11.4 1 +1856 5 17 6.5 6.5 6.2 1 +1856 5 18 10.1 10.1 9.8 1 +1856 5 19 10.2 10.2 9.8 1 +1856 5 20 8.1 8.1 7.7 1 +1856 5 21 6.0 6.0 5.6 1 +1856 5 22 4.9 4.9 4.5 1 +1856 5 23 4.7 4.7 4.2 1 +1856 5 24 6.2 6.2 5.7 1 +1856 5 25 8.3 8.3 7.8 1 +1856 5 26 10.3 10.3 9.8 1 +1856 5 27 7.6 7.6 7.1 1 +1856 5 28 10.7 10.7 10.1 1 +1856 5 29 13.2 13.2 12.6 1 +1856 5 30 10.5 10.5 9.9 1 +1856 5 31 8.9 8.9 8.3 1 +1856 6 1 9.5 9.5 8.8 1 +1856 6 2 12.8 12.8 12.1 1 +1856 6 3 13.7 13.7 13.0 1 +1856 6 4 15.1 15.1 14.4 1 +1856 6 5 11.2 11.2 10.5 1 +1856 6 6 10.1 10.1 9.4 1 +1856 6 7 13.0 13.0 12.3 1 +1856 6 8 11.5 11.5 10.8 1 +1856 6 9 13.8 13.8 13.1 1 +1856 6 10 13.9 13.9 13.2 1 +1856 6 11 15.3 15.3 14.6 1 +1856 6 12 17.3 17.3 16.6 1 +1856 6 13 15.3 15.3 14.6 1 +1856 6 14 14.9 14.9 14.2 1 +1856 6 15 15.7 15.7 15.0 1 +1856 6 16 14.4 14.4 13.7 1 +1856 6 17 16.1 16.1 15.4 1 +1856 6 18 16.1 16.1 15.4 1 +1856 6 19 15.0 15.0 14.3 1 +1856 6 20 17.0 17.0 16.3 1 +1856 6 21 16.5 16.5 15.8 1 +1856 6 22 14.7 14.7 14.0 1 +1856 6 23 13.9 13.9 13.2 1 +1856 6 24 6.7 6.7 6.0 1 +1856 6 25 14.8 14.8 14.1 1 +1856 6 26 17.3 17.3 16.6 1 +1856 6 27 17.8 17.8 17.1 1 +1856 6 28 16.9 16.9 16.2 1 +1856 6 29 14.0 14.0 13.3 1 +1856 6 30 12.3 12.3 11.6 1 +1856 7 1 11.2 11.2 10.5 1 +1856 7 2 8.8 8.8 8.1 1 +1856 7 3 10.5 10.5 9.8 1 +1856 7 4 14.4 14.4 13.7 1 +1856 7 5 16.1 16.1 15.4 1 +1856 7 6 15.8 15.8 15.1 1 +1856 7 7 15.0 15.0 14.3 1 +1856 7 8 15.2 15.2 14.5 1 +1856 7 9 16.7 16.7 16.0 1 +1856 7 10 14.5 14.5 13.8 1 +1856 7 11 15.6 15.6 14.9 1 +1856 7 12 15.8 15.8 15.1 1 +1856 7 13 16.2 16.2 15.5 1 +1856 7 14 17.4 17.4 16.7 1 +1856 7 15 19.2 19.2 18.5 1 +1856 7 16 19.7 19.7 19.0 1 +1856 7 17 19.0 19.0 18.3 1 +1856 7 18 16.8 16.8 16.1 1 +1856 7 19 16.5 16.5 15.8 1 +1856 7 20 15.1 15.1 14.4 1 +1856 7 21 13.2 13.2 12.5 1 +1856 7 22 17.3 17.3 16.6 1 +1856 7 23 18.2 18.2 17.5 1 +1856 7 24 18.9 18.9 18.2 1 +1856 7 25 19.1 19.1 18.4 1 +1856 7 26 21.0 21.0 20.3 1 +1856 7 27 19.6 19.6 18.9 1 +1856 7 28 20.1 20.1 19.4 1 +1856 7 29 18.2 18.2 17.5 1 +1856 7 30 17.2 17.2 16.5 1 +1856 7 31 17.6 17.6 16.9 1 +1856 8 1 15.9 15.9 15.3 1 +1856 8 2 14.5 14.5 13.9 1 +1856 8 3 16.2 16.2 15.6 1 +1856 8 4 14.2 14.2 13.6 1 +1856 8 5 15.1 15.1 14.6 1 +1856 8 6 14.6 14.6 14.1 1 +1856 8 7 13.6 13.6 13.1 1 +1856 8 8 11.2 11.2 10.7 1 +1856 8 9 11.0 11.0 10.5 1 +1856 8 10 12.3 12.3 11.9 1 +1856 8 11 10.0 10.0 9.6 1 +1856 8 12 11.3 11.3 10.9 1 +1856 8 13 13.8 13.8 13.4 1 +1856 8 14 16.1 16.1 15.8 1 +1856 8 15 14.9 14.9 14.6 1 +1856 8 16 14.8 14.8 14.5 1 +1856 8 17 15.0 15.0 14.7 1 +1856 8 18 14.2 14.2 13.9 1 +1856 8 19 13.3 13.3 13.1 1 +1856 8 20 13.1 13.1 12.9 1 +1856 8 21 13.0 13.0 12.8 1 +1856 8 22 11.3 11.3 11.1 1 +1856 8 23 10.7 10.7 10.6 1 +1856 8 24 12.3 12.3 12.2 1 +1856 8 25 13.9 13.9 13.8 1 +1856 8 26 14.7 14.7 14.6 1 +1856 8 27 13.3 13.3 13.2 1 +1856 8 28 8.8 8.8 8.8 1 +1856 8 29 8.9 8.9 8.9 1 +1856 8 30 9.1 9.1 9.1 1 +1856 8 31 12.0 12.0 12.0 1 +1856 9 1 11.5 11.5 11.5 1 +1856 9 2 10.7 10.7 10.7 1 +1856 9 3 9.2 9.2 9.2 1 +1856 9 4 10.4 10.4 10.4 1 +1856 9 5 10.6 10.6 10.6 1 +1856 9 6 12.9 12.9 12.9 1 +1856 9 7 13.5 13.5 13.5 1 +1856 9 8 13.5 13.5 13.5 1 +1856 9 9 13.2 13.2 13.2 1 +1856 9 10 11.8 11.8 11.8 1 +1856 9 11 11.4 11.4 11.4 1 +1856 9 12 12.9 12.9 12.9 1 +1856 9 13 11.8 11.8 11.8 1 +1856 9 14 10.4 10.4 10.4 1 +1856 9 15 12.0 12.0 12.0 1 +1856 9 16 12.1 12.1 12.1 1 +1856 9 17 10.4 10.4 10.4 1 +1856 9 18 10.4 10.4 10.4 1 +1856 9 19 9.5 9.5 9.5 1 +1856 9 20 8.0 8.0 8.0 1 +1856 9 21 6.8 6.8 6.8 1 +1856 9 22 10.2 10.2 10.2 1 +1856 9 23 10.3 10.3 10.3 1 +1856 9 24 12.5 12.5 12.5 1 +1856 9 25 11.4 11.4 11.4 1 +1856 9 26 13.0 13.0 13.0 1 +1856 9 27 11.6 11.6 11.6 1 +1856 9 28 9.2 9.2 9.2 1 +1856 9 29 9.3 9.3 9.3 1 +1856 9 30 9.7 9.7 9.7 1 +1856 10 1 12.4 12.4 12.4 1 +1856 10 2 11.2 11.2 11.2 1 +1856 10 3 9.1 9.1 9.1 1 +1856 10 4 6.4 6.4 6.4 1 +1856 10 5 11.9 11.9 11.9 1 +1856 10 6 2.8 2.8 2.8 1 +1856 10 7 1.6 1.6 1.6 1 +1856 10 8 6.2 6.2 6.2 1 +1856 10 9 6.0 6.0 6.0 1 +1856 10 10 6.4 6.4 6.4 1 +1856 10 11 9.5 9.5 9.5 1 +1856 10 12 7.3 7.3 7.3 1 +1856 10 13 9.6 9.6 9.6 1 +1856 10 14 9.7 9.7 9.7 1 +1856 10 15 10.7 10.7 10.7 1 +1856 10 16 11.3 11.3 11.3 1 +1856 10 17 11.5 11.5 11.5 1 +1856 10 18 11.5 11.5 11.5 1 +1856 10 19 5.4 5.4 5.4 1 +1856 10 20 8.0 8.0 8.0 1 +1856 10 21 9.4 9.4 9.4 1 +1856 10 22 7.4 7.4 7.4 1 +1856 10 23 6.1 6.1 6.1 1 +1856 10 24 3.7 3.7 3.7 1 +1856 10 25 3.3 3.3 3.3 1 +1856 10 26 5.9 5.9 5.9 1 +1856 10 27 9.1 9.1 9.1 1 +1856 10 28 6.9 6.9 6.9 1 +1856 10 29 8.8 8.8 8.8 1 +1856 10 30 7.9 7.9 7.9 1 +1856 10 31 7.6 7.6 7.6 1 +1856 11 1 8.2 8.2 8.2 1 +1856 11 2 8.6 8.6 8.6 1 +1856 11 3 0.9 0.9 0.9 1 +1856 11 4 -3.8 -3.8 -3.8 1 +1856 11 5 -0.5 -0.5 -0.5 1 +1856 11 6 0.0 0.0 0.0 1 +1856 11 7 2.0 2.0 2.0 1 +1856 11 8 0.7 0.7 0.7 1 +1856 11 9 -4.9 -4.9 -4.9 1 +1856 11 10 -5.2 -5.2 -5.2 1 +1856 11 11 -4.1 -4.1 -4.1 1 +1856 11 12 -3.2 -3.2 -3.2 1 +1856 11 13 -3.9 -3.9 -3.9 1 +1856 11 14 -1.7 -1.7 -1.7 1 +1856 11 15 -1.6 -1.6 -1.6 1 +1856 11 16 -6.4 -6.4 -6.4 1 +1856 11 17 -2.0 -2.0 -2.0 1 +1856 11 18 -6.1 -6.1 -6.1 1 +1856 11 19 -6.0 -6.0 -6.0 1 +1856 11 20 -3.2 -3.2 -3.2 1 +1856 11 21 -2.1 -2.1 -2.1 1 +1856 11 22 3.1 3.1 3.1 1 +1856 11 23 -2.8 -2.8 -2.8 1 +1856 11 24 -4.0 -4.0 -4.0 1 +1856 11 25 -9.0 -9.0 -9.0 1 +1856 11 26 -10.2 -10.2 -10.2 1 +1856 11 27 -11.4 -11.4 -11.4 1 +1856 11 28 -6.1 -6.1 -6.1 1 +1856 11 29 -3.1 -3.1 -3.1 1 +1856 11 30 -6.2 -6.2 -6.2 1 +1856 12 1 -13.7 -13.7 -13.7 1 +1856 12 2 -15.7 -15.7 -15.7 1 +1856 12 3 -15.1 -15.1 -15.1 1 +1856 12 4 -3.7 -3.7 -3.7 1 +1856 12 5 -6.6 -6.6 -6.6 1 +1856 12 6 -4.6 -4.6 -4.6 1 +1856 12 7 3.7 3.7 3.7 1 +1856 12 8 4.2 4.2 4.2 1 +1856 12 9 6.2 6.2 6.2 1 +1856 12 10 6.4 6.4 6.4 1 +1856 12 11 6.5 6.5 6.5 1 +1856 12 12 4.4 4.4 4.4 1 +1856 12 13 3.0 3.0 3.0 1 +1856 12 14 0.2 0.2 0.2 1 +1856 12 15 -3.6 -3.6 -3.6 1 +1856 12 16 -1.0 -1.0 -1.0 1 +1856 12 17 4.4 4.4 4.4 1 +1856 12 18 -1.9 -1.9 -1.9 1 +1856 12 19 -2.6 -2.6 -2.6 1 +1856 12 20 2.7 2.7 2.7 1 +1856 12 21 -0.4 -0.4 -0.4 1 +1856 12 22 -3.7 -3.7 -3.7 1 +1856 12 23 -12.6 -12.6 -12.6 1 +1856 12 24 -10.8 -10.8 -10.8 1 +1856 12 25 -6.3 -6.3 -6.3 1 +1856 12 26 -2.7 -2.7 -2.7 1 +1856 12 27 -0.6 -0.6 -0.6 1 +1856 12 28 -3.8 -3.8 -3.8 1 +1856 12 29 -1.6 -1.6 -1.6 1 +1856 12 30 -5.3 -5.3 -5.3 1 +1856 12 31 -0.5 -0.5 -0.5 1 +1857 1 1 -6.2 -6.2 -6.2 1 +1857 1 2 -12.2 -12.2 -12.2 1 +1857 1 3 -11.3 -11.3 -11.3 1 +1857 1 4 -10.9 -10.9 -10.9 1 +1857 1 5 -8.5 -8.5 -8.5 1 +1857 1 6 -11.1 -11.1 -11.1 1 +1857 1 7 -13.2 -13.2 -13.2 1 +1857 1 8 -8.1 -8.1 -8.1 1 +1857 1 9 -1.8 -1.8 -1.8 1 +1857 1 10 -4.1 -4.1 -4.1 1 +1857 1 11 -3.5 -3.5 -3.5 1 +1857 1 12 -3.6 -3.6 -3.6 1 +1857 1 13 -3.6 -3.6 -3.6 1 +1857 1 14 -4.9 -4.9 -4.9 1 +1857 1 15 -7.1 -7.1 -7.1 1 +1857 1 16 -4.9 -4.9 -4.9 1 +1857 1 17 -2.1 -2.1 -2.1 1 +1857 1 18 -1.2 -1.2 -1.2 1 +1857 1 19 3.7 3.7 3.7 1 +1857 1 20 -1.6 -1.6 -1.6 1 +1857 1 21 0.1 0.1 0.1 1 +1857 1 22 -0.3 -0.3 -0.3 1 +1857 1 23 -0.1 -0.1 -0.1 1 +1857 1 24 -0.4 -0.4 -0.4 1 +1857 1 25 -5.8 -5.8 -5.8 1 +1857 1 26 -9.9 -9.9 -9.9 1 +1857 1 27 -12.5 -12.5 -12.5 1 +1857 1 28 -11.3 -11.3 -11.3 1 +1857 1 29 -9.8 -9.8 -9.8 1 +1857 1 30 -11.5 -11.5 -11.5 1 +1857 1 31 -6.7 -6.7 -6.7 1 +1857 2 1 -8.9 -8.9 -8.9 1 +1857 2 2 -8.4 -8.4 -8.4 1 +1857 2 3 -5.4 -5.4 -5.4 1 +1857 2 4 -8.8 -8.8 -8.8 1 +1857 2 5 -8.5 -8.5 -8.5 1 +1857 2 6 -1.8 -1.8 -1.8 1 +1857 2 7 -0.6 -0.6 -0.6 1 +1857 2 8 2.7 2.7 2.7 1 +1857 2 9 1.0 1.0 1.0 1 +1857 2 10 0.7 0.7 0.7 1 +1857 2 11 2.4 2.4 2.4 1 +1857 2 12 1.5 1.5 1.5 1 +1857 2 13 -2.7 -2.7 -2.7 1 +1857 2 14 0.2 0.2 0.2 1 +1857 2 15 2.2 2.2 2.2 1 +1857 2 16 -2.3 -2.3 -2.3 1 +1857 2 17 0.4 0.4 0.4 1 +1857 2 18 0.6 0.6 0.6 1 +1857 2 19 0.9 0.9 0.9 1 +1857 2 20 -0.5 -0.5 -0.5 1 +1857 2 21 -0.8 -0.8 -0.8 1 +1857 2 22 1.5 1.5 1.5 1 +1857 2 23 3.0 3.0 3.0 1 +1857 2 24 1.5 1.5 1.5 1 +1857 2 25 -1.1 -1.1 -1.1 1 +1857 2 26 -0.5 -0.5 -0.5 1 +1857 2 27 2.1 2.1 2.1 1 +1857 2 28 4.1 4.1 4.1 1 +1857 3 1 2.2 2.2 2.2 1 +1857 3 2 5.8 5.8 5.8 1 +1857 3 3 3.1 3.1 3.1 1 +1857 3 4 4.3 4.3 4.3 1 +1857 3 5 0.3 0.3 0.3 1 +1857 3 6 -0.9 -0.9 -0.9 1 +1857 3 7 -0.2 -0.2 -0.2 1 +1857 3 8 -3.4 -3.4 -3.4 1 +1857 3 9 -6.9 -6.9 -6.9 1 +1857 3 10 -7.3 -7.3 -7.3 1 +1857 3 11 -7.3 -7.3 -7.3 1 +1857 3 12 -3.0 -3.0 -3.0 1 +1857 3 13 -6.7 -6.7 -6.7 1 +1857 3 14 -3.1 -3.1 -3.1 1 +1857 3 15 -0.1 -0.1 -0.1 1 +1857 3 16 2.2 2.2 2.2 1 +1857 3 17 0.9 0.9 0.9 1 +1857 3 18 1.6 1.6 1.6 1 +1857 3 19 0.4 0.4 0.4 1 +1857 3 20 -0.9 -0.9 -0.9 1 +1857 3 21 -0.9 -0.9 -0.9 1 +1857 3 22 -0.1 -0.1 -0.1 1 +1857 3 23 -1.5 -1.5 -1.5 1 +1857 3 24 0.5 0.5 0.5 1 +1857 3 25 1.3 1.3 1.3 1 +1857 3 26 1.2 1.2 1.2 1 +1857 3 27 1.0 1.0 1.0 1 +1857 3 28 -0.3 -0.3 -0.3 1 +1857 3 29 -2.4 -2.4 -2.4 1 +1857 3 30 -1.1 -1.1 -1.1 1 +1857 3 31 -1.5 -1.5 -1.5 1 +1857 4 1 -2.3 -2.3 -2.3 1 +1857 4 2 -0.6 -0.6 -0.6 1 +1857 4 3 2.3 2.3 2.3 1 +1857 4 4 1.8 1.8 1.8 1 +1857 4 5 2.4 2.4 2.4 1 +1857 4 6 0.2 0.2 0.2 1 +1857 4 7 1.1 1.1 1.1 1 +1857 4 8 2.5 2.5 2.5 1 +1857 4 9 3.6 3.6 3.6 1 +1857 4 10 3.1 3.1 3.1 1 +1857 4 11 2.9 2.9 2.9 1 +1857 4 12 3.4 3.4 3.4 1 +1857 4 13 5.2 5.2 5.2 1 +1857 4 14 4.4 4.4 4.4 1 +1857 4 15 5.4 5.4 5.4 1 +1857 4 16 6.3 6.3 6.3 1 +1857 4 17 6.6 6.6 6.6 1 +1857 4 18 4.5 4.5 4.5 1 +1857 4 19 6.5 6.5 6.5 1 +1857 4 20 1.1 1.1 1.1 1 +1857 4 21 -1.8 -1.8 -1.8 1 +1857 4 22 -3.6 -3.6 -3.6 1 +1857 4 23 -2.9 -2.9 -2.9 1 +1857 4 24 -1.0 -1.0 -1.0 1 +1857 4 25 -0.4 -0.4 -0.4 1 +1857 4 26 -0.4 -0.4 -0.4 1 +1857 4 27 1.8 1.8 1.8 1 +1857 4 28 3.1 3.1 3.1 1 +1857 4 29 4.9 4.9 4.9 1 +1857 4 30 2.6 2.6 2.6 1 +1857 5 1 4.8 4.8 4.8 1 +1857 5 2 6.8 6.8 6.8 1 +1857 5 3 6.0 6.0 6.0 1 +1857 5 4 4.4 4.4 4.4 1 +1857 5 5 3.9 3.9 3.8 1 +1857 5 6 7.3 7.3 7.2 1 +1857 5 7 7.7 7.7 7.6 1 +1857 5 8 5.5 5.5 5.4 1 +1857 5 9 5.3 5.3 5.2 1 +1857 5 10 5.7 5.7 5.5 1 +1857 5 11 6.9 6.9 6.7 1 +1857 5 12 6.4 6.4 6.2 1 +1857 5 13 7.9 7.9 7.7 1 +1857 5 14 6.2 6.2 5.9 1 +1857 5 15 3.1 3.1 2.8 1 +1857 5 16 7.3 7.3 7.0 1 +1857 5 17 6.3 6.3 6.0 1 +1857 5 18 8.3 8.3 8.0 1 +1857 5 19 6.6 6.6 6.2 1 +1857 5 20 14.1 14.1 13.7 1 +1857 5 21 17.5 17.5 17.1 1 +1857 5 22 19.5 19.5 19.1 1 +1857 5 23 19.0 19.0 18.5 1 +1857 5 24 15.5 15.5 15.0 1 +1857 5 25 16.4 16.4 15.9 1 +1857 5 26 7.9 7.9 7.4 1 +1857 5 27 10.4 10.4 9.9 1 +1857 5 28 9.4 9.4 8.8 1 +1857 5 29 5.8 5.8 5.2 1 +1857 5 30 8.5 8.5 7.9 1 +1857 5 31 10.5 10.5 9.9 1 +1857 6 1 8.2 8.2 7.5 1 +1857 6 2 8.4 8.4 7.7 1 +1857 6 3 11.6 11.6 10.9 1 +1857 6 4 12.4 12.4 11.7 1 +1857 6 5 12.6 12.6 11.9 1 +1857 6 6 10.2 10.2 9.5 1 +1857 6 7 9.4 9.4 8.7 1 +1857 6 8 10.7 10.7 10.0 1 +1857 6 9 15.5 15.5 14.8 1 +1857 6 10 14.9 14.9 14.2 1 +1857 6 11 14.1 14.1 13.4 1 +1857 6 12 13.9 13.9 13.2 1 +1857 6 13 9.0 9.0 8.3 1 +1857 6 14 10.4 10.4 9.7 1 +1857 6 15 12.2 12.2 11.5 1 +1857 6 16 14.5 14.5 13.8 1 +1857 6 17 16.4 16.4 15.7 1 +1857 6 18 16.8 16.8 16.1 1 +1857 6 19 18.4 18.4 17.7 1 +1857 6 20 16.7 16.7 16.0 1 +1857 6 21 13.6 13.6 12.9 1 +1857 6 22 16.2 16.2 15.5 1 +1857 6 23 17.9 17.9 17.2 1 +1857 6 24 22.6 22.6 21.9 1 +1857 6 25 20.1 20.1 19.4 1 +1857 6 26 14.2 14.2 13.5 1 +1857 6 27 19.8 19.8 19.1 1 +1857 6 28 13.6 13.6 12.9 1 +1857 6 29 11.2 11.2 10.5 1 +1857 6 30 13.6 13.6 12.9 1 +1857 7 1 14.2 14.2 13.5 1 +1857 7 2 14.4 14.4 13.7 1 +1857 7 3 17.9 17.9 17.2 1 +1857 7 4 17.3 17.3 16.6 1 +1857 7 5 16.6 16.6 15.9 1 +1857 7 6 20.1 20.1 19.4 1 +1857 7 7 19.7 19.7 19.0 1 +1857 7 8 18.7 18.7 18.0 1 +1857 7 9 15.0 15.0 14.3 1 +1857 7 10 18.8 18.8 18.1 1 +1857 7 11 18.5 18.5 17.8 1 +1857 7 12 17.2 17.2 16.5 1 +1857 7 13 20.2 20.2 19.5 1 +1857 7 14 17.8 17.8 17.1 1 +1857 7 15 17.3 17.3 16.6 1 +1857 7 16 19.3 19.3 18.6 1 +1857 7 17 19.0 19.0 18.3 1 +1857 7 18 13.8 13.8 13.1 1 +1857 7 19 13.4 13.4 12.7 1 +1857 7 20 15.4 15.4 14.7 1 +1857 7 21 17.6 17.6 16.9 1 +1857 7 22 14.8 14.8 14.1 1 +1857 7 23 15.1 15.1 14.4 1 +1857 7 24 15.9 15.9 15.2 1 +1857 7 25 16.7 16.7 16.0 1 +1857 7 26 17.4 17.4 16.7 1 +1857 7 27 16.7 16.7 16.0 1 +1857 7 28 16.8 16.8 16.1 1 +1857 7 29 13.8 13.8 13.1 1 +1857 7 30 17.4 17.4 16.7 1 +1857 7 31 18.4 18.4 17.7 1 +1857 8 1 18.5 18.5 17.9 1 +1857 8 2 20.3 20.3 19.7 1 +1857 8 3 19.0 19.0 18.4 1 +1857 8 4 19.5 19.5 18.9 1 +1857 8 5 20.5 20.5 20.0 1 +1857 8 6 22.6 22.6 22.1 1 +1857 8 7 21.5 21.5 21.0 1 +1857 8 8 21.4 21.4 20.9 1 +1857 8 9 21.3 21.3 20.8 1 +1857 8 10 21.4 21.4 21.0 1 +1857 8 11 22.9 22.9 22.5 1 +1857 8 12 24.2 24.2 23.8 1 +1857 8 13 21.9 21.9 21.5 1 +1857 8 14 22.3 22.3 22.0 1 +1857 8 15 23.3 23.3 23.0 1 +1857 8 16 19.0 19.0 18.7 1 +1857 8 17 15.8 15.8 15.5 1 +1857 8 18 18.0 18.0 17.7 1 +1857 8 19 18.7 18.7 18.5 1 +1857 8 20 19.0 19.0 18.8 1 +1857 8 21 16.5 16.5 16.3 1 +1857 8 22 14.9 14.9 14.7 1 +1857 8 23 16.0 16.0 15.9 1 +1857 8 24 20.6 20.6 20.5 1 +1857 8 25 20.9 20.9 20.8 1 +1857 8 26 18.6 18.6 18.5 1 +1857 8 27 18.4 18.4 18.3 1 +1857 8 28 15.3 15.3 15.3 1 +1857 8 29 15.2 15.2 15.2 1 +1857 8 30 17.0 17.0 17.0 1 +1857 8 31 18.4 18.4 18.4 1 +1857 9 1 15.9 15.9 15.9 1 +1857 9 2 16.3 16.3 16.3 1 +1857 9 3 16.6 16.6 16.6 1 +1857 9 4 17.6 17.6 17.6 1 +1857 9 5 19.0 19.0 19.0 1 +1857 9 6 19.5 19.5 19.5 1 +1857 9 7 18.3 18.3 18.3 1 +1857 9 8 16.0 16.0 16.0 1 +1857 9 9 15.4 15.4 15.4 1 +1857 9 10 15.7 15.7 15.7 1 +1857 9 11 18.0 18.0 18.0 1 +1857 9 12 17.8 17.8 17.8 1 +1857 9 13 12.9 12.9 12.9 1 +1857 9 14 8.6 8.6 8.6 1 +1857 9 15 12.8 12.8 12.8 1 +1857 9 16 15.4 15.4 15.4 1 +1857 9 17 9.8 9.8 9.8 1 +1857 9 18 9.4 9.4 9.4 1 +1857 9 19 4.6 4.6 4.6 1 +1857 9 20 7.0 7.0 7.0 1 +1857 9 21 8.6 8.6 8.6 1 +1857 9 22 3.3 3.3 3.3 1 +1857 9 23 4.5 4.5 4.5 1 +1857 9 24 11.4 11.4 11.4 1 +1857 9 25 11.2 11.2 11.2 1 +1857 9 26 12.6 12.6 12.6 1 +1857 9 27 12.9 12.9 12.9 1 +1857 9 28 14.8 14.8 14.8 1 +1857 9 29 13.3 13.3 13.3 1 +1857 9 30 11.1 11.1 11.1 1 +1857 10 1 11.2 11.2 11.2 1 +1857 10 2 10.7 10.7 10.7 1 +1857 10 3 12.1 12.1 12.1 1 +1857 10 4 10.1 10.1 10.1 1 +1857 10 5 9.9 9.9 9.9 1 +1857 10 6 11.1 11.1 11.1 1 +1857 10 7 9.8 9.8 9.8 1 +1857 10 8 10.0 10.0 10.0 1 +1857 10 9 11.6 11.6 11.6 1 +1857 10 10 10.5 10.5 10.5 1 +1857 10 11 8.7 8.7 8.7 1 +1857 10 12 10.0 10.0 10.0 1 +1857 10 13 10.6 10.6 10.6 1 +1857 10 14 12.5 12.5 12.5 1 +1857 10 15 11.2 11.2 11.2 1 +1857 10 16 8.8 8.8 8.8 1 +1857 10 17 3.5 3.5 3.5 1 +1857 10 18 4.9 4.9 4.9 1 +1857 10 19 7.8 7.8 7.8 1 +1857 10 20 10.3 10.3 10.3 1 +1857 10 21 10.8 10.8 10.8 1 +1857 10 22 10.2 10.2 10.2 1 +1857 10 23 6.9 6.9 6.9 1 +1857 10 24 8.1 8.1 8.1 1 +1857 10 25 7.4 7.4 7.4 1 +1857 10 26 5.1 5.1 5.1 1 +1857 10 27 7.4 7.4 7.4 1 +1857 10 28 8.2 8.2 8.2 1 +1857 10 29 9.1 9.1 9.1 1 +1857 10 30 10.0 10.0 10.0 1 +1857 10 31 8.4 8.4 8.4 1 +1857 11 1 7.8 7.8 7.8 1 +1857 11 2 8.4 8.4 8.4 1 +1857 11 3 5.9 5.9 5.9 1 +1857 11 4 6.3 6.3 6.3 1 +1857 11 5 6.4 6.4 6.4 1 +1857 11 6 3.9 3.9 3.9 1 +1857 11 7 2.4 2.4 2.4 1 +1857 11 8 2.0 2.0 2.0 1 +1857 11 9 1.5 1.5 1.5 1 +1857 11 10 3.4 3.4 3.4 1 +1857 11 11 3.1 3.1 3.1 1 +1857 11 12 3.3 3.3 3.3 1 +1857 11 13 6.5 6.5 6.5 1 +1857 11 14 7.7 7.7 7.7 1 +1857 11 15 6.0 6.0 6.0 1 +1857 11 16 3.0 3.0 3.0 1 +1857 11 17 -1.7 -1.7 -1.7 1 +1857 11 18 0.3 0.3 0.3 1 +1857 11 19 1.0 1.0 1.0 1 +1857 11 20 2.2 2.2 2.2 1 +1857 11 21 4.0 4.0 4.0 1 +1857 11 22 6.8 6.8 6.8 1 +1857 11 23 7.8 7.8 7.8 1 +1857 11 24 -3.7 -3.7 -3.7 1 +1857 11 25 -3.6 -3.6 -3.6 1 +1857 11 26 -9.2 -9.2 -9.2 1 +1857 11 27 -7.4 -7.4 -7.4 1 +1857 11 28 -0.6 -0.6 -0.6 1 +1857 11 29 3.4 3.4 3.4 1 +1857 11 30 1.2 1.2 1.2 1 +1857 12 1 2.0 2.0 2.0 1 +1857 12 2 3.6 3.6 3.6 1 +1857 12 3 1.3 1.3 1.3 1 +1857 12 4 6.6 6.6 6.6 1 +1857 12 5 2.2 2.2 2.2 1 +1857 12 6 2.6 2.6 2.6 1 +1857 12 7 6.5 6.5 6.5 1 +1857 12 8 6.5 6.5 6.5 1 +1857 12 9 8.4 8.4 8.4 1 +1857 12 10 7.9 7.9 7.9 1 +1857 12 11 5.8 5.8 5.8 1 +1857 12 12 -0.5 -0.5 -0.5 1 +1857 12 13 -2.5 -2.5 -2.5 1 +1857 12 14 -0.1 -0.1 -0.1 1 +1857 12 15 6.6 6.6 6.6 1 +1857 12 16 5.2 5.2 5.2 1 +1857 12 17 7.3 7.3 7.3 1 +1857 12 18 5.3 5.3 5.3 1 +1857 12 19 6.3 6.3 6.3 1 +1857 12 20 4.2 4.2 4.2 1 +1857 12 21 1.3 1.3 1.3 1 +1857 12 22 1.8 1.8 1.8 1 +1857 12 23 3.0 3.0 3.0 1 +1857 12 24 -0.4 -0.4 -0.4 1 +1857 12 25 1.1 1.1 1.1 1 +1857 12 26 -1.4 -1.4 -1.4 1 +1857 12 27 -5.5 -5.5 -5.5 1 +1857 12 28 -6.5 -6.5 -6.5 1 +1857 12 29 -1.3 -1.3 -1.3 1 +1857 12 30 4.4 4.4 4.4 1 +1857 12 31 1.6 1.6 1.6 1 +1858 1 1 0.1 0.1 0.1 1 +1858 1 2 -1.1 -1.1 -1.1 1 +1858 1 3 -3.8 -3.8 -3.8 1 +1858 1 4 -1.9 -1.9 -1.9 1 +1858 1 5 -2.2 -2.2 -2.2 1 +1858 1 6 -2.7 -2.7 -2.7 1 +1858 1 7 0.6 0.6 0.6 1 +1858 1 8 0.1 0.1 0.1 1 +1858 1 9 1.2 1.2 1.2 1 +1858 1 10 4.0 4.0 4.0 1 +1858 1 11 5.4 5.4 5.4 1 +1858 1 12 2.6 2.6 2.6 1 +1858 1 13 3.8 3.8 3.8 1 +1858 1 14 -0.3 -0.3 -0.3 1 +1858 1 15 -0.9 -0.9 -0.9 1 +1858 1 16 -6.0 -6.0 -6.0 1 +1858 1 17 -5.5 -5.5 -5.5 1 +1858 1 18 -2.1 -2.1 -2.1 1 +1858 1 19 -2.0 -2.0 -2.0 1 +1858 1 20 -2.1 -2.1 -2.1 1 +1858 1 21 -9.1 -9.1 -9.1 1 +1858 1 22 -8.0 -8.0 -8.0 1 +1858 1 23 -4.3 -4.3 -4.3 1 +1858 1 24 -5.5 -5.5 -5.5 1 +1858 1 25 -3.9 -3.9 -3.9 1 +1858 1 26 0.7 0.7 0.7 1 +1858 1 27 -2.8 -2.8 -2.8 1 +1858 1 28 -0.1 -0.1 -0.1 1 +1858 1 29 -2.6 -2.6 -2.6 1 +1858 1 30 0.0 0.0 0.0 1 +1858 1 31 1.5 1.5 1.5 1 +1858 2 1 -1.7 -1.7 -1.7 1 +1858 2 2 -4.1 -4.1 -4.1 1 +1858 2 3 -6.5 -6.5 -6.5 1 +1858 2 4 -2.4 -2.4 -2.4 1 +1858 2 5 1.4 1.4 1.4 1 +1858 2 6 2.2 2.2 2.2 1 +1858 2 7 -0.9 -0.9 -0.9 1 +1858 2 8 -2.2 -2.2 -2.2 1 +1858 2 9 -2.5 -2.5 -2.5 1 +1858 2 10 -0.9 -0.9 -0.9 1 +1858 2 11 -1.7 -1.7 -1.7 1 +1858 2 12 -0.9 -0.9 -0.9 1 +1858 2 13 -0.8 -0.8 -0.8 1 +1858 2 14 -2.4 -2.4 -2.4 1 +1858 2 15 -4.3 -4.3 -4.3 1 +1858 2 16 -9.2 -9.2 -9.2 1 +1858 2 17 -9.5 -9.5 -9.5 1 +1858 2 18 1.2 1.2 1.2 1 +1858 2 19 1.0 1.0 1.0 1 +1858 2 20 -3.5 -3.5 -3.5 1 +1858 2 21 -5.1 -5.1 -5.1 1 +1858 2 22 -5.7 -5.7 -5.7 1 +1858 2 23 -5.2 -5.2 -5.2 1 +1858 2 24 -3.8 -3.8 -3.8 1 +1858 2 25 -4.9 -4.9 -4.9 1 +1858 2 26 -4.2 -4.2 -4.2 1 +1858 2 27 -1.1 -1.1 -1.1 1 +1858 2 28 -5.2 -5.2 -5.2 1 +1858 3 1 -11.6 -11.6 -11.6 1 +1858 3 2 -9.1 -9.1 -9.1 1 +1858 3 3 -5.5 -5.5 -5.5 1 +1858 3 4 -4.9 -4.9 -4.9 1 +1858 3 5 -3.0 -3.0 -3.0 1 +1858 3 6 -4.0 -4.0 -4.0 1 +1858 3 7 0.1 0.1 0.1 1 +1858 3 8 -0.8 -0.8 -0.8 1 +1858 3 9 -1.2 -1.2 -1.2 1 +1858 3 10 0.6 0.6 0.6 1 +1858 3 11 -0.6 -0.6 -0.6 1 +1858 3 12 -1.7 -1.7 -1.7 1 +1858 3 13 -1.1 -1.1 -1.1 1 +1858 3 14 0.2 0.2 0.2 1 +1858 3 15 0.5 0.5 0.5 1 +1858 3 16 0.6 0.6 0.6 1 +1858 3 17 3.1 3.1 3.1 1 +1858 3 18 1.8 1.8 1.8 1 +1858 3 19 -0.1 -0.1 -0.1 1 +1858 3 20 1.3 1.3 1.3 1 +1858 3 21 4.9 4.9 4.9 1 +1858 3 22 5.9 5.9 5.9 1 +1858 3 23 8.2 8.2 8.2 1 +1858 3 24 3.2 3.2 3.2 1 +1858 3 25 -0.8 -0.8 -0.8 1 +1858 3 26 -2.4 -2.4 -2.4 1 +1858 3 27 -4.1 -4.1 -4.1 1 +1858 3 28 2.4 2.4 2.4 1 +1858 3 29 5.3 5.3 5.3 1 +1858 3 30 7.1 7.1 7.1 1 +1858 3 31 5.0 5.0 5.0 1 +1858 4 1 4.7 4.7 4.7 1 +1858 4 2 1.4 1.4 1.4 1 +1858 4 3 -0.3 -0.3 -0.3 1 +1858 4 4 0.6 0.6 0.6 1 +1858 4 5 -2.4 -2.4 -2.4 1 +1858 4 6 -1.0 -1.0 -1.0 1 +1858 4 7 -2.6 -2.6 -2.6 1 +1858 4 8 -1.7 -1.7 -1.7 1 +1858 4 9 1.7 1.7 1.7 1 +1858 4 10 2.8 2.8 2.8 1 +1858 4 11 -0.5 -0.5 -0.5 1 +1858 4 12 -1.7 -1.7 -1.7 1 +1858 4 13 1.2 1.2 1.2 1 +1858 4 14 1.9 1.9 1.9 1 +1858 4 15 2.0 2.0 2.0 1 +1858 4 16 5.9 5.9 5.9 1 +1858 4 17 6.4 6.4 6.4 1 +1858 4 18 8.8 8.8 8.8 1 +1858 4 19 10.3 10.3 10.3 1 +1858 4 20 11.3 11.3 11.3 1 +1858 4 21 5.4 5.4 5.4 1 +1858 4 22 1.7 1.7 1.7 1 +1858 4 23 5.7 5.7 5.7 1 +1858 4 24 4.3 4.3 4.3 1 +1858 4 25 6.0 6.0 6.0 1 +1858 4 26 8.1 8.1 8.1 1 +1858 4 27 5.9 5.9 5.9 1 +1858 4 28 7.9 7.9 7.9 1 +1858 4 29 10.8 10.8 10.8 1 +1858 4 30 7.5 7.5 7.5 1 +1858 5 1 7.4 7.4 7.4 1 +1858 5 2 8.7 8.7 8.7 1 +1858 5 3 8.8 8.8 8.8 1 +1858 5 4 7.2 7.2 7.2 1 +1858 5 5 7.9 7.9 7.8 1 +1858 5 6 6.2 6.2 6.1 1 +1858 5 7 5.9 5.9 5.8 1 +1858 5 8 8.4 8.4 8.3 1 +1858 5 9 10.6 10.6 10.5 1 +1858 5 10 11.5 11.5 11.3 1 +1858 5 11 8.9 8.9 8.7 1 +1858 5 12 6.6 6.6 6.4 1 +1858 5 13 9.5 9.5 9.3 1 +1858 5 14 10.0 10.0 9.7 1 +1858 5 15 11.3 11.3 11.0 1 +1858 5 16 12.3 12.3 12.0 1 +1858 5 17 12.8 12.8 12.5 1 +1858 5 18 13.1 13.1 12.8 1 +1858 5 19 13.3 13.3 12.9 1 +1858 5 20 10.4 10.4 10.0 1 +1858 5 21 8.9 8.9 8.5 1 +1858 5 22 11.4 11.4 11.0 1 +1858 5 23 13.4 13.4 12.9 1 +1858 5 24 11.0 11.0 10.5 1 +1858 5 25 11.6 11.6 11.1 1 +1858 5 26 10.2 10.2 9.7 1 +1858 5 27 5.5 5.5 5.0 1 +1858 5 28 8.8 8.8 8.2 1 +1858 5 29 8.3 8.3 7.7 1 +1858 5 30 8.9 8.9 8.3 1 +1858 5 31 9.9 9.9 9.3 1 +1858 6 1 11.6 11.6 10.9 1 +1858 6 2 13.3 13.3 12.6 1 +1858 6 3 15.2 15.2 14.5 1 +1858 6 4 17.9 17.9 17.2 1 +1858 6 5 18.3 18.3 17.6 1 +1858 6 6 19.2 19.2 18.5 1 +1858 6 7 14.4 14.4 13.7 1 +1858 6 8 14.3 14.3 13.6 1 +1858 6 9 16.6 16.6 15.9 1 +1858 6 10 17.1 17.1 16.4 1 +1858 6 11 20.1 20.1 19.4 1 +1858 6 12 20.6 20.6 19.9 1 +1858 6 13 20.1 20.1 19.4 1 +1858 6 14 15.4 15.4 14.7 1 +1858 6 15 18.6 18.6 17.9 1 +1858 6 16 20.8 20.8 20.1 1 +1858 6 17 12.4 12.4 11.7 1 +1858 6 18 14.5 14.5 13.8 1 +1858 6 19 18.6 18.6 17.9 1 +1858 6 20 17.3 17.3 16.6 1 +1858 6 21 14.7 14.7 14.0 1 +1858 6 22 15.6 15.6 14.9 1 +1858 6 23 19.3 19.3 18.6 1 +1858 6 24 19.0 19.0 18.3 1 +1858 6 25 18.1 18.1 17.4 1 +1858 6 26 17.4 17.4 16.7 1 +1858 6 27 17.1 17.1 16.4 1 +1858 6 28 13.3 13.3 12.6 1 +1858 6 29 13.5 13.5 12.8 1 +1858 6 30 15.1 15.1 14.4 1 +1858 7 1 14.0 14.0 13.3 1 +1858 7 2 15.1 15.1 14.4 1 +1858 7 3 15.4 15.4 14.7 1 +1858 7 4 16.8 16.8 16.1 1 +1858 7 5 18.5 18.5 17.8 1 +1858 7 6 17.0 17.0 16.3 1 +1858 7 7 17.9 17.9 17.2 1 +1858 7 8 18.1 18.1 17.4 1 +1858 7 9 18.1 18.1 17.4 1 +1858 7 10 19.5 19.5 18.8 1 +1858 7 11 20.2 20.2 19.5 1 +1858 7 12 19.1 19.1 18.4 1 +1858 7 13 21.0 21.0 20.3 1 +1858 7 14 21.1 21.1 20.4 1 +1858 7 15 23.3 23.3 22.6 1 +1858 7 16 24.2 24.2 23.5 1 +1858 7 17 22.8 22.8 22.1 1 +1858 7 18 23.5 23.5 22.8 1 +1858 7 19 24.3 24.3 23.6 1 +1858 7 20 24.2 24.2 23.5 1 +1858 7 21 25.2 25.2 24.5 1 +1858 7 22 25.1 25.1 24.4 1 +1858 7 23 20.6 20.6 19.9 1 +1858 7 24 21.3 21.3 20.6 1 +1858 7 25 19.7 19.7 19.0 1 +1858 7 26 17.9 17.9 17.2 1 +1858 7 27 17.0 17.0 16.3 1 +1858 7 28 18.0 18.0 17.3 1 +1858 7 29 19.5 19.5 18.8 1 +1858 7 30 19.9 19.9 19.2 1 +1858 7 31 19.4 19.4 18.7 1 +1858 8 1 19.2 19.2 18.6 1 +1858 8 2 18.0 18.0 17.4 1 +1858 8 3 16.6 16.6 16.0 1 +1858 8 4 17.9 17.9 17.3 1 +1858 8 5 19.1 19.1 18.6 1 +1858 8 6 21.0 21.0 20.5 1 +1858 8 7 19.0 19.0 18.5 1 +1858 8 8 18.5 18.5 18.0 1 +1858 8 9 15.7 15.7 15.2 1 +1858 8 10 20.2 20.2 19.8 1 +1858 8 11 19.9 19.9 19.5 1 +1858 8 12 21.0 21.0 20.6 1 +1858 8 13 20.5 20.5 20.1 1 +1858 8 14 22.8 22.8 22.5 1 +1858 8 15 22.1 22.1 21.8 1 +1858 8 16 20.6 20.6 20.3 1 +1858 8 17 19.7 19.7 19.4 1 +1858 8 18 21.9 21.9 21.6 1 +1858 8 19 22.1 22.1 21.9 1 +1858 8 20 19.9 19.9 19.7 1 +1858 8 21 18.5 18.5 18.3 1 +1858 8 22 19.4 19.4 19.2 1 +1858 8 23 20.1 20.1 20.0 1 +1858 8 24 19.6 19.6 19.5 1 +1858 8 25 18.4 18.4 18.3 1 +1858 8 26 16.2 16.2 16.1 1 +1858 8 27 15.3 15.3 15.2 1 +1858 8 28 14.2 14.2 14.2 1 +1858 8 29 18.4 18.4 18.4 1 +1858 8 30 19.1 19.1 19.1 1 +1858 8 31 18.0 18.0 18.0 1 +1858 9 1 16.3 16.3 16.3 1 +1858 9 2 17.3 17.3 17.3 1 +1858 9 3 16.7 16.7 16.7 1 +1858 9 4 18.2 18.2 18.2 1 +1858 9 5 17.1 17.1 17.1 1 +1858 9 6 17.2 17.2 17.2 1 +1858 9 7 15.1 15.1 15.1 1 +1858 9 8 15.7 15.7 15.7 1 +1858 9 9 15.8 15.8 15.8 1 +1858 9 10 17.3 17.3 17.3 1 +1858 9 11 18.1 18.1 18.1 1 +1858 9 12 18.1 18.1 18.1 1 +1858 9 13 19.1 19.1 19.1 1 +1858 9 14 11.3 11.3 11.3 1 +1858 9 15 13.3 13.3 13.3 1 +1858 9 16 13.2 13.2 13.2 1 +1858 9 17 11.6 11.6 11.6 1 +1858 9 18 11.7 11.7 11.7 1 +1858 9 19 12.8 12.8 12.8 1 +1858 9 20 13.6 13.6 13.6 1 +1858 9 21 14.9 14.9 14.9 1 +1858 9 22 16.0 16.0 16.0 1 +1858 9 23 15.5 15.5 15.5 1 +1858 9 24 16.2 16.2 16.2 1 +1858 9 25 15.9 15.9 15.9 1 +1858 9 26 14.2 14.2 14.2 1 +1858 9 27 12.3 12.3 12.3 1 +1858 9 28 15.3 15.3 15.3 1 +1858 9 29 10.5 10.5 10.5 1 +1858 9 30 11.3 11.3 11.3 1 +1858 10 1 12.8 12.8 12.8 1 +1858 10 2 10.4 10.4 10.4 1 +1858 10 3 8.5 8.5 8.5 1 +1858 10 4 8.8 8.8 8.8 1 +1858 10 5 13.3 13.3 13.3 1 +1858 10 6 11.3 11.3 11.3 1 +1858 10 7 8.3 8.3 8.3 1 +1858 10 8 10.6 10.6 10.6 1 +1858 10 9 7.1 7.1 7.1 1 +1858 10 10 7.9 7.9 7.9 1 +1858 10 11 7.7 7.7 7.7 1 +1858 10 12 10.4 10.4 10.4 1 +1858 10 13 10.5 10.5 10.5 1 +1858 10 14 9.8 9.8 9.8 1 +1858 10 15 11.7 11.7 11.7 1 +1858 10 16 9.0 9.0 9.0 1 +1858 10 17 7.3 7.3 7.3 1 +1858 10 18 3.3 3.3 3.3 1 +1858 10 19 3.0 3.0 3.0 1 +1858 10 20 3.0 3.0 3.0 1 +1858 10 21 4.0 4.0 4.0 1 +1858 10 22 4.8 4.8 4.8 1 +1858 10 23 6.2 6.2 6.2 1 +1858 10 24 7.9 7.9 7.9 1 +1858 10 25 5.8 5.8 5.8 1 +1858 10 26 3.4 3.4 3.4 1 +1858 10 27 9.0 9.0 9.0 1 +1858 10 28 5.1 5.1 5.1 1 +1858 10 29 0.1 0.1 0.1 1 +1858 10 30 -1.7 -1.7 -1.7 1 +1858 10 31 0.6 0.6 0.6 1 +1858 11 1 2.4 2.4 2.4 1 +1858 11 2 6.3 6.3 6.3 1 +1858 11 3 6.7 6.7 6.7 1 +1858 11 4 7.0 7.0 7.0 1 +1858 11 5 3.9 3.9 3.9 1 +1858 11 6 -1.5 -1.5 -1.5 1 +1858 11 7 -4.8 -4.8 -4.8 1 +1858 11 8 -6.0 -6.0 -6.0 1 +1858 11 9 -0.6 -0.6 -0.6 1 +1858 11 10 -1.0 -1.0 -1.0 1 +1858 11 11 -1.3 -1.3 -1.3 1 +1858 11 12 0.2 0.2 0.2 1 +1858 11 13 -2.4 -2.4 -2.4 1 +1858 11 14 -5.3 -5.3 -5.3 1 +1858 11 15 -4.9 -4.9 -4.9 1 +1858 11 16 -2.4 -2.4 -2.4 1 +1858 11 17 -2.5 -2.5 -2.5 1 +1858 11 18 -6.6 -6.6 -6.6 1 +1858 11 19 -3.6 -3.6 -3.6 1 +1858 11 20 -6.6 -6.6 -6.6 1 +1858 11 21 -5.5 -5.5 -5.5 1 +1858 11 22 -1.1 -1.1 -1.1 1 +1858 11 23 -4.4 -4.4 -4.4 1 +1858 11 24 -3.1 -3.1 -3.1 1 +1858 11 25 -6.7 -6.7 -6.7 1 +1858 11 26 -6.6 -6.6 -6.6 1 +1858 11 27 1.3 1.3 1.3 1 +1858 11 28 0.0 0.0 0.0 1 +1858 11 29 2.5 2.5 2.5 1 +1858 11 30 2.8 2.8 2.8 1 +1858 12 1 3.1 3.1 3.1 1 +1858 12 2 3.4 3.4 3.4 1 +1858 12 3 2.0 2.0 2.0 1 +1858 12 4 2.5 2.5 2.5 1 +1858 12 5 1.1 1.1 1.1 1 +1858 12 6 2.2 2.2 2.2 1 +1858 12 7 1.1 1.1 1.1 1 +1858 12 8 1.8 1.8 1.8 1 +1858 12 9 1.9 1.9 1.9 1 +1858 12 10 -0.7 -0.7 -0.7 1 +1858 12 11 -0.7 -0.7 -0.7 1 +1858 12 12 -1.3 -1.3 -1.3 1 +1858 12 13 -1.1 -1.1 -1.1 1 +1858 12 14 0.8 0.8 0.8 1 +1858 12 15 1.6 1.6 1.6 1 +1858 12 16 -2.8 -2.8 -2.8 1 +1858 12 17 -2.9 -2.9 -2.9 1 +1858 12 18 -1.5 -1.5 -1.5 1 +1858 12 19 -1.1 -1.1 -1.1 1 +1858 12 20 -0.5 -0.5 -0.5 1 +1858 12 21 0.0 0.0 0.0 1 +1858 12 22 1.3 1.3 1.3 1 +1858 12 23 3.4 3.4 3.4 1 +1858 12 24 3.7 3.7 3.7 1 +1858 12 25 -1.8 -1.8 -1.8 1 +1858 12 26 -4.2 -4.2 -4.2 1 +1858 12 27 -4.5 -4.5 -4.5 1 +1858 12 28 -4.1 -4.1 -4.1 1 +1858 12 29 -5.7 -5.7 -5.7 1 +1858 12 30 -10.9 -10.9 -10.9 1 +1858 12 31 -9.0 -9.0 -9.0 1 +1859 1 1 0.2 0.2 0.2 1 +1859 1 2 0.6 0.6 0.6 1 +1859 1 3 3.1 3.1 3.1 1 +1859 1 4 -0.4 -0.4 -0.4 1 +1859 1 5 -0.6 -0.6 -0.6 1 +1859 1 6 0.5 0.5 0.5 1 +1859 1 7 -3.0 -3.0 -3.0 1 +1859 1 8 -8.9 -8.9 -8.9 1 +1859 1 9 -3.0 -3.0 -3.0 1 +1859 1 10 4.4 4.4 4.4 1 +1859 1 11 0.8 0.8 0.8 1 +1859 1 12 -3.4 -3.4 -3.4 1 +1859 1 13 -5.9 -5.9 -5.9 1 +1859 1 14 -6.1 -6.1 -6.1 1 +1859 1 15 -0.1 -0.1 -0.1 1 +1859 1 16 -0.6 -0.6 -0.6 1 +1859 1 17 0.1 0.1 0.1 1 +1859 1 18 1.6 1.6 1.6 1 +1859 1 19 5.2 5.2 5.2 1 +1859 1 20 0.2 0.2 0.2 1 +1859 1 21 2.7 2.7 2.7 1 +1859 1 22 2.5 2.5 2.5 1 +1859 1 23 1.4 1.4 1.4 1 +1859 1 24 1.1 1.1 1.1 1 +1859 1 25 3.9 3.9 3.9 1 +1859 1 26 3.6 3.6 3.6 1 +1859 1 27 2.2 2.2 2.2 1 +1859 1 28 -0.1 -0.1 -0.1 1 +1859 1 29 0.4 0.4 0.4 1 +1859 1 30 2.5 2.5 2.5 1 +1859 1 31 2.1 2.1 2.1 1 +1859 2 1 0.9 0.9 0.9 1 +1859 2 2 1.6 1.6 1.6 1 +1859 2 3 0.4 0.4 0.4 1 +1859 2 4 -4.4 -4.4 -4.4 1 +1859 2 5 1.6 1.6 1.6 1 +1859 2 6 1.1 1.1 1.1 1 +1859 2 7 1.2 1.2 1.2 1 +1859 2 8 -0.3 -0.3 -0.3 1 +1859 2 9 -0.5 -0.5 -0.5 1 +1859 2 10 0.2 0.2 0.2 1 +1859 2 11 1.7 1.7 1.7 1 +1859 2 12 3.2 3.2 3.2 1 +1859 2 13 2.6 2.6 2.6 1 +1859 2 14 1.7 1.7 1.7 1 +1859 2 15 2.2 2.2 2.2 1 +1859 2 16 2.8 2.8 2.8 1 +1859 2 17 2.1 2.1 2.1 1 +1859 2 18 -3.8 -3.8 -3.8 1 +1859 2 19 -2.0 -2.0 -2.0 1 +1859 2 20 -1.9 -1.9 -1.9 1 +1859 2 21 3.6 3.6 3.6 1 +1859 2 22 4.9 4.9 4.9 1 +1859 2 23 -2.1 -2.1 -2.1 1 +1859 2 24 -4.7 -4.7 -4.7 1 +1859 2 25 -3.6 -3.6 -3.6 1 +1859 2 26 -2.5 -2.5 -2.5 1 +1859 2 27 -0.6 -0.6 -0.6 1 +1859 2 28 -1.5 -1.5 -1.5 1 +1859 3 1 -2.9 -2.9 -2.9 1 +1859 3 2 0.3 0.3 0.3 1 +1859 3 3 0.1 0.1 0.1 1 +1859 3 4 1.6 1.6 1.6 1 +1859 3 5 5.1 5.1 5.1 1 +1859 3 6 3.4 3.4 3.4 1 +1859 3 7 1.7 1.7 1.7 1 +1859 3 8 3.8 3.8 3.8 1 +1859 3 9 1.5 1.5 1.5 1 +1859 3 10 -3.5 -3.5 -3.5 1 +1859 3 11 0.9 0.9 0.9 1 +1859 3 12 4.3 4.3 4.3 1 +1859 3 13 1.8 1.8 1.8 1 +1859 3 14 -2.7 -2.7 -2.7 1 +1859 3 15 -1.6 -1.6 -1.6 1 +1859 3 16 -1.5 -1.5 -1.5 1 +1859 3 17 0.9 0.9 0.9 1 +1859 3 18 5.6 5.6 5.6 1 +1859 3 19 4.0 4.0 4.0 1 +1859 3 20 3.9 3.9 3.9 1 +1859 3 21 5.3 5.3 5.3 1 +1859 3 22 3.4 3.4 3.4 1 +1859 3 23 -1.4 -1.4 -1.4 1 +1859 3 24 -7.6 -7.6 -7.6 1 +1859 3 25 -7.2 -7.2 -7.2 1 +1859 3 26 -6.3 -6.3 -6.3 1 +1859 3 27 -4.3 -4.3 -4.3 1 +1859 3 28 2.0 2.0 2.0 1 +1859 3 29 6.8 6.8 6.8 1 +1859 3 30 4.0 4.0 4.0 1 +1859 3 31 0.6 0.6 0.6 1 +1859 4 1 -1.2 -1.2 -1.2 1 +1859 4 2 1.1 1.1 1.1 1 +1859 4 3 0.3 0.3 0.3 1 +1859 4 4 0.4 0.4 0.4 1 +1859 4 5 -1.5 -1.5 -1.5 1 +1859 4 6 0.8 0.8 0.8 1 +1859 4 7 5.2 5.2 5.2 1 +1859 4 8 9.7 9.7 9.7 1 +1859 4 9 7.0 7.0 7.0 1 +1859 4 10 -0.8 -0.8 -0.8 1 +1859 4 11 -0.1 -0.1 -0.1 1 +1859 4 12 -0.5 -0.5 -0.5 1 +1859 4 13 1.6 1.6 1.6 1 +1859 4 14 2.9 2.9 2.9 1 +1859 4 15 0.8 0.8 0.8 1 +1859 4 16 1.5 1.5 1.5 1 +1859 4 17 2.3 2.3 2.3 1 +1859 4 18 1.4 1.4 1.4 1 +1859 4 19 1.6 1.6 1.6 1 +1859 4 20 2.5 2.5 2.5 1 +1859 4 21 4.9 4.9 4.9 1 +1859 4 22 5.3 5.3 5.3 1 +1859 4 23 5.1 5.1 5.1 1 +1859 4 24 4.6 4.6 4.6 1 +1859 4 25 3.7 3.7 3.7 1 +1859 4 26 2.5 2.5 2.5 1 +1859 4 27 0.7 0.7 0.7 1 +1859 4 28 2.4 2.4 2.4 1 +1859 4 29 1.7 1.7 1.7 1 +1859 4 30 1.4 1.4 1.4 1 +1859 5 1 1.6 1.6 1.6 1 +1859 5 2 5.1 5.1 5.1 1 +1859 5 3 1.5 1.5 1.5 1 +1859 5 4 5.3 5.3 5.3 1 +1859 5 5 3.3 3.3 3.3 1 +1859 5 6 3.4 3.4 3.4 1 +1859 5 7 2.9 2.9 2.9 1 +1859 5 8 5.9 5.9 5.9 1 +1859 5 9 6.0 6.0 6.0 1 +1859 5 10 6.2 6.2 6.2 1 +1859 5 11 4.1 4.1 4.1 1 +1859 5 12 3.5 3.5 3.5 1 +1859 5 13 5.2 5.2 5.2 1 +1859 5 14 9.6 9.6 9.6 1 +1859 5 15 11.9 11.9 11.9 1 +1859 5 16 12.2 12.2 12.2 1 +1859 5 17 13.7 13.7 13.7 1 +1859 5 18 11.6 11.6 11.6 1 +1859 5 19 11.2 11.2 11.2 1 +1859 5 20 13.1 13.1 13.1 1 +1859 5 21 8.9 8.9 8.9 1 +1859 5 22 8.6 8.6 8.6 1 +1859 5 23 10.6 10.6 10.6 1 +1859 5 24 12.3 12.3 12.3 1 +1859 5 25 14.6 14.6 14.6 1 +1859 5 26 17.8 17.8 17.8 1 +1859 5 27 19.5 19.5 19.5 1 +1859 5 28 18.7 18.7 18.7 1 +1859 5 29 17.8 17.8 17.8 1 +1859 5 30 14.4 14.4 14.4 1 +1859 5 31 19.6 19.6 19.6 1 +1859 6 1 17.5 17.5 17.5 1 +1859 6 2 15.9 15.9 15.9 1 +1859 6 3 8.9 8.9 8.9 1 +1859 6 4 9.1 9.1 9.1 1 +1859 6 5 11.8 11.8 11.8 1 +1859 6 6 17.0 17.0 17.0 1 +1859 6 7 17.5 17.5 17.5 1 +1859 6 8 18.3 18.3 18.3 1 +1859 6 9 16.9 16.9 16.9 1 +1859 6 10 10.7 10.7 10.7 1 +1859 6 11 13.2 13.2 13.2 1 +1859 6 12 17.3 17.3 17.3 1 +1859 6 13 18.9 18.9 18.9 1 +1859 6 14 15.4 15.4 15.4 1 +1859 6 15 13.5 13.5 13.5 1 +1859 6 16 12.9 12.9 12.9 1 +1859 6 17 11.8 11.8 11.8 1 +1859 6 18 13.1 13.1 13.1 1 +1859 6 19 17.3 17.3 17.3 1 +1859 6 20 20.4 20.4 20.4 1 +1859 6 21 19.6 19.6 19.6 1 +1859 6 22 19.2 19.2 19.2 1 +1859 6 23 15.9 15.9 15.9 1 +1859 6 24 14.3 14.3 14.3 1 +1859 6 25 14.6 14.6 14.6 1 +1859 6 26 17.6 17.6 17.6 1 +1859 6 27 20.4 20.4 20.4 1 +1859 6 28 20.2 20.2 20.2 1 +1859 6 29 18.1 18.1 18.1 1 +1859 6 30 17.6 17.6 17.6 1 +1859 7 1 18.4 18.4 18.4 1 +1859 7 2 16.9 16.9 16.9 1 +1859 7 3 18.2 18.2 18.2 1 +1859 7 4 16.3 16.3 16.3 1 +1859 7 5 17.4 17.4 17.4 1 +1859 7 6 21.1 21.1 21.1 1 +1859 7 7 18.7 18.7 18.7 1 +1859 7 8 15.0 15.0 15.0 1 +1859 7 9 15.8 15.8 15.8 1 +1859 7 10 17.5 17.5 17.5 1 +1859 7 11 20.0 20.0 20.0 1 +1859 7 12 20.9 20.9 20.9 1 +1859 7 13 17.1 17.1 17.1 1 +1859 7 14 13.9 13.9 13.9 1 +1859 7 15 15.5 15.5 15.5 1 +1859 7 16 15.3 15.3 15.3 1 +1859 7 17 19.9 19.9 19.9 1 +1859 7 18 17.1 17.1 17.1 1 +1859 7 19 16.2 16.2 16.2 1 +1859 7 20 14.4 14.4 14.4 1 +1859 7 21 19.4 19.4 19.4 1 +1859 7 22 20.0 20.0 20.0 1 +1859 7 23 14.8 14.8 14.8 1 +1859 7 24 14.2 14.2 14.2 1 +1859 7 25 14.8 14.8 14.8 1 +1859 7 26 18.3 18.3 18.3 1 +1859 7 27 17.5 17.5 17.5 1 +1859 7 28 18.7 18.7 18.7 1 +1859 7 29 16.6 16.6 16.6 1 +1859 7 30 13.1 13.1 13.1 1 +1859 7 31 15.3 15.3 15.3 1 +1859 8 1 16.7 16.7 16.7 1 +1859 8 2 15.7 15.7 15.7 1 +1859 8 3 16.1 16.1 16.1 1 +1859 8 4 17.2 17.2 17.2 1 +1859 8 5 18.0 18.0 18.0 1 +1859 8 6 16.7 16.7 16.7 1 +1859 8 7 16.3 16.3 16.3 1 +1859 8 8 15.6 15.6 15.6 1 +1859 8 9 14.1 14.1 14.1 1 +1859 8 10 14.2 14.2 14.2 1 +1859 8 11 14.7 14.7 14.7 1 +1859 8 12 18.2 18.2 18.2 1 +1859 8 13 17.8 17.8 17.8 1 +1859 8 14 19.7 19.7 19.7 1 +1859 8 15 17.2 17.2 17.2 1 +1859 8 16 16.0 16.0 16.0 1 +1859 8 17 16.8 16.8 16.8 1 +1859 8 18 19.3 19.3 19.3 1 +1859 8 19 20.2 20.2 20.2 1 +1859 8 20 19.3 19.3 19.3 1 +1859 8 21 14.3 14.3 14.3 1 +1859 8 22 15.1 15.1 15.1 1 +1859 8 23 17.0 17.0 17.0 1 +1859 8 24 17.2 17.2 17.2 1 +1859 8 25 17.7 17.7 17.7 1 +1859 8 26 18.5 18.5 18.5 1 +1859 8 27 14.4 14.4 14.4 1 +1859 8 28 17.3 17.3 17.3 1 +1859 8 29 15.8 15.8 15.8 1 +1859 8 30 17.3 17.3 17.3 1 +1859 8 31 18.5 18.5 18.5 1 +1859 9 1 13.9 13.9 13.9 1 +1859 9 2 13.8 13.8 13.8 1 +1859 9 3 14.9 14.9 14.9 1 +1859 9 4 14.1 14.1 14.1 1 +1859 9 5 13.0 13.0 13.0 1 +1859 9 6 13.0 13.0 13.0 1 +1859 9 7 13.2 13.2 13.2 1 +1859 9 8 14.0 14.0 14.0 1 +1859 9 9 13.0 13.0 13.0 1 +1859 9 10 14.4 14.4 14.4 1 +1859 9 11 12.4 12.4 12.4 1 +1859 9 12 12.0 12.0 12.0 1 +1859 9 13 13.5 13.5 13.5 1 +1859 9 14 11.8 11.8 11.8 1 +1859 9 15 8.1 8.1 8.1 1 +1859 9 16 5.8 5.8 5.8 1 +1859 9 17 6.3 6.3 6.3 1 +1859 9 18 6.4 6.4 6.4 1 +1859 9 19 7.8 7.8 7.8 1 +1859 9 20 9.9 9.9 9.9 1 +1859 9 21 10.1 10.1 10.1 1 +1859 9 22 10.6 10.6 10.6 1 +1859 9 23 9.3 9.3 9.3 1 +1859 9 24 12.5 12.5 12.5 1 +1859 9 25 17.0 17.0 17.0 1 +1859 9 26 15.1 15.1 15.1 1 +1859 9 27 12.4 12.4 12.4 1 +1859 9 28 10.3 10.3 10.3 1 +1859 9 29 10.7 10.7 10.7 1 +1859 9 30 12.4 12.4 12.4 1 +1859 10 1 10.5 10.5 10.5 1 +1859 10 2 7.7 7.7 7.7 1 +1859 10 3 8.6 8.6 8.6 1 +1859 10 4 9.7 9.7 9.7 1 +1859 10 5 10.7 10.7 10.7 1 +1859 10 6 10.4 10.4 10.4 1 +1859 10 7 9.1 9.1 9.1 1 +1859 10 8 8.1 8.1 8.1 1 +1859 10 9 6.9 6.9 6.9 1 +1859 10 10 5.9 5.9 5.9 1 +1859 10 11 4.9 4.9 4.9 1 +1859 10 12 6.3 6.3 6.3 1 +1859 10 13 6.7 6.7 6.7 1 +1859 10 14 6.4 6.4 6.4 1 +1859 10 15 6.6 6.6 6.6 1 +1859 10 16 6.9 6.9 6.9 1 +1859 10 17 6.5 6.5 6.5 1 +1859 10 18 2.0 2.0 2.0 1 +1859 10 19 1.3 1.3 1.3 1 +1859 10 20 0.4 0.4 0.4 1 +1859 10 21 -0.5 -0.5 -0.5 1 +1859 10 22 0.6 0.6 0.6 1 +1859 10 23 2.0 2.0 2.0 1 +1859 10 24 2.9 2.9 2.9 1 +1859 10 25 3.8 3.8 3.8 1 +1859 10 26 5.5 5.5 5.5 1 +1859 10 27 6.5 6.5 6.5 1 +1859 10 28 5.4 5.4 5.4 1 +1859 10 29 5.8 5.8 5.8 1 +1859 10 30 6.9 6.9 6.9 1 +1859 10 31 3.2 3.2 3.2 1 +1859 11 1 2.9 2.9 2.9 1 +1859 11 2 3.3 3.3 3.3 1 +1859 11 3 1.0 1.0 1.0 1 +1859 11 4 0.5 0.5 0.5 1 +1859 11 5 6.4 6.4 6.4 1 +1859 11 6 7.7 7.7 7.7 1 +1859 11 7 9.1 9.1 9.1 1 +1859 11 8 4.9 4.9 4.9 1 +1859 11 9 0.3 0.3 0.3 1 +1859 11 10 -1.0 -1.0 -1.0 1 +1859 11 11 0.1 0.1 0.1 1 +1859 11 12 0.7 0.7 0.7 1 +1859 11 13 2.4 2.4 2.4 1 +1859 11 14 1.7 1.7 1.7 1 +1859 11 15 2.3 2.3 2.3 1 +1859 11 16 1.2 1.2 1.2 1 +1859 11 17 1.3 1.3 1.3 1 +1859 11 18 1.8 1.8 1.8 1 +1859 11 19 2.0 2.0 2.0 1 +1859 11 20 2.6 2.6 2.6 1 +1859 11 21 1.3 1.3 1.3 1 +1859 11 22 1.6 1.6 1.6 1 +1859 11 23 2.8 2.8 2.8 1 +1859 11 24 -0.1 -0.1 -0.1 1 +1859 11 25 -1.1 -1.1 -1.1 1 +1859 11 26 0.6 0.6 0.6 1 +1859 11 27 2.8 2.8 2.8 1 +1859 11 28 3.7 3.7 3.7 1 +1859 11 29 1.2 1.2 1.2 1 +1859 11 30 -2.5 -2.5 -2.5 1 +1859 12 1 -6.7 -6.7 -6.7 1 +1859 12 2 -7.3 -7.3 -7.3 1 +1859 12 3 -3.0 -3.0 -3.0 1 +1859 12 4 -2.3 -2.3 -2.3 1 +1859 12 5 -0.3 -0.3 -0.3 1 +1859 12 6 2.3 2.3 2.3 1 +1859 12 7 4.0 4.0 4.0 1 +1859 12 8 1.7 1.7 1.7 1 +1859 12 9 -0.6 -0.6 -0.6 1 +1859 12 10 1.0 1.0 1.0 1 +1859 12 11 0.8 0.8 0.8 1 +1859 12 12 -1.6 -1.6 -1.6 1 +1859 12 13 -8.8 -8.8 -8.8 1 +1859 12 14 -4.7 -4.7 -4.7 1 +1859 12 15 -10.7 -10.7 -10.7 1 +1859 12 16 -15.1 -15.1 -15.1 1 +1859 12 17 -15.0 -15.0 -15.0 1 +1859 12 18 -10.4 -10.4 -10.4 1 +1859 12 19 -16.0 -16.0 -16.0 1 +1859 12 20 -10.4 -10.4 -10.4 1 +1859 12 21 -6.6 -6.6 -6.6 1 +1859 12 22 0.3 0.3 0.3 1 +1859 12 23 0.6 0.6 0.6 1 +1859 12 24 -1.9 -1.9 -1.9 1 +1859 12 25 0.1 0.1 0.1 1 +1859 12 26 2.0 2.0 2.0 1 +1859 12 27 2.2 2.2 2.2 1 +1859 12 28 1.6 1.6 1.6 1 +1859 12 29 1.5 1.5 1.5 1 +1859 12 30 2.0 2.0 2.0 1 +1859 12 31 2.2 2.2 2.2 1 +1860 1 1 1.2 1.2 1.2 1 +1860 1 2 2.8 2.8 2.8 1 +1860 1 3 2.1 2.1 2.1 1 +1860 1 4 2.3 2.3 2.3 1 +1860 1 5 3.3 3.3 3.3 1 +1860 1 6 2.2 2.2 2.2 1 +1860 1 7 0.1 0.1 0.1 1 +1860 1 8 -5.7 -5.7 -5.7 1 +1860 1 9 -3.8 -3.8 -3.8 1 +1860 1 10 -7.0 -7.0 -7.0 1 +1860 1 11 -2.6 -2.6 -2.6 1 +1860 1 12 -1.8 -1.8 -1.8 1 +1860 1 13 -3.4 -3.4 -3.4 1 +1860 1 14 -1.8 -1.8 -1.8 1 +1860 1 15 -2.8 -2.8 -2.8 1 +1860 1 16 -1.5 -1.5 -1.5 1 +1860 1 17 -1.3 -1.3 -1.3 1 +1860 1 18 -1.2 -1.2 -1.2 1 +1860 1 19 -4.0 -4.0 -4.0 1 +1860 1 20 -6.8 -6.8 -6.8 1 +1860 1 21 -2.8 -2.8 -2.8 1 +1860 1 22 -4.0 -4.0 -4.0 1 +1860 1 23 -6.2 -6.2 -6.2 1 +1860 1 24 -3.8 -3.8 -3.8 1 +1860 1 25 1.1 1.1 1.1 1 +1860 1 26 0.5 0.5 0.5 1 +1860 1 27 -4.7 -4.7 -4.7 1 +1860 1 28 0.8 0.8 0.8 1 +1860 1 29 -3.1 -3.1 -3.1 1 +1860 1 30 -0.5 -0.5 -0.5 1 +1860 1 31 -3.0 -3.0 -3.0 1 +1860 2 1 0.4 0.4 0.4 1 +1860 2 2 0.0 0.0 0.0 1 +1860 2 3 -4.5 -4.5 -4.5 1 +1860 2 4 -0.9 -0.9 -0.9 1 +1860 2 5 -0.3 -0.3 -0.3 1 +1860 2 6 -3.5 -3.5 -3.5 1 +1860 2 7 -7.5 -7.5 -7.5 1 +1860 2 8 -9.6 -9.6 -9.6 1 +1860 2 9 -13.2 -13.2 -13.2 1 +1860 2 10 -14.8 -14.8 -14.8 1 +1860 2 11 -16.5 -16.5 -16.5 1 +1860 2 12 -13.7 -13.7 -13.7 1 +1860 2 13 -14.7 -14.7 -14.7 1 +1860 2 14 -4.5 -4.5 -4.5 1 +1860 2 15 0.0 0.0 0.0 1 +1860 2 16 -8.8 -8.8 -8.8 1 +1860 2 17 -4.4 -4.4 -4.4 1 +1860 2 18 -6.7 -6.7 -6.7 1 +1860 2 19 -1.3 -1.3 -1.3 1 +1860 2 20 -4.1 -4.1 -4.1 1 +1860 2 21 -15.2 -15.2 -15.2 1 +1860 2 22 -18.8 -18.8 -18.8 1 +1860 2 23 -7.6 -7.6 -7.6 1 +1860 2 24 -1.4 -1.4 -1.4 1 +1860 2 25 -4.8 -4.8 -4.8 1 +1860 2 26 -4.3 -4.3 -4.3 1 +1860 2 27 -1.5 -1.5 -1.5 1 +1860 2 28 0.7 0.7 0.7 1 +1860 2 29 0.6 0.6 0.6 1 +1860 3 1 -3.5 -3.5 -3.5 1 +1860 3 2 -6.7 -6.7 -6.7 1 +1860 3 3 -4.1 -4.1 -4.1 1 +1860 3 4 -1.9 -1.9 -1.9 1 +1860 3 5 -3.5 -3.5 -3.5 1 +1860 3 6 -5.3 -5.3 -5.3 1 +1860 3 7 -9.5 -9.5 -9.5 1 +1860 3 8 -8.4 -8.4 -8.4 1 +1860 3 9 -8.9 -8.9 -8.9 1 +1860 3 10 -6.8 -6.8 -6.8 1 +1860 3 11 -6.7 -6.7 -6.7 1 +1860 3 12 -8.5 -8.5 -8.5 1 +1860 3 13 -7.7 -7.7 -7.7 1 +1860 3 14 -4.5 -4.5 -4.5 1 +1860 3 15 -1.1 -1.1 -1.1 1 +1860 3 16 -3.4 -3.4 -3.4 1 +1860 3 17 -2.1 -2.1 -2.1 1 +1860 3 18 1.6 1.6 1.6 1 +1860 3 19 2.1 2.1 2.1 1 +1860 3 20 2.7 2.7 2.7 1 +1860 3 21 1.9 1.9 1.9 1 +1860 3 22 0.6 0.6 0.6 1 +1860 3 23 2.6 2.6 2.6 1 +1860 3 24 0.7 0.7 0.7 1 +1860 3 25 0.1 0.1 0.1 1 +1860 3 26 0.0 0.0 0.0 1 +1860 3 27 0.2 0.2 0.2 1 +1860 3 28 0.9 0.9 0.9 1 +1860 3 29 -2.5 -2.5 -2.5 1 +1860 3 30 -2.7 -2.7 -2.7 1 +1860 3 31 -0.2 -0.2 -0.2 1 +1860 4 1 0.7 0.7 0.7 1 +1860 4 2 4.7 4.7 4.7 1 +1860 4 3 2.2 2.2 2.2 1 +1860 4 4 -2.0 -2.0 -2.0 1 +1860 4 5 1.5 1.5 1.5 1 +1860 4 6 3.1 3.1 3.1 1 +1860 4 7 5.0 5.0 5.0 1 +1860 4 8 3.4 3.4 3.4 1 +1860 4 9 4.1 4.1 4.1 1 +1860 4 10 3.3 3.3 3.3 1 +1860 4 11 3.4 3.4 3.4 1 +1860 4 12 3.6 3.6 3.6 1 +1860 4 13 1.8 1.8 1.8 1 +1860 4 14 1.0 1.0 1.0 1 +1860 4 15 2.2 2.2 2.2 1 +1860 4 16 4.9 4.9 4.9 1 +1860 4 17 6.7 6.7 6.7 1 +1860 4 18 4.0 4.0 4.0 1 +1860 4 19 -1.4 -1.4 -1.4 1 +1860 4 20 1.8 1.8 1.8 1 +1860 4 21 4.8 4.8 4.8 1 +1860 4 22 3.9 3.9 3.9 1 +1860 4 23 4.8 4.8 4.8 1 +1860 4 24 3.3 3.3 3.3 1 +1860 4 25 4.1 4.1 4.1 1 +1860 4 26 4.7 4.7 4.7 1 +1860 4 27 3.7 3.7 3.7 1 +1860 4 28 6.9 6.9 6.9 1 +1860 4 29 6.2 6.2 6.2 1 +1860 4 30 6.4 6.4 6.4 1 +1860 5 1 8.6 8.6 8.6 1 +1860 5 2 6.1 6.1 6.1 1 +1860 5 3 3.1 3.1 3.1 1 +1860 5 4 3.6 3.6 3.6 1 +1860 5 5 3.0 3.0 3.0 1 +1860 5 6 1.5 1.5 1.5 1 +1860 5 7 3.5 3.5 3.5 1 +1860 5 8 4.4 4.4 4.4 1 +1860 5 9 6.5 6.5 6.5 1 +1860 5 10 7.6 7.6 7.6 1 +1860 5 11 8.3 8.3 8.3 1 +1860 5 12 6.8 6.8 6.8 1 +1860 5 13 3.6 3.6 3.6 1 +1860 5 14 2.0 2.0 2.0 1 +1860 5 15 3.5 3.5 3.5 1 +1860 5 16 4.4 4.4 4.4 1 +1860 5 17 6.4 6.4 6.4 1 +1860 5 18 8.0 8.0 8.0 1 +1860 5 19 9.1 9.1 9.1 1 +1860 5 20 13.3 13.3 13.3 1 +1860 5 21 10.4 10.4 10.4 1 +1860 5 22 9.4 9.4 9.4 1 +1860 5 23 10.3 10.3 10.3 1 +1860 5 24 11.5 11.5 11.5 1 +1860 5 25 9.7 9.7 9.7 1 +1860 5 26 11.1 11.1 11.1 1 +1860 5 27 11.2 11.2 11.2 1 +1860 5 28 9.2 9.2 9.2 1 +1860 5 29 10.8 10.8 10.8 1 +1860 5 30 11.1 11.1 11.1 1 +1860 5 31 11.1 11.1 11.1 1 +1860 6 1 12.4 12.4 12.4 1 +1860 6 2 11.7 11.7 11.7 1 +1860 6 3 13.4 13.4 13.4 1 +1860 6 4 14.1 14.1 14.1 1 +1860 6 5 7.6 7.6 7.6 1 +1860 6 6 9.3 9.3 9.3 1 +1860 6 7 11.6 11.6 11.6 1 +1860 6 8 10.2 10.2 10.2 1 +1860 6 9 11.9 11.9 11.9 1 +1860 6 10 11.1 11.1 11.1 1 +1860 6 11 11.9 11.9 11.9 1 +1860 6 12 13.0 13.0 13.0 1 +1860 6 13 14.5 14.5 14.5 1 +1860 6 14 17.7 17.7 17.7 1 +1860 6 15 18.0 18.0 18.0 1 +1860 6 16 17.2 17.2 17.2 1 +1860 6 17 19.3 19.3 19.3 1 +1860 6 18 15.9 15.9 15.9 1 +1860 6 19 17.8 17.8 17.8 1 +1860 6 20 14.5 14.5 14.5 1 +1860 6 21 15.9 15.9 15.9 1 +1860 6 22 16.1 16.1 16.1 1 +1860 6 23 16.5 16.5 16.5 1 +1860 6 24 17.8 17.8 17.8 1 +1860 6 25 18.5 18.5 18.5 1 +1860 6 26 15.0 15.0 15.0 1 +1860 6 27 15.4 15.4 15.4 1 +1860 6 28 14.3 14.3 14.3 1 +1860 6 29 13.6 13.6 13.6 1 +1860 6 30 11.4 11.4 11.4 1 +1860 7 1 11.1 11.1 11.1 1 +1860 7 2 13.3 13.3 13.3 1 +1860 7 3 14.7 14.7 14.7 1 +1860 7 4 10.3 10.3 10.3 1 +1860 7 5 9.4 9.4 9.4 1 +1860 7 6 11.1 11.1 11.1 1 +1860 7 7 12.1 12.1 12.1 1 +1860 7 8 12.9 12.9 12.9 1 +1860 7 9 15.0 15.0 15.0 1 +1860 7 10 15.9 15.9 15.9 1 +1860 7 11 18.7 18.7 18.7 1 +1860 7 12 17.3 17.3 17.3 1 +1860 7 13 16.1 16.1 16.1 1 +1860 7 14 16.4 16.4 16.4 1 +1860 7 15 17.5 17.5 17.5 1 +1860 7 16 20.2 20.2 20.2 1 +1860 7 17 20.9 20.9 20.9 1 +1860 7 18 21.0 21.0 21.0 1 +1860 7 19 21.8 21.8 21.8 1 +1860 7 20 21.4 21.4 21.4 1 +1860 7 21 18.9 18.9 18.9 1 +1860 7 22 18.6 18.6 18.6 1 +1860 7 23 18.7 18.7 18.7 1 +1860 7 24 18.6 18.6 18.6 1 +1860 7 25 17.9 17.9 17.9 1 +1860 7 26 16.8 16.8 16.8 1 +1860 7 27 17.1 17.1 17.1 1 +1860 7 28 16.1 16.1 16.1 1 +1860 7 29 16.6 16.6 16.6 1 +1860 7 30 15.7 15.7 15.7 1 +1860 7 31 17.3 17.3 17.3 1 +1860 8 1 18.1 18.1 18.1 1 +1860 8 2 17.1 17.1 17.1 1 +1860 8 3 16.3 16.3 16.3 1 +1860 8 4 15.4 15.4 15.4 1 +1860 8 5 15.4 15.4 15.4 1 +1860 8 6 15.1 15.1 15.1 1 +1860 8 7 17.2 17.2 17.2 1 +1860 8 8 13.5 13.5 13.5 1 +1860 8 9 15.0 15.0 15.0 1 +1860 8 10 16.7 16.7 16.7 1 +1860 8 11 15.2 15.2 15.2 1 +1860 8 12 13.9 13.9 13.9 1 +1860 8 13 15.6 15.6 15.6 1 +1860 8 14 14.9 14.9 14.9 1 +1860 8 15 16.6 16.6 16.6 1 +1860 8 16 16.9 16.9 16.9 1 +1860 8 17 15.6 15.6 15.6 1 +1860 8 18 15.8 15.8 15.8 1 +1860 8 19 15.4 15.4 15.4 1 +1860 8 20 15.2 15.2 15.2 1 +1860 8 21 15.3 15.3 15.3 1 +1860 8 22 16.4 16.4 16.4 1 +1860 8 23 13.9 13.9 13.9 1 +1860 8 24 13.1 13.1 13.1 1 +1860 8 25 13.8 13.8 13.8 1 +1860 8 26 14.4 14.4 14.4 1 +1860 8 27 14.1 14.1 14.1 1 +1860 8 28 13.4 13.4 13.4 1 +1860 8 29 12.6 12.6 12.6 1 +1860 8 30 15.0 15.0 15.0 1 +1860 8 31 14.7 14.7 14.7 1 +1860 9 1 14.1 14.1 14.1 1 +1860 9 2 12.4 12.4 12.4 1 +1860 9 3 13.4 13.4 13.4 1 +1860 9 4 12.3 12.3 12.3 1 +1860 9 5 12.2 12.2 12.2 1 +1860 9 6 12.9 12.9 12.9 1 +1860 9 7 15.1 15.1 15.1 1 +1860 9 8 13.4 13.4 13.4 1 +1860 9 9 9.0 9.0 9.0 1 +1860 9 10 6.3 6.3 6.3 1 +1860 9 11 7.1 7.1 7.1 1 +1860 9 12 11.1 11.1 11.1 1 +1860 9 13 11.6 11.6 11.6 1 +1860 9 14 11.6 11.6 11.6 1 +1860 9 15 12.3 12.3 12.3 1 +1860 9 16 13.0 13.0 13.0 1 +1860 9 17 12.7 12.7 12.7 1 +1860 9 18 15.3 15.3 15.3 1 +1860 9 19 13.2 13.2 13.2 1 +1860 9 20 11.7 11.7 11.7 1 +1860 9 21 10.5 10.5 10.5 1 +1860 9 22 10.4 10.4 10.4 1 +1860 9 23 12.9 12.9 12.9 1 +1860 9 24 11.6 11.6 11.6 1 +1860 9 25 12.4 12.4 12.4 1 +1860 9 26 12.0 12.0 12.0 1 +1860 9 27 10.8 10.8 10.8 1 +1860 9 28 9.1 9.1 9.1 1 +1860 9 29 8.4 8.4 8.4 1 +1860 9 30 6.1 6.1 6.1 1 +1860 10 1 7.0 7.0 7.0 1 +1860 10 2 6.7 6.7 6.7 1 +1860 10 3 9.3 9.3 9.3 1 +1860 10 4 7.2 7.2 7.2 1 +1860 10 5 4.6 4.6 4.6 1 +1860 10 6 2.5 2.5 2.5 1 +1860 10 7 5.1 5.1 5.1 1 +1860 10 8 6.7 6.7 6.7 1 +1860 10 9 3.1 3.1 3.1 1 +1860 10 10 4.6 4.6 4.6 1 +1860 10 11 3.2 3.2 3.2 1 +1860 10 12 1.1 1.1 1.1 1 +1860 10 13 -0.4 -0.4 -0.4 1 +1860 10 14 4.7 4.7 4.7 1 +1860 10 15 4.1 4.1 4.1 1 +1860 10 16 8.0 8.0 8.0 1 +1860 10 17 7.5 7.5 7.5 1 +1860 10 18 6.9 6.9 6.9 1 +1860 10 19 8.4 8.4 8.4 1 +1860 10 20 7.9 7.9 7.9 1 +1860 10 21 8.1 8.1 8.1 1 +1860 10 22 5.0 5.0 5.0 1 +1860 10 23 4.0 4.0 4.0 1 +1860 10 24 3.8 3.8 3.8 1 +1860 10 25 4.2 4.2 4.2 1 +1860 10 26 7.5 7.5 7.5 1 +1860 10 27 7.4 7.4 7.4 1 +1860 10 28 6.0 6.0 6.0 1 +1860 10 29 5.6 5.6 5.6 1 +1860 10 30 4.1 4.1 4.1 1 +1860 10 31 3.5 3.5 3.5 1 +1860 11 1 2.9 2.9 2.9 1 +1860 11 2 3.9 3.9 3.9 1 +1860 11 3 3.4 3.4 3.4 1 +1860 11 4 2.8 2.8 2.8 1 +1860 11 5 1.4 1.4 1.4 1 +1860 11 6 2.2 2.2 2.2 1 +1860 11 7 0.8 0.8 0.8 1 +1860 11 8 -0.5 -0.5 -0.5 1 +1860 11 9 1.6 1.6 1.6 1 +1860 11 10 3.0 3.0 3.0 1 +1860 11 11 4.1 4.1 4.1 1 +1860 11 12 3.4 3.4 3.4 1 +1860 11 13 2.3 2.3 2.3 1 +1860 11 14 3.0 3.0 3.0 1 +1860 11 15 5.5 5.5 5.5 1 +1860 11 16 5.2 5.2 5.2 1 +1860 11 17 2.9 2.9 2.9 1 +1860 11 18 4.7 4.7 4.7 1 +1860 11 19 2.4 2.4 2.4 1 +1860 11 20 -0.8 -0.8 -0.8 1 +1860 11 21 -1.0 -1.0 -1.0 1 +1860 11 22 0.2 0.2 0.2 1 +1860 11 23 0.2 0.2 0.2 1 +1860 11 24 -0.5 -0.5 -0.5 1 +1860 11 25 -1.2 -1.2 -1.2 1 +1860 11 26 -1.6 -1.6 -1.6 1 +1860 11 27 -7.4 -7.4 -7.4 1 +1860 11 28 -5.3 -5.3 -5.3 1 +1860 11 29 -4.4 -4.4 -4.4 1 +1860 11 30 -2.4 -2.4 -2.4 1 +1860 12 1 -6.5 -6.5 -6.5 1 +1860 12 2 -7.1 -7.1 -7.1 1 +1860 12 3 -3.4 -3.4 -3.4 1 +1860 12 4 -2.9 -2.9 -2.9 1 +1860 12 5 -1.7 -1.7 -1.7 1 +1860 12 6 -2.2 -2.2 -2.2 1 +1860 12 7 -0.9 -0.9 -0.9 1 +1860 12 8 1.8 1.8 1.8 1 +1860 12 9 -0.4 -0.4 -0.4 1 +1860 12 10 -2.1 -2.1 -2.1 1 +1860 12 11 -2.6 -2.6 -2.6 1 +1860 12 12 -3.8 -3.8 -3.8 1 +1860 12 13 -4.6 -4.6 -4.6 1 +1860 12 14 -5.0 -5.0 -5.0 1 +1860 12 15 -4.2 -4.2 -4.2 1 +1860 12 16 -1.3 -1.3 -1.3 1 +1860 12 17 -5.1 -5.1 -5.1 1 +1860 12 18 -2.7 -2.7 -2.7 1 +1860 12 19 -10.6 -10.6 -10.6 1 +1860 12 20 -11.6 -11.6 -11.6 1 +1860 12 21 -11.1 -11.1 -11.1 1 +1860 12 22 -7.6 -7.6 -7.6 1 +1860 12 23 -3.4 -3.4 -3.4 1 +1860 12 24 -2.2 -2.2 -2.2 1 +1860 12 25 -2.3 -2.3 -2.3 1 +1860 12 26 -7.0 -7.0 -7.0 1 +1860 12 27 -7.9 -7.9 -7.9 1 +1860 12 28 -12.5 -12.5 -12.5 1 +1860 12 29 -8.9 -8.9 -8.9 1 +1860 12 30 -13.4 -13.4 -13.4 1 +1860 12 31 -9.8 -9.8 -9.8 1 +1861 1 1 -12.9 -12.9 -12.9 1 +1861 1 2 -11.3 -11.3 -11.3 1 +1861 1 3 -11.2 -11.2 -11.2 1 +1861 1 4 -9.8 -9.8 -9.8 1 +1861 1 5 -9.2 -9.2 -9.2 1 +1861 1 6 -4.1 -4.1 -4.1 1 +1861 1 7 -5.2 -5.2 -5.2 1 +1861 1 8 -8.9 -8.9 -8.9 1 +1861 1 9 -13.3 -13.3 -13.3 1 +1861 1 10 -6.9 -6.9 -6.9 1 +1861 1 11 -11.3 -11.3 -11.3 1 +1861 1 12 -20.4 -20.4 -20.4 1 +1861 1 13 -16.1 -16.1 -16.1 1 +1861 1 14 -14.4 -14.4 -14.4 1 +1861 1 15 -12.5 -12.5 -12.5 1 +1861 1 16 -4.2 -4.2 -4.2 1 +1861 1 17 -0.5 -0.5 -0.5 1 +1861 1 18 -2.2 -2.2 -2.2 1 +1861 1 19 -5.1 -5.1 -5.1 1 +1861 1 20 -11.0 -11.0 -11.0 1 +1861 1 21 -9.6 -9.6 -9.6 1 +1861 1 22 -12.5 -12.5 -12.5 1 +1861 1 23 -11.2 -11.2 -11.2 1 +1861 1 24 -4.7 -4.7 -4.7 1 +1861 1 25 0.7 0.7 0.7 1 +1861 1 26 -2.0 -2.0 -2.0 1 +1861 1 27 -12.8 -12.8 -12.8 1 +1861 1 28 -13.4 -13.4 -13.4 1 +1861 1 29 -6.9 -6.9 -6.9 1 +1861 1 30 -2.9 -2.9 -2.9 1 +1861 1 31 -0.6 -0.6 -0.6 1 +1861 2 1 1.8 1.8 1.8 1 +1861 2 2 0.5 0.5 0.5 1 +1861 2 3 0.7 0.7 0.7 1 +1861 2 4 0.3 0.3 0.3 1 +1861 2 5 -0.1 -0.1 -0.1 1 +1861 2 6 -0.2 -0.2 -0.2 1 +1861 2 7 2.0 2.0 2.0 1 +1861 2 8 3.1 3.1 3.1 1 +1861 2 9 1.1 1.1 1.1 1 +1861 2 10 -2.6 -2.6 -2.6 1 +1861 2 11 -5.5 -5.5 -5.5 1 +1861 2 12 -5.2 -5.2 -5.2 1 +1861 2 13 -1.0 -1.0 -1.0 1 +1861 2 14 -2.6 -2.6 -2.6 1 +1861 2 15 -5.1 -5.1 -5.1 1 +1861 2 16 -1.2 -1.2 -1.2 1 +1861 2 17 -4.2 -4.2 -4.2 1 +1861 2 18 -7.1 -7.1 -7.1 1 +1861 2 19 -7.9 -7.9 -7.9 1 +1861 2 20 -5.1 -5.1 -5.1 1 +1861 2 21 -2.3 -2.3 -2.3 1 +1861 2 22 0.3 0.3 0.3 1 +1861 2 23 3.5 3.5 3.5 1 +1861 2 24 1.5 1.5 1.5 1 +1861 2 25 -0.7 -0.7 -0.7 1 +1861 2 26 -1.4 -1.4 -1.4 1 +1861 2 27 0.9 0.9 0.9 1 +1861 2 28 0.7 0.7 0.7 1 +1861 3 1 1.1 1.1 1.1 1 +1861 3 2 1.4 1.4 1.4 1 +1861 3 3 1.0 1.0 1.0 1 +1861 3 4 -0.2 -0.2 -0.2 1 +1861 3 5 -3.1 -3.1 -3.1 1 +1861 3 6 1.2 1.2 1.2 1 +1861 3 7 1.9 1.9 1.9 1 +1861 3 8 0.1 0.1 0.1 1 +1861 3 9 0.4 0.4 0.4 1 +1861 3 10 -1.3 -1.3 -1.3 1 +1861 3 11 -2.3 -2.3 -2.3 1 +1861 3 12 -4.7 -4.7 -4.7 1 +1861 3 13 -8.7 -8.7 -8.7 1 +1861 3 14 -10.0 -10.0 -10.0 1 +1861 3 15 -2.0 -2.0 -2.0 1 +1861 3 16 1.6 1.6 1.6 1 +1861 3 17 0.2 0.2 0.2 1 +1861 3 18 0.0 0.0 0.0 1 +1861 3 19 0.2 0.2 0.2 1 +1861 3 20 0.3 0.3 0.3 1 +1861 3 21 0.8 0.8 0.8 1 +1861 3 22 0.5 0.5 0.5 1 +1861 3 23 1.1 1.1 1.1 1 +1861 3 24 3.9 3.9 3.9 1 +1861 3 25 4.2 4.2 4.2 1 +1861 3 26 1.9 1.9 1.9 1 +1861 3 27 0.1 0.1 0.1 1 +1861 3 28 0.7 0.7 0.7 1 +1861 3 29 1.0 1.0 1.0 1 +1861 3 30 1.4 1.4 1.4 1 +1861 3 31 1.9 1.9 1.9 1 +1861 4 1 2.6 2.6 2.6 1 +1861 4 2 2.6 2.6 2.6 1 +1861 4 3 3.5 3.5 3.5 1 +1861 4 4 0.7 0.7 0.7 1 +1861 4 5 1.2 1.2 1.2 1 +1861 4 6 1.3 1.3 1.3 1 +1861 4 7 -0.3 -0.3 -0.3 1 +1861 4 8 -0.1 -0.1 -0.1 1 +1861 4 9 3.9 3.9 3.9 1 +1861 4 10 4.1 4.1 4.1 1 +1861 4 11 6.5 6.5 6.5 1 +1861 4 12 7.2 7.2 7.2 1 +1861 4 13 4.5 4.5 4.5 1 +1861 4 14 3.5 3.5 3.5 1 +1861 4 15 2.7 2.7 2.7 1 +1861 4 16 8.5 8.5 8.5 1 +1861 4 17 0.2 0.2 0.2 1 +1861 4 18 -1.3 -1.3 -1.3 1 +1861 4 19 -1.0 -1.0 -1.0 1 +1861 4 20 0.9 0.9 0.9 1 +1861 4 21 -0.1 -0.1 -0.1 1 +1861 4 22 -2.4 -2.4 -2.4 1 +1861 4 23 2.1 2.1 2.1 1 +1861 4 24 3.3 3.3 3.3 1 +1861 4 25 3.6 3.6 3.6 1 +1861 4 26 1.4 1.4 1.4 1 +1861 4 27 3.5 3.5 3.5 1 +1861 4 28 0.9 0.9 0.9 1 +1861 4 29 1.0 1.0 1.0 1 +1861 4 30 1.5 1.5 1.5 1 +1861 5 1 4.2 4.2 4.2 1 +1861 5 2 1.8 1.8 1.8 1 +1861 5 3 1.8 1.8 1.8 1 +1861 5 4 2.0 2.0 2.0 1 +1861 5 5 4.3 4.3 4.3 1 +1861 5 6 5.8 5.8 5.8 1 +1861 5 7 2.3 2.3 2.3 1 +1861 5 8 0.8 0.8 0.8 1 +1861 5 9 3.1 3.1 3.1 1 +1861 5 10 4.5 4.5 4.5 1 +1861 5 11 7.0 7.0 7.0 1 +1861 5 12 5.7 5.7 5.7 1 +1861 5 13 6.9 6.9 6.9 1 +1861 5 14 4.2 4.2 4.2 1 +1861 5 15 4.9 4.9 4.9 1 +1861 5 16 1.9 1.9 1.9 1 +1861 5 17 2.8 2.8 2.8 1 +1861 5 18 2.2 2.2 2.2 1 +1861 5 19 4.1 4.1 4.1 1 +1861 5 20 4.8 4.8 4.8 1 +1861 5 21 5.1 5.1 5.1 1 +1861 5 22 7.7 7.7 7.7 1 +1861 5 23 8.8 8.8 8.8 1 +1861 5 24 7.2 7.2 7.2 1 +1861 5 25 7.0 7.0 7.0 1 +1861 5 26 9.2 9.2 9.2 1 +1861 5 27 13.1 13.1 13.1 1 +1861 5 28 13.1 13.1 13.1 1 +1861 5 29 12.9 12.9 12.9 1 +1861 5 30 12.2 12.2 12.2 1 +1861 5 31 10.9 10.9 10.9 1 +1861 6 1 11.0 11.0 11.0 1 +1861 6 2 13.8 13.8 13.8 1 +1861 6 3 14.8 14.8 14.8 1 +1861 6 4 15.5 15.5 15.5 1 +1861 6 5 15.0 15.0 15.0 1 +1861 6 6 15.4 15.4 15.4 1 +1861 6 7 17.3 17.3 17.3 1 +1861 6 8 17.3 17.3 17.3 1 +1861 6 9 18.7 18.7 18.7 1 +1861 6 10 19.3 19.3 19.3 1 +1861 6 11 19.2 19.2 19.2 1 +1861 6 12 21.0 21.0 21.0 1 +1861 6 13 20.3 20.3 20.3 1 +1861 6 14 20.9 20.9 20.9 1 +1861 6 15 21.4 21.4 21.4 1 +1861 6 16 12.5 12.5 12.5 1 +1861 6 17 10.0 10.0 10.0 1 +1861 6 18 15.3 15.3 15.3 1 +1861 6 19 11.0 11.0 11.0 1 +1861 6 20 14.6 14.6 14.6 1 +1861 6 21 12.5 12.5 12.5 1 +1861 6 22 13.5 13.5 13.5 1 +1861 6 23 15.0 15.0 15.0 1 +1861 6 24 15.6 15.6 15.6 1 +1861 6 25 13.5 13.5 13.5 1 +1861 6 26 13.7 13.7 13.7 1 +1861 6 27 15.3 15.3 15.3 1 +1861 6 28 16.9 16.9 16.9 1 +1861 6 29 17.9 17.9 17.9 1 +1861 6 30 15.2 15.2 15.2 1 +1861 7 1 14.3 14.3 14.3 1 +1861 7 2 14.9 14.9 14.9 1 +1861 7 3 15.2 15.2 15.2 1 +1861 7 4 15.3 15.3 15.3 1 +1861 7 5 16.4 16.4 16.4 1 +1861 7 6 16.4 16.4 16.4 1 +1861 7 7 15.9 15.9 15.9 1 +1861 7 8 17.6 17.6 17.6 1 +1861 7 9 17.5 17.5 17.5 1 +1861 7 10 18.0 18.0 18.0 1 +1861 7 11 18.7 18.7 18.7 1 +1861 7 12 18.1 18.1 18.1 1 +1861 7 13 19.9 19.9 19.9 1 +1861 7 14 21.8 21.8 21.8 1 +1861 7 15 22.5 22.5 22.5 1 +1861 7 16 19.2 19.2 19.2 1 +1861 7 17 18.1 18.1 18.1 1 +1861 7 18 17.8 17.8 17.8 1 +1861 7 19 16.8 16.8 16.8 1 +1861 7 20 18.6 18.6 18.6 1 +1861 7 21 20.5 20.5 20.5 1 +1861 7 22 21.2 21.2 21.2 1 +1861 7 23 20.8 20.8 20.8 1 +1861 7 24 21.9 21.9 21.9 1 +1861 7 25 19.5 19.5 19.5 1 +1861 7 26 21.3 21.3 21.3 1 +1861 7 27 19.6 19.6 19.6 1 +1861 7 28 17.4 17.4 17.4 1 +1861 7 29 14.8 14.8 14.8 1 +1861 7 30 15.4 15.4 15.4 1 +1861 7 31 16.9 16.9 16.9 1 +1861 8 1 16.3 16.3 16.3 1 +1861 8 2 17.0 17.0 17.0 1 +1861 8 3 19.5 19.5 19.5 1 +1861 8 4 16.5 16.5 16.5 1 +1861 8 5 17.9 17.9 17.9 1 +1861 8 6 15.7 15.7 15.7 1 +1861 8 7 16.7 16.7 16.7 1 +1861 8 8 16.3 16.3 16.3 1 +1861 8 9 15.2 15.2 15.2 1 +1861 8 10 17.4 17.4 17.4 1 +1861 8 11 15.7 15.7 15.7 1 +1861 8 12 16.8 16.8 16.8 1 +1861 8 13 18.1 18.1 18.1 1 +1861 8 14 14.3 14.3 14.3 1 +1861 8 15 14.4 14.4 14.4 1 +1861 8 16 16.1 16.1 16.1 1 +1861 8 17 16.3 16.3 16.3 1 +1861 8 18 16.2 16.2 16.2 1 +1861 8 19 15.7 15.7 15.7 1 +1861 8 20 16.6 16.6 16.6 1 +1861 8 21 14.9 14.9 14.9 1 +1861 8 22 12.1 12.1 12.1 1 +1861 8 23 13.2 13.2 13.2 1 +1861 8 24 11.9 11.9 11.9 1 +1861 8 25 12.7 12.7 12.7 1 +1861 8 26 13.2 13.2 13.2 1 +1861 8 27 12.7 12.7 12.7 1 +1861 8 28 11.3 11.3 11.3 1 +1861 8 29 14.6 14.6 14.6 1 +1861 8 30 14.6 14.6 14.6 1 +1861 8 31 11.3 11.3 11.3 1 +1861 9 1 11.7 11.7 11.7 1 +1861 9 2 11.6 11.6 11.6 1 +1861 9 3 12.5 12.5 12.5 1 +1861 9 4 13.2 13.2 13.2 1 +1861 9 5 11.3 11.3 11.3 1 +1861 9 6 11.2 11.2 11.2 1 +1861 9 7 11.0 11.0 11.0 1 +1861 9 8 12.1 12.1 12.1 1 +1861 9 9 10.2 10.2 10.2 1 +1861 9 10 11.0 11.0 11.0 1 +1861 9 11 10.0 10.0 10.0 1 +1861 9 12 10.1 10.1 10.1 1 +1861 9 13 11.8 11.8 11.8 1 +1861 9 14 12.2 12.2 12.2 1 +1861 9 15 12.6 12.6 12.6 1 +1861 9 16 11.8 11.8 11.8 1 +1861 9 17 10.6 10.6 10.6 1 +1861 9 18 7.1 7.1 7.1 1 +1861 9 19 6.1 6.1 6.1 1 +1861 9 20 6.6 6.6 6.6 1 +1861 9 21 7.1 7.1 7.1 1 +1861 9 22 8.7 8.7 8.7 1 +1861 9 23 7.3 7.3 7.3 1 +1861 9 24 4.6 4.6 4.6 1 +1861 9 25 5.9 5.9 5.9 1 +1861 9 26 11.1 11.1 11.1 1 +1861 9 27 10.8 10.8 10.8 1 +1861 9 28 9.5 9.5 9.5 1 +1861 9 29 8.4 8.4 8.4 1 +1861 9 30 10.5 10.5 10.5 1 +1861 10 1 9.8 9.8 9.8 1 +1861 10 2 10.2 10.2 10.2 1 +1861 10 3 10.9 10.9 10.9 1 +1861 10 4 8.2 8.2 8.2 1 +1861 10 5 8.1 8.1 8.1 1 +1861 10 6 9.9 9.9 9.9 1 +1861 10 7 7.3 7.3 7.3 1 +1861 10 8 10.0 10.0 10.0 1 +1861 10 9 12.8 12.8 12.8 1 +1861 10 10 11.0 11.0 11.0 1 +1861 10 11 7.9 7.9 7.9 1 +1861 10 12 11.0 11.0 11.0 1 +1861 10 13 9.4 9.4 9.4 1 +1861 10 14 9.8 9.8 9.8 1 +1861 10 15 10.2 10.2 10.2 1 +1861 10 16 10.6 10.6 10.6 1 +1861 10 17 5.0 5.0 5.0 1 +1861 10 18 3.4 3.4 3.4 1 +1861 10 19 4.7 4.7 4.7 1 +1861 10 20 6.0 6.0 6.0 1 +1861 10 21 7.3 7.3 7.3 1 +1861 10 22 9.3 9.3 9.3 1 +1861 10 23 8.9 8.9 8.9 1 +1861 10 24 9.0 9.0 9.0 1 +1861 10 25 7.1 7.1 7.1 1 +1861 10 26 7.4 7.4 7.4 1 +1861 10 27 5.3 5.3 5.3 1 +1861 10 28 3.4 3.4 3.4 1 +1861 10 29 5.1 5.1 5.1 1 +1861 10 30 5.3 5.3 5.3 1 +1861 10 31 6.3 6.3 6.3 1 +1861 11 1 5.6 5.6 5.6 1 +1861 11 2 4.8 4.8 4.8 1 +1861 11 3 3.9 3.9 3.9 1 +1861 11 4 1.6 1.6 1.6 1 +1861 11 5 0.4 0.4 0.4 1 +1861 11 6 0.4 0.4 0.4 1 +1861 11 7 3.2 3.2 3.2 1 +1861 11 8 3.3 3.3 3.3 1 +1861 11 9 3.8 3.8 3.8 1 +1861 11 10 -1.1 -1.1 -1.1 1 +1861 11 11 -1.7 -1.7 -1.7 1 +1861 11 12 -0.5 -0.5 -0.5 1 +1861 11 13 -0.9 -0.9 -0.9 1 +1861 11 14 -0.9 -0.9 -0.9 1 +1861 11 15 -3.5 -3.5 -3.5 1 +1861 11 16 -7.1 -7.1 -7.1 1 +1861 11 17 -9.4 -9.4 -9.4 1 +1861 11 18 -9.1 -9.1 -9.1 1 +1861 11 19 1.5 1.5 1.5 1 +1861 11 20 2.7 2.7 2.7 1 +1861 11 21 4.0 4.0 4.0 1 +1861 11 22 5.1 5.1 5.1 1 +1861 11 23 2.4 2.4 2.4 1 +1861 11 24 -3.8 -3.8 -3.8 1 +1861 11 25 -1.3 -1.3 -1.3 1 +1861 11 26 2.3 2.3 2.3 1 +1861 11 27 2.6 2.6 2.6 1 +1861 11 28 1.1 1.1 1.1 1 +1861 11 29 2.0 2.0 2.0 1 +1861 11 30 6.5 6.5 6.5 1 +1861 12 1 2.8 2.8 2.8 1 +1861 12 2 0.1 0.1 0.1 1 +1861 12 3 -2.2 -2.2 -2.2 1 +1861 12 4 -2.9 -2.9 -2.9 1 +1861 12 5 -1.2 -1.2 -1.2 1 +1861 12 6 -0.1 -0.1 -0.1 1 +1861 12 7 -1.8 -1.8 -1.8 1 +1861 12 8 0.3 0.3 0.3 1 +1861 12 9 2.3 2.3 2.3 1 +1861 12 10 2.7 2.7 2.7 1 +1861 12 11 2.7 2.7 2.7 1 +1861 12 12 1.9 1.9 1.9 1 +1861 12 13 4.1 4.1 4.1 1 +1861 12 14 4.5 4.5 4.5 1 +1861 12 15 2.2 2.2 2.2 1 +1861 12 16 2.3 2.3 2.3 1 +1861 12 17 0.4 0.4 0.4 1 +1861 12 18 0.7 0.7 0.7 1 +1861 12 19 -1.5 -1.5 -1.5 1 +1861 12 20 -1.3 -1.3 -1.3 1 +1861 12 21 1.9 1.9 1.9 1 +1861 12 22 -0.6 -0.6 -0.6 1 +1861 12 23 -2.9 -2.9 -2.9 1 +1861 12 24 -0.1 -0.1 -0.1 1 +1861 12 25 -3.3 -3.3 -3.3 1 +1861 12 26 0.2 0.2 0.2 1 +1861 12 27 -2.0 -2.0 -2.0 1 +1861 12 28 -0.2 -0.2 -0.2 1 +1861 12 29 -1.1 -1.1 -1.1 1 +1861 12 30 -6.0 -6.0 -6.0 1 +1861 12 31 1.2 1.2 1.2 1 +1862 1 1 -7.3 -7.3 -7.3 1 +1862 1 2 -11.2 -11.2 -11.2 1 +1862 1 3 -8.4 -8.4 -8.4 1 +1862 1 4 -6.2 -6.2 -6.2 1 +1862 1 5 -14.6 -14.6 -14.6 1 +1862 1 6 -12.3 -12.3 -12.3 1 +1862 1 7 -4.1 -4.1 -4.1 1 +1862 1 8 -8.2 -8.2 -8.2 1 +1862 1 9 -1.6 -1.6 -1.6 1 +1862 1 10 0.6 0.6 0.6 1 +1862 1 11 -2.4 -2.4 -2.4 1 +1862 1 12 -5.2 -5.2 -5.2 1 +1862 1 13 -11.5 -11.5 -11.5 1 +1862 1 14 -10.0 -10.0 -10.0 1 +1862 1 15 -14.8 -14.8 -14.8 1 +1862 1 16 -15.5 -15.5 -15.5 1 +1862 1 17 -16.3 -16.3 -16.3 1 +1862 1 18 -19.6 -19.6 -19.6 1 +1862 1 19 -15.7 -15.7 -15.7 1 +1862 1 20 -9.8 -9.8 -9.8 1 +1862 1 21 -7.0 -7.0 -7.0 1 +1862 1 22 -2.9 -2.9 -2.9 1 +1862 1 23 -1.4 -1.4 -1.4 1 +1862 1 24 -0.8 -0.8 -0.8 1 +1862 1 25 -2.8 -2.8 -2.8 1 +1862 1 26 -4.2 -4.2 -4.2 1 +1862 1 27 -6.0 -6.0 -6.0 1 +1862 1 28 -3.5 -3.5 -3.5 1 +1862 1 29 0.0 0.0 0.0 1 +1862 1 30 0.6 0.6 0.6 1 +1862 1 31 -2.1 -2.1 -2.1 1 +1862 2 1 -8.9 -8.9 -8.9 1 +1862 2 2 -11.7 -11.7 -11.7 1 +1862 2 3 -7.1 -7.1 -7.1 1 +1862 2 4 -6.2 -6.2 -6.2 1 +1862 2 5 -13.2 -13.2 -13.2 1 +1862 2 6 -14.7 -14.7 -14.7 1 +1862 2 7 -19.9 -19.9 -19.9 1 +1862 2 8 -14.6 -14.6 -14.6 1 +1862 2 9 -9.7 -9.7 -9.7 1 +1862 2 10 -3.9 -3.9 -3.9 1 +1862 2 11 -3.0 -3.0 -3.0 1 +1862 2 12 -5.3 -5.3 -5.3 1 +1862 2 13 -12.1 -12.1 -12.1 1 +1862 2 14 -12.8 -12.8 -12.8 1 +1862 2 15 -5.9 -5.9 -5.9 1 +1862 2 16 -7.6 -7.6 -7.6 1 +1862 2 17 -5.9 -5.9 -5.9 1 +1862 2 18 -7.4 -7.4 -7.4 1 +1862 2 19 -1.9 -1.9 -1.9 1 +1862 2 20 -1.5 -1.5 -1.5 1 +1862 2 21 -0.3 -0.3 -0.3 1 +1862 2 22 -0.2 -0.2 -0.2 1 +1862 2 23 -1.4 -1.4 -1.4 1 +1862 2 24 -0.1 -0.1 -0.1 1 +1862 2 25 -1.1 -1.1 -1.1 1 +1862 2 26 -5.5 -5.5 -5.5 1 +1862 2 27 -4.9 -4.9 -4.9 1 +1862 2 28 -2.5 -2.5 -2.5 1 +1862 3 1 -7.9 -7.9 -7.9 1 +1862 3 2 -9.7 -9.7 -9.7 1 +1862 3 3 -9.5 -9.5 -9.5 1 +1862 3 4 -14.8 -14.8 -14.8 1 +1862 3 5 -9.0 -9.0 -9.0 1 +1862 3 6 -2.1 -2.1 -2.1 1 +1862 3 7 0.0 0.0 0.0 1 +1862 3 8 1.3 1.3 1.3 1 +1862 3 9 -2.3 -2.3 -2.3 1 +1862 3 10 -0.6 -0.6 -0.6 1 +1862 3 11 0.9 0.9 0.9 1 +1862 3 12 -1.0 -1.0 -1.0 1 +1862 3 13 0.2 0.2 0.2 1 +1862 3 14 0.3 0.3 0.3 1 +1862 3 15 -1.0 -1.0 -1.0 1 +1862 3 16 -0.4 -0.4 -0.4 1 +1862 3 17 0.4 0.4 0.4 1 +1862 3 18 -2.1 -2.1 -2.1 1 +1862 3 19 -3.2 -3.2 -3.2 1 +1862 3 20 -7.8 -7.8 -7.8 1 +1862 3 21 -9.3 -9.3 -9.3 1 +1862 3 22 -10.7 -10.7 -10.7 1 +1862 3 23 -9.5 -9.5 -9.5 1 +1862 3 24 -7.8 -7.8 -7.8 1 +1862 3 25 -6.4 -6.4 -6.4 1 +1862 3 26 -5.1 -5.1 -5.1 1 +1862 3 27 -4.1 -4.1 -4.1 1 +1862 3 28 -2.5 -2.5 -2.5 1 +1862 3 29 -4.9 -4.9 -4.9 1 +1862 3 30 -4.5 -4.5 -4.5 1 +1862 3 31 -4.3 -4.3 -4.3 1 +1862 4 1 -1.4 -1.4 -1.4 1 +1862 4 2 0.9 0.9 0.9 1 +1862 4 3 5.5 5.5 5.5 1 +1862 4 4 4.2 4.2 4.2 1 +1862 4 5 0.2 0.2 0.2 1 +1862 4 6 1.8 1.8 1.8 1 +1862 4 7 2.0 2.0 2.0 1 +1862 4 8 1.2 1.2 1.2 1 +1862 4 9 3.3 3.3 3.3 1 +1862 4 10 3.1 3.1 3.1 1 +1862 4 11 1.9 1.9 1.9 1 +1862 4 12 0.0 0.0 0.0 1 +1862 4 13 0.7 0.7 0.7 1 +1862 4 14 -0.4 -0.4 -0.4 1 +1862 4 15 0.3 0.3 0.3 1 +1862 4 16 -0.3 -0.3 -0.3 1 +1862 4 17 -0.7 -0.7 -0.7 1 +1862 4 18 1.8 1.8 1.8 1 +1862 4 19 2.0 2.0 2.0 1 +1862 4 20 2.9 2.9 2.9 1 +1862 4 21 2.7 2.7 2.7 1 +1862 4 22 4.2 4.2 4.2 1 +1862 4 23 3.4 3.4 3.4 1 +1862 4 24 5.7 5.7 5.7 1 +1862 4 25 7.4 7.4 7.4 1 +1862 4 26 7.5 7.5 7.5 1 +1862 4 27 5.2 5.2 5.2 1 +1862 4 28 5.6 5.6 5.6 1 +1862 4 29 8.0 8.0 8.0 1 +1862 4 30 9.6 9.6 9.6 1 +1862 5 1 12.6 12.6 12.6 1 +1862 5 2 12.7 12.7 12.7 1 +1862 5 3 6.5 6.5 6.5 1 +1862 5 4 7.3 7.3 7.3 1 +1862 5 5 8.7 8.7 8.7 1 +1862 5 6 13.3 13.3 13.3 1 +1862 5 7 12.9 12.9 12.9 1 +1862 5 8 11.0 11.0 11.0 1 +1862 5 9 11.2 11.2 11.2 1 +1862 5 10 8.8 8.8 8.8 1 +1862 5 11 7.2 7.2 7.2 1 +1862 5 12 8.7 8.7 8.7 1 +1862 5 13 8.2 8.2 8.2 1 +1862 5 14 9.2 9.2 9.2 1 +1862 5 15 8.1 8.1 8.1 1 +1862 5 16 8.5 8.5 8.5 1 +1862 5 17 10.5 10.5 10.5 1 +1862 5 18 14.5 14.5 14.5 1 +1862 5 19 15.2 15.2 15.2 1 +1862 5 20 15.9 15.9 15.9 1 +1862 5 21 11.8 11.8 11.8 1 +1862 5 22 12.2 12.2 12.2 1 +1862 5 23 9.4 9.4 9.4 1 +1862 5 24 7.7 7.7 7.7 1 +1862 5 25 6.1 6.1 6.1 1 +1862 5 26 7.8 7.8 7.8 1 +1862 5 27 9.3 9.3 9.3 1 +1862 5 28 8.5 8.5 8.5 1 +1862 5 29 11.9 11.9 11.9 1 +1862 5 30 10.6 10.6 10.6 1 +1862 5 31 11.1 11.1 11.1 1 +1862 6 1 11.6 11.6 11.6 1 +1862 6 2 15.8 15.8 15.8 1 +1862 6 3 15.8 15.8 15.8 1 +1862 6 4 13.9 13.9 13.9 1 +1862 6 5 13.7 13.7 13.7 1 +1862 6 6 13.5 13.5 13.5 1 +1862 6 7 15.8 15.8 15.8 1 +1862 6 8 15.5 15.5 15.5 1 +1862 6 9 14.6 14.6 14.6 1 +1862 6 10 10.7 10.7 10.7 1 +1862 6 11 12.1 12.1 12.1 1 +1862 6 12 12.3 12.3 12.3 1 +1862 6 13 10.2 10.2 10.2 1 +1862 6 14 12.0 12.0 12.0 1 +1862 6 15 13.8 13.8 13.8 1 +1862 6 16 14.9 14.9 14.9 1 +1862 6 17 16.0 16.0 16.0 1 +1862 6 18 15.6 15.6 15.6 1 +1862 6 19 12.8 12.8 12.8 1 +1862 6 20 13.6 13.6 13.6 1 +1862 6 21 11.7 11.7 11.7 1 +1862 6 22 11.9 11.9 11.9 1 +1862 6 23 10.7 10.7 10.7 1 +1862 6 24 10.7 10.7 10.7 1 +1862 6 25 10.0 10.0 10.0 1 +1862 6 26 12.9 12.9 12.9 1 +1862 6 27 11.5 11.5 11.5 1 +1862 6 28 11.2 11.2 11.2 1 +1862 6 29 11.9 11.9 11.9 1 +1862 6 30 12.8 12.8 12.8 1 +1862 7 1 11.9 11.9 11.9 1 +1862 7 2 12.2 12.2 12.2 1 +1862 7 3 11.2 11.2 11.2 1 +1862 7 4 12.6 12.6 12.6 1 +1862 7 5 13.3 13.3 13.3 1 +1862 7 6 14.6 14.6 14.6 1 +1862 7 7 13.2 13.2 13.2 1 +1862 7 8 12.4 12.4 12.4 1 +1862 7 9 12.1 12.1 12.1 1 +1862 7 10 14.7 14.7 14.7 1 +1862 7 11 14.8 14.8 14.8 1 +1862 7 12 13.9 13.9 13.9 1 +1862 7 13 15.5 15.5 15.5 1 +1862 7 14 16.6 16.6 16.6 1 +1862 7 15 15.3 15.3 15.3 1 +1862 7 16 16.3 16.3 16.3 1 +1862 7 17 14.2 14.2 14.2 1 +1862 7 18 15.6 15.6 15.6 1 +1862 7 19 16.7 16.7 16.7 1 +1862 7 20 14.3 14.3 14.3 1 +1862 7 21 12.3 12.3 12.3 1 +1862 7 22 13.6 13.6 13.6 1 +1862 7 23 13.3 13.3 13.3 1 +1862 7 24 13.4 13.4 13.4 1 +1862 7 25 13.0 13.0 13.0 1 +1862 7 26 16.2 16.2 16.2 1 +1862 7 27 15.3 15.3 15.3 1 +1862 7 28 15.4 15.4 15.4 1 +1862 7 29 14.0 14.0 14.0 1 +1862 7 30 14.7 14.7 14.7 1 +1862 7 31 12.6 12.6 12.6 1 +1862 8 1 12.7 12.7 12.7 1 +1862 8 2 15.1 15.1 15.1 1 +1862 8 3 15.1 15.1 15.1 1 +1862 8 4 13.3 13.3 13.3 1 +1862 8 5 14.9 14.9 14.9 1 +1862 8 6 15.0 15.0 15.0 1 +1862 8 7 15.6 15.6 15.6 1 +1862 8 8 14.2 14.2 14.2 1 +1862 8 9 14.7 14.7 14.7 1 +1862 8 10 15.7 15.7 15.7 1 +1862 8 11 13.8 13.8 13.8 1 +1862 8 12 13.1 13.1 13.1 1 +1862 8 13 12.3 12.3 12.3 1 +1862 8 14 12.2 12.2 12.2 1 +1862 8 15 14.1 14.1 14.1 1 +1862 8 16 15.8 15.8 15.8 1 +1862 8 17 10.6 10.6 10.6 1 +1862 8 18 12.4 12.4 12.4 1 +1862 8 19 15.0 15.0 15.0 1 +1862 8 20 17.2 17.2 17.2 1 +1862 8 21 16.1 16.1 16.1 1 +1862 8 22 16.3 16.3 16.3 1 +1862 8 23 17.9 17.9 17.9 1 +1862 8 24 14.0 14.0 14.0 1 +1862 8 25 10.8 10.8 10.8 1 +1862 8 26 10.7 10.7 10.7 1 +1862 8 27 12.8 12.8 12.8 1 +1862 8 28 11.5 11.5 11.5 1 +1862 8 29 12.3 12.3 12.3 1 +1862 8 30 11.7 11.7 11.7 1 +1862 8 31 10.7 10.7 10.7 1 +1862 9 1 11.0 11.0 11.0 1 +1862 9 2 12.1 12.1 12.1 1 +1862 9 3 13.7 13.7 13.7 1 +1862 9 4 15.7 15.7 15.7 1 +1862 9 5 15.6 15.6 15.6 1 +1862 9 6 15.7 15.7 15.7 1 +1862 9 7 14.2 14.2 14.2 1 +1862 9 8 16.2 16.2 16.2 1 +1862 9 9 14.9 14.9 14.9 1 +1862 9 10 14.6 14.6 14.6 1 +1862 9 11 12.1 12.1 12.1 1 +1862 9 12 8.7 8.7 8.7 1 +1862 9 13 11.7 11.7 11.7 1 +1862 9 14 13.5 13.5 13.5 1 +1862 9 15 14.1 14.1 14.1 1 +1862 9 16 13.9 13.9 13.9 1 +1862 9 17 9.4 9.4 9.4 1 +1862 9 18 10.1 10.1 10.1 1 +1862 9 19 14.5 14.5 14.5 1 +1862 9 20 8.8 8.8 8.8 1 +1862 9 21 4.7 4.7 4.7 1 +1862 9 22 4.4 4.4 4.4 1 +1862 9 23 5.5 5.5 5.5 1 +1862 9 24 5.7 5.7 5.7 1 +1862 9 25 5.5 5.5 5.5 1 +1862 9 26 6.3 6.3 6.3 1 +1862 9 27 5.8 5.8 5.8 1 +1862 9 28 10.4 10.4 10.4 1 +1862 9 29 10.3 10.3 10.3 1 +1862 9 30 11.0 11.0 11.0 1 +1862 10 1 12.3 12.3 12.3 1 +1862 10 2 12.5 12.5 12.5 1 +1862 10 3 13.0 13.0 13.0 1 +1862 10 4 9.4 9.4 9.4 1 +1862 10 5 7.8 7.8 7.8 1 +1862 10 6 6.8 6.8 6.8 1 +1862 10 7 8.9 8.9 8.9 1 +1862 10 8 10.1 10.1 10.1 1 +1862 10 9 10.3 10.3 10.3 1 +1862 10 10 10.5 10.5 10.5 1 +1862 10 11 9.3 9.3 9.3 1 +1862 10 12 5.0 5.0 5.0 1 +1862 10 13 2.5 2.5 2.5 1 +1862 10 14 1.0 1.0 1.0 1 +1862 10 15 1.2 1.2 1.2 1 +1862 10 16 8.3 8.3 8.3 1 +1862 10 17 8.5 8.5 8.5 1 +1862 10 18 8.1 8.1 8.1 1 +1862 10 19 7.3 7.3 7.3 1 +1862 10 20 6.2 6.2 6.2 1 +1862 10 21 6.2 6.2 6.2 1 +1862 10 22 7.3 7.3 7.3 1 +1862 10 23 7.0 7.0 7.0 1 +1862 10 24 6.1 6.1 6.1 1 +1862 10 25 5.2 5.2 5.2 1 +1862 10 26 8.1 8.1 8.1 1 +1862 10 27 8.3 8.3 8.3 1 +1862 10 28 8.5 8.5 8.5 1 +1862 10 29 6.8 6.8 6.8 1 +1862 10 30 3.0 3.0 3.0 1 +1862 10 31 3.4 3.4 3.4 1 +1862 11 1 5.3 5.3 5.3 1 +1862 11 2 5.7 5.7 5.7 1 +1862 11 3 5.4 5.4 5.4 1 +1862 11 4 5.9 5.9 5.9 1 +1862 11 5 5.5 5.5 5.5 1 +1862 11 6 4.1 4.1 4.1 1 +1862 11 7 2.9 2.9 2.9 1 +1862 11 8 2.2 2.2 2.2 1 +1862 11 9 3.7 3.7 3.7 1 +1862 11 10 6.6 6.6 6.6 1 +1862 11 11 6.4 6.4 6.4 1 +1862 11 12 5.3 5.3 5.3 1 +1862 11 13 5.3 5.3 5.3 1 +1862 11 14 4.7 4.7 4.7 1 +1862 11 15 3.5 3.5 3.5 1 +1862 11 16 2.2 2.2 2.2 1 +1862 11 17 1.0 1.0 1.0 1 +1862 11 18 0.6 0.6 0.6 1 +1862 11 19 1.6 1.6 1.6 1 +1862 11 20 0.2 0.2 0.2 1 +1862 11 21 -1.0 -1.0 -1.0 1 +1862 11 22 0.0 0.0 0.0 1 +1862 11 23 0.0 0.0 0.0 1 +1862 11 24 0.9 0.9 0.9 1 +1862 11 25 1.0 1.0 1.0 1 +1862 11 26 2.1 2.1 2.1 1 +1862 11 27 1.5 1.5 1.5 1 +1862 11 28 2.1 2.1 2.1 1 +1862 11 29 1.5 1.5 1.5 1 +1862 11 30 0.7 0.7 0.7 1 +1862 12 1 -0.3 -0.3 -0.3 1 +1862 12 2 -3.8 -3.8 -3.8 1 +1862 12 3 -4.0 -4.0 -4.0 1 +1862 12 4 -1.1 -1.1 -1.1 1 +1862 12 5 -3.1 -3.1 -3.1 1 +1862 12 6 -3.5 -3.5 -3.5 1 +1862 12 7 -1.8 -1.8 -1.8 1 +1862 12 8 -3.2 -3.2 -3.2 1 +1862 12 9 -5.4 -5.4 -5.4 1 +1862 12 10 -7.1 -7.1 -7.1 1 +1862 12 11 -6.9 -6.9 -6.9 1 +1862 12 12 -6.2 -6.2 -6.2 1 +1862 12 13 -5.0 -5.0 -5.0 1 +1862 12 14 -2.6 -2.6 -2.6 1 +1862 12 15 1.4 1.4 1.4 1 +1862 12 16 2.2 2.2 2.2 1 +1862 12 17 1.5 1.5 1.5 1 +1862 12 18 -1.5 -1.5 -1.5 1 +1862 12 19 0.7 0.7 0.7 1 +1862 12 20 1.8 1.8 1.8 1 +1862 12 21 -2.9 -2.9 -2.9 1 +1862 12 22 -4.5 -4.5 -4.5 1 +1862 12 23 -2.8 -2.8 -2.8 1 +1862 12 24 -0.9 -0.9 -0.9 1 +1862 12 25 3.0 3.0 3.0 1 +1862 12 26 1.5 1.5 1.5 1 +1862 12 27 -3.7 -3.7 -3.7 1 +1862 12 28 -1.5 -1.5 -1.5 1 +1862 12 29 -2.7 -2.7 -2.7 1 +1862 12 30 2.5 2.5 2.5 1 +1862 12 31 2.7 2.7 2.7 1 +1863 1 1 1.7 1.7 1.7 1 +1863 1 2 5.2 5.2 5.2 1 +1863 1 3 3.3 3.3 3.3 1 +1863 1 4 1.8 1.8 1.8 1 +1863 1 5 2.0 2.0 2.0 1 +1863 1 6 2.1 2.1 2.1 1 +1863 1 7 0.8 0.8 0.8 1 +1863 1 8 0.6 0.6 0.6 1 +1863 1 9 -0.4 -0.4 -0.4 1 +1863 1 10 -0.6 -0.6 -0.6 1 +1863 1 11 0.1 0.1 0.1 1 +1863 1 12 -1.0 -1.0 -1.0 1 +1863 1 13 -1.1 -1.1 -1.1 1 +1863 1 14 -0.8 -0.8 -0.8 1 +1863 1 15 1.4 1.4 1.4 1 +1863 1 16 3.9 3.9 3.9 1 +1863 1 17 0.6 0.6 0.6 1 +1863 1 18 0.3 0.3 0.3 1 +1863 1 19 -0.2 -0.2 -0.2 1 +1863 1 20 -0.7 -0.7 -0.7 1 +1863 1 21 -6.2 -6.2 -6.2 1 +1863 1 22 -7.1 -7.1 -7.1 1 +1863 1 23 2.4 2.4 2.4 1 +1863 1 24 2.9 2.9 2.9 1 +1863 1 25 2.5 2.5 2.5 1 +1863 1 26 4.3 4.3 4.3 1 +1863 1 27 4.4 4.4 4.4 1 +1863 1 28 0.3 0.3 0.3 1 +1863 1 29 -1.9 -1.9 -1.9 1 +1863 1 30 3.0 3.0 3.0 1 +1863 1 31 3.2 3.2 3.2 1 +1863 2 1 -4.9 -4.9 -4.9 1 +1863 2 2 -1.7 -1.7 -1.7 1 +1863 2 3 2.9 2.9 2.9 1 +1863 2 4 3.3 3.3 3.3 1 +1863 2 5 2.5 2.5 2.5 1 +1863 2 6 4.6 4.6 4.6 1 +1863 2 7 4.2 4.2 4.2 1 +1863 2 8 -0.5 -0.5 -0.5 1 +1863 2 9 -6.2 -6.2 -6.2 1 +1863 2 10 -1.7 -1.7 -1.7 1 +1863 2 11 2.2 2.2 2.2 1 +1863 2 12 3.8 3.8 3.8 1 +1863 2 13 0.8 0.8 0.8 1 +1863 2 14 -0.7 -0.7 -0.7 1 +1863 2 15 -1.4 -1.4 -1.4 1 +1863 2 16 -0.6 -0.6 -0.6 1 +1863 2 17 2.1 2.1 2.1 1 +1863 2 18 4.1 4.1 4.1 1 +1863 2 19 -1.8 -1.8 -1.8 1 +1863 2 20 -1.6 -1.6 -1.6 1 +1863 2 21 1.2 1.2 1.2 1 +1863 2 22 1.4 1.4 1.4 1 +1863 2 23 -1.9 -1.9 -1.9 1 +1863 2 24 -0.3 -0.3 -0.3 1 +1863 2 25 0.7 0.7 0.7 1 +1863 2 26 2.7 2.7 2.7 1 +1863 2 27 5.2 5.2 5.2 1 +1863 2 28 5.8 5.8 5.8 1 +1863 3 1 1.6 1.6 1.6 1 +1863 3 2 0.4 0.4 0.4 1 +1863 3 3 3.2 3.2 3.2 1 +1863 3 4 1.8 1.8 1.8 1 +1863 3 5 1.7 1.7 1.7 1 +1863 3 6 1.3 1.3 1.3 1 +1863 3 7 -0.5 -0.5 -0.5 1 +1863 3 8 -5.7 -5.7 -5.7 1 +1863 3 9 -11.5 -11.5 -11.5 1 +1863 3 10 -7.9 -7.9 -7.9 1 +1863 3 11 -4.8 -4.8 -4.8 1 +1863 3 12 0.5 0.5 0.5 1 +1863 3 13 0.1 0.1 0.1 1 +1863 3 14 1.5 1.5 1.5 1 +1863 3 15 2.0 2.0 2.0 1 +1863 3 16 1.0 1.0 1.0 1 +1863 3 17 0.2 0.2 0.2 1 +1863 3 18 0.1 0.1 0.1 1 +1863 3 19 0.3 0.3 0.3 1 +1863 3 20 1.1 1.1 1.1 1 +1863 3 21 1.4 1.4 1.4 1 +1863 3 22 2.2 2.2 2.2 1 +1863 3 23 5.2 5.2 5.2 1 +1863 3 24 0.9 0.9 0.9 1 +1863 3 25 4.1 4.1 4.1 1 +1863 3 26 4.1 4.1 4.1 1 +1863 3 27 1.2 1.2 1.2 1 +1863 3 28 -1.3 -1.3 -1.3 1 +1863 3 29 -3.7 -3.7 -3.7 1 +1863 3 30 -3.7 -3.7 -3.7 1 +1863 3 31 -3.4 -3.4 -3.4 1 +1863 4 1 -0.2 -0.2 -0.2 1 +1863 4 2 -1.3 -1.3 -1.3 1 +1863 4 3 -0.7 -0.7 -0.7 1 +1863 4 4 0.4 0.4 0.4 1 +1863 4 5 1.0 1.0 1.0 1 +1863 4 6 5.3 5.3 5.3 1 +1863 4 7 7.3 7.3 7.3 1 +1863 4 8 5.8 5.8 5.8 1 +1863 4 9 3.3 3.3 3.3 1 +1863 4 10 3.7 3.7 3.7 1 +1863 4 11 4.4 4.4 4.4 1 +1863 4 12 5.0 5.0 5.0 1 +1863 4 13 5.4 5.4 5.4 1 +1863 4 14 5.3 5.3 5.3 1 +1863 4 15 6.1 6.1 6.1 1 +1863 4 16 6.4 6.4 6.4 1 +1863 4 17 5.7 5.7 5.7 1 +1863 4 18 6.7 6.7 6.7 1 +1863 4 19 6.7 6.7 6.7 1 +1863 4 20 7.8 7.8 7.8 1 +1863 4 21 6.9 6.9 6.9 1 +1863 4 22 5.5 5.5 5.5 1 +1863 4 23 3.8 3.8 3.8 1 +1863 4 24 2.0 2.0 2.0 1 +1863 4 25 0.2 0.2 0.2 1 +1863 4 26 0.3 0.3 0.3 1 +1863 4 27 0.7 0.7 0.7 1 +1863 4 28 4.3 4.3 4.3 1 +1863 4 29 3.2 3.2 3.2 1 +1863 4 30 2.2 2.2 2.2 1 +1863 5 1 3.7 3.7 3.7 1 +1863 5 2 7.8 7.8 7.8 1 +1863 5 3 9.5 9.5 9.5 1 +1863 5 4 9.9 9.9 9.9 1 +1863 5 5 10.5 10.5 10.5 1 +1863 5 6 4.5 4.5 4.5 1 +1863 5 7 8.6 8.6 8.6 1 +1863 5 8 4.4 4.4 4.4 1 +1863 5 9 8.9 8.9 8.9 1 +1863 5 10 9.1 9.1 9.1 1 +1863 5 11 6.7 6.7 6.7 1 +1863 5 12 8.6 8.6 8.6 1 +1863 5 13 11.9 11.9 11.9 1 +1863 5 14 13.2 13.2 13.2 1 +1863 5 15 11.4 11.4 11.4 1 +1863 5 16 11.3 11.3 11.3 1 +1863 5 17 11.9 11.9 11.9 1 +1863 5 18 11.6 11.6 11.6 1 +1863 5 19 6.6 6.6 6.6 1 +1863 5 20 5.0 5.0 5.0 1 +1863 5 21 5.6 5.6 5.6 1 +1863 5 22 5.6 5.6 5.6 1 +1863 5 23 5.9 5.9 5.9 1 +1863 5 24 6.4 6.4 6.4 1 +1863 5 25 7.0 7.0 7.0 1 +1863 5 26 11.1 11.1 11.1 1 +1863 5 27 5.2 5.2 5.2 1 +1863 5 28 7.3 7.3 7.3 1 +1863 5 29 8.0 8.0 8.0 1 +1863 5 30 8.3 8.3 8.3 1 +1863 5 31 6.3 6.3 6.3 1 +1863 6 1 5.2 5.2 5.2 1 +1863 6 2 9.0 9.0 9.0 1 +1863 6 3 10.4 10.4 10.4 1 +1863 6 4 11.0 11.0 11.0 1 +1863 6 5 11.3 11.3 11.3 1 +1863 6 6 12.4 12.4 12.4 1 +1863 6 7 10.5 10.5 10.5 1 +1863 6 8 12.1 12.1 12.1 1 +1863 6 9 13.4 13.4 13.4 1 +1863 6 10 14.2 14.2 14.2 1 +1863 6 11 14.9 14.9 14.9 1 +1863 6 12 17.3 17.3 17.3 1 +1863 6 13 17.2 17.2 17.2 1 +1863 6 14 12.8 12.8 12.8 1 +1863 6 15 16.0 16.0 16.0 1 +1863 6 16 16.1 16.1 16.1 1 +1863 6 17 17.3 17.3 17.3 1 +1863 6 18 16.3 16.3 16.3 1 +1863 6 19 14.8 14.8 14.8 1 +1863 6 20 14.1 14.1 14.1 1 +1863 6 21 16.5 16.5 16.5 1 +1863 6 22 18.5 18.5 18.5 1 +1863 6 23 19.6 19.6 19.6 1 +1863 6 24 19.0 19.0 19.0 1 +1863 6 25 18.8 18.8 18.8 1 +1863 6 26 17.3 17.3 17.3 1 +1863 6 27 14.8 14.8 14.8 1 +1863 6 28 15.0 15.0 15.0 1 +1863 6 29 15.4 15.4 15.4 1 +1863 6 30 14.8 14.8 14.8 1 +1863 7 1 14.9 14.9 14.9 1 +1863 7 2 16.2 16.2 16.2 1 +1863 7 3 15.0 15.0 15.0 1 +1863 7 4 9.3 9.3 9.3 1 +1863 7 5 11.7 11.7 11.7 1 +1863 7 6 14.9 14.9 14.9 1 +1863 7 7 16.3 16.3 16.3 1 +1863 7 8 17.1 17.1 17.1 1 +1863 7 9 16.8 16.8 16.8 1 +1863 7 10 18.6 18.6 18.6 1 +1863 7 11 20.8 20.8 20.8 1 +1863 7 12 21.3 21.3 21.3 1 +1863 7 13 15.5 15.5 15.5 1 +1863 7 14 14.9 14.9 14.9 1 +1863 7 15 11.4 11.4 11.4 1 +1863 7 16 9.1 9.1 9.1 1 +1863 7 17 8.5 8.5 8.5 1 +1863 7 18 10.0 10.0 10.0 1 +1863 7 19 11.0 11.0 11.0 1 +1863 7 20 11.8 11.8 11.8 1 +1863 7 21 12.3 12.3 12.3 1 +1863 7 22 13.4 13.4 13.4 1 +1863 7 23 12.4 12.4 12.4 1 +1863 7 24 11.7 11.7 11.7 1 +1863 7 25 13.7 13.7 13.7 1 +1863 7 26 15.0 15.0 15.0 1 +1863 7 27 18.5 18.5 18.5 1 +1863 7 28 18.2 18.2 18.2 1 +1863 7 29 16.6 16.6 16.6 1 +1863 7 30 13.5 13.5 13.5 1 +1863 7 31 12.1 12.1 12.1 1 +1863 8 1 12.4 12.4 12.4 1 +1863 8 2 14.7 14.7 14.7 1 +1863 8 3 15.5 15.5 15.5 1 +1863 8 4 18.3 18.3 18.3 1 +1863 8 5 15.4 15.4 15.4 1 +1863 8 6 16.1 16.1 16.1 1 +1863 8 7 16.2 16.2 16.2 1 +1863 8 8 15.8 15.8 15.8 1 +1863 8 9 18.2 18.2 18.2 1 +1863 8 10 17.2 17.2 17.2 1 +1863 8 11 16.0 16.0 16.0 1 +1863 8 12 12.9 12.9 12.9 1 +1863 8 13 13.2 13.2 13.2 1 +1863 8 14 12.4 12.4 12.4 1 +1863 8 15 12.7 12.7 12.7 1 +1863 8 16 15.2 15.2 15.2 1 +1863 8 17 14.8 14.8 14.8 1 +1863 8 18 14.4 14.4 14.4 1 +1863 8 19 14.6 14.6 14.6 1 +1863 8 20 13.6 13.6 13.6 1 +1863 8 21 13.5 13.5 13.5 1 +1863 8 22 13.4 13.4 13.4 1 +1863 8 23 11.6 11.6 11.6 1 +1863 8 24 13.7 13.7 13.7 1 +1863 8 25 14.3 14.3 14.3 1 +1863 8 26 14.0 14.0 14.0 1 +1863 8 27 14.6 14.6 14.6 1 +1863 8 28 19.1 19.1 19.1 1 +1863 8 29 17.0 17.0 17.0 1 +1863 8 30 16.8 16.8 16.8 1 +1863 8 31 17.1 17.1 17.1 1 +1863 9 1 16.6 16.6 16.6 1 +1863 9 2 14.8 14.8 14.8 1 +1863 9 3 14.5 14.5 14.5 1 +1863 9 4 15.3 15.3 15.3 1 +1863 9 5 13.7 13.7 13.7 1 +1863 9 6 14.4 14.4 14.4 1 +1863 9 7 13.6 13.6 13.6 1 +1863 9 8 13.3 13.3 13.3 1 +1863 9 9 13.1 13.1 13.1 1 +1863 9 10 13.0 13.0 13.0 1 +1863 9 11 13.9 13.9 13.9 1 +1863 9 12 12.7 12.7 12.7 1 +1863 9 13 11.6 11.6 11.6 1 +1863 9 14 9.1 9.1 9.1 1 +1863 9 15 8.6 8.6 8.6 1 +1863 9 16 10.8 10.8 10.8 1 +1863 9 17 8.6 8.6 8.6 1 +1863 9 18 8.6 8.6 8.6 1 +1863 9 19 10.8 10.8 10.8 1 +1863 9 20 14.0 14.0 14.0 1 +1863 9 21 11.8 11.8 11.8 1 +1863 9 22 8.8 8.8 8.8 1 +1863 9 23 13.2 13.2 13.2 1 +1863 9 24 10.4 10.4 10.4 1 +1863 9 25 11.5 11.5 11.5 1 +1863 9 26 10.8 10.8 10.8 1 +1863 9 27 9.3 9.3 9.3 1 +1863 9 28 10.2 10.2 10.2 1 +1863 9 29 8.9 8.9 8.9 1 +1863 9 30 8.9 8.9 8.9 1 +1863 10 1 10.3 10.3 10.3 1 +1863 10 2 11.5 11.5 11.5 1 +1863 10 3 12.3 12.3 12.3 1 +1863 10 4 13.3 13.3 13.3 1 +1863 10 5 10.1 10.1 10.1 1 +1863 10 6 12.1 12.1 12.1 1 +1863 10 7 9.3 9.3 9.3 1 +1863 10 8 9.2 9.2 9.2 1 +1863 10 9 8.7 8.7 8.7 1 +1863 10 10 8.0 8.0 8.0 1 +1863 10 11 10.3 10.3 10.3 1 +1863 10 12 9.8 9.8 9.8 1 +1863 10 13 10.1 10.1 10.1 1 +1863 10 14 11.5 11.5 11.5 1 +1863 10 15 11.4 11.4 11.4 1 +1863 10 16 12.1 12.1 12.1 1 +1863 10 17 10.0 10.0 10.0 1 +1863 10 18 7.8 7.8 7.8 1 +1863 10 19 10.2 10.2 10.2 1 +1863 10 20 8.1 8.1 8.1 1 +1863 10 21 5.4 5.4 5.4 1 +1863 10 22 5.8 5.8 5.8 1 +1863 10 23 6.4 6.4 6.4 1 +1863 10 24 1.6 1.6 1.6 1 +1863 10 25 2.1 2.1 2.1 1 +1863 10 26 3.4 3.4 3.4 1 +1863 10 27 5.3 5.3 5.3 1 +1863 10 28 6.2 6.2 6.2 1 +1863 10 29 7.4 7.4 7.4 1 +1863 10 30 6.8 6.8 6.8 1 +1863 10 31 7.8 7.8 7.8 1 +1863 11 1 7.1 7.1 7.1 1 +1863 11 2 5.3 5.3 5.3 1 +1863 11 3 6.1 6.1 6.1 1 +1863 11 4 5.4 5.4 5.4 1 +1863 11 5 2.9 2.9 2.9 1 +1863 11 6 1.8 1.8 1.8 1 +1863 11 7 -0.1 -0.1 -0.1 1 +1863 11 8 -0.8 -0.8 -0.8 1 +1863 11 9 -2.8 -2.8 -2.8 1 +1863 11 10 0.5 0.5 0.5 1 +1863 11 11 1.0 1.0 1.0 1 +1863 11 12 1.2 1.2 1.2 1 +1863 11 13 4.5 4.5 4.5 1 +1863 11 14 3.6 3.6 3.6 1 +1863 11 15 2.3 2.3 2.3 1 +1863 11 16 8.0 8.0 8.0 1 +1863 11 17 4.5 4.5 4.5 1 +1863 11 18 1.5 1.5 1.5 1 +1863 11 19 5.3 5.3 5.3 1 +1863 11 20 8.3 8.3 8.3 1 +1863 11 21 7.2 7.2 7.2 1 +1863 11 22 4.9 4.9 4.9 1 +1863 11 23 3.1 3.1 3.1 1 +1863 11 24 1.0 1.0 1.0 1 +1863 11 25 2.0 2.0 2.0 1 +1863 11 26 4.4 4.4 4.4 1 +1863 11 27 6.0 6.0 6.0 1 +1863 11 28 4.3 4.3 4.3 1 +1863 11 29 4.9 4.9 4.9 1 +1863 11 30 2.5 2.5 2.5 1 +1863 12 1 1.8 1.8 1.8 1 +1863 12 2 2.7 2.7 2.7 1 +1863 12 3 4.5 4.5 4.5 1 +1863 12 4 5.0 5.0 5.0 1 +1863 12 5 5.1 5.1 5.1 1 +1863 12 6 3.8 3.8 3.8 1 +1863 12 7 3.2 3.2 3.2 1 +1863 12 8 7.1 7.1 7.1 1 +1863 12 9 2.2 2.2 2.2 1 +1863 12 10 4.2 4.2 4.2 1 +1863 12 11 0.5 0.5 0.5 1 +1863 12 12 -3.7 -3.7 -3.7 1 +1863 12 13 -5.2 -5.2 -5.2 1 +1863 12 14 -5.0 -5.0 -5.0 1 +1863 12 15 -5.5 -5.5 -5.5 1 +1863 12 16 1.8 1.8 1.8 1 +1863 12 17 1.2 1.2 1.2 1 +1863 12 18 -4.6 -4.6 -4.6 1 +1863 12 19 -4.3 -4.3 -4.3 1 +1863 12 20 2.0 2.0 2.0 1 +1863 12 21 1.1 1.1 1.1 1 +1863 12 22 -0.2 -0.2 -0.2 1 +1863 12 23 -7.9 -7.9 -7.9 1 +1863 12 24 -5.2 -5.2 -5.2 1 +1863 12 25 5.1 5.1 5.1 1 +1863 12 26 4.9 4.9 4.9 1 +1863 12 27 -2.4 -2.4 -2.4 1 +1863 12 28 -4.3 -4.3 -4.3 1 +1863 12 29 -6.8 -6.8 -6.8 1 +1863 12 30 -7.3 -7.3 -7.3 1 +1863 12 31 -8.6 -8.6 -8.6 1 +1864 1 1 -10.5 -10.5 -10.5 1 +1864 1 2 -9.5 -9.5 -9.5 1 +1864 1 3 -6.7 -6.7 -6.7 1 +1864 1 4 -2.6 -2.6 -2.6 1 +1864 1 5 -4.6 -4.6 -4.6 1 +1864 1 6 -5.7 -5.7 -5.7 1 +1864 1 7 -8.4 -8.4 -8.4 1 +1864 1 8 -8.6 -8.6 -8.6 1 +1864 1 9 -6.0 -6.0 -6.0 1 +1864 1 10 -6.3 -6.3 -6.3 1 +1864 1 11 -4.9 -4.9 -4.9 1 +1864 1 12 -2.7 -2.7 -2.7 1 +1864 1 13 -4.3 -4.3 -4.3 1 +1864 1 14 -3.4 -3.4 -3.4 1 +1864 1 15 -3.3 -3.3 -3.3 1 +1864 1 16 -4.9 -4.9 -4.9 1 +1864 1 17 -6.6 -6.6 -6.6 1 +1864 1 18 -7.9 -7.9 -7.9 1 +1864 1 19 -5.4 -5.4 -5.4 1 +1864 1 20 -4.3 -4.3 -4.3 1 +1864 1 21 -0.3 -0.3 -0.3 1 +1864 1 22 0.7 0.7 0.7 1 +1864 1 23 2.9 2.9 2.9 1 +1864 1 24 -1.7 -1.7 -1.7 1 +1864 1 25 0.6 0.6 0.6 1 +1864 1 26 2.3 2.3 2.3 1 +1864 1 27 -2.1 -2.1 -2.1 1 +1864 1 28 -6.7 -6.7 -6.7 1 +1864 1 29 -5.7 -5.7 -5.7 1 +1864 1 30 -3.6 -3.6 -3.6 1 +1864 1 31 2.3 2.3 2.3 1 +1864 2 1 1.4 1.4 1.4 1 +1864 2 2 2.6 2.6 2.6 1 +1864 2 3 2.7 2.7 2.7 1 +1864 2 4 0.9 0.9 0.9 1 +1864 2 5 -2.4 -2.4 -2.4 1 +1864 2 6 -3.3 -3.3 -3.3 1 +1864 2 7 -2.7 -2.7 -2.7 1 +1864 2 8 -1.0 -1.0 -1.0 1 +1864 2 9 -3.4 -3.4 -3.4 1 +1864 2 10 -2.3 -2.3 -2.3 1 +1864 2 11 -2.9 -2.9 -2.9 1 +1864 2 12 -4.0 -4.0 -4.0 1 +1864 2 13 -0.8 -0.8 -0.8 1 +1864 2 14 0.7 0.7 0.7 1 +1864 2 15 4.0 4.0 4.0 1 +1864 2 16 0.5 0.5 0.5 1 +1864 2 17 -4.0 -4.0 -4.0 1 +1864 2 18 -6.1 -6.1 -6.1 1 +1864 2 19 -7.5 -7.5 -7.5 1 +1864 2 20 -4.5 -4.5 -4.5 1 +1864 2 21 -2.9 -2.9 -2.9 1 +1864 2 22 -0.9 -0.9 -0.9 1 +1864 2 23 0.9 0.9 0.9 1 +1864 2 24 -0.7 -0.7 -0.7 1 +1864 2 25 0.1 0.1 0.1 1 +1864 2 26 -0.1 -0.1 -0.1 1 +1864 2 27 -2.6 -2.6 -2.6 1 +1864 2 28 -3.4 -3.4 -3.4 1 +1864 2 29 -3.6 -3.6 -3.6 1 +1864 3 1 -7.7 -7.7 -7.7 1 +1864 3 2 -7.1 -7.1 -7.1 1 +1864 3 3 -5.9 -5.9 -5.9 1 +1864 3 4 -2.7 -2.7 -2.7 1 +1864 3 5 -2.5 -2.5 -2.5 1 +1864 3 6 -5.1 -5.1 -5.1 1 +1864 3 7 0.1 0.1 0.1 1 +1864 3 8 0.6 0.6 0.6 1 +1864 3 9 -3.4 -3.4 -3.4 1 +1864 3 10 0.0 0.0 0.0 1 +1864 3 11 -0.5 -0.5 -0.5 1 +1864 3 12 1.7 1.7 1.7 1 +1864 3 13 -0.5 -0.5 -0.5 1 +1864 3 14 -1.7 -1.7 -1.7 1 +1864 3 15 -6.3 -6.3 -6.3 1 +1864 3 16 -6.0 -6.0 -6.0 1 +1864 3 17 -1.8 -1.8 -1.8 1 +1864 3 18 2.3 2.3 2.3 1 +1864 3 19 -2.9 -2.9 -2.9 1 +1864 3 20 -7.8 -7.8 -7.8 1 +1864 3 21 -5.2 -5.2 -5.2 1 +1864 3 22 -2.1 -2.1 -2.1 1 +1864 3 23 -1.4 -1.4 -1.4 1 +1864 3 24 3.0 3.0 3.0 1 +1864 3 25 5.8 5.8 5.8 1 +1864 3 26 2.2 2.2 2.2 1 +1864 3 27 0.2 0.2 0.2 1 +1864 3 28 0.3 0.3 0.3 1 +1864 3 29 -1.4 -1.4 -1.4 1 +1864 3 30 -1.9 -1.9 -1.9 1 +1864 3 31 -1.8 -1.8 -1.8 1 +1864 4 1 -1.2 -1.2 -1.2 1 +1864 4 2 1.4 1.4 1.4 1 +1864 4 3 0.2 0.2 0.2 1 +1864 4 4 -1.1 -1.1 -1.1 1 +1864 4 5 -5.8 -5.8 -5.8 1 +1864 4 6 -5.6 -5.6 -5.6 1 +1864 4 7 -4.8 -4.8 -4.8 1 +1864 4 8 -2.4 -2.4 -2.4 1 +1864 4 9 2.0 2.0 2.0 1 +1864 4 10 3.8 3.8 3.8 1 +1864 4 11 5.5 5.5 5.5 1 +1864 4 12 4.4 4.4 4.4 1 +1864 4 13 3.2 3.2 3.2 1 +1864 4 14 2.5 2.5 2.5 1 +1864 4 15 3.8 3.8 3.8 1 +1864 4 16 4.0 4.0 4.0 1 +1864 4 17 0.7 0.7 0.7 1 +1864 4 18 2.6 2.6 2.6 1 +1864 4 19 2.5 2.5 2.5 1 +1864 4 20 6.2 6.2 6.2 1 +1864 4 21 5.1 5.1 5.1 1 +1864 4 22 4.9 4.9 4.9 1 +1864 4 23 4.7 4.7 4.7 1 +1864 4 24 6.7 6.7 6.7 1 +1864 4 25 7.9 7.9 7.9 1 +1864 4 26 7.7 7.7 7.7 1 +1864 4 27 7.3 7.3 7.3 1 +1864 4 28 2.7 2.7 2.7 1 +1864 4 29 -0.5 -0.5 -0.5 1 +1864 4 30 -0.9 -0.9 -0.9 1 +1864 5 1 -0.6 -0.6 -0.6 1 +1864 5 2 -0.7 -0.7 -0.7 1 +1864 5 3 -0.8 -0.8 -0.8 1 +1864 5 4 -0.1 -0.1 -0.1 1 +1864 5 5 0.3 0.3 0.3 1 +1864 5 6 1.5 1.5 1.5 1 +1864 5 7 4.4 4.4 4.4 1 +1864 5 8 4.6 4.6 4.6 1 +1864 5 9 5.2 5.2 5.2 1 +1864 5 10 5.1 5.1 5.1 1 +1864 5 11 5.0 5.0 5.0 1 +1864 5 12 5.5 5.5 5.5 1 +1864 5 13 7.1 7.1 7.1 1 +1864 5 14 11.6 11.6 11.6 1 +1864 5 15 7.1 7.1 7.1 1 +1864 5 16 5.0 5.0 5.0 1 +1864 5 17 9.3 9.3 9.3 1 +1864 5 18 11.2 11.2 11.2 1 +1864 5 19 6.3 6.3 6.3 1 +1864 5 20 7.5 7.5 7.5 1 +1864 5 21 6.1 6.1 6.1 1 +1864 5 22 3.1 3.1 3.1 1 +1864 5 23 2.7 2.7 2.7 1 +1864 5 24 5.9 5.9 5.9 1 +1864 5 25 6.5 6.5 6.5 1 +1864 5 26 4.4 4.4 4.4 1 +1864 5 27 5.7 5.7 5.7 1 +1864 5 28 6.4 6.4 6.4 1 +1864 5 29 6.2 6.2 6.2 1 +1864 5 30 6.5 6.5 6.5 1 +1864 5 31 8.9 8.9 8.9 1 +1864 6 1 8.2 8.2 8.2 1 +1864 6 2 9.0 9.0 9.0 1 +1864 6 3 10.3 10.3 10.3 1 +1864 6 4 10.2 10.2 10.2 1 +1864 6 5 11.0 11.0 11.0 1 +1864 6 6 12.5 12.5 12.5 1 +1864 6 7 14.0 14.0 14.0 1 +1864 6 8 12.4 12.4 12.4 1 +1864 6 9 15.7 15.7 15.7 1 +1864 6 10 15.0 15.0 15.0 1 +1864 6 11 14.0 14.0 14.0 1 +1864 6 12 17.3 17.3 17.3 1 +1864 6 13 18.8 18.8 18.8 1 +1864 6 14 18.6 18.6 18.6 1 +1864 6 15 18.2 18.2 18.2 1 +1864 6 16 20.1 20.1 20.1 1 +1864 6 17 19.9 19.9 19.9 1 +1864 6 18 17.8 17.8 17.8 1 +1864 6 19 16.3 16.3 16.3 1 +1864 6 20 15.6 15.6 15.6 1 +1864 6 21 16.3 16.3 16.3 1 +1864 6 22 17.0 17.0 17.0 1 +1864 6 23 15.4 15.4 15.4 1 +1864 6 24 14.0 14.0 14.0 1 +1864 6 25 13.7 13.7 13.7 1 +1864 6 26 13.5 13.5 13.5 1 +1864 6 27 10.5 10.5 10.5 1 +1864 6 28 12.3 12.3 12.3 1 +1864 6 29 13.4 13.4 13.4 1 +1864 6 30 14.0 14.0 14.0 1 +1864 7 1 13.2 13.2 13.2 1 +1864 7 2 14.0 14.0 14.0 1 +1864 7 3 16.8 16.8 16.8 1 +1864 7 4 14.4 14.4 14.4 1 +1864 7 5 15.0 15.0 15.0 1 +1864 7 6 17.0 17.0 17.0 1 +1864 7 7 18.3 18.3 18.3 1 +1864 7 8 16.2 16.2 16.2 1 +1864 7 9 16.9 16.9 16.9 1 +1864 7 10 18.5 18.5 18.5 1 +1864 7 11 17.3 17.3 17.3 1 +1864 7 12 12.7 12.7 12.7 1 +1864 7 13 13.8 13.8 13.8 1 +1864 7 14 15.5 15.5 15.5 1 +1864 7 15 12.5 12.5 12.5 1 +1864 7 16 15.7 15.7 15.7 1 +1864 7 17 17.4 17.4 17.4 1 +1864 7 18 15.5 15.5 15.5 1 +1864 7 19 11.4 11.4 11.4 1 +1864 7 20 13.8 13.8 13.8 1 +1864 7 21 14.8 14.8 14.8 1 +1864 7 22 17.0 17.0 17.0 1 +1864 7 23 17.1 17.1 17.1 1 +1864 7 24 17.7 17.7 17.7 1 +1864 7 25 17.2 17.2 17.2 1 +1864 7 26 16.8 16.8 16.8 1 +1864 7 27 15.6 15.6 15.6 1 +1864 7 28 16.9 16.9 16.9 1 +1864 7 29 18.1 18.1 18.1 1 +1864 7 30 18.4 18.4 18.4 1 +1864 7 31 17.5 17.5 17.5 1 +1864 8 1 16.9 16.9 16.9 1 +1864 8 2 15.5 15.5 15.5 1 +1864 8 3 14.2 14.2 14.2 1 +1864 8 4 15.3 15.3 15.3 1 +1864 8 5 14.5 14.5 14.5 1 +1864 8 6 14.0 14.0 14.0 1 +1864 8 7 13.3 13.3 13.3 1 +1864 8 8 14.1 14.1 14.1 1 +1864 8 9 14.9 14.9 14.9 1 +1864 8 10 13.0 13.0 13.0 1 +1864 8 11 12.5 12.5 12.5 1 +1864 8 12 10.1 10.1 10.1 1 +1864 8 13 13.2 13.2 13.2 1 +1864 8 14 13.9 13.9 13.9 1 +1864 8 15 16.3 16.3 16.3 1 +1864 8 16 11.6 11.6 11.6 1 +1864 8 17 10.7 10.7 10.7 1 +1864 8 18 8.9 8.9 8.9 1 +1864 8 19 11.4 11.4 11.4 1 +1864 8 20 12.7 12.7 12.7 1 +1864 8 21 9.0 9.0 9.0 1 +1864 8 22 9.4 9.4 9.4 1 +1864 8 23 11.2 11.2 11.2 1 +1864 8 24 10.2 10.2 10.2 1 +1864 8 25 9.5 9.5 9.5 1 +1864 8 26 7.2 7.2 7.2 1 +1864 8 27 7.3 7.3 7.3 1 +1864 8 28 9.0 9.0 9.0 1 +1864 8 29 10.0 10.0 10.0 1 +1864 8 30 9.7 9.7 9.7 1 +1864 8 31 12.1 12.1 12.1 1 +1864 9 1 13.7 13.7 13.7 1 +1864 9 2 11.5 11.5 11.5 1 +1864 9 3 9.5 9.5 9.5 1 +1864 9 4 9.5 9.5 9.5 1 +1864 9 5 10.6 10.6 10.6 1 +1864 9 6 10.9 10.9 10.9 1 +1864 9 7 11.2 11.2 11.2 1 +1864 9 8 10.9 10.9 10.9 1 +1864 9 9 11.8 11.8 11.8 1 +1864 9 10 14.3 14.3 14.3 1 +1864 9 11 11.1 11.1 11.1 1 +1864 9 12 10.8 10.8 10.8 1 +1864 9 13 11.2 11.2 11.2 1 +1864 9 14 10.4 10.4 10.4 1 +1864 9 15 10.7 10.7 10.7 1 +1864 9 16 9.6 9.6 9.6 1 +1864 9 17 11.0 11.0 11.0 1 +1864 9 18 12.2 12.2 12.2 1 +1864 9 19 12.0 12.0 12.0 1 +1864 9 20 11.4 11.4 11.4 1 +1864 9 21 10.9 10.9 10.9 1 +1864 9 22 12.3 12.3 12.3 1 +1864 9 23 12.6 12.6 12.6 1 +1864 9 24 11.4 11.4 11.4 1 +1864 9 25 10.4 10.4 10.4 1 +1864 9 26 7.1 7.1 7.1 1 +1864 9 27 5.9 5.9 5.9 1 +1864 9 28 10.2 10.2 10.2 1 +1864 9 29 8.8 8.8 8.8 1 +1864 9 30 6.1 6.1 6.1 1 +1864 10 1 3.3 3.3 3.3 1 +1864 10 2 2.8 2.8 2.8 1 +1864 10 3 4.8 4.8 4.8 1 +1864 10 4 8.0 8.0 8.0 1 +1864 10 5 7.7 7.7 7.7 1 +1864 10 6 6.7 6.7 6.7 1 +1864 10 7 8.0 8.0 8.0 1 +1864 10 8 2.7 2.7 2.7 1 +1864 10 9 3.6 3.6 3.6 1 +1864 10 10 6.0 6.0 6.0 1 +1864 10 11 6.5 6.5 6.5 1 +1864 10 12 3.2 3.2 3.2 1 +1864 10 13 1.3 1.3 1.3 1 +1864 10 14 -0.5 -0.5 -0.5 1 +1864 10 15 -1.1 -1.1 -1.1 1 +1864 10 16 -1.4 -1.4 -1.4 1 +1864 10 17 4.5 4.5 4.5 1 +1864 10 18 5.9 5.9 5.9 1 +1864 10 19 1.9 1.9 1.9 1 +1864 10 20 9.9 9.9 9.9 1 +1864 10 21 8.4 8.4 8.4 1 +1864 10 22 3.7 3.7 3.7 1 +1864 10 23 4.7 4.7 4.7 1 +1864 10 24 3.8 3.8 3.8 1 +1864 10 25 2.1 2.1 2.1 1 +1864 10 26 2.4 2.4 2.4 1 +1864 10 27 2.4 2.4 2.4 1 +1864 10 28 -0.9 -0.9 -0.9 1 +1864 10 29 -3.4 -3.4 -3.4 1 +1864 10 30 -0.9 -0.9 -0.9 1 +1864 10 31 -3.7 -3.7 -3.7 1 +1864 11 1 -3.9 -3.9 -3.9 1 +1864 11 2 2.0 2.0 2.0 1 +1864 11 3 -3.5 -3.5 -3.5 1 +1864 11 4 -4.0 -4.0 -4.0 1 +1864 11 5 -2.0 -2.0 -2.0 1 +1864 11 6 -6.5 -6.5 -6.5 1 +1864 11 7 0.0 0.0 0.0 1 +1864 11 8 0.3 0.3 0.3 1 +1864 11 9 -2.0 -2.0 -2.0 1 +1864 11 10 2.1 2.1 2.1 1 +1864 11 11 0.3 0.3 0.3 1 +1864 11 12 -2.1 -2.1 -2.1 1 +1864 11 13 2.5 2.5 2.5 1 +1864 11 14 0.2 0.2 0.2 1 +1864 11 15 2.0 2.0 2.0 1 +1864 11 16 -0.9 -0.9 -0.9 1 +1864 11 17 -1.5 -1.5 -1.5 1 +1864 11 18 1.5 1.5 1.5 1 +1864 11 19 4.0 4.0 4.0 1 +1864 11 20 2.1 2.1 2.1 1 +1864 11 21 -2.0 -2.0 -2.0 1 +1864 11 22 -5.7 -5.7 -5.7 1 +1864 11 23 -5.0 -5.0 -5.0 1 +1864 11 24 -3.0 -3.0 -3.0 1 +1864 11 25 -2.1 -2.1 -2.1 1 +1864 11 26 -5.1 -5.1 -5.1 1 +1864 11 27 -4.4 -4.4 -4.4 1 +1864 11 28 -2.2 -2.2 -2.2 1 +1864 11 29 3.0 3.0 3.0 1 +1864 11 30 2.2 2.2 2.2 1 +1864 12 1 1.7 1.7 1.7 1 +1864 12 2 1.6 1.6 1.6 1 +1864 12 3 0.8 0.8 0.8 1 +1864 12 4 1.0 1.0 1.0 1 +1864 12 5 3.2 3.2 3.2 1 +1864 12 6 4.7 4.7 4.7 1 +1864 12 7 2.3 2.3 2.3 1 +1864 12 8 2.6 2.6 2.6 1 +1864 12 9 2.4 2.4 2.4 1 +1864 12 10 1.0 1.0 1.0 1 +1864 12 11 1.5 1.5 1.5 1 +1864 12 12 1.8 1.8 1.8 1 +1864 12 13 0.7 0.7 0.7 1 +1864 12 14 -1.5 -1.5 -1.5 1 +1864 12 15 -1.2 -1.2 -1.2 1 +1864 12 16 -2.5 -2.5 -2.5 1 +1864 12 17 -3.6 -3.6 -3.6 1 +1864 12 18 -1.8 -1.8 -1.8 1 +1864 12 19 -4.7 -4.7 -4.7 1 +1864 12 20 -2.8 -2.8 -2.8 1 +1864 12 21 -5.1 -5.1 -5.1 1 +1864 12 22 -5.5 -5.5 -5.5 1 +1864 12 23 -6.7 -6.7 -6.7 1 +1864 12 24 -6.3 -6.3 -6.3 1 +1864 12 25 -1.0 -1.0 -1.0 1 +1864 12 26 0.1 0.1 0.1 1 +1864 12 27 -1.6 -1.6 -1.6 1 +1864 12 28 1.6 1.6 1.6 1 +1864 12 29 0.9 0.9 0.9 1 +1864 12 30 1.5 1.5 1.5 1 +1864 12 31 -3.6 -3.6 -3.6 1 +1865 1 1 -9.0 -9.0 -9.0 1 +1865 1 2 -11.1 -11.1 -11.1 1 +1865 1 3 -3.5 -3.5 -3.5 1 +1865 1 4 -1.4 -1.4 -1.4 1 +1865 1 5 -0.1 -0.1 -0.1 1 +1865 1 6 -5.5 -5.5 -5.5 1 +1865 1 7 -7.4 -7.4 -7.4 1 +1865 1 8 -4.9 -4.9 -4.9 1 +1865 1 9 3.3 3.3 3.3 1 +1865 1 10 0.5 0.5 0.5 1 +1865 1 11 3.0 3.0 3.0 1 +1865 1 12 0.9 0.9 0.9 1 +1865 1 13 1.8 1.8 1.8 1 +1865 1 14 1.7 1.7 1.7 1 +1865 1 15 2.5 2.5 2.5 1 +1865 1 16 2.2 2.2 2.2 1 +1865 1 17 1.3 1.3 1.3 1 +1865 1 18 -0.3 -0.3 -0.3 1 +1865 1 19 0.4 0.4 0.4 1 +1865 1 20 1.2 1.2 1.2 1 +1865 1 21 -0.9 -0.9 -0.9 1 +1865 1 22 -1.3 -1.3 -1.3 1 +1865 1 23 -2.0 -2.0 -2.0 1 +1865 1 24 -2.8 -2.8 -2.8 1 +1865 1 25 -4.9 -4.9 -4.9 1 +1865 1 26 -8.0 -8.0 -8.0 1 +1865 1 27 -5.4 -5.4 -5.4 1 +1865 1 28 -7.9 -7.9 -7.9 1 +1865 1 29 -7.5 -7.5 -7.5 1 +1865 1 30 -8.2 -8.2 -8.2 1 +1865 1 31 -11.3 -11.3 -11.3 1 +1865 2 1 -8.2 -8.2 -8.2 1 +1865 2 2 -11.5 -11.5 -11.5 1 +1865 2 3 -19.1 -19.1 -19.1 1 +1865 2 4 -22.1 -22.1 -22.1 1 +1865 2 5 -19.9 -19.9 -19.9 1 +1865 2 6 -20.9 -20.9 -20.9 1 +1865 2 7 -10.9 -10.9 -10.9 1 +1865 2 8 -13.3 -13.3 -13.3 1 +1865 2 9 -15.7 -15.7 -15.7 1 +1865 2 10 -18.1 -18.1 -18.1 1 +1865 2 11 -16.6 -16.6 -16.6 1 +1865 2 12 -13.5 -13.5 -13.5 1 +1865 2 13 -14.7 -14.7 -14.7 1 +1865 2 14 -3.9 -3.9 -3.9 1 +1865 2 15 -2.1 -2.1 -2.1 1 +1865 2 16 -1.7 -1.7 -1.7 1 +1865 2 17 -3.5 -3.5 -3.5 1 +1865 2 18 -0.6 -0.6 -0.6 1 +1865 2 19 -0.7 -0.7 -0.7 1 +1865 2 20 -3.9 -3.9 -3.9 1 +1865 2 21 -9.7 -9.7 -9.7 1 +1865 2 22 -9.7 -9.7 -9.7 1 +1865 2 23 -6.0 -6.0 -6.0 1 +1865 2 24 0.8 0.8 0.8 1 +1865 2 25 2.2 2.2 2.2 1 +1865 2 26 0.6 0.6 0.6 1 +1865 2 27 -0.1 -0.1 -0.1 1 +1865 2 28 -4.5 -4.5 -4.5 1 +1865 3 1 -2.0 -2.0 -2.0 1 +1865 3 2 -1.7 -1.7 -1.7 1 +1865 3 3 -1.7 -1.7 -1.7 1 +1865 3 4 -3.2 -3.2 -3.2 1 +1865 3 5 -2.3 -2.3 -2.3 1 +1865 3 6 0.3 0.3 0.3 1 +1865 3 7 -0.3 -0.3 -0.3 1 +1865 3 8 -2.3 -2.3 -2.3 1 +1865 3 9 -2.0 -2.0 -2.0 1 +1865 3 10 -0.1 -0.1 -0.1 1 +1865 3 11 0.3 0.3 0.3 1 +1865 3 12 -3.3 -3.3 -3.3 1 +1865 3 13 -3.1 -3.1 -3.1 1 +1865 3 14 -3.5 -3.5 -3.5 1 +1865 3 15 -3.6 -3.6 -3.6 1 +1865 3 16 -1.5 -1.5 -1.5 1 +1865 3 17 -6.2 -6.2 -6.2 1 +1865 3 18 -10.7 -10.7 -10.7 1 +1865 3 19 -13.4 -13.4 -13.4 1 +1865 3 20 -9.3 -9.3 -9.3 1 +1865 3 21 -3.6 -3.6 -3.6 1 +1865 3 22 -3.1 -3.1 -3.1 1 +1865 3 23 -3.7 -3.7 -3.7 1 +1865 3 24 -7.0 -7.0 -7.0 1 +1865 3 25 -7.1 -7.1 -7.1 1 +1865 3 26 -8.0 -8.0 -8.0 1 +1865 3 27 -11.4 -11.4 -11.4 1 +1865 3 28 -8.3 -8.3 -8.3 1 +1865 3 29 -5.3 -5.3 -5.3 1 +1865 3 30 -1.6 -1.6 -1.6 1 +1865 3 31 -1.6 -1.6 -1.6 1 +1865 4 1 1.7 1.7 1.7 1 +1865 4 2 0.7 0.7 0.7 1 +1865 4 3 1.0 1.0 1.0 1 +1865 4 4 1.3 1.3 1.3 1 +1865 4 5 2.2 2.2 2.2 1 +1865 4 6 2.1 2.1 2.1 1 +1865 4 7 4.8 4.8 4.8 1 +1865 4 8 5.3 5.3 5.3 1 +1865 4 9 5.2 5.2 5.2 1 +1865 4 10 3.7 3.7 3.7 1 +1865 4 11 5.0 5.0 5.0 1 +1865 4 12 5.8 5.8 5.8 1 +1865 4 13 4.8 4.8 4.8 1 +1865 4 14 3.7 3.7 3.7 1 +1865 4 15 5.1 5.1 5.1 1 +1865 4 16 6.3 6.3 6.3 1 +1865 4 17 4.9 4.9 4.9 1 +1865 4 18 6.0 6.0 6.0 1 +1865 4 19 6.4 6.4 6.4 1 +1865 4 20 5.3 5.3 5.3 1 +1865 4 21 10.7 10.7 10.7 1 +1865 4 22 8.9 8.9 8.9 1 +1865 4 23 7.9 7.9 7.9 1 +1865 4 24 3.2 3.2 3.2 1 +1865 4 25 6.5 6.5 6.5 1 +1865 4 26 5.2 5.2 5.2 1 +1865 4 27 2.9 2.9 2.9 1 +1865 4 28 1.7 1.7 1.7 1 +1865 4 29 -0.1 -0.1 -0.1 1 +1865 4 30 0.6 0.6 0.6 1 +1865 5 1 2.5 2.5 2.5 1 +1865 5 2 6.7 6.7 6.7 1 +1865 5 3 9.7 9.7 9.7 1 +1865 5 4 8.4 8.4 8.4 1 +1865 5 5 12.3 12.3 12.3 1 +1865 5 6 10.2 10.2 10.2 1 +1865 5 7 7.5 7.5 7.5 1 +1865 5 8 8.2 8.2 8.2 1 +1865 5 9 8.6 8.6 8.6 1 +1865 5 10 7.9 7.9 7.9 1 +1865 5 11 11.1 11.1 11.1 1 +1865 5 12 4.9 4.9 4.9 1 +1865 5 13 8.4 8.4 8.4 1 +1865 5 14 11.1 11.1 11.1 1 +1865 5 15 12.2 12.2 12.2 1 +1865 5 16 12.4 12.4 12.4 1 +1865 5 17 10.8 10.8 10.8 1 +1865 5 18 13.6 13.6 13.6 1 +1865 5 19 14.3 14.3 14.3 1 +1865 5 20 15.9 15.9 15.9 1 +1865 5 21 18.1 18.1 18.1 1 +1865 5 22 13.3 13.3 13.3 1 +1865 5 23 13.4 13.4 13.4 1 +1865 5 24 16.6 16.6 16.6 1 +1865 5 25 18.9 18.9 18.9 1 +1865 5 26 12.2 12.2 12.2 1 +1865 5 27 5.5 5.5 5.5 1 +1865 5 28 8.8 8.8 8.8 1 +1865 5 29 13.5 13.5 13.5 1 +1865 5 30 12.5 12.5 12.5 1 +1865 5 31 6.1 6.1 6.1 1 +1865 6 1 7.8 7.8 7.8 1 +1865 6 2 8.0 8.0 8.0 1 +1865 6 3 9.7 9.7 9.7 1 +1865 6 4 10.4 10.4 10.4 1 +1865 6 5 13.0 13.0 13.0 1 +1865 6 6 12.8 12.8 12.8 1 +1865 6 7 8.7 8.7 8.7 1 +1865 6 8 7.7 7.7 7.7 1 +1865 6 9 12.6 12.6 12.6 1 +1865 6 10 12.1 12.1 12.1 1 +1865 6 11 8.8 8.8 8.8 1 +1865 6 12 10.3 10.3 10.3 1 +1865 6 13 7.6 7.6 7.6 1 +1865 6 14 9.5 9.5 9.5 1 +1865 6 15 12.6 12.6 12.6 1 +1865 6 16 12.4 12.4 12.4 1 +1865 6 17 8.4 8.4 8.4 1 +1865 6 18 11.3 11.3 11.3 1 +1865 6 19 10.1 10.1 10.1 1 +1865 6 20 12.1 12.1 12.1 1 +1865 6 21 12.9 12.9 12.9 1 +1865 6 22 14.7 14.7 14.7 1 +1865 6 23 14.1 14.1 14.1 1 +1865 6 24 16.1 16.1 16.1 1 +1865 6 25 9.0 9.0 9.0 1 +1865 6 26 11.7 11.7 11.7 1 +1865 6 27 8.9 8.9 8.9 1 +1865 6 28 8.8 8.8 8.8 1 +1865 6 29 10.4 10.4 10.4 1 +1865 6 30 12.3 12.3 12.3 1 +1865 7 1 12.4 12.4 12.4 1 +1865 7 2 14.7 14.7 14.7 1 +1865 7 3 17.0 17.0 17.0 1 +1865 7 4 17.5 17.5 17.5 1 +1865 7 5 16.3 16.3 16.3 1 +1865 7 6 17.2 17.2 17.2 1 +1865 7 7 18.9 18.9 18.9 1 +1865 7 8 17.9 17.9 17.9 1 +1865 7 9 16.1 16.1 16.1 1 +1865 7 10 16.2 16.2 16.2 1 +1865 7 11 14.1 14.1 14.1 1 +1865 7 12 13.5 13.5 13.5 1 +1865 7 13 16.0 16.0 16.0 1 +1865 7 14 15.6 15.6 15.6 1 +1865 7 15 18.6 18.6 18.6 1 +1865 7 16 21.8 21.8 21.8 1 +1865 7 17 23.5 23.5 23.5 1 +1865 7 18 21.7 21.7 21.7 1 +1865 7 19 21.6 21.6 21.6 1 +1865 7 20 22.0 22.0 22.0 1 +1865 7 21 23.5 23.5 23.5 1 +1865 7 22 25.4 25.4 25.4 1 +1865 7 23 24.2 24.2 24.2 1 +1865 7 24 25.5 25.5 25.5 1 +1865 7 25 23.4 23.4 23.4 1 +1865 7 26 21.3 21.3 21.3 1 +1865 7 27 23.3 23.3 23.3 1 +1865 7 28 18.7 18.7 18.7 1 +1865 7 29 14.5 14.5 14.5 1 +1865 7 30 12.8 12.8 12.8 1 +1865 7 31 13.2 13.2 13.2 1 +1865 8 1 13.4 13.4 13.4 1 +1865 8 2 14.7 14.7 14.7 1 +1865 8 3 14.4 14.4 14.4 1 +1865 8 4 14.4 14.4 14.4 1 +1865 8 5 16.2 16.2 16.2 1 +1865 8 6 14.9 14.9 14.9 1 +1865 8 7 12.5 12.5 12.5 1 +1865 8 8 15.2 15.2 15.2 1 +1865 8 9 13.7 13.7 13.7 1 +1865 8 10 14.1 14.1 14.1 1 +1865 8 11 15.6 15.6 15.6 1 +1865 8 12 16.8 16.8 16.8 1 +1865 8 13 17.3 17.3 17.3 1 +1865 8 14 14.7 14.7 14.7 1 +1865 8 15 13.3 13.3 13.3 1 +1865 8 16 14.4 14.4 14.4 1 +1865 8 17 15.4 15.4 15.4 1 +1865 8 18 12.6 12.6 12.6 1 +1865 8 19 12.7 12.7 12.7 1 +1865 8 20 11.8 11.8 11.8 1 +1865 8 21 13.6 13.6 13.6 1 +1865 8 22 13.0 13.0 13.0 1 +1865 8 23 12.1 12.1 12.1 1 +1865 8 24 11.7 11.7 11.7 1 +1865 8 25 12.8 12.8 12.8 1 +1865 8 26 16.5 16.5 16.5 1 +1865 8 27 17.7 17.7 17.7 1 +1865 8 28 15.7 15.7 15.7 1 +1865 8 29 11.5 11.5 11.5 1 +1865 8 30 10.4 10.4 10.4 1 +1865 8 31 10.7 10.7 10.7 1 +1865 9 1 11.9 11.9 11.9 1 +1865 9 2 7.2 7.2 7.2 1 +1865 9 3 7.0 7.0 7.0 1 +1865 9 4 9.7 9.7 9.7 1 +1865 9 5 16.6 16.6 16.6 1 +1865 9 6 17.0 17.0 17.0 1 +1865 9 7 15.9 15.9 15.9 1 +1865 9 8 17.9 17.9 17.9 1 +1865 9 9 19.0 19.0 19.0 1 +1865 9 10 16.5 16.5 16.5 1 +1865 9 11 13.5 13.5 13.5 1 +1865 9 12 9.9 9.9 9.9 1 +1865 9 13 12.0 12.0 12.0 1 +1865 9 14 12.5 12.5 12.5 1 +1865 9 15 9.1 9.1 9.1 1 +1865 9 16 11.8 11.8 11.8 1 +1865 9 17 12.7 12.7 12.7 1 +1865 9 18 12.1 12.1 12.1 1 +1865 9 19 12.0 12.0 12.0 1 +1865 9 20 11.5 11.5 11.5 1 +1865 9 21 12.9 12.9 12.9 1 +1865 9 22 14.1 14.1 14.1 1 +1865 9 23 11.7 11.7 11.7 1 +1865 9 24 11.2 11.2 11.2 1 +1865 9 25 12.3 12.3 12.3 1 +1865 9 26 14.0 14.0 14.0 1 +1865 9 27 15.7 15.7 15.7 1 +1865 9 28 10.7 10.7 10.7 1 +1865 9 29 5.9 5.9 5.9 1 +1865 9 30 7.8 7.8 7.8 1 +1865 10 1 7.1 7.1 7.1 1 +1865 10 2 5.1 5.1 5.1 1 +1865 10 3 4.8 4.8 4.8 1 +1865 10 4 6.5 6.5 6.5 1 +1865 10 5 9.5 9.5 9.5 1 +1865 10 6 10.1 10.1 10.1 1 +1865 10 7 8.9 8.9 8.9 1 +1865 10 8 3.4 3.4 3.4 1 +1865 10 9 2.6 2.6 2.6 1 +1865 10 10 1.3 1.3 1.3 1 +1865 10 11 1.9 1.9 1.9 1 +1865 10 12 4.5 4.5 4.5 1 +1865 10 13 4.2 4.2 4.2 1 +1865 10 14 0.9 0.9 0.9 1 +1865 10 15 1.5 1.5 1.5 1 +1865 10 16 1.4 1.4 1.4 1 +1865 10 17 0.8 0.8 0.8 1 +1865 10 18 0.7 0.7 0.7 1 +1865 10 19 6.5 6.5 6.5 1 +1865 10 20 8.6 8.6 8.6 1 +1865 10 21 7.3 7.3 7.3 1 +1865 10 22 7.8 7.8 7.8 1 +1865 10 23 6.5 6.5 6.5 1 +1865 10 24 4.5 4.5 4.5 1 +1865 10 25 4.0 4.0 4.0 1 +1865 10 26 0.8 0.8 0.8 1 +1865 10 27 5.8 5.8 5.8 1 +1865 10 28 5.9 5.9 5.9 1 +1865 10 29 2.4 2.4 2.4 1 +1865 10 30 6.2 6.2 6.2 1 +1865 10 31 7.7 7.7 7.7 1 +1865 11 1 7.7 7.7 7.7 1 +1865 11 2 6.0 6.0 6.0 1 +1865 11 3 4.8 4.8 4.8 1 +1865 11 4 3.9 3.9 3.9 1 +1865 11 5 3.7 3.7 3.7 1 +1865 11 6 3.2 3.2 3.2 1 +1865 11 7 3.1 3.1 3.1 1 +1865 11 8 3.6 3.6 3.6 1 +1865 11 9 4.4 4.4 4.4 1 +1865 11 10 -0.6 -0.6 -0.6 1 +1865 11 11 1.0 1.0 1.0 1 +1865 11 12 -1.5 -1.5 -1.5 1 +1865 11 13 1.8 1.8 1.8 1 +1865 11 14 3.0 3.0 3.0 1 +1865 11 15 2.6 2.6 2.6 1 +1865 11 16 4.7 4.7 4.7 1 +1865 11 17 5.5 5.5 5.5 1 +1865 11 18 3.8 3.8 3.8 1 +1865 11 19 2.3 2.3 2.3 1 +1865 11 20 4.0 4.0 4.0 1 +1865 11 21 6.0 6.0 6.0 1 +1865 11 22 5.0 5.0 5.0 1 +1865 11 23 5.3 5.3 5.3 1 +1865 11 24 7.5 7.5 7.5 1 +1865 11 25 7.9 7.9 7.9 1 +1865 11 26 7.4 7.4 7.4 1 +1865 11 27 4.5 4.5 4.5 1 +1865 11 28 0.9 0.9 0.9 1 +1865 11 29 0.1 0.1 0.1 1 +1865 11 30 -2.0 -2.0 -2.0 1 +1865 12 1 -5.0 -5.0 -5.0 1 +1865 12 2 -1.5 -1.5 -1.5 1 +1865 12 3 -0.2 -0.2 -0.2 1 +1865 12 4 -4.2 -4.2 -4.2 1 +1865 12 5 -1.5 -1.5 -1.5 1 +1865 12 6 -3.5 -3.5 -3.5 1 +1865 12 7 -2.9 -2.9 -2.9 1 +1865 12 8 1.2 1.2 1.2 1 +1865 12 9 5.8 5.8 5.8 1 +1865 12 10 5.8 5.8 5.8 1 +1865 12 11 1.7 1.7 1.7 1 +1865 12 12 -1.3 -1.3 -1.3 1 +1865 12 13 3.0 3.0 3.0 1 +1865 12 14 1.1 1.1 1.1 1 +1865 12 15 -3.6 -3.6 -3.6 1 +1865 12 16 4.0 4.0 4.0 1 +1865 12 17 -0.7 -0.7 -0.7 1 +1865 12 18 2.9 2.9 2.9 1 +1865 12 19 0.8 0.8 0.8 1 +1865 12 20 2.4 2.4 2.4 1 +1865 12 21 1.9 1.9 1.9 1 +1865 12 22 5.1 5.1 5.1 1 +1865 12 23 0.9 0.9 0.9 1 +1865 12 24 3.1 3.1 3.1 1 +1865 12 25 1.8 1.8 1.8 1 +1865 12 26 1.6 1.6 1.6 1 +1865 12 27 2.6 2.6 2.6 1 +1865 12 28 0.2 0.2 0.2 1 +1865 12 29 2.4 2.4 2.4 1 +1865 12 30 4.1 4.1 4.1 1 +1865 12 31 3.1 3.1 3.1 1 +1866 1 1 5.0 5.0 5.0 1 +1866 1 2 3.1 3.1 3.1 1 +1866 1 3 2.5 2.5 2.5 1 +1866 1 4 1.1 1.1 1.1 1 +1866 1 5 1.1 1.1 1.1 1 +1866 1 6 1.2 1.2 1.2 1 +1866 1 7 1.4 1.4 1.4 1 +1866 1 8 1.9 1.9 1.9 1 +1866 1 9 2.1 2.1 2.1 1 +1866 1 10 1.3 1.3 1.3 1 +1866 1 11 1.2 1.2 1.2 1 +1866 1 12 -0.4 -0.4 -0.4 1 +1866 1 13 -6.1 -6.1 -6.1 1 +1866 1 14 0.8 0.8 0.8 1 +1866 1 15 5.4 5.4 5.4 1 +1866 1 16 3.7 3.7 3.7 1 +1866 1 17 1.0 1.0 1.0 1 +1866 1 18 -0.2 -0.2 -0.2 1 +1866 1 19 6.0 6.0 6.0 1 +1866 1 20 4.7 4.7 4.7 1 +1866 1 21 -0.4 -0.4 -0.4 1 +1866 1 22 4.9 4.9 4.9 1 +1866 1 23 -1.1 -1.1 -1.1 1 +1866 1 24 -1.1 -1.1 -1.1 1 +1866 1 25 -0.3 -0.3 -0.3 1 +1866 1 26 2.4 2.4 2.4 1 +1866 1 27 4.2 4.2 4.2 1 +1866 1 28 5.9 5.9 5.9 1 +1866 1 29 3.6 3.6 3.6 1 +1866 1 30 -4.9 -4.9 -4.9 1 +1866 1 31 -5.5 -5.5 -5.5 1 +1866 2 1 -0.8 -0.8 -0.8 1 +1866 2 2 1.1 1.1 1.1 1 +1866 2 3 1.2 1.2 1.2 1 +1866 2 4 2.0 2.0 2.0 1 +1866 2 5 1.6 1.6 1.6 1 +1866 2 6 -1.2 -1.2 -1.2 1 +1866 2 7 -2.2 -2.2 -2.2 1 +1866 2 8 -2.5 -2.5 -2.5 1 +1866 2 9 -4.4 -4.4 -4.4 1 +1866 2 10 -5.2 -5.2 -5.2 1 +1866 2 11 -2.0 -2.0 -2.0 1 +1866 2 12 -0.9 -0.9 -0.9 1 +1866 2 13 0.6 0.6 0.6 1 +1866 2 14 -0.6 -0.6 -0.6 1 +1866 2 15 -4.2 -4.2 -4.2 1 +1866 2 16 -1.4 -1.4 -1.4 1 +1866 2 17 -0.5 -0.5 -0.5 1 +1866 2 18 -1.6 -1.6 -1.6 1 +1866 2 19 -4.3 -4.3 -4.3 1 +1866 2 20 -7.1 -7.1 -7.1 1 +1866 2 21 -7.0 -7.0 -7.0 1 +1866 2 22 -6.0 -6.0 -6.0 1 +1866 2 23 -4.4 -4.4 -4.4 1 +1866 2 24 -4.1 -4.1 -4.1 1 +1866 2 25 -8.0 -8.0 -8.0 1 +1866 2 26 -3.5 -3.5 -3.5 1 +1866 2 27 -7.4 -7.4 -7.4 1 +1866 2 28 -11.3 -11.3 -11.3 1 +1866 3 1 -9.4 -9.4 -9.4 1 +1866 3 2 -9.7 -9.7 -9.7 1 +1866 3 3 -6.7 -6.7 -6.7 1 +1866 3 4 -3.7 -3.7 -3.7 1 +1866 3 5 -2.6 -2.6 -2.6 1 +1866 3 6 -9.5 -9.5 -9.5 1 +1866 3 7 -2.3 -2.3 -2.3 1 +1866 3 8 -3.8 -3.8 -3.8 1 +1866 3 9 -6.0 -6.0 -6.0 1 +1866 3 10 -6.9 -6.9 -6.9 1 +1866 3 11 -5.4 -5.4 -5.4 1 +1866 3 12 -11.3 -11.3 -11.3 1 +1866 3 13 -9.5 -9.5 -9.5 1 +1866 3 14 -10.8 -10.8 -10.8 1 +1866 3 15 -10.3 -10.3 -10.3 1 +1866 3 16 -2.8 -2.8 -2.8 1 +1866 3 17 -2.7 -2.7 -2.7 1 +1866 3 18 -0.9 -0.9 -0.9 1 +1866 3 19 -2.3 -2.3 -2.3 1 +1866 3 20 -4.1 -4.1 -4.1 1 +1866 3 21 -9.9 -9.9 -9.9 1 +1866 3 22 -10.7 -10.7 -10.7 1 +1866 3 23 -10.4 -10.4 -10.4 1 +1866 3 24 -7.1 -7.1 -7.1 1 +1866 3 25 -6.2 -6.2 -6.2 1 +1866 3 26 -6.4 -6.4 -6.4 1 +1866 3 27 -4.5 -4.5 -4.5 1 +1866 3 28 -2.9 -2.9 -2.9 1 +1866 3 29 -3.6 -3.6 -3.6 1 +1866 3 30 -0.2 -0.2 -0.2 1 +1866 3 31 2.5 2.5 2.5 1 +1866 4 1 0.2 0.2 0.2 1 +1866 4 2 0.2 0.2 0.2 1 +1866 4 3 2.0 2.0 2.0 1 +1866 4 4 1.4 1.4 1.4 1 +1866 4 5 2.1 2.1 2.1 1 +1866 4 6 0.6 0.6 0.6 1 +1866 4 7 3.4 3.4 3.4 1 +1866 4 8 2.7 2.7 2.7 1 +1866 4 9 5.3 5.3 5.3 1 +1866 4 10 6.0 6.0 6.0 1 +1866 4 11 4.3 4.3 4.3 1 +1866 4 12 5.4 5.4 5.4 1 +1866 4 13 6.4 6.4 6.4 1 +1866 4 14 9.7 9.7 9.7 1 +1866 4 15 4.5 4.5 4.5 1 +1866 4 16 5.2 5.2 5.2 1 +1866 4 17 7.7 7.7 7.7 1 +1866 4 18 3.1 3.1 3.1 1 +1866 4 19 -2.9 -2.9 -2.9 1 +1866 4 20 -3.4 -3.4 -3.4 1 +1866 4 21 0.4 0.4 0.4 1 +1866 4 22 3.9 3.9 3.9 1 +1866 4 23 10.0 10.0 10.0 1 +1866 4 24 12.1 12.1 12.1 1 +1866 4 25 7.4 7.4 7.4 1 +1866 4 26 3.8 3.8 3.8 1 +1866 4 27 7.8 7.8 7.8 1 +1866 4 28 6.1 6.1 6.1 1 +1866 4 29 -0.6 -0.6 -0.6 1 +1866 4 30 2.6 2.6 2.6 1 +1866 5 1 3.7 3.7 3.7 1 +1866 5 2 4.9 4.9 4.9 1 +1866 5 3 4.2 4.2 4.2 1 +1866 5 4 7.5 7.5 7.5 1 +1866 5 5 6.4 6.4 6.4 1 +1866 5 6 6.4 6.4 6.4 1 +1866 5 7 8.3 8.3 8.3 1 +1866 5 8 10.0 10.0 10.0 1 +1866 5 9 8.4 8.4 8.4 1 +1866 5 10 8.4 8.4 8.4 1 +1866 5 11 6.3 6.3 6.3 1 +1866 5 12 6.2 6.2 6.2 1 +1866 5 13 4.8 4.8 4.8 1 +1866 5 14 1.9 1.9 1.9 1 +1866 5 15 3.2 3.2 3.2 1 +1866 5 16 5.8 5.8 5.8 1 +1866 5 17 5.5 5.5 5.5 1 +1866 5 18 4.7 4.7 4.7 1 +1866 5 19 4.4 4.4 4.4 1 +1866 5 20 3.8 3.8 3.8 1 +1866 5 21 5.0 5.0 5.0 1 +1866 5 22 5.3 5.3 5.3 1 +1866 5 23 4.8 4.8 4.8 1 +1866 5 24 8.3 8.3 8.3 1 +1866 5 25 11.0 11.0 11.0 1 +1866 5 26 10.4 10.4 10.4 1 +1866 5 27 12.2 12.2 12.2 1 +1866 5 28 11.7 11.7 11.7 1 +1866 5 29 10.2 10.2 10.2 1 +1866 5 30 10.8 10.8 10.8 1 +1866 5 31 11.2 11.2 11.2 1 +1866 6 1 12.0 12.0 12.0 1 +1866 6 2 13.2 13.2 13.2 1 +1866 6 3 14.1 14.1 14.1 1 +1866 6 4 16.7 16.7 16.7 1 +1866 6 5 17.8 17.8 17.8 1 +1866 6 6 18.7 18.7 18.7 1 +1866 6 7 17.8 17.8 17.8 1 +1866 6 8 12.9 12.9 12.9 1 +1866 6 9 19.0 19.0 19.0 1 +1866 6 10 14.4 14.4 14.4 1 +1866 6 11 13.0 13.0 13.0 1 +1866 6 12 10.1 10.1 10.1 1 +1866 6 13 10.8 10.8 10.8 1 +1866 6 14 10.6 10.6 10.6 1 +1866 6 15 13.3 13.3 13.3 1 +1866 6 16 12.6 12.6 12.6 1 +1866 6 17 12.7 12.7 12.7 1 +1866 6 18 12.0 12.0 12.0 1 +1866 6 19 12.8 12.8 12.8 1 +1866 6 20 13.2 13.2 13.2 1 +1866 6 21 12.1 12.1 12.1 1 +1866 6 22 13.7 13.7 13.7 1 +1866 6 23 16.5 16.5 16.5 1 +1866 6 24 19.3 19.3 19.3 1 +1866 6 25 19.6 19.6 19.6 1 +1866 6 26 21.2 21.2 21.2 1 +1866 6 27 22.0 22.0 22.0 1 +1866 6 28 22.0 22.0 22.0 1 +1866 6 29 20.8 20.8 20.8 1 +1866 6 30 18.6 18.6 18.6 1 +1866 7 1 19.0 19.0 19.0 1 +1866 7 2 15.3 15.3 15.3 1 +1866 7 3 15.2 15.2 15.2 1 +1866 7 4 14.5 14.5 14.5 1 +1866 7 5 13.8 13.8 13.8 1 +1866 7 6 13.7 13.7 13.7 1 +1866 7 7 15.7 15.7 15.7 1 +1866 7 8 16.3 16.3 16.3 1 +1866 7 9 15.3 15.3 15.3 1 +1866 7 10 15.4 15.4 15.4 1 +1866 7 11 12.0 12.0 12.0 1 +1866 7 12 13.6 13.6 13.6 1 +1866 7 13 16.6 16.6 16.6 1 +1866 7 14 15.1 15.1 15.1 1 +1866 7 15 16.9 16.9 16.9 1 +1866 7 16 16.9 16.9 16.9 1 +1866 7 17 14.7 14.7 14.7 1 +1866 7 18 9.8 9.8 9.8 1 +1866 7 19 13.0 13.0 13.0 1 +1866 7 20 14.5 14.5 14.5 1 +1866 7 21 13.3 13.3 13.3 1 +1866 7 22 12.8 12.8 12.8 1 +1866 7 23 12.7 12.7 12.7 1 +1866 7 24 12.9 12.9 12.9 1 +1866 7 25 11.9 11.9 11.9 1 +1866 7 26 14.4 14.4 14.4 1 +1866 7 27 13.7 13.7 13.7 1 +1866 7 28 14.4 14.4 14.4 1 +1866 7 29 13.6 13.6 13.6 1 +1866 7 30 14.8 14.8 14.8 1 +1866 7 31 13.3 13.3 13.3 1 +1866 8 1 12.5 12.5 12.5 1 +1866 8 2 12.4 12.4 12.4 1 +1866 8 3 13.4 13.4 13.4 1 +1866 8 4 13.8 13.8 13.8 1 +1866 8 5 13.9 13.9 13.9 1 +1866 8 6 12.1 12.1 12.1 1 +1866 8 7 14.2 14.2 14.2 1 +1866 8 8 15.2 15.2 15.2 1 +1866 8 9 14.3 14.3 14.3 1 +1866 8 10 14.1 14.1 14.1 1 +1866 8 11 15.8 15.8 15.8 1 +1866 8 12 13.7 13.7 13.7 1 +1866 8 13 13.9 13.9 13.9 1 +1866 8 14 13.8 13.8 13.8 1 +1866 8 15 13.3 13.3 13.3 1 +1866 8 16 13.8 13.8 13.8 1 +1866 8 17 13.4 13.4 13.4 1 +1866 8 18 13.0 13.0 13.0 1 +1866 8 19 12.9 12.9 12.9 1 +1866 8 20 15.1 15.1 15.1 1 +1866 8 21 14.9 14.9 14.9 1 +1866 8 22 17.1 17.1 17.1 1 +1866 8 23 19.5 19.5 19.5 1 +1866 8 24 18.1 18.1 18.1 1 +1866 8 25 15.8 15.8 15.8 1 +1866 8 26 15.0 15.0 15.0 1 +1866 8 27 16.0 16.0 16.0 1 +1866 8 28 17.4 17.4 17.4 1 +1866 8 29 17.6 17.6 17.6 1 +1866 8 30 16.4 16.4 16.4 1 +1866 8 31 15.4 15.4 15.4 1 +1866 9 1 13.4 13.4 13.4 1 +1866 9 2 14.1 14.1 14.1 1 +1866 9 3 15.5 15.5 15.5 1 +1866 9 4 13.9 13.9 13.9 1 +1866 9 5 13.9 13.9 13.9 1 +1866 9 6 15.9 15.9 15.9 1 +1866 9 7 14.1 14.1 14.1 1 +1866 9 8 14.5 14.5 14.5 1 +1866 9 9 12.9 12.9 12.9 1 +1866 9 10 10.5 10.5 10.5 1 +1866 9 11 11.4 11.4 11.4 1 +1866 9 12 13.0 13.0 13.0 1 +1866 9 13 13.8 13.8 13.8 1 +1866 9 14 13.6 13.6 13.6 1 +1866 9 15 13.0 13.0 13.0 1 +1866 9 16 11.1 11.1 11.1 1 +1866 9 17 12.7 12.7 12.7 1 +1866 9 18 13.4 13.4 13.4 1 +1866 9 19 12.3 12.3 12.3 1 +1866 9 20 12.9 12.9 12.9 1 +1866 9 21 13.2 13.2 13.2 1 +1866 9 22 11.2 11.2 11.2 1 +1866 9 23 14.1 14.1 14.1 1 +1866 9 24 15.5 15.5 15.5 1 +1866 9 25 14.4 14.4 14.4 1 +1866 9 26 12.7 12.7 12.7 1 +1866 9 27 15.0 15.0 15.0 1 +1866 9 28 15.0 15.0 15.0 1 +1866 9 29 14.4 14.4 14.4 1 +1866 9 30 12.8 12.8 12.8 1 +1866 10 1 10.8 10.8 10.8 1 +1866 10 2 11.2 11.2 11.2 1 +1866 10 3 11.6 11.6 11.6 1 +1866 10 4 9.2 9.2 9.2 1 +1866 10 5 8.1 8.1 8.1 1 +1866 10 6 10.9 10.9 10.9 1 +1866 10 7 12.7 12.7 12.7 1 +1866 10 8 10.2 10.2 10.2 1 +1866 10 9 9.4 9.4 9.4 1 +1866 10 10 10.0 10.0 10.0 1 +1866 10 11 4.8 4.8 4.8 1 +1866 10 12 3.6 3.6 3.6 1 +1866 10 13 8.2 8.2 8.2 1 +1866 10 14 6.9 6.9 6.9 1 +1866 10 15 3.3 3.3 3.3 1 +1866 10 16 0.9 0.9 0.9 1 +1866 10 17 2.2 2.2 2.2 1 +1866 10 18 3.3 3.3 3.3 1 +1866 10 19 2.8 2.8 2.8 1 +1866 10 20 3.6 3.6 3.6 1 +1866 10 21 4.9 4.9 4.9 1 +1866 10 22 6.1 6.1 6.1 1 +1866 10 23 5.5 5.5 5.5 1 +1866 10 24 4.2 4.2 4.2 1 +1866 10 25 5.4 5.4 5.4 1 +1866 10 26 2.8 2.8 2.8 1 +1866 10 27 3.6 3.6 3.6 1 +1866 10 28 4.3 4.3 4.3 1 +1866 10 29 3.9 3.9 3.9 1 +1866 10 30 4.8 4.8 4.8 1 +1866 10 31 1.5 1.5 1.5 1 +1866 11 1 2.6 2.6 2.6 1 +1866 11 2 5.1 5.1 5.1 1 +1866 11 3 4.5 4.5 4.5 1 +1866 11 4 3.7 3.7 3.7 1 +1866 11 5 3.9 3.9 3.9 1 +1866 11 6 4.6 4.6 4.6 1 +1866 11 7 1.8 1.8 1.8 1 +1866 11 8 2.4 2.4 2.4 1 +1866 11 9 1.5 1.5 1.5 1 +1866 11 10 -2.6 -2.6 -2.6 1 +1866 11 11 -1.2 -1.2 -1.2 1 +1866 11 12 4.0 4.0 4.0 1 +1866 11 13 4.4 4.4 4.4 1 +1866 11 14 0.5 0.5 0.5 1 +1866 11 15 -3.4 -3.4 -3.4 1 +1866 11 16 -4.1 -4.1 -4.1 1 +1866 11 17 -4.6 -4.6 -4.6 1 +1866 11 18 0.3 0.3 0.3 1 +1866 11 19 -6.7 -6.7 -6.7 1 +1866 11 20 -6.7 -6.7 -6.7 1 +1866 11 21 -6.2 -6.2 -6.2 1 +1866 11 22 -7.2 -7.2 -7.2 1 +1866 11 23 -4.3 -4.3 -4.3 1 +1866 11 24 -5.8 -5.8 -5.8 1 +1866 11 25 -5.5 -5.5 -5.5 1 +1866 11 26 -0.6 -0.6 -0.6 1 +1866 11 27 -0.8 -0.8 -0.8 1 +1866 11 28 -5.1 -5.1 -5.1 1 +1866 11 29 -4.5 -4.5 -4.5 1 +1866 11 30 1.3 1.3 1.3 1 +1866 12 1 0.3 0.3 0.3 1 +1866 12 2 0.5 0.5 0.5 1 +1866 12 3 1.2 1.2 1.2 1 +1866 12 4 3.7 3.7 3.7 1 +1866 12 5 1.2 1.2 1.2 1 +1866 12 6 1.8 1.8 1.8 1 +1866 12 7 2.9 2.9 2.9 1 +1866 12 8 -0.9 -0.9 -0.9 1 +1866 12 9 -4.0 -4.0 -4.0 1 +1866 12 10 -0.9 -0.9 -0.9 1 +1866 12 11 -8.6 -8.6 -8.6 1 +1866 12 12 -12.7 -12.7 -12.7 1 +1866 12 13 -12.2 -12.2 -12.2 1 +1866 12 14 -11.7 -11.7 -11.7 1 +1866 12 15 -13.4 -13.4 -13.4 1 +1866 12 16 -6.0 -6.0 -6.0 1 +1866 12 17 -4.0 -4.0 -4.0 1 +1866 12 18 0.8 0.8 0.8 1 +1866 12 19 4.5 4.5 4.5 1 +1866 12 20 3.4 3.4 3.4 1 +1866 12 21 5.3 5.3 5.3 1 +1866 12 22 2.9 2.9 2.9 1 +1866 12 23 4.6 4.6 4.6 1 +1866 12 24 3.8 3.8 3.8 1 +1866 12 25 -4.1 -4.1 -4.1 1 +1866 12 26 0.0 0.0 0.0 1 +1866 12 27 0.7 0.7 0.7 1 +1866 12 28 -2.0 -2.0 -2.0 1 +1866 12 29 -8.6 -8.6 -8.6 1 +1866 12 30 -14.4 -14.4 -14.4 1 +1866 12 31 -13.3 -13.3 -13.3 1 +1867 1 1 -9.0 -9.0 -9.0 1 +1867 1 2 -6.5 -6.5 -6.5 1 +1867 1 3 -11.4 -11.4 -11.4 1 +1867 1 4 -14.2 -14.2 -14.2 1 +1867 1 5 -15.8 -15.8 -15.8 1 +1867 1 6 -13.0 -13.0 -13.0 1 +1867 1 7 -3.6 -3.6 -3.6 1 +1867 1 8 0.0 0.0 0.0 1 +1867 1 9 1.8 1.8 1.8 1 +1867 1 10 -8.0 -8.0 -8.0 1 +1867 1 11 -8.1 -8.1 -8.1 1 +1867 1 12 -9.2 -9.2 -9.2 1 +1867 1 13 -10.6 -10.6 -10.6 1 +1867 1 14 -14.7 -14.7 -14.7 1 +1867 1 15 -14.0 -14.0 -14.0 1 +1867 1 16 -11.7 -11.7 -11.7 1 +1867 1 17 -8.9 -8.9 -8.9 1 +1867 1 18 -9.7 -9.7 -9.7 1 +1867 1 19 -12.7 -12.7 -12.7 1 +1867 1 20 -11.1 -11.1 -11.1 1 +1867 1 21 -11.8 -11.8 -11.8 1 +1867 1 22 -10.9 -10.9 -10.9 1 +1867 1 23 -12.5 -12.5 -12.5 1 +1867 1 24 -9.9 -9.9 -9.9 1 +1867 1 25 -9.3 -9.3 -9.3 1 +1867 1 26 -7.2 -7.2 -7.2 1 +1867 1 27 -16.4 -16.4 -16.4 1 +1867 1 28 -5.9 -5.9 -5.9 1 +1867 1 29 -3.6 -3.6 -3.6 1 +1867 1 30 -6.5 -6.5 -6.5 1 +1867 1 31 -8.4 -8.4 -8.4 1 +1867 2 1 -7.4 -7.4 -7.4 1 +1867 2 2 0.9 0.9 0.9 1 +1867 2 3 -0.6 -0.6 -0.6 1 +1867 2 4 1.0 1.0 1.0 1 +1867 2 5 0.6 0.6 0.6 1 +1867 2 6 1.1 1.1 1.1 1 +1867 2 7 1.3 1.3 1.3 1 +1867 2 8 -0.4 -0.4 -0.4 1 +1867 2 9 -0.3 -0.3 -0.3 1 +1867 2 10 -5.0 -5.0 -5.0 1 +1867 2 11 1.4 1.4 1.4 1 +1867 2 12 2.6 2.6 2.6 1 +1867 2 13 5.4 5.4 5.4 1 +1867 2 14 2.2 2.2 2.2 1 +1867 2 15 0.0 0.0 0.0 1 +1867 2 16 0.5 0.5 0.5 1 +1867 2 17 -3.6 -3.6 -3.6 1 +1867 2 18 -6.8 -6.8 -6.8 1 +1867 2 19 -0.3 -0.3 -0.3 1 +1867 2 20 0.4 0.4 0.4 1 +1867 2 21 2.4 2.4 2.4 1 +1867 2 22 0.6 0.6 0.6 1 +1867 2 23 -8.5 -8.5 -8.5 1 +1867 2 24 -9.8 -9.8 -9.8 1 +1867 2 25 -2.8 -2.8 -2.8 1 +1867 2 26 -9.7 -9.7 -9.7 1 +1867 2 27 -10.0 -10.0 -10.0 1 +1867 2 28 -12.3 -12.3 -12.3 1 +1867 3 1 -10.9 -10.9 -10.9 1 +1867 3 2 -4.8 -4.8 -4.8 1 +1867 3 3 -0.4 -0.4 -0.4 1 +1867 3 4 1.2 1.2 1.2 1 +1867 3 5 -0.7 -0.7 -0.7 1 +1867 3 6 -3.6 -3.6 -3.6 1 +1867 3 7 -6.5 -6.5 -6.5 1 +1867 3 8 -6.4 -6.4 -6.4 1 +1867 3 9 -8.4 -8.4 -8.4 1 +1867 3 10 -4.4 -4.4 -4.4 1 +1867 3 11 -11.8 -11.8 -11.8 1 +1867 3 12 -13.2 -13.2 -13.2 1 +1867 3 13 -5.9 -5.9 -5.9 1 +1867 3 14 -7.8 -7.8 -7.8 1 +1867 3 15 -11.9 -11.9 -11.9 1 +1867 3 16 -12.1 -12.1 -12.1 1 +1867 3 17 -9.3 -9.3 -9.3 1 +1867 3 18 -6.2 -6.2 -6.2 1 +1867 3 19 -6.4 -6.4 -6.4 1 +1867 3 20 -5.6 -5.6 -5.6 1 +1867 3 21 -6.8 -6.8 -6.8 1 +1867 3 22 -8.9 -8.9 -8.9 1 +1867 3 23 -7.2 -7.2 -7.2 1 +1867 3 24 -3.6 -3.6 -3.6 1 +1867 3 25 0.8 0.8 0.8 1 +1867 3 26 -1.0 -1.0 -1.0 1 +1867 3 27 1.8 1.8 1.8 1 +1867 3 28 0.5 0.5 0.5 1 +1867 3 29 1.8 1.8 1.8 1 +1867 3 30 2.0 2.0 2.0 1 +1867 3 31 1.2 1.2 1.2 1 +1867 4 1 1.6 1.6 1.6 1 +1867 4 2 2.6 2.6 2.6 1 +1867 4 3 -1.8 -1.8 -1.8 1 +1867 4 4 -2.8 -2.8 -2.8 1 +1867 4 5 -2.7 -2.7 -2.7 1 +1867 4 6 -1.0 -1.0 -1.0 1 +1867 4 7 -1.5 -1.5 -1.5 1 +1867 4 8 -1.0 -1.0 -1.0 1 +1867 4 9 -2.3 -2.3 -2.3 1 +1867 4 10 -2.0 -2.0 -2.0 1 +1867 4 11 -2.6 -2.6 -2.6 1 +1867 4 12 -3.6 -3.6 -3.6 1 +1867 4 13 -2.0 -2.0 -2.0 1 +1867 4 14 0.8 0.8 0.8 1 +1867 4 15 2.5 2.5 2.5 1 +1867 4 16 -1.8 -1.8 -1.8 1 +1867 4 17 -0.9 -0.9 -0.9 1 +1867 4 18 -0.2 -0.2 -0.2 1 +1867 4 19 1.4 1.4 1.4 1 +1867 4 20 6.8 6.8 6.8 1 +1867 4 21 5.4 5.4 5.4 1 +1867 4 22 4.7 4.7 4.7 1 +1867 4 23 3.6 3.6 3.6 1 +1867 4 24 5.1 5.1 5.1 1 +1867 4 25 0.8 0.8 0.8 1 +1867 4 26 1.8 1.8 1.8 1 +1867 4 27 2.8 2.8 2.8 1 +1867 4 28 -0.6 -0.6 -0.6 1 +1867 4 29 0.3 0.3 0.3 1 +1867 4 30 0.6 0.6 0.6 1 +1867 5 1 0.1 0.1 0.1 1 +1867 5 2 -0.9 -0.9 -0.9 1 +1867 5 3 0.2 0.2 0.2 1 +1867 5 4 4.4 4.4 4.4 1 +1867 5 5 3.3 3.3 3.3 1 +1867 5 6 4.3 4.3 4.3 1 +1867 5 7 8.4 8.4 8.4 1 +1867 5 8 4.4 4.4 4.4 1 +1867 5 9 0.8 0.8 0.8 1 +1867 5 10 0.8 0.8 0.8 1 +1867 5 11 1.3 1.3 1.3 1 +1867 5 12 -1.3 -1.3 -1.3 1 +1867 5 13 -2.3 -2.3 -2.3 1 +1867 5 14 0.4 0.4 0.4 1 +1867 5 15 2.0 2.0 2.0 1 +1867 5 16 4.1 4.1 4.1 1 +1867 5 17 4.6 4.6 4.6 1 +1867 5 18 5.9 5.9 5.9 1 +1867 5 19 5.7 5.7 5.7 1 +1867 5 20 3.6 3.6 3.6 1 +1867 5 21 1.9 1.9 1.9 1 +1867 5 22 1.6 1.6 1.6 1 +1867 5 23 1.4 1.4 1.4 1 +1867 5 24 0.3 0.3 0.3 1 +1867 5 25 1.1 1.1 1.1 1 +1867 5 26 1.3 1.3 1.3 1 +1867 5 27 6.0 6.0 6.0 1 +1867 5 28 7.0 7.0 7.0 1 +1867 5 29 8.7 8.7 8.7 1 +1867 5 30 14.2 14.2 14.2 1 +1867 5 31 12.1 12.1 12.1 1 +1867 6 1 8.6 8.6 8.6 1 +1867 6 2 4.9 4.9 4.9 1 +1867 6 3 6.5 6.5 6.5 1 +1867 6 4 7.6 7.6 7.6 1 +1867 6 5 10.3 10.3 10.3 1 +1867 6 6 11.0 11.0 11.0 1 +1867 6 7 12.2 12.2 12.2 1 +1867 6 8 14.6 14.6 14.6 1 +1867 6 9 5.8 5.8 5.8 1 +1867 6 10 8.3 8.3 8.3 1 +1867 6 11 6.8 6.8 6.8 1 +1867 6 12 9.0 9.0 9.0 1 +1867 6 13 10.0 10.0 10.0 1 +1867 6 14 9.2 9.2 9.2 1 +1867 6 15 10.7 10.7 10.7 1 +1867 6 16 8.2 8.2 8.2 1 +1867 6 17 9.0 9.0 9.0 1 +1867 6 18 12.4 12.4 12.4 1 +1867 6 19 9.3 9.3 9.3 1 +1867 6 20 13.4 13.4 13.4 1 +1867 6 21 16.4 16.4 16.4 1 +1867 6 22 20.3 20.3 20.3 1 +1867 6 23 21.8 21.8 21.8 1 +1867 6 24 24.2 24.2 24.2 1 +1867 6 25 21.4 21.4 21.4 1 +1867 6 26 15.2 15.2 15.2 1 +1867 6 27 16.2 16.2 16.2 1 +1867 6 28 8.8 8.8 8.8 1 +1867 6 29 10.9 10.9 10.9 1 +1867 6 30 10.9 10.9 10.9 1 +1867 7 1 9.9 9.9 9.9 1 +1867 7 2 12.2 12.2 12.2 1 +1867 7 3 9.4 9.4 9.4 1 +1867 7 4 12.0 12.0 12.0 1 +1867 7 5 13.4 13.4 13.4 1 +1867 7 6 11.1 11.1 11.1 1 +1867 7 7 11.7 11.7 11.7 1 +1867 7 8 10.6 10.6 10.6 1 +1867 7 9 10.7 10.7 10.7 1 +1867 7 10 15.9 15.9 15.9 1 +1867 7 11 18.0 18.0 18.0 1 +1867 7 12 18.9 18.9 18.9 1 +1867 7 13 19.3 19.3 19.3 1 +1867 7 14 19.3 19.3 19.3 1 +1867 7 15 19.1 19.1 19.1 1 +1867 7 16 17.9 17.9 17.9 1 +1867 7 17 16.8 16.8 16.8 1 +1867 7 18 15.1 15.1 15.1 1 +1867 7 19 15.3 15.3 15.3 1 +1867 7 20 13.6 13.6 13.6 1 +1867 7 21 14.3 14.3 14.3 1 +1867 7 22 14.8 14.8 14.8 1 +1867 7 23 16.6 16.6 16.6 1 +1867 7 24 17.1 17.1 17.1 1 +1867 7 25 15.5 15.5 15.5 1 +1867 7 26 17.3 17.3 17.3 1 +1867 7 27 14.5 14.5 14.5 1 +1867 7 28 14.6 14.6 14.6 1 +1867 7 29 14.2 14.2 14.2 1 +1867 7 30 9.7 9.7 9.7 1 +1867 7 31 9.9 9.9 9.9 1 +1867 8 1 12.1 12.1 12.1 1 +1867 8 2 14.0 14.0 14.0 1 +1867 8 3 14.1 14.1 14.1 1 +1867 8 4 13.2 13.2 13.2 1 +1867 8 5 13.5 13.5 13.5 1 +1867 8 6 12.4 12.4 12.4 1 +1867 8 7 16.0 16.0 16.0 1 +1867 8 8 13.9 13.9 13.9 1 +1867 8 9 14.6 14.6 14.6 1 +1867 8 10 13.7 13.7 13.7 1 +1867 8 11 15.1 15.1 15.1 1 +1867 8 12 16.5 16.5 16.5 1 +1867 8 13 14.8 14.8 14.8 1 +1867 8 14 19.0 19.0 19.0 1 +1867 8 15 18.3 18.3 18.3 1 +1867 8 16 17.7 17.7 17.7 1 +1867 8 17 16.1 16.1 16.1 1 +1867 8 18 15.4 15.4 15.4 1 +1867 8 19 15.2 15.2 15.2 1 +1867 8 20 13.8 13.8 13.8 1 +1867 8 21 13.1 13.1 13.1 1 +1867 8 22 14.3 14.3 14.3 1 +1867 8 23 12.8 12.8 12.8 1 +1867 8 24 12.4 12.4 12.4 1 +1867 8 25 15.0 15.0 15.0 1 +1867 8 26 15.9 15.9 15.9 1 +1867 8 27 15.5 15.5 15.5 1 +1867 8 28 15.6 15.6 15.6 1 +1867 8 29 14.9 14.9 14.9 1 +1867 8 30 15.0 15.0 15.0 1 +1867 8 31 16.0 16.0 16.0 1 +1867 9 1 13.3 13.3 13.3 1 +1867 9 2 10.2 10.2 10.2 1 +1867 9 3 9.9 9.9 9.9 1 +1867 9 4 11.2 11.2 11.2 1 +1867 9 5 11.2 11.2 11.2 1 +1867 9 6 11.3 11.3 11.3 1 +1867 9 7 13.1 13.1 13.1 1 +1867 9 8 11.0 11.0 11.0 1 +1867 9 9 13.5 13.5 13.5 1 +1867 9 10 12.9 12.9 12.9 1 +1867 9 11 10.5 10.5 10.5 1 +1867 9 12 10.7 10.7 10.7 1 +1867 9 13 11.3 11.3 11.3 1 +1867 9 14 13.5 13.5 13.5 1 +1867 9 15 14.3 14.3 14.3 1 +1867 9 16 11.9 11.9 11.9 1 +1867 9 17 10.0 10.0 10.0 1 +1867 9 18 9.1 9.1 9.1 1 +1867 9 19 11.9 11.9 11.9 1 +1867 9 20 11.2 11.2 11.2 1 +1867 9 21 12.0 12.0 12.0 1 +1867 9 22 11.7 11.7 11.7 1 +1867 9 23 11.6 11.6 11.6 1 +1867 9 24 6.3 6.3 6.3 1 +1867 9 25 3.9 3.9 3.9 1 +1867 9 26 3.9 3.9 3.9 1 +1867 9 27 8.0 8.0 8.0 1 +1867 9 28 11.2 11.2 11.2 1 +1867 9 29 7.3 7.3 7.3 1 +1867 9 30 7.0 7.0 7.0 1 +1867 10 1 5.2 5.2 5.2 1 +1867 10 2 8.6 8.6 8.6 1 +1867 10 3 6.6 6.6 6.6 1 +1867 10 4 5.5 5.5 5.5 1 +1867 10 5 4.8 4.8 4.8 1 +1867 10 6 4.7 4.7 4.7 1 +1867 10 7 4.7 4.7 4.7 1 +1867 10 8 6.1 6.1 6.1 1 +1867 10 9 5.3 5.3 5.3 1 +1867 10 10 7.5 7.5 7.5 1 +1867 10 11 8.8 8.8 8.8 1 +1867 10 12 9.2 9.2 9.2 1 +1867 10 13 8.0 8.0 8.0 1 +1867 10 14 7.5 7.5 7.5 1 +1867 10 15 6.4 6.4 6.4 1 +1867 10 16 4.2 4.2 4.2 1 +1867 10 17 6.5 6.5 6.5 1 +1867 10 18 9.0 9.0 9.0 1 +1867 10 19 8.9 8.9 8.9 1 +1867 10 20 8.8 8.8 8.8 1 +1867 10 21 8.5 8.5 8.5 1 +1867 10 22 8.8 8.8 8.8 1 +1867 10 23 12.2 12.2 12.2 1 +1867 10 24 10.8 10.8 10.8 1 +1867 10 25 7.9 7.9 7.9 1 +1867 10 26 7.5 7.5 7.5 1 +1867 10 27 9.6 9.6 9.6 1 +1867 10 28 6.6 6.6 6.6 1 +1867 10 29 3.9 3.9 3.9 1 +1867 10 30 5.3 5.3 5.3 1 +1867 10 31 3.5 3.5 3.5 1 +1867 11 1 7.4 7.4 7.4 1 +1867 11 2 1.0 1.0 1.0 1 +1867 11 3 0.0 0.0 0.0 1 +1867 11 4 3.9 3.9 3.9 1 +1867 11 5 -0.8 -0.8 -0.8 1 +1867 11 6 -3.8 -3.8 -3.8 1 +1867 11 7 3.1 3.1 3.1 1 +1867 11 8 4.0 4.0 4.0 1 +1867 11 9 0.7 0.7 0.7 1 +1867 11 10 1.8 1.8 1.8 1 +1867 11 11 1.8 1.8 1.8 1 +1867 11 12 1.7 1.7 1.7 1 +1867 11 13 6.0 6.0 6.0 1 +1867 11 14 4.4 4.4 4.4 1 +1867 11 15 2.7 2.7 2.7 1 +1867 11 16 -3.6 -3.6 -3.6 1 +1867 11 17 -6.2 -6.2 -6.2 1 +1867 11 18 -2.1 -2.1 -2.1 1 +1867 11 19 -0.2 -0.2 -0.2 1 +1867 11 20 -2.5 -2.5 -2.5 1 +1867 11 21 -4.1 -4.1 -4.1 1 +1867 11 22 -0.7 -0.7 -0.7 1 +1867 11 23 -5.0 -5.0 -5.0 1 +1867 11 24 -3.6 -3.6 -3.6 1 +1867 11 25 2.1 2.1 2.1 1 +1867 11 26 4.3 4.3 4.3 1 +1867 11 27 -2.8 -2.8 -2.8 1 +1867 11 28 -0.7 -0.7 -0.7 1 +1867 11 29 -6.5 -6.5 -6.5 1 +1867 11 30 0.2 0.2 0.2 1 +1867 12 1 2.7 2.7 2.7 1 +1867 12 2 -0.5 -0.5 -0.5 1 +1867 12 3 -6.0 -6.0 -6.0 1 +1867 12 4 -3.4 -3.4 -3.4 1 +1867 12 5 0.7 0.7 0.7 1 +1867 12 6 -2.7 -2.7 -2.7 1 +1867 12 7 -7.5 -7.5 -7.5 1 +1867 12 8 -11.8 -11.8 -11.8 1 +1867 12 9 -9.9 -9.9 -9.9 1 +1867 12 10 -4.4 -4.4 -4.4 1 +1867 12 11 -4.3 -4.3 -4.3 1 +1867 12 12 -11.5 -11.5 -11.5 1 +1867 12 13 -11.9 -11.9 -11.9 1 +1867 12 14 -12.9 -12.9 -12.9 1 +1867 12 15 -10.0 -10.0 -10.0 1 +1867 12 16 -10.4 -10.4 -10.4 1 +1867 12 17 -7.0 -7.0 -7.0 1 +1867 12 18 -10.4 -10.4 -10.4 1 +1867 12 19 -11.9 -11.9 -11.9 1 +1867 12 20 -16.9 -16.9 -16.9 1 +1867 12 21 -17.0 -17.0 -17.0 1 +1867 12 22 -16.0 -16.0 -16.0 1 +1867 12 23 -8.9 -8.9 -8.9 1 +1867 12 24 -6.6 -6.6 -6.6 1 +1867 12 25 -2.0 -2.0 -2.0 1 +1867 12 26 0.6 0.6 0.6 1 +1867 12 27 -1.6 -1.6 -1.6 1 +1867 12 28 -2.8 -2.8 -2.8 1 +1867 12 29 -7.6 -7.6 -7.6 1 +1867 12 30 -15.1 -15.1 -15.1 1 +1867 12 31 -9.5 -9.5 -9.5 1 +1868 1 1 -4.9 -4.9 -4.9 1 +1868 1 2 -8.4 -8.4 -8.4 1 +1868 1 3 -8.4 -8.4 -8.4 1 +1868 1 4 -10.2 -10.2 -10.2 1 +1868 1 5 -8.6 -8.6 -8.6 1 +1868 1 6 -10.2 -10.2 -10.2 1 +1868 1 7 -9.2 -9.2 -9.2 1 +1868 1 8 -7.9 -7.9 -7.9 1 +1868 1 9 -9.8 -9.8 -9.8 1 +1868 1 10 -10.2 -10.2 -10.2 1 +1868 1 11 -6.5 -6.5 -6.5 1 +1868 1 12 -3.8 -3.8 -3.8 1 +1868 1 13 -3.8 -3.8 -3.8 1 +1868 1 14 -0.1 -0.1 -0.1 1 +1868 1 15 2.5 2.5 2.5 1 +1868 1 16 1.3 1.3 1.3 1 +1868 1 17 3.1 3.1 3.1 1 +1868 1 18 2.5 2.5 2.5 1 +1868 1 19 0.9 0.9 0.9 1 +1868 1 20 0.2 0.2 0.2 1 +1868 1 21 -4.2 -4.2 -4.2 1 +1868 1 22 -10.3 -10.3 -10.3 1 +1868 1 23 -19.1 -19.1 -19.1 1 +1868 1 24 -20.5 -20.5 -20.5 1 +1868 1 25 -8.8 -8.8 -8.8 1 +1868 1 26 -4.9 -4.9 -4.9 1 +1868 1 27 -4.9 -4.9 -4.9 1 +1868 1 28 -1.1 -1.1 -1.1 1 +1868 1 29 -2.0 -2.0 -2.0 1 +1868 1 30 -3.6 -3.6 -3.6 1 +1868 1 31 1.9 1.9 1.9 1 +1868 2 1 2.9 2.9 2.9 1 +1868 2 2 -4.0 -4.0 -4.0 1 +1868 2 3 -5.2 -5.2 -5.2 1 +1868 2 4 -2.6 -2.6 -2.6 1 +1868 2 5 -5.0 -5.0 -5.0 1 +1868 2 6 2.2 2.2 2.2 1 +1868 2 7 -3.5 -3.5 -3.5 1 +1868 2 8 0.9 0.9 0.9 1 +1868 2 9 -6.3 -6.3 -6.3 1 +1868 2 10 -6.9 -6.9 -6.9 1 +1868 2 11 -3.1 -3.1 -3.1 1 +1868 2 12 -11.0 -11.0 -11.0 1 +1868 2 13 -10.1 -10.1 -10.1 1 +1868 2 14 -5.8 -5.8 -5.8 1 +1868 2 15 -0.2 -0.2 -0.2 1 +1868 2 16 -3.3 -3.3 -3.3 1 +1868 2 17 2.1 2.1 2.1 1 +1868 2 18 0.7 0.7 0.7 1 +1868 2 19 1.4 1.4 1.4 1 +1868 2 20 0.5 0.5 0.5 1 +1868 2 21 -0.3 -0.3 -0.3 1 +1868 2 22 0.9 0.9 0.9 1 +1868 2 23 0.2 0.2 0.2 1 +1868 2 24 1.6 1.6 1.6 1 +1868 2 25 -0.5 -0.5 -0.5 1 +1868 2 26 2.3 2.3 2.3 1 +1868 2 27 4.8 4.8 4.8 1 +1868 2 28 0.4 0.4 0.4 1 +1868 2 29 2.3 2.3 2.3 1 +1868 3 1 2.4 2.4 2.4 1 +1868 3 2 -1.1 -1.1 -1.1 1 +1868 3 3 -7.4 -7.4 -7.4 1 +1868 3 4 -5.8 -5.8 -5.8 1 +1868 3 5 -0.5 -0.5 -0.5 1 +1868 3 6 -3.8 -3.8 -3.8 1 +1868 3 7 -9.0 -9.0 -9.0 1 +1868 3 8 -4.3 -4.3 -4.3 1 +1868 3 9 0.1 0.1 0.1 1 +1868 3 10 -0.2 -0.2 -0.2 1 +1868 3 11 -3.4 -3.4 -3.4 1 +1868 3 12 -0.3 -0.3 -0.3 1 +1868 3 13 1.3 1.3 1.3 1 +1868 3 14 0.8 0.8 0.8 1 +1868 3 15 0.6 0.6 0.6 1 +1868 3 16 -0.7 -0.7 -0.7 1 +1868 3 17 1.6 1.6 1.6 1 +1868 3 18 1.3 1.3 1.3 1 +1868 3 19 0.3 0.3 0.3 1 +1868 3 20 1.5 1.5 1.5 1 +1868 3 21 3.7 3.7 3.7 1 +1868 3 22 7.2 7.2 7.2 1 +1868 3 23 4.6 4.6 4.6 1 +1868 3 24 0.9 0.9 0.9 1 +1868 3 25 0.8 0.8 0.8 1 +1868 3 26 0.6 0.6 0.6 1 +1868 3 27 -0.7 -0.7 -0.7 1 +1868 3 28 0.5 0.5 0.5 1 +1868 3 29 2.0 2.0 2.0 1 +1868 3 30 4.8 4.8 4.8 1 +1868 3 31 5.2 5.2 5.2 1 +1868 4 1 2.3 2.3 2.3 1 +1868 4 2 -1.0 -1.0 -1.0 1 +1868 4 3 1.6 1.6 1.6 1 +1868 4 4 6.0 6.0 6.0 1 +1868 4 5 5.0 5.0 5.0 1 +1868 4 6 1.5 1.5 1.5 1 +1868 4 7 1.2 1.2 1.2 1 +1868 4 8 1.4 1.4 1.4 1 +1868 4 9 -0.4 -0.4 -0.4 1 +1868 4 10 0.0 0.0 0.0 1 +1868 4 11 1.4 1.4 1.4 1 +1868 4 12 0.7 0.7 0.7 1 +1868 4 13 1.6 1.6 1.6 1 +1868 4 14 1.8 1.8 1.8 1 +1868 4 15 3.3 3.3 3.3 1 +1868 4 16 3.7 3.7 3.7 1 +1868 4 17 1.6 1.6 1.6 1 +1868 4 18 3.9 3.9 3.9 1 +1868 4 19 3.2 3.2 3.2 1 +1868 4 20 5.7 5.7 5.7 1 +1868 4 21 7.3 7.3 7.3 1 +1868 4 22 9.3 9.3 9.3 1 +1868 4 23 10.0 10.0 10.0 1 +1868 4 24 3.9 3.9 3.9 1 +1868 4 25 3.0 3.0 3.0 1 +1868 4 26 2.2 2.2 2.2 1 +1868 4 27 5.4 5.4 5.4 1 +1868 4 28 6.6 6.6 6.6 1 +1868 4 29 5.8 5.8 5.8 1 +1868 4 30 4.8 4.8 4.8 1 +1868 5 1 4.7 4.7 4.7 1 +1868 5 2 5.5 5.5 5.5 1 +1868 5 3 4.5 4.5 4.5 1 +1868 5 4 6.8 6.8 6.8 1 +1868 5 5 5.4 5.4 5.4 1 +1868 5 6 2.7 2.7 2.7 1 +1868 5 7 5.8 5.8 5.8 1 +1868 5 8 5.9 5.9 5.9 1 +1868 5 9 7.1 7.1 7.1 1 +1868 5 10 10.6 10.6 10.6 1 +1868 5 11 9.5 9.5 9.5 1 +1868 5 12 12.2 12.2 12.2 1 +1868 5 13 12.9 12.9 12.9 1 +1868 5 14 14.7 14.7 14.7 1 +1868 5 15 14.0 14.0 14.0 1 +1868 5 16 12.1 12.1 12.1 1 +1868 5 17 10.9 10.9 10.9 1 +1868 5 18 11.0 11.0 11.0 1 +1868 5 19 11.3 11.3 11.3 1 +1868 5 20 11.8 11.8 11.8 1 +1868 5 21 13.6 13.6 13.6 1 +1868 5 22 7.8 7.8 7.8 1 +1868 5 23 11.1 11.1 11.1 1 +1868 5 24 12.6 12.6 12.6 1 +1868 5 25 12.1 12.1 12.1 1 +1868 5 26 11.2 11.2 11.2 1 +1868 5 27 14.4 14.4 14.4 1 +1868 5 28 14.6 14.6 14.6 1 +1868 5 29 12.6 12.6 12.6 1 +1868 5 30 15.9 15.9 15.9 1 +1868 5 31 15.9 15.9 15.9 1 +1868 6 1 13.3 13.3 13.3 1 +1868 6 2 15.3 15.3 15.3 1 +1868 6 3 13.9 13.9 13.9 1 +1868 6 4 15.7 15.7 15.7 1 +1868 6 5 14.3 14.3 14.3 1 +1868 6 6 15.4 15.4 15.4 1 +1868 6 7 15.0 15.0 15.0 1 +1868 6 8 11.9 11.9 11.9 1 +1868 6 9 10.9 10.9 10.9 1 +1868 6 10 14.7 14.7 14.7 1 +1868 6 11 14.8 14.8 14.8 1 +1868 6 12 14.4 14.4 14.4 1 +1868 6 13 16.3 16.3 16.3 1 +1868 6 14 15.8 15.8 15.8 1 +1868 6 15 19.4 19.4 19.4 1 +1868 6 16 13.2 13.2 13.2 1 +1868 6 17 13.7 13.7 13.7 1 +1868 6 18 13.6 13.6 13.6 1 +1868 6 19 12.2 12.2 12.2 1 +1868 6 20 19.5 19.5 19.5 1 +1868 6 21 17.1 17.1 17.1 1 +1868 6 22 18.1 18.1 18.1 1 +1868 6 23 20.8 20.8 20.8 1 +1868 6 24 21.1 21.1 21.1 1 +1868 6 25 18.4 18.4 18.4 1 +1868 6 26 13.7 13.7 13.7 1 +1868 6 27 12.7 12.7 12.7 1 +1868 6 28 15.7 15.7 15.7 1 +1868 6 29 14.6 14.6 14.6 1 +1868 6 30 13.3 13.3 13.3 1 +1868 7 1 15.6 15.6 15.6 1 +1868 7 2 16.3 16.3 16.3 1 +1868 7 3 18.8 18.8 18.8 1 +1868 7 4 19.9 19.9 19.9 1 +1868 7 5 15.9 15.9 15.9 1 +1868 7 6 14.2 14.2 14.2 1 +1868 7 7 16.3 16.3 16.3 1 +1868 7 8 18.0 18.0 18.0 1 +1868 7 9 21.4 21.4 21.4 1 +1868 7 10 19.0 19.0 19.0 1 +1868 7 11 15.7 15.7 15.7 1 +1868 7 12 18.5 18.5 18.5 1 +1868 7 13 18.1 18.1 18.1 1 +1868 7 14 18.0 18.0 18.0 1 +1868 7 15 23.1 23.1 23.1 1 +1868 7 16 23.8 23.8 23.8 1 +1868 7 17 24.3 24.3 24.3 1 +1868 7 18 23.4 23.4 23.4 1 +1868 7 19 22.2 22.2 22.2 1 +1868 7 20 19.5 19.5 19.5 1 +1868 7 21 21.2 21.2 21.2 1 +1868 7 22 21.2 21.2 21.2 1 +1868 7 23 19.6 19.6 19.6 1 +1868 7 24 12.0 12.0 12.0 1 +1868 7 25 14.9 14.9 14.9 1 +1868 7 26 15.3 15.3 15.3 1 +1868 7 27 16.6 16.6 16.6 1 +1868 7 28 16.4 16.4 16.4 1 +1868 7 29 17.9 17.9 17.9 1 +1868 7 30 18.7 18.7 18.7 1 +1868 7 31 18.9 18.9 18.9 1 +1868 8 1 18.3 18.3 18.3 1 +1868 8 2 18.8 18.8 18.8 1 +1868 8 3 20.3 20.3 20.3 1 +1868 8 4 19.1 19.1 19.1 1 +1868 8 5 17.5 17.5 17.5 1 +1868 8 6 17.5 17.5 17.5 1 +1868 8 7 19.9 19.9 19.9 1 +1868 8 8 19.3 19.3 19.3 1 +1868 8 9 17.6 17.6 17.6 1 +1868 8 10 17.5 17.5 17.5 1 +1868 8 11 18.7 18.7 18.7 1 +1868 8 12 19.5 19.5 19.5 1 +1868 8 13 20.5 20.5 20.5 1 +1868 8 14 21.3 21.3 21.3 1 +1868 8 15 22.7 22.7 22.7 1 +1868 8 16 22.9 22.9 22.9 1 +1868 8 17 22.9 22.9 22.9 1 +1868 8 18 23.7 23.7 23.7 1 +1868 8 19 22.0 22.0 22.0 1 +1868 8 20 20.0 20.0 20.0 1 +1868 8 21 21.4 21.4 21.4 1 +1868 8 22 20.6 20.6 20.6 1 +1868 8 23 20.5 20.5 20.5 1 +1868 8 24 17.2 17.2 17.2 1 +1868 8 25 16.2 16.2 16.2 1 +1868 8 26 15.7 15.7 15.7 1 +1868 8 27 16.2 16.2 16.2 1 +1868 8 28 13.1 13.1 13.1 1 +1868 8 29 13.1 13.1 13.1 1 +1868 8 30 13.8 13.8 13.8 1 +1868 8 31 15.2 15.2 15.2 1 +1868 9 1 13.2 13.2 13.2 1 +1868 9 2 10.2 10.2 10.2 1 +1868 9 3 9.6 9.6 9.6 1 +1868 9 4 12.6 12.6 12.6 1 +1868 9 5 13.8 13.8 13.8 1 +1868 9 6 15.9 15.9 15.9 1 +1868 9 7 18.0 18.0 18.0 1 +1868 9 8 18.4 18.4 18.4 1 +1868 9 9 11.0 11.0 11.0 1 +1868 9 10 11.7 11.7 11.7 1 +1868 9 11 12.4 12.4 12.4 1 +1868 9 12 12.0 12.0 12.0 1 +1868 9 13 10.3 10.3 10.3 1 +1868 9 14 9.5 9.5 9.5 1 +1868 9 15 10.7 10.7 10.7 1 +1868 9 16 11.0 11.0 11.0 1 +1868 9 17 11.8 11.8 11.8 1 +1868 9 18 11.6 11.6 11.6 1 +1868 9 19 11.1 11.1 11.1 1 +1868 9 20 10.2 10.2 10.2 1 +1868 9 21 8.2 8.2 8.2 1 +1868 9 22 8.7 8.7 8.7 1 +1868 9 23 10.3 10.3 10.3 1 +1868 9 24 11.7 11.7 11.7 1 +1868 9 25 7.6 7.6 7.6 1 +1868 9 26 6.1 6.1 6.1 1 +1868 9 27 5.4 5.4 5.4 1 +1868 9 28 8.0 8.0 8.0 1 +1868 9 29 12.4 12.4 12.4 1 +1868 9 30 13.0 13.0 13.0 1 +1868 10 1 3.5 3.5 3.5 1 +1868 10 2 3.2 3.2 3.2 1 +1868 10 3 3.7 3.7 3.7 1 +1868 10 4 7.7 7.7 7.7 1 +1868 10 5 9.0 9.0 9.0 1 +1868 10 6 9.8 9.8 9.8 1 +1868 10 7 9.3 9.3 9.3 1 +1868 10 8 9.4 9.4 9.4 1 +1868 10 9 8.5 8.5 8.5 1 +1868 10 10 10.1 10.1 10.1 1 +1868 10 11 9.7 9.7 9.7 1 +1868 10 12 7.2 7.2 7.2 1 +1868 10 13 7.2 7.2 7.2 1 +1868 10 14 8.5 8.5 8.5 1 +1868 10 15 8.6 8.6 8.6 1 +1868 10 16 8.6 8.6 8.6 1 +1868 10 17 7.6 7.6 7.6 1 +1868 10 18 8.6 8.6 8.6 1 +1868 10 19 11.4 11.4 11.4 1 +1868 10 20 6.0 6.0 6.0 1 +1868 10 21 5.7 5.7 5.7 1 +1868 10 22 4.3 4.3 4.3 1 +1868 10 23 4.0 4.0 4.0 1 +1868 10 24 7.6 7.6 7.6 1 +1868 10 25 3.8 3.8 3.8 1 +1868 10 26 3.0 3.0 3.0 1 +1868 10 27 4.9 4.9 4.9 1 +1868 10 28 1.4 1.4 1.4 1 +1868 10 29 2.3 2.3 2.3 1 +1868 10 30 4.3 4.3 4.3 1 +1868 10 31 4.2 4.2 4.2 1 +1868 11 1 5.5 5.5 5.5 1 +1868 11 2 8.6 8.6 8.6 1 +1868 11 3 7.5 7.5 7.5 1 +1868 11 4 3.6 3.6 3.6 1 +1868 11 5 2.1 2.1 2.1 1 +1868 11 6 2.5 2.5 2.5 1 +1868 11 7 -1.1 -1.1 -1.1 1 +1868 11 8 1.7 1.7 1.7 1 +1868 11 9 1.2 1.2 1.2 1 +1868 11 10 0.3 0.3 0.3 1 +1868 11 11 2.9 2.9 2.9 1 +1868 11 12 0.6 0.6 0.6 1 +1868 11 13 -1.6 -1.6 -1.6 1 +1868 11 14 -0.5 -0.5 -0.5 1 +1868 11 15 0.3 0.3 0.3 1 +1868 11 16 2.5 2.5 2.5 1 +1868 11 17 -4.3 -4.3 -4.3 1 +1868 11 18 -4.5 -4.5 -4.5 1 +1868 11 19 -9.0 -9.0 -9.0 1 +1868 11 20 -10.0 -10.0 -10.0 1 +1868 11 21 -3.9 -3.9 -3.9 1 +1868 11 22 2.3 2.3 2.3 1 +1868 11 23 3.6 3.6 3.6 1 +1868 11 24 4.9 4.9 4.9 1 +1868 11 25 2.8 2.8 2.8 1 +1868 11 26 0.5 0.5 0.5 1 +1868 11 27 0.2 0.2 0.2 1 +1868 11 28 -0.2 -0.2 -0.2 1 +1868 11 29 -1.4 -1.4 -1.4 1 +1868 11 30 -1.8 -1.8 -1.8 1 +1868 12 1 -2.4 -2.4 -2.4 1 +1868 12 2 -0.2 -0.2 -0.2 1 +1868 12 3 0.2 0.2 0.2 1 +1868 12 4 1.6 1.6 1.6 1 +1868 12 5 7.0 7.0 7.0 1 +1868 12 6 5.2 5.2 5.2 1 +1868 12 7 -0.4 -0.4 -0.4 1 +1868 12 8 -9.7 -9.7 -9.7 1 +1868 12 9 -9.0 -9.0 -9.0 1 +1868 12 10 -3.6 -3.6 -3.6 1 +1868 12 11 4.1 4.1 4.1 1 +1868 12 12 -1.9 -1.9 -1.9 1 +1868 12 13 -2.5 -2.5 -2.5 1 +1868 12 14 -6.0 -6.0 -6.0 1 +1868 12 15 1.7 1.7 1.7 1 +1868 12 16 2.8 2.8 2.8 1 +1868 12 17 2.4 2.4 2.4 1 +1868 12 18 3.2 3.2 3.2 1 +1868 12 19 2.5 2.5 2.5 1 +1868 12 20 0.8 0.8 0.8 1 +1868 12 21 -1.5 -1.5 -1.5 1 +1868 12 22 -0.3 -0.3 -0.3 1 +1868 12 23 -1.2 -1.2 -1.2 1 +1868 12 24 -1.9 -1.9 -1.9 1 +1868 12 25 -2.2 -2.2 -2.2 1 +1868 12 26 -4.5 -4.5 -4.5 1 +1868 12 27 -5.5 -5.5 -5.5 1 +1868 12 28 -0.1 -0.1 -0.1 1 +1868 12 29 -2.6 -2.6 -2.6 1 +1868 12 30 -3.4 -3.4 -3.4 1 +1868 12 31 -2.7 -2.7 -2.7 1 +1869 1 1 -2.5 -2.5 -2.5 1 +1869 1 2 -7.2 -7.2 -7.2 1 +1869 1 3 -2.8 -2.8 -2.8 1 +1869 1 4 -0.5 -0.5 -0.5 1 +1869 1 5 0.9 0.9 0.9 1 +1869 1 6 2.5 2.5 2.5 1 +1869 1 7 -1.9 -1.9 -1.9 1 +1869 1 8 -1.1 -1.1 -1.1 1 +1869 1 9 3.0 3.0 3.0 1 +1869 1 10 0.9 0.9 0.9 1 +1869 1 11 -0.5 -0.5 -0.5 1 +1869 1 12 2.4 2.4 2.4 1 +1869 1 13 1.6 1.6 1.6 1 +1869 1 14 0.4 0.4 0.4 1 +1869 1 15 0.1 0.1 0.1 1 +1869 1 16 -1.8 -1.8 -1.8 1 +1869 1 17 -3.3 -3.3 -3.3 1 +1869 1 18 -3.9 -3.9 -3.9 1 +1869 1 19 -6.5 -6.5 -6.5 1 +1869 1 20 -3.3 -3.3 -3.3 1 +1869 1 21 -5.9 -5.9 -5.9 1 +1869 1 22 -9.1 -9.1 -9.1 1 +1869 1 23 -6.4 -6.4 -6.4 1 +1869 1 24 -6.9 -6.9 -6.9 1 +1869 1 25 -8.6 -8.6 -8.6 1 +1869 1 26 -6.0 -6.0 -6.0 1 +1869 1 27 -5.5 -5.5 -5.5 1 +1869 1 28 -1.0 -1.0 -1.0 1 +1869 1 29 1.4 1.4 1.4 1 +1869 1 30 4.1 4.1 4.1 1 +1869 1 31 3.6 3.6 3.6 1 +1869 2 1 5.5 5.5 5.5 1 +1869 2 2 2.2 2.2 2.2 1 +1869 2 3 -1.5 -1.5 -1.5 1 +1869 2 4 -1.1 -1.1 -1.1 1 +1869 2 5 3.2 3.2 3.2 1 +1869 2 6 6.3 6.3 6.3 1 +1869 2 7 3.0 3.0 3.0 1 +1869 2 8 5.4 5.4 5.4 1 +1869 2 9 3.5 3.5 3.5 1 +1869 2 10 -0.7 -0.7 -0.7 1 +1869 2 11 -5.5 -5.5 -5.5 1 +1869 2 12 -4.1 -4.1 -4.1 1 +1869 2 13 -0.7 -0.7 -0.7 1 +1869 2 14 2.2 2.2 2.2 1 +1869 2 15 -1.1 -1.1 -1.1 1 +1869 2 16 -1.3 -1.3 -1.3 1 +1869 2 17 4.2 4.2 4.2 1 +1869 2 18 1.2 1.2 1.2 1 +1869 2 19 -0.5 -0.5 -0.5 1 +1869 2 20 -8.1 -8.1 -8.1 1 +1869 2 21 -7.3 -7.3 -7.3 1 +1869 2 22 -8.3 -8.3 -8.3 1 +1869 2 23 -7.3 -7.3 -7.3 1 +1869 2 24 -3.1 -3.1 -3.1 1 +1869 2 25 0.8 0.8 0.8 1 +1869 2 26 1.8 1.8 1.8 1 +1869 2 27 0.0 0.0 0.0 1 +1869 2 28 -4.0 -4.0 -4.0 1 +1869 3 1 -7.1 -7.1 -7.1 1 +1869 3 2 -3.2 -3.2 -3.2 1 +1869 3 3 -4.2 -4.2 -4.2 1 +1869 3 4 -6.3 -6.3 -6.3 1 +1869 3 5 -7.2 -7.2 -7.2 1 +1869 3 6 -8.9 -8.9 -8.9 1 +1869 3 7 -5.1 -5.1 -5.1 1 +1869 3 8 -6.2 -6.2 -6.2 1 +1869 3 9 -6.6 -6.6 -6.6 1 +1869 3 10 -3.3 -3.3 -3.3 1 +1869 3 11 -1.1 -1.1 -1.1 1 +1869 3 12 0.5 0.5 0.5 1 +1869 3 13 -5.2 -5.2 -5.2 1 +1869 3 14 -5.8 -5.8 -5.8 1 +1869 3 15 -3.9 -3.9 -3.9 1 +1869 3 16 -0.1 -0.1 -0.1 1 +1869 3 17 1.3 1.3 1.3 1 +1869 3 18 1.9 1.9 1.9 1 +1869 3 19 0.7 0.7 0.7 1 +1869 3 20 1.1 1.1 1.1 1 +1869 3 21 1.1 1.1 1.1 1 +1869 3 22 0.0 0.0 0.0 1 +1869 3 23 -0.5 -0.5 -0.5 1 +1869 3 24 0.1 0.1 0.1 1 +1869 3 25 -1.2 -1.2 -1.2 1 +1869 3 26 2.0 2.0 2.0 1 +1869 3 27 0.0 0.0 0.0 1 +1869 3 28 -1.3 -1.3 -1.3 1 +1869 3 29 1.1 1.1 1.1 1 +1869 3 30 1.0 1.0 1.0 1 +1869 3 31 2.8 2.8 2.8 1 +1869 4 1 1.3 1.3 1.3 1 +1869 4 2 0.7 0.7 0.7 1 +1869 4 3 3.9 3.9 3.9 1 +1869 4 4 5.2 5.2 5.2 1 +1869 4 5 6.1 6.1 6.1 1 +1869 4 6 8.1 8.1 8.1 1 +1869 4 7 8.2 8.2 8.2 1 +1869 4 8 3.5 3.5 3.5 1 +1869 4 9 1.5 1.5 1.5 1 +1869 4 10 2.2 2.2 2.2 1 +1869 4 11 2.4 2.4 2.4 1 +1869 4 12 -0.3 -0.3 -0.3 1 +1869 4 13 2.5 2.5 2.5 1 +1869 4 14 4.3 4.3 4.3 1 +1869 4 15 7.3 7.3 7.3 1 +1869 4 16 8.8 8.8 8.8 1 +1869 4 17 2.8 2.8 2.8 1 +1869 4 18 5.3 5.3 5.3 1 +1869 4 19 2.0 2.0 2.0 1 +1869 4 20 6.2 6.2 6.2 1 +1869 4 21 8.7 8.7 8.7 1 +1869 4 22 8.9 8.9 8.9 1 +1869 4 23 9.8 9.8 9.8 1 +1869 4 24 10.7 10.7 10.7 1 +1869 4 25 9.7 9.7 9.7 1 +1869 4 26 15.0 15.0 15.0 1 +1869 4 27 15.2 15.2 15.2 1 +1869 4 28 8.4 8.4 8.4 1 +1869 4 29 5.3 5.3 5.3 1 +1869 4 30 1.7 1.7 1.7 1 +1869 5 1 3.8 3.8 3.8 1 +1869 5 2 -0.6 -0.6 -0.6 1 +1869 5 3 -0.3 -0.3 -0.3 1 +1869 5 4 0.2 0.2 0.2 1 +1869 5 5 2.0 2.0 2.0 1 +1869 5 6 4.4 4.4 4.4 1 +1869 5 7 6.6 6.6 6.6 1 +1869 5 8 9.4 9.4 9.4 1 +1869 5 9 5.2 5.2 5.2 1 +1869 5 10 4.7 4.7 4.7 1 +1869 5 11 7.8 7.8 7.8 1 +1869 5 12 13.4 13.4 13.4 1 +1869 5 13 12.2 12.2 12.2 1 +1869 5 14 8.7 8.7 8.7 1 +1869 5 15 7.4 7.4 7.4 1 +1869 5 16 7.2 7.2 7.2 1 +1869 5 17 8.6 8.6 8.6 1 +1869 5 18 9.0 9.0 9.0 1 +1869 5 19 12.5 12.5 12.5 1 +1869 5 20 9.6 9.6 9.6 1 +1869 5 21 10.6 10.6 10.6 1 +1869 5 22 10.4 10.4 10.4 1 +1869 5 23 6.9 6.9 6.9 1 +1869 5 24 9.4 9.4 9.4 1 +1869 5 25 8.3 8.3 8.3 1 +1869 5 26 10.6 10.6 10.6 1 +1869 5 27 10.7 10.7 10.7 1 +1869 5 28 4.0 4.0 4.0 1 +1869 5 29 8.4 8.4 8.4 1 +1869 5 30 8.3 8.3 8.3 1 +1869 5 31 9.6 9.6 9.6 1 +1869 6 1 5.3 5.3 5.3 1 +1869 6 2 7.0 7.0 7.0 1 +1869 6 3 12.0 12.0 12.0 1 +1869 6 4 13.2 13.2 13.2 1 +1869 6 5 11.8 11.8 11.8 1 +1869 6 6 10.8 10.8 10.8 1 +1869 6 7 10.6 10.6 10.6 1 +1869 6 8 8.9 8.9 8.9 1 +1869 6 9 10.4 10.4 10.4 1 +1869 6 10 7.2 7.2 7.2 1 +1869 6 11 8.5 8.5 8.5 1 +1869 6 12 12.4 12.4 12.4 1 +1869 6 13 11.7 11.7 11.7 1 +1869 6 14 13.9 13.9 13.9 1 +1869 6 15 16.0 16.0 16.0 1 +1869 6 16 12.0 12.0 12.0 1 +1869 6 17 13.2 13.2 13.2 1 +1869 6 18 12.0 12.0 12.0 1 +1869 6 19 11.9 11.9 11.9 1 +1869 6 20 14.2 14.2 14.2 1 +1869 6 21 11.6 11.6 11.6 1 +1869 6 22 12.2 12.2 12.2 1 +1869 6 23 12.7 12.7 12.7 1 +1869 6 24 13.0 13.0 13.0 1 +1869 6 25 15.2 15.2 15.2 1 +1869 6 26 17.1 17.1 17.1 1 +1869 6 27 18.0 18.0 18.0 1 +1869 6 28 10.7 10.7 10.7 1 +1869 6 29 14.8 14.8 14.8 1 +1869 6 30 15.9 15.9 15.9 1 +1869 7 1 12.7 12.7 12.7 1 +1869 7 2 15.0 15.0 15.0 1 +1869 7 3 12.6 12.6 12.6 1 +1869 7 4 12.0 12.0 12.0 1 +1869 7 5 14.3 14.3 14.3 1 +1869 7 6 16.6 16.6 16.6 1 +1869 7 7 15.2 15.2 15.2 1 +1869 7 8 14.8 14.8 14.8 1 +1869 7 9 18.3 18.3 18.3 1 +1869 7 10 15.7 15.7 15.7 1 +1869 7 11 14.3 14.3 14.3 1 +1869 7 12 15.2 15.2 15.2 1 +1869 7 13 18.1 18.1 18.1 1 +1869 7 14 14.3 14.3 14.3 1 +1869 7 15 11.7 11.7 11.7 1 +1869 7 16 13.9 13.9 13.9 1 +1869 7 17 14.8 14.8 14.8 1 +1869 7 18 16.6 16.6 16.6 1 +1869 7 19 17.0 17.0 17.0 1 +1869 7 20 14.8 14.8 14.8 1 +1869 7 21 16.4 16.4 16.4 1 +1869 7 22 17.6 17.6 17.6 1 +1869 7 23 17.8 17.8 17.8 1 +1869 7 24 17.5 17.5 17.5 1 +1869 7 25 20.0 20.0 20.0 1 +1869 7 26 18.0 18.0 18.0 1 +1869 7 27 18.5 18.5 18.5 1 +1869 7 28 19.7 19.7 19.7 1 +1869 7 29 16.5 16.5 16.5 1 +1869 7 30 16.6 16.6 16.6 1 +1869 7 31 18.2 18.2 18.2 1 +1869 8 1 19.3 19.3 19.3 1 +1869 8 2 20.0 20.0 20.0 1 +1869 8 3 16.8 16.8 16.8 1 +1869 8 4 15.2 15.2 15.2 1 +1869 8 5 15.4 15.4 15.4 1 +1869 8 6 14.1 14.1 14.1 1 +1869 8 7 13.5 13.5 13.5 1 +1869 8 8 14.9 14.9 14.9 1 +1869 8 9 13.6 13.6 13.6 1 +1869 8 10 12.9 12.9 12.9 1 +1869 8 11 12.8 12.8 12.8 1 +1869 8 12 13.9 13.9 13.9 1 +1869 8 13 12.8 12.8 12.8 1 +1869 8 14 15.6 15.6 15.6 1 +1869 8 15 16.5 16.5 16.5 1 +1869 8 16 16.4 16.4 16.4 1 +1869 8 17 14.6 14.6 14.6 1 +1869 8 18 13.8 13.8 13.8 1 +1869 8 19 14.0 14.0 14.0 1 +1869 8 20 13.5 13.5 13.5 1 +1869 8 21 14.7 14.7 14.7 1 +1869 8 22 17.5 17.5 17.5 1 +1869 8 23 13.2 13.2 13.2 1 +1869 8 24 15.1 15.1 15.1 1 +1869 8 25 15.7 15.7 15.7 1 +1869 8 26 20.1 20.1 20.1 1 +1869 8 27 15.0 15.0 15.0 1 +1869 8 28 13.9 13.9 13.9 1 +1869 8 29 11.4 11.4 11.4 1 +1869 8 30 7.6 7.6 7.6 1 +1869 8 31 7.8 7.8 7.8 1 +1869 9 1 8.6 8.6 8.6 1 +1869 9 2 5.9 5.9 5.9 1 +1869 9 3 7.0 7.0 7.0 1 +1869 9 4 8.1 8.1 8.1 1 +1869 9 5 11.1 11.1 11.1 1 +1869 9 6 12.0 12.0 12.0 1 +1869 9 7 13.5 13.5 13.5 1 +1869 9 8 15.1 15.1 15.1 1 +1869 9 9 15.8 15.8 15.8 1 +1869 9 10 16.8 16.8 16.8 1 +1869 9 11 15.9 15.9 15.9 1 +1869 9 12 13.4 13.4 13.4 1 +1869 9 13 13.0 13.0 13.0 1 +1869 9 14 13.4 13.4 13.4 1 +1869 9 15 11.6 11.6 11.6 1 +1869 9 16 11.8 11.8 11.8 1 +1869 9 17 11.6 11.6 11.6 1 +1869 9 18 12.4 12.4 12.4 1 +1869 9 19 14.4 14.4 14.4 1 +1869 9 20 10.7 10.7 10.7 1 +1869 9 21 10.8 10.8 10.8 1 +1869 9 22 10.1 10.1 10.1 1 +1869 9 23 7.4 7.4 7.4 1 +1869 9 24 7.7 7.7 7.7 1 +1869 9 25 7.8 7.8 7.8 1 +1869 9 26 12.3 12.3 12.3 1 +1869 9 27 10.3 10.3 10.3 1 +1869 9 28 8.1 8.1 8.1 1 +1869 9 29 11.7 11.7 11.7 1 +1869 9 30 8.0 8.0 8.0 1 +1869 10 1 7.2 7.2 7.2 1 +1869 10 2 7.5 7.5 7.5 1 +1869 10 3 6.7 6.7 6.7 1 +1869 10 4 5.7 5.7 5.7 1 +1869 10 5 7.0 7.0 7.0 1 +1869 10 6 4.0 4.0 4.0 1 +1869 10 7 4.8 4.8 4.8 1 +1869 10 8 8.7 8.7 8.7 1 +1869 10 9 9.4 9.4 9.4 1 +1869 10 10 11.4 11.4 11.4 1 +1869 10 11 12.2 12.2 12.2 1 +1869 10 12 13.6 13.6 13.6 1 +1869 10 13 11.8 11.8 11.8 1 +1869 10 14 6.2 6.2 6.2 1 +1869 10 15 5.7 5.7 5.7 1 +1869 10 16 2.7 2.7 2.7 1 +1869 10 17 7.4 7.4 7.4 1 +1869 10 18 0.8 0.8 0.8 1 +1869 10 19 2.4 2.4 2.4 1 +1869 10 20 3.0 3.0 3.0 1 +1869 10 21 1.1 1.1 1.1 1 +1869 10 22 -0.5 -0.5 -0.5 1 +1869 10 23 6.5 6.5 6.5 1 +1869 10 24 6.4 6.4 6.4 1 +1869 10 25 0.5 0.5 0.5 1 +1869 10 26 3.6 3.6 3.6 1 +1869 10 27 4.2 4.2 4.2 1 +1869 10 28 3.3 3.3 3.3 1 +1869 10 29 2.4 2.4 2.4 1 +1869 10 30 0.8 0.8 0.8 1 +1869 10 31 2.9 2.9 2.9 1 +1869 11 1 1.5 1.5 1.5 1 +1869 11 2 -0.5 -0.5 -0.5 1 +1869 11 3 0.6 0.6 0.6 1 +1869 11 4 -2.2 -2.2 -2.2 1 +1869 11 5 -5.2 -5.2 -5.2 1 +1869 11 6 -6.6 -6.6 -6.6 1 +1869 11 7 -1.3 -1.3 -1.3 1 +1869 11 8 -0.6 -0.6 -0.6 1 +1869 11 9 1.0 1.0 1.0 1 +1869 11 10 -5.4 -5.4 -5.4 1 +1869 11 11 -7.4 -7.4 -7.4 1 +1869 11 12 -8.0 -8.0 -8.0 1 +1869 11 13 0.9 0.9 0.9 1 +1869 11 14 0.5 0.5 0.5 1 +1869 11 15 1.5 1.5 1.5 1 +1869 11 16 1.6 1.6 1.6 1 +1869 11 17 2.9 2.9 2.9 1 +1869 11 18 5.3 5.3 5.3 1 +1869 11 19 7.5 7.5 7.5 1 +1869 11 20 2.6 2.6 2.6 1 +1869 11 21 0.0 0.0 0.0 1 +1869 11 22 2.1 2.1 2.1 1 +1869 11 23 2.7 2.7 2.7 1 +1869 11 24 3.0 3.0 3.0 1 +1869 11 25 1.4 1.4 1.4 1 +1869 11 26 3.2 3.2 3.2 1 +1869 11 27 1.4 1.4 1.4 1 +1869 11 28 -2.8 -2.8 -2.8 1 +1869 11 29 -6.3 -6.3 -6.3 1 +1869 11 30 -3.7 -3.7 -3.7 1 +1869 12 1 -3.5 -3.5 -3.5 1 +1869 12 2 -0.3 -0.3 -0.3 1 +1869 12 3 2.6 2.6 2.6 1 +1869 12 4 2.0 2.0 2.0 1 +1869 12 5 0.9 0.9 0.9 1 +1869 12 6 2.6 2.6 2.6 1 +1869 12 7 2.6 2.6 2.6 1 +1869 12 8 1.0 1.0 1.0 1 +1869 12 9 1.0 1.0 1.0 1 +1869 12 10 0.5 0.5 0.5 1 +1869 12 11 2.6 2.6 2.6 1 +1869 12 12 2.9 2.9 2.9 1 +1869 12 13 3.0 3.0 3.0 1 +1869 12 14 2.8 2.8 2.8 1 +1869 12 15 2.6 2.6 2.6 1 +1869 12 16 2.0 2.0 2.0 1 +1869 12 17 -3.3 -3.3 -3.3 1 +1869 12 18 -3.1 -3.1 -3.1 1 +1869 12 19 0.1 0.1 0.1 1 +1869 12 20 1.8 1.8 1.8 1 +1869 12 21 1.2 1.2 1.2 1 +1869 12 22 -1.9 -1.9 -1.9 1 +1869 12 23 -3.4 -3.4 -3.4 1 +1869 12 24 -8.4 -8.4 -8.4 1 +1869 12 25 -9.0 -9.0 -9.0 1 +1869 12 26 -6.4 -6.4 -6.4 1 +1869 12 27 -9.7 -9.7 -9.7 1 +1869 12 28 -4.2 -4.2 -4.2 1 +1869 12 29 -5.3 -5.3 -5.3 1 +1869 12 30 -0.5 -0.5 -0.5 1 +1869 12 31 1.6 1.6 1.6 1 +1870 1 1 0.9 0.9 0.9 1 +1870 1 2 1.4 1.4 1.4 1 +1870 1 3 1.9 1.9 1.9 1 +1870 1 4 1.8 1.8 1.8 1 +1870 1 5 2.0 2.0 2.0 1 +1870 1 6 3.3 3.3 3.3 1 +1870 1 7 2.7 2.7 2.7 1 +1870 1 8 2.7 2.7 2.7 1 +1870 1 9 4.2 4.2 4.2 1 +1870 1 10 3.2 3.2 3.2 1 +1870 1 11 1.8 1.7 1.7 1 +1870 1 12 1.1 1.0 1.0 1 +1870 1 13 0.4 0.3 0.3 1 +1870 1 14 -0.7 -0.8 -0.8 1 +1870 1 15 1.1 1.0 1.0 1 +1870 1 16 0.1 0.0 0.0 1 +1870 1 17 -2.0 -2.1 -2.1 1 +1870 1 18 -4.7 -4.8 -4.8 1 +1870 1 19 -5.3 -5.4 -5.4 1 +1870 1 20 -5.7 -5.8 -5.8 1 +1870 1 21 -3.2 -3.3 -3.3 1 +1870 1 22 -3.2 -3.3 -3.3 1 +1870 1 23 -4.0 -4.1 -4.1 1 +1870 1 24 -4.7 -4.8 -4.8 1 +1870 1 25 -7.8 -7.9 -7.9 1 +1870 1 26 -4.2 -4.3 -4.3 1 +1870 1 27 -0.8 -0.9 -0.9 1 +1870 1 28 -1.7 -1.8 -1.8 1 +1870 1 29 -2.2 -2.3 -2.3 1 +1870 1 30 -5.4 -5.5 -5.5 1 +1870 1 31 -4.3 -4.3 -4.3 1 +1870 2 1 -5.0 -5.0 -5.0 1 +1870 2 2 -1.4 -1.4 -1.4 1 +1870 2 3 -2.4 -2.4 -2.4 1 +1870 2 4 -3.4 -3.4 -3.4 1 +1870 2 5 -5.4 -5.4 -5.4 1 +1870 2 6 -7.1 -7.1 -7.1 1 +1870 2 7 -6.6 -6.6 -6.6 1 +1870 2 8 -8.6 -8.6 -8.6 1 +1870 2 9 -9.6 -9.6 -9.6 1 +1870 2 10 -13.6 -13.6 -13.6 1 +1870 2 11 -11.9 -11.9 -11.9 1 +1870 2 12 -17.4 -17.4 -17.4 1 +1870 2 13 -12.2 -12.2 -12.2 1 +1870 2 14 -10.8 -10.8 -10.8 1 +1870 2 15 -3.0 -3.0 -3.0 1 +1870 2 16 -1.2 -1.2 -1.2 1 +1870 2 17 -2.1 -2.1 -2.1 1 +1870 2 18 -4.9 -4.9 -4.9 1 +1870 2 19 -6.5 -6.5 -6.5 1 +1870 2 20 -2.4 -2.4 -2.4 1 +1870 2 21 -9.8 -9.8 -9.8 1 +1870 2 22 -14.9 -14.9 -14.9 1 +1870 2 23 -14.3 -14.3 -14.3 1 +1870 2 24 -11.5 -11.5 -11.5 1 +1870 2 25 -7.7 -7.7 -7.7 1 +1870 2 26 -3.8 -3.8 -3.8 1 +1870 2 27 -1.9 -1.9 -1.9 1 +1870 2 28 0.6 0.6 0.6 1 +1870 3 1 2.8 2.8 2.8 1 +1870 3 2 2.6 2.6 2.6 1 +1870 3 3 1.8 1.8 1.8 1 +1870 3 4 0.3 0.3 0.3 1 +1870 3 5 -1.5 -1.5 -1.5 1 +1870 3 6 2.2 2.2 2.2 1 +1870 3 7 3.6 3.6 3.6 1 +1870 3 8 -4.3 -4.3 -4.3 1 +1870 3 9 -5.4 -5.4 -5.4 1 +1870 3 10 -6.5 -6.5 -6.5 1 +1870 3 11 -7.6 -7.6 -7.6 1 +1870 3 12 -8.1 -8.1 -8.1 1 +1870 3 13 -9.6 -9.6 -9.6 1 +1870 3 14 -8.3 -8.3 -8.3 1 +1870 3 15 -3.0 -3.0 -3.0 1 +1870 3 16 1.9 1.9 1.9 1 +1870 3 17 -4.3 -4.3 -4.3 1 +1870 3 18 -8.6 -8.6 -8.6 1 +1870 3 19 -6.7 -6.7 -6.7 1 +1870 3 20 -2.3 -2.3 -2.3 1 +1870 3 21 -2.1 -2.1 -2.1 1 +1870 3 22 0.2 0.2 0.2 1 +1870 3 23 0.4 0.4 0.4 1 +1870 3 24 -3.0 -3.0 -3.0 1 +1870 3 25 -2.7 -2.7 -2.7 1 +1870 3 26 -3.1 -3.1 -3.1 1 +1870 3 27 -0.3 -0.3 -0.3 1 +1870 3 28 0.1 0.1 0.1 1 +1870 3 29 0.0 0.0 0.0 1 +1870 3 30 0.0 0.0 0.0 1 +1870 3 31 -0.6 -0.6 -0.6 1 +1870 4 1 2.5 2.5 2.5 1 +1870 4 2 3.2 3.2 3.2 1 +1870 4 3 1.6 1.6 1.6 1 +1870 4 4 4.2 4.2 4.2 1 +1870 4 5 4.5 4.5 4.5 1 +1870 4 6 3.3 3.3 3.3 1 +1870 4 7 3.0 3.0 3.0 1 +1870 4 8 1.4 1.4 1.4 1 +1870 4 9 3.5 3.5 3.5 1 +1870 4 10 2.5 2.5 2.5 1 +1870 4 11 2.0 2.0 2.0 1 +1870 4 12 2.7 2.7 2.7 1 +1870 4 13 1.4 1.4 1.4 1 +1870 4 14 3.6 3.6 3.6 1 +1870 4 15 1.8 1.8 1.8 1 +1870 4 16 6.6 6.6 6.6 1 +1870 4 17 9.3 9.3 9.3 1 +1870 4 18 7.5 7.4 7.4 1 +1870 4 19 7.2 7.1 7.1 1 +1870 4 20 9.3 9.2 9.2 1 +1870 4 21 12.1 12.0 12.0 1 +1870 4 22 11.9 11.8 11.8 1 +1870 4 23 12.6 12.5 12.5 1 +1870 4 24 9.3 9.2 9.2 1 +1870 4 25 8.1 8.0 8.0 1 +1870 4 26 10.2 10.1 10.1 1 +1870 4 27 4.9 4.8 4.8 1 +1870 4 28 4.2 4.1 4.1 1 +1870 4 29 4.8 4.7 4.7 1 +1870 4 30 4.3 4.2 4.2 1 +1870 5 1 5.3 5.2 5.2 1 +1870 5 2 6.8 6.7 6.7 1 +1870 5 3 6.0 5.9 5.9 1 +1870 5 4 5.3 5.2 5.2 1 +1870 5 5 4.7 4.6 4.6 1 +1870 5 6 4.4 4.3 4.3 1 +1870 5 7 5.0 4.9 4.9 1 +1870 5 8 9.6 9.5 9.5 1 +1870 5 9 11.1 11.0 11.0 1 +1870 5 10 11.6 11.5 11.5 1 +1870 5 11 11.2 11.1 11.1 1 +1870 5 12 7.3 7.2 7.2 1 +1870 5 13 10.5 10.4 10.4 1 +1870 5 14 11.0 10.9 10.9 1 +1870 5 15 12.1 12.0 12.0 1 +1870 5 16 13.7 13.6 13.6 1 +1870 5 17 10.6 10.5 10.5 1 +1870 5 18 12.4 12.3 12.3 1 +1870 5 19 13.5 13.4 13.4 1 +1870 5 20 13.4 13.3 13.3 1 +1870 5 21 11.2 11.1 11.1 1 +1870 5 22 11.0 10.9 10.9 1 +1870 5 23 9.2 9.1 9.1 1 +1870 5 24 10.6 10.5 10.5 1 +1870 5 25 8.6 8.5 8.5 1 +1870 5 26 7.5 7.4 7.4 1 +1870 5 27 6.2 6.1 6.1 1 +1870 5 28 6.6 6.5 6.5 1 +1870 5 29 6.6 6.5 6.5 1 +1870 5 30 6.4 6.3 6.3 1 +1870 5 31 8.2 8.1 8.1 1 +1870 6 1 6.4 6.3 6.3 1 +1870 6 2 8.9 8.8 8.8 1 +1870 6 3 9.5 9.4 9.4 1 +1870 6 4 9.1 9.0 9.0 1 +1870 6 5 14.1 14.0 14.0 1 +1870 6 6 16.1 16.0 16.0 1 +1870 6 7 14.7 14.6 14.6 1 +1870 6 8 14.2 14.1 14.1 1 +1870 6 9 15.8 15.7 15.7 1 +1870 6 10 11.1 11.0 11.0 1 +1870 6 11 11.6 11.5 11.5 1 +1870 6 12 9.5 9.4 9.4 1 +1870 6 13 10.0 9.9 9.9 1 +1870 6 14 10.2 10.1 10.1 1 +1870 6 15 14.7 14.6 14.6 1 +1870 6 16 17.6 17.5 17.5 1 +1870 6 17 19.2 19.1 19.1 1 +1870 6 18 18.5 18.4 18.4 1 +1870 6 19 15.7 15.6 15.6 1 +1870 6 20 16.1 16.0 16.0 1 +1870 6 21 17.1 17.0 17.0 1 +1870 6 22 17.2 17.1 17.1 1 +1870 6 23 15.6 15.5 15.5 1 +1870 6 24 15.6 15.5 15.5 1 +1870 6 25 13.8 13.7 13.7 1 +1870 6 26 12.4 12.3 12.3 1 +1870 6 27 12.6 12.5 12.5 1 +1870 6 28 13.6 13.5 13.5 1 +1870 6 29 15.2 15.1 15.1 1 +1870 6 30 18.3 18.2 18.2 1 +1870 7 1 16.0 15.9 15.9 1 +1870 7 2 14.1 14.0 14.0 1 +1870 7 3 13.6 13.5 13.5 1 +1870 7 4 13.5 13.4 13.4 1 +1870 7 5 14.6 14.5 14.5 1 +1870 7 6 14.3 14.2 14.2 1 +1870 7 7 14.8 14.7 14.7 1 +1870 7 8 15.6 15.5 15.5 1 +1870 7 9 17.6 17.5 17.5 1 +1870 7 10 18.5 18.4 18.4 1 +1870 7 11 18.4 18.3 18.3 1 +1870 7 12 17.3 17.2 17.2 1 +1870 7 13 18.1 18.0 18.0 1 +1870 7 14 16.6 16.5 16.5 1 +1870 7 15 15.5 15.4 15.4 1 +1870 7 16 16.9 16.8 16.8 1 +1870 7 17 19.9 19.8 19.8 1 +1870 7 18 17.7 17.6 17.6 1 +1870 7 19 17.1 17.0 17.0 1 +1870 7 20 16.1 16.0 16.0 1 +1870 7 21 16.0 15.9 15.9 1 +1870 7 22 14.9 14.8 14.8 1 +1870 7 23 15.0 14.9 14.9 1 +1870 7 24 18.3 18.2 18.2 1 +1870 7 25 18.3 18.2 18.2 1 +1870 7 26 19.8 19.7 19.7 1 +1870 7 27 19.1 19.0 19.0 1 +1870 7 28 21.1 21.0 21.0 1 +1870 7 29 20.4 20.3 20.3 1 +1870 7 30 19.5 19.4 19.4 1 +1870 7 31 19.2 19.1 19.1 1 +1870 8 1 18.0 17.9 17.9 1 +1870 8 2 18.2 18.1 18.1 1 +1870 8 3 18.6 18.5 18.5 1 +1870 8 4 20.3 20.2 20.2 1 +1870 8 5 20.3 20.2 20.2 1 +1870 8 6 19.2 19.1 19.1 1 +1870 8 7 17.4 17.3 17.3 1 +1870 8 8 16.6 16.5 16.5 1 +1870 8 9 17.9 17.8 17.8 1 +1870 8 10 18.0 17.9 17.9 1 +1870 8 11 18.5 18.4 18.4 1 +1870 8 12 19.5 19.4 19.4 1 +1870 8 13 15.0 14.9 14.9 1 +1870 8 14 15.6 15.5 15.5 1 +1870 8 15 14.3 14.2 14.2 1 +1870 8 16 12.8 12.7 12.7 1 +1870 8 17 11.9 11.8 11.8 1 +1870 8 18 10.0 10.0 10.0 1 +1870 8 19 11.6 11.6 11.6 1 +1870 8 20 10.7 10.7 10.7 1 +1870 8 21 10.6 10.6 10.6 1 +1870 8 22 11.7 11.7 11.7 1 +1870 8 23 11.9 11.9 11.9 1 +1870 8 24 10.3 10.3 10.3 1 +1870 8 25 10.6 10.6 10.6 1 +1870 8 26 11.5 11.5 11.5 1 +1870 8 27 12.1 12.1 12.1 1 +1870 8 28 12.0 12.0 12.0 1 +1870 8 29 12.8 12.8 12.8 1 +1870 8 30 13.6 13.6 13.6 1 +1870 8 31 12.4 12.4 12.4 1 +1870 9 1 10.2 10.2 10.2 1 +1870 9 2 12.8 12.8 12.8 1 +1870 9 3 16.0 16.0 16.0 1 +1870 9 4 14.7 14.7 14.7 1 +1870 9 5 15.0 15.0 15.0 1 +1870 9 6 15.7 15.7 15.7 1 +1870 9 7 15.5 15.5 15.5 1 +1870 9 8 15.8 15.8 15.8 1 +1870 9 9 12.5 12.5 12.5 1 +1870 9 10 12.0 12.0 12.0 1 +1870 9 11 10.6 10.6 10.6 1 +1870 9 12 8.0 8.0 8.0 1 +1870 9 13 10.5 10.5 10.5 1 +1870 9 14 10.1 10.1 10.1 1 +1870 9 15 7.7 7.7 7.7 1 +1870 9 16 6.6 6.6 6.6 1 +1870 9 17 6.4 6.4 6.4 1 +1870 9 18 8.5 8.5 8.5 1 +1870 9 19 11.6 11.6 11.6 1 +1870 9 20 11.8 11.8 11.8 1 +1870 9 21 9.9 9.9 9.9 1 +1870 9 22 10.5 10.5 10.5 1 +1870 9 23 12.0 12.0 12.0 1 +1870 9 24 12.5 12.5 12.5 1 +1870 9 25 11.6 11.6 11.6 1 +1870 9 26 10.3 10.3 10.3 1 +1870 9 27 9.9 9.9 9.9 1 +1870 9 28 8.7 8.7 8.7 1 +1870 9 29 7.9 7.9 7.9 1 +1870 9 30 7.8 7.8 7.8 1 +1870 10 1 9.5 9.5 9.5 1 +1870 10 2 10.0 10.0 10.0 1 +1870 10 3 9.4 9.4 9.4 1 +1870 10 4 7.8 7.8 7.8 1 +1870 10 5 7.1 7.1 7.1 1 +1870 10 6 5.6 5.6 5.6 1 +1870 10 7 2.3 2.3 2.3 1 +1870 10 8 1.6 1.6 1.6 1 +1870 10 9 3.4 3.4 3.4 1 +1870 10 10 2.8 2.8 2.8 1 +1870 10 11 1.6 1.6 1.6 1 +1870 10 12 1.3 1.3 1.3 1 +1870 10 13 2.9 2.9 2.9 1 +1870 10 14 0.3 0.3 0.3 1 +1870 10 15 -0.8 -0.8 -0.8 1 +1870 10 16 1.5 1.5 1.5 1 +1870 10 17 4.3 4.3 4.3 1 +1870 10 18 6.2 6.2 6.2 1 +1870 10 19 6.6 6.6 6.6 1 +1870 10 20 6.6 6.6 6.6 1 +1870 10 21 7.0 7.0 7.0 1 +1870 10 22 5.5 5.5 5.5 1 +1870 10 23 5.4 5.4 5.4 1 +1870 10 24 6.1 6.1 6.1 1 +1870 10 25 7.1 7.1 7.1 1 +1870 10 26 7.8 7.8 7.8 1 +1870 10 27 4.5 4.5 4.5 1 +1870 10 28 4.6 4.6 4.6 1 +1870 10 29 4.0 4.0 4.0 1 +1870 10 30 4.2 4.2 4.2 1 +1870 10 31 4.3 4.3 4.3 1 +1870 11 1 3.2 3.2 3.2 1 +1870 11 2 2.9 2.9 2.9 1 +1870 11 3 2.7 2.7 2.7 1 +1870 11 4 4.1 4.1 4.1 1 +1870 11 5 1.4 1.4 1.4 1 +1870 11 6 1.8 1.8 1.8 1 +1870 11 7 2.6 2.6 2.6 1 +1870 11 8 -0.8 -0.8 -0.8 1 +1870 11 9 -1.1 -1.1 -1.1 1 +1870 11 10 3.0 3.0 3.0 1 +1870 11 11 3.3 3.3 3.3 1 +1870 11 12 4.9 4.9 4.9 1 +1870 11 13 2.7 2.7 2.7 1 +1870 11 14 3.1 3.1 3.1 1 +1870 11 15 4.3 4.3 4.3 1 +1870 11 16 4.5 4.5 4.5 1 +1870 11 17 1.6 1.6 1.6 1 +1870 11 18 3.4 3.4 3.4 1 +1870 11 19 2.9 2.9 2.9 1 +1870 11 20 4.0 4.0 4.0 1 +1870 11 21 1.2 1.2 1.2 1 +1870 11 22 3.0 3.0 3.0 1 +1870 11 23 4.0 4.0 4.0 1 +1870 11 24 2.9 2.9 2.9 1 +1870 11 25 6.5 6.5 6.5 1 +1870 11 26 6.2 6.2 6.2 1 +1870 11 27 3.8 3.8 3.8 1 +1870 11 28 -0.1 -0.1 -0.1 1 +1870 11 29 -1.7 -1.7 -1.7 1 +1870 11 30 -4.9 -4.9 -4.9 1 +1870 12 1 -7.5 -7.5 -7.5 1 +1870 12 2 -3.3 -3.3 -3.3 1 +1870 12 3 -0.3 -0.3 -0.3 1 +1870 12 4 0.2 0.2 0.2 1 +1870 12 5 -2.7 -2.7 -2.7 1 +1870 12 6 0.1 0.1 0.1 1 +1870 12 7 -2.4 -2.4 -2.4 1 +1870 12 8 -2.5 -2.5 -2.5 1 +1870 12 9 -6.5 -6.5 -6.5 1 +1870 12 10 -11.4 -11.4 -11.4 1 +1870 12 11 -12.4 -12.4 -12.4 1 +1870 12 12 -11.5 -11.5 -11.5 1 +1870 12 13 -1.6 -1.6 -1.6 1 +1870 12 14 -0.1 -0.1 -0.1 1 +1870 12 15 0.3 0.3 0.3 1 +1870 12 16 0.6 0.6 0.6 1 +1870 12 17 -3.3 -3.3 -3.3 1 +1870 12 18 -8.3 -8.3 -8.3 1 +1870 12 19 -15.2 -15.2 -15.2 1 +1870 12 20 -14.0 -14.0 -14.0 1 +1870 12 21 -12.5 -12.5 -12.5 1 +1870 12 22 -13.3 -13.3 -13.3 1 +1870 12 23 -11.8 -11.8 -11.8 1 +1870 12 24 -7.8 -7.8 -7.8 1 +1870 12 25 -11.1 -11.1 -11.1 1 +1870 12 26 -13.1 -13.1 -13.1 1 +1870 12 27 -9.8 -9.8 -9.8 1 +1870 12 28 -11.2 -11.2 -11.2 1 +1870 12 29 -8.7 -8.7 -8.7 1 +1870 12 30 -10.2 -10.2 -10.2 1 +1870 12 31 -10.8 -10.8 -10.8 1 +1871 1 1 -4.9 -5.0 -5.0 1 +1871 1 2 -7.7 -7.8 -7.8 1 +1871 1 3 -8.8 -8.9 -8.9 1 +1871 1 4 -7.2 -7.3 -7.3 1 +1871 1 5 -6.1 -6.2 -6.2 1 +1871 1 6 -5.1 -5.2 -5.2 1 +1871 1 7 -1.1 -1.2 -1.2 1 +1871 1 8 0.4 0.3 0.3 1 +1871 1 9 -0.8 -0.9 -0.9 1 +1871 1 10 -3.6 -3.7 -3.7 1 +1871 1 11 -5.2 -5.3 -5.3 1 +1871 1 12 -7.6 -7.7 -7.7 1 +1871 1 13 -8.9 -9.0 -9.0 1 +1871 1 14 2.7 2.6 2.6 1 +1871 1 15 2.1 2.0 2.0 1 +1871 1 16 -1.5 -1.6 -1.6 1 +1871 1 17 0.0 -0.1 -0.1 1 +1871 1 18 0.7 0.6 0.6 1 +1871 1 19 0.1 0.0 0.0 1 +1871 1 20 -0.3 -0.4 -0.4 1 +1871 1 21 -1.4 -1.5 -1.5 1 +1871 1 22 -3.6 -3.7 -3.7 1 +1871 1 23 -7.0 -7.1 -7.1 1 +1871 1 24 -10.9 -11.0 -11.0 1 +1871 1 25 -11.1 -11.2 -11.2 1 +1871 1 26 -10.7 -10.8 -10.8 1 +1871 1 27 -12.1 -12.2 -12.2 1 +1871 1 28 -9.8 -9.9 -9.9 1 +1871 1 29 -13.0 -13.1 -13.1 1 +1871 1 30 -7.3 -7.4 -7.4 1 +1871 1 31 -9.0 -9.1 -9.1 1 +1871 2 1 -10.9 -11.0 -11.0 1 +1871 2 2 -10.8 -10.9 -10.9 1 +1871 2 3 -12.2 -12.3 -12.3 1 +1871 2 4 -7.5 -7.6 -7.6 1 +1871 2 5 -12.1 -12.2 -12.2 1 +1871 2 6 -14.4 -14.5 -14.5 1 +1871 2 7 -19.3 -19.4 -19.4 1 +1871 2 8 -16.0 -16.1 -16.1 1 +1871 2 9 -17.6 -17.7 -17.7 1 +1871 2 10 -20.6 -20.7 -20.7 1 +1871 2 11 -19.2 -19.3 -19.3 1 +1871 2 12 -19.9 -20.0 -20.0 1 +1871 2 13 -19.7 -19.8 -19.8 1 +1871 2 14 -14.6 -14.7 -14.7 1 +1871 2 15 -6.0 -6.1 -6.1 1 +1871 2 16 -9.5 -9.6 -9.6 1 +1871 2 17 -13.0 -13.1 -13.1 1 +1871 2 18 -15.7 -15.8 -15.8 1 +1871 2 19 -13.6 -13.7 -13.7 1 +1871 2 20 -19.5 -19.6 -19.6 1 +1871 2 21 -21.2 -21.3 -21.3 1 +1871 2 22 -3.3 -3.4 -3.4 1 +1871 2 23 0.0 -0.1 -0.1 1 +1871 2 24 -2.4 -2.5 -2.5 1 +1871 2 25 -4.4 -4.5 -4.5 1 +1871 2 26 -7.5 -7.6 -7.6 1 +1871 2 27 -1.0 -1.1 -1.1 1 +1871 2 28 -6.8 -6.9 -6.9 1 +1871 3 1 -5.9 -6.0 -6.0 1 +1871 3 2 -2.1 -2.2 -2.2 1 +1871 3 3 1.7 1.6 1.6 1 +1871 3 4 2.9 2.8 2.8 1 +1871 3 5 4.0 3.9 3.9 1 +1871 3 6 4.2 4.1 4.1 1 +1871 3 7 2.4 2.3 2.3 1 +1871 3 8 4.8 4.7 4.7 1 +1871 3 9 2.5 2.4 2.4 1 +1871 3 10 0.7 0.6 0.6 1 +1871 3 11 0.2 0.1 0.1 1 +1871 3 12 3.1 3.0 3.0 1 +1871 3 13 4.0 3.9 3.9 1 +1871 3 14 3.3 3.2 3.2 1 +1871 3 15 0.9 0.8 0.8 1 +1871 3 16 -0.5 -0.6 -0.6 1 +1871 3 17 -2.6 -2.7 -2.7 1 +1871 3 18 0.5 0.4 0.4 1 +1871 3 19 5.4 5.3 5.3 1 +1871 3 20 5.8 5.7 5.7 1 +1871 3 21 6.9 6.8 6.8 1 +1871 3 22 6.3 6.2 6.2 1 +1871 3 23 1.7 1.6 1.6 1 +1871 3 24 2.5 2.4 2.4 1 +1871 3 25 3.5 3.4 3.4 1 +1871 3 26 3.0 2.9 2.9 1 +1871 3 27 1.3 1.2 1.2 1 +1871 3 28 -1.1 -1.2 -1.2 1 +1871 3 29 -0.9 -1.0 -1.0 1 +1871 3 30 -1.3 -1.4 -1.4 1 +1871 3 31 0.6 0.5 0.5 1 +1871 4 1 -1.9 -2.0 -2.0 1 +1871 4 2 -3.2 -3.3 -3.3 1 +1871 4 3 -2.5 -2.6 -2.6 1 +1871 4 4 -1.2 -1.3 -1.3 1 +1871 4 5 -0.7 -0.8 -0.8 1 +1871 4 6 -0.8 -0.9 -0.9 1 +1871 4 7 1.7 1.6 1.6 1 +1871 4 8 0.0 -0.1 -0.1 1 +1871 4 9 0.1 0.0 0.0 1 +1871 4 10 1.0 0.9 0.9 1 +1871 4 11 0.8 0.7 0.7 1 +1871 4 12 1.1 1.0 1.0 1 +1871 4 13 0.5 0.4 0.4 1 +1871 4 14 -0.8 -0.9 -0.9 1 +1871 4 15 3.0 2.9 2.9 1 +1871 4 16 3.7 3.6 3.6 1 +1871 4 17 1.9 1.8 1.8 1 +1871 4 18 -0.4 -0.5 -0.5 1 +1871 4 19 0.8 0.7 0.7 1 +1871 4 20 1.5 1.4 1.4 1 +1871 4 21 -0.1 -0.2 -0.2 1 +1871 4 22 -0.4 -0.5 -0.5 1 +1871 4 23 -0.9 -1.0 -1.0 1 +1871 4 24 0.4 0.3 0.3 1 +1871 4 25 0.9 0.8 0.8 1 +1871 4 26 3.2 3.1 3.1 1 +1871 4 27 3.6 3.5 3.5 1 +1871 4 28 4.1 4.0 4.0 1 +1871 4 29 2.8 2.7 2.7 1 +1871 4 30 1.6 1.5 1.5 1 +1871 5 1 2.4 2.3 2.3 1 +1871 5 2 2.9 2.8 2.8 1 +1871 5 3 3.1 3.0 3.0 1 +1871 5 4 2.5 2.4 2.4 1 +1871 5 5 4.5 4.4 4.4 1 +1871 5 6 5.8 5.7 5.7 1 +1871 5 7 6.7 6.6 6.6 1 +1871 5 8 6.1 6.0 6.0 1 +1871 5 9 6.4 6.3 6.3 1 +1871 5 10 0.8 0.7 0.7 1 +1871 5 11 2.6 2.5 2.5 1 +1871 5 12 5.0 4.9 4.9 1 +1871 5 13 3.7 3.6 3.6 1 +1871 5 14 0.7 0.6 0.6 1 +1871 5 15 0.9 0.8 0.8 1 +1871 5 16 4.0 3.9 3.9 1 +1871 5 17 1.9 1.8 1.8 1 +1871 5 18 2.0 1.9 1.9 1 +1871 5 19 2.1 2.0 2.0 1 +1871 5 20 7.1 7.0 7.0 1 +1871 5 21 6.6 6.5 6.5 1 +1871 5 22 10.3 10.2 10.2 1 +1871 5 23 13.3 13.2 13.2 1 +1871 5 24 13.9 13.8 13.8 1 +1871 5 25 15.5 15.4 15.4 1 +1871 5 26 14.0 13.9 13.9 1 +1871 5 27 13.3 13.2 13.2 1 +1871 5 28 13.7 13.6 13.6 1 +1871 5 29 10.5 10.4 10.4 1 +1871 5 30 9.2 9.1 9.1 1 +1871 5 31 2.7 2.6 2.6 1 +1871 6 1 1.9 1.8 1.8 1 +1871 6 2 2.0 1.9 1.9 1 +1871 6 3 4.4 4.3 4.3 1 +1871 6 4 6.8 6.7 6.7 1 +1871 6 5 8.4 8.3 8.3 1 +1871 6 6 9.0 8.9 8.9 1 +1871 6 7 8.9 8.8 8.8 1 +1871 6 8 9.3 9.2 9.2 1 +1871 6 9 9.0 8.9 8.9 1 +1871 6 10 12.0 11.9 11.9 1 +1871 6 11 12.4 12.3 12.3 1 +1871 6 12 13.9 13.8 13.8 1 +1871 6 13 15.4 15.3 15.3 1 +1871 6 14 15.8 15.7 15.7 1 +1871 6 15 17.5 17.4 17.4 1 +1871 6 16 16.8 16.7 16.7 1 +1871 6 17 17.8 17.7 17.7 1 +1871 6 18 18.4 18.3 18.3 1 +1871 6 19 17.4 17.3 17.3 1 +1871 6 20 8.1 8.0 8.0 1 +1871 6 21 7.1 7.0 7.0 1 +1871 6 22 7.0 6.9 6.9 1 +1871 6 23 9.0 8.9 8.9 1 +1871 6 24 10.6 10.5 10.5 1 +1871 6 25 10.6 10.5 10.5 1 +1871 6 26 13.7 13.6 13.6 1 +1871 6 27 11.4 11.3 11.3 1 +1871 6 28 10.9 10.8 10.8 1 +1871 6 29 12.0 11.9 11.9 1 +1871 6 30 11.4 11.3 11.3 1 +1871 7 1 12.5 12.4 12.4 1 +1871 7 2 12.6 12.5 12.5 1 +1871 7 3 15.9 15.8 15.8 1 +1871 7 4 16.7 16.6 16.6 1 +1871 7 5 15.7 15.6 15.6 1 +1871 7 6 17.6 17.5 17.5 1 +1871 7 7 17.4 17.3 17.3 1 +1871 7 8 18.1 18.0 18.0 1 +1871 7 9 17.8 17.7 17.7 1 +1871 7 10 20.0 19.9 19.9 1 +1871 7 11 17.0 16.9 16.9 1 +1871 7 12 21.3 21.2 21.2 1 +1871 7 13 19.2 19.1 19.1 1 +1871 7 14 19.7 19.6 19.6 1 +1871 7 15 20.3 20.2 20.2 1 +1871 7 16 18.7 18.6 18.6 1 +1871 7 17 18.2 18.1 18.1 1 +1871 7 18 15.3 15.2 15.2 1 +1871 7 19 16.2 16.1 16.1 1 +1871 7 20 15.3 15.2 15.2 1 +1871 7 21 15.7 15.6 15.6 1 +1871 7 22 16.8 16.7 16.7 1 +1871 7 23 15.2 15.1 15.1 1 +1871 7 24 15.4 15.3 15.3 1 +1871 7 25 15.0 14.9 14.9 1 +1871 7 26 15.3 15.2 15.2 1 +1871 7 27 13.0 12.9 12.9 1 +1871 7 28 16.0 15.9 15.9 1 +1871 7 29 15.5 15.4 15.4 1 +1871 7 30 15.7 15.6 15.6 1 +1871 7 31 15.6 15.5 15.5 1 +1871 8 1 16.7 16.6 16.6 1 +1871 8 2 11.7 11.6 11.6 1 +1871 8 3 16.4 16.3 16.3 1 +1871 8 4 17.7 17.6 17.6 1 +1871 8 5 16.4 16.3 16.3 1 +1871 8 6 16.7 16.6 16.6 1 +1871 8 7 15.5 15.4 15.4 1 +1871 8 8 17.4 17.3 17.3 1 +1871 8 9 19.3 19.2 19.2 1 +1871 8 10 19.7 19.6 19.6 1 +1871 8 11 20.6 20.5 20.5 1 +1871 8 12 20.6 20.5 20.5 1 +1871 8 13 20.0 19.9 19.9 1 +1871 8 14 17.1 17.0 17.0 1 +1871 8 15 15.7 15.6 15.6 1 +1871 8 16 14.4 14.3 14.3 1 +1871 8 17 12.9 12.8 12.8 1 +1871 8 18 14.7 14.6 14.6 1 +1871 8 19 17.0 16.9 16.9 1 +1871 8 20 16.4 16.3 16.3 1 +1871 8 21 14.8 14.7 14.7 1 +1871 8 22 14.5 14.4 14.4 1 +1871 8 23 14.1 14.0 14.0 1 +1871 8 24 14.7 14.6 14.6 1 +1871 8 25 14.1 14.0 14.0 1 +1871 8 26 13.6 13.5 13.5 1 +1871 8 27 12.5 12.4 12.4 1 +1871 8 28 12.0 11.9 11.9 1 +1871 8 29 12.7 12.6 12.6 1 +1871 8 30 15.1 15.0 15.0 1 +1871 8 31 14.8 14.7 14.7 1 +1871 9 1 17.6 17.5 17.5 1 +1871 9 2 17.5 17.4 17.4 1 +1871 9 3 15.2 15.1 15.1 1 +1871 9 4 14.6 14.5 14.5 1 +1871 9 5 15.5 15.4 15.4 1 +1871 9 6 14.5 14.4 14.4 1 +1871 9 7 12.1 12.0 12.0 1 +1871 9 8 12.2 12.1 12.1 1 +1871 9 9 11.7 11.6 11.6 1 +1871 9 10 11.6 11.6 11.6 1 +1871 9 11 12.0 12.0 12.0 1 +1871 9 12 9.6 9.6 9.6 1 +1871 9 13 11.8 11.8 11.8 1 +1871 9 14 9.2 9.2 9.2 1 +1871 9 15 11.0 11.0 11.0 1 +1871 9 16 11.9 11.9 11.9 1 +1871 9 17 6.2 6.2 6.2 1 +1871 9 18 3.0 3.0 3.0 1 +1871 9 19 2.9 2.9 2.9 1 +1871 9 20 4.2 4.2 4.2 1 +1871 9 21 6.6 6.6 6.6 1 +1871 9 22 4.9 4.9 4.9 1 +1871 9 23 2.9 2.9 2.9 1 +1871 9 24 3.2 3.2 3.2 1 +1871 9 25 1.8 1.8 1.8 1 +1871 9 26 3.4 3.4 3.4 1 +1871 9 27 5.6 5.6 5.6 1 +1871 9 28 8.0 8.0 8.0 1 +1871 9 29 3.7 3.7 3.7 1 +1871 9 30 1.9 1.9 1.9 1 +1871 10 1 2.0 2.0 2.0 1 +1871 10 2 1.1 1.1 1.1 1 +1871 10 3 0.0 0.0 0.0 1 +1871 10 4 3.2 3.2 3.2 1 +1871 10 5 3.4 3.4 3.4 1 +1871 10 6 6.2 6.2 6.2 1 +1871 10 7 10.0 10.0 10.0 1 +1871 10 8 7.6 7.6 7.6 1 +1871 10 9 2.1 2.1 2.1 1 +1871 10 10 1.1 1.1 1.1 1 +1871 10 11 0.8 0.8 0.8 1 +1871 10 12 1.5 1.5 1.5 1 +1871 10 13 5.6 5.6 5.6 1 +1871 10 14 5.2 5.2 5.2 1 +1871 10 15 3.6 3.6 3.6 1 +1871 10 16 4.2 4.2 4.2 1 +1871 10 17 6.7 6.7 6.7 1 +1871 10 18 7.0 7.0 7.0 1 +1871 10 19 6.9 6.9 6.9 1 +1871 10 20 6.0 6.0 6.0 1 +1871 10 21 5.8 5.8 5.8 1 +1871 10 22 7.7 7.7 7.7 1 +1871 10 23 8.3 8.3 8.3 1 +1871 10 24 9.2 9.2 9.2 1 +1871 10 25 8.2 8.2 8.2 1 +1871 10 26 7.9 7.9 7.9 1 +1871 10 27 6.4 6.4 6.4 1 +1871 10 28 4.1 4.1 4.1 1 +1871 10 29 6.0 6.0 6.0 1 +1871 10 30 5.4 5.4 5.4 1 +1871 10 31 4.2 4.2 4.2 1 +1871 11 1 0.1 0.1 0.1 1 +1871 11 2 2.1 2.1 2.1 1 +1871 11 3 -0.5 -0.5 -0.5 1 +1871 11 4 -2.1 -2.1 -2.1 1 +1871 11 5 -5.0 -5.0 -5.0 1 +1871 11 6 -5.7 -5.7 -5.7 1 +1871 11 7 1.3 1.3 1.3 1 +1871 11 8 2.0 2.0 2.0 1 +1871 11 9 3.6 3.6 3.6 1 +1871 11 10 0.3 0.3 0.3 1 +1871 11 11 0.4 0.4 0.4 1 +1871 11 12 -0.7 -0.7 -0.7 1 +1871 11 13 -2.9 -2.9 -2.9 1 +1871 11 14 0.2 0.2 0.2 1 +1871 11 15 2.1 2.1 2.1 1 +1871 11 16 0.5 0.5 0.5 1 +1871 11 17 1.1 1.1 1.1 1 +1871 11 18 -4.0 -4.0 -4.0 1 +1871 11 19 -7.3 -7.3 -7.3 1 +1871 11 20 -7.2 -7.2 -7.2 1 +1871 11 21 -4.4 -4.4 -4.4 1 +1871 11 22 -1.5 -1.5 -1.5 1 +1871 11 23 -0.5 -0.5 -0.5 1 +1871 11 24 1.0 1.0 1.0 1 +1871 11 25 0.3 0.3 0.3 1 +1871 11 26 -1.6 -1.6 -1.6 1 +1871 11 27 -1.5 -1.5 -1.5 1 +1871 11 28 -1.8 -1.8 -1.8 1 +1871 11 29 -2.0 -2.0 -2.0 1 +1871 11 30 -6.4 -6.4 -6.4 1 +1871 12 1 -9.7 -9.7 -9.7 1 +1871 12 2 -8.4 -8.4 -8.4 1 +1871 12 3 -4.8 -4.8 -4.8 1 +1871 12 4 -10.8 -10.8 -10.8 1 +1871 12 5 -8.9 -8.9 -8.9 1 +1871 12 6 -8.4 -8.4 -8.4 1 +1871 12 7 -5.1 -5.1 -5.1 1 +1871 12 8 -6.5 -6.5 -6.5 1 +1871 12 9 -10.0 -10.0 -10.0 1 +1871 12 10 -13.0 -13.0 -13.0 1 +1871 12 11 -10.7 -10.7 -10.7 1 +1871 12 12 1.9 1.9 1.9 1 +1871 12 13 1.5 1.5 1.5 1 +1871 12 14 0.3 0.3 0.3 1 +1871 12 15 0.1 0.1 0.1 1 +1871 12 16 0.6 0.6 0.6 1 +1871 12 17 -1.9 -1.9 -1.9 1 +1871 12 18 2.4 2.4 2.4 1 +1871 12 19 5.2 5.2 5.2 1 +1871 12 20 2.4 2.3 2.3 1 +1871 12 21 0.9 0.8 0.8 1 +1871 12 22 -7.3 -7.4 -7.4 1 +1871 12 23 -9.5 -9.6 -9.6 1 +1871 12 24 0.2 0.1 0.1 1 +1871 12 25 2.8 2.7 2.7 1 +1871 12 26 2.3 2.2 2.2 1 +1871 12 27 0.9 0.8 0.8 1 +1871 12 28 3.0 2.9 2.9 1 +1871 12 29 -0.4 -0.5 -0.5 1 +1871 12 30 0.8 0.7 0.7 1 +1871 12 31 2.1 2.0 2.0 1 +1872 1 1 2.3 2.2 2.2 1 +1872 1 2 0.4 0.3 0.3 1 +1872 1 3 -0.4 -0.5 -0.5 1 +1872 1 4 0.9 0.8 0.8 1 +1872 1 5 0.8 0.7 0.7 1 +1872 1 6 1.4 1.3 1.3 1 +1872 1 7 1.9 1.8 1.8 1 +1872 1 8 1.4 1.3 1.3 1 +1872 1 9 0.3 0.2 0.2 1 +1872 1 10 -3.6 -3.7 -3.7 1 +1872 1 11 -4.7 -4.8 -4.8 1 +1872 1 12 -1.8 -1.9 -1.9 1 +1872 1 13 -2.2 -2.3 -2.3 1 +1872 1 14 -0.7 -0.8 -0.8 1 +1872 1 15 -0.1 -0.2 -0.2 1 +1872 1 16 -0.5 -0.6 -0.6 1 +1872 1 17 -1.4 -1.5 -1.5 1 +1872 1 18 0.3 0.2 0.2 1 +1872 1 19 0.9 0.8 0.8 1 +1872 1 20 -0.8 -0.9 -0.9 1 +1872 1 21 -0.7 -0.8 -0.8 1 +1872 1 22 0.4 0.3 0.3 1 +1872 1 23 0.5 0.4 0.4 1 +1872 1 24 0.6 0.5 0.5 1 +1872 1 25 1.9 1.8 1.8 1 +1872 1 26 0.8 0.7 0.7 1 +1872 1 27 0.7 0.6 0.6 1 +1872 1 28 -0.4 -0.5 -0.5 1 +1872 1 29 0.7 0.6 0.6 1 +1872 1 30 -0.1 -0.2 -0.2 1 +1872 1 31 2.3 2.2 2.2 1 +1872 2 1 2.5 2.4 2.4 1 +1872 2 2 0.2 0.1 0.1 1 +1872 2 3 0.1 0.0 0.0 1 +1872 2 4 -1.0 -1.1 -1.1 1 +1872 2 5 -0.4 -0.5 -0.5 1 +1872 2 6 -0.6 -0.7 -0.7 1 +1872 2 7 0.7 0.6 0.6 1 +1872 2 8 1.1 1.0 1.0 1 +1872 2 9 -0.6 -0.7 -0.7 1 +1872 2 10 -2.0 -2.1 -2.1 1 +1872 2 11 -0.6 -0.7 -0.7 1 +1872 2 12 -2.0 -2.1 -2.1 1 +1872 2 13 -4.9 -5.0 -5.0 1 +1872 2 14 -2.0 -2.1 -2.1 1 +1872 2 15 -3.8 -3.9 -3.9 1 +1872 2 16 -4.5 -4.6 -4.6 1 +1872 2 17 -4.6 -4.7 -4.7 1 +1872 2 18 -3.7 -3.8 -3.8 1 +1872 2 19 0.1 0.0 0.0 1 +1872 2 20 0.7 0.6 0.6 1 +1872 2 21 0.6 0.5 0.5 1 +1872 2 22 0.2 0.1 0.1 1 +1872 2 23 0.4 0.3 0.3 1 +1872 2 24 -0.1 -0.2 -0.2 1 +1872 2 25 -4.0 -4.1 -4.1 1 +1872 2 26 -4.7 -4.8 -4.8 1 +1872 2 27 -6.5 -6.6 -6.6 1 +1872 2 28 -2.6 -2.7 -2.7 1 +1872 2 29 0.6 0.5 0.5 1 +1872 3 1 -0.5 -0.6 -0.6 1 +1872 3 2 -3.7 -3.8 -3.8 1 +1872 3 3 1.1 1.0 1.0 1 +1872 3 4 3.5 3.4 3.4 1 +1872 3 5 4.8 4.7 4.7 1 +1872 3 6 4.6 4.5 4.5 1 +1872 3 7 2.3 2.2 2.2 1 +1872 3 8 1.6 1.5 1.5 1 +1872 3 9 1.2 1.1 1.1 1 +1872 3 10 1.8 1.7 1.7 1 +1872 3 11 -0.7 -0.8 -0.8 1 +1872 3 12 -0.2 -0.3 -0.3 1 +1872 3 13 0.6 0.5 0.5 1 +1872 3 14 0.6 0.5 0.5 1 +1872 3 15 1.2 1.1 1.1 1 +1872 3 16 -2.7 -2.8 -2.8 1 +1872 3 17 -5.6 -5.7 -5.7 1 +1872 3 18 -5.8 -5.9 -5.9 1 +1872 3 19 -8.6 -8.7 -8.7 1 +1872 3 20 -9.0 -9.1 -9.1 1 +1872 3 21 -6.4 -6.5 -6.5 1 +1872 3 22 -3.5 -3.6 -3.6 1 +1872 3 23 -5.6 -5.7 -5.7 1 +1872 3 24 -4.3 -4.4 -4.4 1 +1872 3 25 -2.5 -2.6 -2.6 1 +1872 3 26 -0.4 -0.5 -0.5 1 +1872 3 27 0.6 0.5 0.5 1 +1872 3 28 2.4 2.3 2.3 1 +1872 3 29 5.5 5.4 5.4 1 +1872 3 30 1.0 0.9 0.9 1 +1872 3 31 1.5 1.4 1.4 1 +1872 4 1 -0.1 -0.2 -0.2 1 +1872 4 2 -0.1 -0.2 -0.2 1 +1872 4 3 -0.5 -0.6 -0.6 1 +1872 4 4 -3.8 -3.9 -3.9 1 +1872 4 5 1.2 1.1 1.1 1 +1872 4 6 2.5 2.4 2.4 1 +1872 4 7 4.8 4.7 4.7 1 +1872 4 8 1.6 1.5 1.5 1 +1872 4 9 1.8 1.7 1.7 1 +1872 4 10 4.9 4.8 4.8 1 +1872 4 11 5.9 5.8 5.8 1 +1872 4 12 8.5 8.4 8.4 1 +1872 4 13 5.8 5.7 5.7 1 +1872 4 14 4.5 4.4 4.4 1 +1872 4 15 4.8 4.7 4.7 1 +1872 4 16 3.2 3.1 3.1 1 +1872 4 17 1.1 1.0 1.0 1 +1872 4 18 0.7 0.6 0.6 1 +1872 4 19 2.5 2.4 2.4 1 +1872 4 20 2.5 2.4 2.4 1 +1872 4 21 3.3 3.2 3.2 1 +1872 4 22 4.3 4.2 4.2 1 +1872 4 23 4.3 4.2 4.2 1 +1872 4 24 4.5 4.4 4.4 1 +1872 4 25 6.3 6.2 6.2 1 +1872 4 26 9.3 9.2 9.2 1 +1872 4 27 10.5 10.4 10.4 1 +1872 4 28 8.2 8.1 8.1 1 +1872 4 29 8.9 8.8 8.8 1 +1872 4 30 9.2 9.1 9.1 1 +1872 5 1 11.9 11.8 11.8 1 +1872 5 2 14.1 14.0 14.0 1 +1872 5 3 9.0 8.9 8.9 1 +1872 5 4 6.0 5.9 5.9 1 +1872 5 5 10.1 10.0 10.0 1 +1872 5 6 9.2 9.1 9.1 1 +1872 5 7 9.3 9.2 9.2 1 +1872 5 8 8.1 8.0 8.0 1 +1872 5 9 9.8 9.7 9.7 1 +1872 5 10 7.4 7.3 7.3 1 +1872 5 11 5.1 5.0 5.0 1 +1872 5 12 6.6 6.5 6.5 1 +1872 5 13 10.2 10.0 10.0 1 +1872 5 14 13.1 12.9 12.9 1 +1872 5 15 14.1 13.9 13.9 1 +1872 5 16 14.1 13.9 13.9 1 +1872 5 17 9.5 9.3 9.3 1 +1872 5 18 7.3 7.1 7.1 1 +1872 5 19 7.0 6.9 6.9 1 +1872 5 20 9.5 9.4 9.4 1 +1872 5 21 10.6 10.5 10.5 1 +1872 5 22 7.5 7.4 7.4 1 +1872 5 23 10.0 9.9 9.9 1 +1872 5 24 11.1 11.0 11.0 1 +1872 5 25 10.8 10.7 10.7 1 +1872 5 26 10.9 10.8 10.8 1 +1872 5 27 10.7 10.6 10.6 1 +1872 5 28 14.0 13.9 13.9 1 +1872 5 29 14.6 14.5 14.5 1 +1872 5 30 15.6 15.5 15.5 1 +1872 5 31 15.8 15.7 15.7 1 +1872 6 1 13.9 13.8 13.8 1 +1872 6 2 15.4 15.3 15.3 1 +1872 6 3 16.1 16.0 16.0 1 +1872 6 4 15.7 15.6 15.6 1 +1872 6 5 17.3 17.2 17.2 1 +1872 6 6 18.8 18.7 18.7 1 +1872 6 7 19.3 19.2 19.2 1 +1872 6 8 18.4 18.3 18.3 1 +1872 6 9 16.4 16.3 16.3 1 +1872 6 10 16.1 16.0 16.0 1 +1872 6 11 14.2 14.1 14.1 1 +1872 6 12 11.7 11.6 11.6 1 +1872 6 13 6.6 6.5 6.5 1 +1872 6 14 5.8 5.7 5.7 1 +1872 6 15 7.2 7.1 7.1 1 +1872 6 16 8.3 8.2 8.2 1 +1872 6 17 11.7 11.6 11.6 1 +1872 6 18 15.0 14.9 14.9 1 +1872 6 19 16.4 16.3 16.3 1 +1872 6 20 13.2 13.1 13.1 1 +1872 6 21 17.9 17.8 17.8 1 +1872 6 22 18.0 17.9 17.9 1 +1872 6 23 17.8 17.7 17.7 1 +1872 6 24 19.1 19.0 19.0 1 +1872 6 25 19.3 19.2 19.2 1 +1872 6 26 18.6 18.5 18.5 1 +1872 6 27 15.0 14.9 14.9 1 +1872 6 28 16.3 16.2 16.2 1 +1872 6 29 16.3 16.2 16.2 1 +1872 6 30 15.0 14.9 14.9 1 +1872 7 1 17.3 17.2 17.2 1 +1872 7 2 19.9 19.8 19.8 1 +1872 7 3 17.9 17.8 17.8 1 +1872 7 4 18.7 18.6 18.6 1 +1872 7 5 18.6 18.5 18.5 1 +1872 7 6 20.8 20.7 20.7 1 +1872 7 7 23.2 23.1 23.1 1 +1872 7 8 21.9 21.8 21.8 1 +1872 7 9 20.1 20.0 20.0 1 +1872 7 10 21.4 21.3 21.3 1 +1872 7 11 18.7 18.6 18.6 1 +1872 7 12 21.6 21.5 21.5 1 +1872 7 13 21.1 21.0 21.0 1 +1872 7 14 20.0 19.9 19.9 1 +1872 7 15 19.4 19.3 19.3 1 +1872 7 16 19.8 19.7 19.7 1 +1872 7 17 16.9 16.8 16.8 1 +1872 7 18 15.1 15.0 15.0 1 +1872 7 19 12.6 12.5 12.5 1 +1872 7 20 14.9 14.8 14.8 1 +1872 7 21 17.4 17.3 17.3 1 +1872 7 22 17.1 17.0 17.0 1 +1872 7 23 17.0 16.9 16.9 1 +1872 7 24 19.8 19.7 19.7 1 +1872 7 25 23.4 23.3 23.3 1 +1872 7 26 19.4 19.3 19.3 1 +1872 7 27 15.1 15.0 15.0 1 +1872 7 28 16.4 16.3 16.3 1 +1872 7 29 18.6 18.5 18.5 1 +1872 7 30 16.4 16.3 16.3 1 +1872 7 31 17.2 17.1 17.1 1 +1872 8 1 14.2 14.1 14.1 1 +1872 8 2 16.2 16.1 16.1 1 +1872 8 3 16.9 16.8 16.8 1 +1872 8 4 16.6 16.5 16.5 1 +1872 8 5 15.7 15.6 15.6 1 +1872 8 6 15.4 15.3 15.3 1 +1872 8 7 15.0 14.9 14.9 1 +1872 8 8 15.2 15.1 15.1 1 +1872 8 9 17.4 17.3 17.3 1 +1872 8 10 14.3 14.2 14.2 1 +1872 8 11 14.9 14.8 14.8 1 +1872 8 12 16.7 16.6 16.6 1 +1872 8 13 16.4 16.3 16.3 1 +1872 8 14 14.9 14.8 14.8 1 +1872 8 15 14.0 13.9 13.9 1 +1872 8 16 13.5 13.4 13.4 1 +1872 8 17 13.9 13.8 13.8 1 +1872 8 18 16.1 16.0 16.0 1 +1872 8 19 16.1 16.0 16.0 1 +1872 8 20 15.8 15.7 15.7 1 +1872 8 21 14.7 14.6 14.6 1 +1872 8 22 11.3 11.2 11.2 1 +1872 8 23 11.2 11.1 11.1 1 +1872 8 24 13.5 13.4 13.4 1 +1872 8 25 14.0 13.9 13.9 1 +1872 8 26 14.8 14.7 14.7 1 +1872 8 27 15.1 15.0 15.0 1 +1872 8 28 14.2 14.1 14.1 1 +1872 8 29 14.6 14.5 14.5 1 +1872 8 30 15.8 15.7 15.7 1 +1872 8 31 16.6 16.5 16.5 1 +1872 9 1 16.9 16.8 16.8 1 +1872 9 2 14.0 13.9 13.9 1 +1872 9 3 13.4 13.3 13.3 1 +1872 9 4 13.3 13.2 13.2 1 +1872 9 5 14.7 14.6 14.6 1 +1872 9 6 16.9 16.8 16.8 1 +1872 9 7 15.7 15.6 15.6 1 +1872 9 8 14.2 14.1 14.1 1 +1872 9 9 15.1 15.0 15.0 1 +1872 9 10 14.9 14.8 14.8 1 +1872 9 11 13.4 13.3 13.3 1 +1872 9 12 12.5 12.4 12.4 1 +1872 9 13 7.7 7.6 7.6 1 +1872 9 14 7.9 7.8 7.8 1 +1872 9 15 8.6 8.5 8.5 1 +1872 9 16 7.2 7.1 7.1 1 +1872 9 17 9.4 9.3 9.3 1 +1872 9 18 12.3 12.2 12.2 1 +1872 9 19 10.5 10.4 10.4 1 +1872 9 20 9.7 9.6 9.6 1 +1872 9 21 11.0 10.9 10.9 1 +1872 9 22 7.6 7.5 7.5 1 +1872 9 23 6.4 6.3 6.3 1 +1872 9 24 8.4 8.3 8.3 1 +1872 9 25 11.0 10.9 10.9 1 +1872 9 26 9.6 9.6 9.6 1 +1872 9 27 9.8 9.8 9.8 1 +1872 9 28 9.2 9.2 9.2 1 +1872 9 29 10.1 10.1 10.1 1 +1872 9 30 9.6 9.6 9.6 1 +1872 10 1 7.0 7.0 7.0 1 +1872 10 2 11.9 11.9 11.9 1 +1872 10 3 13.5 13.5 13.5 1 +1872 10 4 12.5 12.5 12.5 1 +1872 10 5 7.8 7.8 7.8 1 +1872 10 6 4.9 4.9 4.9 1 +1872 10 7 7.7 7.7 7.7 1 +1872 10 8 8.9 8.9 8.9 1 +1872 10 9 9.9 9.9 9.9 1 +1872 10 10 9.4 9.4 9.4 1 +1872 10 11 8.7 8.7 8.7 1 +1872 10 12 9.8 9.8 9.8 1 +1872 10 13 8.7 8.7 8.7 1 +1872 10 14 7.9 7.9 7.9 1 +1872 10 15 10.7 10.7 10.7 1 +1872 10 16 11.6 11.6 11.6 1 +1872 10 17 9.6 9.6 9.6 1 +1872 10 18 8.4 8.4 8.4 1 +1872 10 19 9.3 9.3 9.3 1 +1872 10 20 9.3 9.3 9.3 1 +1872 10 21 9.3 9.3 9.3 1 +1872 10 22 10.3 10.3 10.3 1 +1872 10 23 9.2 9.2 9.2 1 +1872 10 24 10.0 10.0 10.0 1 +1872 10 25 6.3 6.3 6.3 1 +1872 10 26 5.2 5.2 5.2 1 +1872 10 27 5.6 5.6 5.6 1 +1872 10 28 5.0 5.0 5.0 1 +1872 10 29 8.0 8.0 8.0 1 +1872 10 30 8.1 8.1 8.1 1 +1872 10 31 6.7 6.7 6.7 1 +1872 11 1 8.5 8.4 8.4 1 +1872 11 2 6.3 6.2 6.2 1 +1872 11 3 7.8 7.7 7.7 1 +1872 11 4 2.6 2.5 2.5 1 +1872 11 5 -1.1 -1.2 -1.2 1 +1872 11 6 6.5 6.4 6.4 1 +1872 11 7 9.9 9.8 9.8 1 +1872 11 8 6.6 6.5 6.5 1 +1872 11 9 2.8 2.7 2.7 1 +1872 11 10 0.5 0.4 0.4 1 +1872 11 11 1.1 1.0 1.0 1 +1872 11 12 -4.7 -4.8 -4.8 1 +1872 11 13 -2.6 -2.7 -2.7 1 +1872 11 14 -0.9 -1.0 -1.0 1 +1872 11 15 3.4 3.3 3.3 1 +1872 11 16 4.6 4.5 4.5 1 +1872 11 17 3.5 3.4 3.4 1 +1872 11 18 3.6 3.5 3.5 1 +1872 11 19 2.4 2.3 2.3 1 +1872 11 20 4.5 4.4 4.4 1 +1872 11 21 4.3 4.2 4.2 1 +1872 11 22 4.8 4.7 4.7 1 +1872 11 23 6.1 6.0 6.0 1 +1872 11 24 6.6 6.5 6.5 1 +1872 11 25 5.9 5.8 5.8 1 +1872 11 26 6.6 6.5 6.5 1 +1872 11 27 7.1 7.0 7.0 1 +1872 11 28 2.5 2.4 2.4 1 +1872 11 29 -0.7 -0.8 -0.8 1 +1872 11 30 -0.6 -0.7 -0.7 1 +1872 12 1 2.7 2.6 2.6 1 +1872 12 2 4.3 4.2 4.2 1 +1872 12 3 -0.6 -0.7 -0.7 1 +1872 12 4 -1.7 -1.8 -1.8 1 +1872 12 5 -6.5 -6.6 -6.6 1 +1872 12 6 -5.9 -6.0 -6.0 1 +1872 12 7 2.2 2.1 2.1 1 +1872 12 8 2.2 2.1 2.1 1 +1872 12 9 2.1 2.0 2.0 1 +1872 12 10 4.1 4.0 4.0 1 +1872 12 11 -0.8 -0.9 -0.9 1 +1872 12 12 -4.0 -4.1 -4.1 1 +1872 12 13 -3.6 -3.7 -3.7 1 +1872 12 14 -4.2 -4.3 -4.3 1 +1872 12 15 -4.2 -4.3 -4.3 1 +1872 12 16 -5.8 -5.9 -5.9 1 +1872 12 17 -8.7 -8.8 -8.8 1 +1872 12 18 -9.6 -9.7 -9.7 1 +1872 12 19 -5.5 -5.6 -5.6 1 +1872 12 20 -6.8 -6.9 -6.9 1 +1872 12 21 -7.0 -7.1 -7.1 1 +1872 12 22 -9.9 -10.0 -10.0 1 +1872 12 23 -6.2 -6.3 -6.3 1 +1872 12 24 3.3 3.2 3.2 1 +1872 12 25 2.0 1.9 1.9 1 +1872 12 26 3.9 3.8 3.8 1 +1872 12 27 3.3 3.2 3.2 1 +1872 12 28 2.8 2.7 2.7 1 +1872 12 29 2.1 2.0 2.0 1 +1872 12 30 3.9 3.8 3.8 1 +1872 12 31 3.3 3.2 3.2 1 +1873 1 1 3.1 3.0 3.0 1 +1873 1 2 3.6 3.5 3.5 1 +1873 1 3 4.2 4.1 4.1 1 +1873 1 4 3.4 3.3 3.3 1 +1873 1 5 5.2 5.1 5.1 1 +1873 1 6 3.5 3.4 3.4 1 +1873 1 7 2.3 2.2 2.2 1 +1873 1 8 5.4 5.3 5.3 1 +1873 1 9 3.2 3.1 3.1 1 +1873 1 10 5.6 5.5 5.5 1 +1873 1 11 6.1 6.0 6.0 1 +1873 1 12 5.9 5.8 5.8 1 +1873 1 13 3.6 3.5 3.5 1 +1873 1 14 0.3 0.2 0.2 1 +1873 1 15 4.9 4.8 4.8 1 +1873 1 16 2.8 2.7 2.7 1 +1873 1 17 -0.1 -0.2 -0.2 1 +1873 1 18 1.6 1.5 1.5 1 +1873 1 19 3.1 3.0 3.0 1 +1873 1 20 4.5 4.4 4.4 1 +1873 1 21 2.6 2.5 2.5 1 +1873 1 22 1.6 1.5 1.5 1 +1873 1 23 0.7 0.6 0.6 1 +1873 1 24 -2.0 -2.1 -2.1 1 +1873 1 25 -2.0 -2.1 -2.1 1 +1873 1 26 -0.3 -0.4 -0.4 1 +1873 1 27 -3.3 -3.4 -3.4 1 +1873 1 28 -1.7 -1.8 -1.8 1 +1873 1 29 -4.7 -4.8 -4.8 1 +1873 1 30 -1.2 -1.3 -1.3 1 +1873 1 31 -3.4 -3.5 -3.5 1 +1873 2 1 -6.7 -6.8 -6.8 1 +1873 2 2 -2.3 -2.4 -2.4 1 +1873 2 3 -1.7 -1.8 -1.8 1 +1873 2 4 -1.4 -1.5 -1.5 1 +1873 2 5 -1.5 -1.6 -1.6 1 +1873 2 6 -2.2 -2.3 -2.3 1 +1873 2 7 -3.2 -3.3 -3.3 1 +1873 2 8 -3.6 -3.7 -3.7 1 +1873 2 9 -3.8 -3.9 -3.9 1 +1873 2 10 -3.6 -3.7 -3.7 1 +1873 2 11 -5.4 -5.5 -5.5 1 +1873 2 12 -6.6 -6.7 -6.7 1 +1873 2 13 -6.6 -6.7 -6.7 1 +1873 2 14 -5.1 -5.2 -5.2 1 +1873 2 15 -0.3 -0.4 -0.4 1 +1873 2 16 -1.0 -1.1 -1.1 1 +1873 2 17 1.8 1.7 1.7 1 +1873 2 18 3.0 2.9 2.9 1 +1873 2 19 2.7 2.6 2.6 1 +1873 2 20 3.0 2.9 2.9 1 +1873 2 21 -0.8 -0.9 -0.9 1 +1873 2 22 0.3 0.2 0.2 1 +1873 2 23 -5.2 -5.3 -5.3 1 +1873 2 24 -11.8 -11.9 -11.9 1 +1873 2 25 -5.3 -5.4 -5.4 1 +1873 2 26 -0.9 -1.0 -1.0 1 +1873 2 27 1.4 1.3 1.3 1 +1873 2 28 2.8 2.7 2.7 1 +1873 3 1 0.5 0.4 0.4 1 +1873 3 2 -0.8 -0.9 -0.9 1 +1873 3 3 -0.3 -0.4 -0.4 1 +1873 3 4 -3.4 -3.5 -3.5 1 +1873 3 5 -4.9 -5.0 -5.0 1 +1873 3 6 -3.7 -3.8 -3.8 1 +1873 3 7 -5.0 -5.1 -5.1 1 +1873 3 8 -1.8 -1.9 -1.9 1 +1873 3 9 0.2 0.1 0.1 1 +1873 3 10 2.0 1.9 1.9 1 +1873 3 11 1.2 1.1 1.1 1 +1873 3 12 -0.8 -0.9 -0.9 1 +1873 3 13 -5.5 -5.6 -5.6 1 +1873 3 14 -8.0 -8.1 -8.1 1 +1873 3 15 -9.1 -9.2 -9.2 1 +1873 3 16 -6.5 -6.6 -6.6 1 +1873 3 17 -0.1 -0.2 -0.2 1 +1873 3 18 -1.3 -1.4 -1.4 1 +1873 3 19 -0.3 -0.4 -0.4 1 +1873 3 20 -1.0 -1.1 -1.1 1 +1873 3 21 0.4 0.3 0.3 1 +1873 3 22 -4.6 -4.7 -4.7 1 +1873 3 23 -0.3 -0.4 -0.4 1 +1873 3 24 2.6 2.5 2.5 1 +1873 3 25 4.0 3.9 3.9 1 +1873 3 26 4.8 4.7 4.7 1 +1873 3 27 4.6 4.5 4.5 1 +1873 3 28 5.3 5.2 5.2 1 +1873 3 29 4.7 4.6 4.6 1 +1873 3 30 5.7 5.6 5.6 1 +1873 3 31 4.9 4.8 4.8 1 +1873 4 1 3.4 3.3 3.3 1 +1873 4 2 5.0 4.9 4.9 1 +1873 4 3 7.0 6.9 6.9 1 +1873 4 4 4.9 4.8 4.8 1 +1873 4 5 2.4 2.3 2.3 1 +1873 4 6 3.2 3.1 3.1 1 +1873 4 7 2.2 2.1 2.1 1 +1873 4 8 1.0 0.9 0.9 1 +1873 4 9 2.9 2.8 2.8 1 +1873 4 10 7.5 7.4 7.4 1 +1873 4 11 10.2 10.1 10.1 1 +1873 4 12 0.6 0.5 0.5 1 +1873 4 13 2.3 2.2 2.2 1 +1873 4 14 1.0 0.9 0.9 1 +1873 4 15 1.5 1.4 1.4 1 +1873 4 16 2.2 2.1 2.1 1 +1873 4 17 4.0 3.9 3.9 1 +1873 4 18 5.9 5.8 5.8 1 +1873 4 19 4.9 4.8 4.8 1 +1873 4 20 2.8 2.7 2.7 1 +1873 4 21 6.0 5.9 5.9 1 +1873 4 22 -4.8 -4.9 -4.9 1 +1873 4 23 -4.2 -4.3 -4.3 1 +1873 4 24 -1.9 -2.0 -2.0 1 +1873 4 25 -1.9 -2.0 -2.0 1 +1873 4 26 1.1 1.0 1.0 1 +1873 4 27 2.0 1.9 1.9 1 +1873 4 28 3.4 3.2 3.2 1 +1873 4 29 -0.2 -0.4 -0.4 1 +1873 4 30 0.0 -0.2 -0.2 1 +1873 5 1 0.9 0.7 0.7 1 +1873 5 2 2.5 2.3 2.3 1 +1873 5 3 2.0 1.8 1.8 1 +1873 5 4 3.2 3.0 3.0 1 +1873 5 5 4.4 4.2 4.2 1 +1873 5 6 3.9 3.7 3.7 1 +1873 5 7 4.6 4.4 4.4 1 +1873 5 8 6.1 5.9 5.9 1 +1873 5 9 10.7 10.5 10.5 1 +1873 5 10 9.1 8.9 8.9 1 +1873 5 11 5.3 5.1 5.1 1 +1873 5 12 3.0 2.8 2.8 1 +1873 5 13 2.2 2.0 2.0 1 +1873 5 14 4.5 4.3 4.3 1 +1873 5 15 5.5 5.3 5.3 1 +1873 5 16 1.5 1.3 1.3 1 +1873 5 17 2.6 2.4 2.4 1 +1873 5 18 3.3 3.1 3.1 1 +1873 5 19 6.5 6.3 6.3 1 +1873 5 20 8.7 8.5 8.5 1 +1873 5 21 8.5 8.3 8.3 1 +1873 5 22 10.0 9.8 9.8 1 +1873 5 23 9.8 9.6 9.6 1 +1873 5 24 7.4 7.2 7.2 1 +1873 5 25 6.5 6.3 6.3 1 +1873 5 26 8.6 8.4 8.4 1 +1873 5 27 9.3 9.1 9.1 1 +1873 5 28 8.7 8.5 8.5 1 +1873 5 29 9.2 9.0 9.0 1 +1873 5 30 8.5 8.3 8.3 1 +1873 5 31 10.1 9.9 9.9 1 +1873 6 1 12.3 12.1 12.1 1 +1873 6 2 16.1 15.9 15.9 1 +1873 6 3 19.3 19.1 19.1 1 +1873 6 4 18.8 18.6 18.6 1 +1873 6 5 18.1 17.9 17.9 1 +1873 6 6 10.4 10.3 10.3 1 +1873 6 7 7.6 7.5 7.5 1 +1873 6 8 8.7 8.6 8.6 1 +1873 6 9 9.5 9.4 9.4 1 +1873 6 10 11.3 11.2 11.2 1 +1873 6 11 13.4 13.3 13.3 1 +1873 6 12 15.4 15.3 15.3 1 +1873 6 13 15.1 15.0 15.0 1 +1873 6 14 15.0 14.9 14.9 1 +1873 6 15 17.6 17.5 17.5 1 +1873 6 16 18.2 18.1 18.1 1 +1873 6 17 15.8 15.7 15.7 1 +1873 6 18 16.4 16.3 16.3 1 +1873 6 19 18.9 18.8 18.8 1 +1873 6 20 16.7 16.6 16.6 1 +1873 6 21 17.7 17.6 17.6 1 +1873 6 22 17.3 17.2 17.2 1 +1873 6 23 18.0 17.9 17.9 1 +1873 6 24 17.6 17.5 17.5 1 +1873 6 25 13.8 13.7 13.7 1 +1873 6 26 13.5 13.4 13.4 1 +1873 6 27 14.8 14.7 14.7 1 +1873 6 28 16.2 16.1 16.1 1 +1873 6 29 12.5 12.4 12.4 1 +1873 6 30 15.4 15.3 15.3 1 +1873 7 1 16.6 16.5 16.5 1 +1873 7 2 17.6 17.5 17.5 1 +1873 7 3 16.7 16.6 16.6 1 +1873 7 4 16.6 16.5 16.5 1 +1873 7 5 17.8 17.7 17.7 1 +1873 7 6 19.1 19.0 19.0 1 +1873 7 7 21.7 21.6 21.6 1 +1873 7 8 21.8 21.7 21.7 1 +1873 7 9 21.6 21.5 21.5 1 +1873 7 10 19.9 19.8 19.8 1 +1873 7 11 19.2 19.1 19.1 1 +1873 7 12 18.4 18.3 18.3 1 +1873 7 13 18.1 18.0 18.0 1 +1873 7 14 18.2 18.1 18.1 1 +1873 7 15 18.0 17.9 17.9 1 +1873 7 16 16.1 16.0 16.0 1 +1873 7 17 16.6 16.5 16.5 1 +1873 7 18 16.7 16.6 16.6 1 +1873 7 19 15.4 15.3 15.3 1 +1873 7 20 16.3 16.2 16.2 1 +1873 7 21 17.2 17.1 17.1 1 +1873 7 22 17.2 17.1 17.1 1 +1873 7 23 15.8 15.7 15.7 1 +1873 7 24 17.7 17.6 17.6 1 +1873 7 25 19.4 19.3 19.3 1 +1873 7 26 19.6 19.5 19.5 1 +1873 7 27 20.2 20.1 20.1 1 +1873 7 28 21.3 21.2 21.2 1 +1873 7 29 19.1 19.0 19.0 1 +1873 7 30 18.9 18.8 18.8 1 +1873 7 31 19.2 19.1 19.1 1 +1873 8 1 18.0 17.9 17.9 1 +1873 8 2 16.5 16.4 16.4 1 +1873 8 3 16.2 16.1 16.1 1 +1873 8 4 16.3 16.2 16.2 1 +1873 8 5 14.8 14.7 14.7 1 +1873 8 6 14.0 13.9 13.9 1 +1873 8 7 15.0 14.9 14.9 1 +1873 8 8 17.6 17.5 17.5 1 +1873 8 9 15.6 15.5 15.5 1 +1873 8 10 14.6 14.5 14.5 1 +1873 8 11 11.2 11.1 11.1 1 +1873 8 12 13.5 13.4 13.4 1 +1873 8 13 14.6 14.5 14.5 1 +1873 8 14 14.7 14.6 14.6 1 +1873 8 15 15.7 15.6 15.6 1 +1873 8 16 16.6 16.5 16.5 1 +1873 8 17 16.6 16.5 16.5 1 +1873 8 18 14.4 14.3 14.3 1 +1873 8 19 15.6 15.5 15.5 1 +1873 8 20 15.5 15.4 15.4 1 +1873 8 21 15.2 15.1 15.1 1 +1873 8 22 15.9 15.8 15.8 1 +1873 8 23 15.9 15.8 15.8 1 +1873 8 24 16.5 16.4 16.4 1 +1873 8 25 14.7 14.6 14.6 1 +1873 8 26 15.0 14.9 14.9 1 +1873 8 27 17.0 16.9 16.9 1 +1873 8 28 16.2 16.1 16.1 1 +1873 8 29 16.2 16.1 16.1 1 +1873 8 30 15.2 15.1 15.1 1 +1873 8 31 14.3 14.2 14.2 1 +1873 9 1 13.9 13.8 13.8 1 +1873 9 2 15.2 15.1 15.1 1 +1873 9 3 17.5 17.4 17.4 1 +1873 9 4 15.5 15.4 15.4 1 +1873 9 5 14.2 14.1 14.1 1 +1873 9 6 14.1 14.0 14.0 1 +1873 9 7 14.0 13.9 13.9 1 +1873 9 8 12.8 12.7 12.7 1 +1873 9 9 12.7 12.6 12.6 1 +1873 9 10 13.0 12.9 12.9 1 +1873 9 11 11.9 11.8 11.8 1 +1873 9 12 12.9 12.8 12.8 1 +1873 9 13 12.5 12.4 12.4 1 +1873 9 14 11.0 10.9 10.9 1 +1873 9 15 11.7 11.6 11.6 1 +1873 9 16 12.6 12.5 12.5 1 +1873 9 17 11.4 11.3 11.3 1 +1873 9 18 10.9 10.8 10.8 1 +1873 9 19 10.7 10.6 10.6 1 +1873 9 20 9.8 9.7 9.7 1 +1873 9 21 10.8 10.7 10.7 1 +1873 9 22 8.5 8.4 8.4 1 +1873 9 23 7.4 7.3 7.3 1 +1873 9 24 10.4 10.3 10.3 1 +1873 9 25 11.8 11.7 11.7 1 +1873 9 26 12.8 12.7 12.7 1 +1873 9 27 12.5 12.4 12.4 1 +1873 9 28 12.4 12.3 12.3 1 +1873 9 29 8.4 8.3 8.3 1 +1873 9 30 7.9 7.8 7.8 1 +1873 10 1 8.1 8.0 8.0 1 +1873 10 2 6.2 6.1 6.1 1 +1873 10 3 4.4 4.3 4.3 1 +1873 10 4 4.2 4.1 4.1 1 +1873 10 5 6.5 6.4 6.4 1 +1873 10 6 7.6 7.5 7.5 1 +1873 10 7 8.6 8.5 8.5 1 +1873 10 8 8.4 8.3 8.3 1 +1873 10 9 5.6 5.5 5.5 1 +1873 10 10 8.1 8.1 8.1 1 +1873 10 11 11.9 11.9 11.9 1 +1873 10 12 9.9 9.9 9.9 1 +1873 10 13 8.5 8.5 8.5 1 +1873 10 14 3.7 3.7 3.7 1 +1873 10 15 4.8 4.8 4.8 1 +1873 10 16 3.1 3.1 3.1 1 +1873 10 17 7.2 7.2 7.2 1 +1873 10 18 9.3 9.3 9.3 1 +1873 10 19 5.1 5.1 5.1 1 +1873 10 20 5.8 5.7 5.7 1 +1873 10 21 5.6 5.5 5.5 1 +1873 10 22 5.1 5.0 5.0 1 +1873 10 23 7.1 7.0 7.0 1 +1873 10 24 7.9 7.8 7.8 1 +1873 10 25 8.1 8.0 8.0 1 +1873 10 26 7.2 7.1 7.1 1 +1873 10 27 2.2 2.1 2.1 1 +1873 10 28 0.8 0.7 0.7 1 +1873 10 29 3.8 3.7 3.7 1 +1873 10 30 5.7 5.6 5.6 1 +1873 10 31 5.3 5.2 5.2 1 +1873 11 1 6.4 6.3 6.3 1 +1873 11 2 7.4 7.3 7.3 1 +1873 11 3 6.8 6.7 6.7 1 +1873 11 4 8.6 8.5 8.5 1 +1873 11 5 7.3 7.2 7.2 1 +1873 11 6 3.8 3.7 3.7 1 +1873 11 7 3.8 3.7 3.7 1 +1873 11 8 2.4 2.3 2.3 1 +1873 11 9 0.8 0.7 0.7 1 +1873 11 10 0.9 0.8 0.8 1 +1873 11 11 1.1 1.0 1.0 1 +1873 11 12 0.3 0.2 0.2 1 +1873 11 13 -1.0 -1.1 -1.1 1 +1873 11 14 -3.3 -3.4 -3.4 1 +1873 11 15 -2.3 -2.4 -2.4 1 +1873 11 16 1.9 1.8 1.8 1 +1873 11 17 4.3 4.2 4.2 1 +1873 11 18 -1.1 -1.2 -1.2 1 +1873 11 19 3.8 3.7 3.7 1 +1873 11 20 -0.4 -0.5 -0.5 1 +1873 11 21 1.7 1.6 1.6 1 +1873 11 22 2.6 2.5 2.5 1 +1873 11 23 1.3 1.2 1.2 1 +1873 11 24 1.2 1.1 1.1 1 +1873 11 25 0.1 0.0 0.0 1 +1873 11 26 1.8 1.7 1.7 1 +1873 11 27 0.2 0.1 0.1 1 +1873 11 28 3.6 3.5 3.5 1 +1873 11 29 1.3 1.2 1.2 1 +1873 11 30 1.8 1.7 1.7 1 +1873 12 1 -0.7 -0.8 -0.8 1 +1873 12 2 5.2 5.1 5.1 1 +1873 12 3 3.4 3.3 3.3 1 +1873 12 4 3.3 3.2 3.2 1 +1873 12 5 1.5 1.4 1.4 1 +1873 12 6 -5.1 -5.2 -5.2 1 +1873 12 7 1.1 1.0 1.0 1 +1873 12 8 7.4 7.3 7.3 1 +1873 12 9 7.9 7.8 7.8 1 +1873 12 10 3.8 3.7 3.7 1 +1873 12 11 0.7 0.6 0.6 1 +1873 12 12 -1.9 -2.0 -2.0 1 +1873 12 13 2.4 2.3 2.3 1 +1873 12 14 2.4 2.3 2.3 1 +1873 12 15 2.4 2.3 2.3 1 +1873 12 16 2.1 2.0 2.0 1 +1873 12 17 -1.2 -1.3 -1.3 1 +1873 12 18 -2.6 -2.7 -2.7 1 +1873 12 19 -1.0 -1.1 -1.1 1 +1873 12 20 2.0 1.9 1.9 1 +1873 12 21 -1.1 -1.2 -1.2 1 +1873 12 22 1.3 1.2 1.2 1 +1873 12 23 1.4 1.3 1.3 1 +1873 12 24 -7.1 -7.2 -7.2 1 +1873 12 25 -3.5 -3.6 -3.6 1 +1873 12 26 2.9 2.8 2.8 1 +1873 12 27 -6.0 -6.1 -6.1 1 +1873 12 28 -8.4 -8.5 -8.5 1 +1873 12 29 -7.1 -7.2 -7.2 1 +1873 12 30 0.2 0.1 0.1 1 +1873 12 31 -0.7 -0.8 -0.8 1 +1874 1 1 1.7 1.6 1.6 1 +1874 1 2 2.3 2.2 2.2 1 +1874 1 3 1.7 1.6 1.6 1 +1874 1 4 2.5 2.4 2.4 1 +1874 1 5 1.6 1.5 1.5 1 +1874 1 6 2.3 2.2 2.2 1 +1874 1 7 5.9 5.8 5.8 1 +1874 1 8 2.1 2.0 2.0 1 +1874 1 9 0.4 0.3 0.3 1 +1874 1 10 1.6 1.5 1.5 1 +1874 1 11 2.0 1.8 1.8 1 +1874 1 12 1.5 1.3 1.3 1 +1874 1 13 0.0 -0.2 -0.2 1 +1874 1 14 -2.4 -2.6 -2.6 1 +1874 1 15 -4.4 -4.6 -4.6 1 +1874 1 16 3.8 3.6 3.6 1 +1874 1 17 3.0 2.8 2.8 1 +1874 1 18 1.3 1.1 1.1 1 +1874 1 19 2.8 2.6 2.6 1 +1874 1 20 0.0 -0.2 -0.2 1 +1874 1 21 0.7 0.5 0.5 1 +1874 1 22 5.4 5.2 5.2 1 +1874 1 23 3.7 3.5 3.5 1 +1874 1 24 1.6 1.4 1.4 1 +1874 1 25 -2.1 -2.3 -2.3 1 +1874 1 26 4.6 4.4 4.4 1 +1874 1 27 0.7 0.5 0.5 1 +1874 1 28 -1.8 -2.0 -2.0 1 +1874 1 29 -0.2 -0.4 -0.4 1 +1874 1 30 2.3 2.1 2.1 1 +1874 1 31 -2.8 -2.9 -2.9 1 +1874 2 1 -5.5 -5.6 -5.6 1 +1874 2 2 -0.1 -0.2 -0.2 1 +1874 2 3 1.1 1.0 1.0 1 +1874 2 4 -2.9 -3.0 -3.0 1 +1874 2 5 3.0 2.9 2.9 1 +1874 2 6 -3.5 -3.6 -3.6 1 +1874 2 7 -5.1 -5.2 -5.2 1 +1874 2 8 -9.2 -9.3 -9.3 1 +1874 2 9 -8.6 -8.7 -8.7 1 +1874 2 10 -7.9 -8.0 -8.0 1 +1874 2 11 0.5 0.4 0.4 1 +1874 2 12 -1.4 -1.5 -1.5 1 +1874 2 13 0.3 0.2 0.2 1 +1874 2 14 1.1 1.0 1.0 1 +1874 2 15 0.9 0.8 0.8 1 +1874 2 16 2.3 2.2 2.2 1 +1874 2 17 3.0 2.9 2.9 1 +1874 2 18 1.1 1.0 1.0 1 +1874 2 19 0.2 0.1 0.1 1 +1874 2 20 0.4 0.3 0.3 1 +1874 2 21 -1.0 -1.1 -1.1 1 +1874 2 22 0.3 0.2 0.2 1 +1874 2 23 -0.6 -0.7 -0.7 1 +1874 2 24 0.1 0.0 0.0 1 +1874 2 25 -1.3 -1.4 -1.4 1 +1874 2 26 -1.3 -1.4 -1.4 1 +1874 2 27 0.3 0.2 0.2 1 +1874 2 28 -1.0 -1.1 -1.1 1 +1874 3 1 -1.3 -1.4 -1.4 1 +1874 3 2 -1.6 -1.7 -1.7 1 +1874 3 3 -3.1 -3.2 -3.2 1 +1874 3 4 -1.8 -1.9 -1.9 1 +1874 3 5 0.5 0.4 0.4 1 +1874 3 6 -0.8 -0.9 -0.9 1 +1874 3 7 3.2 3.1 3.1 1 +1874 3 8 4.4 4.3 4.3 1 +1874 3 9 1.1 1.0 1.0 1 +1874 3 10 -2.5 -2.6 -2.6 1 +1874 3 11 -3.0 -3.1 -3.1 1 +1874 3 12 -8.3 -8.4 -8.4 1 +1874 3 13 -5.4 -5.5 -5.5 1 +1874 3 14 -3.4 -3.5 -3.5 1 +1874 3 15 -3.4 -3.5 -3.5 1 +1874 3 16 -2.3 -2.4 -2.4 1 +1874 3 17 2.2 2.1 2.1 1 +1874 3 18 3.3 3.2 3.2 1 +1874 3 19 0.1 0.0 0.0 1 +1874 3 20 -1.2 -1.3 -1.3 1 +1874 3 21 -1.9 -2.0 -2.0 1 +1874 3 22 1.3 1.2 1.2 1 +1874 3 23 4.6 4.5 4.5 1 +1874 3 24 7.6 7.5 7.5 1 +1874 3 25 3.0 2.9 2.9 1 +1874 3 26 1.4 1.3 1.3 1 +1874 3 27 -0.4 -0.5 -0.5 1 +1874 3 28 -1.5 -1.6 -1.6 1 +1874 3 29 -1.7 -1.8 -1.8 1 +1874 3 30 -1.0 -1.1 -1.1 1 +1874 3 31 -1.8 -1.9 -1.9 1 +1874 4 1 -1.5 -1.6 -1.6 1 +1874 4 2 -1.0 -1.1 -1.1 1 +1874 4 3 3.7 3.6 3.6 1 +1874 4 4 5.4 5.3 5.3 1 +1874 4 5 5.5 5.4 5.4 1 +1874 4 6 2.6 2.5 2.5 1 +1874 4 7 3.3 3.2 3.2 1 +1874 4 8 3.7 3.6 3.6 1 +1874 4 9 4.4 4.3 4.3 1 +1874 4 10 1.3 1.2 1.2 1 +1874 4 11 2.6 2.5 2.5 1 +1874 4 12 2.6 2.5 2.5 1 +1874 4 13 1.2 1.1 1.1 1 +1874 4 14 1.3 1.2 1.2 1 +1874 4 15 2.3 2.2 2.2 1 +1874 4 16 3.8 3.7 3.7 1 +1874 4 17 3.3 3.2 3.2 1 +1874 4 18 4.7 4.5 4.5 1 +1874 4 19 5.5 5.3 5.3 1 +1874 4 20 3.9 3.7 3.7 1 +1874 4 21 9.0 8.8 8.8 1 +1874 4 22 12.9 12.7 12.7 1 +1874 4 23 9.0 8.8 8.8 1 +1874 4 24 5.9 5.7 5.7 1 +1874 4 25 5.3 5.1 5.1 1 +1874 4 26 3.0 2.8 2.8 1 +1874 4 27 0.4 0.2 0.2 1 +1874 4 28 1.9 1.7 1.7 1 +1874 4 29 4.7 4.5 4.5 1 +1874 4 30 2.7 2.5 2.5 1 +1874 5 1 2.0 1.8 1.8 1 +1874 5 2 0.2 0.0 0.0 1 +1874 5 3 1.0 0.8 0.8 1 +1874 5 4 1.2 1.0 1.0 1 +1874 5 5 2.1 1.9 1.9 1 +1874 5 6 3.4 3.2 3.2 1 +1874 5 7 4.3 4.1 4.1 1 +1874 5 8 6.9 6.7 6.7 1 +1874 5 9 9.0 8.8 8.8 1 +1874 5 10 7.5 7.3 7.3 1 +1874 5 11 7.2 7.0 7.0 1 +1874 5 12 4.8 4.6 4.6 1 +1874 5 13 4.6 4.4 4.4 1 +1874 5 14 2.7 2.5 2.5 1 +1874 5 15 2.0 1.8 1.8 1 +1874 5 16 3.4 3.2 3.2 1 +1874 5 17 4.2 4.0 4.0 1 +1874 5 18 8.3 8.1 8.1 1 +1874 5 19 8.9 8.7 8.7 1 +1874 5 20 9.9 9.7 9.7 1 +1874 5 21 6.5 6.3 6.3 1 +1874 5 22 6.3 6.1 6.1 1 +1874 5 23 4.5 4.3 4.3 1 +1874 5 24 4.2 4.0 4.0 1 +1874 5 25 7.1 6.9 6.9 1 +1874 5 26 10.3 10.1 10.1 1 +1874 5 27 15.0 14.8 14.8 1 +1874 5 28 14.1 13.9 13.9 1 +1874 5 29 13.6 13.4 13.4 1 +1874 5 30 13.0 12.8 12.8 1 +1874 5 31 14.1 13.9 13.9 1 +1874 6 1 16.3 16.1 16.1 1 +1874 6 2 14.9 14.7 14.7 1 +1874 6 3 18.7 18.5 18.5 1 +1874 6 4 14.6 14.4 14.4 1 +1874 6 5 19.1 18.9 18.9 1 +1874 6 6 15.5 15.3 15.3 1 +1874 6 7 12.5 12.3 12.3 1 +1874 6 8 10.0 9.8 9.8 1 +1874 6 9 15.5 15.3 15.3 1 +1874 6 10 14.0 13.8 13.8 1 +1874 6 11 11.8 11.6 11.6 1 +1874 6 12 10.9 10.7 10.7 1 +1874 6 13 8.2 8.0 8.0 1 +1874 6 14 10.4 10.2 10.2 1 +1874 6 15 16.1 15.9 15.9 1 +1874 6 16 21.1 20.9 20.9 1 +1874 6 17 11.1 10.9 10.9 1 +1874 6 18 13.7 13.5 13.5 1 +1874 6 19 12.8 12.6 12.6 1 +1874 6 20 7.2 7.0 7.0 1 +1874 6 21 9.8 9.6 9.6 1 +1874 6 22 7.6 7.4 7.4 1 +1874 6 23 12.4 12.2 12.2 1 +1874 6 24 14.7 14.5 14.5 1 +1874 6 25 15.2 15.0 15.0 1 +1874 6 26 16.6 16.4 16.4 1 +1874 6 27 17.8 17.6 17.6 1 +1874 6 28 18.8 18.6 18.6 1 +1874 6 29 18.1 17.9 17.9 1 +1874 6 30 17.0 16.8 16.8 1 +1874 7 1 14.9 14.7 14.7 1 +1874 7 2 17.5 17.3 17.3 1 +1874 7 3 19.9 19.7 19.7 1 +1874 7 4 19.3 19.1 19.1 1 +1874 7 5 16.5 16.3 16.3 1 +1874 7 6 17.4 17.2 17.2 1 +1874 7 7 16.8 16.6 16.6 1 +1874 7 8 15.3 15.1 15.1 1 +1874 7 9 17.2 17.0 17.0 1 +1874 7 10 18.1 17.9 17.9 1 +1874 7 11 19.1 18.9 18.9 1 +1874 7 12 19.6 19.4 19.4 1 +1874 7 13 17.4 17.2 17.2 1 +1874 7 14 14.0 13.8 13.8 1 +1874 7 15 15.3 15.1 15.1 1 +1874 7 16 11.9 11.7 11.7 1 +1874 7 17 13.9 13.7 13.7 1 +1874 7 18 17.8 17.6 17.6 1 +1874 7 19 17.6 17.4 17.4 1 +1874 7 20 15.3 15.1 15.1 1 +1874 7 21 16.0 15.8 15.8 1 +1874 7 22 16.4 16.2 16.2 1 +1874 7 23 15.7 15.5 15.5 1 +1874 7 24 16.0 15.8 15.8 1 +1874 7 25 17.4 17.2 17.2 1 +1874 7 26 16.7 16.5 16.5 1 +1874 7 27 16.5 16.3 16.3 1 +1874 7 28 19.2 19.0 19.0 1 +1874 7 29 20.0 19.8 19.8 1 +1874 7 30 21.3 21.1 21.1 1 +1874 7 31 17.6 17.4 17.4 1 +1874 8 1 15.4 15.2 15.2 1 +1874 8 2 15.7 15.5 15.5 1 +1874 8 3 17.9 17.7 17.7 1 +1874 8 4 14.0 13.8 13.8 1 +1874 8 5 14.3 14.1 14.1 1 +1874 8 6 14.9 14.7 14.7 1 +1874 8 7 13.2 13.0 13.0 1 +1874 8 8 15.9 15.7 15.7 1 +1874 8 9 17.5 17.3 17.3 1 +1874 8 10 16.5 16.3 16.3 1 +1874 8 11 14.8 14.6 14.6 1 +1874 8 12 14.6 14.4 14.4 1 +1874 8 13 15.0 14.8 14.8 1 +1874 8 14 15.5 15.3 15.3 1 +1874 8 15 15.9 15.7 15.7 1 +1874 8 16 16.0 15.8 15.8 1 +1874 8 17 16.9 16.7 16.7 1 +1874 8 18 15.6 15.5 15.5 1 +1874 8 19 16.1 16.0 16.0 1 +1874 8 20 16.4 16.3 16.3 1 +1874 8 21 13.5 13.4 13.4 1 +1874 8 22 14.5 14.4 14.4 1 +1874 8 23 10.1 10.0 10.0 1 +1874 8 24 10.5 10.4 10.4 1 +1874 8 25 9.6 9.5 9.5 1 +1874 8 26 8.2 8.1 8.1 1 +1874 8 27 9.4 9.3 9.3 1 +1874 8 28 11.1 11.0 11.0 1 +1874 8 29 11.3 11.2 11.2 1 +1874 8 30 13.0 12.9 12.9 1 +1874 8 31 11.3 11.2 11.2 1 +1874 9 1 10.8 10.7 10.7 1 +1874 9 2 14.1 14.0 14.0 1 +1874 9 3 15.5 15.4 15.4 1 +1874 9 4 13.1 13.0 13.0 1 +1874 9 5 12.4 12.3 12.3 1 +1874 9 6 11.0 10.9 10.9 1 +1874 9 7 9.5 9.4 9.4 1 +1874 9 8 10.7 10.6 10.6 1 +1874 9 9 11.4 11.3 11.3 1 +1874 9 10 13.1 13.0 13.0 1 +1874 9 11 11.4 11.3 11.3 1 +1874 9 12 10.7 10.6 10.6 1 +1874 9 13 8.8 8.7 8.7 1 +1874 9 14 8.6 8.5 8.5 1 +1874 9 15 12.8 12.7 12.7 1 +1874 9 16 13.6 13.5 13.5 1 +1874 9 17 10.6 10.5 10.5 1 +1874 9 18 12.2 12.1 12.1 1 +1874 9 19 11.4 11.3 11.3 1 +1874 9 20 12.6 12.5 12.5 1 +1874 9 21 13.1 13.0 13.0 1 +1874 9 22 13.9 13.8 13.8 1 +1874 9 23 12.5 12.4 12.4 1 +1874 9 24 13.2 13.1 13.1 1 +1874 9 25 13.0 12.9 12.9 1 +1874 9 26 11.5 11.4 11.4 1 +1874 9 27 8.2 8.1 8.1 1 +1874 9 28 10.8 10.7 10.7 1 +1874 9 29 12.3 12.2 12.2 1 +1874 9 30 13.9 13.8 13.8 1 +1874 10 1 14.1 14.0 14.0 1 +1874 10 2 14.7 14.6 14.6 1 +1874 10 3 12.6 12.5 12.5 1 +1874 10 4 10.2 10.1 10.1 1 +1874 10 5 10.2 10.1 10.1 1 +1874 10 6 7.0 6.9 6.9 1 +1874 10 7 11.0 10.9 10.9 1 +1874 10 8 10.7 10.6 10.6 1 +1874 10 9 9.4 9.3 9.3 1 +1874 10 10 7.2 7.1 7.1 1 +1874 10 11 7.7 7.6 7.6 1 +1874 10 12 10.5 10.4 10.4 1 +1874 10 13 10.3 10.2 10.2 1 +1874 10 14 7.3 7.2 7.2 1 +1874 10 15 7.6 7.5 7.5 1 +1874 10 16 8.9 8.8 8.8 1 +1874 10 17 10.5 10.4 10.4 1 +1874 10 18 11.7 11.6 11.6 1 +1874 10 19 11.5 11.4 11.4 1 +1874 10 20 10.3 10.2 10.2 1 +1874 10 21 8.7 8.6 8.6 1 +1874 10 22 6.6 6.5 6.5 1 +1874 10 23 4.4 4.3 4.3 1 +1874 10 24 4.6 4.5 4.5 1 +1874 10 25 6.3 6.2 6.2 1 +1874 10 26 8.4 8.3 8.3 1 +1874 10 27 9.8 9.7 9.7 1 +1874 10 28 8.5 8.4 8.4 1 +1874 10 29 6.7 6.6 6.6 1 +1874 10 30 3.5 3.4 3.4 1 +1874 10 31 6.5 6.4 6.4 1 +1874 11 1 8.0 7.9 7.9 1 +1874 11 2 0.5 0.4 0.4 1 +1874 11 3 4.4 4.3 4.3 1 +1874 11 4 6.9 6.8 6.8 1 +1874 11 5 7.4 7.3 7.3 1 +1874 11 6 9.1 9.0 9.0 1 +1874 11 7 7.0 6.9 6.9 1 +1874 11 8 5.2 5.1 5.1 1 +1874 11 9 9.7 9.6 9.6 1 +1874 11 10 6.7 6.6 6.6 1 +1874 11 11 0.9 0.8 0.8 1 +1874 11 12 -1.6 -1.7 -1.7 1 +1874 11 13 -1.2 -1.3 -1.3 1 +1874 11 14 -2.7 -2.8 -2.8 1 +1874 11 15 -2.3 -2.4 -2.4 1 +1874 11 16 2.1 2.0 2.0 1 +1874 11 17 2.5 2.4 2.4 1 +1874 11 18 1.7 1.6 1.6 1 +1874 11 19 0.2 0.1 0.1 1 +1874 11 20 -3.6 -3.7 -3.7 1 +1874 11 21 0.5 0.4 0.4 1 +1874 11 22 -5.7 -5.8 -5.8 1 +1874 11 23 -4.7 -4.8 -4.8 1 +1874 11 24 -2.8 -2.9 -2.9 1 +1874 11 25 -1.5 -1.6 -1.6 1 +1874 11 26 -2.5 -2.6 -2.6 1 +1874 11 27 0.1 0.0 0.0 1 +1874 11 28 -0.1 -0.2 -0.2 1 +1874 11 29 -0.7 -0.8 -0.8 1 +1874 11 30 0.0 -0.1 -0.1 1 +1874 12 1 0.4 0.3 0.3 1 +1874 12 2 -10.1 -10.2 -10.2 1 +1874 12 3 -8.6 -8.7 -8.7 1 +1874 12 4 -1.3 -1.4 -1.4 1 +1874 12 5 2.2 2.1 2.1 1 +1874 12 6 2.2 2.1 2.1 1 +1874 12 7 -2.1 -2.2 -2.2 1 +1874 12 8 -3.4 -3.5 -3.5 1 +1874 12 9 -2.8 -2.9 -2.9 1 +1874 12 10 -4.1 -4.2 -4.2 1 +1874 12 11 -9.1 -9.2 -9.2 1 +1874 12 12 -8.3 -8.4 -8.4 1 +1874 12 13 -3.8 -3.9 -3.9 1 +1874 12 14 -5.2 -5.3 -5.3 1 +1874 12 15 -5.7 -5.8 -5.8 1 +1874 12 16 -4.4 -4.5 -4.5 1 +1874 12 17 -7.1 -7.2 -7.2 1 +1874 12 18 -5.7 -5.8 -5.8 1 +1874 12 19 -1.5 -1.6 -1.6 1 +1874 12 20 0.2 0.1 0.1 1 +1874 12 21 -0.3 -0.4 -0.4 1 +1874 12 22 -2.6 -2.7 -2.7 1 +1874 12 23 -4.5 -4.6 -4.6 1 +1874 12 24 -10.6 -10.7 -10.7 1 +1874 12 25 -16.7 -16.8 -16.8 1 +1874 12 26 -10.8 -10.9 -10.9 1 +1874 12 27 -10.3 -10.4 -10.4 1 +1874 12 28 -9.0 -9.1 -9.1 1 +1874 12 29 -11.2 -11.3 -11.3 1 +1874 12 30 -5.2 -5.3 -5.3 1 +1874 12 31 -6.5 -6.6 -6.6 1 +1875 1 1 -11.9 -12.0 -12.0 1 +1875 1 2 -10.8 -11.0 -11.0 1 +1875 1 3 -5.2 -5.4 -5.4 1 +1875 1 4 -1.3 -1.5 -1.5 1 +1875 1 5 -4.0 -4.2 -4.2 1 +1875 1 6 -5.4 -5.6 -5.6 1 +1875 1 7 -11.2 -11.4 -11.4 1 +1875 1 8 -4.0 -4.2 -4.2 1 +1875 1 9 -12.0 -12.2 -12.2 1 +1875 1 10 -7.0 -7.2 -7.2 1 +1875 1 11 -2.5 -2.7 -2.7 1 +1875 1 12 -3.2 -3.4 -3.4 1 +1875 1 13 -9.7 -9.9 -9.9 1 +1875 1 14 -11.1 -11.3 -11.3 1 +1875 1 15 -11.2 -11.4 -11.4 1 +1875 1 16 -3.4 -3.6 -3.6 1 +1875 1 17 -6.2 -6.4 -6.4 1 +1875 1 18 -13.5 -13.7 -13.7 1 +1875 1 19 -11.1 -11.3 -11.3 1 +1875 1 20 -4.7 -4.9 -4.9 1 +1875 1 21 -15.6 -15.8 -15.8 1 +1875 1 22 -17.3 -17.5 -17.5 1 +1875 1 23 -24.1 -24.3 -24.3 1 +1875 1 24 -24.3 -24.5 -24.5 1 +1875 1 25 -7.7 -7.9 -7.9 1 +1875 1 26 -13.4 -13.6 -13.6 1 +1875 1 27 -15.0 -15.2 -15.2 1 +1875 1 28 -2.9 -3.1 -3.1 1 +1875 1 29 -1.0 -1.2 -1.2 1 +1875 1 30 -4.8 -5.0 -5.0 1 +1875 1 31 -6.2 -6.4 -6.4 1 +1875 2 1 0.8 0.6 0.6 1 +1875 2 2 2.3 2.1 2.1 1 +1875 2 3 -6.5 -6.7 -6.7 1 +1875 2 4 -6.1 -6.3 -6.3 1 +1875 2 5 -9.2 -9.4 -9.4 1 +1875 2 6 -9.3 -9.5 -9.5 1 +1875 2 7 -9.1 -9.3 -9.3 1 +1875 2 8 -4.5 -4.7 -4.7 1 +1875 2 9 -7.1 -7.3 -7.3 1 +1875 2 10 -8.5 -8.7 -8.7 1 +1875 2 11 -5.1 -5.3 -5.3 1 +1875 2 12 -3.0 -3.2 -3.2 1 +1875 2 13 -3.2 -3.4 -3.4 1 +1875 2 14 -4.7 -4.9 -4.9 1 +1875 2 15 -3.5 -3.7 -3.7 1 +1875 2 16 -3.0 -3.2 -3.2 1 +1875 2 17 -1.6 -1.8 -1.8 1 +1875 2 18 -9.1 -9.3 -9.3 1 +1875 2 19 -9.6 -9.8 -9.8 1 +1875 2 20 -7.5 -7.7 -7.7 1 +1875 2 21 -2.5 -2.7 -2.7 1 +1875 2 22 -2.3 -2.5 -2.5 1 +1875 2 23 -3.5 -3.7 -3.7 1 +1875 2 24 -5.5 -5.7 -5.7 1 +1875 2 25 -8.2 -8.4 -8.4 1 +1875 2 26 -11.8 -12.0 -12.0 1 +1875 2 27 -9.6 -9.8 -9.8 1 +1875 2 28 -8.8 -9.0 -9.0 1 +1875 3 1 -9.3 -9.5 -9.5 1 +1875 3 2 -5.8 -6.0 -6.0 1 +1875 3 3 -3.7 -3.9 -3.9 1 +1875 3 4 -0.8 -1.0 -1.0 1 +1875 3 5 -2.1 -2.3 -2.3 1 +1875 3 6 -2.9 -3.1 -3.1 1 +1875 3 7 -6.2 -6.4 -6.4 1 +1875 3 8 -1.8 -2.0 -2.0 1 +1875 3 9 0.0 -0.2 -0.2 1 +1875 3 10 1.5 1.3 1.3 1 +1875 3 11 0.1 -0.1 -0.1 1 +1875 3 12 0.3 0.1 0.1 1 +1875 3 13 3.0 2.8 2.8 1 +1875 3 14 0.6 0.4 0.4 1 +1875 3 15 0.6 0.4 0.4 1 +1875 3 16 -1.0 -1.2 -1.2 1 +1875 3 17 -6.6 -6.8 -6.8 1 +1875 3 18 -7.0 -7.2 -7.2 1 +1875 3 19 -1.3 -1.5 -1.5 1 +1875 3 20 -5.5 -5.7 -5.7 1 +1875 3 21 -9.1 -9.3 -9.3 1 +1875 3 22 -12.7 -12.9 -12.9 1 +1875 3 23 -11.7 -11.9 -11.9 1 +1875 3 24 -0.2 -0.4 -0.4 1 +1875 3 25 -5.9 -6.1 -6.1 1 +1875 3 26 -4.5 -4.7 -4.7 1 +1875 3 27 0.6 0.4 0.4 1 +1875 3 28 0.0 -0.2 -0.2 1 +1875 3 29 1.3 1.1 1.1 1 +1875 3 30 1.7 1.5 1.5 1 +1875 3 31 1.0 0.8 0.8 1 +1875 4 1 -2.1 -2.3 -2.3 1 +1875 4 2 -1.6 -1.8 -1.8 1 +1875 4 3 0.7 0.5 0.5 1 +1875 4 4 2.0 1.8 1.8 1 +1875 4 5 3.2 3.0 3.0 1 +1875 4 6 1.9 1.7 1.7 1 +1875 4 7 1.4 1.2 1.2 1 +1875 4 8 0.6 0.4 0.4 1 +1875 4 9 0.5 0.3 0.3 1 +1875 4 10 4.9 4.7 4.7 1 +1875 4 11 3.3 3.1 3.1 1 +1875 4 12 0.4 0.2 0.2 1 +1875 4 13 0.1 -0.1 -0.1 1 +1875 4 14 3.3 3.1 3.1 1 +1875 4 15 1.5 1.3 1.3 1 +1875 4 16 1.5 1.3 1.3 1 +1875 4 17 -0.2 -0.4 -0.4 1 +1875 4 18 4.2 4.0 4.0 1 +1875 4 19 6.0 5.8 5.8 1 +1875 4 20 2.9 2.7 2.7 1 +1875 4 21 -0.9 -1.1 -1.1 1 +1875 4 22 -3.1 -3.3 -3.3 1 +1875 4 23 -1.4 -1.6 -1.6 1 +1875 4 24 -1.2 -1.4 -1.4 1 +1875 4 25 1.6 1.4 1.4 1 +1875 4 26 1.2 1.0 1.0 1 +1875 4 27 7.4 7.2 7.2 1 +1875 4 28 1.6 1.4 1.4 1 +1875 4 29 1.8 1.6 1.6 1 +1875 4 30 3.5 3.3 3.3 1 +1875 5 1 4.9 4.7 4.7 1 +1875 5 2 6.4 6.2 6.2 1 +1875 5 3 8.8 8.6 8.6 1 +1875 5 4 10.2 10.0 10.0 1 +1875 5 5 11.3 11.1 11.1 1 +1875 5 6 11.7 11.5 11.5 1 +1875 5 7 11.3 11.1 11.1 1 +1875 5 8 11.2 11.0 11.0 1 +1875 5 9 10.0 9.7 9.7 1 +1875 5 10 9.1 8.8 8.8 1 +1875 5 11 11.0 10.7 10.7 1 +1875 5 12 10.2 9.9 9.9 1 +1875 5 13 9.4 9.1 9.1 1 +1875 5 14 10.1 9.8 9.8 1 +1875 5 15 15.5 15.2 15.2 1 +1875 5 16 9.6 9.3 9.3 1 +1875 5 17 8.6 8.3 8.3 1 +1875 5 18 8.6 8.3 8.3 1 +1875 5 19 9.6 9.3 9.3 1 +1875 5 20 9.9 9.6 9.6 1 +1875 5 21 11.8 11.5 11.5 1 +1875 5 22 15.1 14.8 14.8 1 +1875 5 23 13.9 13.7 13.7 1 +1875 5 24 11.0 10.8 10.8 1 +1875 5 25 9.7 9.5 9.5 1 +1875 5 26 6.5 6.3 6.3 1 +1875 5 27 6.4 6.2 6.2 1 +1875 5 28 7.2 7.0 7.0 1 +1875 5 29 8.1 7.9 7.9 1 +1875 5 30 11.4 11.2 11.2 1 +1875 5 31 13.3 13.1 13.1 1 +1875 6 1 15.9 15.7 15.7 1 +1875 6 2 12.2 12.0 12.0 1 +1875 6 3 15.4 15.2 15.2 1 +1875 6 4 16.3 16.1 16.1 1 +1875 6 5 19.8 19.6 19.6 1 +1875 6 6 16.2 16.0 16.0 1 +1875 6 7 13.4 13.2 13.2 1 +1875 6 8 12.0 11.8 11.8 1 +1875 6 9 8.4 8.2 8.2 1 +1875 6 10 11.8 11.6 11.6 1 +1875 6 11 7.7 7.5 7.5 1 +1875 6 12 9.7 9.5 9.5 1 +1875 6 13 12.5 12.3 12.3 1 +1875 6 14 11.5 11.3 11.3 1 +1875 6 15 13.7 13.5 13.5 1 +1875 6 16 15.9 15.7 15.7 1 +1875 6 17 16.3 16.1 16.1 1 +1875 6 18 17.7 17.5 17.5 1 +1875 6 19 16.8 16.6 16.6 1 +1875 6 20 16.2 16.0 16.0 1 +1875 6 21 15.5 15.3 15.3 1 +1875 6 22 18.0 17.8 17.8 1 +1875 6 23 16.9 16.7 16.7 1 +1875 6 24 15.3 15.1 15.1 1 +1875 6 25 17.8 17.6 17.6 1 +1875 6 26 17.6 17.4 17.4 1 +1875 6 27 17.1 16.9 16.9 1 +1875 6 28 16.4 16.2 16.2 1 +1875 6 29 17.6 17.4 17.4 1 +1875 6 30 17.3 17.1 17.1 1 +1875 7 1 17.1 16.9 16.9 1 +1875 7 2 18.1 17.9 17.9 1 +1875 7 3 12.2 12.0 12.0 1 +1875 7 4 16.4 16.2 16.2 1 +1875 7 5 18.0 17.8 17.8 1 +1875 7 6 21.4 21.2 21.2 1 +1875 7 7 16.0 15.8 15.8 1 +1875 7 8 18.6 18.4 18.4 1 +1875 7 9 19.2 19.0 19.0 1 +1875 7 10 15.2 15.0 15.0 1 +1875 7 11 16.2 16.0 16.0 1 +1875 7 12 15.6 15.4 15.4 1 +1875 7 13 15.9 15.7 15.7 1 +1875 7 14 13.4 13.2 13.2 1 +1875 7 15 13.8 13.6 13.6 1 +1875 7 16 13.3 13.1 13.1 1 +1875 7 17 15.5 15.3 15.3 1 +1875 7 18 17.0 16.8 16.8 1 +1875 7 19 18.7 18.5 18.5 1 +1875 7 20 19.3 19.1 19.1 1 +1875 7 21 19.0 18.8 18.8 1 +1875 7 22 19.6 19.4 19.4 1 +1875 7 23 20.2 20.0 20.0 1 +1875 7 24 19.2 19.0 19.0 1 +1875 7 25 21.2 21.0 21.0 1 +1875 7 26 19.6 19.4 19.4 1 +1875 7 27 15.8 15.6 15.6 1 +1875 7 28 16.1 15.9 15.9 1 +1875 7 29 12.7 12.5 12.5 1 +1875 7 30 15.4 15.2 15.2 1 +1875 7 31 17.4 17.2 17.2 1 +1875 8 1 17.9 17.7 17.7 1 +1875 8 2 17.8 17.6 17.6 1 +1875 8 3 16.7 16.5 16.5 1 +1875 8 4 16.0 15.8 15.8 1 +1875 8 5 16.8 16.6 16.6 1 +1875 8 6 17.5 17.3 17.3 1 +1875 8 7 18.1 17.9 17.9 1 +1875 8 8 17.5 17.3 17.3 1 +1875 8 9 17.9 17.7 17.7 1 +1875 8 10 18.4 18.2 18.2 1 +1875 8 11 17.3 17.1 17.1 1 +1875 8 12 17.9 17.7 17.7 1 +1875 8 13 16.9 16.7 16.7 1 +1875 8 14 14.2 14.0 14.0 1 +1875 8 15 14.8 14.6 14.6 1 +1875 8 16 14.6 14.4 14.4 1 +1875 8 17 18.7 18.5 18.5 1 +1875 8 18 17.7 17.5 17.5 1 +1875 8 19 16.6 16.4 16.4 1 +1875 8 20 14.5 14.3 14.3 1 +1875 8 21 14.1 13.9 13.9 1 +1875 8 22 13.1 12.9 12.9 1 +1875 8 23 13.1 12.9 12.9 1 +1875 8 24 14.4 14.2 14.2 1 +1875 8 25 17.8 17.6 17.6 1 +1875 8 26 17.7 17.5 17.5 1 +1875 8 27 16.4 16.2 16.2 1 +1875 8 28 14.7 14.6 14.6 1 +1875 8 29 12.6 12.5 12.5 1 +1875 8 30 11.5 11.4 11.4 1 +1875 8 31 13.6 13.5 13.5 1 +1875 9 1 12.2 12.1 12.1 1 +1875 9 2 12.2 12.1 12.1 1 +1875 9 3 13.7 13.6 13.6 1 +1875 9 4 14.4 14.3 14.3 1 +1875 9 5 13.2 13.1 13.1 1 +1875 9 6 14.2 14.1 14.1 1 +1875 9 7 15.5 15.4 15.4 1 +1875 9 8 14.9 14.8 14.8 1 +1875 9 9 13.8 13.7 13.7 1 +1875 9 10 13.4 13.3 13.3 1 +1875 9 11 13.3 13.2 13.2 1 +1875 9 12 16.0 15.9 15.9 1 +1875 9 13 13.0 12.9 12.9 1 +1875 9 14 13.5 13.4 13.4 1 +1875 9 15 11.2 11.1 11.1 1 +1875 9 16 12.8 12.7 12.7 1 +1875 9 17 13.7 13.6 13.6 1 +1875 9 18 14.5 14.4 14.4 1 +1875 9 19 12.3 12.2 12.2 1 +1875 9 20 11.8 11.7 11.7 1 +1875 9 21 6.2 6.1 6.1 1 +1875 9 22 4.3 4.2 4.2 1 +1875 9 23 3.2 3.1 3.1 1 +1875 9 24 3.2 3.1 3.1 1 +1875 9 25 6.2 6.1 6.1 1 +1875 9 26 8.4 8.3 8.3 1 +1875 9 27 12.3 12.2 12.2 1 +1875 9 28 11.9 11.8 11.8 1 +1875 9 29 10.6 10.5 10.5 1 +1875 9 30 6.3 6.2 6.2 1 +1875 10 1 5.7 5.6 5.6 1 +1875 10 2 10.2 10.1 10.1 1 +1875 10 3 11.0 10.9 10.9 1 +1875 10 4 9.7 9.6 9.6 1 +1875 10 5 11.7 11.6 11.6 1 +1875 10 6 11.2 11.1 11.1 1 +1875 10 7 8.2 8.1 8.1 1 +1875 10 8 6.1 6.0 6.0 1 +1875 10 9 5.9 5.8 5.8 1 +1875 10 10 6.8 6.7 6.7 1 +1875 10 11 7.8 7.7 7.7 1 +1875 10 12 8.4 8.3 8.3 1 +1875 10 13 6.8 6.7 6.7 1 +1875 10 14 4.9 4.8 4.8 1 +1875 10 15 3.1 3.0 3.0 1 +1875 10 16 4.0 3.9 3.9 1 +1875 10 17 3.1 3.0 3.0 1 +1875 10 18 0.9 0.8 0.8 1 +1875 10 19 0.8 0.7 0.7 1 +1875 10 20 0.2 0.1 0.1 1 +1875 10 21 1.3 1.2 1.2 1 +1875 10 22 2.0 1.9 1.9 1 +1875 10 23 1.0 0.9 0.9 1 +1875 10 24 0.1 0.0 0.0 1 +1875 10 25 0.1 0.0 0.0 1 +1875 10 26 0.6 0.5 0.5 1 +1875 10 27 0.5 0.4 0.4 1 +1875 10 28 0.3 0.2 0.2 1 +1875 10 29 0.8 0.7 0.7 1 +1875 10 30 -1.6 -1.7 -1.7 1 +1875 10 31 -1.9 -2.0 -2.0 1 +1875 11 1 -1.4 -1.5 -1.5 1 +1875 11 2 -1.4 -1.5 -1.5 1 +1875 11 3 0.1 0.0 0.0 1 +1875 11 4 2.7 2.6 2.6 1 +1875 11 5 0.8 0.7 0.7 1 +1875 11 6 4.1 4.0 4.0 1 +1875 11 7 5.7 5.6 5.6 1 +1875 11 8 5.3 5.2 5.2 1 +1875 11 9 4.3 4.2 4.2 1 +1875 11 10 1.4 1.3 1.3 1 +1875 11 11 -0.1 -0.2 -0.2 1 +1875 11 12 -2.4 -2.5 -2.5 1 +1875 11 13 -3.6 -3.7 -3.7 1 +1875 11 14 -2.3 -2.4 -2.4 1 +1875 11 15 -1.4 -1.5 -1.5 1 +1875 11 16 -2.1 -2.2 -2.2 1 +1875 11 17 -4.3 -4.4 -4.4 1 +1875 11 18 -2.1 -2.2 -2.2 1 +1875 11 19 -1.9 -2.0 -2.0 1 +1875 11 20 0.1 0.0 0.0 1 +1875 11 21 -0.6 -0.7 -0.7 1 +1875 11 22 -4.6 -4.7 -4.7 1 +1875 11 23 -4.1 -4.2 -4.2 1 +1875 11 24 -2.5 -2.6 -2.6 1 +1875 11 25 -3.0 -3.1 -3.1 1 +1875 11 26 -4.5 -4.6 -4.6 1 +1875 11 27 -6.5 -6.6 -6.6 1 +1875 11 28 -4.5 -4.6 -4.6 1 +1875 11 29 -6.8 -6.9 -6.9 1 +1875 11 30 -7.1 -7.2 -7.2 1 +1875 12 1 -4.5 -4.6 -4.6 1 +1875 12 2 -4.7 -4.8 -4.8 1 +1875 12 3 -8.5 -8.6 -8.6 1 +1875 12 4 -7.2 -7.3 -7.3 1 +1875 12 5 -8.2 -8.3 -8.3 1 +1875 12 6 -10.4 -10.5 -10.5 1 +1875 12 7 -2.7 -2.8 -2.8 1 +1875 12 8 -6.9 -7.0 -7.0 1 +1875 12 9 -9.8 -9.9 -9.9 1 +1875 12 10 -5.3 -5.4 -5.4 1 +1875 12 11 -8.6 -8.7 -8.7 1 +1875 12 12 -8.6 -8.7 -8.7 1 +1875 12 13 -13.3 -13.4 -13.4 1 +1875 12 14 -10.8 -10.9 -10.9 1 +1875 12 15 -3.7 -3.8 -3.8 1 +1875 12 16 -0.3 -0.4 -0.4 1 +1875 12 17 -4.5 -4.6 -4.6 1 +1875 12 18 -1.9 -2.0 -2.0 1 +1875 12 19 0.0 -0.1 -0.1 1 +1875 12 20 0.0 -0.1 -0.1 1 +1875 12 21 2.0 1.9 1.9 1 +1875 12 22 1.6 1.5 1.5 1 +1875 12 23 2.9 2.8 2.8 1 +1875 12 24 2.8 2.7 2.7 1 +1875 12 25 2.6 2.5 2.5 1 +1875 12 26 -3.8 -3.9 -3.9 1 +1875 12 27 -5.7 -5.8 -5.8 1 +1875 12 28 -4.3 -4.4 -4.4 1 +1875 12 29 -7.7 -7.8 -7.8 1 +1875 12 30 -7.1 -7.2 -7.2 1 +1875 12 31 -3.5 -3.6 -3.6 1 +1876 1 1 -4.3 -4.5 -4.5 1 +1876 1 2 -8.8 -9.0 -9.0 1 +1876 1 3 -11.3 -11.5 -11.5 1 +1876 1 4 -7.1 -7.3 -7.3 1 +1876 1 5 -5.8 -6.0 -6.0 1 +1876 1 6 -6.6 -6.8 -6.8 1 +1876 1 7 -8.8 -9.0 -9.0 1 +1876 1 8 -15.1 -15.3 -15.3 1 +1876 1 9 -8.4 -8.6 -8.6 1 +1876 1 10 -6.6 -6.8 -6.8 1 +1876 1 11 -8.7 -8.9 -8.9 1 +1876 1 12 -2.8 -3.0 -3.0 1 +1876 1 13 -3.9 -4.1 -4.1 1 +1876 1 14 -5.6 -5.8 -5.8 1 +1876 1 15 -6.4 -6.6 -6.6 1 +1876 1 16 1.6 1.4 1.4 1 +1876 1 17 0.3 0.1 0.1 1 +1876 1 18 -2.4 -2.6 -2.6 1 +1876 1 19 -2.8 -3.0 -3.0 1 +1876 1 20 2.5 2.3 2.3 1 +1876 1 21 -1.1 -1.3 -1.3 1 +1876 1 22 -5.5 -5.7 -5.7 1 +1876 1 23 -2.7 -2.9 -2.9 1 +1876 1 24 3.1 2.9 2.9 1 +1876 1 25 3.5 3.3 3.3 1 +1876 1 26 2.3 2.1 2.1 1 +1876 1 27 0.9 0.7 0.7 1 +1876 1 28 1.8 1.6 1.6 1 +1876 1 29 0.7 0.5 0.5 1 +1876 1 30 0.3 0.1 0.1 1 +1876 1 31 1.2 1.0 1.0 1 +1876 2 1 2.5 2.3 2.3 1 +1876 2 2 2.6 2.4 2.4 1 +1876 2 3 1.9 1.7 1.7 1 +1876 2 4 1.3 1.1 1.1 1 +1876 2 5 -0.7 -0.9 -0.9 1 +1876 2 6 -2.1 -2.3 -2.3 1 +1876 2 7 -4.3 -4.5 -4.5 1 +1876 2 8 -3.2 -3.4 -3.4 1 +1876 2 9 -2.7 -2.9 -2.9 1 +1876 2 10 -2.5 -2.7 -2.7 1 +1876 2 11 -2.9 -3.1 -3.1 1 +1876 2 12 -7.1 -7.3 -7.3 1 +1876 2 13 -8.8 -9.0 -9.0 1 +1876 2 14 -5.2 -5.4 -5.4 1 +1876 2 15 -5.5 -5.7 -5.7 1 +1876 2 16 -8.0 -8.2 -8.2 1 +1876 2 17 -10.5 -10.7 -10.7 1 +1876 2 18 -5.0 -5.2 -5.2 1 +1876 2 19 2.0 1.8 1.8 1 +1876 2 20 -1.4 -1.6 -1.6 1 +1876 2 21 -6.2 -6.4 -6.4 1 +1876 2 22 -1.9 -2.1 -2.1 1 +1876 2 23 1.4 1.2 1.2 1 +1876 2 24 -4.7 -4.9 -4.9 1 +1876 2 25 -8.3 -8.5 -8.5 1 +1876 2 26 -9.0 -9.2 -9.2 1 +1876 2 27 -8.3 -8.5 -8.5 1 +1876 2 28 -10.1 -10.3 -10.3 1 +1876 2 29 -13.2 -13.4 -13.4 1 +1876 3 1 -5.6 -5.8 -5.8 1 +1876 3 2 -1.1 -1.3 -1.3 1 +1876 3 3 -2.0 -2.2 -2.2 1 +1876 3 4 1.7 1.5 1.5 1 +1876 3 5 1.7 1.5 1.5 1 +1876 3 6 1.2 1.0 1.0 1 +1876 3 7 -3.8 -4.0 -4.0 1 +1876 3 8 -8.0 -8.2 -8.2 1 +1876 3 9 -3.6 -3.8 -3.8 1 +1876 3 10 0.4 0.2 0.2 1 +1876 3 11 1.4 1.2 1.2 1 +1876 3 12 1.0 0.8 0.8 1 +1876 3 13 -0.8 -1.0 -1.0 1 +1876 3 14 0.0 -0.2 -0.2 1 +1876 3 15 1.8 1.6 1.6 1 +1876 3 16 2.0 1.8 1.8 1 +1876 3 17 0.1 -0.1 -0.1 1 +1876 3 18 -0.1 -0.3 -0.3 1 +1876 3 19 -1.1 -1.3 -1.3 1 +1876 3 20 -3.4 -3.6 -3.6 1 +1876 3 21 -5.5 -5.7 -5.7 1 +1876 3 22 -3.7 -3.9 -3.9 1 +1876 3 23 -4.4 -4.6 -4.6 1 +1876 3 24 -6.8 -7.0 -7.0 1 +1876 3 25 -6.4 -6.6 -6.6 1 +1876 3 26 -6.7 -6.9 -6.9 1 +1876 3 27 -4.2 -4.4 -4.4 1 +1876 3 28 -2.5 -2.7 -2.7 1 +1876 3 29 0.0 -0.2 -0.2 1 +1876 3 30 0.0 -0.2 -0.2 1 +1876 3 31 0.7 0.5 0.5 1 +1876 4 1 0.7 0.5 0.5 1 +1876 4 2 1.3 1.1 1.1 1 +1876 4 3 2.7 2.5 2.5 1 +1876 4 4 2.2 2.0 2.0 1 +1876 4 5 6.5 6.3 6.3 1 +1876 4 6 6.7 6.5 6.5 1 +1876 4 7 5.7 5.5 5.5 1 +1876 4 8 7.8 7.6 7.6 1 +1876 4 9 9.1 8.9 8.9 1 +1876 4 10 6.1 5.9 5.9 1 +1876 4 11 -2.1 -2.3 -2.3 1 +1876 4 12 -1.0 -1.2 -1.2 1 +1876 4 13 1.5 1.3 1.3 1 +1876 4 14 -0.3 -0.5 -0.5 1 +1876 4 15 -0.2 -0.4 -0.4 1 +1876 4 16 -1.0 -1.2 -1.2 1 +1876 4 17 2.3 2.1 2.1 1 +1876 4 18 3.8 3.6 3.6 1 +1876 4 19 6.0 5.8 5.8 1 +1876 4 20 7.9 7.7 7.7 1 +1876 4 21 9.8 9.6 9.6 1 +1876 4 22 8.4 8.2 8.2 1 +1876 4 23 7.0 6.8 6.8 1 +1876 4 24 7.9 7.7 7.7 1 +1876 4 25 5.5 5.3 5.3 1 +1876 4 26 5.1 4.9 4.9 1 +1876 4 27 3.8 3.6 3.6 1 +1876 4 28 1.3 1.1 1.1 1 +1876 4 29 0.9 0.7 0.7 1 +1876 4 30 1.8 1.6 1.6 1 +1876 5 1 3.4 3.1 3.1 1 +1876 5 2 0.8 0.5 0.5 1 +1876 5 3 3.3 3.0 3.0 1 +1876 5 4 4.9 4.6 4.6 1 +1876 5 5 5.6 5.3 5.3 1 +1876 5 6 3.4 3.1 3.1 1 +1876 5 7 1.4 1.1 1.1 1 +1876 5 8 1.7 1.4 1.4 1 +1876 5 9 5.2 4.9 4.9 1 +1876 5 10 3.2 2.9 2.9 1 +1876 5 11 3.4 3.1 3.1 1 +1876 5 12 4.5 4.2 4.2 1 +1876 5 13 6.1 5.8 5.8 1 +1876 5 14 4.7 4.4 4.4 1 +1876 5 15 5.2 4.9 4.9 1 +1876 5 16 10.3 10.0 10.0 1 +1876 5 17 4.8 4.5 4.5 1 +1876 5 18 0.5 0.2 0.2 1 +1876 5 19 2.8 2.5 2.5 1 +1876 5 20 7.7 7.4 7.4 1 +1876 5 21 7.5 7.2 7.2 1 +1876 5 22 8.7 8.4 8.4 1 +1876 5 23 9.4 9.1 9.1 1 +1876 5 24 7.5 7.2 7.2 1 +1876 5 25 8.3 8.0 8.0 1 +1876 5 26 4.1 3.8 3.8 1 +1876 5 27 5.7 5.4 5.4 1 +1876 5 28 12.4 12.1 12.1 1 +1876 5 29 9.3 9.0 9.0 1 +1876 5 30 14.6 14.3 14.3 1 +1876 5 31 13.8 13.5 13.5 1 +1876 6 1 13.3 13.0 13.0 1 +1876 6 2 15.1 14.8 14.8 1 +1876 6 3 15.5 15.3 15.3 1 +1876 6 4 14.6 14.4 14.4 1 +1876 6 5 12.8 12.6 12.6 1 +1876 6 6 14.5 14.3 14.3 1 +1876 6 7 13.2 13.0 13.0 1 +1876 6 8 14.5 14.3 14.3 1 +1876 6 9 12.8 12.6 12.6 1 +1876 6 10 19.0 18.8 18.8 1 +1876 6 11 11.3 11.1 11.1 1 +1876 6 12 16.7 16.5 16.5 1 +1876 6 13 19.2 19.0 19.0 1 +1876 6 14 21.0 20.8 20.8 1 +1876 6 15 19.8 19.6 19.6 1 +1876 6 16 19.2 19.0 19.0 1 +1876 6 17 18.4 18.2 18.2 1 +1876 6 18 16.6 16.4 16.4 1 +1876 6 19 17.3 17.1 17.1 1 +1876 6 20 17.4 17.2 17.2 1 +1876 6 21 16.4 16.2 16.2 1 +1876 6 22 16.1 15.9 15.9 1 +1876 6 23 17.6 17.4 17.4 1 +1876 6 24 20.2 20.0 20.0 1 +1876 6 25 19.1 18.9 18.9 1 +1876 6 26 19.6 19.4 19.4 1 +1876 6 27 17.1 16.9 16.9 1 +1876 6 28 21.8 21.6 21.6 1 +1876 6 29 19.4 19.2 19.2 1 +1876 6 30 19.1 18.9 18.9 1 +1876 7 1 19.1 18.9 18.9 1 +1876 7 2 21.1 20.9 20.9 1 +1876 7 3 19.1 18.9 18.9 1 +1876 7 4 17.3 17.1 17.1 1 +1876 7 5 20.5 20.3 20.3 1 +1876 7 6 19.3 19.1 19.1 1 +1876 7 7 20.2 20.0 20.0 1 +1876 7 8 20.4 20.2 20.2 1 +1876 7 9 20.7 20.5 20.5 1 +1876 7 10 20.5 20.3 20.3 1 +1876 7 11 17.4 17.2 17.2 1 +1876 7 12 15.6 15.4 15.4 1 +1876 7 13 13.6 13.4 13.4 1 +1876 7 14 16.5 16.3 16.3 1 +1876 7 15 17.3 17.1 17.1 1 +1876 7 16 16.8 16.6 16.6 1 +1876 7 17 18.7 18.5 18.5 1 +1876 7 18 14.7 14.5 14.5 1 +1876 7 19 13.1 12.9 12.9 1 +1876 7 20 15.5 15.3 15.3 1 +1876 7 21 17.2 17.0 17.0 1 +1876 7 22 17.2 17.0 17.0 1 +1876 7 23 18.8 18.6 18.6 1 +1876 7 24 19.9 19.7 19.7 1 +1876 7 25 21.6 21.4 21.4 1 +1876 7 26 18.6 18.4 18.4 1 +1876 7 27 15.0 14.8 14.8 1 +1876 7 28 12.8 12.6 12.6 1 +1876 7 29 14.5 14.3 14.3 1 +1876 7 30 16.1 15.9 15.9 1 +1876 7 31 18.4 18.2 18.2 1 +1876 8 1 19.2 19.0 19.0 1 +1876 8 2 16.5 16.3 16.3 1 +1876 8 3 16.0 15.8 15.8 1 +1876 8 4 15.9 15.7 15.7 1 +1876 8 5 16.0 15.8 15.8 1 +1876 8 6 16.0 15.8 15.8 1 +1876 8 7 16.1 15.9 15.9 1 +1876 8 8 16.4 16.2 16.2 1 +1876 8 9 17.7 17.5 17.5 1 +1876 8 10 16.9 16.7 16.7 1 +1876 8 11 16.7 16.5 16.5 1 +1876 8 12 19.5 19.3 19.3 1 +1876 8 13 21.3 21.1 21.1 1 +1876 8 14 18.3 18.1 18.1 1 +1876 8 15 13.6 13.4 13.4 1 +1876 8 16 14.7 14.5 14.5 1 +1876 8 17 14.8 14.6 14.6 1 +1876 8 18 18.6 18.4 18.4 1 +1876 8 19 19.6 19.4 19.4 1 +1876 8 20 18.8 18.6 18.6 1 +1876 8 21 17.2 17.0 17.0 1 +1876 8 22 17.5 17.3 17.3 1 +1876 8 23 18.0 17.8 17.8 1 +1876 8 24 15.8 15.6 15.6 1 +1876 8 25 13.5 13.3 13.3 1 +1876 8 26 11.4 11.2 11.2 1 +1876 8 27 13.5 13.3 13.3 1 +1876 8 28 13.4 13.2 13.2 1 +1876 8 29 15.1 14.9 14.9 1 +1876 8 30 13.2 13.0 13.0 1 +1876 8 31 13.6 13.4 13.4 1 +1876 9 1 12.9 12.7 12.7 1 +1876 9 2 12.8 12.6 12.6 1 +1876 9 3 13.9 13.7 13.7 1 +1876 9 4 11.2 11.1 11.1 1 +1876 9 5 13.2 13.1 13.1 1 +1876 9 6 15.9 15.8 15.8 1 +1876 9 7 16.2 16.1 16.1 1 +1876 9 8 14.7 14.6 14.6 1 +1876 9 9 13.5 13.4 13.4 1 +1876 9 10 12.7 12.6 12.6 1 +1876 9 11 12.8 12.7 12.7 1 +1876 9 12 13.4 13.3 13.3 1 +1876 9 13 13.0 12.9 12.9 1 +1876 9 14 12.5 12.4 12.4 1 +1876 9 15 11.6 11.5 11.5 1 +1876 9 16 12.6 12.5 12.5 1 +1876 9 17 12.1 12.0 12.0 1 +1876 9 18 12.3 12.2 12.2 1 +1876 9 19 11.3 11.2 11.2 1 +1876 9 20 10.6 10.5 10.5 1 +1876 9 21 9.1 9.0 9.0 1 +1876 9 22 6.8 6.7 6.7 1 +1876 9 23 5.7 5.6 5.6 1 +1876 9 24 5.3 5.2 5.2 1 +1876 9 25 4.9 4.8 4.8 1 +1876 9 26 7.0 6.9 6.9 1 +1876 9 27 6.8 6.7 6.7 1 +1876 9 28 6.5 6.4 6.4 1 +1876 9 29 6.5 6.4 6.4 1 +1876 9 30 5.6 5.5 5.5 1 +1876 10 1 5.6 5.5 5.5 1 +1876 10 2 4.8 4.7 4.7 1 +1876 10 3 2.4 2.3 2.3 1 +1876 10 4 5.2 5.1 5.1 1 +1876 10 5 6.1 6.0 6.0 1 +1876 10 6 7.5 7.4 7.4 1 +1876 10 7 7.3 7.2 7.2 1 +1876 10 8 10.7 10.6 10.6 1 +1876 10 9 9.7 9.6 9.6 1 +1876 10 10 7.4 7.3 7.3 1 +1876 10 11 9.8 9.7 9.7 1 +1876 10 12 12.5 12.4 12.4 1 +1876 10 13 9.7 9.6 9.6 1 +1876 10 14 11.3 11.2 11.2 1 +1876 10 15 8.8 8.7 8.7 1 +1876 10 16 8.0 7.9 7.9 1 +1876 10 17 8.3 8.2 8.2 1 +1876 10 18 6.0 5.9 5.9 1 +1876 10 19 3.2 3.1 3.1 1 +1876 10 20 1.9 1.8 1.8 1 +1876 10 21 2.5 2.4 2.4 1 +1876 10 22 1.3 1.2 1.2 1 +1876 10 23 2.3 2.2 2.2 1 +1876 10 24 1.6 1.5 1.5 1 +1876 10 25 4.4 4.3 4.3 1 +1876 10 26 4.1 4.0 4.0 1 +1876 10 27 5.6 5.5 5.5 1 +1876 10 28 6.8 6.7 6.7 1 +1876 10 29 6.8 6.7 6.7 1 +1876 10 30 1.5 1.4 1.4 1 +1876 10 31 1.3 1.2 1.2 1 +1876 11 1 1.0 0.9 0.9 1 +1876 11 2 -2.0 -2.1 -2.1 1 +1876 11 3 -1.6 -1.7 -1.7 1 +1876 11 4 -2.8 -2.9 -2.9 1 +1876 11 5 -6.5 -6.6 -6.6 1 +1876 11 6 0.2 0.1 0.1 1 +1876 11 7 0.0 -0.1 -0.1 1 +1876 11 8 -1.6 -1.7 -1.7 1 +1876 11 9 -4.0 -4.1 -4.1 1 +1876 11 10 -5.8 -5.9 -5.9 1 +1876 11 11 -6.8 -6.9 -6.9 1 +1876 11 12 -3.7 -3.8 -3.8 1 +1876 11 13 -3.9 -4.0 -4.0 1 +1876 11 14 -4.2 -4.3 -4.3 1 +1876 11 15 -2.4 -2.5 -2.5 1 +1876 11 16 1.6 1.5 1.5 1 +1876 11 17 -0.4 -0.5 -0.5 1 +1876 11 18 -3.8 -3.9 -3.9 1 +1876 11 19 -0.9 -1.0 -1.0 1 +1876 11 20 -0.4 -0.5 -0.5 1 +1876 11 21 -2.1 -2.2 -2.2 1 +1876 11 22 -3.4 -3.5 -3.5 1 +1876 11 23 -2.1 -2.2 -2.2 1 +1876 11 24 -2.7 -2.8 -2.8 1 +1876 11 25 -3.4 -3.5 -3.5 1 +1876 11 26 2.3 2.2 2.2 1 +1876 11 27 1.8 1.7 1.7 1 +1876 11 28 2.1 2.0 2.0 1 +1876 11 29 3.0 2.9 2.9 1 +1876 11 30 -0.1 -0.2 -0.2 1 +1876 12 1 -4.5 -4.6 -4.6 1 +1876 12 2 -6.3 -6.4 -6.4 1 +1876 12 3 -7.4 -7.5 -7.5 1 +1876 12 4 -4.0 -4.1 -4.1 1 +1876 12 5 -1.3 -1.4 -1.4 1 +1876 12 6 -1.6 -1.7 -1.7 1 +1876 12 7 -1.4 -1.5 -1.5 1 +1876 12 8 0.3 0.2 0.2 1 +1876 12 9 -0.9 -1.0 -1.0 1 +1876 12 10 -0.7 -0.8 -0.8 1 +1876 12 11 -4.5 -4.6 -4.6 1 +1876 12 12 -6.8 -6.9 -6.9 1 +1876 12 13 -7.0 -7.1 -7.1 1 +1876 12 14 -5.6 -5.7 -5.7 1 +1876 12 15 -8.3 -8.4 -8.4 1 +1876 12 16 -7.7 -7.8 -7.8 1 +1876 12 17 -5.5 -5.6 -5.6 1 +1876 12 18 -7.1 -7.2 -7.2 1 +1876 12 19 -8.9 -9.0 -9.0 1 +1876 12 20 -14.6 -14.7 -14.7 1 +1876 12 21 -12.4 -12.5 -12.5 1 +1876 12 22 -13.1 -13.2 -13.2 1 +1876 12 23 -14.8 -14.9 -14.9 1 +1876 12 24 -21.3 -21.4 -21.4 1 +1876 12 25 -12.6 -12.7 -12.7 1 +1876 12 26 -15.5 -15.7 -15.7 1 +1876 12 27 -9.6 -9.8 -9.8 1 +1876 12 28 -4.5 -4.7 -4.7 1 +1876 12 29 -2.7 -2.9 -2.9 1 +1876 12 30 -12.6 -12.8 -12.8 1 +1876 12 31 -1.9 -2.1 -2.1 1 +1877 1 1 -3.7 -3.9 -3.9 1 +1877 1 2 -11.1 -11.3 -11.3 1 +1877 1 3 -20.5 -20.7 -20.7 1 +1877 1 4 -8.9 -9.1 -9.1 1 +1877 1 5 -7.2 -7.4 -7.4 1 +1877 1 6 -3.3 -3.5 -3.5 1 +1877 1 7 1.4 1.2 1.2 1 +1877 1 8 2.6 2.4 2.4 1 +1877 1 9 2.0 1.8 1.8 1 +1877 1 10 -8.9 -9.1 -9.1 1 +1877 1 11 -15.0 -15.2 -15.2 1 +1877 1 12 -13.5 -13.7 -13.7 1 +1877 1 13 -9.5 -9.7 -9.7 1 +1877 1 14 -5.9 -6.1 -6.1 1 +1877 1 15 -1.8 -2.0 -2.0 1 +1877 1 16 -2.2 -2.4 -2.4 1 +1877 1 17 -2.4 -2.6 -2.6 1 +1877 1 18 -1.3 -1.5 -1.5 1 +1877 1 19 -1.8 -2.0 -2.0 1 +1877 1 20 -0.1 -0.3 -0.3 1 +1877 1 21 -2.4 -2.6 -2.6 1 +1877 1 22 1.3 1.1 1.1 1 +1877 1 23 -4.4 -4.6 -4.6 1 +1877 1 24 -5.6 -5.8 -5.8 1 +1877 1 25 -0.8 -1.0 -1.0 1 +1877 1 26 -3.1 -3.3 -3.3 1 +1877 1 27 -4.8 -5.0 -5.0 1 +1877 1 28 -4.8 -5.0 -5.0 1 +1877 1 29 0.2 0.0 0.0 1 +1877 1 30 0.2 0.0 0.0 1 +1877 1 31 -1.0 -1.2 -1.2 1 +1877 2 1 -2.6 -2.8 -2.8 1 +1877 2 2 -6.5 -6.7 -6.7 1 +1877 2 3 -1.8 -2.0 -2.0 1 +1877 2 4 0.0 -0.2 -0.2 1 +1877 2 5 0.0 -0.2 -0.2 1 +1877 2 6 -1.2 -1.4 -1.4 1 +1877 2 7 -3.0 -3.2 -3.2 1 +1877 2 8 -1.9 -2.1 -2.1 1 +1877 2 9 -4.9 -5.1 -5.1 1 +1877 2 10 -6.1 -6.3 -6.3 1 +1877 2 11 -5.7 -5.9 -5.9 1 +1877 2 12 -8.0 -8.2 -8.2 1 +1877 2 13 -14.0 -14.2 -14.2 1 +1877 2 14 -10.2 -10.4 -10.4 1 +1877 2 15 -1.9 -2.1 -2.1 1 +1877 2 16 -2.9 -3.1 -3.1 1 +1877 2 17 -2.4 -2.6 -2.6 1 +1877 2 18 -9.8 -10.0 -10.0 1 +1877 2 19 -4.7 -4.9 -4.9 1 +1877 2 20 0.8 0.6 0.6 1 +1877 2 21 -3.9 -4.1 -4.1 1 +1877 2 22 -7.0 -7.2 -7.2 1 +1877 2 23 -6.5 -6.7 -6.7 1 +1877 2 24 -6.4 -6.6 -6.6 1 +1877 2 25 -2.0 -2.2 -2.2 1 +1877 2 26 -12.0 -12.2 -12.2 1 +1877 2 27 -14.5 -14.7 -14.7 1 +1877 2 28 -10.0 -10.2 -10.2 1 +1877 3 1 -11.5 -11.7 -11.7 1 +1877 3 2 -7.7 -7.9 -7.9 1 +1877 3 3 -0.7 -0.9 -0.9 1 +1877 3 4 -0.5 -0.7 -0.7 1 +1877 3 5 0.2 0.0 0.0 1 +1877 3 6 -1.0 -1.2 -1.2 1 +1877 3 7 -1.8 -2.0 -2.0 1 +1877 3 8 -10.5 -10.7 -10.7 1 +1877 3 9 -12.9 -13.1 -13.1 1 +1877 3 10 -7.7 -7.9 -7.9 1 +1877 3 11 -3.6 -3.8 -3.8 1 +1877 3 12 -0.1 -0.3 -0.3 1 +1877 3 13 -0.3 -0.5 -0.5 1 +1877 3 14 0.4 0.2 0.2 1 +1877 3 15 -3.8 -4.0 -4.0 1 +1877 3 16 -7.7 -7.9 -7.9 1 +1877 3 17 -5.1 -5.3 -5.3 1 +1877 3 18 -6.1 -6.3 -6.3 1 +1877 3 19 -3.7 -3.9 -3.9 1 +1877 3 20 -4.5 -4.7 -4.7 1 +1877 3 21 -7.2 -7.4 -7.4 1 +1877 3 22 -9.3 -9.5 -9.5 1 +1877 3 23 -9.4 -9.6 -9.6 1 +1877 3 24 -8.6 -8.8 -8.8 1 +1877 3 25 -7.4 -7.6 -7.6 1 +1877 3 26 -7.5 -7.7 -7.7 1 +1877 3 27 -0.9 -1.1 -1.1 1 +1877 3 28 0.0 -0.2 -0.2 1 +1877 3 29 -1.2 -1.4 -1.4 1 +1877 3 30 -4.0 -4.2 -4.2 1 +1877 3 31 -0.3 -0.5 -0.5 1 +1877 4 1 0.8 0.6 0.6 1 +1877 4 2 0.0 -0.2 -0.2 1 +1877 4 3 -0.1 -0.3 -0.3 1 +1877 4 4 -2.0 -2.2 -2.2 1 +1877 4 5 2.1 1.9 1.9 1 +1877 4 6 1.1 0.9 0.9 1 +1877 4 7 3.0 2.8 2.8 1 +1877 4 8 0.1 -0.1 -0.1 1 +1877 4 9 -4.3 -4.5 -4.5 1 +1877 4 10 -5.7 -5.9 -5.9 1 +1877 4 11 -3.3 -3.5 -3.5 1 +1877 4 12 -2.6 -2.8 -2.8 1 +1877 4 13 -0.7 -0.9 -0.9 1 +1877 4 14 -3.7 -3.9 -3.9 1 +1877 4 15 -2.0 -2.2 -2.2 1 +1877 4 16 -1.6 -1.8 -1.8 1 +1877 4 17 -0.8 -1.0 -1.0 1 +1877 4 18 2.8 2.6 2.6 1 +1877 4 19 1.3 1.1 1.1 1 +1877 4 20 -4.7 -4.9 -4.9 1 +1877 4 21 -3.2 -3.4 -3.4 1 +1877 4 22 -0.3 -0.5 -0.5 1 +1877 4 23 0.6 0.4 0.4 1 +1877 4 24 2.4 2.1 2.1 1 +1877 4 25 1.8 1.5 1.5 1 +1877 4 26 1.6 1.3 1.3 1 +1877 4 27 2.4 2.1 2.1 1 +1877 4 28 5.0 4.7 4.7 1 +1877 4 29 6.0 5.7 5.7 1 +1877 4 30 3.4 3.1 3.1 1 +1877 5 1 2.4 2.1 2.1 1 +1877 5 2 1.0 0.7 0.7 1 +1877 5 3 1.7 1.4 1.4 1 +1877 5 4 0.9 0.6 0.6 1 +1877 5 5 2.3 2.0 2.0 1 +1877 5 6 4.2 3.9 3.9 1 +1877 5 7 5.6 5.3 5.3 1 +1877 5 8 5.4 5.1 5.1 1 +1877 5 9 7.3 7.0 7.0 1 +1877 5 10 5.9 5.6 5.6 1 +1877 5 11 4.9 4.6 4.6 1 +1877 5 12 5.9 5.6 5.6 1 +1877 5 13 9.6 9.3 9.3 1 +1877 5 14 4.9 4.6 4.6 1 +1877 5 15 4.1 3.7 3.7 1 +1877 5 16 4.4 4.1 4.1 1 +1877 5 17 4.9 4.6 4.6 1 +1877 5 18 7.2 6.9 6.9 1 +1877 5 19 7.2 6.9 6.9 1 +1877 5 20 8.2 7.9 7.9 1 +1877 5 21 7.0 6.7 6.7 1 +1877 5 22 5.3 5.0 5.0 1 +1877 5 23 3.4 3.1 3.1 1 +1877 5 24 4.3 4.0 4.0 1 +1877 5 25 5.5 5.2 5.2 1 +1877 5 26 5.5 5.2 5.2 1 +1877 5 27 9.2 8.9 8.9 1 +1877 5 28 10.2 9.9 9.9 1 +1877 5 29 11.2 10.9 10.9 1 +1877 5 30 10.5 10.2 10.2 1 +1877 5 31 11.6 11.3 11.3 1 +1877 6 1 13.0 12.7 12.7 1 +1877 6 2 11.7 11.4 11.4 1 +1877 6 3 14.8 14.5 14.5 1 +1877 6 4 17.9 17.6 17.6 1 +1877 6 5 20.5 20.2 20.2 1 +1877 6 6 21.4 21.1 21.1 1 +1877 6 7 17.6 17.3 17.3 1 +1877 6 8 15.3 15.0 15.0 1 +1877 6 9 15.1 14.8 14.8 1 +1877 6 10 16.7 16.4 16.4 1 +1877 6 11 17.0 16.8 16.8 1 +1877 6 12 15.8 15.6 15.6 1 +1877 6 13 10.5 10.3 10.3 1 +1877 6 14 12.6 12.4 12.4 1 +1877 6 15 13.6 13.4 13.4 1 +1877 6 16 15.9 15.7 15.7 1 +1877 6 17 20.8 20.6 20.6 1 +1877 6 18 15.4 15.2 15.2 1 +1877 6 19 10.2 10.0 10.0 1 +1877 6 20 10.2 10.0 10.0 1 +1877 6 21 10.9 10.7 10.7 1 +1877 6 22 14.2 14.0 14.0 1 +1877 6 23 15.8 15.6 15.6 1 +1877 6 24 13.3 13.1 13.1 1 +1877 6 25 15.3 15.1 15.1 1 +1877 6 26 13.4 13.2 13.2 1 +1877 6 27 12.6 12.4 12.4 1 +1877 6 28 13.7 13.5 13.5 1 +1877 6 29 14.7 14.5 14.5 1 +1877 6 30 13.8 13.6 13.6 1 +1877 7 1 16.9 16.7 16.7 1 +1877 7 2 14.7 14.5 14.5 1 +1877 7 3 15.1 14.9 14.9 1 +1877 7 4 16.6 16.4 16.4 1 +1877 7 5 17.3 17.1 17.1 1 +1877 7 6 15.5 15.3 15.3 1 +1877 7 7 11.7 11.5 11.5 1 +1877 7 8 12.3 12.1 12.1 1 +1877 7 9 15.4 15.2 15.2 1 +1877 7 10 15.1 14.9 14.9 1 +1877 7 11 17.0 16.8 16.8 1 +1877 7 12 16.7 16.5 16.5 1 +1877 7 13 17.5 17.3 17.3 1 +1877 7 14 16.7 16.5 16.5 1 +1877 7 15 18.6 18.4 18.4 1 +1877 7 16 19.5 19.3 19.3 1 +1877 7 17 20.5 20.3 20.3 1 +1877 7 18 15.8 15.6 15.6 1 +1877 7 19 15.3 15.1 15.1 1 +1877 7 20 16.2 16.0 16.0 1 +1877 7 21 13.0 12.8 12.8 1 +1877 7 22 14.1 13.9 13.9 1 +1877 7 23 17.7 17.5 17.5 1 +1877 7 24 17.8 17.6 17.6 1 +1877 7 25 20.5 20.3 20.3 1 +1877 7 26 19.8 19.6 19.6 1 +1877 7 27 17.1 16.9 16.9 1 +1877 7 28 17.1 16.9 16.9 1 +1877 7 29 15.7 15.5 15.5 1 +1877 7 30 13.6 13.4 13.4 1 +1877 7 31 14.9 14.7 14.7 1 +1877 8 1 12.7 12.5 12.5 1 +1877 8 2 14.8 14.6 14.6 1 +1877 8 3 13.9 13.7 13.7 1 +1877 8 4 14.4 14.2 14.2 1 +1877 8 5 14.6 14.4 14.4 1 +1877 8 6 14.6 14.4 14.4 1 +1877 8 7 14.1 13.9 13.9 1 +1877 8 8 16.1 15.9 15.9 1 +1877 8 9 17.0 16.8 16.8 1 +1877 8 10 17.5 17.3 17.3 1 +1877 8 11 17.8 17.6 17.6 1 +1877 8 12 17.7 17.5 17.5 1 +1877 8 13 18.5 18.3 18.3 1 +1877 8 14 18.4 18.2 18.2 1 +1877 8 15 18.7 18.5 18.5 1 +1877 8 16 17.4 17.2 17.2 1 +1877 8 17 17.0 16.8 16.8 1 +1877 8 18 12.2 12.0 12.0 1 +1877 8 19 10.6 10.4 10.4 1 +1877 8 20 11.2 11.0 11.0 1 +1877 8 21 12.7 12.5 12.5 1 +1877 8 22 15.3 15.1 15.1 1 +1877 8 23 14.7 14.5 14.5 1 +1877 8 24 12.3 12.1 12.1 1 +1877 8 25 11.1 10.9 10.9 1 +1877 8 26 12.5 12.3 12.3 1 +1877 8 27 10.2 10.0 10.0 1 +1877 8 28 10.6 10.4 10.4 1 +1877 8 29 11.2 11.0 11.0 1 +1877 8 30 11.0 10.8 10.8 1 +1877 8 31 12.3 12.1 12.1 1 +1877 9 1 11.6 11.4 11.4 1 +1877 9 2 11.3 11.1 11.1 1 +1877 9 3 10.5 10.3 10.3 1 +1877 9 4 10.1 9.9 9.9 1 +1877 9 5 10.6 10.4 10.4 1 +1877 9 6 10.3 10.1 10.1 1 +1877 9 7 9.7 9.5 9.5 1 +1877 9 8 9.0 8.8 8.8 1 +1877 9 9 11.1 10.9 10.9 1 +1877 9 10 10.6 10.5 10.5 1 +1877 9 11 10.5 10.4 10.4 1 +1877 9 12 11.9 11.8 11.8 1 +1877 9 13 12.1 12.0 12.0 1 +1877 9 14 11.7 11.6 11.6 1 +1877 9 15 10.9 10.8 10.8 1 +1877 9 16 9.0 8.9 8.9 1 +1877 9 17 6.9 6.8 6.8 1 +1877 9 18 6.2 6.1 6.1 1 +1877 9 19 5.0 4.9 4.9 1 +1877 9 20 4.6 4.5 4.5 1 +1877 9 21 4.0 3.9 3.9 1 +1877 9 22 3.5 3.4 3.4 1 +1877 9 23 2.4 2.3 2.3 1 +1877 9 24 2.5 2.4 2.4 1 +1877 9 25 2.5 2.4 2.4 1 +1877 9 26 5.4 5.3 5.3 1 +1877 9 27 8.9 8.8 8.8 1 +1877 9 28 11.4 11.3 11.3 1 +1877 9 29 9.3 9.2 9.2 1 +1877 9 30 5.4 5.3 5.3 1 +1877 10 1 6.6 6.5 6.5 1 +1877 10 2 6.4 6.3 6.3 1 +1877 10 3 5.4 5.3 5.3 1 +1877 10 4 4.9 4.8 4.8 1 +1877 10 5 3.9 3.8 3.8 1 +1877 10 6 7.3 7.2 7.2 1 +1877 10 7 8.0 7.9 7.9 1 +1877 10 8 4.5 4.4 4.4 1 +1877 10 9 4.3 4.2 4.2 1 +1877 10 10 8.5 8.4 8.4 1 +1877 10 11 8.2 8.1 8.1 1 +1877 10 12 4.9 4.8 4.8 1 +1877 10 13 4.9 4.8 4.8 1 +1877 10 14 11.0 10.9 10.9 1 +1877 10 15 11.6 11.5 11.5 1 +1877 10 16 7.6 7.5 7.5 1 +1877 10 17 3.6 3.5 3.5 1 +1877 10 18 1.5 1.4 1.4 1 +1877 10 19 0.9 0.8 0.8 1 +1877 10 20 2.3 2.2 2.2 1 +1877 10 21 -0.7 -0.8 -0.8 1 +1877 10 22 5.3 5.2 5.2 1 +1877 10 23 8.4 8.3 8.3 1 +1877 10 24 6.0 5.9 5.9 1 +1877 10 25 6.3 6.2 6.2 1 +1877 10 26 5.7 5.6 5.6 1 +1877 10 27 3.7 3.6 3.6 1 +1877 10 28 2.2 2.1 2.1 1 +1877 10 29 1.8 1.7 1.7 1 +1877 10 30 6.6 6.5 6.5 1 +1877 10 31 7.4 7.3 7.3 1 +1877 11 1 5.4 5.3 5.3 1 +1877 11 2 3.4 3.3 3.3 1 +1877 11 3 5.9 5.8 5.8 1 +1877 11 4 4.9 4.8 4.8 1 +1877 11 5 5.9 5.8 5.8 1 +1877 11 6 7.8 7.7 7.7 1 +1877 11 7 9.7 9.6 9.6 1 +1877 11 8 6.4 6.3 6.3 1 +1877 11 9 5.6 5.5 5.5 1 +1877 11 10 7.2 7.1 7.1 1 +1877 11 11 7.0 6.9 6.9 1 +1877 11 12 6.3 6.2 6.2 1 +1877 11 13 6.5 6.4 6.4 1 +1877 11 14 7.1 7.0 7.0 1 +1877 11 15 6.8 6.7 6.7 1 +1877 11 16 7.7 7.6 7.6 1 +1877 11 17 5.7 5.6 5.6 1 +1877 11 18 4.2 4.1 4.1 1 +1877 11 19 4.3 4.2 4.2 1 +1877 11 20 4.8 4.7 4.7 1 +1877 11 21 3.4 3.3 3.3 1 +1877 11 22 3.5 3.4 3.4 1 +1877 11 23 5.6 5.5 5.5 1 +1877 11 24 4.3 4.2 4.2 1 +1877 11 25 2.5 2.4 2.4 1 +1877 11 26 2.3 2.2 2.2 1 +1877 11 27 0.4 0.3 0.3 1 +1877 11 28 2.8 2.7 2.7 1 +1877 11 29 2.3 2.2 2.2 1 +1877 11 30 4.6 4.5 4.5 1 +1877 12 1 4.8 4.7 4.7 1 +1877 12 2 4.6 4.5 4.5 1 +1877 12 3 4.0 3.9 3.9 1 +1877 12 4 3.4 3.3 3.3 1 +1877 12 5 2.8 2.7 2.7 1 +1877 12 6 4.3 4.2 4.2 1 +1877 12 7 4.1 4.0 4.0 1 +1877 12 8 3.6 3.5 3.5 1 +1877 12 9 2.6 2.5 2.5 1 +1877 12 10 4.6 4.5 4.5 1 +1877 12 11 2.1 2.0 2.0 1 +1877 12 12 1.2 1.1 1.1 1 +1877 12 13 3.2 3.1 3.1 1 +1877 12 14 1.0 0.9 0.9 1 +1877 12 15 0.7 0.6 0.6 1 +1877 12 16 0.2 0.1 0.1 1 +1877 12 17 -0.2 -0.3 -0.3 1 +1877 12 18 -3.6 -3.7 -3.7 1 +1877 12 19 -2.1 -2.2 -2.2 1 +1877 12 20 0.4 0.2 0.2 1 +1877 12 21 2.0 1.8 1.8 1 +1877 12 22 -0.1 -0.3 -0.3 1 +1877 12 23 0.0 -0.2 -0.2 1 +1877 12 24 -3.2 -3.4 -3.4 1 +1877 12 25 1.0 0.8 0.8 1 +1877 12 26 -0.1 -0.3 -0.3 1 +1877 12 27 -1.5 -1.7 -1.7 1 +1877 12 28 -1.9 -2.1 -2.1 1 +1877 12 29 -6.5 -6.7 -6.7 1 +1877 12 30 -12.3 -12.5 -12.5 1 +1877 12 31 -0.2 -0.4 -0.4 1 +1878 1 1 -1.0 -1.2 -1.2 1 +1878 1 2 0.5 0.3 0.3 1 +1878 1 3 1.5 1.3 1.3 1 +1878 1 4 -0.7 -0.9 -0.9 1 +1878 1 5 -5.1 -5.3 -5.3 1 +1878 1 6 -1.7 -1.9 -1.9 1 +1878 1 7 -3.1 -3.3 -3.3 1 +1878 1 8 -5.6 -5.8 -5.8 1 +1878 1 9 -8.5 -8.7 -8.7 1 +1878 1 10 -8.9 -9.1 -9.1 1 +1878 1 11 -5.1 -5.4 -5.4 1 +1878 1 12 -2.8 -3.1 -3.1 1 +1878 1 13 -2.8 -3.1 -3.1 1 +1878 1 14 -0.1 -0.4 -0.4 1 +1878 1 15 -3.5 -3.8 -3.8 1 +1878 1 16 -5.6 -5.9 -5.9 1 +1878 1 17 -7.3 -7.6 -7.6 1 +1878 1 18 -8.0 -8.3 -8.3 1 +1878 1 19 -2.3 -2.6 -2.6 1 +1878 1 20 -1.1 -1.4 -1.4 1 +1878 1 21 2.5 2.2 2.2 1 +1878 1 22 -1.5 -1.8 -1.8 1 +1878 1 23 -1.2 -1.5 -1.5 1 +1878 1 24 -0.1 -0.4 -0.4 1 +1878 1 25 0.5 0.2 0.2 1 +1878 1 26 -0.5 -0.8 -0.8 1 +1878 1 27 -3.9 -4.2 -4.2 1 +1878 1 28 -2.3 -2.6 -2.6 1 +1878 1 29 -0.2 -0.5 -0.5 1 +1878 1 30 -1.5 -1.8 -1.8 1 +1878 1 31 -0.9 -1.1 -1.1 1 +1878 2 1 -4.2 -4.4 -4.4 1 +1878 2 2 -3.2 -3.4 -3.4 1 +1878 2 3 -4.7 -4.9 -4.9 1 +1878 2 4 -1.9 -2.1 -2.1 1 +1878 2 5 4.4 4.2 4.2 1 +1878 2 6 4.5 4.3 4.3 1 +1878 2 7 2.0 1.8 1.8 1 +1878 2 8 -1.9 -2.1 -2.1 1 +1878 2 9 -4.6 -4.8 -4.8 1 +1878 2 10 -6.4 -6.6 -6.6 1 +1878 2 11 -6.3 -6.5 -6.5 1 +1878 2 12 -5.7 -5.9 -5.9 1 +1878 2 13 -2.4 -2.6 -2.6 1 +1878 2 14 -0.6 -0.8 -0.8 1 +1878 2 15 -1.3 -1.5 -1.5 1 +1878 2 16 -2.3 -2.5 -2.5 1 +1878 2 17 1.8 1.6 1.6 1 +1878 2 18 3.7 3.5 3.5 1 +1878 2 19 3.7 3.5 3.5 1 +1878 2 20 2.4 2.2 2.2 1 +1878 2 21 3.4 3.2 3.2 1 +1878 2 22 8.2 8.0 8.0 1 +1878 2 23 5.2 5.0 5.0 1 +1878 2 24 3.6 3.4 3.4 1 +1878 2 25 2.3 2.1 2.1 1 +1878 2 26 -4.3 -4.5 -4.5 1 +1878 2 27 -5.8 -6.0 -6.0 1 +1878 2 28 0.7 0.5 0.5 1 +1878 3 1 1.4 1.2 1.2 1 +1878 3 2 2.0 1.8 1.8 1 +1878 3 3 0.6 0.4 0.4 1 +1878 3 4 0.8 0.6 0.6 1 +1878 3 5 3.4 3.2 3.2 1 +1878 3 6 2.6 2.4 2.4 1 +1878 3 7 -1.1 -1.3 -1.3 1 +1878 3 8 -4.7 -4.9 -4.9 1 +1878 3 9 -5.0 -5.2 -5.2 1 +1878 3 10 -5.6 -5.8 -5.8 1 +1878 3 11 -0.2 -0.4 -0.4 1 +1878 3 12 -2.4 -2.6 -2.6 1 +1878 3 13 -4.2 -4.4 -4.4 1 +1878 3 14 -4.6 -4.8 -4.8 1 +1878 3 15 -4.5 -4.7 -4.7 1 +1878 3 16 -3.4 -3.6 -3.6 1 +1878 3 17 3.6 3.4 3.4 1 +1878 3 18 3.7 3.5 3.5 1 +1878 3 19 0.4 0.2 0.2 1 +1878 3 20 0.9 0.7 0.7 1 +1878 3 21 4.3 4.1 4.1 1 +1878 3 22 -1.8 -2.0 -2.0 1 +1878 3 23 -3.7 -3.9 -3.9 1 +1878 3 24 -3.9 -4.1 -4.1 1 +1878 3 25 -5.0 -5.2 -5.2 1 +1878 3 26 -3.5 -3.7 -3.7 1 +1878 3 27 -1.0 -1.2 -1.2 1 +1878 3 28 -0.4 -0.6 -0.6 1 +1878 3 29 -1.9 -2.1 -2.1 1 +1878 3 30 0.6 0.4 0.4 1 +1878 3 31 3.3 3.1 3.1 1 +1878 4 1 1.2 1.0 1.0 1 +1878 4 2 1.4 1.2 1.2 1 +1878 4 3 3.9 3.7 3.7 1 +1878 4 4 3.1 2.9 2.9 1 +1878 4 5 3.1 2.9 2.9 1 +1878 4 6 1.7 1.5 1.5 1 +1878 4 7 0.4 0.2 0.2 1 +1878 4 8 1.3 1.1 1.1 1 +1878 4 9 3.0 2.8 2.8 1 +1878 4 10 5.3 5.1 5.1 1 +1878 4 11 7.4 7.2 7.2 1 +1878 4 12 4.8 4.6 4.6 1 +1878 4 13 9.5 9.3 9.3 1 +1878 4 14 6.8 6.6 6.6 1 +1878 4 15 8.2 8.0 8.0 1 +1878 4 16 8.1 7.9 7.9 1 +1878 4 17 2.4 2.2 2.2 1 +1878 4 18 2.7 2.4 2.4 1 +1878 4 19 7.7 7.4 7.4 1 +1878 4 20 4.8 4.5 4.5 1 +1878 4 21 3.4 3.1 3.1 1 +1878 4 22 4.2 3.9 3.9 1 +1878 4 23 7.4 7.1 7.1 1 +1878 4 24 8.9 8.6 8.6 1 +1878 4 25 9.0 8.7 8.7 1 +1878 4 26 7.4 7.1 7.1 1 +1878 4 27 7.5 7.2 7.2 1 +1878 4 28 8.6 8.3 8.3 1 +1878 4 29 8.1 7.8 7.8 1 +1878 4 30 6.0 5.7 5.7 1 +1878 5 1 4.5 4.2 4.2 1 +1878 5 2 4.8 4.5 4.5 1 +1878 5 3 6.2 5.9 5.9 1 +1878 5 4 8.1 7.8 7.8 1 +1878 5 5 5.0 4.7 4.7 1 +1878 5 6 3.6 3.3 3.3 1 +1878 5 7 -0.5 -0.8 -0.8 1 +1878 5 8 0.0 -0.4 -0.4 1 +1878 5 9 2.4 2.0 2.0 1 +1878 5 10 6.3 5.9 5.9 1 +1878 5 11 8.7 8.3 8.3 1 +1878 5 12 10.7 10.3 10.3 1 +1878 5 13 10.4 10.0 10.0 1 +1878 5 14 11.1 10.7 10.7 1 +1878 5 15 14.1 13.7 13.7 1 +1878 5 16 13.3 12.9 12.9 1 +1878 5 17 11.9 11.5 11.5 1 +1878 5 18 13.6 13.2 13.2 1 +1878 5 19 11.8 11.4 11.4 1 +1878 5 20 11.4 11.0 11.0 1 +1878 5 21 9.8 9.4 9.4 1 +1878 5 22 9.8 9.4 9.4 1 +1878 5 23 10.7 10.3 10.3 1 +1878 5 24 10.8 10.4 10.4 1 +1878 5 25 9.7 9.4 9.4 1 +1878 5 26 12.1 11.8 11.8 1 +1878 5 27 12.2 11.9 11.9 1 +1878 5 28 14.5 14.2 14.2 1 +1878 5 29 12.4 12.1 12.1 1 +1878 5 30 13.4 13.1 13.1 1 +1878 5 31 9.3 9.0 9.0 1 +1878 6 1 7.0 6.7 6.7 1 +1878 6 2 9.0 8.7 8.7 1 +1878 6 3 10.8 10.5 10.5 1 +1878 6 4 9.4 9.1 9.1 1 +1878 6 5 11.5 11.2 11.2 1 +1878 6 6 9.9 9.6 9.6 1 +1878 6 7 6.6 6.3 6.3 1 +1878 6 8 10.4 10.1 10.1 1 +1878 6 9 12.4 12.1 12.1 1 +1878 6 10 13.9 13.6 13.6 1 +1878 6 11 13.2 12.9 12.9 1 +1878 6 12 13.8 13.5 13.5 1 +1878 6 13 13.5 13.2 13.2 1 +1878 6 14 12.4 12.1 12.1 1 +1878 6 15 11.2 10.9 10.9 1 +1878 6 16 12.4 12.1 12.1 1 +1878 6 17 11.6 11.3 11.3 1 +1878 6 18 12.1 11.8 11.8 1 +1878 6 19 14.5 14.2 14.2 1 +1878 6 20 17.2 16.9 16.9 1 +1878 6 21 15.3 15.0 15.0 1 +1878 6 22 15.8 15.5 15.5 1 +1878 6 23 18.6 18.3 18.3 1 +1878 6 24 17.9 17.6 17.6 1 +1878 6 25 17.9 17.6 17.6 1 +1878 6 26 18.6 18.3 18.3 1 +1878 6 27 18.5 18.2 18.2 1 +1878 6 28 19.4 19.1 19.1 1 +1878 6 29 19.9 19.6 19.6 1 +1878 6 30 14.0 13.7 13.7 1 +1878 7 1 12.1 11.8 11.8 1 +1878 7 2 11.8 11.5 11.5 1 +1878 7 3 13.0 12.7 12.7 1 +1878 7 4 12.6 12.3 12.3 1 +1878 7 5 14.9 14.6 14.6 1 +1878 7 6 14.9 14.6 14.6 1 +1878 7 7 14.0 13.7 13.7 1 +1878 7 8 13.0 12.7 12.7 1 +1878 7 9 14.2 13.9 13.9 1 +1878 7 10 11.3 11.0 11.0 1 +1878 7 11 11.2 10.9 10.9 1 +1878 7 12 12.4 12.1 12.1 1 +1878 7 13 13.8 13.5 13.5 1 +1878 7 14 16.2 15.9 15.9 1 +1878 7 15 17.7 17.4 17.4 1 +1878 7 16 18.2 17.9 17.9 1 +1878 7 17 18.9 18.6 18.6 1 +1878 7 18 16.6 16.3 16.3 1 +1878 7 19 13.6 13.3 13.3 1 +1878 7 20 14.5 14.2 14.2 1 +1878 7 21 15.4 15.1 15.1 1 +1878 7 22 16.2 15.9 15.9 1 +1878 7 23 12.0 11.7 11.7 1 +1878 7 24 11.9 11.6 11.6 1 +1878 7 25 14.0 13.7 13.7 1 +1878 7 26 18.0 17.7 17.7 1 +1878 7 27 16.3 16.0 16.0 1 +1878 7 28 15.5 15.2 15.2 1 +1878 7 29 15.1 14.8 14.8 1 +1878 7 30 16.8 16.5 16.5 1 +1878 7 31 17.5 17.2 17.2 1 +1878 8 1 16.2 15.9 15.9 1 +1878 8 2 17.8 17.5 17.5 1 +1878 8 3 19.7 19.4 19.4 1 +1878 8 4 16.9 16.6 16.6 1 +1878 8 5 15.8 15.5 15.5 1 +1878 8 6 18.2 17.9 17.9 1 +1878 8 7 16.3 16.0 16.0 1 +1878 8 8 15.9 15.6 15.6 1 +1878 8 9 17.7 17.4 17.4 1 +1878 8 10 17.4 17.1 17.1 1 +1878 8 11 19.5 19.2 19.2 1 +1878 8 12 18.5 18.2 18.2 1 +1878 8 13 16.2 15.9 15.9 1 +1878 8 14 17.6 17.3 17.3 1 +1878 8 15 13.8 13.5 13.5 1 +1878 8 16 15.7 15.4 15.4 1 +1878 8 17 16.0 15.7 15.7 1 +1878 8 18 13.4 13.2 13.2 1 +1878 8 19 11.3 11.1 11.1 1 +1878 8 20 9.5 9.3 9.3 1 +1878 8 21 11.7 11.5 11.5 1 +1878 8 22 12.0 11.8 11.8 1 +1878 8 23 13.3 13.1 13.1 1 +1878 8 24 16.1 15.9 15.9 1 +1878 8 25 14.7 14.5 14.5 1 +1878 8 26 16.3 16.1 16.1 1 +1878 8 27 15.6 15.4 15.4 1 +1878 8 28 15.0 14.8 14.8 1 +1878 8 29 15.4 15.2 15.2 1 +1878 8 30 15.4 15.2 15.2 1 +1878 8 31 15.2 15.0 15.0 1 +1878 9 1 14.8 14.6 14.6 1 +1878 9 2 15.5 15.3 15.3 1 +1878 9 3 15.0 14.8 14.8 1 +1878 9 4 16.2 16.0 16.0 1 +1878 9 5 16.4 16.2 16.2 1 +1878 9 6 17.3 17.1 17.1 1 +1878 9 7 16.8 16.6 16.6 1 +1878 9 8 14.2 14.0 14.0 1 +1878 9 9 16.1 15.9 15.9 1 +1878 9 10 14.9 14.7 14.7 1 +1878 9 11 13.4 13.2 13.2 1 +1878 9 12 13.8 13.6 13.6 1 +1878 9 13 12.0 11.8 11.8 1 +1878 9 14 15.3 15.2 15.2 1 +1878 9 15 13.7 13.6 13.6 1 +1878 9 16 14.2 14.1 14.1 1 +1878 9 17 11.8 11.7 11.7 1 +1878 9 18 13.9 13.8 13.8 1 +1878 9 19 10.7 10.6 10.6 1 +1878 9 20 10.1 10.0 10.0 1 +1878 9 21 8.9 8.8 8.8 1 +1878 9 22 9.0 8.9 8.9 1 +1878 9 23 9.8 9.7 9.7 1 +1878 9 24 11.5 11.4 11.4 1 +1878 9 25 11.8 11.7 11.7 1 +1878 9 26 13.9 13.8 13.8 1 +1878 9 27 9.9 9.8 9.8 1 +1878 9 28 10.5 10.4 10.4 1 +1878 9 29 7.2 7.1 7.1 1 +1878 9 30 5.1 5.0 5.0 1 +1878 10 1 4.8 4.7 4.7 1 +1878 10 2 7.3 7.2 7.2 1 +1878 10 3 5.8 5.7 5.7 1 +1878 10 4 8.5 8.4 8.4 1 +1878 10 5 5.7 5.6 5.6 1 +1878 10 6 5.8 5.7 5.7 1 +1878 10 7 9.8 9.7 9.7 1 +1878 10 8 11.1 11.0 11.0 1 +1878 10 9 12.0 11.9 11.9 1 +1878 10 10 10.4 10.3 10.3 1 +1878 10 11 11.5 11.4 11.4 1 +1878 10 12 11.9 11.8 11.8 1 +1878 10 13 10.0 9.9 9.9 1 +1878 10 14 6.9 6.8 6.8 1 +1878 10 15 8.3 8.2 8.2 1 +1878 10 16 8.4 8.3 8.3 1 +1878 10 17 9.7 9.6 9.6 1 +1878 10 18 10.7 10.6 10.6 1 +1878 10 19 10.9 10.8 10.8 1 +1878 10 20 8.3 8.2 8.2 1 +1878 10 21 8.8 8.7 8.7 1 +1878 10 22 10.3 10.2 10.2 1 +1878 10 23 11.5 11.4 11.4 1 +1878 10 24 6.3 6.2 6.2 1 +1878 10 25 9.0 8.9 8.9 1 +1878 10 26 7.6 7.5 7.5 1 +1878 10 27 7.2 7.1 7.1 1 +1878 10 28 7.5 7.4 7.4 1 +1878 10 29 6.7 6.6 6.6 1 +1878 10 30 5.8 5.7 5.7 1 +1878 10 31 5.5 5.4 5.4 1 +1878 11 1 2.0 1.9 1.9 1 +1878 11 2 1.0 0.9 0.9 1 +1878 11 3 2.1 2.0 2.0 1 +1878 11 4 -0.2 -0.3 -0.3 1 +1878 11 5 1.2 1.1 1.1 1 +1878 11 6 0.3 0.2 0.2 1 +1878 11 7 0.2 0.1 0.1 1 +1878 11 8 -1.2 -1.3 -1.3 1 +1878 11 9 0.3 0.2 0.2 1 +1878 11 10 0.3 0.2 0.2 1 +1878 11 11 4.2 4.1 4.1 1 +1878 11 12 4.5 4.4 4.4 1 +1878 11 13 3.6 3.4 3.4 1 +1878 11 14 5.5 5.3 5.3 1 +1878 11 15 6.0 5.8 5.8 1 +1878 11 16 2.8 2.6 2.6 1 +1878 11 17 5.4 5.2 5.2 1 +1878 11 18 3.4 3.2 3.2 1 +1878 11 19 0.2 0.0 0.0 1 +1878 11 20 4.7 4.5 4.5 1 +1878 11 21 2.9 2.7 2.7 1 +1878 11 22 2.4 2.2 2.2 1 +1878 11 23 0.9 0.7 0.7 1 +1878 11 24 -1.4 -1.6 -1.6 1 +1878 11 25 -0.8 -1.0 -1.0 1 +1878 11 26 5.9 5.7 5.7 1 +1878 11 27 1.3 1.1 1.1 1 +1878 11 28 -1.2 -1.4 -1.4 1 +1878 11 29 -1.4 -1.6 -1.6 1 +1878 11 30 -0.7 -0.9 -0.9 1 +1878 12 1 2.3 2.1 2.1 1 +1878 12 2 1.4 1.2 1.2 1 +1878 12 3 1.9 1.7 1.7 1 +1878 12 4 0.4 0.2 0.2 1 +1878 12 5 0.5 0.3 0.3 1 +1878 12 6 -0.4 -0.6 -0.6 1 +1878 12 7 -1.9 -2.1 -2.1 1 +1878 12 8 -2.7 -2.9 -2.9 1 +1878 12 9 -4.5 -4.7 -4.7 1 +1878 12 10 -1.8 -2.0 -2.0 1 +1878 12 11 -0.4 -0.6 -0.6 1 +1878 12 12 -1.9 -2.1 -2.1 1 +1878 12 13 -2.7 -2.9 -2.9 1 +1878 12 14 -4.0 -4.2 -4.2 1 +1878 12 15 -2.0 -2.2 -2.2 1 +1878 12 16 -5.7 -5.9 -5.9 1 +1878 12 17 -1.5 -1.7 -1.7 1 +1878 12 18 -4.2 -4.4 -4.4 1 +1878 12 19 -9.7 -9.9 -9.9 1 +1878 12 20 -8.7 -8.9 -8.9 1 +1878 12 21 -12.2 -12.4 -12.4 1 +1878 12 22 -5.6 -5.8 -5.8 1 +1878 12 23 -3.4 -3.6 -3.6 1 +1878 12 24 -7.5 -7.7 -7.7 1 +1878 12 25 -4.4 -4.6 -4.6 1 +1878 12 26 -10.5 -10.7 -10.7 1 +1878 12 27 -0.6 -0.8 -0.8 1 +1878 12 28 0.2 0.0 0.0 1 +1878 12 29 -1.0 -1.2 -1.2 1 +1878 12 30 1.8 1.6 1.6 1 +1878 12 31 3.3 3.1 3.1 1 +1879 1 1 2.7 2.5 2.5 1 +1879 1 2 -3.0 -3.2 -3.2 1 +1879 1 3 -3.4 -3.6 -3.6 1 +1879 1 4 -4.9 -5.1 -5.1 1 +1879 1 5 -7.0 -7.3 -7.3 1 +1879 1 6 -8.0 -8.3 -8.3 1 +1879 1 7 -9.6 -9.9 -9.9 1 +1879 1 8 -5.3 -5.6 -5.6 1 +1879 1 9 -3.3 -3.6 -3.6 1 +1879 1 10 -4.6 -4.9 -4.9 1 +1879 1 11 -3.4 -3.7 -3.7 1 +1879 1 12 -2.6 -2.9 -2.9 1 +1879 1 13 -3.4 -3.7 -3.7 1 +1879 1 14 -2.9 -3.2 -3.2 1 +1879 1 15 -3.1 -3.4 -3.4 1 +1879 1 16 -2.3 -2.6 -2.6 1 +1879 1 17 -3.1 -3.4 -3.4 1 +1879 1 18 -3.3 -3.6 -3.6 1 +1879 1 19 -6.8 -7.1 -7.1 1 +1879 1 20 -6.7 -7.0 -7.0 1 +1879 1 21 -7.4 -7.7 -7.7 1 +1879 1 22 -5.5 -5.8 -5.8 1 +1879 1 23 -4.9 -5.2 -5.2 1 +1879 1 24 -6.3 -6.6 -6.6 1 +1879 1 25 -11.8 -12.1 -12.1 1 +1879 1 26 -8.2 -8.5 -8.5 1 +1879 1 27 -2.7 -3.0 -3.0 1 +1879 1 28 -10.4 -10.7 -10.7 1 +1879 1 29 -6.9 -7.2 -7.2 1 +1879 1 30 -4.8 -5.1 -5.1 1 +1879 1 31 -5.7 -6.0 -6.0 1 +1879 2 1 -5.3 -5.6 -5.6 1 +1879 2 2 -6.0 -6.3 -6.3 1 +1879 2 3 -5.9 -6.2 -6.2 1 +1879 2 4 -11.0 -11.3 -11.3 1 +1879 2 5 -2.8 -3.1 -3.1 1 +1879 2 6 -2.9 -3.2 -3.2 1 +1879 2 7 0.6 0.3 0.3 1 +1879 2 8 1.3 1.0 1.0 1 +1879 2 9 -7.4 -7.7 -7.7 1 +1879 2 10 -7.9 -8.2 -8.2 1 +1879 2 11 -3.5 -3.8 -3.8 1 +1879 2 12 -5.9 -6.2 -6.2 1 +1879 2 13 -7.8 -8.1 -8.1 1 +1879 2 14 -8.7 -9.0 -9.0 1 +1879 2 15 -6.9 -7.2 -7.2 1 +1879 2 16 -14.6 -14.9 -14.9 1 +1879 2 17 -14.2 -14.5 -14.5 1 +1879 2 18 -13.7 -14.0 -14.0 1 +1879 2 19 -13.2 -13.5 -13.5 1 +1879 2 20 -15.0 -15.3 -15.3 1 +1879 2 21 -9.6 -9.9 -9.9 1 +1879 2 22 -2.8 -3.1 -3.1 1 +1879 2 23 -0.9 -1.2 -1.2 1 +1879 2 24 -1.8 -2.1 -2.1 1 +1879 2 25 -4.1 -4.4 -4.4 1 +1879 2 26 -5.2 -5.5 -5.5 1 +1879 2 27 -6.1 -6.4 -6.4 1 +1879 2 28 -5.2 -5.5 -5.5 1 +1879 3 1 -2.4 -2.7 -2.7 1 +1879 3 2 -2.4 -2.7 -2.7 1 +1879 3 3 -1.3 -1.6 -1.6 1 +1879 3 4 0.0 -0.3 -0.3 1 +1879 3 5 1.5 1.2 1.2 1 +1879 3 6 0.6 0.3 0.3 1 +1879 3 7 -2.8 -3.1 -3.1 1 +1879 3 8 2.2 1.9 1.9 1 +1879 3 9 3.5 3.2 3.2 1 +1879 3 10 2.6 2.3 2.3 1 +1879 3 11 -1.4 -1.7 -1.7 1 +1879 3 12 -2.6 -2.9 -2.9 1 +1879 3 13 -5.2 -5.5 -5.5 1 +1879 3 14 -6.7 -7.0 -7.0 1 +1879 3 15 -7.9 -8.2 -8.2 1 +1879 3 16 -8.9 -9.2 -9.2 1 +1879 3 17 -3.9 -4.2 -4.2 1 +1879 3 18 -0.8 -1.1 -1.1 1 +1879 3 19 -3.2 -3.5 -3.5 1 +1879 3 20 -4.1 -4.4 -4.4 1 +1879 3 21 -4.6 -4.9 -4.9 1 +1879 3 22 -6.9 -7.2 -7.2 1 +1879 3 23 -6.5 -6.8 -6.8 1 +1879 3 24 -3.8 -4.1 -4.1 1 +1879 3 25 -4.3 -4.6 -4.6 1 +1879 3 26 -4.4 -4.7 -4.7 1 +1879 3 27 -3.4 -3.7 -3.7 1 +1879 3 28 -3.6 -3.9 -3.9 1 +1879 3 29 -3.3 -3.6 -3.6 1 +1879 3 30 -2.8 -3.1 -3.1 1 +1879 3 31 0.9 0.6 0.6 1 +1879 4 1 1.6 1.3 1.3 1 +1879 4 2 2.1 1.8 1.8 1 +1879 4 3 2.4 2.1 2.1 1 +1879 4 4 4.4 4.1 4.1 1 +1879 4 5 3.1 2.8 2.8 1 +1879 4 6 2.4 2.1 2.1 1 +1879 4 7 3.3 3.0 3.0 1 +1879 4 8 1.5 1.2 1.2 1 +1879 4 9 -2.1 -2.4 -2.4 1 +1879 4 10 -5.1 -5.4 -5.4 1 +1879 4 11 -2.2 -2.5 -2.5 1 +1879 4 12 -1.5 -1.8 -1.8 1 +1879 4 13 -0.9 -1.2 -1.2 1 +1879 4 14 -0.7 -1.0 -1.0 1 +1879 4 15 -0.8 -1.1 -1.1 1 +1879 4 16 0.9 0.6 0.6 1 +1879 4 17 0.9 0.6 0.6 1 +1879 4 18 1.0 0.7 0.7 1 +1879 4 19 0.7 0.4 0.4 1 +1879 4 20 2.0 1.7 1.7 1 +1879 4 21 2.7 2.4 2.4 1 +1879 4 22 2.9 2.6 2.6 1 +1879 4 23 -0.4 -0.7 -0.7 1 +1879 4 24 2.2 1.9 1.9 1 +1879 4 25 3.5 3.2 3.2 1 +1879 4 26 3.2 2.9 2.9 1 +1879 4 27 3.1 2.8 2.8 1 +1879 4 28 2.4 2.1 2.1 1 +1879 4 29 2.7 2.4 2.4 1 +1879 4 30 3.5 3.2 3.2 1 +1879 5 1 2.6 2.3 2.3 1 +1879 5 2 4.8 4.4 4.4 1 +1879 5 3 7.8 7.4 7.4 1 +1879 5 4 6.7 6.3 6.3 1 +1879 5 5 11.6 11.2 11.2 1 +1879 5 6 5.4 5.0 5.0 1 +1879 5 7 0.6 0.2 0.2 1 +1879 5 8 3.4 3.0 3.0 1 +1879 5 9 5.4 5.0 5.0 1 +1879 5 10 4.8 4.4 4.4 1 +1879 5 11 6.1 5.7 5.7 1 +1879 5 12 6.7 6.3 6.3 1 +1879 5 13 8.9 8.5 8.5 1 +1879 5 14 9.2 8.8 8.8 1 +1879 5 15 9.8 9.4 9.4 1 +1879 5 16 8.0 7.6 7.6 1 +1879 5 17 8.0 7.6 7.6 1 +1879 5 18 11.2 10.8 10.8 1 +1879 5 19 7.2 6.8 6.8 1 +1879 5 20 9.3 8.9 8.9 1 +1879 5 21 12.1 11.7 11.7 1 +1879 5 22 11.7 11.3 11.3 1 +1879 5 23 10.8 10.4 10.4 1 +1879 5 24 9.9 9.5 9.5 1 +1879 5 25 13.8 13.4 13.4 1 +1879 5 26 14.0 13.6 13.6 1 +1879 5 27 14.8 14.4 14.4 1 +1879 5 28 15.3 14.9 14.9 1 +1879 5 29 15.8 15.4 15.4 1 +1879 5 30 11.2 10.8 10.8 1 +1879 5 31 10.3 9.9 9.9 1 +1879 6 1 11.4 11.0 11.0 1 +1879 6 2 13.0 12.7 12.7 1 +1879 6 3 13.0 12.7 12.7 1 +1879 6 4 10.5 10.2 10.2 1 +1879 6 5 9.9 9.6 9.6 1 +1879 6 6 11.8 11.5 11.5 1 +1879 6 7 13.7 13.4 13.4 1 +1879 6 8 10.9 10.6 10.6 1 +1879 6 9 13.3 13.0 13.0 1 +1879 6 10 17.2 16.9 16.9 1 +1879 6 11 18.1 17.8 17.8 1 +1879 6 12 13.3 13.0 13.0 1 +1879 6 13 15.9 15.6 15.6 1 +1879 6 14 12.0 11.7 11.7 1 +1879 6 15 12.9 12.6 12.6 1 +1879 6 16 13.0 12.7 12.7 1 +1879 6 17 15.2 14.9 14.9 1 +1879 6 18 17.0 16.7 16.7 1 +1879 6 19 16.7 16.4 16.4 1 +1879 6 20 14.3 14.0 14.0 1 +1879 6 21 17.8 17.5 17.5 1 +1879 6 22 17.3 17.0 17.0 1 +1879 6 23 14.5 14.2 14.2 1 +1879 6 24 15.7 15.4 15.4 1 +1879 6 25 14.7 14.4 14.4 1 +1879 6 26 15.9 15.6 15.6 1 +1879 6 27 16.0 15.7 15.7 1 +1879 6 28 17.7 17.4 17.4 1 +1879 6 29 16.2 15.9 15.9 1 +1879 6 30 15.1 14.8 14.8 1 +1879 7 1 14.4 14.1 14.1 1 +1879 7 2 15.1 14.8 14.8 1 +1879 7 3 13.9 13.6 13.6 1 +1879 7 4 15.7 15.4 15.4 1 +1879 7 5 12.4 12.1 12.1 1 +1879 7 6 12.5 12.2 12.2 1 +1879 7 7 14.0 13.7 13.7 1 +1879 7 8 13.6 13.3 13.3 1 +1879 7 9 14.5 14.2 14.2 1 +1879 7 10 15.2 14.9 14.9 1 +1879 7 11 14.1 13.8 13.8 1 +1879 7 12 15.6 15.3 15.3 1 +1879 7 13 16.3 16.0 16.0 1 +1879 7 14 16.1 15.8 15.8 1 +1879 7 15 17.2 16.9 16.9 1 +1879 7 16 17.2 16.9 16.9 1 +1879 7 17 18.5 18.2 18.2 1 +1879 7 18 18.7 18.4 18.4 1 +1879 7 19 16.7 16.4 16.4 1 +1879 7 20 18.2 17.9 17.9 1 +1879 7 21 17.9 17.6 17.6 1 +1879 7 22 17.8 17.5 17.5 1 +1879 7 23 17.2 16.9 16.9 1 +1879 7 24 16.7 16.4 16.4 1 +1879 7 25 17.7 17.4 17.4 1 +1879 7 26 16.6 16.3 16.3 1 +1879 7 27 16.1 15.8 15.8 1 +1879 7 28 16.9 16.6 16.6 1 +1879 7 29 15.7 15.4 15.4 1 +1879 7 30 16.7 16.4 16.4 1 +1879 7 31 17.7 17.4 17.4 1 +1879 8 1 18.2 17.9 17.9 1 +1879 8 2 18.8 18.5 18.5 1 +1879 8 3 19.2 18.9 18.9 1 +1879 8 4 19.5 19.2 19.2 1 +1879 8 5 19.1 18.8 18.8 1 +1879 8 6 18.7 18.4 18.4 1 +1879 8 7 19.5 19.2 19.2 1 +1879 8 8 19.2 18.9 18.9 1 +1879 8 9 16.1 15.8 15.8 1 +1879 8 10 16.9 16.6 16.6 1 +1879 8 11 17.0 16.7 16.7 1 +1879 8 12 16.2 15.9 15.9 1 +1879 8 13 16.4 16.1 16.1 1 +1879 8 14 16.0 15.7 15.7 1 +1879 8 15 15.4 15.1 15.1 1 +1879 8 16 16.7 16.4 16.4 1 +1879 8 17 16.2 15.9 15.9 1 +1879 8 18 15.7 15.4 15.4 1 +1879 8 19 17.0 16.7 16.7 1 +1879 8 20 15.3 15.0 15.0 1 +1879 8 21 17.6 17.3 17.3 1 +1879 8 22 19.1 18.8 18.8 1 +1879 8 23 17.3 17.0 17.0 1 +1879 8 24 15.5 15.3 15.3 1 +1879 8 25 15.4 15.2 15.2 1 +1879 8 26 13.9 13.7 13.7 1 +1879 8 27 13.7 13.5 13.5 1 +1879 8 28 15.4 15.2 15.2 1 +1879 8 29 14.0 13.8 13.8 1 +1879 8 30 15.3 15.1 15.1 1 +1879 8 31 12.9 12.7 12.7 1 +1879 9 1 12.5 12.3 12.3 1 +1879 9 2 11.9 11.7 11.7 1 +1879 9 3 15.6 15.4 15.4 1 +1879 9 4 14.7 14.5 14.5 1 +1879 9 5 11.2 11.0 11.0 1 +1879 9 6 10.0 9.8 9.8 1 +1879 9 7 11.6 11.4 11.4 1 +1879 9 8 13.7 13.5 13.5 1 +1879 9 9 15.5 15.3 15.3 1 +1879 9 10 13.1 12.9 12.9 1 +1879 9 11 11.9 11.7 11.7 1 +1879 9 12 13.5 13.3 13.3 1 +1879 9 13 14.7 14.5 14.5 1 +1879 9 14 14.5 14.3 14.3 1 +1879 9 15 13.1 12.9 12.9 1 +1879 9 16 11.1 10.9 10.9 1 +1879 9 17 10.5 10.3 10.3 1 +1879 9 18 12.4 12.2 12.2 1 +1879 9 19 14.7 14.5 14.5 1 +1879 9 20 14.6 14.5 14.5 1 +1879 9 21 13.6 13.5 13.5 1 +1879 9 22 12.3 12.2 12.2 1 +1879 9 23 12.2 12.1 12.1 1 +1879 9 24 13.0 12.9 12.9 1 +1879 9 25 13.8 13.7 13.7 1 +1879 9 26 11.0 10.9 10.9 1 +1879 9 27 11.4 11.3 11.3 1 +1879 9 28 11.6 11.5 11.5 1 +1879 9 29 13.2 13.1 13.1 1 +1879 9 30 12.1 12.0 12.0 1 +1879 10 1 9.5 9.4 9.4 1 +1879 10 2 12.5 12.4 12.4 1 +1879 10 3 11.0 10.9 10.9 1 +1879 10 4 8.6 8.5 8.5 1 +1879 10 5 6.9 6.8 6.8 1 +1879 10 6 9.0 8.9 8.9 1 +1879 10 7 8.5 8.4 8.4 1 +1879 10 8 7.1 7.0 7.0 1 +1879 10 9 10.4 10.3 10.3 1 +1879 10 10 7.2 7.1 7.1 1 +1879 10 11 7.0 6.9 6.9 1 +1879 10 12 9.5 9.4 9.4 1 +1879 10 13 7.5 7.4 7.4 1 +1879 10 14 4.4 4.3 4.3 1 +1879 10 15 0.2 0.1 0.1 1 +1879 10 16 0.3 0.2 0.2 1 +1879 10 17 3.1 3.0 3.0 1 +1879 10 18 3.5 3.4 3.4 1 +1879 10 19 1.5 1.4 1.4 1 +1879 10 20 6.6 6.5 6.5 1 +1879 10 21 4.4 4.3 4.3 1 +1879 10 22 1.1 1.0 1.0 1 +1879 10 23 3.5 3.4 3.4 1 +1879 10 24 5.2 5.1 5.1 1 +1879 10 25 9.6 9.5 9.5 1 +1879 10 26 6.1 6.0 6.0 1 +1879 10 27 7.0 6.9 6.9 1 +1879 10 28 7.4 7.3 7.3 1 +1879 10 29 6.3 6.2 6.2 1 +1879 10 30 3.4 3.3 3.3 1 +1879 10 31 -2.3 -2.4 -2.4 1 +1879 11 1 2.3 2.2 2.2 1 +1879 11 2 -0.5 -0.6 -0.6 1 +1879 11 3 -1.8 -1.9 -1.9 1 +1879 11 4 0.9 0.8 0.8 1 +1879 11 5 2.9 2.8 2.8 1 +1879 11 6 0.0 -0.1 -0.1 1 +1879 11 7 1.1 0.9 0.9 1 +1879 11 8 4.4 4.2 4.2 1 +1879 11 9 6.5 6.3 6.3 1 +1879 11 10 5.2 5.0 5.0 1 +1879 11 11 0.4 0.2 0.2 1 +1879 11 12 2.0 1.8 1.8 1 +1879 11 13 -0.4 -0.6 -0.6 1 +1879 11 14 -1.7 -1.9 -1.9 1 +1879 11 15 -0.3 -0.5 -0.5 1 +1879 11 16 0.7 0.5 0.5 1 +1879 11 17 0.2 0.0 0.0 1 +1879 11 18 -0.8 -1.0 -1.0 1 +1879 11 19 -3.7 -3.9 -3.9 1 +1879 11 20 -2.2 -2.4 -2.4 1 +1879 11 21 0.3 0.1 0.1 1 +1879 11 22 3.1 2.9 2.9 1 +1879 11 23 2.5 2.3 2.3 1 +1879 11 24 -3.7 -3.9 -3.9 1 +1879 11 25 -6.6 -6.8 -6.8 1 +1879 11 26 -5.7 -5.9 -5.9 1 +1879 11 27 -3.8 -4.0 -4.0 1 +1879 11 28 -3.6 -3.8 -3.8 1 +1879 11 29 -8.3 -8.5 -8.5 1 +1879 11 30 -13.8 -14.0 -14.0 1 +1879 12 1 -12.1 -12.3 -12.3 1 +1879 12 2 -15.4 -15.6 -15.6 1 +1879 12 3 -16.4 -16.6 -16.6 1 +1879 12 4 -12.7 -12.9 -12.9 1 +1879 12 5 -8.5 -8.7 -8.7 1 +1879 12 6 -6.0 -6.2 -6.2 1 +1879 12 7 -7.5 -7.7 -7.7 1 +1879 12 8 -5.2 -5.4 -5.4 1 +1879 12 9 -0.4 -0.6 -0.6 1 +1879 12 10 -7.7 -7.9 -7.9 1 +1879 12 11 -2.6 -2.8 -2.8 1 +1879 12 12 -6.7 -6.9 -6.9 1 +1879 12 13 -3.4 -3.6 -3.6 1 +1879 12 14 -1.0 -1.2 -1.2 1 +1879 12 15 2.7 2.5 2.5 1 +1879 12 16 3.3 3.1 3.1 1 +1879 12 17 2.7 2.5 2.5 1 +1879 12 18 -0.8 -1.0 -1.0 1 +1879 12 19 -1.9 -2.1 -2.1 1 +1879 12 20 -0.6 -0.8 -0.8 1 +1879 12 21 -2.1 -2.3 -2.3 1 +1879 12 22 -0.4 -0.6 -0.6 1 +1879 12 23 3.3 3.1 3.1 1 +1879 12 24 3.8 3.6 3.6 1 +1879 12 25 0.7 0.5 0.5 1 +1879 12 26 -4.6 -4.8 -4.8 1 +1879 12 27 -6.8 -7.0 -7.0 1 +1879 12 28 0.2 0.0 0.0 1 +1879 12 29 2.6 2.4 2.4 1 +1879 12 30 1.2 1.0 1.0 1 +1879 12 31 -4.5 -4.7 -4.7 1 +1880 1 1 -3.0 -3.3 -3.3 1 +1880 1 2 2.7 2.4 2.4 1 +1880 1 3 2.6 2.3 2.3 1 +1880 1 4 -0.5 -0.8 -0.8 1 +1880 1 5 0.5 0.2 0.2 1 +1880 1 6 0.7 0.4 0.4 1 +1880 1 7 0.7 0.4 0.4 1 +1880 1 8 0.2 -0.1 -0.1 1 +1880 1 9 -1.6 -1.9 -1.9 1 +1880 1 10 -1.0 -1.3 -1.3 1 +1880 1 11 -3.0 -3.3 -3.3 1 +1880 1 12 -2.9 -3.2 -3.2 1 +1880 1 13 -1.5 -1.8 -1.8 1 +1880 1 14 -5.0 -5.3 -5.3 1 +1880 1 15 -6.2 -6.5 -6.5 1 +1880 1 16 -8.2 -8.5 -8.5 1 +1880 1 17 -10.4 -10.7 -10.7 1 +1880 1 18 -10.4 -10.7 -10.7 1 +1880 1 19 -10.0 -10.3 -10.3 1 +1880 1 20 -3.0 -3.3 -3.3 1 +1880 1 21 -7.5 -7.8 -7.8 1 +1880 1 22 -4.6 -4.9 -4.9 1 +1880 1 23 -8.7 -9.0 -9.0 1 +1880 1 24 -4.2 -4.5 -4.5 1 +1880 1 25 -6.7 -7.0 -7.0 1 +1880 1 26 -4.7 -5.0 -5.0 1 +1880 1 27 -0.4 -0.7 -0.7 1 +1880 1 28 0.3 0.0 0.0 1 +1880 1 29 -0.6 -0.9 -0.9 1 +1880 1 30 -0.6 -0.9 -0.9 1 +1880 1 31 2.8 2.5 2.5 1 +1880 2 1 5.8 5.5 5.5 1 +1880 2 2 4.4 4.1 4.1 1 +1880 2 3 4.4 4.1 4.1 1 +1880 2 4 4.8 4.5 4.5 1 +1880 2 5 4.2 3.9 3.9 1 +1880 2 6 0.5 0.2 0.2 1 +1880 2 7 1.8 1.5 1.5 1 +1880 2 8 -0.7 -1.0 -1.0 1 +1880 2 9 2.0 1.7 1.7 1 +1880 2 10 1.5 1.2 1.2 1 +1880 2 11 -0.7 -1.0 -1.0 1 +1880 2 12 -0.3 -0.6 -0.6 1 +1880 2 13 -1.6 -1.9 -1.9 1 +1880 2 14 -2.7 -3.0 -3.0 1 +1880 2 15 -1.9 -2.2 -2.2 1 +1880 2 16 -3.1 -3.4 -3.4 1 +1880 2 17 -5.3 -5.6 -5.6 1 +1880 2 18 -5.8 -6.1 -6.1 1 +1880 2 19 -4.4 -4.7 -4.7 1 +1880 2 20 0.8 0.5 0.5 1 +1880 2 21 -1.1 -1.4 -1.4 1 +1880 2 22 -5.5 -5.8 -5.8 1 +1880 2 23 -5.1 -5.4 -5.4 1 +1880 2 24 -4.3 -4.6 -4.6 1 +1880 2 25 1.9 1.6 1.6 1 +1880 2 26 2.0 1.7 1.7 1 +1880 2 27 -3.4 -3.7 -3.7 1 +1880 2 28 -1.6 -1.9 -1.9 1 +1880 2 29 -2.8 -3.1 -3.1 1 +1880 3 1 0.6 0.3 0.3 1 +1880 3 2 1.8 1.5 1.5 1 +1880 3 3 1.2 0.9 0.9 1 +1880 3 4 -0.8 -1.1 -1.1 1 +1880 3 5 -5.0 -5.3 -5.3 1 +1880 3 6 -3.4 -3.7 -3.7 1 +1880 3 7 -0.3 -0.6 -0.6 1 +1880 3 8 -4.5 -4.8 -4.8 1 +1880 3 9 1.5 1.2 1.2 1 +1880 3 10 2.5 2.2 2.2 1 +1880 3 11 -1.4 -1.7 -1.7 1 +1880 3 12 -5.4 -5.7 -5.7 1 +1880 3 13 -2.2 -2.5 -2.5 1 +1880 3 14 -2.6 -2.9 -2.9 1 +1880 3 15 -1.4 -1.7 -1.7 1 +1880 3 16 2.7 2.4 2.4 1 +1880 3 17 -2.9 -3.2 -3.2 1 +1880 3 18 -2.3 -2.6 -2.6 1 +1880 3 19 1.0 0.7 0.7 1 +1880 3 20 -1.4 -1.7 -1.7 1 +1880 3 21 2.3 2.0 2.0 1 +1880 3 22 1.4 1.1 1.1 1 +1880 3 23 2.7 2.4 2.4 1 +1880 3 24 5.0 4.7 4.7 1 +1880 3 25 1.0 0.7 0.7 1 +1880 3 26 4.5 4.2 4.2 1 +1880 3 27 -2.0 -2.3 -2.3 1 +1880 3 28 0.8 0.5 0.5 1 +1880 3 29 1.1 0.8 0.8 1 +1880 3 30 -2.7 -3.0 -3.0 1 +1880 3 31 -0.3 -0.6 -0.6 1 +1880 4 1 -0.6 -0.9 -0.9 1 +1880 4 2 -1.2 -1.5 -1.5 1 +1880 4 3 -2.7 -3.0 -3.0 1 +1880 4 4 -3.8 -4.1 -4.1 1 +1880 4 5 0.4 0.1 0.1 1 +1880 4 6 1.3 1.0 1.0 1 +1880 4 7 1.9 1.6 1.6 1 +1880 4 8 2.1 1.8 1.8 1 +1880 4 9 1.2 0.9 0.9 1 +1880 4 10 2.5 2.2 2.2 1 +1880 4 11 6.2 5.9 5.9 1 +1880 4 12 5.4 5.1 5.1 1 +1880 4 13 7.1 6.8 6.8 1 +1880 4 14 8.1 7.8 7.8 1 +1880 4 15 5.9 5.6 5.6 1 +1880 4 16 4.5 4.2 4.2 1 +1880 4 17 6.5 6.2 6.2 1 +1880 4 18 7.3 7.0 7.0 1 +1880 4 19 7.5 7.2 7.2 1 +1880 4 20 11.3 11.0 11.0 1 +1880 4 21 11.1 10.8 10.8 1 +1880 4 22 9.9 9.6 9.6 1 +1880 4 23 9.8 9.5 9.5 1 +1880 4 24 6.5 6.2 6.2 1 +1880 4 25 5.1 4.8 4.8 1 +1880 4 26 5.0 4.6 4.6 1 +1880 4 27 3.2 2.8 2.8 1 +1880 4 28 0.8 0.4 0.4 1 +1880 4 29 2.2 1.8 1.8 1 +1880 4 30 4.8 4.4 4.4 1 +1880 5 1 6.3 5.9 5.9 1 +1880 5 2 8.1 7.7 7.7 1 +1880 5 3 9.9 9.5 9.5 1 +1880 5 4 10.1 9.7 9.7 1 +1880 5 5 10.9 10.5 10.5 1 +1880 5 6 13.3 12.9 12.9 1 +1880 5 7 5.9 5.5 5.5 1 +1880 5 8 5.2 4.8 4.8 1 +1880 5 9 5.2 4.8 4.8 1 +1880 5 10 4.8 4.4 4.4 1 +1880 5 11 6.4 6.0 6.0 1 +1880 5 12 7.6 7.2 7.2 1 +1880 5 13 10.6 10.1 10.1 1 +1880 5 14 13.4 12.9 12.9 1 +1880 5 15 12.1 11.6 11.6 1 +1880 5 16 4.1 3.6 3.6 1 +1880 5 17 3.2 2.7 2.7 1 +1880 5 18 2.1 1.6 1.6 1 +1880 5 19 5.3 4.9 4.9 1 +1880 5 20 6.8 6.4 6.4 1 +1880 5 21 9.3 8.9 8.9 1 +1880 5 22 7.6 7.2 7.2 1 +1880 5 23 8.7 8.3 8.3 1 +1880 5 24 9.7 9.3 9.3 1 +1880 5 25 9.6 9.2 9.2 1 +1880 5 26 12.2 11.8 11.8 1 +1880 5 27 15.4 15.0 15.0 1 +1880 5 28 17.7 17.3 17.3 1 +1880 5 29 11.2 10.8 10.8 1 +1880 5 30 10.3 9.9 9.9 1 +1880 5 31 11.7 11.3 11.3 1 +1880 6 1 13.7 13.3 13.3 1 +1880 6 2 18.6 18.2 18.2 1 +1880 6 3 17.5 17.1 17.1 1 +1880 6 4 12.4 12.0 12.0 1 +1880 6 5 9.6 9.2 9.2 1 +1880 6 6 8.1 7.7 7.7 1 +1880 6 7 9.3 8.9 8.9 1 +1880 6 8 10.7 10.4 10.4 1 +1880 6 9 10.3 10.0 10.0 1 +1880 6 10 9.4 9.1 9.1 1 +1880 6 11 13.2 12.9 12.9 1 +1880 6 12 14.4 14.1 14.1 1 +1880 6 13 14.2 13.9 13.9 1 +1880 6 14 14.8 14.5 14.5 1 +1880 6 15 12.5 12.2 12.2 1 +1880 6 16 16.2 15.9 15.9 1 +1880 6 17 21.0 20.7 20.7 1 +1880 6 18 19.3 19.0 19.0 1 +1880 6 19 11.4 11.1 11.1 1 +1880 6 20 12.4 12.1 12.1 1 +1880 6 21 16.8 16.5 16.5 1 +1880 6 22 15.2 14.9 14.9 1 +1880 6 23 13.9 13.6 13.6 1 +1880 6 24 15.2 14.9 14.9 1 +1880 6 25 15.3 15.0 15.0 1 +1880 6 26 13.7 13.4 13.4 1 +1880 6 27 13.1 12.8 12.8 1 +1880 6 28 16.9 16.6 16.6 1 +1880 6 29 17.1 16.8 16.8 1 +1880 6 30 17.2 16.9 16.9 1 +1880 7 1 18.9 18.6 18.6 1 +1880 7 2 17.7 17.4 17.4 1 +1880 7 3 17.2 16.9 16.9 1 +1880 7 4 18.1 17.8 17.8 1 +1880 7 5 16.7 16.4 16.4 1 +1880 7 6 16.1 15.8 15.8 1 +1880 7 7 17.5 17.2 17.2 1 +1880 7 8 19.0 18.7 18.7 1 +1880 7 9 17.9 17.6 17.6 1 +1880 7 10 19.9 19.6 19.6 1 +1880 7 11 18.4 18.1 18.1 1 +1880 7 12 18.2 17.9 17.9 1 +1880 7 13 19.2 18.9 18.9 1 +1880 7 14 19.6 19.3 19.3 1 +1880 7 15 21.9 21.6 21.6 1 +1880 7 16 19.3 19.0 19.0 1 +1880 7 17 20.3 20.0 20.0 1 +1880 7 18 13.2 12.9 12.9 1 +1880 7 19 14.9 14.6 14.6 1 +1880 7 20 15.2 14.9 14.9 1 +1880 7 21 14.5 14.2 14.2 1 +1880 7 22 14.6 14.3 14.3 1 +1880 7 23 15.4 15.1 15.1 1 +1880 7 24 14.3 14.0 14.0 1 +1880 7 25 15.0 14.7 14.7 1 +1880 7 26 14.4 14.1 14.1 1 +1880 7 27 15.0 14.7 14.7 1 +1880 7 28 15.3 15.0 15.0 1 +1880 7 29 16.3 16.0 16.0 1 +1880 7 30 17.3 17.0 17.0 1 +1880 7 31 16.0 15.7 15.7 1 +1880 8 1 16.9 16.6 16.6 1 +1880 8 2 15.8 15.5 15.5 1 +1880 8 3 16.4 16.1 16.1 1 +1880 8 4 17.3 17.0 17.0 1 +1880 8 5 17.8 17.5 17.5 1 +1880 8 6 16.0 15.7 15.7 1 +1880 8 7 18.0 17.7 17.7 1 +1880 8 8 18.8 18.5 18.5 1 +1880 8 9 19.0 18.7 18.7 1 +1880 8 10 19.3 19.0 19.0 1 +1880 8 11 21.1 20.8 20.8 1 +1880 8 12 19.9 19.6 19.6 1 +1880 8 13 19.9 19.6 19.6 1 +1880 8 14 19.8 19.5 19.5 1 +1880 8 15 19.1 18.8 18.8 1 +1880 8 16 18.8 18.5 18.5 1 +1880 8 17 18.9 18.6 18.6 1 +1880 8 18 17.1 16.8 16.8 1 +1880 8 19 19.0 18.7 18.7 1 +1880 8 20 20.1 19.8 19.8 1 +1880 8 21 18.8 18.5 18.5 1 +1880 8 22 18.0 17.7 17.7 1 +1880 8 23 17.8 17.5 17.5 1 +1880 8 24 18.0 17.7 17.7 1 +1880 8 25 15.3 15.0 15.0 1 +1880 8 26 14.2 13.9 13.9 1 +1880 8 27 18.9 18.6 18.6 1 +1880 8 28 17.2 16.9 16.9 1 +1880 8 29 18.1 17.9 17.9 1 +1880 8 30 18.4 18.2 18.2 1 +1880 8 31 17.8 17.6 17.6 1 +1880 9 1 19.8 19.6 19.6 1 +1880 9 2 18.4 18.2 18.2 1 +1880 9 3 15.7 15.5 15.5 1 +1880 9 4 16.7 16.5 16.5 1 +1880 9 5 19.4 19.2 19.2 1 +1880 9 6 20.2 20.0 20.0 1 +1880 9 7 15.9 15.7 15.7 1 +1880 9 8 14.1 13.9 13.9 1 +1880 9 9 11.3 11.1 11.1 1 +1880 9 10 12.1 11.9 11.9 1 +1880 9 11 14.0 13.8 13.8 1 +1880 9 12 14.9 14.7 14.7 1 +1880 9 13 15.7 15.5 15.5 1 +1880 9 14 14.0 13.8 13.8 1 +1880 9 15 12.1 11.9 11.9 1 +1880 9 16 12.4 12.2 12.2 1 +1880 9 17 14.0 13.8 13.8 1 +1880 9 18 13.8 13.6 13.6 1 +1880 9 19 14.1 13.9 13.9 1 +1880 9 20 13.8 13.6 13.6 1 +1880 9 21 13.1 12.9 12.9 1 +1880 9 22 12.5 12.3 12.3 1 +1880 9 23 12.0 11.8 11.8 1 +1880 9 24 11.3 11.1 11.1 1 +1880 9 25 9.2 9.0 9.0 1 +1880 9 26 10.3 10.2 10.2 1 +1880 9 27 10.4 10.3 10.3 1 +1880 9 28 12.9 12.8 12.8 1 +1880 9 29 7.9 7.8 7.8 1 +1880 9 30 8.2 8.1 8.1 1 +1880 10 1 5.6 5.5 5.5 1 +1880 10 2 4.1 4.0 4.0 1 +1880 10 3 2.6 2.5 2.5 1 +1880 10 4 2.7 2.6 2.6 1 +1880 10 5 3.3 3.2 3.2 1 +1880 10 6 4.3 4.2 4.2 1 +1880 10 7 3.7 3.6 3.6 1 +1880 10 8 2.5 2.4 2.4 1 +1880 10 9 2.5 2.4 2.4 1 +1880 10 10 2.4 2.3 2.3 1 +1880 10 11 2.8 2.7 2.7 1 +1880 10 12 7.0 6.9 6.9 1 +1880 10 13 7.1 7.0 7.0 1 +1880 10 14 4.7 4.6 4.6 1 +1880 10 15 3.3 3.2 3.2 1 +1880 10 16 0.6 0.5 0.5 1 +1880 10 17 2.7 2.6 2.6 1 +1880 10 18 3.3 3.2 3.2 1 +1880 10 19 -2.6 -2.7 -2.7 1 +1880 10 20 -2.7 -2.8 -2.8 1 +1880 10 21 -1.4 -1.5 -1.5 1 +1880 10 22 -6.8 -6.9 -6.9 1 +1880 10 23 -2.5 -2.6 -2.6 1 +1880 10 24 -0.1 -0.2 -0.2 1 +1880 10 25 -3.1 -3.2 -3.2 1 +1880 10 26 -5.2 -5.3 -5.3 1 +1880 10 27 -3.8 -3.9 -3.9 1 +1880 10 28 -4.7 -4.8 -4.8 1 +1880 10 29 -2.2 -2.3 -2.3 1 +1880 10 30 -4.8 -4.9 -4.9 1 +1880 10 31 -4.8 -4.9 -4.9 1 +1880 11 1 -7.4 -7.6 -7.6 1 +1880 11 2 -6.4 -6.6 -6.6 1 +1880 11 3 -3.6 -3.8 -3.8 1 +1880 11 4 3.3 3.1 3.1 1 +1880 11 5 -1.4 -1.6 -1.6 1 +1880 11 6 1.0 0.8 0.8 1 +1880 11 7 3.5 3.3 3.3 1 +1880 11 8 -3.8 -4.0 -4.0 1 +1880 11 9 -4.4 -4.6 -4.6 1 +1880 11 10 -2.9 -3.1 -3.1 1 +1880 11 11 -0.9 -1.1 -1.1 1 +1880 11 12 3.4 3.2 3.2 1 +1880 11 13 4.9 4.7 4.7 1 +1880 11 14 2.6 2.4 2.4 1 +1880 11 15 -0.9 -1.1 -1.1 1 +1880 11 16 -3.4 -3.6 -3.6 1 +1880 11 17 3.4 3.2 3.2 1 +1880 11 18 1.2 1.0 1.0 1 +1880 11 19 -6.4 -6.6 -6.6 1 +1880 11 20 -6.8 -7.0 -7.0 1 +1880 11 21 -2.8 -3.0 -3.0 1 +1880 11 22 -4.0 -4.2 -4.2 1 +1880 11 23 0.9 0.7 0.7 1 +1880 11 24 1.2 1.0 1.0 1 +1880 11 25 2.7 2.5 2.5 1 +1880 11 26 3.4 3.2 3.2 1 +1880 11 27 5.6 5.4 5.4 1 +1880 11 28 5.8 5.6 5.6 1 +1880 11 29 7.1 6.9 6.9 1 +1880 11 30 4.4 4.2 4.2 1 +1880 12 1 1.9 1.7 1.7 1 +1880 12 2 -3.4 -3.6 -3.6 1 +1880 12 3 -11.2 -11.4 -11.4 1 +1880 12 4 -7.8 -8.0 -8.0 1 +1880 12 5 -5.3 -5.5 -5.5 1 +1880 12 6 -1.2 -1.4 -1.4 1 +1880 12 7 2.0 1.8 1.8 1 +1880 12 8 5.8 5.6 5.6 1 +1880 12 9 0.4 0.2 0.2 1 +1880 12 10 -2.2 -2.4 -2.4 1 +1880 12 11 -6.7 -6.9 -6.9 1 +1880 12 12 -0.7 -0.9 -0.9 1 +1880 12 13 -4.2 -4.4 -4.4 1 +1880 12 14 -7.4 -7.6 -7.6 1 +1880 12 15 -10.0 -10.2 -10.2 1 +1880 12 16 -6.9 -7.1 -7.1 1 +1880 12 17 -6.2 -6.4 -6.4 1 +1880 12 18 -12.0 -12.2 -12.2 1 +1880 12 19 -0.1 -0.3 -0.3 1 +1880 12 20 0.2 0.0 0.0 1 +1880 12 21 -3.5 -3.7 -3.7 1 +1880 12 22 -9.9 -10.1 -10.1 1 +1880 12 23 -9.6 -9.8 -9.8 1 +1880 12 24 -3.6 -3.8 -3.8 1 +1880 12 25 -1.3 -1.5 -1.5 1 +1880 12 26 -2.6 -2.8 -2.8 1 +1880 12 27 -7.5 -7.7 -7.7 1 +1880 12 28 -14.0 -14.2 -14.2 1 +1880 12 29 -0.5 -0.7 -0.7 1 +1880 12 30 1.7 1.5 1.5 1 +1880 12 31 0.4 0.1 0.1 1 +1881 1 1 -2.7 -3.0 -3.0 1 +1881 1 2 3.0 2.7 2.7 1 +1881 1 3 3.0 2.7 2.7 1 +1881 1 4 2.4 2.1 2.1 1 +1881 1 5 -2.2 -2.5 -2.5 1 +1881 1 6 -3.1 -3.4 -3.4 1 +1881 1 7 -1.2 -1.5 -1.5 1 +1881 1 8 -4.3 -4.6 -4.6 1 +1881 1 9 -3.3 -3.6 -3.6 1 +1881 1 10 -9.8 -10.1 -10.1 1 +1881 1 11 -11.5 -11.8 -11.8 1 +1881 1 12 -15.5 -15.8 -15.8 1 +1881 1 13 -18.8 -19.1 -19.1 1 +1881 1 14 -15.9 -16.2 -16.2 1 +1881 1 15 -7.7 -8.0 -8.0 1 +1881 1 16 -14.4 -14.7 -14.7 1 +1881 1 17 -13.4 -13.7 -13.7 1 +1881 1 18 -16.0 -16.3 -16.3 1 +1881 1 19 -20.4 -20.7 -20.7 1 +1881 1 20 -17.7 -18.0 -18.0 1 +1881 1 21 -13.3 -13.6 -13.6 1 +1881 1 22 -7.7 -8.0 -8.0 1 +1881 1 23 -14.0 -14.3 -14.3 1 +1881 1 24 -8.0 -8.3 -8.3 1 +1881 1 25 -1.2 -1.5 -1.5 1 +1881 1 26 -0.3 -0.6 -0.6 1 +1881 1 27 -6.2 -6.5 -6.5 1 +1881 1 28 -2.4 -2.7 -2.7 1 +1881 1 29 -3.1 -3.4 -3.4 1 +1881 1 30 -3.6 -3.9 -3.9 1 +1881 1 31 -1.3 -1.6 -1.6 1 +1881 2 1 -2.3 -2.6 -2.6 1 +1881 2 2 -9.0 -9.3 -9.3 1 +1881 2 3 -11.5 -11.8 -11.8 1 +1881 2 4 -10.4 -10.7 -10.7 1 +1881 2 5 -0.6 -0.9 -0.9 1 +1881 2 6 -5.2 -5.5 -5.5 1 +1881 2 7 -14.4 -14.7 -14.7 1 +1881 2 8 -5.3 -5.6 -5.6 1 +1881 2 9 -8.6 -8.9 -8.9 1 +1881 2 10 -12.2 -12.5 -12.5 1 +1881 2 11 -11.0 -11.3 -11.3 1 +1881 2 12 -8.8 -9.1 -9.1 1 +1881 2 13 -10.1 -10.4 -10.4 1 +1881 2 14 -10.7 -11.0 -11.0 1 +1881 2 15 -6.9 -7.2 -7.2 1 +1881 2 16 -5.1 -5.4 -5.4 1 +1881 2 17 -1.5 -1.8 -1.8 1 +1881 2 18 -2.7 -3.0 -3.0 1 +1881 2 19 -5.9 -6.2 -6.2 1 +1881 2 20 -10.0 -10.3 -10.3 1 +1881 2 21 -7.6 -7.9 -7.9 1 +1881 2 22 -7.8 -8.1 -8.1 1 +1881 2 23 -7.2 -7.5 -7.5 1 +1881 2 24 -4.3 -4.6 -4.6 1 +1881 2 25 -6.1 -6.4 -6.4 1 +1881 2 26 -7.7 -8.0 -8.0 1 +1881 2 27 -12.3 -12.6 -12.6 1 +1881 2 28 -9.6 -9.9 -9.9 1 +1881 3 1 -8.9 -9.2 -9.2 1 +1881 3 2 -12.8 -13.1 -13.1 1 +1881 3 3 -11.1 -11.4 -11.4 1 +1881 3 4 -11.5 -11.8 -11.8 1 +1881 3 5 -9.1 -9.4 -9.4 1 +1881 3 6 -9.7 -10.0 -10.0 1 +1881 3 7 -12.3 -12.6 -12.6 1 +1881 3 8 -6.3 -6.6 -6.6 1 +1881 3 9 -9.1 -9.4 -9.4 1 +1881 3 10 -8.2 -8.5 -8.5 1 +1881 3 11 -8.0 -8.3 -8.3 1 +1881 3 12 -8.0 -8.3 -8.3 1 +1881 3 13 -10.0 -10.3 -10.3 1 +1881 3 14 -5.1 -5.4 -5.4 1 +1881 3 15 -5.9 -6.2 -6.2 1 +1881 3 16 -1.4 -1.7 -1.7 1 +1881 3 17 -0.1 -0.4 -0.4 1 +1881 3 18 4.1 3.8 3.8 1 +1881 3 19 -0.4 -0.7 -0.7 1 +1881 3 20 -5.1 -5.4 -5.4 1 +1881 3 21 -8.4 -8.7 -8.7 1 +1881 3 22 -8.2 -8.5 -8.5 1 +1881 3 23 -7.2 -7.5 -7.5 1 +1881 3 24 -2.0 -2.3 -2.3 1 +1881 3 25 0.5 0.2 0.2 1 +1881 3 26 -3.0 -3.3 -3.3 1 +1881 3 27 -5.4 -5.7 -5.7 1 +1881 3 28 -1.2 -1.5 -1.5 1 +1881 3 29 0.0 -0.3 -0.3 1 +1881 3 30 -3.6 -3.9 -3.9 1 +1881 3 31 -5.0 -5.3 -5.3 1 +1881 4 1 -4.9 -5.2 -5.2 1 +1881 4 2 -6.8 -7.1 -7.1 1 +1881 4 3 -5.5 -5.8 -5.8 1 +1881 4 4 -2.1 -2.4 -2.4 1 +1881 4 5 -1.3 -1.6 -1.6 1 +1881 4 6 -0.9 -1.2 -1.2 1 +1881 4 7 -4.4 -4.7 -4.7 1 +1881 4 8 -2.4 -2.7 -2.7 1 +1881 4 9 -0.1 -0.4 -0.4 1 +1881 4 10 0.3 0.0 0.0 1 +1881 4 11 1.0 0.7 0.7 1 +1881 4 12 2.6 2.3 2.3 1 +1881 4 13 3.6 3.3 3.3 1 +1881 4 14 5.1 4.8 4.8 1 +1881 4 15 5.2 4.9 4.9 1 +1881 4 16 7.5 7.2 7.2 1 +1881 4 17 3.6 3.3 3.3 1 +1881 4 18 5.7 5.4 5.4 1 +1881 4 19 -1.3 -1.6 -1.6 1 +1881 4 20 0.2 -0.1 -0.1 1 +1881 4 21 -1.2 -1.5 -1.5 1 +1881 4 22 0.4 0.0 0.0 1 +1881 4 23 -1.1 -1.5 -1.5 1 +1881 4 24 4.1 3.7 3.7 1 +1881 4 25 4.3 3.9 3.9 1 +1881 4 26 5.1 4.7 4.7 1 +1881 4 27 2.5 2.1 2.1 1 +1881 4 28 0.0 -0.4 -0.4 1 +1881 4 29 2.1 1.7 1.7 1 +1881 4 30 2.9 2.5 2.5 1 +1881 5 1 1.7 1.3 1.3 1 +1881 5 2 1.4 1.0 1.0 1 +1881 5 3 0.9 0.5 0.5 1 +1881 5 4 1.3 0.9 0.9 1 +1881 5 5 4.5 4.1 4.1 1 +1881 5 6 6.6 6.2 6.2 1 +1881 5 7 8.3 7.8 7.8 1 +1881 5 8 4.0 3.5 3.5 1 +1881 5 9 -0.2 -0.7 -0.7 1 +1881 5 10 2.6 2.1 2.1 1 +1881 5 11 4.6 4.1 4.1 1 +1881 5 12 9.1 8.6 8.6 1 +1881 5 13 11.2 10.7 10.7 1 +1881 5 14 11.2 10.7 10.7 1 +1881 5 15 9.4 8.9 8.9 1 +1881 5 16 10.0 9.5 9.5 1 +1881 5 17 8.8 8.3 8.3 1 +1881 5 18 7.9 7.4 7.4 1 +1881 5 19 8.3 7.8 7.8 1 +1881 5 20 8.2 7.7 7.7 1 +1881 5 21 10.7 10.2 10.2 1 +1881 5 22 10.5 10.0 10.0 1 +1881 5 23 13.1 12.6 12.6 1 +1881 5 24 16.4 15.9 15.9 1 +1881 5 25 16.7 16.2 16.2 1 +1881 5 26 11.5 11.1 11.1 1 +1881 5 27 11.1 10.7 10.7 1 +1881 5 28 7.0 6.6 6.6 1 +1881 5 29 10.6 10.2 10.2 1 +1881 5 30 13.9 13.5 13.5 1 +1881 5 31 14.7 14.3 14.3 1 +1881 6 1 13.5 13.1 13.1 1 +1881 6 2 14.2 13.8 13.8 1 +1881 6 3 19.0 18.6 18.6 1 +1881 6 4 14.4 14.0 14.0 1 +1881 6 5 13.4 13.0 13.0 1 +1881 6 6 14.4 14.0 14.0 1 +1881 6 7 14.6 14.2 14.2 1 +1881 6 8 11.4 11.0 11.0 1 +1881 6 9 7.6 7.2 7.2 1 +1881 6 10 4.9 4.5 4.5 1 +1881 6 11 3.7 3.3 3.3 1 +1881 6 12 5.9 5.5 5.5 1 +1881 6 13 6.8 6.5 6.5 1 +1881 6 14 6.5 6.2 6.2 1 +1881 6 15 8.8 8.5 8.5 1 +1881 6 16 12.1 11.8 11.8 1 +1881 6 17 14.5 14.2 14.2 1 +1881 6 18 15.2 14.9 14.9 1 +1881 6 19 16.1 15.8 15.8 1 +1881 6 20 16.4 16.1 16.1 1 +1881 6 21 16.5 16.2 16.2 1 +1881 6 22 17.6 17.3 17.3 1 +1881 6 23 15.7 15.4 15.4 1 +1881 6 24 14.0 13.7 13.7 1 +1881 6 25 14.7 14.4 14.4 1 +1881 6 26 14.7 14.4 14.4 1 +1881 6 27 16.6 16.3 16.3 1 +1881 6 28 13.3 13.0 13.0 1 +1881 6 29 15.7 15.4 15.4 1 +1881 6 30 15.2 14.9 14.9 1 +1881 7 1 17.2 16.9 16.9 1 +1881 7 2 18.7 18.4 18.4 1 +1881 7 3 18.7 18.4 18.4 1 +1881 7 4 15.4 15.0 15.0 1 +1881 7 5 15.5 15.1 15.1 1 +1881 7 6 13.1 12.7 12.7 1 +1881 7 7 12.0 11.6 11.6 1 +1881 7 8 11.4 11.0 11.0 1 +1881 7 9 10.7 10.3 10.3 1 +1881 7 10 13.7 13.3 13.3 1 +1881 7 11 15.6 15.2 15.2 1 +1881 7 12 18.4 18.0 18.0 1 +1881 7 13 19.8 19.4 19.4 1 +1881 7 14 17.5 17.1 17.1 1 +1881 7 15 20.1 19.7 19.7 1 +1881 7 16 17.5 17.1 17.1 1 +1881 7 17 14.2 13.8 13.8 1 +1881 7 18 13.9 13.5 13.5 1 +1881 7 19 17.3 16.9 16.9 1 +1881 7 20 17.3 16.9 16.9 1 +1881 7 21 16.8 16.4 16.4 1 +1881 7 22 15.4 15.0 15.0 1 +1881 7 23 15.6 15.2 15.2 1 +1881 7 24 16.9 16.5 16.5 1 +1881 7 25 17.9 17.5 17.5 1 +1881 7 26 16.3 15.9 15.9 1 +1881 7 27 14.7 14.4 14.4 1 +1881 7 28 13.4 13.1 13.1 1 +1881 7 29 14.7 14.4 14.4 1 +1881 7 30 15.4 15.1 15.1 1 +1881 7 31 16.7 16.4 16.4 1 +1881 8 1 14.7 14.4 14.4 1 +1881 8 2 14.9 14.6 14.6 1 +1881 8 3 15.3 15.0 15.0 1 +1881 8 4 13.5 13.2 13.2 1 +1881 8 5 14.8 14.5 14.5 1 +1881 8 6 18.1 17.8 17.8 1 +1881 8 7 16.6 16.3 16.3 1 +1881 8 8 16.0 15.7 15.7 1 +1881 8 9 17.0 16.7 16.7 1 +1881 8 10 15.5 15.2 15.2 1 +1881 8 11 13.5 13.2 13.2 1 +1881 8 12 12.7 12.4 12.4 1 +1881 8 13 12.6 12.3 12.3 1 +1881 8 14 12.9 12.6 12.6 1 +1881 8 15 13.1 12.8 12.8 1 +1881 8 16 12.5 12.2 12.2 1 +1881 8 17 14.0 13.7 13.7 1 +1881 8 18 13.7 13.4 13.4 1 +1881 8 19 14.2 13.9 13.9 1 +1881 8 20 13.4 13.1 13.1 1 +1881 8 21 12.9 12.6 12.6 1 +1881 8 22 13.8 13.5 13.5 1 +1881 8 23 14.0 13.7 13.7 1 +1881 8 24 13.1 12.8 12.8 1 +1881 8 25 10.6 10.3 10.3 1 +1881 8 26 13.5 13.2 13.2 1 +1881 8 27 15.3 15.0 15.0 1 +1881 8 28 12.4 12.1 12.1 1 +1881 8 29 12.2 11.9 11.9 1 +1881 8 30 11.8 11.5 11.5 1 +1881 8 31 12.1 11.8 11.8 1 +1881 9 1 11.9 11.6 11.6 1 +1881 9 2 11.0 10.7 10.7 1 +1881 9 3 10.5 10.3 10.3 1 +1881 9 4 12.1 11.9 11.9 1 +1881 9 5 13.7 13.5 13.5 1 +1881 9 6 14.2 14.0 14.0 1 +1881 9 7 15.0 14.8 14.8 1 +1881 9 8 15.4 15.2 15.2 1 +1881 9 9 14.6 14.4 14.4 1 +1881 9 10 13.1 12.9 12.9 1 +1881 9 11 10.7 10.5 10.5 1 +1881 9 12 12.9 12.7 12.7 1 +1881 9 13 13.1 12.9 12.9 1 +1881 9 14 11.8 11.6 11.6 1 +1881 9 15 12.8 12.6 12.6 1 +1881 9 16 11.3 11.1 11.1 1 +1881 9 17 8.6 8.4 8.4 1 +1881 9 18 11.1 10.9 10.9 1 +1881 9 19 11.7 11.5 11.5 1 +1881 9 20 10.0 9.8 9.8 1 +1881 9 21 7.8 7.6 7.6 1 +1881 9 22 6.6 6.4 6.4 1 +1881 9 23 6.7 6.5 6.5 1 +1881 9 24 8.5 8.3 8.3 1 +1881 9 25 7.9 7.7 7.7 1 +1881 9 26 7.5 7.3 7.3 1 +1881 9 27 8.2 8.0 8.0 1 +1881 9 28 8.6 8.4 8.4 1 +1881 9 29 9.5 9.3 9.3 1 +1881 9 30 10.4 10.2 10.2 1 +1881 10 1 8.8 8.6 8.6 1 +1881 10 2 7.2 7.1 7.1 1 +1881 10 3 4.3 4.2 4.2 1 +1881 10 4 6.3 6.2 6.2 1 +1881 10 5 7.0 6.9 6.9 1 +1881 10 6 7.0 6.9 6.9 1 +1881 10 7 7.0 6.9 6.9 1 +1881 10 8 7.0 6.9 6.9 1 +1881 10 9 9.2 9.1 9.1 1 +1881 10 10 8.8 8.7 8.7 1 +1881 10 11 10.4 10.3 10.3 1 +1881 10 12 7.6 7.5 7.5 1 +1881 10 13 5.2 5.1 5.1 1 +1881 10 14 6.2 6.1 6.1 1 +1881 10 15 7.4 7.3 7.3 1 +1881 10 16 5.0 4.9 4.9 1 +1881 10 17 4.3 4.2 4.2 1 +1881 10 18 5.1 5.0 5.0 1 +1881 10 19 5.0 4.9 4.9 1 +1881 10 20 4.7 4.6 4.6 1 +1881 10 21 1.7 1.6 1.6 1 +1881 10 22 3.3 3.2 3.2 1 +1881 10 23 2.4 2.3 2.3 1 +1881 10 24 2.5 2.4 2.4 1 +1881 10 25 1.2 1.1 1.1 1 +1881 10 26 -1.8 -1.9 -1.9 1 +1881 10 27 -0.7 -0.8 -0.8 1 +1881 10 28 -1.0 -1.2 -1.2 1 +1881 10 29 -5.0 -5.2 -5.2 1 +1881 10 30 -3.6 -3.8 -3.8 1 +1881 10 31 -0.4 -0.6 -0.6 1 +1881 11 1 -0.6 -0.8 -0.8 1 +1881 11 2 -2.5 -2.7 -2.7 1 +1881 11 3 -3.1 -3.3 -3.3 1 +1881 11 4 -1.1 -1.3 -1.3 1 +1881 11 5 0.3 0.1 0.1 1 +1881 11 6 -0.2 -0.4 -0.4 1 +1881 11 7 -0.8 -1.0 -1.0 1 +1881 11 8 1.0 0.8 0.8 1 +1881 11 9 4.7 4.5 4.5 1 +1881 11 10 4.0 3.8 3.8 1 +1881 11 11 3.4 3.2 3.2 1 +1881 11 12 3.7 3.5 3.5 1 +1881 11 13 4.3 4.1 4.1 1 +1881 11 14 4.1 3.9 3.9 1 +1881 11 15 4.0 3.8 3.8 1 +1881 11 16 7.1 6.9 6.9 1 +1881 11 17 7.0 6.8 6.8 1 +1881 11 18 -3.0 -3.2 -3.2 1 +1881 11 19 -3.7 -3.9 -3.9 1 +1881 11 20 4.6 4.4 4.4 1 +1881 11 21 3.7 3.5 3.5 1 +1881 11 22 5.7 5.5 5.5 1 +1881 11 23 4.8 4.6 4.6 1 +1881 11 24 3.8 3.6 3.6 1 +1881 11 25 5.0 4.8 4.8 1 +1881 11 26 5.3 5.1 5.1 1 +1881 11 27 5.7 5.5 5.5 1 +1881 11 28 5.8 5.6 5.6 1 +1881 11 29 7.1 6.9 6.9 1 +1881 11 30 2.2 2.0 2.0 1 +1881 12 1 -1.4 -1.6 -1.6 1 +1881 12 2 1.6 1.4 1.4 1 +1881 12 3 1.7 1.5 1.5 1 +1881 12 4 1.0 0.8 0.8 1 +1881 12 5 2.6 2.4 2.4 1 +1881 12 6 1.2 1.0 1.0 1 +1881 12 7 2.0 1.8 1.8 1 +1881 12 8 2.4 2.2 2.2 1 +1881 12 9 0.8 0.6 0.6 1 +1881 12 10 1.5 1.3 1.3 1 +1881 12 11 0.7 0.5 0.5 1 +1881 12 12 -1.3 -1.5 -1.5 1 +1881 12 13 -1.3 -1.5 -1.5 1 +1881 12 14 0.4 0.2 0.2 1 +1881 12 15 0.1 -0.1 -0.1 1 +1881 12 16 0.6 0.4 0.4 1 +1881 12 17 0.9 0.7 0.7 1 +1881 12 18 1.2 1.0 1.0 1 +1881 12 19 2.6 2.4 2.4 1 +1881 12 20 1.5 1.3 1.3 1 +1881 12 21 0.2 0.0 0.0 1 +1881 12 22 -1.0 -1.2 -1.2 1 +1881 12 23 -6.4 -6.6 -6.6 1 +1881 12 24 -5.4 -5.6 -5.6 1 +1881 12 25 -3.8 -4.0 -4.0 1 +1881 12 26 4.9 4.7 4.7 1 +1881 12 27 6.6 6.3 6.3 1 +1881 12 28 2.1 1.8 1.8 1 +1881 12 29 2.3 2.0 2.0 1 +1881 12 30 3.8 3.5 3.5 1 +1881 12 31 3.3 3.0 3.0 1 +1882 1 1 0.4 0.1 0.1 1 +1882 1 2 2.3 2.0 2.0 1 +1882 1 3 4.7 4.4 4.4 1 +1882 1 4 0.8 0.5 0.5 1 +1882 1 5 -1.1 -1.4 -1.4 1 +1882 1 6 1.7 1.4 1.4 1 +1882 1 7 4.0 3.7 3.7 1 +1882 1 8 -1.0 -1.3 -1.3 1 +1882 1 9 2.0 1.7 1.7 1 +1882 1 10 1.0 0.7 0.7 1 +1882 1 11 1.9 1.5 1.5 1 +1882 1 12 -4.0 -4.4 -4.4 1 +1882 1 13 -1.7 -2.1 -2.1 1 +1882 1 14 -0.4 -0.8 -0.8 1 +1882 1 15 -3.5 -3.9 -3.9 1 +1882 1 16 0.7 0.3 0.3 1 +1882 1 17 2.1 1.7 1.7 1 +1882 1 18 2.0 1.6 1.6 1 +1882 1 19 3.1 2.7 2.7 1 +1882 1 20 3.3 2.9 2.9 1 +1882 1 21 2.8 2.4 2.4 1 +1882 1 22 0.8 0.4 0.4 1 +1882 1 23 2.0 1.6 1.6 1 +1882 1 24 3.1 2.7 2.7 1 +1882 1 25 6.4 6.0 6.0 1 +1882 1 26 4.7 4.3 4.3 1 +1882 1 27 1.7 1.3 1.3 1 +1882 1 28 3.8 3.4 3.4 1 +1882 1 29 -0.2 -0.6 -0.6 1 +1882 1 30 -1.5 -1.9 -1.9 1 +1882 1 31 -3.9 -4.2 -4.2 1 +1882 2 1 -3.3 -3.6 -3.6 1 +1882 2 2 -0.5 -0.8 -0.8 1 +1882 2 3 1.6 1.3 1.3 1 +1882 2 4 2.7 2.4 2.4 1 +1882 2 5 -0.2 -0.5 -0.5 1 +1882 2 6 -2.3 -2.6 -2.6 1 +1882 2 7 -7.3 -7.6 -7.6 1 +1882 2 8 -8.5 -8.8 -8.8 1 +1882 2 9 -1.0 -1.3 -1.3 1 +1882 2 10 1.0 0.7 0.7 1 +1882 2 11 2.6 2.3 2.3 1 +1882 2 12 0.0 -0.3 -0.3 1 +1882 2 13 4.3 4.0 4.0 1 +1882 2 14 4.9 4.6 4.6 1 +1882 2 15 0.4 0.1 0.1 1 +1882 2 16 -5.5 -5.8 -5.8 1 +1882 2 17 -5.1 -5.4 -5.4 1 +1882 2 18 -3.0 -3.3 -3.3 1 +1882 2 19 -0.9 -1.2 -1.2 1 +1882 2 20 -1.1 -1.4 -1.4 1 +1882 2 21 -5.4 -5.7 -5.7 1 +1882 2 22 -0.8 -1.1 -1.1 1 +1882 2 23 0.4 0.1 0.1 1 +1882 2 24 0.1 -0.2 -0.2 1 +1882 2 25 3.8 3.5 3.5 1 +1882 2 26 6.9 6.6 6.6 1 +1882 2 27 -3.6 -3.9 -3.9 1 +1882 2 28 -9.5 -9.8 -9.8 1 +1882 3 1 -11.1 -11.4 -11.4 1 +1882 3 2 -7.6 -7.9 -7.9 1 +1882 3 3 -7.3 -7.6 -7.6 1 +1882 3 4 -3.1 -3.4 -3.4 1 +1882 3 5 2.1 1.8 1.8 1 +1882 3 6 2.0 1.7 1.7 1 +1882 3 7 -5.9 -6.2 -6.2 1 +1882 3 8 1.1 0.8 0.8 1 +1882 3 9 4.3 4.0 4.0 1 +1882 3 10 5.6 5.3 5.3 1 +1882 3 11 3.4 3.1 3.1 1 +1882 3 12 3.6 3.3 3.3 1 +1882 3 13 5.5 5.2 5.2 1 +1882 3 14 6.2 5.9 5.9 1 +1882 3 15 4.8 4.5 4.5 1 +1882 3 16 8.2 7.9 7.9 1 +1882 3 17 0.0 -0.3 -0.3 1 +1882 3 18 -0.9 -1.2 -1.2 1 +1882 3 19 3.2 2.9 2.9 1 +1882 3 20 4.8 4.5 4.5 1 +1882 3 21 6.0 5.7 5.7 1 +1882 3 22 4.0 3.7 3.7 1 +1882 3 23 1.8 1.5 1.5 1 +1882 3 24 2.3 2.0 2.0 1 +1882 3 25 2.6 2.3 2.3 1 +1882 3 26 3.3 3.0 3.0 1 +1882 3 27 2.1 1.8 1.8 1 +1882 3 28 3.0 2.7 2.7 1 +1882 3 29 2.0 1.7 1.7 1 +1882 3 30 0.4 0.1 0.1 1 +1882 3 31 1.3 1.0 1.0 1 +1882 4 1 0.2 -0.1 -0.1 1 +1882 4 2 1.7 1.4 1.4 1 +1882 4 3 0.7 0.4 0.4 1 +1882 4 4 1.3 1.0 1.0 1 +1882 4 5 1.9 1.6 1.6 1 +1882 4 6 3.4 3.1 3.1 1 +1882 4 7 4.4 4.1 4.1 1 +1882 4 8 4.1 3.8 3.8 1 +1882 4 9 3.9 3.6 3.6 1 +1882 4 10 5.3 5.0 5.0 1 +1882 4 11 0.2 -0.1 -0.1 1 +1882 4 12 -3.1 -3.4 -3.4 1 +1882 4 13 -1.6 -1.9 -1.9 1 +1882 4 14 0.2 -0.1 -0.1 1 +1882 4 15 2.4 2.1 2.1 1 +1882 4 16 0.4 0.1 0.1 1 +1882 4 17 0.7 0.4 0.4 1 +1882 4 18 0.7 0.3 0.3 1 +1882 4 19 1.8 1.4 1.4 1 +1882 4 20 6.5 6.1 6.1 1 +1882 4 21 9.1 8.7 8.7 1 +1882 4 22 6.8 6.4 6.4 1 +1882 4 23 5.6 5.2 5.2 1 +1882 4 24 11.6 11.2 11.2 1 +1882 4 25 8.8 8.4 8.4 1 +1882 4 26 8.4 8.0 8.0 1 +1882 4 27 8.9 8.5 8.5 1 +1882 4 28 5.7 5.3 5.3 1 +1882 4 29 9.6 9.2 9.2 1 +1882 4 30 8.8 8.4 8.4 1 +1882 5 1 8.8 8.4 8.4 1 +1882 5 2 7.0 6.5 6.5 1 +1882 5 3 9.7 9.2 9.2 1 +1882 5 4 10.2 9.7 9.7 1 +1882 5 5 9.7 9.2 9.2 1 +1882 5 6 10.9 10.4 10.4 1 +1882 5 7 6.6 6.1 6.1 1 +1882 5 8 4.4 3.9 3.9 1 +1882 5 9 4.7 4.2 4.2 1 +1882 5 10 5.1 4.6 4.6 1 +1882 5 11 7.2 6.7 6.7 1 +1882 5 12 6.4 5.9 5.9 1 +1882 5 13 4.2 3.7 3.7 1 +1882 5 14 3.5 3.0 3.0 1 +1882 5 15 5.2 4.7 4.7 1 +1882 5 16 5.0 4.5 4.5 1 +1882 5 17 7.5 7.0 7.0 1 +1882 5 18 6.3 5.8 5.8 1 +1882 5 19 10.0 9.5 9.5 1 +1882 5 20 11.2 10.7 10.7 1 +1882 5 21 13.2 12.7 12.7 1 +1882 5 22 14.4 13.9 13.9 1 +1882 5 23 14.9 14.4 14.4 1 +1882 5 24 15.0 14.5 14.5 1 +1882 5 25 15.2 14.7 14.7 1 +1882 5 26 14.2 13.7 13.7 1 +1882 5 27 16.4 15.9 15.9 1 +1882 5 28 16.9 16.4 16.4 1 +1882 5 29 17.2 16.7 16.7 1 +1882 5 30 13.6 13.1 13.1 1 +1882 5 31 11.8 11.3 11.3 1 +1882 6 1 11.9 11.5 11.5 1 +1882 6 2 12.8 12.4 12.4 1 +1882 6 3 14.4 14.0 14.0 1 +1882 6 4 16.2 15.8 15.8 1 +1882 6 5 14.6 14.2 14.2 1 +1882 6 6 16.7 16.3 16.3 1 +1882 6 7 16.8 16.4 16.4 1 +1882 6 8 14.4 14.0 14.0 1 +1882 6 9 13.7 13.3 13.3 1 +1882 6 10 11.3 10.9 10.9 1 +1882 6 11 12.7 12.3 12.3 1 +1882 6 12 11.3 10.9 10.9 1 +1882 6 13 10.4 10.0 10.0 1 +1882 6 14 9.1 8.7 8.7 1 +1882 6 15 12.3 11.9 11.9 1 +1882 6 16 12.8 12.4 12.4 1 +1882 6 17 10.9 10.5 10.5 1 +1882 6 18 13.1 12.7 12.7 1 +1882 6 19 12.6 12.2 12.2 1 +1882 6 20 15.9 15.5 15.5 1 +1882 6 21 16.7 16.3 16.3 1 +1882 6 22 15.7 15.3 15.3 1 +1882 6 23 16.3 15.9 15.9 1 +1882 6 24 17.3 16.9 16.9 1 +1882 6 25 18.3 17.9 17.9 1 +1882 6 26 20.3 19.9 19.9 1 +1882 6 27 22.2 21.8 21.8 1 +1882 6 28 16.0 15.6 15.6 1 +1882 6 29 10.6 10.2 10.2 1 +1882 6 30 12.7 12.3 12.3 1 +1882 7 1 15.9 15.5 15.5 1 +1882 7 2 17.2 16.8 16.8 1 +1882 7 3 20.3 19.9 19.9 1 +1882 7 4 13.7 13.3 13.3 1 +1882 7 5 14.1 13.7 13.7 1 +1882 7 6 13.9 13.5 13.5 1 +1882 7 7 13.5 13.1 13.1 1 +1882 7 8 15.1 14.7 14.7 1 +1882 7 9 16.0 15.6 15.6 1 +1882 7 10 13.0 12.6 12.6 1 +1882 7 11 12.4 12.0 12.0 1 +1882 7 12 16.2 15.8 15.8 1 +1882 7 13 17.1 16.7 16.7 1 +1882 7 14 16.7 16.3 16.3 1 +1882 7 15 17.6 17.2 17.2 1 +1882 7 16 19.5 19.1 19.1 1 +1882 7 17 21.5 21.1 21.1 1 +1882 7 18 21.0 20.6 20.6 1 +1882 7 19 19.8 19.4 19.4 1 +1882 7 20 16.4 16.0 16.0 1 +1882 7 21 17.2 16.8 16.8 1 +1882 7 22 18.0 17.6 17.6 1 +1882 7 23 16.8 16.4 16.4 1 +1882 7 24 19.5 19.1 19.1 1 +1882 7 25 16.3 15.9 15.9 1 +1882 7 26 18.1 17.7 17.7 1 +1882 7 27 15.9 15.5 15.5 1 +1882 7 28 16.8 16.4 16.4 1 +1882 7 29 18.5 18.1 18.1 1 +1882 7 30 19.5 19.1 19.1 1 +1882 7 31 20.3 19.9 19.9 1 +1882 8 1 16.7 16.3 16.3 1 +1882 8 2 16.6 16.2 16.2 1 +1882 8 3 16.2 15.8 15.8 1 +1882 8 4 13.7 13.3 13.3 1 +1882 8 5 14.5 14.1 14.1 1 +1882 8 6 15.3 14.9 14.9 1 +1882 8 7 15.4 15.0 15.0 1 +1882 8 8 19.3 18.9 18.9 1 +1882 8 9 17.3 16.9 16.9 1 +1882 8 10 19.1 18.7 18.7 1 +1882 8 11 19.8 19.4 19.4 1 +1882 8 12 20.4 20.0 20.0 1 +1882 8 13 20.2 19.8 19.8 1 +1882 8 14 19.9 19.5 19.5 1 +1882 8 15 20.6 20.2 20.2 1 +1882 8 16 21.5 21.1 21.1 1 +1882 8 17 20.8 20.4 20.4 1 +1882 8 18 22.0 21.7 21.7 1 +1882 8 19 21.8 21.5 21.5 1 +1882 8 20 20.6 20.3 20.3 1 +1882 8 21 19.8 19.5 19.5 1 +1882 8 22 16.7 16.4 16.4 1 +1882 8 23 15.7 15.4 15.4 1 +1882 8 24 15.7 15.4 15.4 1 +1882 8 25 14.6 14.3 14.3 1 +1882 8 26 16.0 15.7 15.7 1 +1882 8 27 15.2 14.9 14.9 1 +1882 8 28 15.4 15.1 15.1 1 +1882 8 29 14.4 14.1 14.1 1 +1882 8 30 12.7 12.4 12.4 1 +1882 8 31 11.3 11.0 11.0 1 +1882 9 1 10.3 10.0 10.0 1 +1882 9 2 14.5 14.2 14.2 1 +1882 9 3 16.6 16.3 16.3 1 +1882 9 4 15.9 15.6 15.6 1 +1882 9 5 15.5 15.2 15.2 1 +1882 9 6 14.8 14.6 14.6 1 +1882 9 7 12.9 12.7 12.7 1 +1882 9 8 12.6 12.4 12.4 1 +1882 9 9 12.0 11.8 11.8 1 +1882 9 10 11.3 11.1 11.1 1 +1882 9 11 15.5 15.3 15.3 1 +1882 9 12 15.6 15.4 15.4 1 +1882 9 13 15.8 15.6 15.6 1 +1882 9 14 16.8 16.6 16.6 1 +1882 9 15 16.3 16.1 16.1 1 +1882 9 16 16.5 16.3 16.3 1 +1882 9 17 16.5 16.3 16.3 1 +1882 9 18 15.7 15.5 15.5 1 +1882 9 19 15.0 14.8 14.8 1 +1882 9 20 9.6 9.4 9.4 1 +1882 9 21 9.9 9.7 9.7 1 +1882 9 22 9.5 9.3 9.3 1 +1882 9 23 10.3 10.1 10.1 1 +1882 9 24 9.3 9.1 9.1 1 +1882 9 25 7.7 7.5 7.5 1 +1882 9 26 10.5 10.3 10.3 1 +1882 9 27 11.1 10.9 10.9 1 +1882 9 28 11.6 11.4 11.4 1 +1882 9 29 12.5 12.3 12.3 1 +1882 9 30 12.5 12.3 12.3 1 +1882 10 1 11.3 11.1 11.1 1 +1882 10 2 10.2 10.0 10.0 1 +1882 10 3 12.3 12.1 12.1 1 +1882 10 4 11.6 11.4 11.4 1 +1882 10 5 11.2 11.0 11.0 1 +1882 10 6 9.3 9.2 9.2 1 +1882 10 7 8.7 8.6 8.6 1 +1882 10 8 8.1 8.0 8.0 1 +1882 10 9 8.2 8.1 8.1 1 +1882 10 10 7.2 7.1 7.1 1 +1882 10 11 6.4 6.3 6.3 1 +1882 10 12 6.7 6.6 6.6 1 +1882 10 13 4.8 4.7 4.7 1 +1882 10 14 4.8 4.7 4.7 1 +1882 10 15 5.1 5.0 5.0 1 +1882 10 16 4.3 4.2 4.2 1 +1882 10 17 2.5 2.4 2.4 1 +1882 10 18 4.2 4.1 4.1 1 +1882 10 19 5.3 5.2 5.2 1 +1882 10 20 7.7 7.6 7.6 1 +1882 10 21 7.0 6.9 6.9 1 +1882 10 22 6.0 5.9 5.9 1 +1882 10 23 5.6 5.5 5.5 1 +1882 10 24 6.0 5.8 5.8 1 +1882 10 25 7.4 7.2 7.2 1 +1882 10 26 7.3 7.1 7.1 1 +1882 10 27 4.2 4.0 4.0 1 +1882 10 28 5.6 5.4 5.4 1 +1882 10 29 8.2 8.0 8.0 1 +1882 10 30 7.9 7.7 7.7 1 +1882 10 31 6.0 5.8 5.8 1 +1882 11 1 6.0 5.8 5.8 1 +1882 11 2 5.3 5.1 5.1 1 +1882 11 3 4.3 4.1 4.1 1 +1882 11 4 7.3 7.1 7.1 1 +1882 11 5 7.2 7.0 7.0 1 +1882 11 6 4.7 4.5 4.5 1 +1882 11 7 2.9 2.7 2.7 1 +1882 11 8 2.1 1.9 1.9 1 +1882 11 9 2.5 2.3 2.3 1 +1882 11 10 0.4 0.2 0.2 1 +1882 11 11 -1.0 -1.2 -1.2 1 +1882 11 12 -2.7 -2.9 -2.9 1 +1882 11 13 -2.5 -2.7 -2.7 1 +1882 11 14 -1.2 -1.4 -1.4 1 +1882 11 15 -3.0 -3.2 -3.2 1 +1882 11 16 -3.9 -4.1 -4.1 1 +1882 11 17 -3.9 -4.1 -4.1 1 +1882 11 18 -1.2 -1.4 -1.4 1 +1882 11 19 -1.9 -2.1 -2.1 1 +1882 11 20 -1.2 -1.4 -1.4 1 +1882 11 21 0.5 0.3 0.3 1 +1882 11 22 -2.4 -2.6 -2.6 1 +1882 11 23 -2.3 -2.5 -2.5 1 +1882 11 24 -2.6 -2.8 -2.8 1 +1882 11 25 0.8 0.6 0.6 1 +1882 11 26 -2.4 -2.6 -2.6 1 +1882 11 27 -3.9 -4.1 -4.1 1 +1882 11 28 -4.5 -4.7 -4.7 1 +1882 11 29 -6.5 -6.7 -6.7 1 +1882 11 30 -4.2 -4.4 -4.4 1 +1882 12 1 -4.2 -4.4 -4.4 1 +1882 12 2 -7.5 -7.7 -7.7 1 +1882 12 3 -5.1 -5.3 -5.3 1 +1882 12 4 -4.9 -5.1 -5.1 1 +1882 12 5 -7.7 -7.9 -7.9 1 +1882 12 6 -10.0 -10.2 -10.2 1 +1882 12 7 -6.4 -6.6 -6.6 1 +1882 12 8 -8.2 -8.4 -8.4 1 +1882 12 9 -1.1 -1.3 -1.3 1 +1882 12 10 0.1 -0.1 -0.1 1 +1882 12 11 1.8 1.6 1.6 1 +1882 12 12 1.6 1.4 1.4 1 +1882 12 13 -0.7 -0.9 -0.9 1 +1882 12 14 1.2 1.0 1.0 1 +1882 12 15 1.3 1.1 1.1 1 +1882 12 16 -5.4 -5.6 -5.6 1 +1882 12 17 -10.1 -10.3 -10.3 1 +1882 12 18 -3.7 -3.9 -3.9 1 +1882 12 19 -2.7 -2.9 -2.9 1 +1882 12 20 -1.1 -1.3 -1.3 1 +1882 12 21 -0.9 -1.1 -1.1 1 +1882 12 22 0.5 0.3 0.3 1 +1882 12 23 1.4 1.1 1.1 1 +1882 12 24 -0.1 -0.4 -0.4 1 +1882 12 25 -3.4 -3.7 -3.7 1 +1882 12 26 -7.6 -7.9 -7.9 1 +1882 12 27 -10.5 -10.8 -10.8 1 +1882 12 28 -7.4 -7.7 -7.7 1 +1882 12 29 -3.4 -3.7 -3.7 1 +1882 12 30 -4.6 -4.9 -4.9 1 +1882 12 31 -8.5 -8.8 -8.8 1 +1883 1 1 -7.6 -7.9 -7.9 1 +1883 1 2 1.2 0.9 0.9 1 +1883 1 3 -0.8 -1.1 -1.1 1 +1883 1 4 -9.2 -9.5 -9.5 1 +1883 1 5 -13.8 -14.1 -14.1 1 +1883 1 6 -11.5 -11.8 -11.8 1 +1883 1 7 -4.9 -5.3 -5.3 1 +1883 1 8 -1.1 -1.5 -1.5 1 +1883 1 9 1.5 1.1 1.1 1 +1883 1 10 -2.6 -3.0 -3.0 1 +1883 1 11 -5.6 -6.0 -6.0 1 +1883 1 12 -6.7 -7.1 -7.1 1 +1883 1 13 -5.9 -6.3 -6.3 1 +1883 1 14 -5.1 -5.5 -5.5 1 +1883 1 15 -3.1 -3.5 -3.5 1 +1883 1 16 -2.2 -2.6 -2.6 1 +1883 1 17 -0.8 -1.2 -1.2 1 +1883 1 18 -0.8 -1.2 -1.2 1 +1883 1 19 1.0 0.6 0.6 1 +1883 1 20 1.0 0.6 0.6 1 +1883 1 21 -0.3 -0.7 -0.7 1 +1883 1 22 -2.5 -2.9 -2.9 1 +1883 1 23 -7.9 -8.3 -8.3 1 +1883 1 24 -9.1 -9.5 -9.5 1 +1883 1 25 -2.6 -3.0 -3.0 1 +1883 1 26 -1.2 -1.6 -1.6 1 +1883 1 27 0.8 0.4 0.4 1 +1883 1 28 0.5 0.1 0.1 1 +1883 1 29 0.9 0.5 0.5 1 +1883 1 30 1.0 0.6 0.6 1 +1883 1 31 1.3 0.9 0.9 1 +1883 2 1 -1.6 -2.0 -2.0 1 +1883 2 2 0.5 0.1 0.1 1 +1883 2 3 1.3 0.9 0.9 1 +1883 2 4 -1.5 -1.9 -1.9 1 +1883 2 5 -4.0 -4.4 -4.4 1 +1883 2 6 -6.5 -6.9 -6.9 1 +1883 2 7 -5.1 -5.5 -5.5 1 +1883 2 8 -4.7 -5.1 -5.1 1 +1883 2 9 -2.4 -2.8 -2.8 1 +1883 2 10 -0.6 -1.0 -1.0 1 +1883 2 11 0.8 0.4 0.4 1 +1883 2 12 2.0 1.6 1.6 1 +1883 2 13 -0.3 -0.7 -0.7 1 +1883 2 14 -1.2 -1.6 -1.6 1 +1883 2 15 0.5 0.1 0.1 1 +1883 2 16 0.4 0.0 0.0 1 +1883 2 17 -1.2 -1.6 -1.6 1 +1883 2 18 -2.1 -2.5 -2.5 1 +1883 2 19 -4.6 -5.0 -5.0 1 +1883 2 20 -3.5 -3.9 -3.9 1 +1883 2 21 0.9 0.5 0.5 1 +1883 2 22 2.3 1.9 1.9 1 +1883 2 23 0.1 -0.3 -0.3 1 +1883 2 24 0.4 0.0 0.0 1 +1883 2 25 2.4 2.0 2.0 1 +1883 2 26 -1.2 -1.6 -1.6 1 +1883 2 27 2.5 2.1 2.1 1 +1883 2 28 0.8 0.4 0.4 1 +1883 3 1 -1.6 -2.0 -2.0 1 +1883 3 2 0.0 -0.4 -0.4 1 +1883 3 3 1.7 1.3 1.3 1 +1883 3 4 0.4 0.0 0.0 1 +1883 3 5 0.3 -0.1 -0.1 1 +1883 3 6 -2.8 -3.2 -3.2 1 +1883 3 7 -5.7 -6.1 -6.1 1 +1883 3 8 -5.6 -6.0 -6.0 1 +1883 3 9 -7.7 -8.1 -8.1 1 +1883 3 10 -4.2 -4.6 -4.6 1 +1883 3 11 -8.7 -9.1 -9.1 1 +1883 3 12 -7.3 -7.7 -7.7 1 +1883 3 13 -7.1 -7.5 -7.5 1 +1883 3 14 -6.4 -6.8 -6.8 1 +1883 3 15 -4.7 -5.1 -5.1 1 +1883 3 16 -5.1 -5.5 -5.5 1 +1883 3 17 -3.5 -3.9 -3.9 1 +1883 3 18 -4.2 -4.6 -4.6 1 +1883 3 19 -5.0 -5.4 -5.4 1 +1883 3 20 -4.6 -5.0 -5.0 1 +1883 3 21 -9.1 -9.5 -9.5 1 +1883 3 22 -7.6 -8.0 -8.0 1 +1883 3 23 -1.3 -1.7 -1.7 1 +1883 3 24 -2.1 -2.5 -2.5 1 +1883 3 25 -6.3 -6.7 -6.7 1 +1883 3 26 -3.8 -4.2 -4.2 1 +1883 3 27 -3.8 -4.2 -4.2 1 +1883 3 28 -3.2 -3.6 -3.6 1 +1883 3 29 -2.4 -2.8 -2.8 1 +1883 3 30 -1.5 -1.9 -1.9 1 +1883 3 31 -2.1 -2.5 -2.5 1 +1883 4 1 -1.0 -1.4 -1.4 1 +1883 4 2 2.3 1.9 1.9 1 +1883 4 3 1.0 0.6 0.6 1 +1883 4 4 -0.5 -0.9 -0.9 1 +1883 4 5 0.0 -0.4 -0.4 1 +1883 4 6 1.0 0.6 0.6 1 +1883 4 7 0.6 0.2 0.2 1 +1883 4 8 1.4 1.0 1.0 1 +1883 4 9 2.8 2.4 2.4 1 +1883 4 10 2.5 2.1 2.1 1 +1883 4 11 3.0 2.6 2.6 1 +1883 4 12 2.2 1.8 1.8 1 +1883 4 13 0.8 0.4 0.4 1 +1883 4 14 3.3 2.9 2.9 1 +1883 4 15 3.0 2.6 2.6 1 +1883 4 16 2.6 2.2 2.2 1 +1883 4 17 2.7 2.3 2.3 1 +1883 4 18 2.2 1.8 1.8 1 +1883 4 19 1.5 1.1 1.1 1 +1883 4 20 2.3 1.9 1.9 1 +1883 4 21 4.3 3.9 3.9 1 +1883 4 22 1.3 0.9 0.9 1 +1883 4 23 2.1 1.7 1.7 1 +1883 4 24 4.5 4.1 4.1 1 +1883 4 25 6.2 5.8 5.8 1 +1883 4 26 5.2 4.8 4.8 1 +1883 4 27 7.6 7.2 7.2 1 +1883 4 28 7.3 6.8 6.8 1 +1883 4 29 8.5 8.0 8.0 1 +1883 4 30 6.6 6.1 6.1 1 +1883 5 1 2.7 2.2 2.2 1 +1883 5 2 -0.6 -1.1 -1.1 1 +1883 5 3 0.2 -0.3 -0.3 1 +1883 5 4 2.9 2.4 2.4 1 +1883 5 5 4.7 4.2 4.2 1 +1883 5 6 6.7 6.2 6.2 1 +1883 5 7 7.8 7.3 7.3 1 +1883 5 8 9.3 8.8 8.8 1 +1883 5 9 10.7 10.2 10.2 1 +1883 5 10 8.8 8.3 8.3 1 +1883 5 11 9.9 9.3 9.3 1 +1883 5 12 6.4 5.8 5.8 1 +1883 5 13 11.0 10.4 10.4 1 +1883 5 14 13.1 12.5 12.5 1 +1883 5 15 15.2 14.6 14.6 1 +1883 5 16 14.1 13.5 13.5 1 +1883 5 17 8.1 7.5 7.5 1 +1883 5 18 10.6 10.0 10.0 1 +1883 5 19 5.6 5.0 5.0 1 +1883 5 20 4.5 3.9 3.9 1 +1883 5 21 6.1 5.6 5.6 1 +1883 5 22 11.2 10.7 10.7 1 +1883 5 23 10.8 10.3 10.3 1 +1883 5 24 11.6 11.1 11.1 1 +1883 5 25 10.7 10.2 10.2 1 +1883 5 26 12.8 12.3 12.3 1 +1883 5 27 12.1 11.6 11.6 1 +1883 5 28 10.2 9.7 9.7 1 +1883 5 29 14.7 14.2 14.2 1 +1883 5 30 17.0 16.5 16.5 1 +1883 5 31 19.1 18.6 18.6 1 +1883 6 1 15.5 15.0 15.0 1 +1883 6 2 16.2 15.7 15.7 1 +1883 6 3 17.8 17.3 17.3 1 +1883 6 4 13.1 12.6 12.6 1 +1883 6 5 9.0 8.5 8.5 1 +1883 6 6 10.2 9.8 9.8 1 +1883 6 7 11.0 10.6 10.6 1 +1883 6 8 14.2 13.8 13.8 1 +1883 6 9 15.4 15.0 15.0 1 +1883 6 10 14.2 13.8 13.8 1 +1883 6 11 14.0 13.6 13.6 1 +1883 6 12 15.2 14.8 14.8 1 +1883 6 13 14.2 13.8 13.8 1 +1883 6 14 15.5 15.1 15.1 1 +1883 6 15 15.2 14.8 14.8 1 +1883 6 16 14.9 14.5 14.5 1 +1883 6 17 15.9 15.5 15.5 1 +1883 6 18 14.9 14.5 14.5 1 +1883 6 19 16.1 15.7 15.7 1 +1883 6 20 15.9 15.5 15.5 1 +1883 6 21 15.7 15.3 15.3 1 +1883 6 22 15.9 15.5 15.5 1 +1883 6 23 15.7 15.3 15.3 1 +1883 6 24 14.7 14.3 14.3 1 +1883 6 25 12.4 12.0 12.0 1 +1883 6 26 14.7 14.3 14.3 1 +1883 6 27 17.5 17.1 17.1 1 +1883 6 28 17.9 17.5 17.5 1 +1883 6 29 21.7 21.3 21.3 1 +1883 6 30 22.1 21.7 21.7 1 +1883 7 1 22.9 22.5 22.5 1 +1883 7 2 23.3 22.9 22.9 1 +1883 7 3 21.7 21.3 21.3 1 +1883 7 4 19.2 18.8 18.8 1 +1883 7 5 17.9 17.5 17.5 1 +1883 7 6 18.8 18.4 18.4 1 +1883 7 7 20.0 19.6 19.6 1 +1883 7 8 14.2 13.8 13.8 1 +1883 7 9 16.7 16.3 16.3 1 +1883 7 10 17.6 17.2 17.2 1 +1883 7 11 16.4 16.0 16.0 1 +1883 7 12 17.7 17.3 17.3 1 +1883 7 13 16.2 15.8 15.8 1 +1883 7 14 17.1 16.7 16.7 1 +1883 7 15 16.9 16.5 16.5 1 +1883 7 16 15.4 15.0 15.0 1 +1883 7 17 15.4 15.0 15.0 1 +1883 7 18 14.0 13.6 13.6 1 +1883 7 19 15.2 14.8 14.8 1 +1883 7 20 14.4 14.0 14.0 1 +1883 7 21 16.3 15.9 15.9 1 +1883 7 22 16.6 16.2 16.2 1 +1883 7 23 18.8 18.4 18.4 1 +1883 7 24 15.0 14.6 14.6 1 +1883 7 25 16.8 16.4 16.4 1 +1883 7 26 17.5 17.1 17.1 1 +1883 7 27 14.8 14.4 14.4 1 +1883 7 28 14.2 13.8 13.8 1 +1883 7 29 15.3 14.9 14.9 1 +1883 7 30 15.3 14.9 14.9 1 +1883 7 31 16.4 16.0 16.0 1 +1883 8 1 16.6 16.2 16.2 1 +1883 8 2 15.7 15.3 15.3 1 +1883 8 3 18.2 17.8 17.8 1 +1883 8 4 16.3 15.9 15.9 1 +1883 8 5 16.0 15.6 15.6 1 +1883 8 6 15.2 14.8 14.8 1 +1883 8 7 16.0 15.6 15.6 1 +1883 8 8 12.7 12.3 12.3 1 +1883 8 9 15.1 14.7 14.7 1 +1883 8 10 13.2 12.8 12.8 1 +1883 8 11 14.1 13.7 13.7 1 +1883 8 12 14.2 13.8 13.8 1 +1883 8 13 15.6 15.2 15.2 1 +1883 8 14 15.3 14.9 14.9 1 +1883 8 15 16.1 15.7 15.7 1 +1883 8 16 15.1 14.7 14.7 1 +1883 8 17 14.7 14.3 14.3 1 +1883 8 18 16.0 15.6 15.6 1 +1883 8 19 16.4 16.0 16.0 1 +1883 8 20 15.7 15.3 15.3 1 +1883 8 21 14.5 14.1 14.1 1 +1883 8 22 16.3 15.9 15.9 1 +1883 8 23 17.3 17.0 17.0 1 +1883 8 24 13.7 13.4 13.4 1 +1883 8 25 13.3 13.0 13.0 1 +1883 8 26 15.1 14.8 14.8 1 +1883 8 27 16.7 16.4 16.4 1 +1883 8 28 14.7 14.4 14.4 1 +1883 8 29 12.3 12.0 12.0 1 +1883 8 30 12.2 11.9 11.9 1 +1883 8 31 13.7 13.4 13.4 1 +1883 9 1 15.1 14.8 14.8 1 +1883 9 2 13.7 13.4 13.4 1 +1883 9 3 14.6 14.3 14.3 1 +1883 9 4 14.7 14.4 14.4 1 +1883 9 5 15.2 14.9 14.9 1 +1883 9 6 13.4 13.1 13.1 1 +1883 9 7 13.2 12.9 12.9 1 +1883 9 8 12.1 11.8 11.8 1 +1883 9 9 12.8 12.5 12.5 1 +1883 9 10 13.9 13.7 13.7 1 +1883 9 11 14.9 14.7 14.7 1 +1883 9 12 13.3 13.1 13.1 1 +1883 9 13 13.7 13.5 13.5 1 +1883 9 14 15.8 15.6 15.6 1 +1883 9 15 15.4 15.2 15.2 1 +1883 9 16 14.8 14.6 14.6 1 +1883 9 17 14.2 14.0 14.0 1 +1883 9 18 13.4 13.2 13.2 1 +1883 9 19 10.3 10.1 10.1 1 +1883 9 20 7.0 6.8 6.8 1 +1883 9 21 3.5 3.3 3.3 1 +1883 9 22 7.2 7.0 7.0 1 +1883 9 23 7.7 7.5 7.5 1 +1883 9 24 6.4 6.2 6.2 1 +1883 9 25 7.8 7.6 7.6 1 +1883 9 26 8.7 8.5 8.5 1 +1883 9 27 7.8 7.6 7.6 1 +1883 9 28 10.6 10.4 10.4 1 +1883 9 29 11.8 11.6 11.6 1 +1883 9 30 9.6 9.4 9.4 1 +1883 10 1 7.3 7.1 7.1 1 +1883 10 2 6.3 6.1 6.1 1 +1883 10 3 5.6 5.4 5.4 1 +1883 10 4 5.3 5.1 5.1 1 +1883 10 5 1.5 1.3 1.3 1 +1883 10 6 1.2 1.0 1.0 1 +1883 10 7 3.8 3.6 3.6 1 +1883 10 8 13.0 12.8 12.8 1 +1883 10 9 13.5 13.3 13.3 1 +1883 10 10 7.4 7.3 7.3 1 +1883 10 11 8.4 8.3 8.3 1 +1883 10 12 6.0 5.9 5.9 1 +1883 10 13 2.7 2.6 2.6 1 +1883 10 14 5.6 5.5 5.5 1 +1883 10 15 9.1 9.0 9.0 1 +1883 10 16 10.1 10.0 10.0 1 +1883 10 17 10.5 10.4 10.4 1 +1883 10 18 7.6 7.5 7.5 1 +1883 10 19 6.5 6.4 6.4 1 +1883 10 20 4.9 4.7 4.7 1 +1883 10 21 4.7 4.5 4.5 1 +1883 10 22 3.5 3.3 3.3 1 +1883 10 23 4.6 4.4 4.4 1 +1883 10 24 7.0 6.8 6.8 1 +1883 10 25 6.6 6.4 6.4 1 +1883 10 26 8.2 8.0 8.0 1 +1883 10 27 6.8 6.6 6.6 1 +1883 10 28 6.2 6.0 6.0 1 +1883 10 29 3.7 3.5 3.5 1 +1883 10 30 2.9 2.7 2.7 1 +1883 10 31 5.1 4.9 4.9 1 +1883 11 1 6.2 6.0 6.0 1 +1883 11 2 4.8 4.6 4.6 1 +1883 11 3 5.5 5.3 5.3 1 +1883 11 4 5.3 5.1 5.1 1 +1883 11 5 6.6 6.4 6.4 1 +1883 11 6 4.8 4.6 4.6 1 +1883 11 7 4.5 4.3 4.3 1 +1883 11 8 1.5 1.3 1.3 1 +1883 11 9 4.6 4.4 4.4 1 +1883 11 10 6.2 6.0 6.0 1 +1883 11 11 3.8 3.6 3.6 1 +1883 11 12 3.5 3.3 3.3 1 +1883 11 13 4.0 3.8 3.8 1 +1883 11 14 3.6 3.4 3.4 1 +1883 11 15 4.5 4.3 4.3 1 +1883 11 16 4.1 3.9 3.9 1 +1883 11 17 1.7 1.5 1.5 1 +1883 11 18 1.1 0.9 0.9 1 +1883 11 19 3.8 3.6 3.6 1 +1883 11 20 3.8 3.6 3.6 1 +1883 11 21 1.1 0.9 0.9 1 +1883 11 22 3.4 3.2 3.2 1 +1883 11 23 3.2 3.0 3.0 1 +1883 11 24 1.9 1.7 1.7 1 +1883 11 25 3.3 3.1 3.1 1 +1883 11 26 5.0 4.8 4.8 1 +1883 11 27 4.9 4.7 4.7 1 +1883 11 28 4.4 4.2 4.2 1 +1883 11 29 8.3 8.1 8.1 1 +1883 11 30 7.0 6.8 6.8 1 +1883 12 1 1.7 1.5 1.5 1 +1883 12 2 -1.6 -1.8 -1.8 1 +1883 12 3 -1.3 -1.5 -1.5 1 +1883 12 4 -2.2 -2.4 -2.4 1 +1883 12 5 -7.6 -7.8 -7.8 1 +1883 12 6 -6.4 -6.6 -6.6 1 +1883 12 7 -0.1 -0.3 -0.3 1 +1883 12 8 0.7 0.5 0.5 1 +1883 12 9 0.0 -0.2 -0.2 1 +1883 12 10 2.4 2.2 2.2 1 +1883 12 11 1.8 1.6 1.6 1 +1883 12 12 1.3 1.1 1.1 1 +1883 12 13 1.0 0.8 0.8 1 +1883 12 14 3.1 2.9 2.9 1 +1883 12 15 1.9 1.7 1.7 1 +1883 12 16 -3.6 -3.8 -3.8 1 +1883 12 17 -2.5 -2.7 -2.7 1 +1883 12 18 -4.7 -4.9 -4.9 1 +1883 12 19 -0.6 -0.8 -0.8 1 +1883 12 20 -6.0 -6.3 -6.3 1 +1883 12 21 -1.5 -1.8 -1.8 1 +1883 12 22 1.4 1.1 1.1 1 +1883 12 23 0.2 -0.1 -0.1 1 +1883 12 24 -2.7 -3.0 -3.0 1 +1883 12 25 -2.8 -3.1 -3.1 1 +1883 12 26 -1.9 -2.2 -2.2 1 +1883 12 27 -1.5 -1.8 -1.8 1 +1883 12 28 -2.9 -3.2 -3.2 1 +1883 12 29 -0.4 -0.7 -0.7 1 +1883 12 30 -3.3 -3.6 -3.6 1 +1883 12 31 -1.1 -1.4 -1.4 1 +1884 1 1 1.5 1.2 1.2 1 +1884 1 2 -0.6 -0.9 -0.9 1 +1884 1 3 -2.7 -3.1 -3.1 1 +1884 1 4 -8.1 -8.5 -8.5 1 +1884 1 5 -7.3 -7.7 -7.7 1 +1884 1 6 -1.6 -2.0 -2.0 1 +1884 1 7 -3.3 -3.7 -3.7 1 +1884 1 8 -11.6 -12.0 -12.0 1 +1884 1 9 -1.5 -1.9 -1.9 1 +1884 1 10 0.6 0.2 0.2 1 +1884 1 11 2.6 2.2 2.2 1 +1884 1 12 -0.7 -1.1 -1.1 1 +1884 1 13 -4.1 -4.5 -4.5 1 +1884 1 14 -1.4 -1.8 -1.8 1 +1884 1 15 -1.7 -2.1 -2.1 1 +1884 1 16 1.6 1.2 1.2 1 +1884 1 17 -1.2 -1.6 -1.6 1 +1884 1 18 -1.0 -1.4 -1.4 1 +1884 1 19 1.5 1.1 1.1 1 +1884 1 20 1.6 1.2 1.2 1 +1884 1 21 2.0 1.6 1.6 1 +1884 1 22 3.1 2.7 2.7 1 +1884 1 23 0.1 -0.3 -0.3 1 +1884 1 24 -7.5 -7.9 -7.9 1 +1884 1 25 -0.4 -0.8 -0.8 1 +1884 1 26 1.7 1.3 1.3 1 +1884 1 27 1.9 1.5 1.5 1 +1884 1 28 1.7 1.3 1.3 1 +1884 1 29 -0.5 -0.9 -0.9 1 +1884 1 30 -0.2 -0.6 -0.6 1 +1884 1 31 -3.3 -3.7 -3.7 1 +1884 2 1 -1.3 -1.7 -1.7 1 +1884 2 2 -5.0 -5.4 -5.4 1 +1884 2 3 -2.3 -2.7 -2.7 1 +1884 2 4 4.2 3.8 3.8 1 +1884 2 5 3.7 3.3 3.3 1 +1884 2 6 1.9 1.5 1.5 1 +1884 2 7 2.9 2.5 2.5 1 +1884 2 8 -1.1 -1.5 -1.5 1 +1884 2 9 0.8 0.4 0.4 1 +1884 2 10 2.7 2.3 2.3 1 +1884 2 11 3.1 2.7 2.7 1 +1884 2 12 2.0 1.6 1.6 1 +1884 2 13 2.2 1.8 1.8 1 +1884 2 14 0.3 -0.1 -0.1 1 +1884 2 15 0.2 -0.2 -0.2 1 +1884 2 16 -2.1 -2.5 -2.5 1 +1884 2 17 -0.9 -1.3 -1.3 1 +1884 2 18 -2.8 -3.2 -3.2 1 +1884 2 19 -4.6 -5.0 -5.0 1 +1884 2 20 -5.5 -5.9 -5.9 1 +1884 2 21 -6.0 -6.4 -6.4 1 +1884 2 22 -3.3 -3.7 -3.7 1 +1884 2 23 -0.3 -0.7 -0.7 1 +1884 2 24 1.3 0.9 0.9 1 +1884 2 25 -2.1 -2.5 -2.5 1 +1884 2 26 -4.9 -5.3 -5.3 1 +1884 2 27 -7.7 -8.1 -8.1 1 +1884 2 28 -4.7 -5.1 -5.1 1 +1884 2 29 -2.6 -3.0 -3.0 1 +1884 3 1 -2.4 -2.8 -2.8 1 +1884 3 2 -1.4 -1.8 -1.8 1 +1884 3 3 -0.1 -0.5 -0.5 1 +1884 3 4 0.1 -0.3 -0.3 1 +1884 3 5 0.1 -0.3 -0.3 1 +1884 3 6 -0.8 -1.2 -1.2 1 +1884 3 7 -0.7 -1.1 -1.1 1 +1884 3 8 -1.6 -2.0 -2.0 1 +1884 3 9 -1.6 -2.0 -2.0 1 +1884 3 10 -2.4 -2.8 -2.8 1 +1884 3 11 -1.0 -1.4 -1.4 1 +1884 3 12 0.0 -0.4 -0.4 1 +1884 3 13 -0.1 -0.5 -0.5 1 +1884 3 14 0.2 -0.2 -0.2 1 +1884 3 15 2.1 1.7 1.7 1 +1884 3 16 3.9 3.5 3.5 1 +1884 3 17 5.1 4.7 4.7 1 +1884 3 18 4.6 4.2 4.2 1 +1884 3 19 5.0 4.6 4.6 1 +1884 3 20 4.0 3.6 3.6 1 +1884 3 21 2.7 2.3 2.3 1 +1884 3 22 2.5 2.1 2.1 1 +1884 3 23 2.2 1.8 1.8 1 +1884 3 24 -1.4 -1.8 -1.8 1 +1884 3 25 -1.8 -2.2 -2.2 1 +1884 3 26 -1.5 -1.9 -1.9 1 +1884 3 27 0.8 0.4 0.4 1 +1884 3 28 1.4 1.0 1.0 1 +1884 3 29 2.1 1.7 1.7 1 +1884 3 30 1.0 0.6 0.6 1 +1884 3 31 1.1 0.7 0.7 1 +1884 4 1 0.4 0.0 0.0 1 +1884 4 2 0.3 -0.1 -0.1 1 +1884 4 3 3.1 2.7 2.7 1 +1884 4 4 6.0 5.6 5.6 1 +1884 4 5 3.3 2.9 2.9 1 +1884 4 6 4.0 3.6 3.6 1 +1884 4 7 4.7 4.3 4.3 1 +1884 4 8 4.5 4.1 4.1 1 +1884 4 9 3.9 3.5 3.5 1 +1884 4 10 3.5 3.1 3.1 1 +1884 4 11 4.3 3.9 3.9 1 +1884 4 12 4.7 4.3 4.3 1 +1884 4 13 4.8 4.4 4.4 1 +1884 4 14 0.6 0.2 0.2 1 +1884 4 15 0.3 -0.1 -0.1 1 +1884 4 16 -4.4 -4.8 -4.8 1 +1884 4 17 -4.6 -5.0 -5.0 1 +1884 4 18 0.4 0.0 0.0 1 +1884 4 19 2.8 2.4 2.4 1 +1884 4 20 -0.1 -0.5 -0.5 1 +1884 4 21 1.4 1.0 1.0 1 +1884 4 22 0.0 -0.4 -0.4 1 +1884 4 23 0.8 0.4 0.4 1 +1884 4 24 1.6 1.1 1.1 1 +1884 4 25 3.9 3.4 3.4 1 +1884 4 26 5.3 4.8 4.8 1 +1884 4 27 6.3 5.8 5.8 1 +1884 4 28 7.6 7.1 7.1 1 +1884 4 29 7.3 6.8 6.8 1 +1884 4 30 4.9 4.4 4.4 1 +1884 5 1 3.1 2.6 2.6 1 +1884 5 2 2.8 2.3 2.3 1 +1884 5 3 4.3 3.8 3.8 1 +1884 5 4 4.0 3.5 3.5 1 +1884 5 5 6.2 5.7 5.7 1 +1884 5 6 7.3 6.8 6.8 1 +1884 5 7 7.6 7.0 7.0 1 +1884 5 8 7.1 6.5 6.5 1 +1884 5 9 8.7 8.1 8.1 1 +1884 5 10 7.3 6.7 6.7 1 +1884 5 11 6.1 5.5 5.5 1 +1884 5 12 9.1 8.5 8.5 1 +1884 5 13 10.1 9.5 9.5 1 +1884 5 14 7.8 7.2 7.2 1 +1884 5 15 4.8 4.2 4.2 1 +1884 5 16 9.0 8.4 8.4 1 +1884 5 17 10.8 10.2 10.2 1 +1884 5 18 15.3 14.7 14.7 1 +1884 5 19 12.1 11.5 11.5 1 +1884 5 20 11.7 11.1 11.1 1 +1884 5 21 5.7 5.1 5.1 1 +1884 5 22 9.4 8.8 8.8 1 +1884 5 23 14.0 13.4 13.4 1 +1884 5 24 9.1 8.5 8.5 1 +1884 5 25 6.7 6.1 6.1 1 +1884 5 26 7.5 6.9 6.9 1 +1884 5 27 8.0 7.5 7.5 1 +1884 5 28 6.0 5.5 5.5 1 +1884 5 29 9.0 8.5 8.5 1 +1884 5 30 11.0 10.5 10.5 1 +1884 5 31 10.8 10.3 10.3 1 +1884 6 1 13.0 12.5 12.5 1 +1884 6 2 14.3 13.8 13.8 1 +1884 6 3 14.8 14.3 14.3 1 +1884 6 4 9.8 9.3 9.3 1 +1884 6 5 10.7 10.2 10.2 1 +1884 6 6 10.1 9.6 9.6 1 +1884 6 7 10.3 9.8 9.8 1 +1884 6 8 13.5 13.0 13.0 1 +1884 6 9 14.5 14.0 14.0 1 +1884 6 10 12.0 11.6 11.6 1 +1884 6 11 11.8 11.4 11.4 1 +1884 6 12 13.5 13.1 13.1 1 +1884 6 13 15.1 14.7 14.7 1 +1884 6 14 14.6 14.2 14.2 1 +1884 6 15 11.4 11.0 11.0 1 +1884 6 16 10.1 9.7 9.7 1 +1884 6 17 7.9 7.5 7.5 1 +1884 6 18 12.4 12.0 12.0 1 +1884 6 19 13.4 13.0 13.0 1 +1884 6 20 12.7 12.3 12.3 1 +1884 6 21 12.1 11.7 11.7 1 +1884 6 22 12.6 12.2 12.2 1 +1884 6 23 11.6 11.2 11.2 1 +1884 6 24 13.5 13.1 13.1 1 +1884 6 25 12.4 12.0 12.0 1 +1884 6 26 13.1 12.7 12.7 1 +1884 6 27 11.8 11.4 11.4 1 +1884 6 28 13.3 12.9 12.9 1 +1884 6 29 15.4 15.0 15.0 1 +1884 6 30 17.0 16.6 16.6 1 +1884 7 1 18.7 18.3 18.3 1 +1884 7 2 20.3 19.9 19.9 1 +1884 7 3 20.5 20.1 20.1 1 +1884 7 4 20.9 20.5 20.5 1 +1884 7 5 20.3 19.9 19.9 1 +1884 7 6 19.4 19.0 19.0 1 +1884 7 7 17.7 17.3 17.3 1 +1884 7 8 17.4 17.0 17.0 1 +1884 7 9 18.9 18.5 18.5 1 +1884 7 10 17.4 17.0 17.0 1 +1884 7 11 17.5 17.1 17.1 1 +1884 7 12 17.8 17.4 17.4 1 +1884 7 13 19.8 19.4 19.4 1 +1884 7 14 19.1 18.7 18.7 1 +1884 7 15 18.0 17.6 17.6 1 +1884 7 16 18.6 18.2 18.2 1 +1884 7 17 18.0 17.6 17.6 1 +1884 7 18 17.4 17.0 17.0 1 +1884 7 19 14.8 14.4 14.4 1 +1884 7 20 13.5 13.1 13.1 1 +1884 7 21 10.6 10.2 10.2 1 +1884 7 22 11.9 11.5 11.5 1 +1884 7 23 14.7 14.3 14.3 1 +1884 7 24 14.5 14.1 14.1 1 +1884 7 25 16.3 15.9 15.9 1 +1884 7 26 15.5 15.1 15.1 1 +1884 7 27 14.7 14.3 14.3 1 +1884 7 28 15.1 14.7 14.7 1 +1884 7 29 16.1 15.7 15.7 1 +1884 7 30 14.7 14.3 14.3 1 +1884 7 31 13.6 13.2 13.2 1 +1884 8 1 11.9 11.5 11.5 1 +1884 8 2 11.9 11.5 11.5 1 +1884 8 3 13.3 12.9 12.9 1 +1884 8 4 18.0 17.6 17.6 1 +1884 8 5 15.2 14.8 14.8 1 +1884 8 6 16.3 15.9 15.9 1 +1884 8 7 14.7 14.3 14.3 1 +1884 8 8 15.9 15.5 15.5 1 +1884 8 9 16.4 16.0 16.0 1 +1884 8 10 18.0 17.6 17.6 1 +1884 8 11 15.4 15.0 15.0 1 +1884 8 12 13.0 12.6 12.6 1 +1884 8 13 11.9 11.5 11.5 1 +1884 8 14 13.7 13.3 13.3 1 +1884 8 15 14.7 14.3 14.3 1 +1884 8 16 15.9 15.5 15.5 1 +1884 8 17 17.2 16.8 16.8 1 +1884 8 18 17.9 17.5 17.5 1 +1884 8 19 15.6 15.2 15.2 1 +1884 8 20 15.4 15.0 15.0 1 +1884 8 21 14.4 14.0 14.0 1 +1884 8 22 15.8 15.4 15.4 1 +1884 8 23 15.6 15.2 15.2 1 +1884 8 24 14.0 13.6 13.6 1 +1884 8 25 15.2 14.8 14.8 1 +1884 8 26 12.9 12.5 12.5 1 +1884 8 27 12.6 12.3 12.3 1 +1884 8 28 13.4 13.1 13.1 1 +1884 8 29 13.3 13.0 13.0 1 +1884 8 30 11.4 11.1 11.1 1 +1884 8 31 11.5 11.2 11.2 1 +1884 9 1 12.4 12.1 12.1 1 +1884 9 2 13.2 12.9 12.9 1 +1884 9 3 15.5 15.2 15.2 1 +1884 9 4 15.5 15.2 15.2 1 +1884 9 5 16.4 16.1 16.1 1 +1884 9 6 16.5 16.2 16.2 1 +1884 9 7 14.3 14.0 14.0 1 +1884 9 8 15.9 15.6 15.6 1 +1884 9 9 16.0 15.7 15.7 1 +1884 9 10 14.2 13.9 13.9 1 +1884 9 11 15.8 15.5 15.5 1 +1884 9 12 15.5 15.3 15.3 1 +1884 9 13 15.7 15.5 15.5 1 +1884 9 14 13.6 13.4 13.4 1 +1884 9 15 14.5 14.3 14.3 1 +1884 9 16 13.0 12.8 12.8 1 +1884 9 17 15.0 14.8 14.8 1 +1884 9 18 13.6 13.4 13.4 1 +1884 9 19 13.2 13.0 13.0 1 +1884 9 20 9.0 8.8 8.8 1 +1884 9 21 12.4 12.2 12.2 1 +1884 9 22 15.0 14.8 14.8 1 +1884 9 23 14.2 14.0 14.0 1 +1884 9 24 10.8 10.6 10.6 1 +1884 9 25 11.3 11.1 11.1 1 +1884 9 26 10.8 10.6 10.6 1 +1884 9 27 13.3 13.1 13.1 1 +1884 9 28 14.6 14.4 14.4 1 +1884 9 29 15.8 15.6 15.6 1 +1884 9 30 13.5 13.3 13.3 1 +1884 10 1 13.1 12.9 12.9 1 +1884 10 2 10.8 10.6 10.6 1 +1884 10 3 12.2 12.0 12.0 1 +1884 10 4 11.5 11.3 11.3 1 +1884 10 5 9.5 9.3 9.3 1 +1884 10 6 9.1 8.9 8.9 1 +1884 10 7 10.2 10.0 10.0 1 +1884 10 8 12.0 11.8 11.8 1 +1884 10 9 12.2 12.0 12.0 1 +1884 10 10 11.0 10.8 10.8 1 +1884 10 11 10.6 10.4 10.4 1 +1884 10 12 7.8 7.6 7.6 1 +1884 10 13 4.5 4.4 4.4 1 +1884 10 14 2.6 2.5 2.5 1 +1884 10 15 2.2 2.1 2.1 1 +1884 10 16 2.7 2.6 2.6 1 +1884 10 17 4.2 4.0 4.0 1 +1884 10 18 0.3 0.1 0.1 1 +1884 10 19 4.8 4.6 4.6 1 +1884 10 20 6.2 6.0 6.0 1 +1884 10 21 6.5 6.3 6.3 1 +1884 10 22 6.9 6.7 6.7 1 +1884 10 23 5.4 5.2 5.2 1 +1884 10 24 6.9 6.7 6.7 1 +1884 10 25 7.1 6.9 6.9 1 +1884 10 26 6.8 6.6 6.6 1 +1884 10 27 6.3 6.1 6.1 1 +1884 10 28 6.5 6.3 6.3 1 +1884 10 29 2.2 2.0 2.0 1 +1884 10 30 5.3 5.1 5.1 1 +1884 10 31 8.8 8.6 8.6 1 +1884 11 1 8.8 8.6 8.6 1 +1884 11 2 6.6 6.4 6.4 1 +1884 11 3 6.5 6.3 6.3 1 +1884 11 4 4.0 3.8 3.8 1 +1884 11 5 5.7 5.5 5.5 1 +1884 11 6 7.8 7.6 7.6 1 +1884 11 7 4.3 4.1 4.1 1 +1884 11 8 7.6 7.4 7.4 1 +1884 11 9 9.3 9.1 9.1 1 +1884 11 10 7.1 6.9 6.9 1 +1884 11 11 2.4 2.2 2.2 1 +1884 11 12 1.6 1.4 1.4 1 +1884 11 13 1.5 1.3 1.3 1 +1884 11 14 1.9 1.7 1.7 1 +1884 11 15 0.1 -0.1 -0.1 1 +1884 11 16 2.1 1.9 1.9 1 +1884 11 17 2.4 2.2 2.2 1 +1884 11 18 -1.0 -1.2 -1.2 1 +1884 11 19 -5.8 -6.0 -6.0 1 +1884 11 20 -6.7 -6.9 -6.9 1 +1884 11 21 -8.8 -9.0 -9.0 1 +1884 11 22 -5.7 -5.9 -5.9 1 +1884 11 23 -6.1 -6.3 -6.3 1 +1884 11 24 -7.1 -7.3 -7.3 1 +1884 11 25 -8.8 -9.0 -9.0 1 +1884 11 26 -9.3 -9.5 -9.5 1 +1884 11 27 -10.0 -10.2 -10.2 1 +1884 11 28 -8.0 -8.2 -8.2 1 +1884 11 29 -13.5 -13.7 -13.7 1 +1884 11 30 -8.3 -8.5 -8.5 1 +1884 12 1 -12.8 -13.0 -13.0 1 +1884 12 2 -4.3 -4.5 -4.5 1 +1884 12 3 -5.5 -5.7 -5.7 1 +1884 12 4 -0.4 -0.6 -0.6 1 +1884 12 5 0.7 0.5 0.5 1 +1884 12 6 -3.0 -3.2 -3.2 1 +1884 12 7 1.1 0.9 0.9 1 +1884 12 8 3.8 3.6 3.6 1 +1884 12 9 4.0 3.8 3.8 1 +1884 12 10 0.4 0.2 0.2 1 +1884 12 11 1.9 1.7 1.7 1 +1884 12 12 -2.1 -2.3 -2.3 1 +1884 12 13 -6.1 -6.3 -6.3 1 +1884 12 14 -1.7 -1.9 -1.9 1 +1884 12 15 0.0 -0.2 -0.2 1 +1884 12 16 -4.9 -5.1 -5.1 1 +1884 12 17 0.0 -0.3 -0.3 1 +1884 12 18 -1.4 -1.7 -1.7 1 +1884 12 19 0.6 0.3 0.3 1 +1884 12 20 1.5 1.2 1.2 1 +1884 12 21 0.1 -0.2 -0.2 1 +1884 12 22 -4.0 -4.3 -4.3 1 +1884 12 23 -5.2 -5.5 -5.5 1 +1884 12 24 -3.4 -3.7 -3.7 1 +1884 12 25 -4.3 -4.6 -4.6 1 +1884 12 26 -3.8 -4.1 -4.1 1 +1884 12 27 -1.0 -1.3 -1.3 1 +1884 12 28 -4.6 -4.9 -4.9 1 +1884 12 29 -1.1 -1.4 -1.4 1 +1884 12 30 1.7 1.4 1.4 1 +1884 12 31 1.0 0.7 0.7 1 +1885 1 1 0.7 0.3 0.3 1 +1885 1 2 0.3 -0.1 -0.1 1 +1885 1 3 -3.3 -3.7 -3.7 1 +1885 1 4 -5.8 -6.2 -6.2 1 +1885 1 5 -2.9 -3.3 -3.3 1 +1885 1 6 -1.8 -2.2 -2.2 1 +1885 1 7 -3.0 -3.4 -3.4 1 +1885 1 8 -7.2 -7.6 -7.6 1 +1885 1 9 -2.0 -2.4 -2.4 1 +1885 1 10 -1.7 -2.1 -2.1 1 +1885 1 11 0.3 -0.1 -0.1 1 +1885 1 12 -3.8 -4.2 -4.2 1 +1885 1 13 -5.3 -5.7 -5.7 1 +1885 1 14 -3.0 -3.4 -3.4 1 +1885 1 15 -1.5 -2.0 -2.0 1 +1885 1 16 -1.8 -2.2 -2.2 1 +1885 1 17 -5.1 -5.5 -5.5 1 +1885 1 18 -6.5 -6.9 -6.9 1 +1885 1 19 -5.5 -5.9 -5.9 1 +1885 1 20 -6.9 -7.3 -7.3 1 +1885 1 21 -8.4 -8.8 -8.8 1 +1885 1 22 -10.9 -11.3 -11.3 1 +1885 1 23 -11.9 -12.3 -12.3 1 +1885 1 24 -11.3 -11.7 -11.7 1 +1885 1 25 -8.2 -8.6 -8.6 1 +1885 1 26 -3.4 -3.8 -3.8 1 +1885 1 27 -3.7 -4.1 -4.1 1 +1885 1 28 -1.4 -1.8 -1.8 1 +1885 1 29 -2.0 -2.4 -2.4 1 +1885 1 30 -1.6 -2.0 -2.0 1 +1885 1 31 2.3 1.9 1.9 1 +1885 2 1 2.7 2.3 2.3 1 +1885 2 2 2.7 2.3 2.3 1 +1885 2 3 2.7 2.3 2.3 1 +1885 2 4 1.6 1.2 1.2 1 +1885 2 5 1.3 0.9 0.9 1 +1885 2 6 1.7 1.3 1.3 1 +1885 2 7 1.2 0.8 0.8 1 +1885 2 8 1.6 1.2 1.2 1 +1885 2 9 0.0 -0.4 -0.4 1 +1885 2 10 -1.9 -2.3 -2.3 1 +1885 2 11 -3.5 -3.9 -3.9 1 +1885 2 12 -2.7 -3.1 -3.1 1 +1885 2 13 0.1 -0.3 -0.3 1 +1885 2 14 3.1 2.7 2.7 1 +1885 2 15 0.2 -0.2 -0.2 1 +1885 2 16 1.9 1.5 1.5 1 +1885 2 17 -5.0 -5.4 -5.4 1 +1885 2 18 -9.5 -9.9 -9.9 1 +1885 2 19 -10.5 -10.9 -10.9 1 +1885 2 20 -10.7 -11.1 -11.1 1 +1885 2 21 -13.4 -13.8 -13.8 1 +1885 2 22 -5.1 -5.5 -5.5 1 +1885 2 23 -1.9 -2.3 -2.3 1 +1885 2 24 2.0 1.6 1.6 1 +1885 2 25 3.9 3.5 3.5 1 +1885 2 26 2.0 1.6 1.6 1 +1885 2 27 1.7 1.3 1.3 1 +1885 2 28 1.7 1.3 1.3 1 +1885 3 1 0.9 0.5 0.5 1 +1885 3 2 -3.1 -3.5 -3.5 1 +1885 3 3 -6.5 -6.9 -6.9 1 +1885 3 4 -3.7 -4.1 -4.1 1 +1885 3 5 -0.9 -1.3 -1.3 1 +1885 3 6 -2.0 -2.4 -2.4 1 +1885 3 7 -4.0 -4.4 -4.4 1 +1885 3 8 -2.9 -3.3 -3.3 1 +1885 3 9 -3.7 -4.1 -4.1 1 +1885 3 10 -3.8 -4.2 -4.2 1 +1885 3 11 -1.7 -2.1 -2.1 1 +1885 3 12 -3.1 -3.5 -3.5 1 +1885 3 13 0.3 -0.1 -0.1 1 +1885 3 14 4.2 3.8 3.8 1 +1885 3 15 2.5 2.1 2.1 1 +1885 3 16 2.3 1.9 1.9 1 +1885 3 17 1.5 1.1 1.1 1 +1885 3 18 2.8 2.4 2.4 1 +1885 3 19 -0.8 -1.2 -1.2 1 +1885 3 20 0.1 -0.3 -0.3 1 +1885 3 21 -4.4 -4.8 -4.8 1 +1885 3 22 -2.8 -3.2 -3.2 1 +1885 3 23 -3.6 -4.0 -4.0 1 +1885 3 24 -0.7 -1.1 -1.1 1 +1885 3 25 1.1 0.7 0.7 1 +1885 3 26 1.9 1.5 1.5 1 +1885 3 27 1.7 1.3 1.3 1 +1885 3 28 2.4 2.0 2.0 1 +1885 3 29 1.8 1.4 1.4 1 +1885 3 30 2.1 1.7 1.7 1 +1885 3 31 2.3 1.9 1.9 1 +1885 4 1 3.7 3.3 3.3 1 +1885 4 2 4.7 4.3 4.3 1 +1885 4 3 1.7 1.3 1.3 1 +1885 4 4 -0.1 -0.5 -0.5 1 +1885 4 5 -1.2 -1.6 -1.6 1 +1885 4 6 -1.4 -1.8 -1.8 1 +1885 4 7 1.7 1.3 1.3 1 +1885 4 8 4.9 4.5 4.5 1 +1885 4 9 4.3 3.9 3.9 1 +1885 4 10 4.4 4.0 4.0 1 +1885 4 11 3.4 3.0 3.0 1 +1885 4 12 1.2 0.8 0.8 1 +1885 4 13 -0.5 -0.9 -0.9 1 +1885 4 14 -1.2 -1.6 -1.6 1 +1885 4 15 0.0 -0.4 -0.4 1 +1885 4 16 0.5 0.1 0.1 1 +1885 4 17 4.0 3.6 3.6 1 +1885 4 18 2.8 2.4 2.4 1 +1885 4 19 2.1 1.7 1.7 1 +1885 4 20 9.1 8.7 8.7 1 +1885 4 21 8.5 8.0 8.0 1 +1885 4 22 8.9 8.4 8.4 1 +1885 4 23 12.6 12.1 12.1 1 +1885 4 24 9.5 9.0 9.0 1 +1885 4 25 7.5 7.0 7.0 1 +1885 4 26 9.0 8.5 8.5 1 +1885 4 27 9.8 9.3 9.3 1 +1885 4 28 6.7 6.2 6.2 1 +1885 4 29 3.7 3.2 3.2 1 +1885 4 30 3.6 3.1 3.1 1 +1885 5 1 5.0 4.5 4.5 1 +1885 5 2 2.0 1.5 1.5 1 +1885 5 3 1.4 0.8 0.8 1 +1885 5 4 3.2 2.6 2.6 1 +1885 5 5 3.6 3.0 3.0 1 +1885 5 6 4.1 3.5 3.5 1 +1885 5 7 4.1 3.5 3.5 1 +1885 5 8 5.2 4.6 4.6 1 +1885 5 9 7.0 6.4 6.4 1 +1885 5 10 7.1 6.5 6.5 1 +1885 5 11 5.9 5.3 5.3 1 +1885 5 12 4.1 3.5 3.5 1 +1885 5 13 4.0 3.4 3.4 1 +1885 5 14 5.5 4.8 4.8 1 +1885 5 15 5.4 4.7 4.7 1 +1885 5 16 5.5 4.8 4.8 1 +1885 5 17 3.4 2.8 2.8 1 +1885 5 18 4.2 3.6 3.6 1 +1885 5 19 8.7 8.1 8.1 1 +1885 5 20 5.3 4.7 4.7 1 +1885 5 21 6.3 5.7 5.7 1 +1885 5 22 7.0 6.4 6.4 1 +1885 5 23 10.8 10.2 10.2 1 +1885 5 24 10.0 9.4 9.4 1 +1885 5 25 9.8 9.2 9.2 1 +1885 5 26 10.6 10.0 10.0 1 +1885 5 27 10.2 9.6 9.6 1 +1885 5 28 13.9 13.3 13.3 1 +1885 5 29 16.0 15.4 15.4 1 +1885 5 30 15.2 14.6 14.6 1 +1885 5 31 11.1 10.6 10.6 1 +1885 6 1 9.5 9.0 9.0 1 +1885 6 2 8.4 7.9 7.9 1 +1885 6 3 11.3 10.8 10.8 1 +1885 6 4 16.7 16.2 16.2 1 +1885 6 5 18.5 18.0 18.0 1 +1885 6 6 17.7 17.2 17.2 1 +1885 6 7 11.4 10.9 10.9 1 +1885 6 8 10.5 10.0 10.0 1 +1885 6 9 10.4 9.9 9.9 1 +1885 6 10 6.0 5.5 5.5 1 +1885 6 11 8.1 7.6 7.6 1 +1885 6 12 10.0 9.5 9.5 1 +1885 6 13 12.2 11.7 11.7 1 +1885 6 14 15.1 14.7 14.7 1 +1885 6 15 12.4 12.0 12.0 1 +1885 6 16 10.1 9.7 9.7 1 +1885 6 17 12.4 12.0 12.0 1 +1885 6 18 13.4 13.0 13.0 1 +1885 6 19 14.8 14.4 14.4 1 +1885 6 20 15.1 14.7 14.7 1 +1885 6 21 14.1 13.7 13.7 1 +1885 6 22 13.2 12.8 12.8 1 +1885 6 23 15.0 14.6 14.6 1 +1885 6 24 16.6 16.2 16.2 1 +1885 6 25 18.4 17.9 17.9 1 +1885 6 26 20.7 20.2 20.2 1 +1885 6 27 12.8 12.3 12.3 1 +1885 6 28 16.6 16.1 16.1 1 +1885 6 29 16.1 15.6 15.6 1 +1885 6 30 16.1 15.6 15.6 1 +1885 7 1 14.5 14.0 14.0 1 +1885 7 2 18.5 18.0 18.0 1 +1885 7 3 18.0 17.5 17.5 1 +1885 7 4 16.5 16.0 16.0 1 +1885 7 5 19.1 18.6 18.6 1 +1885 7 6 20.5 20.0 20.0 1 +1885 7 7 18.1 17.6 17.6 1 +1885 7 8 21.4 20.9 20.9 1 +1885 7 9 20.4 19.9 19.9 1 +1885 7 10 18.7 18.2 18.2 1 +1885 7 11 20.8 20.3 20.3 1 +1885 7 12 22.6 22.1 22.1 1 +1885 7 13 22.0 21.5 21.5 1 +1885 7 14 22.6 22.1 22.1 1 +1885 7 15 18.4 17.9 17.9 1 +1885 7 16 14.7 14.2 14.2 1 +1885 7 17 17.6 17.1 17.1 1 +1885 7 18 15.7 15.2 15.2 1 +1885 7 19 17.4 16.9 16.9 1 +1885 7 20 19.5 19.0 19.0 1 +1885 7 21 14.2 13.7 13.7 1 +1885 7 22 12.9 12.4 12.4 1 +1885 7 23 12.7 12.2 12.2 1 +1885 7 24 10.8 10.3 10.3 1 +1885 7 25 11.3 10.8 10.8 1 +1885 7 26 15.9 15.4 15.4 1 +1885 7 27 14.7 14.2 14.2 1 +1885 7 28 14.4 13.9 13.9 1 +1885 7 29 13.6 13.1 13.1 1 +1885 7 30 13.6 13.1 13.1 1 +1885 7 31 12.3 11.8 11.8 1 +1885 8 1 13.7 13.2 13.2 1 +1885 8 2 16.1 15.6 15.6 1 +1885 8 3 14.3 13.8 13.8 1 +1885 8 4 13.3 12.8 12.8 1 +1885 8 5 11.8 11.3 11.3 1 +1885 8 6 12.4 12.0 12.0 1 +1885 8 7 13.6 13.2 13.2 1 +1885 8 8 14.7 14.3 14.3 1 +1885 8 9 14.9 14.5 14.5 1 +1885 8 10 15.2 14.8 14.8 1 +1885 8 11 17.0 16.6 16.6 1 +1885 8 12 17.0 16.6 16.6 1 +1885 8 13 17.1 16.7 16.7 1 +1885 8 14 12.3 11.9 11.9 1 +1885 8 15 8.9 8.5 8.5 1 +1885 8 16 11.8 11.4 11.4 1 +1885 8 17 12.0 11.6 11.6 1 +1885 8 18 12.7 12.3 12.3 1 +1885 8 19 13.1 12.7 12.7 1 +1885 8 20 15.0 14.6 14.6 1 +1885 8 21 14.8 14.4 14.4 1 +1885 8 22 13.6 13.2 13.2 1 +1885 8 23 13.6 13.2 13.2 1 +1885 8 24 14.1 13.7 13.7 1 +1885 8 25 11.9 11.5 11.5 1 +1885 8 26 7.8 7.4 7.4 1 +1885 8 27 8.1 7.7 7.7 1 +1885 8 28 8.1 7.7 7.7 1 +1885 8 29 9.6 9.2 9.2 1 +1885 8 30 9.4 9.1 9.1 1 +1885 8 31 9.4 9.1 9.1 1 +1885 9 1 9.4 9.1 9.1 1 +1885 9 2 8.8 8.5 8.5 1 +1885 9 3 8.7 8.4 8.4 1 +1885 9 4 10.9 10.6 10.6 1 +1885 9 5 12.1 11.8 11.8 1 +1885 9 6 11.1 10.8 10.8 1 +1885 9 7 12.5 12.2 12.2 1 +1885 9 8 11.9 11.6 11.6 1 +1885 9 9 11.6 11.3 11.3 1 +1885 9 10 10.3 10.0 10.0 1 +1885 9 11 8.4 8.1 8.1 1 +1885 9 12 9.3 9.0 9.0 1 +1885 9 13 11.8 11.5 11.5 1 +1885 9 14 12.5 12.2 12.2 1 +1885 9 15 12.5 12.3 12.3 1 +1885 9 16 15.2 15.0 15.0 1 +1885 9 17 12.7 12.5 12.5 1 +1885 9 18 10.1 9.9 9.9 1 +1885 9 19 9.4 9.2 9.2 1 +1885 9 20 11.0 10.8 10.8 1 +1885 9 21 11.0 10.8 10.8 1 +1885 9 22 9.9 9.7 9.7 1 +1885 9 23 11.9 11.7 11.7 1 +1885 9 24 9.2 9.0 9.0 1 +1885 9 25 6.6 6.4 6.4 1 +1885 9 26 6.7 6.5 6.5 1 +1885 9 27 5.1 4.9 4.9 1 +1885 9 28 5.9 5.7 5.7 1 +1885 9 29 5.6 5.4 5.4 1 +1885 9 30 6.8 6.6 6.6 1 +1885 10 1 9.8 9.6 9.6 1 +1885 10 2 9.9 9.7 9.7 1 +1885 10 3 10.6 10.4 10.4 1 +1885 10 4 7.8 7.6 7.6 1 +1885 10 5 7.6 7.4 7.4 1 +1885 10 6 6.7 6.5 6.5 1 +1885 10 7 5.9 5.7 5.7 1 +1885 10 8 4.8 4.6 4.6 1 +1885 10 9 8.0 7.8 7.8 1 +1885 10 10 8.6 8.4 8.4 1 +1885 10 11 8.7 8.5 8.5 1 +1885 10 12 11.2 11.0 11.0 1 +1885 10 13 9.2 9.0 9.0 1 +1885 10 14 7.5 7.3 7.3 1 +1885 10 15 6.5 6.3 6.3 1 +1885 10 16 5.2 5.0 5.0 1 +1885 10 17 4.8 4.6 4.6 1 +1885 10 18 2.5 2.3 2.3 1 +1885 10 19 1.7 1.5 1.5 1 +1885 10 20 -0.2 -0.4 -0.4 1 +1885 10 21 -0.6 -0.8 -0.8 1 +1885 10 22 -1.5 -1.7 -1.7 1 +1885 10 23 0.8 0.6 0.6 1 +1885 10 24 0.0 -0.2 -0.2 1 +1885 10 25 2.3 2.1 2.1 1 +1885 10 26 3.7 3.5 3.5 1 +1885 10 27 5.4 5.2 5.2 1 +1885 10 28 3.3 3.1 3.1 1 +1885 10 29 -2.4 -2.6 -2.6 1 +1885 10 30 -2.2 -2.4 -2.4 1 +1885 10 31 -1.1 -1.3 -1.3 1 +1885 11 1 -1.4 -1.6 -1.6 1 +1885 11 2 -1.3 -1.5 -1.5 1 +1885 11 3 4.2 4.0 4.0 1 +1885 11 4 7.1 6.9 6.9 1 +1885 11 5 5.9 5.7 5.7 1 +1885 11 6 6.7 6.5 6.5 1 +1885 11 7 2.5 2.3 2.3 1 +1885 11 8 6.0 5.8 5.8 1 +1885 11 9 4.2 4.0 4.0 1 +1885 11 10 1.7 1.5 1.5 1 +1885 11 11 -0.8 -1.0 -1.0 1 +1885 11 12 2.0 1.7 1.7 1 +1885 11 13 2.4 2.1 2.1 1 +1885 11 14 3.4 3.1 3.1 1 +1885 11 15 -3.2 -3.5 -3.5 1 +1885 11 16 -1.6 -1.9 -1.9 1 +1885 11 17 0.1 -0.2 -0.2 1 +1885 11 18 3.6 3.3 3.3 1 +1885 11 19 -1.7 -2.0 -2.0 1 +1885 11 20 -2.9 -3.2 -3.2 1 +1885 11 21 -0.1 -0.4 -0.4 1 +1885 11 22 -2.4 -2.7 -2.7 1 +1885 11 23 -1.5 -1.8 -1.8 1 +1885 11 24 -6.0 -6.3 -6.3 1 +1885 11 25 -7.7 -8.0 -8.0 1 +1885 11 26 -4.9 -5.2 -5.2 1 +1885 11 27 -1.1 -1.4 -1.4 1 +1885 11 28 0.6 0.3 0.3 1 +1885 11 29 4.2 3.9 3.9 1 +1885 11 30 0.2 -0.1 -0.1 1 +1885 12 1 -0.2 -0.5 -0.5 1 +1885 12 2 -1.0 -1.3 -1.3 1 +1885 12 3 2.8 2.5 2.5 1 +1885 12 4 2.0 1.7 1.7 1 +1885 12 5 1.3 1.0 1.0 1 +1885 12 6 -3.2 -3.5 -3.5 1 +1885 12 7 -3.7 -4.0 -4.0 1 +1885 12 8 -5.9 -6.2 -6.2 1 +1885 12 9 -10.3 -10.6 -10.6 1 +1885 12 10 -10.1 -10.4 -10.4 1 +1885 12 11 -8.2 -8.5 -8.5 1 +1885 12 12 -3.0 -3.3 -3.3 1 +1885 12 13 1.9 1.6 1.6 1 +1885 12 14 2.2 1.9 1.9 1 +1885 12 15 3.4 3.1 3.1 1 +1885 12 16 2.3 2.0 2.0 1 +1885 12 17 -0.6 -0.9 -0.9 1 +1885 12 18 -2.8 -3.1 -3.1 1 +1885 12 19 1.8 1.5 1.5 1 +1885 12 20 0.8 0.5 0.5 1 +1885 12 21 2.5 2.2 2.2 1 +1885 12 22 -2.7 -3.0 -3.0 1 +1885 12 23 -4.2 -4.5 -4.5 1 +1885 12 24 2.0 1.7 1.7 1 +1885 12 25 1.2 0.9 0.9 1 +1885 12 26 -6.5 -6.8 -6.8 1 +1885 12 27 1.6 1.3 1.3 1 +1885 12 28 5.4 5.1 5.1 1 +1885 12 29 1.4 1.1 1.1 1 +1885 12 30 -4.5 -4.8 -4.8 1 +1885 12 31 -6.1 -6.5 -6.5 1 +1886 1 1 2.7 2.3 2.3 1 +1886 1 2 -2.3 -2.7 -2.7 1 +1886 1 3 -8.7 -9.1 -9.1 1 +1886 1 4 -0.1 -0.5 -0.5 1 +1886 1 5 0.1 -0.3 -0.3 1 +1886 1 6 -7.6 -8.0 -8.0 1 +1886 1 7 -17.5 -17.9 -17.9 1 +1886 1 8 -4.5 -4.9 -4.9 1 +1886 1 9 -3.6 -4.0 -4.0 1 +1886 1 10 -5.1 -5.5 -5.5 1 +1886 1 11 -6.2 -6.7 -6.7 1 +1886 1 12 -5.6 -6.1 -6.1 1 +1886 1 13 -3.6 -4.1 -4.1 1 +1886 1 14 -2.5 -3.0 -3.0 1 +1886 1 15 0.1 -0.4 -0.4 1 +1886 1 16 1.3 0.8 0.8 1 +1886 1 17 -0.5 -1.0 -1.0 1 +1886 1 18 0.3 -0.2 -0.2 1 +1886 1 19 0.1 -0.4 -0.4 1 +1886 1 20 -1.1 -1.6 -1.6 1 +1886 1 21 -1.1 -1.6 -1.6 1 +1886 1 22 -1.8 -2.3 -2.3 1 +1886 1 23 -2.4 -2.9 -2.9 1 +1886 1 24 -1.9 -2.4 -2.4 1 +1886 1 25 -1.0 -1.5 -1.5 1 +1886 1 26 -2.1 -2.6 -2.6 1 +1886 1 27 -7.6 -8.1 -8.1 1 +1886 1 28 -6.5 -7.0 -7.0 1 +1886 1 29 -4.9 -5.4 -5.4 1 +1886 1 30 -2.9 -3.4 -3.4 1 +1886 1 31 -0.2 -0.6 -0.6 1 +1886 2 1 0.4 0.0 0.0 1 +1886 2 2 0.6 0.2 0.2 1 +1886 2 3 1.1 0.7 0.7 1 +1886 2 4 -1.4 -1.8 -1.8 1 +1886 2 5 -4.5 -4.9 -4.9 1 +1886 2 6 -6.9 -7.3 -7.3 1 +1886 2 7 -5.3 -5.7 -5.7 1 +1886 2 8 -2.2 -2.6 -2.6 1 +1886 2 9 0.2 -0.2 -0.2 1 +1886 2 10 0.3 -0.1 -0.1 1 +1886 2 11 -0.9 -1.3 -1.3 1 +1886 2 12 -1.8 -2.2 -2.2 1 +1886 2 13 -1.2 -1.6 -1.6 1 +1886 2 14 -1.7 -2.1 -2.1 1 +1886 2 15 -1.5 -1.9 -1.9 1 +1886 2 16 -2.4 -2.8 -2.8 1 +1886 2 17 -2.2 -2.6 -2.6 1 +1886 2 18 -3.4 -3.8 -3.8 1 +1886 2 19 -5.5 -5.9 -5.9 1 +1886 2 20 -3.0 -3.4 -3.4 1 +1886 2 21 -4.0 -4.4 -4.4 1 +1886 2 22 -3.7 -4.1 -4.1 1 +1886 2 23 -4.3 -4.7 -4.7 1 +1886 2 24 -6.7 -7.1 -7.1 1 +1886 2 25 -8.5 -8.9 -8.9 1 +1886 2 26 -6.8 -7.2 -7.2 1 +1886 2 27 -7.9 -8.3 -8.3 1 +1886 2 28 -10.7 -11.1 -11.1 1 +1886 3 1 -7.8 -8.2 -8.2 1 +1886 3 2 -8.7 -9.1 -9.1 1 +1886 3 3 -5.3 -5.7 -5.7 1 +1886 3 4 -7.9 -8.3 -8.3 1 +1886 3 5 -11.1 -11.5 -11.5 1 +1886 3 6 -10.7 -11.1 -11.1 1 +1886 3 7 -7.7 -8.1 -8.1 1 +1886 3 8 -6.2 -6.6 -6.6 1 +1886 3 9 -2.8 -3.2 -3.2 1 +1886 3 10 -3.4 -3.8 -3.8 1 +1886 3 11 -0.8 -1.2 -1.2 1 +1886 3 12 -0.4 -0.8 -0.8 1 +1886 3 13 -2.5 -2.9 -2.9 1 +1886 3 14 -4.4 -4.8 -4.8 1 +1886 3 15 -3.3 -3.7 -3.7 1 +1886 3 16 -7.3 -7.7 -7.7 1 +1886 3 17 -8.1 -8.5 -8.5 1 +1886 3 18 -6.1 -6.5 -6.5 1 +1886 3 19 -4.4 -4.8 -4.8 1 +1886 3 20 -3.9 -4.3 -4.3 1 +1886 3 21 -1.4 -1.8 -1.8 1 +1886 3 22 -0.3 -0.7 -0.7 1 +1886 3 23 0.1 -0.3 -0.3 1 +1886 3 24 1.8 1.4 1.4 1 +1886 3 25 3.0 2.6 2.6 1 +1886 3 26 3.7 3.3 3.3 1 +1886 3 27 6.1 5.7 5.7 1 +1886 3 28 6.6 6.2 6.2 1 +1886 3 29 3.2 2.8 2.8 1 +1886 3 30 4.5 4.1 4.1 1 +1886 3 31 5.2 4.8 4.8 1 +1886 4 1 4.1 3.7 3.7 1 +1886 4 2 4.5 4.1 4.1 1 +1886 4 3 6.6 6.2 6.2 1 +1886 4 4 6.1 5.7 5.7 1 +1886 4 5 6.2 5.8 5.8 1 +1886 4 6 5.8 5.4 5.4 1 +1886 4 7 5.1 4.7 4.7 1 +1886 4 8 4.4 4.0 4.0 1 +1886 4 9 6.5 6.1 6.1 1 +1886 4 10 5.0 4.6 4.6 1 +1886 4 11 5.5 5.1 5.1 1 +1886 4 12 8.5 8.1 8.1 1 +1886 4 13 7.5 7.1 7.1 1 +1886 4 14 7.4 7.0 7.0 1 +1886 4 15 7.6 7.2 7.2 1 +1886 4 16 6.6 6.2 6.2 1 +1886 4 17 4.0 3.6 3.6 1 +1886 4 18 2.3 1.8 1.8 1 +1886 4 19 3.8 3.3 3.3 1 +1886 4 20 4.3 3.8 3.8 1 +1886 4 21 5.1 4.6 4.6 1 +1886 4 22 6.2 5.7 5.7 1 +1886 4 23 7.3 6.8 6.8 1 +1886 4 24 9.7 9.2 9.2 1 +1886 4 25 4.9 4.4 4.4 1 +1886 4 26 1.1 0.6 0.6 1 +1886 4 27 3.0 2.5 2.5 1 +1886 4 28 -0.1 -0.6 -0.6 1 +1886 4 29 -2.7 -3.3 -3.3 1 +1886 4 30 2.1 1.5 1.5 1 +1886 5 1 1.2 0.6 0.6 1 +1886 5 2 2.5 1.9 1.9 1 +1886 5 3 4.9 4.3 4.3 1 +1886 5 4 2.8 2.2 2.2 1 +1886 5 5 6.1 5.5 5.5 1 +1886 5 6 7.4 6.8 6.8 1 +1886 5 7 9.2 8.6 8.6 1 +1886 5 8 10.2 9.6 9.6 1 +1886 5 9 7.0 6.4 6.4 1 +1886 5 10 6.3 5.6 5.6 1 +1886 5 11 4.3 3.6 3.6 1 +1886 5 12 5.2 4.5 4.5 1 +1886 5 13 5.4 4.7 4.7 1 +1886 5 14 5.5 4.8 4.8 1 +1886 5 15 8.4 7.7 7.7 1 +1886 5 16 8.7 8.0 8.0 1 +1886 5 17 7.2 6.5 6.5 1 +1886 5 18 10.3 9.6 9.6 1 +1886 5 19 14.0 13.3 13.3 1 +1886 5 20 14.0 13.3 13.3 1 +1886 5 21 17.6 16.9 16.9 1 +1886 5 22 15.3 14.7 14.7 1 +1886 5 23 11.2 10.6 10.6 1 +1886 5 24 12.7 12.1 12.1 1 +1886 5 25 12.0 11.4 11.4 1 +1886 5 26 13.5 12.9 12.9 1 +1886 5 27 13.1 12.5 12.5 1 +1886 5 28 15.0 14.4 14.4 1 +1886 5 29 13.3 12.7 12.7 1 +1886 5 30 13.5 12.9 12.9 1 +1886 5 31 13.2 12.6 12.6 1 +1886 6 1 10.8 10.2 10.2 1 +1886 6 2 10.0 9.4 9.4 1 +1886 6 3 8.0 7.4 7.4 1 +1886 6 4 9.4 8.8 8.8 1 +1886 6 5 9.5 9.0 9.0 1 +1886 6 6 12.9 12.4 12.4 1 +1886 6 7 12.7 12.2 12.2 1 +1886 6 8 13.0 12.5 12.5 1 +1886 6 9 13.2 12.7 12.7 1 +1886 6 10 14.2 13.7 13.7 1 +1886 6 11 14.9 14.4 14.4 1 +1886 6 12 17.7 17.2 17.2 1 +1886 6 13 17.6 17.1 17.1 1 +1886 6 14 17.6 17.1 17.1 1 +1886 6 15 17.5 17.0 17.0 1 +1886 6 16 12.3 11.8 11.8 1 +1886 6 17 14.5 14.0 14.0 1 +1886 6 18 19.8 19.3 19.3 1 +1886 6 19 18.9 18.4 18.4 1 +1886 6 20 18.0 17.5 17.5 1 +1886 6 21 16.8 16.3 16.3 1 +1886 6 22 15.0 14.5 14.5 1 +1886 6 23 15.7 15.2 15.2 1 +1886 6 24 14.8 14.3 14.3 1 +1886 6 25 15.6 15.1 15.1 1 +1886 6 26 15.5 15.0 15.0 1 +1886 6 27 16.5 16.0 16.0 1 +1886 6 28 14.7 14.2 14.2 1 +1886 6 29 11.8 11.3 11.3 1 +1886 6 30 13.0 12.5 12.5 1 +1886 7 1 15.8 15.3 15.3 1 +1886 7 2 16.0 15.5 15.5 1 +1886 7 3 19.8 19.3 19.3 1 +1886 7 4 14.6 14.1 14.1 1 +1886 7 5 17.8 17.3 17.3 1 +1886 7 6 16.6 16.1 16.1 1 +1886 7 7 15.8 15.3 15.3 1 +1886 7 8 16.3 15.8 15.8 1 +1886 7 9 15.3 14.8 14.8 1 +1886 7 10 14.9 14.4 14.4 1 +1886 7 11 13.6 13.1 13.1 1 +1886 7 12 15.2 14.7 14.7 1 +1886 7 13 14.8 14.3 14.3 1 +1886 7 14 15.9 15.4 15.4 1 +1886 7 15 15.4 14.9 14.9 1 +1886 7 16 15.9 15.4 15.4 1 +1886 7 17 16.8 16.3 16.3 1 +1886 7 18 16.3 15.8 15.8 1 +1886 7 19 17.0 16.5 16.5 1 +1886 7 20 19.9 19.4 19.4 1 +1886 7 21 20.5 20.0 20.0 1 +1886 7 22 19.7 19.2 19.2 1 +1886 7 23 19.6 19.1 19.1 1 +1886 7 24 18.6 18.1 18.1 1 +1886 7 25 17.7 17.2 17.2 1 +1886 7 26 17.3 16.8 16.8 1 +1886 7 27 17.7 17.2 17.2 1 +1886 7 28 15.6 15.1 15.1 1 +1886 7 29 15.0 14.5 14.5 1 +1886 7 30 14.7 14.2 14.2 1 +1886 7 31 16.5 16.0 16.0 1 +1886 8 1 18.5 18.0 18.0 1 +1886 8 2 15.7 15.2 15.2 1 +1886 8 3 16.6 16.1 16.1 1 +1886 8 4 17.2 16.7 16.7 1 +1886 8 5 15.1 14.6 14.6 1 +1886 8 6 17.2 16.7 16.7 1 +1886 8 7 17.3 16.8 16.8 1 +1886 8 8 18.3 17.8 17.8 1 +1886 8 9 16.2 15.7 15.7 1 +1886 8 10 16.6 16.1 16.1 1 +1886 8 11 14.8 14.3 14.3 1 +1886 8 12 14.4 13.9 13.9 1 +1886 8 13 14.4 13.9 13.9 1 +1886 8 14 16.2 15.7 15.7 1 +1886 8 15 16.4 15.9 15.9 1 +1886 8 16 16.5 16.0 16.0 1 +1886 8 17 17.1 16.6 16.6 1 +1886 8 18 18.1 17.7 17.7 1 +1886 8 19 18.9 18.5 18.5 1 +1886 8 20 17.1 16.7 16.7 1 +1886 8 21 17.7 17.3 17.3 1 +1886 8 22 17.0 16.6 16.6 1 +1886 8 23 16.0 15.6 15.6 1 +1886 8 24 16.6 16.2 16.2 1 +1886 8 25 17.2 16.8 16.8 1 +1886 8 26 18.7 18.3 18.3 1 +1886 8 27 15.9 15.5 15.5 1 +1886 8 28 13.5 13.1 13.1 1 +1886 8 29 16.1 15.7 15.7 1 +1886 8 30 16.1 15.7 15.7 1 +1886 8 31 15.1 14.7 14.7 1 +1886 9 1 18.2 17.8 17.8 1 +1886 9 2 19.8 19.5 19.5 1 +1886 9 3 16.3 16.0 16.0 1 +1886 9 4 18.2 17.9 17.9 1 +1886 9 5 13.5 13.2 13.2 1 +1886 9 6 15.0 14.7 14.7 1 +1886 9 7 15.6 15.3 15.3 1 +1886 9 8 16.7 16.4 16.4 1 +1886 9 9 16.7 16.4 16.4 1 +1886 9 10 16.8 16.5 16.5 1 +1886 9 11 16.2 15.9 15.9 1 +1886 9 12 16.0 15.7 15.7 1 +1886 9 13 16.4 16.1 16.1 1 +1886 9 14 18.8 18.5 18.5 1 +1886 9 15 8.2 7.9 7.9 1 +1886 9 16 8.8 8.5 8.5 1 +1886 9 17 10.5 10.2 10.2 1 +1886 9 18 8.1 7.8 7.8 1 +1886 9 19 7.3 7.1 7.1 1 +1886 9 20 8.4 8.2 8.2 1 +1886 9 21 8.0 7.8 7.8 1 +1886 9 22 3.7 3.5 3.5 1 +1886 9 23 4.6 4.4 4.4 1 +1886 9 24 6.1 5.9 5.9 1 +1886 9 25 6.3 6.1 6.1 1 +1886 9 26 7.5 7.3 7.3 1 +1886 9 27 10.6 10.4 10.4 1 +1886 9 28 11.2 11.0 11.0 1 +1886 9 29 10.1 9.9 9.9 1 +1886 9 30 8.2 8.0 8.0 1 +1886 10 1 8.7 8.5 8.5 1 +1886 10 2 10.5 10.3 10.3 1 +1886 10 3 12.2 12.0 12.0 1 +1886 10 4 6.3 6.1 6.1 1 +1886 10 5 6.0 5.8 5.8 1 +1886 10 6 5.6 5.4 5.4 1 +1886 10 7 5.8 5.6 5.6 1 +1886 10 8 7.1 6.9 6.9 1 +1886 10 9 8.7 8.5 8.5 1 +1886 10 10 9.3 9.1 9.1 1 +1886 10 11 8.2 8.0 8.0 1 +1886 10 12 6.6 6.4 6.4 1 +1886 10 13 9.9 9.7 9.7 1 +1886 10 14 9.9 9.7 9.7 1 +1886 10 15 8.8 8.6 8.6 1 +1886 10 16 8.4 8.2 8.2 1 +1886 10 17 7.4 7.2 7.2 1 +1886 10 18 6.8 6.6 6.6 1 +1886 10 19 5.9 5.7 5.7 1 +1886 10 20 5.8 5.6 5.6 1 +1886 10 21 4.5 4.3 4.3 1 +1886 10 22 3.9 3.7 3.7 1 +1886 10 23 3.1 2.9 2.9 1 +1886 10 24 2.2 2.0 2.0 1 +1886 10 25 1.3 1.1 1.1 1 +1886 10 26 3.2 3.0 3.0 1 +1886 10 27 1.1 0.9 0.9 1 +1886 10 28 0.9 0.7 0.7 1 +1886 10 29 5.2 5.0 5.0 1 +1886 10 30 5.2 5.0 5.0 1 +1886 10 31 5.2 5.0 5.0 1 +1886 11 1 5.3 5.1 5.1 1 +1886 11 2 7.6 7.4 7.4 1 +1886 11 3 6.6 6.4 6.4 1 +1886 11 4 8.0 7.8 7.8 1 +1886 11 5 5.9 5.7 5.7 1 +1886 11 6 6.3 6.1 6.1 1 +1886 11 7 6.7 6.5 6.5 1 +1886 11 8 6.1 5.8 5.8 1 +1886 11 9 2.9 2.6 2.6 1 +1886 11 10 5.9 5.6 5.6 1 +1886 11 11 5.7 5.4 5.4 1 +1886 11 12 6.9 6.6 6.6 1 +1886 11 13 6.6 6.3 6.3 1 +1886 11 14 6.0 5.7 5.7 1 +1886 11 15 5.4 5.1 5.1 1 +1886 11 16 5.8 5.5 5.5 1 +1886 11 17 6.0 5.7 5.7 1 +1886 11 18 3.8 3.5 3.5 1 +1886 11 19 3.0 2.7 2.7 1 +1886 11 20 1.3 1.0 1.0 1 +1886 11 21 2.7 2.4 2.4 1 +1886 11 22 1.1 0.8 0.8 1 +1886 11 23 0.3 0.0 0.0 1 +1886 11 24 3.0 2.7 2.7 1 +1886 11 25 1.8 1.5 1.5 1 +1886 11 26 1.7 1.4 1.4 1 +1886 11 27 1.6 1.3 1.3 1 +1886 11 28 2.6 2.3 2.3 1 +1886 11 29 6.2 5.9 5.9 1 +1886 11 30 4.8 4.5 4.5 1 +1886 12 1 3.7 3.4 3.4 1 +1886 12 2 1.6 1.3 1.3 1 +1886 12 3 -2.1 -2.4 -2.4 1 +1886 12 4 0.9 0.6 0.6 1 +1886 12 5 -1.6 -1.9 -1.9 1 +1886 12 6 1.0 0.7 0.7 1 +1886 12 7 1.0 0.7 0.7 1 +1886 12 8 0.8 0.5 0.5 1 +1886 12 9 2.8 2.5 2.5 1 +1886 12 10 4.7 4.4 4.4 1 +1886 12 11 3.6 3.3 3.3 1 +1886 12 12 3.4 3.1 3.1 1 +1886 12 13 2.3 2.0 2.0 1 +1886 12 14 1.1 0.8 0.8 1 +1886 12 15 -1.9 -2.2 -2.2 1 +1886 12 16 1.4 1.1 1.1 1 +1886 12 17 -2.7 -3.0 -3.0 1 +1886 12 18 -5.3 -5.6 -5.6 1 +1886 12 19 -7.9 -8.2 -8.2 1 +1886 12 20 -10.4 -10.7 -10.7 1 +1886 12 21 -12.0 -12.3 -12.3 1 +1886 12 22 -7.8 -8.1 -8.1 1 +1886 12 23 -1.2 -1.5 -1.5 1 +1886 12 24 -3.2 -3.5 -3.5 1 +1886 12 25 -5.0 -5.3 -5.3 1 +1886 12 26 -0.4 -0.7 -0.7 1 +1886 12 27 -0.1 -0.5 -0.5 1 +1886 12 28 -0.6 -1.0 -1.0 1 +1886 12 29 -3.5 -3.9 -3.9 1 +1886 12 30 -10.8 -11.2 -11.2 1 +1886 12 31 -13.9 -14.3 -14.3 1 +1887 1 1 -14.7 -15.1 -15.1 1 +1887 1 2 -7.6 -8.0 -8.0 1 +1887 1 3 -7.4 -7.8 -7.8 1 +1887 1 4 -4.9 -5.3 -5.3 1 +1887 1 5 -2.2 -2.6 -2.6 1 +1887 1 6 0.5 0.1 0.1 1 +1887 1 7 1.5 1.1 1.1 1 +1887 1 8 0.8 0.3 0.3 1 +1887 1 9 0.2 -0.3 -0.3 1 +1887 1 10 -1.1 -1.6 -1.6 1 +1887 1 11 0.4 -0.1 -0.1 1 +1887 1 12 0.1 -0.4 -0.4 1 +1887 1 13 -1.2 -1.7 -1.7 1 +1887 1 14 -1.7 -2.2 -2.2 1 +1887 1 15 0.2 -0.3 -0.3 1 +1887 1 16 -1.6 -2.1 -2.1 1 +1887 1 17 -3.6 -4.1 -4.1 1 +1887 1 18 -2.5 -3.0 -3.0 1 +1887 1 19 -0.4 -0.9 -0.9 1 +1887 1 20 -1.1 -1.6 -1.6 1 +1887 1 21 3.6 3.1 3.1 1 +1887 1 22 3.5 3.0 3.0 1 +1887 1 23 -1.8 -2.3 -2.3 1 +1887 1 24 -1.7 -2.2 -2.2 1 +1887 1 25 2.8 2.3 2.3 1 +1887 1 26 4.2 3.7 3.7 1 +1887 1 27 0.3 -0.2 -0.2 1 +1887 1 28 2.0 1.5 1.5 1 +1887 1 29 4.8 4.3 4.3 1 +1887 1 30 5.5 5.0 5.0 1 +1887 1 31 1.9 1.4 1.4 1 +1887 2 1 3.9 3.4 3.4 1 +1887 2 2 0.0 -0.5 -0.5 1 +1887 2 3 1.5 1.0 1.0 1 +1887 2 4 5.0 4.5 4.5 1 +1887 2 5 2.8 2.3 2.3 1 +1887 2 6 0.2 -0.3 -0.3 1 +1887 2 7 -2.3 -2.8 -2.8 1 +1887 2 8 -2.9 -3.4 -3.4 1 +1887 2 9 -0.1 -0.6 -0.6 1 +1887 2 10 -1.5 -2.0 -2.0 1 +1887 2 11 -0.9 -1.4 -1.4 1 +1887 2 12 -4.1 -4.6 -4.6 1 +1887 2 13 0.8 0.3 0.3 1 +1887 2 14 -4.5 -4.9 -4.9 1 +1887 2 15 -4.7 -5.1 -5.1 1 +1887 2 16 -2.8 -3.2 -3.2 1 +1887 2 17 -4.1 -4.5 -4.5 1 +1887 2 18 -2.8 -3.2 -3.2 1 +1887 2 19 -2.4 -2.8 -2.8 1 +1887 2 20 -1.1 -1.5 -1.5 1 +1887 2 21 -1.4 -1.8 -1.8 1 +1887 2 22 -0.4 -0.8 -0.8 1 +1887 2 23 1.9 1.5 1.5 1 +1887 2 24 4.9 4.5 4.5 1 +1887 2 25 4.2 3.8 3.8 1 +1887 2 26 -1.0 -1.4 -1.4 1 +1887 2 27 3.0 2.6 2.6 1 +1887 2 28 4.7 4.3 4.3 1 +1887 3 1 6.0 5.6 5.6 1 +1887 3 2 5.2 4.8 4.8 1 +1887 3 3 6.1 5.7 5.7 1 +1887 3 4 6.8 6.4 6.4 1 +1887 3 5 3.9 3.5 3.5 1 +1887 3 6 6.2 5.8 5.8 1 +1887 3 7 2.0 1.6 1.6 1 +1887 3 8 1.9 1.5 1.5 1 +1887 3 9 0.8 0.4 0.4 1 +1887 3 10 -5.3 -5.7 -5.7 1 +1887 3 11 -3.7 -4.1 -4.1 1 +1887 3 12 -8.1 -8.5 -8.5 1 +1887 3 13 -8.2 -8.6 -8.6 1 +1887 3 14 -6.3 -6.7 -6.7 1 +1887 3 15 -3.1 -3.5 -3.5 1 +1887 3 16 -3.1 -3.5 -3.5 1 +1887 3 17 -4.6 -5.0 -5.0 1 +1887 3 18 -5.2 -5.6 -5.6 1 +1887 3 19 -2.6 -3.0 -3.0 1 +1887 3 20 -0.8 -1.2 -1.2 1 +1887 3 21 0.2 -0.2 -0.2 1 +1887 3 22 0.3 -0.1 -0.1 1 +1887 3 23 1.0 0.6 0.6 1 +1887 3 24 2.1 1.7 1.7 1 +1887 3 25 2.6 2.2 2.2 1 +1887 3 26 0.3 -0.1 -0.1 1 +1887 3 27 0.6 0.2 0.2 1 +1887 3 28 1.5 1.1 1.1 1 +1887 3 29 1.0 0.6 0.6 1 +1887 3 30 2.5 2.1 2.1 1 +1887 3 31 2.1 1.7 1.7 1 +1887 4 1 2.5 2.1 2.1 1 +1887 4 2 1.2 0.8 0.8 1 +1887 4 3 0.5 0.1 0.1 1 +1887 4 4 2.1 1.7 1.7 1 +1887 4 5 2.9 2.5 2.5 1 +1887 4 6 2.1 1.7 1.7 1 +1887 4 7 -0.1 -0.5 -0.5 1 +1887 4 8 5.5 5.1 5.1 1 +1887 4 9 1.8 1.4 1.4 1 +1887 4 10 8.3 7.9 7.9 1 +1887 4 11 9.1 8.7 8.7 1 +1887 4 12 8.6 8.2 8.2 1 +1887 4 13 0.3 -0.1 -0.1 1 +1887 4 14 -0.9 -1.3 -1.3 1 +1887 4 15 -1.1 -1.5 -1.5 1 +1887 4 16 1.5 1.0 1.0 1 +1887 4 17 5.8 5.3 5.3 1 +1887 4 18 7.5 7.0 7.0 1 +1887 4 19 5.9 5.4 5.4 1 +1887 4 20 1.5 1.0 1.0 1 +1887 4 21 1.2 0.7 0.7 1 +1887 4 22 2.6 2.1 2.1 1 +1887 4 23 5.2 4.7 4.7 1 +1887 4 24 7.2 6.7 6.7 1 +1887 4 25 9.7 9.2 9.2 1 +1887 4 26 10.3 9.7 9.7 1 +1887 4 27 9.3 8.7 8.7 1 +1887 4 28 9.1 8.5 8.5 1 +1887 4 29 7.2 6.6 6.6 1 +1887 4 30 4.9 4.3 4.3 1 +1887 5 1 6.6 6.0 6.0 1 +1887 5 2 6.6 6.0 6.0 1 +1887 5 3 8.0 7.4 7.4 1 +1887 5 4 10.5 9.9 9.9 1 +1887 5 5 5.9 5.3 5.3 1 +1887 5 6 7.4 6.7 6.7 1 +1887 5 7 7.1 6.4 6.4 1 +1887 5 8 6.7 6.0 6.0 1 +1887 5 9 9.4 8.7 8.7 1 +1887 5 10 10.7 10.0 10.0 1 +1887 5 11 8.8 8.1 8.1 1 +1887 5 12 7.9 7.2 7.2 1 +1887 5 13 8.3 7.6 7.6 1 +1887 5 14 8.8 8.1 8.1 1 +1887 5 15 13.1 12.4 12.4 1 +1887 5 16 12.5 11.8 11.8 1 +1887 5 17 10.7 10.0 10.0 1 +1887 5 18 11.1 10.4 10.4 1 +1887 5 19 9.8 9.1 9.1 1 +1887 5 20 10.8 10.1 10.1 1 +1887 5 21 11.9 11.2 11.2 1 +1887 5 22 13.0 12.3 12.3 1 +1887 5 23 9.4 8.7 8.7 1 +1887 5 24 8.1 7.4 7.4 1 +1887 5 25 11.4 10.7 10.7 1 +1887 5 26 10.6 9.9 9.9 1 +1887 5 27 10.5 9.9 9.9 1 +1887 5 28 11.3 10.7 10.7 1 +1887 5 29 7.9 7.3 7.3 1 +1887 5 30 6.4 5.8 5.8 1 +1887 5 31 10.6 10.0 10.0 1 +1887 6 1 11.6 11.0 11.0 1 +1887 6 2 12.2 11.6 11.6 1 +1887 6 3 13.2 12.6 12.6 1 +1887 6 4 14.7 14.1 14.1 1 +1887 6 5 16.7 16.1 16.1 1 +1887 6 6 18.8 18.2 18.2 1 +1887 6 7 16.4 15.8 15.8 1 +1887 6 8 14.7 14.2 14.2 1 +1887 6 9 13.8 13.3 13.3 1 +1887 6 10 8.3 7.8 7.8 1 +1887 6 11 8.8 8.3 8.3 1 +1887 6 12 10.4 9.9 9.9 1 +1887 6 13 12.2 11.7 11.7 1 +1887 6 14 13.7 13.2 13.2 1 +1887 6 15 13.3 12.8 12.8 1 +1887 6 16 11.8 11.3 11.3 1 +1887 6 17 11.6 11.1 11.1 1 +1887 6 18 16.2 15.7 15.7 1 +1887 6 19 13.9 13.4 13.4 1 +1887 6 20 8.6 8.1 8.1 1 +1887 6 21 11.9 11.4 11.4 1 +1887 6 22 15.0 14.5 14.5 1 +1887 6 23 15.3 14.8 14.8 1 +1887 6 24 12.4 11.9 11.9 1 +1887 6 25 13.0 12.5 12.5 1 +1887 6 26 11.1 10.6 10.6 1 +1887 6 27 13.2 12.7 12.7 1 +1887 6 28 16.3 15.8 15.8 1 +1887 6 29 17.6 17.1 17.1 1 +1887 6 30 17.7 17.2 17.2 1 +1887 7 1 21.7 21.2 21.2 1 +1887 7 2 23.0 22.5 22.5 1 +1887 7 3 16.2 15.7 15.7 1 +1887 7 4 20.1 19.6 19.6 1 +1887 7 5 14.6 14.1 14.1 1 +1887 7 6 8.3 7.8 7.8 1 +1887 7 7 12.4 11.9 11.9 1 +1887 7 8 11.5 11.0 11.0 1 +1887 7 9 13.8 13.3 13.3 1 +1887 7 10 13.4 12.9 12.9 1 +1887 7 11 13.7 13.2 13.2 1 +1887 7 12 15.6 15.1 15.1 1 +1887 7 13 18.2 17.7 17.7 1 +1887 7 14 19.8 19.3 19.3 1 +1887 7 15 20.3 19.8 19.8 1 +1887 7 16 21.0 20.5 20.5 1 +1887 7 17 19.3 18.8 18.8 1 +1887 7 18 16.7 16.2 16.2 1 +1887 7 19 17.4 16.9 16.9 1 +1887 7 20 18.7 18.2 18.2 1 +1887 7 21 13.6 13.1 13.1 1 +1887 7 22 15.2 14.7 14.7 1 +1887 7 23 17.0 16.5 16.5 1 +1887 7 24 17.9 17.4 17.4 1 +1887 7 25 16.9 16.4 16.4 1 +1887 7 26 16.2 15.7 15.7 1 +1887 7 27 17.3 16.8 16.8 1 +1887 7 28 19.6 19.1 19.1 1 +1887 7 29 18.9 18.4 18.4 1 +1887 7 30 22.5 22.0 22.0 1 +1887 7 31 21.6 21.1 21.1 1 +1887 8 1 20.1 19.6 19.6 1 +1887 8 2 15.8 15.3 15.3 1 +1887 8 3 15.0 14.5 14.5 1 +1887 8 4 14.6 14.1 14.1 1 +1887 8 5 16.3 15.8 15.8 1 +1887 8 6 15.6 15.1 15.1 1 +1887 8 7 18.2 17.7 17.7 1 +1887 8 8 15.7 15.2 15.2 1 +1887 8 9 13.2 12.7 12.7 1 +1887 8 10 13.6 13.1 13.1 1 +1887 8 11 13.1 12.6 12.6 1 +1887 8 12 13.3 12.8 12.8 1 +1887 8 13 14.8 14.3 14.3 1 +1887 8 14 13.6 13.1 13.1 1 +1887 8 15 13.2 12.7 12.7 1 +1887 8 16 14.1 13.6 13.6 1 +1887 8 17 14.2 13.7 13.7 1 +1887 8 18 12.5 12.0 12.0 1 +1887 8 19 13.8 13.3 13.3 1 +1887 8 20 14.1 13.6 13.6 1 +1887 8 21 15.1 14.6 14.6 1 +1887 8 22 14.8 14.4 14.4 1 +1887 8 23 13.6 13.2 13.2 1 +1887 8 24 13.7 13.3 13.3 1 +1887 8 25 13.1 12.7 12.7 1 +1887 8 26 15.4 15.0 15.0 1 +1887 8 27 15.6 15.2 15.2 1 +1887 8 28 17.1 16.7 16.7 1 +1887 8 29 18.6 18.2 18.2 1 +1887 8 30 18.4 18.0 18.0 1 +1887 8 31 17.6 17.2 17.2 1 +1887 9 1 15.8 15.4 15.4 1 +1887 9 2 16.1 15.7 15.7 1 +1887 9 3 16.5 16.1 16.1 1 +1887 9 4 16.0 15.6 15.6 1 +1887 9 5 14.8 14.5 14.5 1 +1887 9 6 14.5 14.2 14.2 1 +1887 9 7 14.9 14.6 14.6 1 +1887 9 8 11.4 11.1 11.1 1 +1887 9 9 12.7 12.4 12.4 1 +1887 9 10 13.4 13.1 13.1 1 +1887 9 11 11.8 11.5 11.5 1 +1887 9 12 13.8 13.5 13.5 1 +1887 9 13 14.2 13.9 13.9 1 +1887 9 14 15.0 14.7 14.7 1 +1887 9 15 15.4 15.1 15.1 1 +1887 9 16 13.4 13.1 13.1 1 +1887 9 17 13.8 13.5 13.5 1 +1887 9 18 12.4 12.1 12.1 1 +1887 9 19 10.9 10.6 10.6 1 +1887 9 20 8.0 7.7 7.7 1 +1887 9 21 8.5 8.2 8.2 1 +1887 9 22 10.9 10.6 10.6 1 +1887 9 23 9.4 9.2 9.2 1 +1887 9 24 8.0 7.8 7.8 1 +1887 9 25 6.6 6.4 6.4 1 +1887 9 26 7.3 7.1 7.1 1 +1887 9 27 8.3 8.1 8.1 1 +1887 9 28 9.5 9.3 9.3 1 +1887 9 29 9.1 8.9 8.9 1 +1887 9 30 9.2 9.0 9.0 1 +1887 10 1 7.3 7.1 7.1 1 +1887 10 2 6.4 6.2 6.2 1 +1887 10 3 4.8 4.6 4.6 1 +1887 10 4 8.2 8.0 8.0 1 +1887 10 5 8.6 8.4 8.4 1 +1887 10 6 6.3 6.1 6.1 1 +1887 10 7 5.2 5.0 5.0 1 +1887 10 8 0.6 0.4 0.4 1 +1887 10 9 0.2 0.0 0.0 1 +1887 10 10 2.7 2.5 2.5 1 +1887 10 11 2.9 2.7 2.7 1 +1887 10 12 2.1 1.9 1.9 1 +1887 10 13 0.7 0.5 0.5 1 +1887 10 14 -0.2 -0.4 -0.4 1 +1887 10 15 1.8 1.6 1.6 1 +1887 10 16 1.9 1.7 1.7 1 +1887 10 17 2.7 2.5 2.5 1 +1887 10 18 6.4 6.2 6.2 1 +1887 10 19 7.7 7.5 7.5 1 +1887 10 20 7.2 7.0 7.0 1 +1887 10 21 2.4 2.2 2.2 1 +1887 10 22 2.2 2.0 2.0 1 +1887 10 23 6.9 6.7 6.7 1 +1887 10 24 1.8 1.6 1.6 1 +1887 10 25 -1.6 -1.8 -1.8 1 +1887 10 26 2.3 2.1 2.1 1 +1887 10 27 7.7 7.5 7.5 1 +1887 10 28 6.6 6.4 6.4 1 +1887 10 29 4.7 4.5 4.5 1 +1887 10 30 6.2 6.0 6.0 1 +1887 10 31 6.2 6.0 6.0 1 +1887 11 1 4.6 4.4 4.4 1 +1887 11 2 3.1 2.9 2.9 1 +1887 11 3 7.6 7.4 7.4 1 +1887 11 4 9.2 8.9 8.9 1 +1887 11 5 8.7 8.4 8.4 1 +1887 11 6 7.1 6.8 6.8 1 +1887 11 7 5.9 5.6 5.6 1 +1887 11 8 1.5 1.2 1.2 1 +1887 11 9 0.0 -0.3 -0.3 1 +1887 11 10 1.3 1.0 1.0 1 +1887 11 11 -0.9 -1.2 -1.2 1 +1887 11 12 -2.6 -2.9 -2.9 1 +1887 11 13 -5.1 -5.4 -5.4 1 +1887 11 14 -6.6 -6.9 -6.9 1 +1887 11 15 -8.6 -8.9 -8.9 1 +1887 11 16 -3.0 -3.3 -3.3 1 +1887 11 17 1.1 0.8 0.8 1 +1887 11 18 3.4 3.1 3.1 1 +1887 11 19 3.2 2.9 2.9 1 +1887 11 20 1.7 1.4 1.4 1 +1887 11 21 -1.5 -1.8 -1.8 1 +1887 11 22 -0.8 -1.1 -1.1 1 +1887 11 23 -2.3 -2.6 -2.6 1 +1887 11 24 0.0 -0.3 -0.3 1 +1887 11 25 2.4 2.1 2.1 1 +1887 11 26 3.0 2.7 2.7 1 +1887 11 27 7.1 6.8 6.8 1 +1887 11 28 0.8 0.5 0.5 1 +1887 11 29 -2.8 -3.1 -3.1 1 +1887 11 30 -4.9 -5.2 -5.2 1 +1887 12 1 2.2 1.9 1.9 1 +1887 12 2 2.9 2.6 2.6 1 +1887 12 3 6.7 6.4 6.4 1 +1887 12 4 3.8 3.5 3.5 1 +1887 12 5 -0.2 -0.5 -0.5 1 +1887 12 6 2.2 1.9 1.9 1 +1887 12 7 1.9 1.6 1.6 1 +1887 12 8 1.4 1.1 1.1 1 +1887 12 9 1.0 0.7 0.7 1 +1887 12 10 -0.5 -0.8 -0.8 1 +1887 12 11 -5.5 -5.8 -5.8 1 +1887 12 12 -5.5 -5.8 -5.8 1 +1887 12 13 -5.4 -5.7 -5.7 1 +1887 12 14 -2.9 -3.2 -3.2 1 +1887 12 15 0.7 0.4 0.4 1 +1887 12 16 0.1 -0.2 -0.2 1 +1887 12 17 3.1 2.8 2.8 1 +1887 12 18 2.4 2.1 2.1 1 +1887 12 19 0.7 0.4 0.4 1 +1887 12 20 0.4 0.1 0.1 1 +1887 12 21 -2.3 -2.6 -2.6 1 +1887 12 22 -4.2 -4.5 -4.5 1 +1887 12 23 -4.5 -4.8 -4.8 1 +1887 12 24 -9.8 -10.1 -10.1 1 +1887 12 25 -6.4 -6.8 -6.8 1 +1887 12 26 -7.5 -7.9 -7.9 1 +1887 12 27 -9.2 -9.6 -9.6 1 +1887 12 28 -10.9 -11.3 -11.3 1 +1887 12 29 -9.6 -10.0 -10.0 1 +1887 12 30 -9.4 -9.8 -9.8 1 +1887 12 31 -13.3 -13.7 -13.7 1 +1888 1 1 -4.7 -5.1 -5.1 1 +1888 1 2 -2.6 -3.0 -3.0 1 +1888 1 3 -0.8 -1.2 -1.2 1 +1888 1 4 -1.7 -2.1 -2.1 1 +1888 1 5 0.9 0.4 0.4 1 +1888 1 6 0.2 -0.3 -0.3 1 +1888 1 7 1.9 1.4 1.4 1 +1888 1 8 0.1 -0.4 -0.4 1 +1888 1 9 -0.5 -1.0 -1.0 1 +1888 1 10 1.5 1.0 1.0 1 +1888 1 11 2.2 1.7 1.7 1 +1888 1 12 -2.7 -3.2 -3.2 1 +1888 1 13 -5.4 -5.9 -5.9 1 +1888 1 14 -3.1 -3.6 -3.6 1 +1888 1 15 -2.7 -3.2 -3.2 1 +1888 1 16 -3.8 -4.3 -4.3 1 +1888 1 17 -3.5 -4.0 -4.0 1 +1888 1 18 -3.3 -3.8 -3.8 1 +1888 1 19 -2.0 -2.5 -2.5 1 +1888 1 20 -0.9 -1.4 -1.4 1 +1888 1 21 -4.9 -5.4 -5.4 1 +1888 1 22 -5.6 -6.1 -6.1 1 +1888 1 23 -3.9 -4.4 -4.4 1 +1888 1 24 -0.6 -1.1 -1.1 1 +1888 1 25 -1.2 -1.7 -1.7 1 +1888 1 26 -6.7 -7.2 -7.2 1 +1888 1 27 -10.7 -11.2 -11.2 1 +1888 1 28 -8.7 -9.2 -9.2 1 +1888 1 29 -9.4 -9.9 -9.9 1 +1888 1 30 -11.0 -11.5 -11.5 1 +1888 1 31 -8.7 -9.2 -9.2 1 +1888 2 1 -7.0 -7.5 -7.5 1 +1888 2 2 -11.4 -11.9 -11.9 1 +1888 2 3 -2.0 -2.5 -2.5 1 +1888 2 4 -1.9 -2.4 -2.4 1 +1888 2 5 -9.4 -9.9 -9.9 1 +1888 2 6 -13.2 -13.7 -13.7 1 +1888 2 7 -7.0 -7.5 -7.5 1 +1888 2 8 -3.1 -3.6 -3.6 1 +1888 2 9 -5.0 -5.5 -5.5 1 +1888 2 10 -3.3 -3.8 -3.8 1 +1888 2 11 -1.8 -2.3 -2.3 1 +1888 2 12 -3.6 -4.1 -4.1 1 +1888 2 13 -8.1 -8.6 -8.6 1 +1888 2 14 -8.9 -9.4 -9.4 1 +1888 2 15 -12.9 -13.4 -13.4 1 +1888 2 16 -7.0 -7.5 -7.5 1 +1888 2 17 -6.0 -6.5 -6.5 1 +1888 2 18 -2.6 -3.1 -3.1 1 +1888 2 19 -2.2 -2.7 -2.7 1 +1888 2 20 -5.4 -5.9 -5.9 1 +1888 2 21 -6.9 -7.4 -7.4 1 +1888 2 22 -8.1 -8.6 -8.6 1 +1888 2 23 -11.2 -11.7 -11.7 1 +1888 2 24 -12.0 -12.5 -12.5 1 +1888 2 25 -10.4 -10.9 -10.9 1 +1888 2 26 -9.0 -9.5 -9.5 1 +1888 2 27 -7.7 -8.2 -8.2 1 +1888 2 28 -9.3 -9.8 -9.8 1 +1888 2 29 -8.5 -9.0 -9.0 1 +1888 3 1 -3.2 -3.7 -3.7 1 +1888 3 2 -4.4 -4.9 -4.9 1 +1888 3 3 -12.3 -12.8 -12.8 1 +1888 3 4 -15.7 -16.2 -16.2 1 +1888 3 5 -16.7 -17.2 -17.2 1 +1888 3 6 -14.9 -15.4 -15.4 1 +1888 3 7 -11.4 -11.9 -11.9 1 +1888 3 8 -16.1 -16.6 -16.6 1 +1888 3 9 -13.5 -14.0 -14.0 1 +1888 3 10 -14.5 -15.0 -15.0 1 +1888 3 11 -16.2 -16.7 -16.7 1 +1888 3 12 -12.9 -13.4 -13.4 1 +1888 3 13 -10.8 -11.3 -11.3 1 +1888 3 14 -14.0 -14.5 -14.5 1 +1888 3 15 -16.6 -17.1 -17.1 1 +1888 3 16 -14.6 -15.1 -15.1 1 +1888 3 17 -13.2 -13.7 -13.7 1 +1888 3 18 -12.2 -12.7 -12.7 1 +1888 3 19 -8.0 -8.5 -8.5 1 +1888 3 20 -3.2 -3.7 -3.7 1 +1888 3 21 -3.4 -3.9 -3.9 1 +1888 3 22 -2.6 -3.1 -3.1 1 +1888 3 23 -2.2 -2.7 -2.7 1 +1888 3 24 -3.1 -3.6 -3.6 1 +1888 3 25 -2.4 -2.9 -2.9 1 +1888 3 26 1.2 0.7 0.7 1 +1888 3 27 -0.9 -1.4 -1.4 1 +1888 3 28 -3.2 -3.7 -3.7 1 +1888 3 29 -1.9 -2.4 -2.4 1 +1888 3 30 1.5 1.0 1.0 1 +1888 3 31 2.1 1.6 1.6 1 +1888 4 1 -2.0 -2.5 -2.5 1 +1888 4 2 -2.7 -3.2 -3.2 1 +1888 4 3 -3.4 -3.9 -3.9 1 +1888 4 4 -3.7 -4.2 -4.2 1 +1888 4 5 -4.4 -4.9 -4.9 1 +1888 4 6 -4.4 -4.9 -4.9 1 +1888 4 7 -4.4 -4.9 -4.9 1 +1888 4 8 -1.0 -1.5 -1.5 1 +1888 4 9 0.3 -0.2 -0.2 1 +1888 4 10 1.2 0.7 0.7 1 +1888 4 11 0.2 -0.3 -0.3 1 +1888 4 12 1.0 0.5 0.5 1 +1888 4 13 1.5 1.0 1.0 1 +1888 4 14 1.7 1.2 1.2 1 +1888 4 15 1.5 1.0 1.0 1 +1888 4 16 2.6 2.1 2.1 1 +1888 4 17 3.2 2.7 2.7 1 +1888 4 18 3.6 3.1 3.1 1 +1888 4 19 4.7 4.2 4.2 1 +1888 4 20 3.1 2.6 2.6 1 +1888 4 21 -0.3 -0.8 -0.8 1 +1888 4 22 -2.6 -3.1 -3.1 1 +1888 4 23 -1.8 -2.4 -2.4 1 +1888 4 24 -0.7 -1.3 -1.3 1 +1888 4 25 1.2 0.6 0.6 1 +1888 4 26 -2.9 -3.5 -3.5 1 +1888 4 27 0.5 -0.1 -0.1 1 +1888 4 28 1.4 0.8 0.8 1 +1888 4 29 4.6 4.0 4.0 1 +1888 4 30 8.1 7.5 7.5 1 +1888 5 1 7.3 6.7 6.7 1 +1888 5 2 6.8 6.2 6.2 1 +1888 5 3 7.9 7.2 7.2 1 +1888 5 4 7.4 6.7 6.7 1 +1888 5 5 6.1 5.4 5.4 1 +1888 5 6 5.8 5.1 5.1 1 +1888 5 7 6.4 5.7 5.7 1 +1888 5 8 9.9 9.2 9.2 1 +1888 5 9 6.4 5.7 5.7 1 +1888 5 10 5.5 4.8 4.8 1 +1888 5 11 3.8 3.1 3.1 1 +1888 5 12 4.9 4.2 4.2 1 +1888 5 13 6.8 6.0 6.0 1 +1888 5 14 5.1 4.3 4.3 1 +1888 5 15 6.4 5.6 5.6 1 +1888 5 16 8.4 7.6 7.6 1 +1888 5 17 8.7 7.9 7.9 1 +1888 5 18 16.0 15.2 15.2 1 +1888 5 19 13.6 12.9 12.9 1 +1888 5 20 14.3 13.6 13.6 1 +1888 5 21 7.6 6.9 6.9 1 +1888 5 22 10.3 9.6 9.6 1 +1888 5 23 14.9 14.2 14.2 1 +1888 5 24 12.8 12.1 12.1 1 +1888 5 25 8.7 8.0 8.0 1 +1888 5 26 5.3 4.6 4.6 1 +1888 5 27 6.1 5.4 5.4 1 +1888 5 28 4.8 4.1 4.1 1 +1888 5 29 6.8 6.1 6.1 1 +1888 5 30 9.8 9.1 9.1 1 +1888 5 31 10.6 10.0 10.0 1 +1888 6 1 10.9 10.3 10.3 1 +1888 6 2 8.7 8.1 8.1 1 +1888 6 3 7.7 7.1 7.1 1 +1888 6 4 5.8 5.2 5.2 1 +1888 6 5 6.6 6.0 6.0 1 +1888 6 6 10.4 9.8 9.8 1 +1888 6 7 11.4 10.8 10.8 1 +1888 6 8 11.1 10.5 10.5 1 +1888 6 9 12.0 11.4 11.4 1 +1888 6 10 13.7 13.1 13.1 1 +1888 6 11 11.7 11.1 11.1 1 +1888 6 12 12.2 11.7 11.7 1 +1888 6 13 16.8 16.3 16.3 1 +1888 6 14 10.9 10.4 10.4 1 +1888 6 15 10.6 10.1 10.1 1 +1888 6 16 12.0 11.5 11.5 1 +1888 6 17 9.1 8.6 8.6 1 +1888 6 18 13.1 12.6 12.6 1 +1888 6 19 14.5 14.0 14.0 1 +1888 6 20 15.4 14.9 14.9 1 +1888 6 21 18.6 18.1 18.1 1 +1888 6 22 13.5 13.0 13.0 1 +1888 6 23 16.8 16.3 16.3 1 +1888 6 24 16.7 16.2 16.2 1 +1888 6 25 21.5 21.0 21.0 1 +1888 6 26 17.2 16.7 16.7 1 +1888 6 27 22.5 22.0 22.0 1 +1888 6 28 13.5 13.0 13.0 1 +1888 6 29 10.4 9.9 9.9 1 +1888 6 30 7.6 7.1 7.1 1 +1888 7 1 11.7 11.2 11.2 1 +1888 7 2 13.9 13.4 13.4 1 +1888 7 3 13.4 12.9 12.9 1 +1888 7 4 14.7 14.2 14.2 1 +1888 7 5 15.2 14.7 14.7 1 +1888 7 6 17.0 16.5 16.5 1 +1888 7 7 13.2 12.7 12.7 1 +1888 7 8 13.3 12.8 12.8 1 +1888 7 9 13.3 12.8 12.8 1 +1888 7 10 14.8 14.3 14.3 1 +1888 7 11 14.6 14.1 14.1 1 +1888 7 12 13.5 13.0 13.0 1 +1888 7 13 13.4 12.9 12.9 1 +1888 7 14 12.8 12.3 12.3 1 +1888 7 15 16.4 15.8 15.8 1 +1888 7 16 15.4 14.9 14.9 1 +1888 7 17 15.4 14.9 14.9 1 +1888 7 18 17.0 16.5 16.5 1 +1888 7 19 18.2 17.7 17.7 1 +1888 7 20 18.5 18.0 18.0 1 +1888 7 21 18.5 18.0 18.0 1 +1888 7 22 16.2 15.7 15.7 1 +1888 7 23 16.5 16.0 16.0 1 +1888 7 24 15.8 15.3 15.3 1 +1888 7 25 15.5 15.0 15.0 1 +1888 7 26 17.2 16.7 16.7 1 +1888 7 27 15.7 15.2 15.2 1 +1888 7 28 14.2 13.7 13.7 1 +1888 7 29 14.5 14.0 14.0 1 +1888 7 30 15.6 15.1 15.1 1 +1888 7 31 14.7 14.2 14.2 1 +1888 8 1 14.3 13.8 13.8 1 +1888 8 2 14.9 14.4 14.4 1 +1888 8 3 14.2 13.7 13.7 1 +1888 8 4 12.3 11.8 11.8 1 +1888 8 5 14.8 14.3 14.3 1 +1888 8 6 16.5 16.0 16.0 1 +1888 8 7 16.5 16.0 16.0 1 +1888 8 8 16.5 16.0 16.0 1 +1888 8 9 16.4 15.9 15.9 1 +1888 8 10 15.7 15.2 15.2 1 +1888 8 11 14.6 14.1 14.1 1 +1888 8 12 14.6 14.1 14.1 1 +1888 8 13 15.4 14.9 14.9 1 +1888 8 14 14.2 13.7 13.7 1 +1888 8 15 13.4 12.9 12.9 1 +1888 8 16 13.6 13.1 13.1 1 +1888 8 17 12.5 12.0 12.0 1 +1888 8 18 12.9 12.4 12.4 1 +1888 8 19 12.5 12.0 12.0 1 +1888 8 20 11.8 11.3 11.3 1 +1888 8 21 12.9 12.4 12.4 1 +1888 8 22 14.2 13.7 13.7 1 +1888 8 23 13.9 13.4 13.4 1 +1888 8 24 13.6 13.1 13.1 1 +1888 8 25 15.0 14.6 14.6 1 +1888 8 26 16.2 15.8 15.8 1 +1888 8 27 16.8 16.4 16.4 1 +1888 8 28 15.6 15.2 15.2 1 +1888 8 29 16.6 16.2 16.2 1 +1888 8 30 13.9 13.5 13.5 1 +1888 8 31 14.3 13.9 13.9 1 +1888 9 1 13.6 13.2 13.2 1 +1888 9 2 13.5 13.1 13.1 1 +1888 9 3 14.2 13.8 13.8 1 +1888 9 4 12.1 11.7 11.7 1 +1888 9 5 12.9 12.5 12.5 1 +1888 9 6 14.4 14.0 14.0 1 +1888 9 7 13.9 13.6 13.6 1 +1888 9 8 11.0 10.7 10.7 1 +1888 9 9 8.8 8.5 8.5 1 +1888 9 10 12.9 12.6 12.6 1 +1888 9 11 16.6 16.3 16.3 1 +1888 9 12 12.6 12.3 12.3 1 +1888 9 13 13.8 13.5 13.5 1 +1888 9 14 15.6 15.3 15.3 1 +1888 9 15 10.9 10.6 10.6 1 +1888 9 16 9.2 8.9 8.9 1 +1888 9 17 10.1 9.8 9.8 1 +1888 9 18 11.0 10.7 10.7 1 +1888 9 19 10.5 10.2 10.2 1 +1888 9 20 12.9 12.6 12.6 1 +1888 9 21 12.0 11.7 11.7 1 +1888 9 22 12.3 12.0 12.0 1 +1888 9 23 14.0 13.7 13.7 1 +1888 9 24 11.1 10.8 10.8 1 +1888 9 25 5.4 5.1 5.1 1 +1888 9 26 7.9 7.7 7.7 1 +1888 9 27 8.7 8.5 8.5 1 +1888 9 28 4.3 4.1 4.1 1 +1888 9 29 8.4 8.2 8.2 1 +1888 9 30 8.4 8.2 8.2 1 +1888 10 1 5.6 5.4 5.4 1 +1888 10 2 5.4 5.2 5.2 1 +1888 10 3 6.6 6.4 6.4 1 +1888 10 4 5.8 5.6 5.6 1 +1888 10 5 6.3 6.1 6.1 1 +1888 10 6 5.6 5.4 5.4 1 +1888 10 7 4.3 4.1 4.1 1 +1888 10 8 4.5 4.3 4.3 1 +1888 10 9 7.6 7.4 7.4 1 +1888 10 10 4.3 4.1 4.1 1 +1888 10 11 2.2 2.0 2.0 1 +1888 10 12 5.5 5.3 5.3 1 +1888 10 13 2.3 2.1 2.1 1 +1888 10 14 3.3 3.1 3.1 1 +1888 10 15 4.3 4.1 4.1 1 +1888 10 16 2.7 2.5 2.5 1 +1888 10 17 1.8 1.6 1.6 1 +1888 10 18 0.8 0.6 0.6 1 +1888 10 19 -0.3 -0.5 -0.5 1 +1888 10 20 4.1 3.9 3.9 1 +1888 10 21 3.5 3.3 3.3 1 +1888 10 22 2.3 2.1 2.1 1 +1888 10 23 0.3 0.1 0.1 1 +1888 10 24 5.3 5.1 5.1 1 +1888 10 25 7.2 7.0 7.0 1 +1888 10 26 7.6 7.4 7.4 1 +1888 10 27 4.6 4.4 4.4 1 +1888 10 28 9.2 9.0 9.0 1 +1888 10 29 10.8 10.6 10.6 1 +1888 10 30 3.9 3.7 3.7 1 +1888 10 31 -0.3 -0.5 -0.5 1 +1888 11 1 -2.1 -2.4 -2.4 1 +1888 11 2 -2.6 -2.9 -2.9 1 +1888 11 3 -0.8 -1.1 -1.1 1 +1888 11 4 -1.1 -1.4 -1.4 1 +1888 11 5 -1.4 -1.7 -1.7 1 +1888 11 6 0.0 -0.3 -0.3 1 +1888 11 7 -0.8 -1.1 -1.1 1 +1888 11 8 -0.4 -0.7 -0.7 1 +1888 11 9 -4.0 -4.3 -4.3 1 +1888 11 10 -3.7 -4.0 -4.0 1 +1888 11 11 -4.6 -4.9 -4.9 1 +1888 11 12 -1.2 -1.5 -1.5 1 +1888 11 13 0.9 0.6 0.6 1 +1888 11 14 1.5 1.2 1.2 1 +1888 11 15 0.7 0.4 0.4 1 +1888 11 16 5.3 5.0 5.0 1 +1888 11 17 6.6 6.3 6.3 1 +1888 11 18 1.9 1.6 1.6 1 +1888 11 19 4.2 3.9 3.9 1 +1888 11 20 3.2 2.9 2.9 1 +1888 11 21 1.2 0.9 0.9 1 +1888 11 22 -0.5 -0.8 -0.8 1 +1888 11 23 3.8 3.5 3.5 1 +1888 11 24 2.3 2.0 2.0 1 +1888 11 25 0.0 -0.3 -0.3 1 +1888 11 26 5.2 4.9 4.9 1 +1888 11 27 1.1 0.8 0.8 1 +1888 11 28 0.7 0.4 0.4 1 +1888 11 29 -3.4 -3.7 -3.7 1 +1888 11 30 -5.4 -5.7 -5.7 1 +1888 12 1 0.8 0.5 0.5 1 +1888 12 2 1.7 1.4 1.4 1 +1888 12 3 3.0 2.7 2.7 1 +1888 12 4 5.0 4.7 4.7 1 +1888 12 5 6.1 5.8 5.8 1 +1888 12 6 6.9 6.6 6.6 1 +1888 12 7 5.0 4.7 4.7 1 +1888 12 8 3.0 2.7 2.7 1 +1888 12 9 2.9 2.6 2.6 1 +1888 12 10 0.0 -0.3 -0.3 1 +1888 12 11 -2.7 -3.0 -3.0 1 +1888 12 12 -3.6 -3.9 -3.9 1 +1888 12 13 2.4 2.1 2.1 1 +1888 12 14 1.6 1.3 1.3 1 +1888 12 15 -0.3 -0.6 -0.6 1 +1888 12 16 -3.6 -3.9 -3.9 1 +1888 12 17 -1.7 -2.0 -2.0 1 +1888 12 18 3.7 3.4 3.4 1 +1888 12 19 1.7 1.4 1.4 1 +1888 12 20 1.0 0.7 0.7 1 +1888 12 21 1.5 1.2 1.2 1 +1888 12 22 -0.5 -0.9 -0.9 1 +1888 12 23 -4.1 -4.5 -4.5 1 +1888 12 24 -2.9 -3.3 -3.3 1 +1888 12 25 -3.2 -3.6 -3.6 1 +1888 12 26 -1.1 -1.5 -1.5 1 +1888 12 27 1.0 0.6 0.6 1 +1888 12 28 1.6 1.2 1.2 1 +1888 12 29 1.4 1.0 1.0 1 +1888 12 30 1.3 0.9 0.9 1 +1888 12 31 -1.0 -1.4 -1.4 1 +1889 1 1 -2.2 -2.6 -2.6 1 +1889 1 2 -2.1 -2.5 -2.5 1 +1889 1 3 0.2 -0.2 -0.2 1 +1889 1 4 3.2 2.8 2.8 1 +1889 1 5 4.1 3.6 3.6 1 +1889 1 6 3.2 2.7 2.7 1 +1889 1 7 1.3 0.8 0.8 1 +1889 1 8 -0.7 -1.2 -1.2 1 +1889 1 9 -0.7 -1.2 -1.2 1 +1889 1 10 -1.3 -1.8 -1.8 1 +1889 1 11 -1.8 -2.3 -2.3 1 +1889 1 12 -0.6 -1.1 -1.1 1 +1889 1 13 -1.5 -2.0 -2.0 1 +1889 1 14 -4.1 -4.6 -4.6 1 +1889 1 15 -2.8 -3.3 -3.3 1 +1889 1 16 -4.0 -4.5 -4.5 1 +1889 1 17 -3.3 -3.8 -3.8 1 +1889 1 18 -2.2 -2.7 -2.7 1 +1889 1 19 2.2 1.7 1.7 1 +1889 1 20 -1.8 -2.3 -2.3 1 +1889 1 21 -5.6 -6.1 -6.1 1 +1889 1 22 -6.1 -6.6 -6.6 1 +1889 1 23 -4.7 -5.2 -5.2 1 +1889 1 24 -0.3 -0.8 -0.8 1 +1889 1 25 2.3 1.8 1.8 1 +1889 1 26 -4.4 -4.9 -4.9 1 +1889 1 27 -4.5 -5.0 -5.0 1 +1889 1 28 -1.1 -1.6 -1.6 1 +1889 1 29 -0.3 -0.8 -0.8 1 +1889 1 30 1.3 0.8 0.8 1 +1889 1 31 -3.4 -3.9 -3.9 1 +1889 2 1 -6.1 -6.6 -6.6 1 +1889 2 2 -6.6 -7.1 -7.1 1 +1889 2 3 -9.5 -10.0 -10.0 1 +1889 2 4 -7.7 -8.2 -8.2 1 +1889 2 5 -8.7 -9.2 -9.2 1 +1889 2 6 -1.4 -1.9 -1.9 1 +1889 2 7 -6.3 -6.8 -6.8 1 +1889 2 8 -7.3 -7.8 -7.8 1 +1889 2 9 -6.4 -6.9 -6.9 1 +1889 2 10 -9.6 -10.1 -10.1 1 +1889 2 11 -10.6 -11.1 -11.1 1 +1889 2 12 -12.2 -12.7 -12.7 1 +1889 2 13 -7.8 -8.3 -8.3 1 +1889 2 14 -2.5 -3.0 -3.0 1 +1889 2 15 -4.8 -5.3 -5.3 1 +1889 2 16 -8.3 -8.8 -8.8 1 +1889 2 17 -5.9 -6.4 -6.4 1 +1889 2 18 -1.4 -1.9 -1.9 1 +1889 2 19 -0.5 -1.0 -1.0 1 +1889 2 20 -6.6 -7.1 -7.1 1 +1889 2 21 -10.2 -10.7 -10.7 1 +1889 2 22 -9.0 -9.5 -9.5 1 +1889 2 23 -9.2 -9.7 -9.7 1 +1889 2 24 -6.4 -6.9 -6.9 1 +1889 2 25 -6.7 -7.2 -7.2 1 +1889 2 26 -5.6 -6.1 -6.1 1 +1889 2 27 -4.3 -4.8 -4.8 1 +1889 2 28 -7.1 -7.6 -7.6 1 +1889 3 1 -8.7 -9.2 -9.2 1 +1889 3 2 -12.0 -12.5 -12.5 1 +1889 3 3 -11.0 -11.5 -11.5 1 +1889 3 4 -10.2 -10.7 -10.7 1 +1889 3 5 -8.7 -9.2 -9.2 1 +1889 3 6 -6.0 -6.5 -6.5 1 +1889 3 7 -5.8 -6.3 -6.3 1 +1889 3 8 -2.6 -3.1 -3.1 1 +1889 3 9 -0.8 -1.3 -1.3 1 +1889 3 10 0.3 -0.2 -0.2 1 +1889 3 11 0.6 0.1 0.1 1 +1889 3 12 -1.3 -1.8 -1.8 1 +1889 3 13 -3.2 -3.7 -3.7 1 +1889 3 14 -9.6 -10.1 -10.1 1 +1889 3 15 -12.8 -13.3 -13.3 1 +1889 3 16 -1.4 -1.9 -1.9 1 +1889 3 17 -2.0 -2.5 -2.5 1 +1889 3 18 -6.7 -7.2 -7.2 1 +1889 3 19 -5.9 -6.4 -6.4 1 +1889 3 20 -3.3 -3.8 -3.8 1 +1889 3 21 -5.5 -6.0 -6.0 1 +1889 3 22 -6.7 -7.2 -7.2 1 +1889 3 23 -3.3 -3.8 -3.8 1 +1889 3 24 1.9 1.4 1.4 1 +1889 3 25 2.2 1.7 1.7 1 +1889 3 26 3.6 3.1 3.1 1 +1889 3 27 0.6 0.1 0.1 1 +1889 3 28 -0.8 -1.3 -1.3 1 +1889 3 29 2.2 1.7 1.7 1 +1889 3 30 -0.4 -0.9 -0.9 1 +1889 3 31 -0.6 -1.1 -1.1 1 +1889 4 1 0.0 -0.5 -0.5 1 +1889 4 2 -1.0 -1.5 -1.5 1 +1889 4 3 -1.2 -1.7 -1.7 1 +1889 4 4 0.1 -0.4 -0.4 1 +1889 4 5 2.4 1.9 1.9 1 +1889 4 6 1.6 1.1 1.1 1 +1889 4 7 0.9 0.4 0.4 1 +1889 4 8 1.8 1.3 1.3 1 +1889 4 9 0.7 0.2 0.2 1 +1889 4 10 1.5 1.0 1.0 1 +1889 4 11 -0.4 -0.9 -0.9 1 +1889 4 12 -0.5 -1.0 -1.0 1 +1889 4 13 0.3 -0.2 -0.2 1 +1889 4 14 1.4 0.9 0.9 1 +1889 4 15 -1.0 -1.5 -1.5 1 +1889 4 16 -1.4 -1.9 -1.9 1 +1889 4 17 -2.3 -2.8 -2.8 1 +1889 4 18 4.1 3.6 3.6 1 +1889 4 19 8.9 8.4 8.4 1 +1889 4 20 5.8 5.3 5.3 1 +1889 4 21 5.7 5.2 5.2 1 +1889 4 22 6.0 5.5 5.5 1 +1889 4 23 6.8 6.2 6.2 1 +1889 4 24 6.1 5.5 5.5 1 +1889 4 25 5.4 4.8 4.8 1 +1889 4 26 4.8 4.2 4.2 1 +1889 4 27 4.2 3.6 3.6 1 +1889 4 28 3.8 3.2 3.2 1 +1889 4 29 7.0 6.4 6.4 1 +1889 4 30 8.3 7.7 7.7 1 +1889 5 1 8.1 7.5 7.5 1 +1889 5 2 7.9 7.3 7.3 1 +1889 5 3 7.7 7.0 7.0 1 +1889 5 4 11.9 11.2 11.2 1 +1889 5 5 10.3 9.6 9.6 1 +1889 5 6 8.1 7.4 7.4 1 +1889 5 7 6.0 5.3 5.3 1 +1889 5 8 9.3 8.6 8.6 1 +1889 5 9 11.0 10.3 10.3 1 +1889 5 10 11.1 10.4 10.4 1 +1889 5 11 14.1 13.4 13.4 1 +1889 5 12 11.8 11.1 11.1 1 +1889 5 13 9.3 8.5 8.5 1 +1889 5 14 10.0 9.2 9.2 1 +1889 5 15 13.1 12.3 12.3 1 +1889 5 16 7.7 6.9 6.9 1 +1889 5 17 7.7 6.9 6.9 1 +1889 5 18 13.1 12.3 12.3 1 +1889 5 19 9.1 8.4 8.4 1 +1889 5 20 10.3 9.6 9.6 1 +1889 5 21 18.1 17.4 17.4 1 +1889 5 22 18.8 18.1 18.1 1 +1889 5 23 19.8 19.1 19.1 1 +1889 5 24 20.4 19.7 19.7 1 +1889 5 25 20.1 19.4 19.4 1 +1889 5 26 18.4 17.7 17.7 1 +1889 5 27 16.2 15.5 15.5 1 +1889 5 28 14.2 13.5 13.5 1 +1889 5 29 14.2 13.5 13.5 1 +1889 5 30 16.9 16.2 16.2 1 +1889 5 31 16.1 15.5 15.5 1 +1889 6 1 18.7 18.1 18.1 1 +1889 6 2 19.4 18.8 18.8 1 +1889 6 3 18.3 17.7 17.7 1 +1889 6 4 20.2 19.6 19.6 1 +1889 6 5 20.7 20.1 20.1 1 +1889 6 6 21.1 20.5 20.5 1 +1889 6 7 19.3 18.7 18.7 1 +1889 6 8 18.0 17.4 17.4 1 +1889 6 9 18.3 17.7 17.7 1 +1889 6 10 14.7 14.1 14.1 1 +1889 6 11 13.1 12.5 12.5 1 +1889 6 12 15.1 14.6 14.6 1 +1889 6 13 17.7 17.2 17.2 1 +1889 6 14 20.3 19.8 19.8 1 +1889 6 15 20.4 19.9 19.9 1 +1889 6 16 21.2 20.7 20.7 1 +1889 6 17 13.7 13.2 13.2 1 +1889 6 18 10.5 10.0 10.0 1 +1889 6 19 15.8 15.3 15.3 1 +1889 6 20 17.3 16.8 16.8 1 +1889 6 21 14.2 13.7 13.7 1 +1889 6 22 12.3 11.8 11.8 1 +1889 6 23 14.3 13.8 13.8 1 +1889 6 24 16.3 15.8 15.8 1 +1889 6 25 18.0 17.5 17.5 1 +1889 6 26 18.4 17.9 17.9 1 +1889 6 27 17.8 17.3 17.3 1 +1889 6 28 18.0 17.5 17.5 1 +1889 6 29 17.4 16.9 16.9 1 +1889 6 30 18.6 18.1 18.1 1 +1889 7 1 19.7 19.2 19.2 1 +1889 7 2 16.1 15.6 15.6 1 +1889 7 3 14.4 13.9 13.9 1 +1889 7 4 15.0 14.5 14.5 1 +1889 7 5 15.9 15.4 15.4 1 +1889 7 6 17.8 17.3 17.3 1 +1889 7 7 16.0 15.5 15.5 1 +1889 7 8 13.9 13.4 13.4 1 +1889 7 9 14.7 14.2 14.2 1 +1889 7 10 17.8 17.3 17.3 1 +1889 7 11 16.4 15.9 15.9 1 +1889 7 12 14.3 13.8 13.8 1 +1889 7 13 13.7 13.2 13.2 1 +1889 7 14 16.1 15.6 15.6 1 +1889 7 15 15.9 15.3 15.3 1 +1889 7 16 15.1 14.6 14.6 1 +1889 7 17 15.2 14.7 14.7 1 +1889 7 18 13.4 12.9 12.9 1 +1889 7 19 14.5 14.0 14.0 1 +1889 7 20 15.7 15.2 15.2 1 +1889 7 21 16.5 16.0 16.0 1 +1889 7 22 13.7 13.2 13.2 1 +1889 7 23 13.7 13.2 13.2 1 +1889 7 24 16.1 15.6 15.6 1 +1889 7 25 15.8 15.3 15.3 1 +1889 7 26 14.6 14.1 14.1 1 +1889 7 27 16.2 15.7 15.7 1 +1889 7 28 16.6 16.1 16.1 1 +1889 7 29 16.6 16.1 16.1 1 +1889 7 30 15.9 15.4 15.4 1 +1889 7 31 14.8 14.3 14.3 1 +1889 8 1 16.1 15.6 15.6 1 +1889 8 2 19.3 18.8 18.8 1 +1889 8 3 18.1 17.6 17.6 1 +1889 8 4 16.5 16.0 16.0 1 +1889 8 5 16.6 16.1 16.1 1 +1889 8 6 15.4 14.9 14.9 1 +1889 8 7 16.1 15.6 15.6 1 +1889 8 8 15.5 15.0 15.0 1 +1889 8 9 14.9 14.4 14.4 1 +1889 8 10 15.4 14.9 14.9 1 +1889 8 11 16.6 16.1 16.1 1 +1889 8 12 14.3 13.8 13.8 1 +1889 8 13 14.0 13.5 13.5 1 +1889 8 14 14.2 13.7 13.7 1 +1889 8 15 13.9 13.4 13.4 1 +1889 8 16 16.0 15.5 15.5 1 +1889 8 17 15.4 14.9 14.9 1 +1889 8 18 15.6 15.1 15.1 1 +1889 8 19 14.9 14.4 14.4 1 +1889 8 20 15.0 14.5 14.5 1 +1889 8 21 15.2 14.7 14.7 1 +1889 8 22 14.5 14.0 14.0 1 +1889 8 23 13.9 13.4 13.4 1 +1889 8 24 13.2 12.7 12.7 1 +1889 8 25 13.3 12.9 12.9 1 +1889 8 26 12.9 12.5 12.5 1 +1889 8 27 13.4 13.0 13.0 1 +1889 8 28 13.6 13.2 13.2 1 +1889 8 29 15.4 15.0 15.0 1 +1889 8 30 15.1 14.7 14.7 1 +1889 8 31 15.2 14.8 14.8 1 +1889 9 1 13.1 12.7 12.7 1 +1889 9 2 11.9 11.5 11.5 1 +1889 9 3 12.8 12.4 12.4 1 +1889 9 4 15.1 14.7 14.7 1 +1889 9 5 13.0 12.6 12.6 1 +1889 9 6 12.1 11.7 11.7 1 +1889 9 7 13.4 13.1 13.1 1 +1889 9 8 13.6 13.3 13.3 1 +1889 9 9 14.0 13.7 13.7 1 +1889 9 10 13.9 13.6 13.6 1 +1889 9 11 7.4 7.1 7.1 1 +1889 9 12 5.9 5.6 5.6 1 +1889 9 13 7.3 7.0 7.0 1 +1889 9 14 4.3 4.0 4.0 1 +1889 9 15 6.2 5.9 5.9 1 +1889 9 16 5.8 5.5 5.5 1 +1889 9 17 8.6 8.3 8.3 1 +1889 9 18 10.6 10.3 10.3 1 +1889 9 19 11.4 11.1 11.1 1 +1889 9 20 9.2 8.9 8.9 1 +1889 9 21 7.7 7.4 7.4 1 +1889 9 22 8.2 7.9 7.9 1 +1889 9 23 8.0 7.7 7.7 1 +1889 9 24 9.1 8.8 8.8 1 +1889 9 25 9.7 9.4 9.4 1 +1889 9 26 10.3 10.1 10.1 1 +1889 9 27 9.3 9.1 9.1 1 +1889 9 28 8.8 8.6 8.6 1 +1889 9 29 9.8 9.6 9.6 1 +1889 9 30 10.6 10.4 10.4 1 +1889 10 1 10.2 10.0 10.0 1 +1889 10 2 12.4 12.2 12.2 1 +1889 10 3 13.6 13.4 13.4 1 +1889 10 4 11.5 11.3 11.3 1 +1889 10 5 11.8 11.6 11.6 1 +1889 10 6 10.0 9.8 9.8 1 +1889 10 7 10.9 10.7 10.7 1 +1889 10 8 10.7 10.5 10.5 1 +1889 10 9 9.7 9.5 9.5 1 +1889 10 10 9.9 9.7 9.7 1 +1889 10 11 10.2 10.0 10.0 1 +1889 10 12 10.4 10.2 10.2 1 +1889 10 13 10.3 10.1 10.1 1 +1889 10 14 10.8 10.6 10.6 1 +1889 10 15 9.5 9.3 9.3 1 +1889 10 16 7.2 7.0 7.0 1 +1889 10 17 6.1 5.9 5.9 1 +1889 10 18 9.3 9.1 9.1 1 +1889 10 19 9.8 9.6 9.6 1 +1889 10 20 9.1 8.9 8.9 1 +1889 10 21 6.8 6.6 6.6 1 +1889 10 22 4.0 3.8 3.8 1 +1889 10 23 2.7 2.5 2.5 1 +1889 10 24 1.8 1.6 1.6 1 +1889 10 25 -0.1 -0.3 -0.3 1 +1889 10 26 1.5 1.3 1.3 1 +1889 10 27 0.9 0.7 0.7 1 +1889 10 28 4.8 4.6 4.6 1 +1889 10 29 6.9 6.7 6.7 1 +1889 10 30 7.4 7.2 7.2 1 +1889 10 31 8.0 7.8 7.8 1 +1889 11 1 7.9 7.6 7.6 1 +1889 11 2 4.9 4.6 4.6 1 +1889 11 3 4.6 4.3 4.3 1 +1889 11 4 5.3 5.0 5.0 1 +1889 11 5 6.7 6.4 6.4 1 +1889 11 6 5.9 5.6 5.6 1 +1889 11 7 3.2 2.9 2.9 1 +1889 11 8 4.1 3.8 3.8 1 +1889 11 9 1.7 1.4 1.4 1 +1889 11 10 0.7 0.4 0.4 1 +1889 11 11 -0.6 -0.9 -0.9 1 +1889 11 12 1.1 0.8 0.8 1 +1889 11 13 4.5 4.2 4.2 1 +1889 11 14 0.7 0.4 0.4 1 +1889 11 15 3.3 3.0 3.0 1 +1889 11 16 5.4 5.1 5.1 1 +1889 11 17 3.9 3.6 3.6 1 +1889 11 18 1.6 1.3 1.3 1 +1889 11 19 2.8 2.5 2.5 1 +1889 11 20 3.5 3.2 3.2 1 +1889 11 21 5.1 4.8 4.8 1 +1889 11 22 4.4 4.1 4.1 1 +1889 11 23 4.0 3.7 3.7 1 +1889 11 24 1.1 0.8 0.8 1 +1889 11 25 6.1 5.8 5.8 1 +1889 11 26 3.2 2.9 2.9 1 +1889 11 27 0.3 0.0 0.0 1 +1889 11 28 -2.5 -2.8 -2.8 1 +1889 11 29 -5.5 -5.8 -5.8 1 +1889 11 30 -4.3 -4.6 -4.6 1 +1889 12 1 -6.4 -6.7 -6.7 1 +1889 12 2 -5.0 -5.3 -5.3 1 +1889 12 3 -4.2 -4.5 -4.5 1 +1889 12 4 0.6 0.3 0.3 1 +1889 12 5 -0.3 -0.6 -0.6 1 +1889 12 6 -1.9 -2.2 -2.2 1 +1889 12 7 -1.3 -1.6 -1.6 1 +1889 12 8 -1.4 -1.7 -1.7 1 +1889 12 9 -2.0 -2.3 -2.3 1 +1889 12 10 1.2 0.9 0.9 1 +1889 12 11 2.0 1.7 1.7 1 +1889 12 12 1.1 0.8 0.8 1 +1889 12 13 -2.8 -3.1 -3.1 1 +1889 12 14 -3.1 -3.4 -3.4 1 +1889 12 15 -1.2 -1.5 -1.5 1 +1889 12 16 -1.3 -1.6 -1.6 1 +1889 12 17 2.3 2.0 2.0 1 +1889 12 18 4.3 4.0 4.0 1 +1889 12 19 2.9 2.6 2.6 1 +1889 12 20 2.6 2.3 2.3 1 +1889 12 21 2.8 2.5 2.5 1 +1889 12 22 1.1 0.7 0.7 1 +1889 12 23 -4.4 -4.8 -4.8 1 +1889 12 24 -0.8 -1.2 -1.2 1 +1889 12 25 0.6 0.2 0.2 1 +1889 12 26 -0.6 -1.0 -1.0 1 +1889 12 27 -3.1 -3.5 -3.5 1 +1889 12 28 -5.3 -5.7 -5.7 1 +1889 12 29 -3.4 -3.8 -3.8 1 +1889 12 30 -5.7 -6.1 -6.1 1 +1889 12 31 -4.8 -5.2 -5.2 1 +1890 1 1 2.3 1.9 1.9 1 +1890 1 2 3.0 2.6 2.6 1 +1890 1 3 0.9 0.5 0.5 1 +1890 1 4 -1.9 -2.3 -2.3 1 +1890 1 5 2.3 1.8 1.8 1 +1890 1 6 4.4 3.9 3.9 1 +1890 1 7 4.0 3.5 3.5 1 +1890 1 8 5.4 4.9 4.9 1 +1890 1 9 2.9 2.4 2.4 1 +1890 1 10 2.2 1.7 1.7 1 +1890 1 11 -0.3 -0.8 -0.8 1 +1890 1 12 -2.6 -3.1 -3.1 1 +1890 1 13 -2.4 -2.9 -2.9 1 +1890 1 14 0.3 -0.2 -0.2 1 +1890 1 15 2.4 1.9 1.9 1 +1890 1 16 0.6 0.1 0.1 1 +1890 1 17 0.7 0.2 0.2 1 +1890 1 18 0.9 0.4 0.4 1 +1890 1 19 -0.8 -1.3 -1.3 1 +1890 1 20 1.9 1.4 1.4 1 +1890 1 21 1.2 0.7 0.7 1 +1890 1 22 0.3 -0.2 -0.2 1 +1890 1 23 0.7 0.2 0.2 1 +1890 1 24 -0.9 -1.4 -1.4 1 +1890 1 25 0.3 -0.2 -0.2 1 +1890 1 26 2.8 2.3 2.3 1 +1890 1 27 1.6 1.1 1.1 1 +1890 1 28 -0.1 -0.6 -0.6 1 +1890 1 29 -2.8 -3.3 -3.3 1 +1890 1 30 -3.3 -3.8 -3.8 1 +1890 1 31 -2.6 -3.1 -3.1 1 +1890 2 1 1.2 0.7 0.7 1 +1890 2 2 3.5 3.0 3.0 1 +1890 2 3 3.7 3.2 3.2 1 +1890 2 4 3.6 3.1 3.1 1 +1890 2 5 2.4 1.9 1.9 1 +1890 2 6 -1.2 -1.7 -1.7 1 +1890 2 7 0.7 0.2 0.2 1 +1890 2 8 1.2 0.7 0.7 1 +1890 2 9 -1.2 -1.7 -1.7 1 +1890 2 10 -4.1 -4.6 -4.6 1 +1890 2 11 -5.1 -5.6 -5.6 1 +1890 2 12 -2.7 -3.2 -3.2 1 +1890 2 13 -1.4 -1.9 -1.9 1 +1890 2 14 -0.8 -1.3 -1.3 1 +1890 2 15 -1.4 -1.9 -1.9 1 +1890 2 16 -1.3 -1.8 -1.8 1 +1890 2 17 -1.5 -2.0 -2.0 1 +1890 2 18 -1.2 -1.7 -1.7 1 +1890 2 19 -2.9 -3.4 -3.4 1 +1890 2 20 -2.5 -3.0 -3.0 1 +1890 2 21 -2.6 -3.1 -3.1 1 +1890 2 22 -2.0 -2.5 -2.5 1 +1890 2 23 -4.0 -4.5 -4.5 1 +1890 2 24 0.1 -0.4 -0.4 1 +1890 2 25 1.3 0.8 0.8 1 +1890 2 26 -3.1 -3.6 -3.6 1 +1890 2 27 -6.8 -7.3 -7.3 1 +1890 2 28 -10.4 -10.9 -10.9 1 +1890 3 1 -11.7 -12.2 -12.2 1 +1890 3 2 -11.1 -11.6 -11.6 1 +1890 3 3 -4.0 -4.5 -4.5 1 +1890 3 4 -0.5 -1.0 -1.0 1 +1890 3 5 -1.8 -2.3 -2.3 1 +1890 3 6 -5.6 -6.1 -6.1 1 +1890 3 7 -4.0 -4.5 -4.5 1 +1890 3 8 -3.5 -4.0 -4.0 1 +1890 3 9 1.1 0.6 0.6 1 +1890 3 10 -3.7 -4.2 -4.2 1 +1890 3 11 3.7 3.2 3.2 1 +1890 3 12 5.6 5.1 5.1 1 +1890 3 13 6.8 6.3 6.3 1 +1890 3 14 4.6 4.1 4.1 1 +1890 3 15 3.7 3.2 3.2 1 +1890 3 16 3.1 2.6 2.6 1 +1890 3 17 1.3 0.8 0.8 1 +1890 3 18 1.4 0.9 0.9 1 +1890 3 19 1.2 0.7 0.7 1 +1890 3 20 1.2 0.7 0.7 1 +1890 3 21 1.9 1.4 1.4 1 +1890 3 22 2.7 2.2 2.2 1 +1890 3 23 4.0 3.5 3.5 1 +1890 3 24 6.6 6.1 6.1 1 +1890 3 25 3.5 3.0 3.0 1 +1890 3 26 2.3 1.8 1.8 1 +1890 3 27 3.7 3.2 3.2 1 +1890 3 28 5.6 5.1 5.1 1 +1890 3 29 5.6 5.1 5.1 1 +1890 3 30 2.5 2.0 2.0 1 +1890 3 31 3.1 2.6 2.6 1 +1890 4 1 2.4 1.9 1.9 1 +1890 4 2 4.6 4.1 4.1 1 +1890 4 3 5.3 4.8 4.8 1 +1890 4 4 6.5 6.0 6.0 1 +1890 4 5 5.8 5.3 5.3 1 +1890 4 6 5.7 5.2 5.2 1 +1890 4 7 6.6 6.1 6.1 1 +1890 4 8 6.8 6.3 6.3 1 +1890 4 9 0.1 -0.4 -0.4 1 +1890 4 10 0.0 -0.5 -0.5 1 +1890 4 11 1.0 0.5 0.5 1 +1890 4 12 2.0 1.5 1.5 1 +1890 4 13 2.4 1.9 1.9 1 +1890 4 14 3.3 2.8 2.8 1 +1890 4 15 3.1 2.6 2.6 1 +1890 4 16 2.9 2.4 2.4 1 +1890 4 17 1.3 0.8 0.8 1 +1890 4 18 1.2 0.7 0.7 1 +1890 4 19 2.5 2.0 2.0 1 +1890 4 20 1.9 1.4 1.4 1 +1890 4 21 2.3 1.8 1.8 1 +1890 4 22 3.8 3.3 3.3 1 +1890 4 23 5.4 4.8 4.8 1 +1890 4 24 6.0 5.4 5.4 1 +1890 4 25 6.0 5.4 5.4 1 +1890 4 26 6.0 5.4 5.4 1 +1890 4 27 7.1 6.5 6.5 1 +1890 4 28 6.3 5.7 5.7 1 +1890 4 29 7.0 6.4 6.4 1 +1890 4 30 11.4 10.8 10.8 1 +1890 5 1 12.4 11.8 11.8 1 +1890 5 2 13.2 12.6 12.6 1 +1890 5 3 13.3 12.6 12.6 1 +1890 5 4 14.0 13.3 13.3 1 +1890 5 5 13.6 12.9 12.9 1 +1890 5 6 14.1 13.4 13.4 1 +1890 5 7 11.4 10.7 10.7 1 +1890 5 8 8.3 7.6 7.6 1 +1890 5 9 6.9 6.2 6.2 1 +1890 5 10 5.2 4.5 4.5 1 +1890 5 11 6.2 5.5 5.5 1 +1890 5 12 9.4 8.7 8.7 1 +1890 5 13 10.5 9.7 9.7 1 +1890 5 14 12.0 11.2 11.2 1 +1890 5 15 13.6 12.8 12.8 1 +1890 5 16 14.0 13.2 13.2 1 +1890 5 17 14.2 13.4 13.4 1 +1890 5 18 16.0 15.2 15.2 1 +1890 5 19 16.4 15.7 15.7 1 +1890 5 20 16.8 16.1 16.1 1 +1890 5 21 19.8 19.1 19.1 1 +1890 5 22 16.0 15.3 15.3 1 +1890 5 23 12.2 11.5 11.5 1 +1890 5 24 15.4 14.7 14.7 1 +1890 5 25 7.6 6.9 6.9 1 +1890 5 26 5.5 4.8 4.8 1 +1890 5 27 6.2 5.5 5.5 1 +1890 5 28 7.8 7.1 7.1 1 +1890 5 29 10.8 10.1 10.1 1 +1890 5 30 10.4 9.7 9.7 1 +1890 5 31 8.6 8.0 8.0 1 +1890 6 1 9.6 9.0 9.0 1 +1890 6 2 10.6 10.0 10.0 1 +1890 6 3 11.9 11.3 11.3 1 +1890 6 4 14.4 13.8 13.8 1 +1890 6 5 17.0 16.4 16.4 1 +1890 6 6 17.1 16.5 16.5 1 +1890 6 7 16.3 15.7 15.7 1 +1890 6 8 15.7 15.1 15.1 1 +1890 6 9 8.5 7.9 7.9 1 +1890 6 10 9.4 8.8 8.8 1 +1890 6 11 10.1 9.5 9.5 1 +1890 6 12 13.2 12.7 12.7 1 +1890 6 13 14.1 13.6 13.6 1 +1890 6 14 12.0 11.5 11.5 1 +1890 6 15 10.7 10.2 10.2 1 +1890 6 16 15.8 15.3 15.3 1 +1890 6 17 15.0 14.5 14.5 1 +1890 6 18 13.7 13.2 13.2 1 +1890 6 19 13.6 13.1 13.1 1 +1890 6 20 13.2 12.7 12.7 1 +1890 6 21 15.3 14.8 14.8 1 +1890 6 22 16.7 16.2 16.2 1 +1890 6 23 16.3 15.8 15.8 1 +1890 6 24 17.2 16.7 16.7 1 +1890 6 25 18.3 17.8 17.8 1 +1890 6 26 16.3 15.8 15.8 1 +1890 6 27 15.4 14.9 14.9 1 +1890 6 28 12.7 12.2 12.2 1 +1890 6 29 14.5 14.0 14.0 1 +1890 6 30 14.8 14.3 14.3 1 +1890 7 1 15.0 14.5 14.5 1 +1890 7 2 12.1 11.6 11.6 1 +1890 7 3 15.7 15.2 15.2 1 +1890 7 4 15.9 15.4 15.4 1 +1890 7 5 16.2 15.7 15.7 1 +1890 7 6 14.1 13.6 13.6 1 +1890 7 7 14.8 14.3 14.3 1 +1890 7 8 13.7 13.2 13.2 1 +1890 7 9 13.6 13.1 13.1 1 +1890 7 10 14.6 14.1 14.1 1 +1890 7 11 15.0 14.5 14.5 1 +1890 7 12 14.4 13.9 13.9 1 +1890 7 13 14.4 13.9 13.9 1 +1890 7 14 16.4 15.9 15.9 1 +1890 7 15 17.7 17.1 17.1 1 +1890 7 16 17.1 16.6 16.6 1 +1890 7 17 17.0 16.5 16.5 1 +1890 7 18 15.0 14.5 14.5 1 +1890 7 19 13.0 12.5 12.5 1 +1890 7 20 14.8 14.3 14.3 1 +1890 7 21 15.4 14.9 14.9 1 +1890 7 22 14.0 13.5 13.5 1 +1890 7 23 14.2 13.7 13.7 1 +1890 7 24 13.8 13.3 13.3 1 +1890 7 25 12.1 11.6 11.6 1 +1890 7 26 14.7 14.2 14.2 1 +1890 7 27 16.7 16.2 16.2 1 +1890 7 28 17.3 16.8 16.8 1 +1890 7 29 17.8 17.3 17.3 1 +1890 7 30 15.1 14.6 14.6 1 +1890 7 31 16.6 16.1 16.1 1 +1890 8 1 18.0 17.5 17.5 1 +1890 8 2 17.2 16.7 16.7 1 +1890 8 3 17.8 17.3 17.3 1 +1890 8 4 19.1 18.6 18.6 1 +1890 8 5 17.9 17.4 17.4 1 +1890 8 6 19.5 19.0 19.0 1 +1890 8 7 16.5 16.0 16.0 1 +1890 8 8 15.3 14.8 14.8 1 +1890 8 9 15.9 15.4 15.4 1 +1890 8 10 15.0 14.5 14.5 1 +1890 8 11 15.0 14.5 14.5 1 +1890 8 12 16.3 15.8 15.8 1 +1890 8 13 17.9 17.4 17.4 1 +1890 8 14 18.3 17.8 17.8 1 +1890 8 15 16.4 15.9 15.9 1 +1890 8 16 17.9 17.4 17.4 1 +1890 8 17 15.1 14.6 14.6 1 +1890 8 18 16.2 15.7 15.7 1 +1890 8 19 15.7 15.2 15.2 1 +1890 8 20 15.3 14.8 14.8 1 +1890 8 21 14.3 13.8 13.8 1 +1890 8 22 13.4 12.9 12.9 1 +1890 8 23 13.8 13.3 13.3 1 +1890 8 24 14.5 14.0 14.0 1 +1890 8 25 13.0 12.6 12.6 1 +1890 8 26 12.7 12.3 12.3 1 +1890 8 27 11.0 10.6 10.6 1 +1890 8 28 10.8 10.4 10.4 1 +1890 8 29 12.1 11.7 11.7 1 +1890 8 30 12.8 12.4 12.4 1 +1890 8 31 11.7 11.3 11.3 1 +1890 9 1 12.1 11.7 11.7 1 +1890 9 2 11.6 11.2 11.2 1 +1890 9 3 11.8 11.4 11.4 1 +1890 9 4 12.8 12.4 12.4 1 +1890 9 5 14.9 14.5 14.5 1 +1890 9 6 13.5 13.1 13.1 1 +1890 9 7 12.1 11.8 11.8 1 +1890 9 8 10.1 9.8 9.8 1 +1890 9 9 11.6 11.3 11.3 1 +1890 9 10 13.1 12.8 12.8 1 +1890 9 11 10.2 9.9 9.9 1 +1890 9 12 9.9 9.6 9.6 1 +1890 9 13 12.0 11.7 11.7 1 +1890 9 14 13.4 13.1 13.1 1 +1890 9 15 13.4 13.1 13.1 1 +1890 9 16 15.6 15.3 15.3 1 +1890 9 17 12.3 12.0 12.0 1 +1890 9 18 11.0 10.7 10.7 1 +1890 9 19 12.2 11.9 11.9 1 +1890 9 20 12.1 11.8 11.8 1 +1890 9 21 13.2 12.9 12.9 1 +1890 9 22 13.6 13.3 13.3 1 +1890 9 23 15.2 14.9 14.9 1 +1890 9 24 14.8 14.5 14.5 1 +1890 9 25 13.6 13.3 13.3 1 +1890 9 26 10.2 10.0 10.0 1 +1890 9 27 12.2 12.0 12.0 1 +1890 9 28 11.3 11.1 11.1 1 +1890 9 29 9.3 9.1 9.1 1 +1890 9 30 11.6 11.4 11.4 1 +1890 10 1 7.5 7.3 7.3 1 +1890 10 2 5.3 5.1 5.1 1 +1890 10 3 4.6 4.4 4.4 1 +1890 10 4 4.2 4.0 4.0 1 +1890 10 5 2.7 2.5 2.5 1 +1890 10 6 7.1 6.9 6.9 1 +1890 10 7 0.5 0.3 0.3 1 +1890 10 8 2.3 2.1 2.1 1 +1890 10 9 2.6 2.4 2.4 1 +1890 10 10 5.2 5.0 5.0 1 +1890 10 11 9.1 8.9 8.9 1 +1890 10 12 7.5 7.3 7.3 1 +1890 10 13 9.2 9.0 9.0 1 +1890 10 14 9.6 9.4 9.4 1 +1890 10 15 9.3 9.1 9.1 1 +1890 10 16 9.6 9.4 9.4 1 +1890 10 17 7.1 6.9 6.9 1 +1890 10 18 8.5 8.3 8.3 1 +1890 10 19 2.1 1.9 1.9 1 +1890 10 20 -0.3 -0.5 -0.5 1 +1890 10 21 -1.0 -1.2 -1.2 1 +1890 10 22 1.6 1.4 1.4 1 +1890 10 23 6.1 5.9 5.9 1 +1890 10 24 8.8 8.6 8.6 1 +1890 10 25 7.8 7.6 7.6 1 +1890 10 26 3.6 3.4 3.4 1 +1890 10 27 1.8 1.6 1.6 1 +1890 10 28 0.5 0.3 0.3 1 +1890 10 29 1.9 1.7 1.7 1 +1890 10 30 6.6 6.4 6.4 1 +1890 10 31 2.6 2.4 2.4 1 +1890 11 1 4.3 4.0 4.0 1 +1890 11 2 3.9 3.6 3.6 1 +1890 11 3 6.3 6.0 6.0 1 +1890 11 4 6.5 6.2 6.2 1 +1890 11 5 7.0 6.7 6.7 1 +1890 11 6 6.4 6.1 6.1 1 +1890 11 7 5.9 5.6 5.6 1 +1890 11 8 5.2 4.9 4.9 1 +1890 11 9 5.4 5.1 5.1 1 +1890 11 10 6.7 6.4 6.4 1 +1890 11 11 5.7 5.4 5.4 1 +1890 11 12 5.3 5.0 5.0 1 +1890 11 13 6.4 6.1 6.1 1 +1890 11 14 6.0 5.7 5.7 1 +1890 11 15 4.6 4.3 4.3 1 +1890 11 16 4.5 4.2 4.2 1 +1890 11 17 1.9 1.6 1.6 1 +1890 11 18 -0.3 -0.6 -0.6 1 +1890 11 19 2.5 2.2 2.2 1 +1890 11 20 3.0 2.7 2.7 1 +1890 11 21 3.1 2.8 2.8 1 +1890 11 22 3.9 3.6 3.6 1 +1890 11 23 2.9 2.6 2.6 1 +1890 11 24 -4.7 -5.0 -5.0 1 +1890 11 25 -10.5 -10.8 -10.8 1 +1890 11 26 -8.3 -8.6 -8.6 1 +1890 11 27 -9.9 -10.2 -10.2 1 +1890 11 28 -6.8 -7.1 -7.1 1 +1890 11 29 -4.0 -4.3 -4.3 1 +1890 11 30 -0.8 -1.1 -1.1 1 +1890 12 1 3.3 3.0 3.0 1 +1890 12 2 0.8 0.5 0.5 1 +1890 12 3 2.2 1.9 1.9 1 +1890 12 4 -0.5 -0.8 -0.8 1 +1890 12 5 -2.8 -3.1 -3.1 1 +1890 12 6 -3.1 -3.4 -3.4 1 +1890 12 7 -3.0 -3.3 -3.3 1 +1890 12 8 -4.2 -4.5 -4.5 1 +1890 12 9 -3.3 -3.6 -3.6 1 +1890 12 10 -5.9 -6.2 -6.2 1 +1890 12 11 -6.1 -6.4 -6.4 1 +1890 12 12 -3.4 -3.7 -3.7 1 +1890 12 13 -2.2 -2.5 -2.5 1 +1890 12 14 -1.4 -1.7 -1.7 1 +1890 12 15 -0.4 -0.7 -0.7 1 +1890 12 16 -5.5 -5.8 -5.8 1 +1890 12 17 -6.6 -6.9 -6.9 1 +1890 12 18 -2.6 -2.9 -2.9 1 +1890 12 19 -0.2 -0.5 -0.5 1 +1890 12 20 -4.4 -4.7 -4.7 1 +1890 12 21 1.4 1.1 1.1 1 +1890 12 22 0.1 -0.3 -0.3 1 +1890 12 23 -3.2 -3.6 -3.6 1 +1890 12 24 -2.6 -3.0 -3.0 1 +1890 12 25 -1.3 -1.7 -1.7 1 +1890 12 26 -1.3 -1.7 -1.7 1 +1890 12 27 -0.9 -1.3 -1.3 1 +1890 12 28 -7.4 -7.8 -7.8 1 +1890 12 29 -3.9 -4.3 -4.3 1 +1890 12 30 -9.9 -10.3 -10.3 1 +1890 12 31 -4.4 -4.8 -4.8 1 +1891 1 1 -2.6 -3.0 -3.0 1 +1891 1 2 -5.2 -5.6 -5.6 1 +1891 1 3 -3.9 -4.3 -4.3 1 +1891 1 4 -4.1 -4.5 -4.5 1 +1891 1 5 -7.9 -8.4 -8.4 1 +1891 1 6 -14.0 -14.5 -14.5 1 +1891 1 7 -10.9 -11.4 -11.4 1 +1891 1 8 -2.4 -2.9 -2.9 1 +1891 1 9 -5.1 -5.6 -5.6 1 +1891 1 10 -14.8 -15.3 -15.3 1 +1891 1 11 -3.0 -3.5 -3.5 1 +1891 1 12 -5.3 -5.8 -5.8 1 +1891 1 13 -0.1 -0.6 -0.6 1 +1891 1 14 -2.9 -3.4 -3.4 1 +1891 1 15 -8.0 -8.5 -8.5 1 +1891 1 16 -8.0 -8.5 -8.5 1 +1891 1 17 -9.0 -9.5 -9.5 1 +1891 1 18 -12.5 -13.0 -13.0 1 +1891 1 19 -5.0 -5.5 -5.5 1 +1891 1 20 -4.2 -4.7 -4.7 1 +1891 1 21 -2.6 -3.1 -3.1 1 +1891 1 22 -4.4 -4.9 -4.9 1 +1891 1 23 -2.8 -3.3 -3.3 1 +1891 1 24 -2.1 -2.6 -2.6 1 +1891 1 25 -1.9 -2.4 -2.4 1 +1891 1 26 -5.9 -6.4 -6.4 1 +1891 1 27 1.0 0.5 0.5 1 +1891 1 28 2.4 1.9 1.9 1 +1891 1 29 1.2 0.7 0.7 1 +1891 1 30 2.3 1.8 1.8 1 +1891 1 31 0.0 -0.5 -0.5 1 +1891 2 1 -0.2 -0.7 -0.7 1 +1891 2 2 1.2 0.7 0.7 1 +1891 2 3 2.8 2.3 2.3 1 +1891 2 4 1.4 0.9 0.9 1 +1891 2 5 -1.9 -2.4 -2.4 1 +1891 2 6 -2.5 -3.0 -3.0 1 +1891 2 7 0.8 0.3 0.3 1 +1891 2 8 2.7 2.2 2.2 1 +1891 2 9 0.6 0.1 0.1 1 +1891 2 10 1.3 0.8 0.8 1 +1891 2 11 1.8 1.3 1.3 1 +1891 2 12 -3.9 -4.4 -4.4 1 +1891 2 13 -10.1 -10.6 -10.6 1 +1891 2 14 -6.2 -6.7 -6.7 1 +1891 2 15 5.0 4.5 4.5 1 +1891 2 16 2.3 1.8 1.8 1 +1891 2 17 1.9 1.4 1.4 1 +1891 2 18 1.1 0.6 0.6 1 +1891 2 19 -0.6 -1.1 -1.1 1 +1891 2 20 1.0 0.5 0.5 1 +1891 2 21 -0.1 -0.6 -0.6 1 +1891 2 22 0.2 -0.3 -0.3 1 +1891 2 23 -0.2 -0.7 -0.7 1 +1891 2 24 1.1 0.6 0.6 1 +1891 2 25 -0.1 -0.6 -0.6 1 +1891 2 26 0.5 0.0 0.0 1 +1891 2 27 0.6 0.1 0.1 1 +1891 2 28 0.0 -0.5 -0.5 1 +1891 3 1 3.6 3.1 3.1 1 +1891 3 2 6.1 5.6 5.6 1 +1891 3 3 1.8 1.3 1.3 1 +1891 3 4 -1.9 -2.4 -2.4 1 +1891 3 5 -1.3 -1.8 -1.8 1 +1891 3 6 -3.1 -3.6 -3.6 1 +1891 3 7 -5.6 -6.1 -6.1 1 +1891 3 8 -5.1 -5.6 -5.6 1 +1891 3 9 -5.6 -6.1 -6.1 1 +1891 3 10 -4.0 -4.5 -4.5 1 +1891 3 11 -2.0 -2.5 -2.5 1 +1891 3 12 1.2 0.7 0.7 1 +1891 3 13 -3.6 -4.1 -4.1 1 +1891 3 14 -3.3 -3.8 -3.8 1 +1891 3 15 -0.1 -0.6 -0.6 1 +1891 3 16 0.6 0.1 0.1 1 +1891 3 17 0.1 -0.4 -0.4 1 +1891 3 18 -0.7 -1.2 -1.2 1 +1891 3 19 -4.5 -5.0 -5.0 1 +1891 3 20 -5.7 -6.2 -6.2 1 +1891 3 21 -5.0 -5.5 -5.5 1 +1891 3 22 -6.6 -7.1 -7.1 1 +1891 3 23 -5.5 -6.0 -6.0 1 +1891 3 24 -4.6 -5.1 -5.1 1 +1891 3 25 -2.5 -3.0 -3.0 1 +1891 3 26 1.3 0.8 0.8 1 +1891 3 27 1.1 0.6 0.6 1 +1891 3 28 1.3 0.8 0.8 1 +1891 3 29 0.1 -0.4 -0.4 1 +1891 3 30 -1.3 -1.8 -1.8 1 +1891 3 31 -3.2 -3.7 -3.7 1 +1891 4 1 -1.4 -1.9 -1.9 1 +1891 4 2 0.5 0.0 0.0 1 +1891 4 3 0.7 0.2 0.2 1 +1891 4 4 -0.9 -1.4 -1.4 1 +1891 4 5 -2.0 -2.5 -2.5 1 +1891 4 6 0.0 -0.5 -0.5 1 +1891 4 7 0.6 0.1 0.1 1 +1891 4 8 2.0 1.5 1.5 1 +1891 4 9 2.6 2.1 2.1 1 +1891 4 10 3.5 3.0 3.0 1 +1891 4 11 2.7 2.2 2.2 1 +1891 4 12 3.6 3.1 3.1 1 +1891 4 13 2.8 2.3 2.3 1 +1891 4 14 3.1 2.6 2.6 1 +1891 4 15 2.4 1.9 1.9 1 +1891 4 16 3.8 3.3 3.3 1 +1891 4 17 2.8 2.3 2.3 1 +1891 4 18 3.2 2.7 2.7 1 +1891 4 19 4.8 4.3 4.3 1 +1891 4 20 5.5 5.0 5.0 1 +1891 4 21 6.0 5.5 5.5 1 +1891 4 22 5.5 5.0 5.0 1 +1891 4 23 5.2 4.6 4.6 1 +1891 4 24 2.3 1.7 1.7 1 +1891 4 25 7.6 7.0 7.0 1 +1891 4 26 3.0 2.4 2.4 1 +1891 4 27 4.5 3.9 3.9 1 +1891 4 28 5.8 5.2 5.2 1 +1891 4 29 6.7 6.1 6.1 1 +1891 4 30 5.7 5.1 5.1 1 +1891 5 1 8.2 7.6 7.6 1 +1891 5 2 10.9 10.3 10.3 1 +1891 5 3 7.2 6.5 6.5 1 +1891 5 4 6.1 5.4 5.4 1 +1891 5 5 2.0 1.3 1.3 1 +1891 5 6 4.4 3.7 3.7 1 +1891 5 7 7.2 6.5 6.5 1 +1891 5 8 6.8 6.1 6.1 1 +1891 5 9 9.2 8.5 8.5 1 +1891 5 10 10.4 9.7 9.7 1 +1891 5 11 8.3 7.6 7.6 1 +1891 5 12 10.1 9.4 9.4 1 +1891 5 13 14.0 13.2 13.2 1 +1891 5 14 6.4 5.6 5.6 1 +1891 5 15 7.5 6.7 6.7 1 +1891 5 16 6.5 5.7 5.7 1 +1891 5 17 7.1 6.3 6.3 1 +1891 5 18 8.7 7.9 7.9 1 +1891 5 19 8.5 7.8 7.8 1 +1891 5 20 8.3 7.6 7.6 1 +1891 5 21 10.3 9.6 9.6 1 +1891 5 22 12.2 11.5 11.5 1 +1891 5 23 9.1 8.4 8.4 1 +1891 5 24 11.2 10.5 10.5 1 +1891 5 25 12.9 12.2 12.2 1 +1891 5 26 11.5 10.8 10.8 1 +1891 5 27 12.9 12.2 12.2 1 +1891 5 28 13.8 13.1 13.1 1 +1891 5 29 13.7 13.0 13.0 1 +1891 5 30 15.6 14.9 14.9 1 +1891 5 31 14.6 14.0 14.0 1 +1891 6 1 12.5 11.9 11.9 1 +1891 6 2 10.0 9.4 9.4 1 +1891 6 3 4.7 4.1 4.1 1 +1891 6 4 5.2 4.6 4.6 1 +1891 6 5 6.2 5.6 5.6 1 +1891 6 6 5.2 4.6 4.6 1 +1891 6 7 6.1 5.5 5.5 1 +1891 6 8 11.4 10.8 10.8 1 +1891 6 9 14.2 13.6 13.6 1 +1891 6 10 7.9 7.3 7.3 1 +1891 6 11 8.7 8.1 8.1 1 +1891 6 12 7.8 7.3 7.3 1 +1891 6 13 9.9 9.4 9.4 1 +1891 6 14 8.6 8.1 8.1 1 +1891 6 15 8.4 7.9 7.9 1 +1891 6 16 10.3 9.8 9.8 1 +1891 6 17 13.0 12.5 12.5 1 +1891 6 18 16.0 15.5 15.5 1 +1891 6 19 12.9 12.4 12.4 1 +1891 6 20 16.5 16.0 16.0 1 +1891 6 21 16.8 16.3 16.3 1 +1891 6 22 18.5 18.0 18.0 1 +1891 6 23 20.2 19.7 19.7 1 +1891 6 24 21.8 21.3 21.3 1 +1891 6 25 22.7 22.2 22.2 1 +1891 6 26 22.5 22.0 22.0 1 +1891 6 27 23.4 22.9 22.9 1 +1891 6 28 18.3 17.8 17.8 1 +1891 6 29 16.9 16.4 16.4 1 +1891 6 30 18.2 17.7 17.7 1 +1891 7 1 19.1 18.6 18.6 1 +1891 7 2 17.7 17.2 17.2 1 +1891 7 3 17.8 17.3 17.3 1 +1891 7 4 19.0 18.5 18.5 1 +1891 7 5 17.6 17.1 17.1 1 +1891 7 6 19.0 18.5 18.5 1 +1891 7 7 18.6 18.1 18.1 1 +1891 7 8 15.5 15.0 15.0 1 +1891 7 9 14.2 13.7 13.7 1 +1891 7 10 15.4 14.9 14.9 1 +1891 7 11 16.1 15.6 15.6 1 +1891 7 12 18.2 17.7 17.7 1 +1891 7 13 18.6 18.1 18.1 1 +1891 7 14 20.0 19.5 19.5 1 +1891 7 15 19.9 19.3 19.3 1 +1891 7 16 21.2 20.7 20.7 1 +1891 7 17 18.6 18.1 18.1 1 +1891 7 18 18.8 18.3 18.3 1 +1891 7 19 19.8 19.3 19.3 1 +1891 7 20 21.1 20.6 20.6 1 +1891 7 21 20.5 20.0 20.0 1 +1891 7 22 20.8 20.3 20.3 1 +1891 7 23 19.8 19.3 19.3 1 +1891 7 24 20.2 19.7 19.7 1 +1891 7 25 16.2 15.7 15.7 1 +1891 7 26 15.6 15.1 15.1 1 +1891 7 27 17.9 17.4 17.4 1 +1891 7 28 17.4 16.9 16.9 1 +1891 7 29 16.1 15.6 15.6 1 +1891 7 30 16.0 15.5 15.5 1 +1891 7 31 17.3 16.8 16.8 1 +1891 8 1 19.4 18.9 18.9 1 +1891 8 2 18.0 17.5 17.5 1 +1891 8 3 17.4 16.9 16.9 1 +1891 8 4 17.2 16.7 16.7 1 +1891 8 5 14.0 13.5 13.5 1 +1891 8 6 13.6 13.1 13.1 1 +1891 8 7 13.3 12.8 12.8 1 +1891 8 8 13.2 12.7 12.7 1 +1891 8 9 12.9 12.4 12.4 1 +1891 8 10 13.4 12.9 12.9 1 +1891 8 11 13.4 12.9 12.9 1 +1891 8 12 14.2 13.7 13.7 1 +1891 8 13 14.2 13.7 13.7 1 +1891 8 14 14.7 14.2 14.2 1 +1891 8 15 16.1 15.6 15.6 1 +1891 8 16 15.7 15.2 15.2 1 +1891 8 17 15.4 14.9 14.9 1 +1891 8 18 15.2 14.7 14.7 1 +1891 8 19 15.1 14.6 14.6 1 +1891 8 20 14.7 14.2 14.2 1 +1891 8 21 14.1 13.6 13.6 1 +1891 8 22 12.8 12.3 12.3 1 +1891 8 23 14.0 13.5 13.5 1 +1891 8 24 14.4 13.9 13.9 1 +1891 8 25 13.9 13.5 13.5 1 +1891 8 26 16.4 16.0 16.0 1 +1891 8 27 17.0 16.6 16.6 1 +1891 8 28 18.4 18.0 18.0 1 +1891 8 29 14.6 14.2 14.2 1 +1891 8 30 12.2 11.8 11.8 1 +1891 8 31 11.5 11.1 11.1 1 +1891 9 1 15.5 15.1 15.1 1 +1891 9 2 15.8 15.4 15.4 1 +1891 9 3 14.8 14.4 14.4 1 +1891 9 4 12.3 11.9 11.9 1 +1891 9 5 11.0 10.6 10.6 1 +1891 9 6 13.0 12.6 12.6 1 +1891 9 7 12.8 12.5 12.5 1 +1891 9 8 12.6 12.3 12.3 1 +1891 9 9 12.3 12.0 12.0 1 +1891 9 10 15.1 14.8 14.8 1 +1891 9 11 12.1 11.8 11.8 1 +1891 9 12 9.8 9.5 9.5 1 +1891 9 13 14.4 14.1 14.1 1 +1891 9 14 14.7 14.4 14.4 1 +1891 9 15 13.2 12.9 12.9 1 +1891 9 16 10.7 10.4 10.4 1 +1891 9 17 9.7 9.4 9.4 1 +1891 9 18 9.1 8.8 8.8 1 +1891 9 19 12.0 11.7 11.7 1 +1891 9 20 12.7 12.4 12.4 1 +1891 9 21 8.8 8.5 8.5 1 +1891 9 22 6.2 5.9 5.9 1 +1891 9 23 6.2 5.9 5.9 1 +1891 9 24 7.6 7.3 7.3 1 +1891 9 25 11.2 10.9 10.9 1 +1891 9 26 12.6 12.4 12.4 1 +1891 9 27 11.6 11.4 11.4 1 +1891 9 28 11.7 11.5 11.5 1 +1891 9 29 12.0 11.8 11.8 1 +1891 9 30 13.6 13.4 13.4 1 +1891 10 1 13.1 12.9 12.9 1 +1891 10 2 12.9 12.7 12.7 1 +1891 10 3 11.9 11.7 11.7 1 +1891 10 4 9.1 8.9 8.9 1 +1891 10 5 9.1 8.9 8.9 1 +1891 10 6 11.6 11.4 11.4 1 +1891 10 7 11.9 11.7 11.7 1 +1891 10 8 12.5 12.3 12.3 1 +1891 10 9 12.7 12.5 12.5 1 +1891 10 10 11.9 11.7 11.7 1 +1891 10 11 11.9 11.7 11.7 1 +1891 10 12 12.0 11.8 11.8 1 +1891 10 13 10.3 10.1 10.1 1 +1891 10 14 12.2 12.0 12.0 1 +1891 10 15 10.8 10.6 10.6 1 +1891 10 16 10.4 10.2 10.2 1 +1891 10 17 11.0 10.8 10.8 1 +1891 10 18 9.4 9.2 9.2 1 +1891 10 19 6.7 6.5 6.5 1 +1891 10 20 8.0 7.8 7.8 1 +1891 10 21 5.5 5.3 5.3 1 +1891 10 22 9.0 8.8 8.8 1 +1891 10 23 11.6 11.4 11.4 1 +1891 10 24 10.0 9.8 9.8 1 +1891 10 25 4.3 4.1 4.1 1 +1891 10 26 2.2 2.0 2.0 1 +1891 10 27 1.7 1.5 1.5 1 +1891 10 28 0.5 0.3 0.3 1 +1891 10 29 -0.3 -0.5 -0.5 1 +1891 10 30 1.9 1.7 1.7 1 +1891 10 31 8.1 7.9 7.9 1 +1891 11 1 5.4 5.1 5.1 1 +1891 11 2 4.7 4.4 4.4 1 +1891 11 3 3.4 3.1 3.1 1 +1891 11 4 -0.4 -0.7 -0.7 1 +1891 11 5 0.8 0.5 0.5 1 +1891 11 6 2.8 2.5 2.5 1 +1891 11 7 4.2 3.9 3.9 1 +1891 11 8 4.2 3.9 3.9 1 +1891 11 9 4.1 3.8 3.8 1 +1891 11 10 5.2 4.9 4.9 1 +1891 11 11 5.0 4.7 4.7 1 +1891 11 12 5.1 4.8 4.8 1 +1891 11 13 2.3 2.0 2.0 1 +1891 11 14 2.6 2.3 2.3 1 +1891 11 15 0.4 0.1 0.1 1 +1891 11 16 0.3 0.0 0.0 1 +1891 11 17 -0.1 -0.4 -0.4 1 +1891 11 18 0.3 0.0 0.0 1 +1891 11 19 2.2 1.9 1.9 1 +1891 11 20 1.2 0.9 0.9 1 +1891 11 21 -0.3 -0.6 -0.6 1 +1891 11 22 -3.1 -3.4 -3.4 1 +1891 11 23 -1.4 -1.7 -1.7 1 +1891 11 24 -0.2 -0.5 -0.5 1 +1891 11 25 -0.1 -0.4 -0.4 1 +1891 11 26 -1.0 -1.3 -1.3 1 +1891 11 27 -0.6 -0.9 -0.9 1 +1891 11 28 -3.4 -3.7 -3.7 1 +1891 11 29 -4.6 -4.9 -4.9 1 +1891 11 30 -2.3 -2.6 -2.6 1 +1891 12 1 0.0 -0.3 -0.3 1 +1891 12 2 -0.6 -0.9 -0.9 1 +1891 12 3 1.7 1.4 1.4 1 +1891 12 4 5.2 4.9 4.9 1 +1891 12 5 6.2 5.9 5.9 1 +1891 12 6 3.8 3.5 3.5 1 +1891 12 7 -1.1 -1.4 -1.4 1 +1891 12 8 1.4 1.1 1.1 1 +1891 12 9 2.0 1.7 1.7 1 +1891 12 10 5.2 4.9 4.9 1 +1891 12 11 2.9 2.6 2.6 1 +1891 12 12 -0.9 -1.2 -1.2 1 +1891 12 13 -0.9 -1.2 -1.2 1 +1891 12 14 2.9 2.6 2.6 1 +1891 12 15 -3.9 -4.2 -4.2 1 +1891 12 16 -7.0 -7.3 -7.3 1 +1891 12 17 -5.0 -5.3 -5.3 1 +1891 12 18 -5.7 -6.0 -6.0 1 +1891 12 19 -8.8 -9.1 -9.1 1 +1891 12 20 1.8 1.5 1.5 1 +1891 12 21 1.9 1.6 1.6 1 +1891 12 22 1.3 0.9 0.9 1 +1891 12 23 -1.0 -1.4 -1.4 1 +1891 12 24 -0.9 -1.3 -1.3 1 +1891 12 25 -1.8 -2.2 -2.2 1 +1891 12 26 0.5 0.1 0.1 1 +1891 12 27 2.3 1.9 1.9 1 +1891 12 28 2.4 2.0 2.0 1 +1891 12 29 2.8 2.4 2.4 1 +1891 12 30 2.0 1.6 1.6 1 +1891 12 31 1.1 0.7 0.7 1 +1892 1 1 -5.1 -5.5 -5.5 1 +1892 1 2 -2.8 -3.2 -3.2 1 +1892 1 3 -3.0 -3.4 -3.4 1 +1892 1 4 -8.4 -8.8 -8.8 1 +1892 1 5 -4.8 -5.3 -5.3 1 +1892 1 6 -4.1 -4.6 -4.6 1 +1892 1 7 -2.7 -3.2 -3.2 1 +1892 1 8 -8.1 -8.6 -8.6 1 +1892 1 9 -12.7 -13.2 -13.2 1 +1892 1 10 -7.5 -8.0 -8.0 1 +1892 1 11 -8.6 -9.1 -9.1 1 +1892 1 12 -8.9 -9.4 -9.4 1 +1892 1 13 -6.6 -7.1 -7.1 1 +1892 1 14 -4.7 -5.2 -5.2 1 +1892 1 15 -3.9 -4.4 -4.4 1 +1892 1 16 -2.5 -3.0 -3.0 1 +1892 1 17 -7.2 -7.7 -7.7 1 +1892 1 18 -13.2 -13.7 -13.7 1 +1892 1 19 -11.9 -12.4 -12.4 1 +1892 1 20 -11.3 -11.8 -11.8 1 +1892 1 21 -6.6 -7.1 -7.1 1 +1892 1 22 -5.4 -5.9 -5.9 1 +1892 1 23 -5.5 -6.0 -6.0 1 +1892 1 24 -5.3 -5.8 -5.8 1 +1892 1 25 -3.0 -3.5 -3.5 1 +1892 1 26 -4.7 -5.2 -5.2 1 +1892 1 27 -1.3 -1.8 -1.8 1 +1892 1 28 0.7 0.2 0.2 1 +1892 1 29 -2.3 -2.8 -2.8 1 +1892 1 30 2.2 1.7 1.7 1 +1892 1 31 -2.0 -2.5 -2.5 1 +1892 2 1 -2.3 -2.8 -2.8 1 +1892 2 2 1.8 1.3 1.3 1 +1892 2 3 0.2 -0.3 -0.3 1 +1892 2 4 -5.6 -6.1 -6.1 1 +1892 2 5 -6.8 -7.3 -7.3 1 +1892 2 6 -5.6 -6.1 -6.1 1 +1892 2 7 -5.8 -6.3 -6.3 1 +1892 2 8 -6.2 -6.7 -6.7 1 +1892 2 9 -6.3 -6.8 -6.8 1 +1892 2 10 -0.9 -1.4 -1.4 1 +1892 2 11 -0.9 -1.4 -1.4 1 +1892 2 12 -0.9 -1.4 -1.4 1 +1892 2 13 -4.3 -4.8 -4.8 1 +1892 2 14 -5.8 -6.3 -6.3 1 +1892 2 15 -8.5 -9.0 -9.0 1 +1892 2 16 -13.1 -13.6 -13.6 1 +1892 2 17 -13.7 -14.2 -14.2 1 +1892 2 18 -9.7 -10.2 -10.2 1 +1892 2 19 -8.2 -8.7 -8.7 1 +1892 2 20 -7.6 -8.1 -8.1 1 +1892 2 21 1.0 0.5 0.5 1 +1892 2 22 1.0 0.5 0.5 1 +1892 2 23 0.9 0.4 0.4 1 +1892 2 24 0.1 -0.4 -0.4 1 +1892 2 25 -0.4 -0.9 -0.9 1 +1892 2 26 -1.8 -2.3 -2.3 1 +1892 2 27 -3.6 -4.1 -4.1 1 +1892 2 28 -5.9 -6.4 -6.4 1 +1892 2 29 -8.0 -8.5 -8.5 1 +1892 3 1 -10.3 -10.8 -10.8 1 +1892 3 2 -11.3 -11.8 -11.8 1 +1892 3 3 -8.5 -9.0 -9.0 1 +1892 3 4 -6.2 -6.7 -6.7 1 +1892 3 5 -7.2 -7.7 -7.7 1 +1892 3 6 -6.8 -7.3 -7.3 1 +1892 3 7 -7.9 -8.4 -8.4 1 +1892 3 8 -5.9 -6.4 -6.4 1 +1892 3 9 -4.6 -5.1 -5.1 1 +1892 3 10 -2.8 -3.3 -3.3 1 +1892 3 11 -1.5 -2.0 -2.0 1 +1892 3 12 -1.3 -1.8 -1.8 1 +1892 3 13 -1.6 -2.1 -2.1 1 +1892 3 14 -0.6 -1.1 -1.1 1 +1892 3 15 0.7 0.2 0.2 1 +1892 3 16 1.4 0.9 0.9 1 +1892 3 17 0.4 -0.1 -0.1 1 +1892 3 18 0.0 -0.5 -0.5 1 +1892 3 19 -0.8 -1.3 -1.3 1 +1892 3 20 2.6 2.1 2.1 1 +1892 3 21 3.4 2.9 2.9 1 +1892 3 22 2.8 2.3 2.3 1 +1892 3 23 2.4 1.9 1.9 1 +1892 3 24 2.8 2.3 2.3 1 +1892 3 25 5.0 4.5 4.5 1 +1892 3 26 3.9 3.4 3.4 1 +1892 3 27 -0.2 -0.7 -0.7 1 +1892 3 28 -1.3 -1.8 -1.8 1 +1892 3 29 -0.9 -1.4 -1.4 1 +1892 3 30 3.2 2.7 2.7 1 +1892 3 31 3.3 2.8 2.8 1 +1892 4 1 6.0 5.5 5.5 1 +1892 4 2 7.5 7.0 7.0 1 +1892 4 3 7.8 7.3 7.3 1 +1892 4 4 3.5 3.0 3.0 1 +1892 4 5 4.1 3.6 3.6 1 +1892 4 6 6.6 6.1 6.1 1 +1892 4 7 1.4 0.9 0.9 1 +1892 4 8 0.7 0.2 0.2 1 +1892 4 9 8.0 7.5 7.5 1 +1892 4 10 8.3 7.8 7.8 1 +1892 4 11 2.6 2.1 2.1 1 +1892 4 12 -0.5 -1.0 -1.0 1 +1892 4 13 -0.3 -0.8 -0.8 1 +1892 4 14 -0.5 -1.0 -1.0 1 +1892 4 15 1.2 0.7 0.7 1 +1892 4 16 -1.2 -1.7 -1.7 1 +1892 4 17 -0.3 -0.8 -0.8 1 +1892 4 18 -0.7 -1.2 -1.2 1 +1892 4 19 0.5 0.0 0.0 1 +1892 4 20 1.5 1.0 1.0 1 +1892 4 21 0.3 -0.2 -0.2 1 +1892 4 22 2.4 1.9 1.9 1 +1892 4 23 4.9 4.3 4.3 1 +1892 4 24 6.2 5.6 5.6 1 +1892 4 25 6.8 6.2 6.2 1 +1892 4 26 5.1 4.5 4.5 1 +1892 4 27 2.6 2.0 2.0 1 +1892 4 28 4.4 3.8 3.8 1 +1892 4 29 6.9 6.3 6.3 1 +1892 4 30 5.9 5.3 5.3 1 +1892 5 1 7.0 6.4 6.4 1 +1892 5 2 6.2 5.6 5.6 1 +1892 5 3 5.6 4.9 4.9 1 +1892 5 4 4.9 4.2 4.2 1 +1892 5 5 2.1 1.4 1.4 1 +1892 5 6 0.9 0.2 0.2 1 +1892 5 7 4.1 3.4 3.4 1 +1892 5 8 6.5 5.8 5.8 1 +1892 5 9 8.7 8.0 8.0 1 +1892 5 10 7.4 6.7 6.7 1 +1892 5 11 6.5 5.8 5.8 1 +1892 5 12 8.6 7.9 7.9 1 +1892 5 13 11.3 10.5 10.5 1 +1892 5 14 11.1 10.3 10.3 1 +1892 5 15 9.1 8.3 8.3 1 +1892 5 16 8.2 7.4 7.4 1 +1892 5 17 7.4 6.6 6.6 1 +1892 5 18 3.6 2.8 2.8 1 +1892 5 19 7.0 6.3 6.3 1 +1892 5 20 7.8 7.1 7.1 1 +1892 5 21 7.0 6.3 6.3 1 +1892 5 22 8.2 7.5 7.5 1 +1892 5 23 8.9 8.2 8.2 1 +1892 5 24 11.8 11.1 11.1 1 +1892 5 25 14.4 13.7 13.7 1 +1892 5 26 17.2 16.5 16.5 1 +1892 5 27 19.7 19.0 19.0 1 +1892 5 28 16.8 16.1 16.1 1 +1892 5 29 11.2 10.5 10.5 1 +1892 5 30 10.2 9.5 9.5 1 +1892 5 31 15.9 15.3 15.3 1 +1892 6 1 18.5 17.9 17.9 1 +1892 6 2 17.1 16.5 16.5 1 +1892 6 3 15.1 14.5 14.5 1 +1892 6 4 14.0 13.4 13.4 1 +1892 6 5 14.9 14.3 14.3 1 +1892 6 6 13.6 13.0 13.0 1 +1892 6 7 13.7 13.1 13.1 1 +1892 6 8 16.4 15.8 15.8 1 +1892 6 9 16.0 15.4 15.4 1 +1892 6 10 11.6 11.0 11.0 1 +1892 6 11 8.5 7.9 7.9 1 +1892 6 12 11.2 10.7 10.7 1 +1892 6 13 11.7 11.2 11.2 1 +1892 6 14 9.7 9.2 9.2 1 +1892 6 15 11.8 11.3 11.3 1 +1892 6 16 9.9 9.4 9.4 1 +1892 6 17 13.9 13.4 13.4 1 +1892 6 18 13.2 12.7 12.7 1 +1892 6 19 11.6 11.1 11.1 1 +1892 6 20 13.3 12.8 12.8 1 +1892 6 21 14.7 14.2 14.2 1 +1892 6 22 12.1 11.6 11.6 1 +1892 6 23 14.0 13.5 13.5 1 +1892 6 24 11.3 10.8 10.8 1 +1892 6 25 11.7 11.2 11.2 1 +1892 6 26 14.5 14.0 14.0 1 +1892 6 27 17.1 16.6 16.6 1 +1892 6 28 16.5 16.0 16.0 1 +1892 6 29 14.1 13.6 13.6 1 +1892 6 30 11.0 10.5 10.5 1 +1892 7 1 13.8 13.3 13.3 1 +1892 7 2 13.3 12.8 12.8 1 +1892 7 3 16.0 15.5 15.5 1 +1892 7 4 16.6 16.1 16.1 1 +1892 7 5 15.0 14.5 14.5 1 +1892 7 6 16.2 15.7 15.7 1 +1892 7 7 14.6 14.1 14.1 1 +1892 7 8 14.6 14.1 14.1 1 +1892 7 9 14.9 14.4 14.4 1 +1892 7 10 14.5 14.0 14.0 1 +1892 7 11 13.2 12.7 12.7 1 +1892 7 12 13.2 12.7 12.7 1 +1892 7 13 12.4 11.9 11.9 1 +1892 7 14 13.8 13.3 13.3 1 +1892 7 15 13.5 12.9 12.9 1 +1892 7 16 14.0 13.5 13.5 1 +1892 7 17 15.1 14.6 14.6 1 +1892 7 18 14.6 14.1 14.1 1 +1892 7 19 13.9 13.4 13.4 1 +1892 7 20 15.9 15.4 15.4 1 +1892 7 21 17.5 17.0 17.0 1 +1892 7 22 18.2 17.7 17.7 1 +1892 7 23 17.4 16.9 16.9 1 +1892 7 24 14.6 14.1 14.1 1 +1892 7 25 15.7 15.2 15.2 1 +1892 7 26 17.7 17.2 17.2 1 +1892 7 27 14.8 14.3 14.3 1 +1892 7 28 14.7 14.2 14.2 1 +1892 7 29 18.8 18.3 18.3 1 +1892 7 30 17.6 17.1 17.1 1 +1892 7 31 15.7 15.2 15.2 1 +1892 8 1 12.6 12.1 12.1 1 +1892 8 2 13.0 12.5 12.5 1 +1892 8 3 13.5 13.0 13.0 1 +1892 8 4 14.1 13.6 13.6 1 +1892 8 5 14.2 13.7 13.7 1 +1892 8 6 14.9 14.4 14.4 1 +1892 8 7 14.4 13.9 13.9 1 +1892 8 8 14.9 14.4 14.4 1 +1892 8 9 15.1 14.6 14.6 1 +1892 8 10 13.6 13.1 13.1 1 +1892 8 11 14.2 13.7 13.7 1 +1892 8 12 13.8 13.3 13.3 1 +1892 8 13 14.8 14.3 14.3 1 +1892 8 14 16.3 15.8 15.8 1 +1892 8 15 16.2 15.7 15.7 1 +1892 8 16 14.8 14.3 14.3 1 +1892 8 17 14.9 14.4 14.4 1 +1892 8 18 15.0 14.5 14.5 1 +1892 8 19 15.7 15.2 15.2 1 +1892 8 20 18.4 17.9 17.9 1 +1892 8 21 14.4 13.9 13.9 1 +1892 8 22 18.1 17.6 17.6 1 +1892 8 23 18.1 17.6 17.6 1 +1892 8 24 18.8 18.3 18.3 1 +1892 8 25 19.5 19.1 19.1 1 +1892 8 26 20.0 19.6 19.6 1 +1892 8 27 15.3 14.9 14.9 1 +1892 8 28 15.9 15.5 15.5 1 +1892 8 29 13.2 12.8 12.8 1 +1892 8 30 13.7 13.3 13.3 1 +1892 8 31 12.8 12.4 12.4 1 +1892 9 1 14.6 14.2 14.2 1 +1892 9 2 15.3 14.9 14.9 1 +1892 9 3 11.8 11.4 11.4 1 +1892 9 4 12.9 12.5 12.5 1 +1892 9 5 12.3 11.9 11.9 1 +1892 9 6 12.8 12.4 12.4 1 +1892 9 7 13.2 12.9 12.9 1 +1892 9 8 14.4 14.1 14.1 1 +1892 9 9 13.7 13.4 13.4 1 +1892 9 10 14.6 14.3 14.3 1 +1892 9 11 13.5 13.2 13.2 1 +1892 9 12 11.7 11.4 11.4 1 +1892 9 13 14.0 13.7 13.7 1 +1892 9 14 13.2 12.9 12.9 1 +1892 9 15 12.6 12.3 12.3 1 +1892 9 16 13.6 13.3 13.3 1 +1892 9 17 14.0 13.7 13.7 1 +1892 9 18 10.8 10.5 10.5 1 +1892 9 19 12.0 11.7 11.7 1 +1892 9 20 10.0 9.7 9.7 1 +1892 9 21 7.1 6.8 6.8 1 +1892 9 22 10.5 10.2 10.2 1 +1892 9 23 9.8 9.5 9.5 1 +1892 9 24 12.3 12.0 12.0 1 +1892 9 25 12.0 11.7 11.7 1 +1892 9 26 11.8 11.6 11.6 1 +1892 9 27 12.0 11.8 11.8 1 +1892 9 28 14.5 14.3 14.3 1 +1892 9 29 8.7 8.5 8.5 1 +1892 9 30 9.7 9.5 9.5 1 +1892 10 1 12.2 12.0 12.0 1 +1892 10 2 10.4 10.2 10.2 1 +1892 10 3 10.6 10.4 10.4 1 +1892 10 4 8.9 8.7 8.7 1 +1892 10 5 8.2 8.0 8.0 1 +1892 10 6 10.6 10.4 10.4 1 +1892 10 7 10.7 10.5 10.5 1 +1892 10 8 10.1 9.9 9.9 1 +1892 10 9 8.9 8.7 8.7 1 +1892 10 10 8.3 8.1 8.1 1 +1892 10 11 8.2 8.0 8.0 1 +1892 10 12 8.8 8.6 8.6 1 +1892 10 13 7.6 7.4 7.4 1 +1892 10 14 7.2 7.0 7.0 1 +1892 10 15 4.0 3.8 3.8 1 +1892 10 16 2.4 2.2 2.2 1 +1892 10 17 0.8 0.6 0.6 1 +1892 10 18 1.4 1.2 1.2 1 +1892 10 19 0.9 0.7 0.7 1 +1892 10 20 2.2 2.0 2.0 1 +1892 10 21 5.4 5.2 5.2 1 +1892 10 22 4.6 4.4 4.4 1 +1892 10 23 0.4 0.2 0.2 1 +1892 10 24 -0.7 -0.9 -0.9 1 +1892 10 25 -2.0 -2.2 -2.2 1 +1892 10 26 -2.9 -3.1 -3.1 1 +1892 10 27 2.3 2.1 2.1 1 +1892 10 28 5.3 5.1 5.1 1 +1892 10 29 10.4 10.2 10.2 1 +1892 10 30 9.9 9.7 9.7 1 +1892 10 31 8.3 8.1 8.1 1 +1892 11 1 5.8 5.5 5.5 1 +1892 11 2 1.9 1.6 1.6 1 +1892 11 3 2.9 2.6 2.6 1 +1892 11 4 5.6 5.3 5.3 1 +1892 11 5 5.5 5.2 5.2 1 +1892 11 6 7.2 6.9 6.9 1 +1892 11 7 7.3 7.0 7.0 1 +1892 11 8 7.3 7.0 7.0 1 +1892 11 9 6.1 5.8 5.8 1 +1892 11 10 6.9 6.6 6.6 1 +1892 11 11 5.8 5.5 5.5 1 +1892 11 12 4.9 4.6 4.6 1 +1892 11 13 4.6 4.3 4.3 1 +1892 11 14 3.4 3.1 3.1 1 +1892 11 15 3.0 2.7 2.7 1 +1892 11 16 5.1 4.8 4.8 1 +1892 11 17 4.0 3.7 3.7 1 +1892 11 18 3.2 2.9 2.9 1 +1892 11 19 2.2 1.9 1.9 1 +1892 11 20 0.9 0.6 0.6 1 +1892 11 21 -1.5 -1.8 -1.8 1 +1892 11 22 -2.3 -2.6 -2.6 1 +1892 11 23 2.2 1.9 1.9 1 +1892 11 24 -2.3 -2.6 -2.6 1 +1892 11 25 -7.0 -7.3 -7.3 1 +1892 11 26 -4.8 -5.1 -5.1 1 +1892 11 27 -1.4 -1.7 -1.7 1 +1892 11 28 5.2 4.9 4.9 1 +1892 11 29 6.2 5.9 5.9 1 +1892 11 30 1.7 1.4 1.4 1 +1892 12 1 0.0 -0.3 -0.3 1 +1892 12 2 -4.9 -5.2 -5.2 1 +1892 12 3 -6.3 -6.6 -6.6 1 +1892 12 4 0.4 0.1 0.1 1 +1892 12 5 -0.2 -0.5 -0.5 1 +1892 12 6 -0.9 -1.2 -1.2 1 +1892 12 7 -2.6 -2.9 -2.9 1 +1892 12 8 -5.9 -6.2 -6.2 1 +1892 12 9 -6.6 -6.9 -6.9 1 +1892 12 10 -2.7 -3.0 -3.0 1 +1892 12 11 -3.5 -3.8 -3.8 1 +1892 12 12 -1.1 -1.4 -1.4 1 +1892 12 13 -1.5 -1.8 -1.8 1 +1892 12 14 -5.2 -5.5 -5.5 1 +1892 12 15 -0.5 -0.8 -0.8 1 +1892 12 16 -3.4 -3.7 -3.7 1 +1892 12 17 0.3 0.0 0.0 1 +1892 12 18 4.2 3.9 3.9 1 +1892 12 19 0.5 0.2 0.2 1 +1892 12 20 -2.6 -2.9 -2.9 1 +1892 12 21 -4.0 -4.3 -4.3 1 +1892 12 22 -9.6 -10.0 -10.0 1 +1892 12 23 -9.9 -10.3 -10.3 1 +1892 12 24 -7.1 -7.5 -7.5 1 +1892 12 25 -12.7 -13.1 -13.1 1 +1892 12 26 -12.9 -13.3 -13.3 1 +1892 12 27 -7.3 -7.7 -7.7 1 +1892 12 28 -3.0 -3.4 -3.4 1 +1892 12 29 -3.9 -4.3 -4.3 1 +1892 12 30 -6.9 -7.3 -7.3 1 +1892 12 31 -12.7 -13.1 -13.1 1 +1893 1 1 -13.0 -13.4 -13.4 1 +1893 1 2 -8.8 -9.2 -9.2 1 +1893 1 3 -4.8 -5.2 -5.2 1 +1893 1 4 -5.7 -6.1 -6.1 1 +1893 1 5 -2.0 -2.5 -2.5 1 +1893 1 6 -4.7 -5.2 -5.2 1 +1893 1 7 -5.7 -6.2 -6.2 1 +1893 1 8 -5.4 -5.9 -5.9 1 +1893 1 9 -9.2 -9.7 -9.7 1 +1893 1 10 -5.9 -6.4 -6.4 1 +1893 1 11 -9.4 -9.9 -9.9 1 +1893 1 12 -11.8 -12.3 -12.3 1 +1893 1 13 -13.2 -13.7 -13.7 1 +1893 1 14 -16.9 -17.4 -17.4 1 +1893 1 15 -19.6 -20.1 -20.1 1 +1893 1 16 -18.4 -18.9 -18.9 1 +1893 1 17 -13.8 -14.3 -14.3 1 +1893 1 18 -12.0 -12.5 -12.5 1 +1893 1 19 -4.6 -5.1 -5.1 1 +1893 1 20 -2.4 -2.9 -2.9 1 +1893 1 21 -2.8 -3.3 -3.3 1 +1893 1 22 -6.6 -7.1 -7.1 1 +1893 1 23 -10.3 -10.8 -10.8 1 +1893 1 24 -5.9 -6.4 -6.4 1 +1893 1 25 0.2 -0.3 -0.3 1 +1893 1 26 -3.6 -4.1 -4.1 1 +1893 1 27 -1.2 -1.7 -1.7 1 +1893 1 28 -1.7 -2.2 -2.2 1 +1893 1 29 -2.1 -2.6 -2.6 1 +1893 1 30 -4.9 -5.4 -5.4 1 +1893 1 31 -3.0 -3.5 -3.5 1 +1893 2 1 -13.0 -13.5 -13.5 1 +1893 2 2 -18.9 -19.4 -19.4 1 +1893 2 3 -16.1 -16.6 -16.6 1 +1893 2 4 -12.0 -12.5 -12.5 1 +1893 2 5 -3.6 -4.1 -4.1 1 +1893 2 6 -4.5 -5.0 -5.0 1 +1893 2 7 -2.7 -3.2 -3.2 1 +1893 2 8 -9.6 -10.1 -10.1 1 +1893 2 9 -9.0 -9.5 -9.5 1 +1893 2 10 -14.4 -14.9 -14.9 1 +1893 2 11 -20.4 -20.9 -20.9 1 +1893 2 12 -18.8 -19.3 -19.3 1 +1893 2 13 -20.0 -20.5 -20.5 1 +1893 2 14 -17.4 -17.9 -17.9 1 +1893 2 15 -12.4 -12.9 -12.9 1 +1893 2 16 -8.9 -9.4 -9.4 1 +1893 2 17 -2.2 -2.7 -2.7 1 +1893 2 18 0.9 0.4 0.4 1 +1893 2 19 -8.8 -9.3 -9.3 1 +1893 2 20 -12.8 -13.3 -13.3 1 +1893 2 21 -14.0 -14.5 -14.5 1 +1893 2 22 -14.7 -15.2 -15.2 1 +1893 2 23 -15.0 -15.5 -15.5 1 +1893 2 24 -9.1 -9.6 -9.6 1 +1893 2 25 -9.0 -9.5 -9.5 1 +1893 2 26 -5.4 -5.9 -5.9 1 +1893 2 27 -1.7 -2.2 -2.2 1 +1893 2 28 0.9 0.4 0.4 1 +1893 3 1 -0.1 -0.6 -0.6 1 +1893 3 2 -2.5 -3.0 -3.0 1 +1893 3 3 -3.5 -4.0 -4.0 1 +1893 3 4 -0.3 -0.8 -0.8 1 +1893 3 5 2.0 1.5 1.5 1 +1893 3 6 -1.6 -2.1 -2.1 1 +1893 3 7 0.2 -0.3 -0.3 1 +1893 3 8 -10.7 -11.2 -11.2 1 +1893 3 9 -6.7 -7.2 -7.2 1 +1893 3 10 1.6 1.1 1.1 1 +1893 3 11 -2.0 -2.5 -2.5 1 +1893 3 12 2.5 2.0 2.0 1 +1893 3 13 0.9 0.4 0.4 1 +1893 3 14 1.5 1.0 1.0 1 +1893 3 15 4.3 3.8 3.8 1 +1893 3 16 3.2 2.7 2.7 1 +1893 3 17 -1.5 -2.0 -2.0 1 +1893 3 18 -5.1 -5.6 -5.6 1 +1893 3 19 -5.0 -5.5 -5.5 1 +1893 3 20 -3.2 -3.7 -3.7 1 +1893 3 21 1.4 0.9 0.9 1 +1893 3 22 4.6 4.1 4.1 1 +1893 3 23 5.2 4.7 4.7 1 +1893 3 24 1.3 0.8 0.8 1 +1893 3 25 -0.4 -0.9 -0.9 1 +1893 3 26 -0.7 -1.2 -1.2 1 +1893 3 27 2.8 2.3 2.3 1 +1893 3 28 6.3 5.8 5.8 1 +1893 3 29 4.5 4.0 4.0 1 +1893 3 30 -0.4 -0.9 -0.9 1 +1893 3 31 1.3 0.8 0.8 1 +1893 4 1 4.6 4.1 4.1 1 +1893 4 2 4.9 4.4 4.4 1 +1893 4 3 6.1 5.6 5.6 1 +1893 4 4 2.8 2.3 2.3 1 +1893 4 5 5.3 4.8 4.8 1 +1893 4 6 9.0 8.5 8.5 1 +1893 4 7 7.4 6.9 6.9 1 +1893 4 8 7.9 7.4 7.4 1 +1893 4 9 9.8 9.3 9.3 1 +1893 4 10 6.8 6.3 6.3 1 +1893 4 11 2.0 1.5 1.5 1 +1893 4 12 2.6 2.1 2.1 1 +1893 4 13 0.6 0.1 0.1 1 +1893 4 14 4.7 4.2 4.2 1 +1893 4 15 5.3 4.8 4.8 1 +1893 4 16 2.8 2.3 2.3 1 +1893 4 17 0.9 0.4 0.4 1 +1893 4 18 1.1 0.6 0.6 1 +1893 4 19 3.7 3.2 3.2 1 +1893 4 20 1.1 0.6 0.6 1 +1893 4 21 4.5 4.0 4.0 1 +1893 4 22 7.4 6.9 6.9 1 +1893 4 23 8.7 8.1 8.1 1 +1893 4 24 5.6 5.0 5.0 1 +1893 4 25 5.8 5.2 5.2 1 +1893 4 26 4.1 3.5 3.5 1 +1893 4 27 1.9 1.3 1.3 1 +1893 4 28 2.3 1.7 1.7 1 +1893 4 29 3.7 3.1 3.1 1 +1893 4 30 1.9 1.3 1.3 1 +1893 5 1 1.1 0.5 0.5 1 +1893 5 2 2.1 1.5 1.5 1 +1893 5 3 1.4 0.7 0.7 1 +1893 5 4 3.0 2.3 2.3 1 +1893 5 5 3.1 2.4 2.4 1 +1893 5 6 4.2 3.5 3.5 1 +1893 5 7 7.1 6.4 6.4 1 +1893 5 8 9.1 8.4 8.4 1 +1893 5 9 8.8 8.1 8.1 1 +1893 5 10 7.1 6.4 6.4 1 +1893 5 11 10.3 9.6 9.6 1 +1893 5 12 13.3 12.6 12.6 1 +1893 5 13 9.3 8.5 8.5 1 +1893 5 14 9.6 8.8 8.8 1 +1893 5 15 9.7 8.9 8.9 1 +1893 5 16 5.4 4.6 4.6 1 +1893 5 17 5.6 4.8 4.8 1 +1893 5 18 5.8 5.0 5.0 1 +1893 5 19 6.6 5.9 5.9 1 +1893 5 20 8.3 7.6 7.6 1 +1893 5 21 9.8 9.1 9.1 1 +1893 5 22 12.4 11.7 11.7 1 +1893 5 23 11.4 10.7 10.7 1 +1893 5 24 11.0 10.3 10.3 1 +1893 5 25 12.8 12.1 12.1 1 +1893 5 26 11.7 11.0 11.0 1 +1893 5 27 9.7 9.0 9.0 1 +1893 5 28 9.7 9.0 9.0 1 +1893 5 29 8.8 8.1 8.1 1 +1893 5 30 6.7 6.0 6.0 1 +1893 5 31 7.7 7.1 7.1 1 +1893 6 1 8.0 7.4 7.4 1 +1893 6 2 10.2 9.6 9.6 1 +1893 6 3 13.0 12.4 12.4 1 +1893 6 4 11.6 11.0 11.0 1 +1893 6 5 13.1 12.5 12.5 1 +1893 6 6 15.0 14.4 14.4 1 +1893 6 7 15.2 14.6 14.6 1 +1893 6 8 14.7 14.1 14.1 1 +1893 6 9 16.6 16.0 16.0 1 +1893 6 10 13.8 13.2 13.2 1 +1893 6 11 13.8 13.2 13.2 1 +1893 6 12 15.0 14.5 14.5 1 +1893 6 13 15.9 15.4 15.4 1 +1893 6 14 14.4 13.9 13.9 1 +1893 6 15 17.3 16.8 16.8 1 +1893 6 16 18.4 17.9 17.9 1 +1893 6 17 17.7 17.2 17.2 1 +1893 6 18 15.4 14.9 14.9 1 +1893 6 19 13.4 12.9 12.9 1 +1893 6 20 10.3 9.8 9.8 1 +1893 6 21 12.4 11.9 11.9 1 +1893 6 22 11.6 11.1 11.1 1 +1893 6 23 13.6 13.1 13.1 1 +1893 6 24 13.3 12.8 12.8 1 +1893 6 25 15.0 14.5 14.5 1 +1893 6 26 15.9 15.4 15.4 1 +1893 6 27 16.2 15.7 15.7 1 +1893 6 28 17.3 16.8 16.8 1 +1893 6 29 15.3 14.8 14.8 1 +1893 6 30 18.2 17.7 17.7 1 +1893 7 1 17.3 16.8 16.8 1 +1893 7 2 14.3 13.8 13.8 1 +1893 7 3 12.1 11.6 11.6 1 +1893 7 4 13.4 12.9 12.9 1 +1893 7 5 15.4 14.9 14.9 1 +1893 7 6 17.4 16.9 16.9 1 +1893 7 7 18.9 18.4 18.4 1 +1893 7 8 18.6 18.1 18.1 1 +1893 7 9 18.9 18.4 18.4 1 +1893 7 10 20.3 19.8 19.8 1 +1893 7 11 15.7 15.2 15.2 1 +1893 7 12 19.6 19.1 19.1 1 +1893 7 13 12.1 11.6 11.6 1 +1893 7 14 13.4 12.9 12.9 1 +1893 7 15 17.1 16.5 16.5 1 +1893 7 16 17.8 17.3 17.3 1 +1893 7 17 16.5 16.0 16.0 1 +1893 7 18 17.6 17.1 17.1 1 +1893 7 19 19.3 18.8 18.8 1 +1893 7 20 20.2 19.7 19.7 1 +1893 7 21 19.7 19.2 19.2 1 +1893 7 22 17.6 17.1 17.1 1 +1893 7 23 17.7 17.2 17.2 1 +1893 7 24 17.4 16.9 16.9 1 +1893 7 25 16.6 16.1 16.1 1 +1893 7 26 16.9 16.4 16.4 1 +1893 7 27 18.2 17.7 17.7 1 +1893 7 28 16.5 16.0 16.0 1 +1893 7 29 17.8 17.3 17.3 1 +1893 7 30 16.9 16.4 16.4 1 +1893 7 31 17.4 16.9 16.9 1 +1893 8 1 17.4 16.9 16.9 1 +1893 8 2 16.4 15.9 15.9 1 +1893 8 3 16.4 15.9 15.9 1 +1893 8 4 17.4 16.9 16.9 1 +1893 8 5 19.3 18.8 18.8 1 +1893 8 6 17.9 17.4 17.4 1 +1893 8 7 16.2 15.7 15.7 1 +1893 8 8 16.4 15.9 15.9 1 +1893 8 9 18.1 17.6 17.6 1 +1893 8 10 18.8 18.3 18.3 1 +1893 8 11 17.9 17.4 17.4 1 +1893 8 12 19.5 19.0 19.0 1 +1893 8 13 15.4 14.9 14.9 1 +1893 8 14 13.0 12.5 12.5 1 +1893 8 15 15.0 14.5 14.5 1 +1893 8 16 13.4 12.9 12.9 1 +1893 8 17 11.2 10.7 10.7 1 +1893 8 18 15.0 14.5 14.5 1 +1893 8 19 19.4 18.9 18.9 1 +1893 8 20 18.7 18.2 18.2 1 +1893 8 21 19.0 18.5 18.5 1 +1893 8 22 18.5 18.0 18.0 1 +1893 8 23 17.0 16.5 16.5 1 +1893 8 24 15.1 14.6 14.6 1 +1893 8 25 12.5 12.1 12.1 1 +1893 8 26 12.3 11.9 11.9 1 +1893 8 27 12.8 12.4 12.4 1 +1893 8 28 11.6 11.2 11.2 1 +1893 8 29 11.7 11.3 11.3 1 +1893 8 30 9.3 8.9 8.9 1 +1893 8 31 7.8 7.4 7.4 1 +1893 9 1 8.8 8.4 8.4 1 +1893 9 2 9.5 9.1 9.1 1 +1893 9 3 9.0 8.6 8.6 1 +1893 9 4 11.9 11.5 11.5 1 +1893 9 5 10.4 10.0 10.0 1 +1893 9 6 10.2 9.8 9.8 1 +1893 9 7 13.6 13.3 13.3 1 +1893 9 8 14.0 13.7 13.7 1 +1893 9 9 9.9 9.6 9.6 1 +1893 9 10 7.2 6.9 6.9 1 +1893 9 11 8.9 8.6 8.6 1 +1893 9 12 12.1 11.8 11.8 1 +1893 9 13 12.0 11.7 11.7 1 +1893 9 14 10.5 10.2 10.2 1 +1893 9 15 12.6 12.3 12.3 1 +1893 9 16 13.9 13.6 13.6 1 +1893 9 17 7.0 6.7 6.7 1 +1893 9 18 6.6 6.3 6.3 1 +1893 9 19 13.1 12.8 12.8 1 +1893 9 20 13.9 13.6 13.6 1 +1893 9 21 11.4 11.1 11.1 1 +1893 9 22 10.9 10.6 10.6 1 +1893 9 23 10.1 9.8 9.8 1 +1893 9 24 8.8 8.5 8.5 1 +1893 9 25 8.5 8.2 8.2 1 +1893 9 26 5.4 5.2 5.2 1 +1893 9 27 6.0 5.8 5.8 1 +1893 9 28 6.4 6.2 6.2 1 +1893 9 29 8.7 8.5 8.5 1 +1893 9 30 11.7 11.5 11.5 1 +1893 10 1 12.8 12.6 12.6 1 +1893 10 2 11.2 11.0 11.0 1 +1893 10 3 10.1 9.9 9.9 1 +1893 10 4 9.1 8.9 8.9 1 +1893 10 5 10.0 9.8 9.8 1 +1893 10 6 9.7 9.5 9.5 1 +1893 10 7 10.3 10.1 10.1 1 +1893 10 8 10.5 10.3 10.3 1 +1893 10 9 8.3 8.1 8.1 1 +1893 10 10 11.0 10.8 10.8 1 +1893 10 11 10.1 9.9 9.9 1 +1893 10 12 10.5 10.3 10.3 1 +1893 10 13 8.0 7.8 7.8 1 +1893 10 14 7.6 7.4 7.4 1 +1893 10 15 4.7 4.5 4.5 1 +1893 10 16 4.6 4.4 4.4 1 +1893 10 17 3.3 3.1 3.1 1 +1893 10 18 1.7 1.5 1.5 1 +1893 10 19 3.7 3.5 3.5 1 +1893 10 20 4.5 4.3 4.3 1 +1893 10 21 6.3 6.1 6.1 1 +1893 10 22 8.9 8.7 8.7 1 +1893 10 23 5.4 5.2 5.2 1 +1893 10 24 3.2 3.0 3.0 1 +1893 10 25 7.9 7.7 7.7 1 +1893 10 26 8.0 7.8 7.8 1 +1893 10 27 4.9 4.7 4.7 1 +1893 10 28 5.9 5.7 5.7 1 +1893 10 29 5.6 5.4 5.4 1 +1893 10 30 4.6 4.4 4.4 1 +1893 10 31 2.7 2.5 2.5 1 +1893 11 1 0.9 0.6 0.6 1 +1893 11 2 3.7 3.4 3.4 1 +1893 11 3 2.8 2.5 2.5 1 +1893 11 4 1.5 1.2 1.2 1 +1893 11 5 0.2 -0.1 -0.1 1 +1893 11 6 -1.2 -1.5 -1.5 1 +1893 11 7 -3.5 -3.8 -3.8 1 +1893 11 8 -1.0 -1.3 -1.3 1 +1893 11 9 3.4 3.1 3.1 1 +1893 11 10 2.0 1.7 1.7 1 +1893 11 11 4.7 4.4 4.4 1 +1893 11 12 4.2 3.9 3.9 1 +1893 11 13 3.2 2.9 2.9 1 +1893 11 14 2.7 2.4 2.4 1 +1893 11 15 -0.3 -0.6 -0.6 1 +1893 11 16 -1.0 -1.3 -1.3 1 +1893 11 17 2.0 1.7 1.7 1 +1893 11 18 3.5 3.2 3.2 1 +1893 11 19 1.0 0.7 0.7 1 +1893 11 20 -3.5 -3.8 -3.8 1 +1893 11 21 -0.3 -0.6 -0.6 1 +1893 11 22 1.8 1.5 1.5 1 +1893 11 23 -1.2 -1.5 -1.5 1 +1893 11 24 -2.6 -2.9 -2.9 1 +1893 11 25 0.5 0.2 0.2 1 +1893 11 26 -4.1 -4.4 -4.4 1 +1893 11 27 -7.3 -7.6 -7.6 1 +1893 11 28 1.8 1.5 1.5 1 +1893 11 29 4.0 3.7 3.7 1 +1893 11 30 6.4 6.1 6.1 1 +1893 12 1 -2.5 -2.8 -2.8 1 +1893 12 2 -6.7 -7.0 -7.0 1 +1893 12 3 -7.2 -7.5 -7.5 1 +1893 12 4 -7.0 -7.3 -7.3 1 +1893 12 5 -6.4 -6.7 -6.7 1 +1893 12 6 -3.1 -3.4 -3.4 1 +1893 12 7 1.6 1.3 1.3 1 +1893 12 8 1.4 1.1 1.1 1 +1893 12 9 2.2 1.9 1.9 1 +1893 12 10 1.6 1.3 1.3 1 +1893 12 11 0.1 -0.2 -0.2 1 +1893 12 12 2.5 2.2 2.2 1 +1893 12 13 0.9 0.6 0.6 1 +1893 12 14 3.8 3.5 3.5 1 +1893 12 15 2.7 2.4 2.4 1 +1893 12 16 2.1 1.8 1.8 1 +1893 12 17 5.5 5.2 5.2 1 +1893 12 18 0.5 0.2 0.2 1 +1893 12 19 1.1 0.8 0.8 1 +1893 12 20 2.7 2.4 2.4 1 +1893 12 21 4.4 4.1 4.1 1 +1893 12 22 3.1 2.7 2.7 1 +1893 12 23 4.2 3.8 3.8 1 +1893 12 24 4.1 3.7 3.7 1 +1893 12 25 0.2 -0.2 -0.2 1 +1893 12 26 0.9 0.5 0.5 1 +1893 12 27 -2.3 -2.7 -2.7 1 +1893 12 28 -1.7 -2.1 -2.1 1 +1893 12 29 0.2 -0.2 -0.2 1 +1893 12 30 5.9 5.5 5.5 1 +1893 12 31 1.6 1.2 1.2 1 +1894 1 1 -8.4 -8.8 -8.8 1 +1894 1 2 -9.0 -9.4 -9.4 1 +1894 1 3 -10.3 -10.7 -10.7 1 +1894 1 4 -5.5 -5.9 -5.9 1 +1894 1 5 -6.0 -6.5 -6.5 1 +1894 1 6 -3.9 -4.4 -4.4 1 +1894 1 7 -0.9 -1.4 -1.4 1 +1894 1 8 0.0 -0.5 -0.5 1 +1894 1 9 -3.0 -3.5 -3.5 1 +1894 1 10 -1.0 -1.5 -1.5 1 +1894 1 11 -1.7 -2.2 -2.2 1 +1894 1 12 0.3 -0.2 -0.2 1 +1894 1 13 -3.6 -4.1 -4.1 1 +1894 1 14 0.2 -0.3 -0.3 1 +1894 1 15 0.8 0.3 0.3 1 +1894 1 16 2.4 1.9 1.9 1 +1894 1 17 2.3 1.8 1.8 1 +1894 1 18 2.0 1.5 1.5 1 +1894 1 19 2.9 2.4 2.4 1 +1894 1 20 0.3 -0.2 -0.2 1 +1894 1 21 3.6 3.1 3.1 1 +1894 1 22 3.9 3.4 3.4 1 +1894 1 23 1.1 0.6 0.6 1 +1894 1 24 -3.5 -4.0 -4.0 1 +1894 1 25 2.2 1.7 1.7 1 +1894 1 26 1.5 1.0 1.0 1 +1894 1 27 2.3 1.8 1.8 1 +1894 1 28 2.8 2.3 2.3 1 +1894 1 29 1.7 1.2 1.2 1 +1894 1 30 0.4 -0.1 -0.1 1 +1894 1 31 1.9 1.4 1.4 1 +1894 2 1 1.5 1.0 1.0 1 +1894 2 2 -1.1 -1.6 -1.6 1 +1894 2 3 3.5 3.0 3.0 1 +1894 2 4 1.5 1.0 1.0 1 +1894 2 5 1.7 1.2 1.2 1 +1894 2 6 0.9 0.4 0.4 1 +1894 2 7 5.3 4.8 4.8 1 +1894 2 8 2.9 2.4 2.4 1 +1894 2 9 4.8 4.3 4.3 1 +1894 2 10 2.0 1.5 1.5 1 +1894 2 11 -1.6 -2.1 -2.1 1 +1894 2 12 0.3 -0.2 -0.2 1 +1894 2 13 -4.6 -5.1 -5.1 1 +1894 2 14 -5.7 -6.2 -6.2 1 +1894 2 15 -5.9 -6.4 -6.4 1 +1894 2 16 -5.7 -6.2 -6.2 1 +1894 2 17 -7.0 -7.5 -7.5 1 +1894 2 18 -3.5 -4.0 -4.0 1 +1894 2 19 -3.0 -3.5 -3.5 1 +1894 2 20 -0.5 -1.0 -1.0 1 +1894 2 21 0.9 0.4 0.4 1 +1894 2 22 1.8 1.3 1.3 1 +1894 2 23 -0.2 -0.7 -0.7 1 +1894 2 24 -0.3 -0.8 -0.8 1 +1894 2 25 0.6 0.1 0.1 1 +1894 2 26 1.2 0.7 0.7 1 +1894 2 27 1.4 0.9 0.9 1 +1894 2 28 2.9 2.4 2.4 1 +1894 3 1 2.0 1.5 1.5 1 +1894 3 2 3.2 2.7 2.7 1 +1894 3 3 4.5 4.0 4.0 1 +1894 3 4 1.2 0.7 0.7 1 +1894 3 5 0.9 0.4 0.4 1 +1894 3 6 1.0 0.5 0.5 1 +1894 3 7 -0.6 -1.1 -1.1 1 +1894 3 8 -2.3 -2.8 -2.8 1 +1894 3 9 -0.8 -1.3 -1.3 1 +1894 3 10 0.3 -0.2 -0.2 1 +1894 3 11 1.3 0.8 0.8 1 +1894 3 12 2.9 2.4 2.4 1 +1894 3 13 3.4 2.9 2.9 1 +1894 3 14 4.5 4.0 4.0 1 +1894 3 15 2.7 2.2 2.2 1 +1894 3 16 -0.8 -1.3 -1.3 1 +1894 3 17 0.1 -0.4 -0.4 1 +1894 3 18 1.1 0.6 0.6 1 +1894 3 19 4.2 3.7 3.7 1 +1894 3 20 4.0 3.5 3.5 1 +1894 3 21 6.0 5.5 5.5 1 +1894 3 22 7.0 6.5 6.5 1 +1894 3 23 5.9 5.4 5.4 1 +1894 3 24 7.7 7.2 7.2 1 +1894 3 25 6.8 6.3 6.3 1 +1894 3 26 6.5 6.0 6.0 1 +1894 3 27 2.2 1.7 1.7 1 +1894 3 28 5.2 4.7 4.7 1 +1894 3 29 6.5 6.0 6.0 1 +1894 3 30 8.0 7.5 7.5 1 +1894 3 31 7.3 6.8 6.8 1 +1894 4 1 6.5 6.0 6.0 1 +1894 4 2 5.0 4.5 4.5 1 +1894 4 3 2.9 2.4 2.4 1 +1894 4 4 2.5 2.0 2.0 1 +1894 4 5 5.4 4.9 4.9 1 +1894 4 6 2.0 1.5 1.5 1 +1894 4 7 4.1 3.6 3.6 1 +1894 4 8 3.6 3.1 3.1 1 +1894 4 9 5.8 5.3 5.3 1 +1894 4 10 6.3 5.8 5.8 1 +1894 4 11 5.7 5.2 5.2 1 +1894 4 12 5.0 4.5 4.5 1 +1894 4 13 6.3 5.8 5.8 1 +1894 4 14 8.4 7.9 7.9 1 +1894 4 15 9.9 9.4 9.4 1 +1894 4 16 9.9 9.4 9.4 1 +1894 4 17 10.1 9.6 9.6 1 +1894 4 18 10.8 10.3 10.3 1 +1894 4 19 4.4 3.9 3.9 1 +1894 4 20 2.6 2.1 2.1 1 +1894 4 21 1.8 1.3 1.3 1 +1894 4 22 3.3 2.8 2.8 1 +1894 4 23 6.1 5.5 5.5 1 +1894 4 24 7.7 7.1 7.1 1 +1894 4 25 7.9 7.3 7.3 1 +1894 4 26 7.4 6.8 6.8 1 +1894 4 27 10.5 9.9 9.9 1 +1894 4 28 11.3 10.7 10.7 1 +1894 4 29 8.8 8.2 8.2 1 +1894 4 30 10.0 9.4 9.4 1 +1894 5 1 11.0 10.4 10.4 1 +1894 5 2 12.2 11.6 11.6 1 +1894 5 3 12.3 11.6 11.6 1 +1894 5 4 9.7 9.0 9.0 1 +1894 5 5 6.0 5.3 5.3 1 +1894 5 6 7.2 6.5 6.5 1 +1894 5 7 9.3 8.6 8.6 1 +1894 5 8 9.1 8.4 8.4 1 +1894 5 9 10.1 9.4 9.4 1 +1894 5 10 11.9 11.2 11.2 1 +1894 5 11 12.2 11.5 11.5 1 +1894 5 12 13.6 12.9 12.9 1 +1894 5 13 14.0 13.2 13.2 1 +1894 5 14 14.1 13.3 13.3 1 +1894 5 15 13.8 13.0 13.0 1 +1894 5 16 16.9 16.1 16.1 1 +1894 5 17 8.1 7.3 7.3 1 +1894 5 18 8.2 7.4 7.4 1 +1894 5 19 3.9 3.2 3.2 1 +1894 5 20 6.6 5.9 5.9 1 +1894 5 21 7.6 6.9 6.9 1 +1894 5 22 8.1 7.4 7.4 1 +1894 5 23 10.8 10.1 10.1 1 +1894 5 24 9.9 9.2 9.2 1 +1894 5 25 9.4 8.7 8.7 1 +1894 5 26 9.2 8.5 8.5 1 +1894 5 27 8.7 8.0 8.0 1 +1894 5 28 5.6 4.9 4.9 1 +1894 5 29 7.1 6.4 6.4 1 +1894 5 30 6.4 5.7 5.7 1 +1894 5 31 8.2 7.6 7.6 1 +1894 6 1 10.9 10.3 10.3 1 +1894 6 2 10.4 9.8 9.8 1 +1894 6 3 11.2 10.6 10.6 1 +1894 6 4 10.7 10.1 10.1 1 +1894 6 5 10.4 9.8 9.8 1 +1894 6 6 7.9 7.3 7.3 1 +1894 6 7 9.2 8.6 8.6 1 +1894 6 8 9.0 8.4 8.4 1 +1894 6 9 9.4 8.8 8.8 1 +1894 6 10 9.3 8.7 8.7 1 +1894 6 11 9.7 9.1 9.1 1 +1894 6 12 11.7 11.2 11.2 1 +1894 6 13 14.1 13.6 13.6 1 +1894 6 14 15.1 14.6 14.6 1 +1894 6 15 15.3 14.8 14.8 1 +1894 6 16 14.4 13.9 13.9 1 +1894 6 17 15.2 14.7 14.7 1 +1894 6 18 18.1 17.6 17.6 1 +1894 6 19 17.7 17.2 17.2 1 +1894 6 20 19.3 18.8 18.8 1 +1894 6 21 19.6 19.1 19.1 1 +1894 6 22 18.3 17.8 17.8 1 +1894 6 23 15.8 15.3 15.3 1 +1894 6 24 16.4 15.9 15.9 1 +1894 6 25 11.1 10.6 10.6 1 +1894 6 26 12.5 12.0 12.0 1 +1894 6 27 16.6 16.1 16.1 1 +1894 6 28 20.0 19.5 19.5 1 +1894 6 29 22.2 21.7 21.7 1 +1894 6 30 20.7 20.2 20.2 1 +1894 7 1 21.1 20.6 20.6 1 +1894 7 2 19.7 19.2 19.2 1 +1894 7 3 16.4 15.9 15.9 1 +1894 7 4 15.6 15.1 15.1 1 +1894 7 5 18.9 18.4 18.4 1 +1894 7 6 18.4 17.9 17.9 1 +1894 7 7 20.3 19.8 19.8 1 +1894 7 8 20.0 19.5 19.5 1 +1894 7 9 19.7 19.2 19.2 1 +1894 7 10 18.5 18.0 18.0 1 +1894 7 11 20.0 19.5 19.5 1 +1894 7 12 17.0 16.5 16.5 1 +1894 7 13 16.0 15.5 15.5 1 +1894 7 14 17.4 16.9 16.9 1 +1894 7 15 16.0 15.4 15.4 1 +1894 7 16 14.5 14.0 14.0 1 +1894 7 17 16.4 15.9 15.9 1 +1894 7 18 16.8 16.3 16.3 1 +1894 7 19 16.3 15.8 15.8 1 +1894 7 20 15.5 15.0 15.0 1 +1894 7 21 17.3 16.8 16.8 1 +1894 7 22 16.4 15.9 15.9 1 +1894 7 23 18.2 17.7 17.7 1 +1894 7 24 15.7 15.2 15.2 1 +1894 7 25 16.9 16.4 16.4 1 +1894 7 26 16.9 16.4 16.4 1 +1894 7 27 17.0 16.5 16.5 1 +1894 7 28 18.7 18.2 18.2 1 +1894 7 29 19.0 18.5 18.5 1 +1894 7 30 15.8 15.3 15.3 1 +1894 7 31 14.8 14.3 14.3 1 +1894 8 1 16.0 15.5 15.5 1 +1894 8 2 17.1 16.6 16.6 1 +1894 8 3 18.8 18.3 18.3 1 +1894 8 4 18.4 17.9 17.9 1 +1894 8 5 18.2 17.7 17.7 1 +1894 8 6 17.9 17.4 17.4 1 +1894 8 7 16.3 15.8 15.8 1 +1894 8 8 16.7 16.2 16.2 1 +1894 8 9 17.5 17.0 17.0 1 +1894 8 10 16.5 16.0 16.0 1 +1894 8 11 16.1 15.6 15.6 1 +1894 8 12 13.8 13.3 13.3 1 +1894 8 13 15.8 15.3 15.3 1 +1894 8 14 17.7 17.2 17.2 1 +1894 8 15 16.3 15.8 15.8 1 +1894 8 16 17.5 17.0 17.0 1 +1894 8 17 16.2 15.7 15.7 1 +1894 8 18 14.7 14.2 14.2 1 +1894 8 19 15.1 14.6 14.6 1 +1894 8 20 15.5 15.0 15.0 1 +1894 8 21 14.9 14.4 14.4 1 +1894 8 22 14.5 14.0 14.0 1 +1894 8 23 15.4 14.9 14.9 1 +1894 8 24 15.2 14.7 14.7 1 +1894 8 25 11.9 11.5 11.5 1 +1894 8 26 13.5 13.1 13.1 1 +1894 8 27 13.1 12.7 12.7 1 +1894 8 28 11.8 11.4 11.4 1 +1894 8 29 12.1 11.7 11.7 1 +1894 8 30 14.3 13.9 13.9 1 +1894 8 31 13.7 13.3 13.3 1 +1894 9 1 13.4 13.0 13.0 1 +1894 9 2 11.2 10.8 10.8 1 +1894 9 3 10.4 10.0 10.0 1 +1894 9 4 11.4 11.0 11.0 1 +1894 9 5 9.7 9.3 9.3 1 +1894 9 6 9.9 9.5 9.5 1 +1894 9 7 12.4 12.1 12.1 1 +1894 9 8 11.0 10.7 10.7 1 +1894 9 9 9.5 9.2 9.2 1 +1894 9 10 9.9 9.6 9.6 1 +1894 9 11 12.7 12.4 12.4 1 +1894 9 12 12.6 12.3 12.3 1 +1894 9 13 7.4 7.1 7.1 1 +1894 9 14 8.1 7.8 7.8 1 +1894 9 15 14.1 13.8 13.8 1 +1894 9 16 8.4 8.1 8.1 1 +1894 9 17 10.3 10.0 10.0 1 +1894 9 18 11.3 11.0 11.0 1 +1894 9 19 8.5 8.2 8.2 1 +1894 9 20 6.6 6.3 6.3 1 +1894 9 21 7.9 7.6 7.6 1 +1894 9 22 10.0 9.7 9.7 1 +1894 9 23 7.3 7.0 7.0 1 +1894 9 24 5.0 4.7 4.7 1 +1894 9 25 6.4 6.1 6.1 1 +1894 9 26 8.1 7.9 7.9 1 +1894 9 27 6.3 6.1 6.1 1 +1894 9 28 7.2 7.0 7.0 1 +1894 9 29 7.5 7.3 7.3 1 +1894 9 30 8.2 8.0 8.0 1 +1894 10 1 7.1 6.9 6.9 1 +1894 10 2 9.3 9.1 9.1 1 +1894 10 3 10.4 10.2 10.2 1 +1894 10 4 8.8 8.6 8.6 1 +1894 10 5 6.8 6.6 6.6 1 +1894 10 6 9.0 8.8 8.8 1 +1894 10 7 9.2 9.0 9.0 1 +1894 10 8 9.1 8.9 8.9 1 +1894 10 9 9.7 9.5 9.5 1 +1894 10 10 9.6 9.4 9.4 1 +1894 10 11 9.8 9.6 9.6 1 +1894 10 12 10.2 10.0 10.0 1 +1894 10 13 9.8 9.6 9.6 1 +1894 10 14 3.9 3.7 3.7 1 +1894 10 15 2.7 2.5 2.5 1 +1894 10 16 2.6 2.4 2.4 1 +1894 10 17 4.3 4.1 4.1 1 +1894 10 18 0.7 0.5 0.5 1 +1894 10 19 -0.8 -1.0 -1.0 1 +1894 10 20 -1.9 -2.1 -2.1 1 +1894 10 21 -0.3 -0.5 -0.5 1 +1894 10 22 0.6 0.4 0.4 1 +1894 10 23 -0.3 -0.5 -0.5 1 +1894 10 24 1.3 1.1 1.1 1 +1894 10 25 6.7 6.5 6.5 1 +1894 10 26 5.3 5.1 5.1 1 +1894 10 27 1.5 1.3 1.3 1 +1894 10 28 -0.4 -0.6 -0.6 1 +1894 10 29 -2.2 -2.4 -2.4 1 +1894 10 30 1.6 1.4 1.4 1 +1894 10 31 0.7 0.5 0.5 1 +1894 11 1 3.0 2.7 2.7 1 +1894 11 2 5.4 5.1 5.1 1 +1894 11 3 6.4 6.1 6.1 1 +1894 11 4 7.7 7.4 7.4 1 +1894 11 5 8.3 8.0 8.0 1 +1894 11 6 4.2 3.9 3.9 1 +1894 11 7 -0.2 -0.5 -0.5 1 +1894 11 8 2.5 2.2 2.2 1 +1894 11 9 3.5 3.2 3.2 1 +1894 11 10 5.7 5.4 5.4 1 +1894 11 11 5.6 5.3 5.3 1 +1894 11 12 4.5 4.2 4.2 1 +1894 11 13 6.9 6.6 6.6 1 +1894 11 14 4.8 4.5 4.5 1 +1894 11 15 7.5 7.2 7.2 1 +1894 11 16 7.9 7.6 7.6 1 +1894 11 17 3.8 3.5 3.5 1 +1894 11 18 3.2 2.9 2.9 1 +1894 11 19 5.1 4.8 4.8 1 +1894 11 20 5.4 5.1 5.1 1 +1894 11 21 5.5 5.2 5.2 1 +1894 11 22 3.1 2.8 2.8 1 +1894 11 23 5.6 5.3 5.3 1 +1894 11 24 1.4 1.1 1.1 1 +1894 11 25 0.6 0.3 0.3 1 +1894 11 26 2.8 2.5 2.5 1 +1894 11 27 0.5 0.2 0.2 1 +1894 11 28 2.3 2.0 2.0 1 +1894 11 29 4.8 4.5 4.5 1 +1894 11 30 3.9 3.6 3.6 1 +1894 12 1 1.6 1.3 1.3 1 +1894 12 2 1.5 1.2 1.2 1 +1894 12 3 0.0 -0.3 -0.3 1 +1894 12 4 1.5 1.2 1.2 1 +1894 12 5 3.1 2.8 2.8 1 +1894 12 6 0.0 -0.3 -0.3 1 +1894 12 7 2.6 2.3 2.3 1 +1894 12 8 2.6 2.3 2.3 1 +1894 12 9 2.2 1.9 1.9 1 +1894 12 10 -0.3 -0.6 -0.6 1 +1894 12 11 0.9 0.6 0.6 1 +1894 12 12 -0.3 -0.6 -0.6 1 +1894 12 13 3.6 3.3 3.3 1 +1894 12 14 6.0 5.7 5.7 1 +1894 12 15 -3.7 -4.0 -4.0 1 +1894 12 16 -1.5 -1.8 -1.8 1 +1894 12 17 -5.8 -6.1 -6.1 1 +1894 12 18 -3.2 -3.5 -3.5 1 +1894 12 19 1.6 1.3 1.3 1 +1894 12 20 0.2 -0.1 -0.1 1 +1894 12 21 -0.2 -0.5 -0.5 1 +1894 12 22 2.2 1.8 1.8 1 +1894 12 23 1.8 1.4 1.4 1 +1894 12 24 0.3 -0.1 -0.1 1 +1894 12 25 2.0 1.6 1.6 1 +1894 12 26 5.6 5.2 5.2 1 +1894 12 27 0.6 0.2 0.2 1 +1894 12 28 -1.7 -2.1 -2.1 1 +1894 12 29 0.8 0.4 0.4 1 +1894 12 30 -0.4 -0.8 -0.8 1 +1894 12 31 -2.9 -3.3 -3.3 1 +1895 1 1 -2.1 -2.5 -2.5 1 +1895 1 2 -2.3 -2.7 -2.7 1 +1895 1 3 -0.8 -1.2 -1.2 1 +1895 1 4 -2.7 -3.1 -3.1 1 +1895 1 5 -3.4 -3.9 -3.9 1 +1895 1 6 -7.9 -8.4 -8.4 1 +1895 1 7 -3.6 -4.1 -4.1 1 +1895 1 8 -3.6 -4.1 -4.1 1 +1895 1 9 -3.5 -4.0 -4.0 1 +1895 1 10 -2.6 -3.1 -3.1 1 +1895 1 11 -1.0 -1.5 -1.5 1 +1895 1 12 -3.9 -4.4 -4.4 1 +1895 1 13 -1.7 -2.2 -2.2 1 +1895 1 14 -1.3 -1.8 -1.8 1 +1895 1 15 -1.4 -1.9 -1.9 1 +1895 1 16 1.2 0.7 0.7 1 +1895 1 17 -1.7 -2.2 -2.2 1 +1895 1 18 -0.8 -1.3 -1.3 1 +1895 1 19 1.2 0.7 0.7 1 +1895 1 20 -1.3 -1.8 -1.8 1 +1895 1 21 -4.2 -4.7 -4.7 1 +1895 1 22 -12.6 -13.1 -13.1 1 +1895 1 23 -8.6 -9.1 -9.1 1 +1895 1 24 -14.4 -14.9 -14.9 1 +1895 1 25 -15.9 -16.4 -16.4 1 +1895 1 26 -13.5 -14.0 -14.0 1 +1895 1 27 -13.8 -14.3 -14.3 1 +1895 1 28 -10.3 -10.8 -10.8 1 +1895 1 29 -12.7 -13.2 -13.2 1 +1895 1 30 -13.1 -13.6 -13.6 1 +1895 1 31 -3.6 -4.1 -4.1 1 +1895 2 1 -1.2 -1.7 -1.7 1 +1895 2 2 -4.7 -5.2 -5.2 1 +1895 2 3 -4.9 -5.4 -5.4 1 +1895 2 4 -11.4 -11.9 -11.9 1 +1895 2 5 -18.9 -19.4 -19.4 1 +1895 2 6 -14.9 -15.4 -15.4 1 +1895 2 7 -11.7 -12.2 -12.2 1 +1895 2 8 -13.8 -14.3 -14.3 1 +1895 2 9 -11.3 -11.8 -11.8 1 +1895 2 10 -11.9 -12.4 -12.4 1 +1895 2 11 -11.4 -11.9 -11.9 1 +1895 2 12 -14.1 -14.6 -14.6 1 +1895 2 13 -13.3 -13.8 -13.8 1 +1895 2 14 -16.2 -16.7 -16.7 1 +1895 2 15 -7.3 -7.8 -7.8 1 +1895 2 16 -5.2 -5.7 -5.7 1 +1895 2 17 1.3 0.8 0.8 1 +1895 2 18 -0.8 -1.3 -1.3 1 +1895 2 19 -1.4 -1.9 -1.9 1 +1895 2 20 0.5 0.0 0.0 1 +1895 2 21 0.1 -0.4 -0.4 1 +1895 2 22 -6.6 -7.1 -7.1 1 +1895 2 23 -6.3 -6.8 -6.8 1 +1895 2 24 -4.2 -4.7 -4.7 1 +1895 2 25 -11.0 -11.5 -11.5 1 +1895 2 26 -7.3 -7.8 -7.8 1 +1895 2 27 -2.0 -2.5 -2.5 1 +1895 2 28 -6.4 -6.9 -6.9 1 +1895 3 1 -3.8 -4.3 -4.3 1 +1895 3 2 -2.2 -2.7 -2.7 1 +1895 3 3 -4.1 -4.6 -4.6 1 +1895 3 4 -9.2 -9.7 -9.7 1 +1895 3 5 -8.8 -9.3 -9.3 1 +1895 3 6 -5.8 -6.3 -6.3 1 +1895 3 7 -9.1 -9.6 -9.6 1 +1895 3 8 -4.3 -4.8 -4.8 1 +1895 3 9 -2.4 -2.9 -2.9 1 +1895 3 10 -3.1 -3.6 -3.6 1 +1895 3 11 0.0 -0.5 -0.5 1 +1895 3 12 -1.3 -1.8 -1.8 1 +1895 3 13 -0.6 -1.1 -1.1 1 +1895 3 14 0.9 0.4 0.4 1 +1895 3 15 0.8 0.3 0.3 1 +1895 3 16 1.0 0.5 0.5 1 +1895 3 17 2.9 2.4 2.4 1 +1895 3 18 -0.7 -1.2 -1.2 1 +1895 3 19 -3.7 -4.2 -4.2 1 +1895 3 20 -6.2 -6.7 -6.7 1 +1895 3 21 -6.1 -6.6 -6.6 1 +1895 3 22 -8.1 -8.6 -8.6 1 +1895 3 23 -7.2 -7.7 -7.7 1 +1895 3 24 -1.0 -1.5 -1.5 1 +1895 3 25 1.9 1.4 1.4 1 +1895 3 26 2.5 2.0 2.0 1 +1895 3 27 0.9 0.4 0.4 1 +1895 3 28 1.7 1.2 1.2 1 +1895 3 29 2.4 1.9 1.9 1 +1895 3 30 1.0 0.5 0.5 1 +1895 3 31 1.6 1.1 1.1 1 +1895 4 1 2.2 1.7 1.7 1 +1895 4 2 0.7 0.2 0.2 1 +1895 4 3 2.3 1.8 1.8 1 +1895 4 4 -4.2 -4.7 -4.7 1 +1895 4 5 0.1 -0.4 -0.4 1 +1895 4 6 0.3 -0.2 -0.2 1 +1895 4 7 2.2 1.7 1.7 1 +1895 4 8 1.3 0.8 0.8 1 +1895 4 9 1.6 1.1 1.1 1 +1895 4 10 7.1 6.6 6.6 1 +1895 4 11 5.9 5.4 5.4 1 +1895 4 12 0.6 0.1 0.1 1 +1895 4 13 2.3 1.8 1.8 1 +1895 4 14 6.2 5.7 5.7 1 +1895 4 15 3.1 2.6 2.6 1 +1895 4 16 2.1 1.6 1.6 1 +1895 4 17 3.3 2.8 2.8 1 +1895 4 18 4.7 4.2 4.2 1 +1895 4 19 5.8 5.3 5.3 1 +1895 4 20 7.0 6.5 6.5 1 +1895 4 21 6.1 5.6 5.6 1 +1895 4 22 5.1 4.6 4.6 1 +1895 4 23 5.1 4.5 4.5 1 +1895 4 24 6.2 5.6 5.6 1 +1895 4 25 6.9 6.3 6.3 1 +1895 4 26 7.3 6.7 6.7 1 +1895 4 27 11.4 10.8 10.8 1 +1895 4 28 8.4 7.8 7.8 1 +1895 4 29 11.6 11.0 11.0 1 +1895 4 30 11.6 11.0 11.0 1 +1895 5 1 11.8 11.2 11.2 1 +1895 5 2 11.6 11.0 11.0 1 +1895 5 3 8.5 7.8 7.8 1 +1895 5 4 9.7 9.0 9.0 1 +1895 5 5 10.6 9.9 9.9 1 +1895 5 6 12.6 11.9 11.9 1 +1895 5 7 13.0 12.3 12.3 1 +1895 5 8 14.6 13.9 13.9 1 +1895 5 9 13.5 12.8 12.8 1 +1895 5 10 16.0 15.3 15.3 1 +1895 5 11 14.2 13.5 13.5 1 +1895 5 12 10.7 10.0 10.0 1 +1895 5 13 11.4 10.6 10.6 1 +1895 5 14 12.5 11.7 11.7 1 +1895 5 15 10.5 9.7 9.7 1 +1895 5 16 11.0 10.2 10.2 1 +1895 5 17 12.1 11.3 11.3 1 +1895 5 18 11.6 10.8 10.8 1 +1895 5 19 12.7 12.0 12.0 1 +1895 5 20 14.7 14.0 14.0 1 +1895 5 21 12.8 12.1 12.1 1 +1895 5 22 13.2 12.5 12.5 1 +1895 5 23 14.9 14.2 14.2 1 +1895 5 24 16.3 15.6 15.6 1 +1895 5 25 13.8 13.1 13.1 1 +1895 5 26 8.2 7.5 7.5 1 +1895 5 27 10.4 9.7 9.7 1 +1895 5 28 9.6 8.9 8.9 1 +1895 5 29 13.9 13.2 13.2 1 +1895 5 30 14.2 13.5 13.5 1 +1895 5 31 12.7 12.1 12.1 1 +1895 6 1 12.8 12.2 12.2 1 +1895 6 2 13.0 12.4 12.4 1 +1895 6 3 13.4 12.8 12.8 1 +1895 6 4 17.3 16.7 16.7 1 +1895 6 5 19.3 18.7 18.7 1 +1895 6 6 16.8 16.2 16.2 1 +1895 6 7 18.2 17.6 17.6 1 +1895 6 8 16.0 15.4 15.4 1 +1895 6 9 18.4 17.8 17.8 1 +1895 6 10 19.7 19.1 19.1 1 +1895 6 11 18.6 18.0 18.0 1 +1895 6 12 16.6 16.1 16.1 1 +1895 6 13 14.6 14.1 14.1 1 +1895 6 14 13.4 12.9 12.9 1 +1895 6 15 14.1 13.6 13.6 1 +1895 6 16 15.7 15.2 15.2 1 +1895 6 17 15.6 15.1 15.1 1 +1895 6 18 15.9 15.4 15.4 1 +1895 6 19 18.8 18.3 18.3 1 +1895 6 20 19.9 19.4 19.4 1 +1895 6 21 23.2 22.7 22.7 1 +1895 6 22 19.5 19.0 19.0 1 +1895 6 23 18.0 17.5 17.5 1 +1895 6 24 15.3 14.8 14.8 1 +1895 6 25 10.1 9.6 9.6 1 +1895 6 26 13.4 12.9 12.9 1 +1895 6 27 13.5 13.0 13.0 1 +1895 6 28 15.5 15.0 15.0 1 +1895 6 29 17.0 16.5 16.5 1 +1895 6 30 18.7 18.2 18.2 1 +1895 7 1 18.2 17.7 17.7 1 +1895 7 2 16.0 15.5 15.5 1 +1895 7 3 17.4 16.9 16.9 1 +1895 7 4 16.1 15.6 15.6 1 +1895 7 5 14.3 13.8 13.8 1 +1895 7 6 16.7 16.2 16.2 1 +1895 7 7 18.0 17.5 17.5 1 +1895 7 8 15.9 15.4 15.4 1 +1895 7 9 15.9 15.4 15.4 1 +1895 7 10 17.7 17.2 17.2 1 +1895 7 11 14.8 14.3 14.3 1 +1895 7 12 14.0 13.5 13.5 1 +1895 7 13 13.0 12.5 12.5 1 +1895 7 14 13.6 13.1 13.1 1 +1895 7 15 15.0 14.4 14.4 1 +1895 7 16 14.5 14.0 14.0 1 +1895 7 17 15.8 15.3 15.3 1 +1895 7 18 17.9 17.4 17.4 1 +1895 7 19 19.0 18.5 18.5 1 +1895 7 20 17.1 16.6 16.6 1 +1895 7 21 18.1 17.6 17.6 1 +1895 7 22 17.1 16.6 16.6 1 +1895 7 23 17.0 16.5 16.5 1 +1895 7 24 16.4 15.9 15.9 1 +1895 7 25 17.2 16.7 16.7 1 +1895 7 26 15.1 14.6 14.6 1 +1895 7 27 15.2 14.7 14.7 1 +1895 7 28 15.2 14.7 14.7 1 +1895 7 29 13.5 13.0 13.0 1 +1895 7 30 15.1 14.6 14.6 1 +1895 7 31 15.1 14.6 14.6 1 +1895 8 1 15.7 15.2 15.2 1 +1895 8 2 16.8 16.3 16.3 1 +1895 8 3 17.1 16.6 16.6 1 +1895 8 4 18.6 18.1 18.1 1 +1895 8 5 17.9 17.4 17.4 1 +1895 8 6 18.4 17.9 17.9 1 +1895 8 7 16.5 16.0 16.0 1 +1895 8 8 15.1 14.6 14.6 1 +1895 8 9 14.4 13.9 13.9 1 +1895 8 10 15.3 14.8 14.8 1 +1895 8 11 14.7 14.2 14.2 1 +1895 8 12 16.3 15.8 15.8 1 +1895 8 13 14.2 13.7 13.7 1 +1895 8 14 13.0 12.5 12.5 1 +1895 8 15 13.4 12.9 12.9 1 +1895 8 16 15.4 14.9 14.9 1 +1895 8 17 16.6 16.1 16.1 1 +1895 8 18 16.6 16.1 16.1 1 +1895 8 19 16.4 15.9 15.9 1 +1895 8 20 18.4 17.9 17.9 1 +1895 8 21 16.6 16.1 16.1 1 +1895 8 22 17.8 17.3 17.3 1 +1895 8 23 20.1 19.6 19.6 1 +1895 8 24 18.7 18.2 18.2 1 +1895 8 25 16.2 15.8 15.8 1 +1895 8 26 13.5 13.1 13.1 1 +1895 8 27 14.7 14.3 14.3 1 +1895 8 28 14.9 14.5 14.5 1 +1895 8 29 13.2 12.8 12.8 1 +1895 8 30 12.8 12.4 12.4 1 +1895 8 31 11.6 11.2 11.2 1 +1895 9 1 9.7 9.3 9.3 1 +1895 9 2 11.3 10.9 10.9 1 +1895 9 3 15.6 15.2 15.2 1 +1895 9 4 17.1 16.7 16.7 1 +1895 9 5 15.2 14.8 14.8 1 +1895 9 6 13.3 12.9 12.9 1 +1895 9 7 10.9 10.6 10.6 1 +1895 9 8 11.4 11.1 11.1 1 +1895 9 9 8.9 8.6 8.6 1 +1895 9 10 10.0 9.7 9.7 1 +1895 9 11 13.8 13.5 13.5 1 +1895 9 12 13.7 13.4 13.4 1 +1895 9 13 12.0 11.7 11.7 1 +1895 9 14 11.6 11.3 11.3 1 +1895 9 15 10.8 10.5 10.5 1 +1895 9 16 10.3 10.0 10.0 1 +1895 9 17 10.5 10.2 10.2 1 +1895 9 18 10.9 10.6 10.6 1 +1895 9 19 9.6 9.3 9.3 1 +1895 9 20 8.8 8.5 8.5 1 +1895 9 21 7.5 7.2 7.2 1 +1895 9 22 11.4 11.1 11.1 1 +1895 9 23 12.7 12.4 12.4 1 +1895 9 24 10.8 10.5 10.5 1 +1895 9 25 11.6 11.3 11.3 1 +1895 9 26 15.0 14.8 14.8 1 +1895 9 27 14.9 14.7 14.7 1 +1895 9 28 13.4 13.2 13.2 1 +1895 9 29 12.3 12.1 12.1 1 +1895 9 30 10.5 10.3 10.3 1 +1895 10 1 11.1 10.9 10.9 1 +1895 10 2 12.1 11.9 11.9 1 +1895 10 3 11.5 11.3 11.3 1 +1895 10 4 10.2 10.0 10.0 1 +1895 10 5 9.2 9.0 9.0 1 +1895 10 6 9.4 9.2 9.2 1 +1895 10 7 7.7 7.5 7.5 1 +1895 10 8 9.0 8.8 8.8 1 +1895 10 9 10.7 10.5 10.5 1 +1895 10 10 13.0 12.8 12.8 1 +1895 10 11 9.6 9.4 9.4 1 +1895 10 12 6.6 6.4 6.4 1 +1895 10 13 7.2 7.0 7.0 1 +1895 10 14 9.7 9.5 9.5 1 +1895 10 15 4.6 4.4 4.4 1 +1895 10 16 3.9 3.7 3.7 1 +1895 10 17 3.3 3.1 3.1 1 +1895 10 18 6.2 6.0 6.0 1 +1895 10 19 6.1 5.9 5.9 1 +1895 10 20 4.1 3.9 3.9 1 +1895 10 21 1.2 1.0 1.0 1 +1895 10 22 1.9 1.7 1.7 1 +1895 10 23 3.4 3.2 3.2 1 +1895 10 24 2.6 2.4 2.4 1 +1895 10 25 2.2 2.0 2.0 1 +1895 10 26 3.8 3.6 3.6 1 +1895 10 27 3.0 2.8 2.8 1 +1895 10 28 2.3 2.1 2.1 1 +1895 10 29 2.0 1.8 1.8 1 +1895 10 30 1.9 1.7 1.7 1 +1895 10 31 -2.3 -2.5 -2.5 1 +1895 11 1 -1.0 -1.3 -1.3 1 +1895 11 2 2.9 2.6 2.6 1 +1895 11 3 3.4 3.1 3.1 1 +1895 11 4 1.7 1.4 1.4 1 +1895 11 5 1.6 1.3 1.3 1 +1895 11 6 6.5 6.2 6.2 1 +1895 11 7 5.8 5.5 5.5 1 +1895 11 8 0.1 -0.2 -0.2 1 +1895 11 9 0.1 -0.2 -0.2 1 +1895 11 10 3.4 3.1 3.1 1 +1895 11 11 4.9 4.6 4.6 1 +1895 11 12 6.9 6.6 6.6 1 +1895 11 13 5.2 4.9 4.9 1 +1895 11 14 5.6 5.3 5.3 1 +1895 11 15 5.6 5.3 5.3 1 +1895 11 16 7.9 7.6 7.6 1 +1895 11 17 10.1 9.8 9.8 1 +1895 11 18 4.9 4.6 4.6 1 +1895 11 19 0.8 0.5 0.5 1 +1895 11 20 0.4 0.1 0.1 1 +1895 11 21 1.2 0.9 0.9 1 +1895 11 22 1.6 1.3 1.3 1 +1895 11 23 1.4 1.1 1.1 1 +1895 11 24 0.6 0.3 0.3 1 +1895 11 25 2.9 2.6 2.6 1 +1895 11 26 2.4 2.1 2.1 1 +1895 11 27 0.5 0.2 0.2 1 +1895 11 28 -6.5 -6.8 -6.8 1 +1895 11 29 -5.3 -5.6 -5.6 1 +1895 11 30 -4.2 -4.5 -4.5 1 +1895 12 1 -2.3 -2.6 -2.6 1 +1895 12 2 0.0 -0.3 -0.3 1 +1895 12 3 1.7 1.4 1.4 1 +1895 12 4 2.0 1.7 1.7 1 +1895 12 5 3.4 3.1 3.1 1 +1895 12 6 -0.2 -0.5 -0.5 1 +1895 12 7 0.5 0.2 0.2 1 +1895 12 8 -2.7 -3.0 -3.0 1 +1895 12 9 -6.8 -7.1 -7.1 1 +1895 12 10 1.1 0.8 0.8 1 +1895 12 11 0.0 -0.3 -0.3 1 +1895 12 12 -1.7 -2.0 -2.0 1 +1895 12 13 2.0 1.7 1.7 1 +1895 12 14 1.1 0.8 0.8 1 +1895 12 15 1.3 1.0 1.0 1 +1895 12 16 2.9 2.6 2.6 1 +1895 12 17 2.6 2.3 2.3 1 +1895 12 18 -0.8 -1.1 -1.1 1 +1895 12 19 -0.6 -0.9 -0.9 1 +1895 12 20 -0.5 -0.8 -0.8 1 +1895 12 21 -0.7 -1.0 -1.0 1 +1895 12 22 -1.6 -2.0 -2.0 1 +1895 12 23 -1.1 -1.5 -1.5 1 +1895 12 24 -1.7 -2.1 -2.1 1 +1895 12 25 -4.6 -5.0 -5.0 1 +1895 12 26 -4.5 -4.9 -4.9 1 +1895 12 27 -4.9 -5.3 -5.3 1 +1895 12 28 -8.7 -9.1 -9.1 1 +1895 12 29 -6.1 -6.5 -6.5 1 +1895 12 30 -4.1 -4.5 -4.5 1 +1895 12 31 -6.5 -6.9 -6.9 1 +1896 1 1 -4.8 -5.2 -5.2 1 +1896 1 2 -1.0 -1.4 -1.4 1 +1896 1 3 -3.1 -3.5 -3.5 1 +1896 1 4 -3.4 -3.8 -3.8 1 +1896 1 5 -1.9 -2.4 -2.4 1 +1896 1 6 -4.3 -4.8 -4.8 1 +1896 1 7 -2.0 -2.5 -2.5 1 +1896 1 8 -2.3 -2.8 -2.8 1 +1896 1 9 -5.4 -5.9 -5.9 1 +1896 1 10 0.3 -0.2 -0.2 1 +1896 1 11 2.4 1.9 1.9 1 +1896 1 12 -1.6 -2.1 -2.1 1 +1896 1 13 0.0 -0.5 -0.5 1 +1896 1 14 -5.1 -5.6 -5.6 1 +1896 1 15 -10.2 -10.7 -10.7 1 +1896 1 16 -0.7 -1.2 -1.2 1 +1896 1 17 -5.3 -5.8 -5.8 1 +1896 1 18 0.0 -0.5 -0.5 1 +1896 1 19 2.6 2.1 2.1 1 +1896 1 20 -5.0 -5.5 -5.5 1 +1896 1 21 -1.5 -2.0 -2.0 1 +1896 1 22 -0.5 -1.0 -1.0 1 +1896 1 23 -1.4 -1.9 -1.9 1 +1896 1 24 -2.5 -3.0 -3.0 1 +1896 1 25 -0.5 -1.0 -1.0 1 +1896 1 26 -9.9 -10.4 -10.4 1 +1896 1 27 -5.4 -5.9 -5.9 1 +1896 1 28 -0.4 -0.9 -0.9 1 +1896 1 29 1.1 0.6 0.6 1 +1896 1 30 5.4 4.9 4.9 1 +1896 1 31 5.1 4.6 4.6 1 +1896 2 1 0.1 -0.4 -0.4 1 +1896 2 2 1.5 1.0 1.0 1 +1896 2 3 1.7 1.2 1.2 1 +1896 2 4 2.7 2.2 2.2 1 +1896 2 5 4.1 3.6 3.6 1 +1896 2 6 6.3 5.8 5.8 1 +1896 2 7 2.9 2.4 2.4 1 +1896 2 8 4.2 3.7 3.7 1 +1896 2 9 4.7 4.2 4.2 1 +1896 2 10 3.6 3.1 3.1 1 +1896 2 11 2.4 1.9 1.9 1 +1896 2 12 -2.2 -2.7 -2.7 1 +1896 2 13 -7.8 -8.3 -8.3 1 +1896 2 14 -7.0 -7.5 -7.5 1 +1896 2 15 -8.2 -8.7 -8.7 1 +1896 2 16 -2.0 -2.5 -2.5 1 +1896 2 17 3.0 2.5 2.5 1 +1896 2 18 1.7 1.2 1.2 1 +1896 2 19 1.2 0.7 0.7 1 +1896 2 20 -1.2 -1.7 -1.7 1 +1896 2 21 -1.5 -2.0 -2.0 1 +1896 2 22 -3.5 -4.0 -4.0 1 +1896 2 23 -1.6 -2.1 -2.1 1 +1896 2 24 -3.5 -4.0 -4.0 1 +1896 2 25 -2.4 -2.9 -2.9 1 +1896 2 26 -2.2 -2.7 -2.7 1 +1896 2 27 -0.9 -1.4 -1.4 1 +1896 2 28 -0.6 -1.1 -1.1 1 +1896 2 29 -2.8 -3.3 -3.3 1 +1896 3 1 -5.8 -6.3 -6.3 1 +1896 3 2 -1.8 -2.3 -2.3 1 +1896 3 3 -1.8 -2.3 -2.3 1 +1896 3 4 2.4 1.9 1.9 1 +1896 3 5 2.0 1.5 1.5 1 +1896 3 6 2.0 1.5 1.5 1 +1896 3 7 1.3 0.8 0.8 1 +1896 3 8 0.2 -0.3 -0.3 1 +1896 3 9 -1.3 -1.8 -1.8 1 +1896 3 10 -0.1 -0.6 -0.6 1 +1896 3 11 0.7 0.2 0.2 1 +1896 3 12 -3.5 -4.0 -4.0 1 +1896 3 13 -5.4 -5.9 -5.9 1 +1896 3 14 -5.4 -5.9 -5.9 1 +1896 3 15 -3.8 -4.3 -4.3 1 +1896 3 16 -2.0 -2.5 -2.5 1 +1896 3 17 0.7 0.2 0.2 1 +1896 3 18 2.2 1.7 1.7 1 +1896 3 19 2.9 2.4 2.4 1 +1896 3 20 1.9 1.4 1.4 1 +1896 3 21 1.8 1.3 1.3 1 +1896 3 22 5.1 4.6 4.6 1 +1896 3 23 4.8 4.3 4.3 1 +1896 3 24 4.0 3.5 3.5 1 +1896 3 25 6.1 5.6 5.6 1 +1896 3 26 10.1 9.6 9.6 1 +1896 3 27 7.3 6.8 6.8 1 +1896 3 28 3.1 2.6 2.6 1 +1896 3 29 -1.9 -2.4 -2.4 1 +1896 3 30 -4.7 -5.2 -5.2 1 +1896 3 31 -3.2 -3.7 -3.7 1 +1896 4 1 0.2 -0.3 -0.3 1 +1896 4 2 0.8 0.3 0.3 1 +1896 4 3 0.5 0.0 0.0 1 +1896 4 4 -0.3 -0.8 -0.8 1 +1896 4 5 -0.5 -1.0 -1.0 1 +1896 4 6 1.2 0.7 0.7 1 +1896 4 7 2.0 1.5 1.5 1 +1896 4 8 3.8 3.3 3.3 1 +1896 4 9 5.2 4.7 4.7 1 +1896 4 10 4.8 4.3 4.3 1 +1896 4 11 4.9 4.4 4.4 1 +1896 4 12 2.6 2.1 2.1 1 +1896 4 13 3.0 2.5 2.5 1 +1896 4 14 2.7 2.2 2.2 1 +1896 4 15 2.9 2.4 2.4 1 +1896 4 16 3.9 3.4 3.4 1 +1896 4 17 2.7 2.2 2.2 1 +1896 4 18 5.2 4.7 4.7 1 +1896 4 19 2.3 1.8 1.8 1 +1896 4 20 5.0 4.5 4.5 1 +1896 4 21 7.4 6.9 6.9 1 +1896 4 22 5.8 5.3 5.3 1 +1896 4 23 2.7 2.1 2.1 1 +1896 4 24 3.0 2.4 2.4 1 +1896 4 25 7.1 6.5 6.5 1 +1896 4 26 8.2 7.6 7.6 1 +1896 4 27 9.2 8.6 8.6 1 +1896 4 28 8.9 8.3 8.3 1 +1896 4 29 7.2 6.6 6.6 1 +1896 4 30 6.9 6.3 6.3 1 +1896 5 1 6.3 5.7 5.7 1 +1896 5 2 8.6 8.0 8.0 1 +1896 5 3 8.3 7.6 7.6 1 +1896 5 4 5.8 5.1 5.1 1 +1896 5 5 8.0 7.3 7.3 1 +1896 5 6 8.6 7.9 7.9 1 +1896 5 7 7.3 6.6 6.6 1 +1896 5 8 10.4 9.7 9.7 1 +1896 5 9 7.7 7.0 7.0 1 +1896 5 10 8.4 7.7 7.7 1 +1896 5 11 10.9 10.2 10.2 1 +1896 5 12 7.7 7.0 7.0 1 +1896 5 13 4.9 4.1 4.1 1 +1896 5 14 7.8 7.0 7.0 1 +1896 5 15 4.0 3.2 3.2 1 +1896 5 16 4.0 3.2 3.2 1 +1896 5 17 5.4 4.6 4.6 1 +1896 5 18 8.5 7.7 7.7 1 +1896 5 19 9.8 9.1 9.1 1 +1896 5 20 6.6 5.9 5.9 1 +1896 5 21 6.5 5.8 5.8 1 +1896 5 22 10.0 9.3 9.3 1 +1896 5 23 12.9 12.2 12.2 1 +1896 5 24 12.7 12.0 12.0 1 +1896 5 25 13.1 12.4 12.4 1 +1896 5 26 13.8 13.1 13.1 1 +1896 5 27 15.4 14.7 14.7 1 +1896 5 28 16.1 15.4 15.4 1 +1896 5 29 9.0 8.3 8.3 1 +1896 5 30 8.8 8.1 8.1 1 +1896 5 31 10.4 9.8 9.8 1 +1896 6 1 14.3 13.7 13.7 1 +1896 6 2 13.3 12.7 12.7 1 +1896 6 3 14.8 14.2 14.2 1 +1896 6 4 18.8 18.2 18.2 1 +1896 6 5 20.3 19.7 19.7 1 +1896 6 6 19.4 18.8 18.8 1 +1896 6 7 19.3 18.7 18.7 1 +1896 6 8 20.6 20.0 20.0 1 +1896 6 9 18.5 17.9 17.9 1 +1896 6 10 18.5 17.9 17.9 1 +1896 6 11 19.7 19.1 19.1 1 +1896 6 12 21.5 21.0 21.0 1 +1896 6 13 19.5 19.0 19.0 1 +1896 6 14 18.1 17.6 17.6 1 +1896 6 15 18.1 17.6 17.6 1 +1896 6 16 24.3 23.8 23.8 1 +1896 6 17 23.9 23.4 23.4 1 +1896 6 18 23.2 22.7 22.7 1 +1896 6 19 21.3 20.8 20.8 1 +1896 6 20 17.0 16.5 16.5 1 +1896 6 21 16.2 15.7 15.7 1 +1896 6 22 13.7 13.2 13.2 1 +1896 6 23 14.1 13.6 13.6 1 +1896 6 24 13.0 12.5 12.5 1 +1896 6 25 13.4 12.9 12.9 1 +1896 6 26 14.6 14.1 14.1 1 +1896 6 27 15.9 15.4 15.4 1 +1896 6 28 17.3 16.8 16.8 1 +1896 6 29 18.2 17.7 17.7 1 +1896 6 30 16.5 16.0 16.0 1 +1896 7 1 17.4 16.9 16.9 1 +1896 7 2 15.9 15.4 15.4 1 +1896 7 3 16.4 15.9 15.9 1 +1896 7 4 16.7 16.2 16.2 1 +1896 7 5 17.2 16.7 16.7 1 +1896 7 6 21.1 20.6 20.6 1 +1896 7 7 19.7 19.2 19.2 1 +1896 7 8 19.0 18.5 18.5 1 +1896 7 9 18.5 18.0 18.0 1 +1896 7 10 20.3 19.8 19.8 1 +1896 7 11 15.5 15.0 15.0 1 +1896 7 12 17.7 17.2 17.2 1 +1896 7 13 20.7 20.2 20.2 1 +1896 7 14 21.6 21.1 21.1 1 +1896 7 15 21.7 21.1 21.1 1 +1896 7 16 21.2 20.7 20.7 1 +1896 7 17 23.3 22.8 22.8 1 +1896 7 18 23.2 22.7 22.7 1 +1896 7 19 21.1 20.6 20.6 1 +1896 7 20 20.5 20.0 20.0 1 +1896 7 21 22.2 21.7 21.7 1 +1896 7 22 21.8 21.3 21.3 1 +1896 7 23 20.5 20.0 20.0 1 +1896 7 24 18.1 17.6 17.6 1 +1896 7 25 18.4 17.9 17.9 1 +1896 7 26 18.2 17.7 17.7 1 +1896 7 27 19.4 18.9 18.9 1 +1896 7 28 20.4 19.9 19.9 1 +1896 7 29 14.8 14.3 14.3 1 +1896 7 30 16.3 15.8 15.8 1 +1896 7 31 19.1 18.6 18.6 1 +1896 8 1 22.4 21.9 21.9 1 +1896 8 2 22.2 21.7 21.7 1 +1896 8 3 18.9 18.4 18.4 1 +1896 8 4 16.1 15.6 15.6 1 +1896 8 5 11.8 11.3 11.3 1 +1896 8 6 12.8 12.3 12.3 1 +1896 8 7 12.9 12.4 12.4 1 +1896 8 8 12.3 11.8 11.8 1 +1896 8 9 13.9 13.4 13.4 1 +1896 8 10 14.6 14.1 14.1 1 +1896 8 11 13.9 13.4 13.4 1 +1896 8 12 13.5 13.0 13.0 1 +1896 8 13 13.4 12.9 12.9 1 +1896 8 14 13.9 13.4 13.4 1 +1896 8 15 14.2 13.7 13.7 1 +1896 8 16 15.0 14.5 14.5 1 +1896 8 17 13.5 13.0 13.0 1 +1896 8 18 14.4 13.9 13.9 1 +1896 8 19 14.9 14.4 14.4 1 +1896 8 20 14.8 14.3 14.3 1 +1896 8 21 14.1 13.6 13.6 1 +1896 8 22 15.6 15.1 15.1 1 +1896 8 23 15.2 14.7 14.7 1 +1896 8 24 14.7 14.2 14.2 1 +1896 8 25 14.1 13.7 13.7 1 +1896 8 26 13.8 13.4 13.4 1 +1896 8 27 14.7 14.3 14.3 1 +1896 8 28 13.5 13.1 13.1 1 +1896 8 29 13.8 13.4 13.4 1 +1896 8 30 15.4 15.0 15.0 1 +1896 8 31 15.7 15.3 15.3 1 +1896 9 1 16.2 15.8 15.8 1 +1896 9 2 16.9 16.5 16.5 1 +1896 9 3 16.3 15.9 15.9 1 +1896 9 4 15.6 15.2 15.2 1 +1896 9 5 12.9 12.5 12.5 1 +1896 9 6 8.8 8.4 8.4 1 +1896 9 7 10.7 10.4 10.4 1 +1896 9 8 14.0 13.7 13.7 1 +1896 9 9 10.7 10.4 10.4 1 +1896 9 10 10.1 9.8 9.8 1 +1896 9 11 10.2 9.9 9.9 1 +1896 9 12 10.5 10.2 10.2 1 +1896 9 13 11.6 11.3 11.3 1 +1896 9 14 13.8 13.5 13.5 1 +1896 9 15 13.5 13.2 13.2 1 +1896 9 16 11.2 10.9 10.9 1 +1896 9 17 11.1 10.8 10.8 1 +1896 9 18 10.0 9.7 9.7 1 +1896 9 19 11.8 11.5 11.5 1 +1896 9 20 11.3 11.0 11.0 1 +1896 9 21 11.1 10.8 10.8 1 +1896 9 22 8.9 8.6 8.6 1 +1896 9 23 11.5 11.2 11.2 1 +1896 9 24 12.9 12.6 12.6 1 +1896 9 25 10.2 9.9 9.9 1 +1896 9 26 10.8 10.6 10.6 1 +1896 9 27 11.1 10.9 10.9 1 +1896 9 28 12.1 11.9 11.9 1 +1896 9 29 10.2 10.0 10.0 1 +1896 9 30 9.1 8.9 8.9 1 +1896 10 1 9.8 9.6 9.6 1 +1896 10 2 10.2 10.0 10.0 1 +1896 10 3 9.4 9.2 9.2 1 +1896 10 4 9.7 9.5 9.5 1 +1896 10 5 12.1 11.9 11.9 1 +1896 10 6 8.2 8.0 8.0 1 +1896 10 7 10.5 10.3 10.3 1 +1896 10 8 10.0 9.8 9.8 1 +1896 10 9 12.1 11.9 11.9 1 +1896 10 10 11.2 11.0 11.0 1 +1896 10 11 11.6 11.4 11.4 1 +1896 10 12 7.2 7.0 7.0 1 +1896 10 13 6.0 5.8 5.8 1 +1896 10 14 5.9 5.7 5.7 1 +1896 10 15 8.6 8.4 8.4 1 +1896 10 16 9.5 9.3 9.3 1 +1896 10 17 7.6 7.4 7.4 1 +1896 10 18 8.9 8.7 8.7 1 +1896 10 19 8.3 8.1 8.1 1 +1896 10 20 9.9 9.7 9.7 1 +1896 10 21 5.2 5.0 5.0 1 +1896 10 22 4.6 4.4 4.4 1 +1896 10 23 1.8 1.6 1.6 1 +1896 10 24 3.0 2.8 2.8 1 +1896 10 25 5.7 5.5 5.5 1 +1896 10 26 8.2 8.0 8.0 1 +1896 10 27 5.4 5.2 5.2 1 +1896 10 28 5.5 5.3 5.3 1 +1896 10 29 4.3 4.1 4.1 1 +1896 10 30 5.5 5.3 5.3 1 +1896 10 31 3.0 2.8 2.8 1 +1896 11 1 1.5 1.2 1.2 1 +1896 11 2 2.9 2.6 2.6 1 +1896 11 3 0.6 0.3 0.3 1 +1896 11 4 -1.9 -2.2 -2.2 1 +1896 11 5 0.7 0.4 0.4 1 +1896 11 6 7.5 7.2 7.2 1 +1896 11 7 2.5 2.2 2.2 1 +1896 11 8 -2.6 -2.9 -2.9 1 +1896 11 9 -1.7 -2.0 -2.0 1 +1896 11 10 -2.3 -2.6 -2.6 1 +1896 11 11 -2.4 -2.7 -2.7 1 +1896 11 12 -4.9 -5.2 -5.2 1 +1896 11 13 -5.1 -5.4 -5.4 1 +1896 11 14 -0.1 -0.4 -0.4 1 +1896 11 15 1.8 1.5 1.5 1 +1896 11 16 1.6 1.3 1.3 1 +1896 11 17 0.0 -0.3 -0.3 1 +1896 11 18 2.6 2.3 2.3 1 +1896 11 19 2.9 2.6 2.6 1 +1896 11 20 3.6 3.3 3.3 1 +1896 11 21 2.4 2.1 2.1 1 +1896 11 22 0.8 0.5 0.5 1 +1896 11 23 4.8 4.5 4.5 1 +1896 11 24 5.1 4.8 4.8 1 +1896 11 25 5.8 5.5 5.5 1 +1896 11 26 5.1 4.8 4.8 1 +1896 11 27 1.0 0.7 0.7 1 +1896 11 28 -4.2 -4.5 -4.5 1 +1896 11 29 -5.3 -5.6 -5.6 1 +1896 11 30 0.2 -0.1 -0.1 1 +1896 12 1 -1.5 -1.8 -1.8 1 +1896 12 2 -2.7 -3.0 -3.0 1 +1896 12 3 -1.0 -1.3 -1.3 1 +1896 12 4 -3.8 -4.1 -4.1 1 +1896 12 5 -5.3 -5.6 -5.6 1 +1896 12 6 0.2 -0.1 -0.1 1 +1896 12 7 0.7 0.4 0.4 1 +1896 12 8 1.9 1.6 1.6 1 +1896 12 9 3.4 3.1 3.1 1 +1896 12 10 1.3 1.0 1.0 1 +1896 12 11 -0.6 -0.9 -0.9 1 +1896 12 12 -2.8 -3.1 -3.1 1 +1896 12 13 -1.6 -1.9 -1.9 1 +1896 12 14 -4.8 -5.1 -5.1 1 +1896 12 15 -0.1 -0.4 -0.4 1 +1896 12 16 -1.5 -1.8 -1.8 1 +1896 12 17 -3.5 -3.8 -3.8 1 +1896 12 18 -5.9 -6.2 -6.2 1 +1896 12 19 -5.8 -6.1 -6.1 1 +1896 12 20 -4.5 -4.8 -4.8 1 +1896 12 21 -6.7 -7.0 -7.0 1 +1896 12 22 -2.4 -2.8 -2.8 1 +1896 12 23 -3.5 -3.9 -3.9 1 +1896 12 24 -3.0 -3.4 -3.4 1 +1896 12 25 -1.6 -2.0 -2.0 1 +1896 12 26 2.1 1.7 1.7 1 +1896 12 27 2.4 2.0 2.0 1 +1896 12 28 1.7 1.3 1.3 1 +1896 12 29 0.8 0.4 0.4 1 +1896 12 30 0.7 0.3 0.3 1 +1896 12 31 1.7 1.3 1.3 1 +1897 1 1 2.4 2.0 2.0 1 +1897 1 2 -0.8 -1.2 -1.2 1 +1897 1 3 -3.8 -4.2 -4.2 1 +1897 1 4 -0.7 -1.1 -1.1 1 +1897 1 5 -0.3 -0.8 -0.8 1 +1897 1 6 -1.9 -2.4 -2.4 1 +1897 1 7 -3.1 -3.6 -3.6 1 +1897 1 8 -4.7 -5.2 -5.2 1 +1897 1 9 -4.7 -5.2 -5.2 1 +1897 1 10 -3.0 -3.5 -3.5 1 +1897 1 11 -3.6 -4.1 -4.1 1 +1897 1 12 -3.2 -3.7 -3.7 1 +1897 1 13 -2.5 -3.0 -3.0 1 +1897 1 14 -3.7 -4.2 -4.2 1 +1897 1 15 -2.8 -3.3 -3.3 1 +1897 1 16 -0.3 -0.8 -0.8 1 +1897 1 17 -2.5 -3.0 -3.0 1 +1897 1 18 -4.2 -4.7 -4.7 1 +1897 1 19 -6.0 -6.5 -6.5 1 +1897 1 20 -4.7 -5.2 -5.2 1 +1897 1 21 -8.4 -8.9 -8.9 1 +1897 1 22 -10.8 -11.3 -11.3 1 +1897 1 23 -8.7 -9.2 -9.2 1 +1897 1 24 -9.0 -9.5 -9.5 1 +1897 1 25 -10.7 -11.2 -11.2 1 +1897 1 26 -13.5 -14.0 -14.0 1 +1897 1 27 -8.8 -9.3 -9.3 1 +1897 1 28 -3.3 -3.8 -3.8 1 +1897 1 29 -2.4 -2.9 -2.9 1 +1897 1 30 -2.6 -3.1 -3.1 1 +1897 1 31 -12.4 -12.9 -12.9 1 +1897 2 1 -13.0 -13.5 -13.5 1 +1897 2 2 -6.6 -7.1 -7.1 1 +1897 2 3 -15.7 -16.2 -16.2 1 +1897 2 4 -17.6 -18.1 -18.1 1 +1897 2 5 -15.0 -15.5 -15.5 1 +1897 2 6 -12.6 -13.1 -13.1 1 +1897 2 7 -10.8 -11.3 -11.3 1 +1897 2 8 -6.3 -6.8 -6.8 1 +1897 2 9 -3.7 -4.2 -4.2 1 +1897 2 10 -1.7 -2.2 -2.2 1 +1897 2 11 -3.4 -3.9 -3.9 1 +1897 2 12 -4.1 -4.6 -4.6 1 +1897 2 13 -4.0 -4.5 -4.5 1 +1897 2 14 -11.7 -12.2 -12.2 1 +1897 2 15 -14.5 -15.0 -15.0 1 +1897 2 16 -2.6 -3.1 -3.1 1 +1897 2 17 5.3 4.8 4.8 1 +1897 2 18 3.2 2.7 2.7 1 +1897 2 19 3.3 2.8 2.8 1 +1897 2 20 4.0 3.5 3.5 1 +1897 2 21 3.1 2.6 2.6 1 +1897 2 22 1.2 0.7 0.7 1 +1897 2 23 1.5 1.0 1.0 1 +1897 2 24 4.2 3.7 3.7 1 +1897 2 25 2.8 2.3 2.3 1 +1897 2 26 5.9 5.4 5.4 1 +1897 2 27 4.0 3.5 3.5 1 +1897 2 28 2.0 1.5 1.5 1 +1897 3 1 0.6 0.1 0.1 1 +1897 3 2 1.7 1.2 1.2 1 +1897 3 3 0.9 0.4 0.4 1 +1897 3 4 0.3 -0.2 -0.2 1 +1897 3 5 2.4 1.9 1.9 1 +1897 3 6 -0.2 -0.7 -0.7 1 +1897 3 7 -1.8 -2.3 -2.3 1 +1897 3 8 -3.3 -3.8 -3.8 1 +1897 3 9 -3.2 -3.7 -3.7 1 +1897 3 10 -4.1 -4.6 -4.6 1 +1897 3 11 -3.9 -4.4 -4.4 1 +1897 3 12 -5.6 -6.1 -6.1 1 +1897 3 13 -5.3 -5.8 -5.8 1 +1897 3 14 -2.9 -3.4 -3.4 1 +1897 3 15 -4.0 -4.5 -4.5 1 +1897 3 16 -1.6 -2.1 -2.1 1 +1897 3 17 0.5 0.0 0.0 1 +1897 3 18 0.7 0.2 0.2 1 +1897 3 19 0.8 0.3 0.3 1 +1897 3 20 -2.6 -3.1 -3.1 1 +1897 3 21 -6.0 -6.5 -6.5 1 +1897 3 22 -5.7 -6.2 -6.2 1 +1897 3 23 -1.6 -2.1 -2.1 1 +1897 3 24 1.1 0.6 0.6 1 +1897 3 25 0.5 0.0 0.0 1 +1897 3 26 -1.0 -1.5 -1.5 1 +1897 3 27 0.2 -0.3 -0.3 1 +1897 3 28 -0.4 -0.9 -0.9 1 +1897 3 29 1.6 1.1 1.1 1 +1897 3 30 2.0 1.5 1.5 1 +1897 3 31 0.8 0.3 0.3 1 +1897 4 1 1.0 0.5 0.5 1 +1897 4 2 0.8 0.3 0.3 1 +1897 4 3 -1.1 -1.6 -1.6 1 +1897 4 4 -0.9 -1.4 -1.4 1 +1897 4 5 -1.5 -2.0 -2.0 1 +1897 4 6 0.3 -0.2 -0.2 1 +1897 4 7 1.3 0.8 0.8 1 +1897 4 8 1.7 1.2 1.2 1 +1897 4 9 2.2 1.7 1.7 1 +1897 4 10 1.8 1.3 1.3 1 +1897 4 11 3.0 2.5 2.5 1 +1897 4 12 2.3 1.8 1.8 1 +1897 4 13 3.5 3.0 3.0 1 +1897 4 14 7.5 7.0 7.0 1 +1897 4 15 6.9 6.4 6.4 1 +1897 4 16 5.3 4.8 4.8 1 +1897 4 17 5.7 5.2 5.2 1 +1897 4 18 2.3 1.8 1.8 1 +1897 4 19 1.8 1.3 1.3 1 +1897 4 20 2.4 1.9 1.9 1 +1897 4 21 2.0 1.5 1.5 1 +1897 4 22 2.3 1.8 1.8 1 +1897 4 23 4.2 3.6 3.6 1 +1897 4 24 6.1 5.5 5.5 1 +1897 4 25 8.2 7.6 7.6 1 +1897 4 26 9.3 8.7 8.7 1 +1897 4 27 11.6 11.0 11.0 1 +1897 4 28 12.3 11.7 11.7 1 +1897 4 29 13.4 12.8 12.8 1 +1897 4 30 11.1 10.5 10.5 1 +1897 5 1 9.8 9.2 9.2 1 +1897 5 2 9.8 9.2 9.2 1 +1897 5 3 10.0 9.3 9.3 1 +1897 5 4 11.3 10.6 10.6 1 +1897 5 5 11.1 10.4 10.4 1 +1897 5 6 9.3 8.6 8.6 1 +1897 5 7 9.0 8.3 8.3 1 +1897 5 8 8.6 7.9 7.9 1 +1897 5 9 9.0 8.3 8.3 1 +1897 5 10 6.5 5.8 5.8 1 +1897 5 11 6.6 5.9 5.9 1 +1897 5 12 6.4 5.7 5.7 1 +1897 5 13 5.1 4.3 4.3 1 +1897 5 14 8.6 7.8 7.8 1 +1897 5 15 10.4 9.6 9.6 1 +1897 5 16 12.9 12.1 12.1 1 +1897 5 17 13.9 13.1 13.1 1 +1897 5 18 14.4 13.6 13.6 1 +1897 5 19 10.8 10.1 10.1 1 +1897 5 20 9.8 9.1 9.1 1 +1897 5 21 13.1 12.4 12.4 1 +1897 5 22 12.6 11.9 11.9 1 +1897 5 23 11.0 10.3 10.3 1 +1897 5 24 9.4 8.7 8.7 1 +1897 5 25 10.1 9.4 9.4 1 +1897 5 26 11.6 10.9 10.9 1 +1897 5 27 14.0 13.3 13.3 1 +1897 5 28 14.5 13.8 13.8 1 +1897 5 29 14.4 13.7 13.7 1 +1897 5 30 16.9 16.2 16.2 1 +1897 5 31 18.8 18.2 18.2 1 +1897 6 1 18.6 18.0 18.0 1 +1897 6 2 19.1 18.5 18.5 1 +1897 6 3 19.3 18.7 18.7 1 +1897 6 4 17.0 16.4 16.4 1 +1897 6 5 18.6 18.0 18.0 1 +1897 6 6 9.9 9.3 9.3 1 +1897 6 7 7.0 6.4 6.4 1 +1897 6 8 8.0 7.4 7.4 1 +1897 6 9 10.3 9.7 9.7 1 +1897 6 10 13.4 12.8 12.8 1 +1897 6 11 12.5 11.9 11.9 1 +1897 6 12 15.2 14.7 14.7 1 +1897 6 13 17.2 16.7 16.7 1 +1897 6 14 20.0 19.5 19.5 1 +1897 6 15 18.4 17.9 17.9 1 +1897 6 16 15.8 15.3 15.3 1 +1897 6 17 13.6 13.1 13.1 1 +1897 6 18 12.7 12.2 12.2 1 +1897 6 19 14.8 14.3 14.3 1 +1897 6 20 14.9 14.4 14.4 1 +1897 6 21 14.9 14.4 14.4 1 +1897 6 22 18.3 17.8 17.8 1 +1897 6 23 19.1 18.6 18.6 1 +1897 6 24 19.9 19.4 19.4 1 +1897 6 25 15.0 14.5 14.5 1 +1897 6 26 14.2 13.7 13.7 1 +1897 6 27 14.7 14.2 14.2 1 +1897 6 28 16.9 16.4 16.4 1 +1897 6 29 19.7 19.2 19.2 1 +1897 6 30 20.4 19.9 19.9 1 +1897 7 1 17.1 16.6 16.6 1 +1897 7 2 15.2 14.7 14.7 1 +1897 7 3 16.8 16.3 16.3 1 +1897 7 4 14.0 13.5 13.5 1 +1897 7 5 15.8 15.3 15.3 1 +1897 7 6 15.7 15.2 15.2 1 +1897 7 7 14.5 14.0 14.0 1 +1897 7 8 13.5 13.0 13.0 1 +1897 7 9 14.5 14.0 14.0 1 +1897 7 10 16.0 15.5 15.5 1 +1897 7 11 15.0 14.5 14.5 1 +1897 7 12 17.7 17.2 17.2 1 +1897 7 13 18.8 18.3 18.3 1 +1897 7 14 19.4 18.9 18.9 1 +1897 7 15 18.7 18.1 18.1 1 +1897 7 16 18.6 18.1 18.1 1 +1897 7 17 18.0 17.5 17.5 1 +1897 7 18 20.0 19.5 19.5 1 +1897 7 19 17.3 16.8 16.8 1 +1897 7 20 17.3 16.8 16.8 1 +1897 7 21 19.5 19.0 19.0 1 +1897 7 22 19.7 19.2 19.2 1 +1897 7 23 18.3 17.8 17.8 1 +1897 7 24 20.8 20.3 20.3 1 +1897 7 25 20.7 20.2 20.2 1 +1897 7 26 18.5 18.0 18.0 1 +1897 7 27 17.3 16.8 16.8 1 +1897 7 28 18.1 17.6 17.6 1 +1897 7 29 19.9 19.4 19.4 1 +1897 7 30 19.6 19.1 19.1 1 +1897 7 31 21.1 20.6 20.6 1 +1897 8 1 19.6 19.1 19.1 1 +1897 8 2 18.6 18.1 18.1 1 +1897 8 3 18.2 17.7 17.7 1 +1897 8 4 17.6 17.1 17.1 1 +1897 8 5 18.4 17.9 17.9 1 +1897 8 6 19.0 18.5 18.5 1 +1897 8 7 19.7 19.2 19.2 1 +1897 8 8 20.2 19.7 19.7 1 +1897 8 9 20.9 20.4 20.4 1 +1897 8 10 21.3 20.8 20.8 1 +1897 8 11 18.5 18.0 18.0 1 +1897 8 12 17.0 16.5 16.5 1 +1897 8 13 16.8 16.3 16.3 1 +1897 8 14 17.0 16.5 16.5 1 +1897 8 15 17.9 17.4 17.4 1 +1897 8 16 20.0 19.5 19.5 1 +1897 8 17 17.2 16.7 16.7 1 +1897 8 18 17.7 17.2 17.2 1 +1897 8 19 17.1 16.6 16.6 1 +1897 8 20 16.6 16.1 16.1 1 +1897 8 21 16.3 15.8 15.8 1 +1897 8 22 15.8 15.3 15.3 1 +1897 8 23 14.4 13.9 13.9 1 +1897 8 24 15.7 15.2 15.2 1 +1897 8 25 16.2 15.8 15.8 1 +1897 8 26 16.5 16.1 16.1 1 +1897 8 27 16.2 15.8 15.8 1 +1897 8 28 16.6 16.2 16.2 1 +1897 8 29 16.7 16.3 16.3 1 +1897 8 30 15.6 15.2 15.2 1 +1897 8 31 17.4 17.0 17.0 1 +1897 9 1 14.5 14.1 14.1 1 +1897 9 2 15.1 14.7 14.7 1 +1897 9 3 16.5 16.1 16.1 1 +1897 9 4 15.3 14.9 14.9 1 +1897 9 5 11.7 11.3 11.3 1 +1897 9 6 9.2 8.8 8.8 1 +1897 9 7 9.2 8.9 8.9 1 +1897 9 8 10.2 9.9 9.9 1 +1897 9 9 9.5 9.2 9.2 1 +1897 9 10 10.4 10.1 10.1 1 +1897 9 11 10.5 10.2 10.2 1 +1897 9 12 13.1 12.8 12.8 1 +1897 9 13 12.6 12.3 12.3 1 +1897 9 14 11.8 11.5 11.5 1 +1897 9 15 12.7 12.4 12.4 1 +1897 9 16 12.5 12.2 12.2 1 +1897 9 17 13.3 13.0 13.0 1 +1897 9 18 12.9 12.6 12.6 1 +1897 9 19 11.9 11.6 11.6 1 +1897 9 20 13.9 13.6 13.6 1 +1897 9 21 9.9 9.6 9.6 1 +1897 9 22 9.1 8.8 8.8 1 +1897 9 23 10.1 9.8 9.8 1 +1897 9 24 12.2 11.9 11.9 1 +1897 9 25 13.7 13.4 13.4 1 +1897 9 26 11.4 11.2 11.2 1 +1897 9 27 11.3 11.1 11.1 1 +1897 9 28 9.2 9.0 9.0 1 +1897 9 29 7.0 6.8 6.8 1 +1897 9 30 7.0 6.8 6.8 1 +1897 10 1 8.9 8.7 8.7 1 +1897 10 2 5.1 4.9 4.9 1 +1897 10 3 3.9 3.7 3.7 1 +1897 10 4 3.2 3.0 3.0 1 +1897 10 5 3.5 3.3 3.3 1 +1897 10 6 3.5 3.3 3.3 1 +1897 10 7 5.9 5.7 5.7 1 +1897 10 8 6.9 6.7 6.7 1 +1897 10 9 8.2 8.0 8.0 1 +1897 10 10 7.4 7.2 7.2 1 +1897 10 11 9.1 8.9 8.9 1 +1897 10 12 7.9 7.7 7.7 1 +1897 10 13 5.8 5.6 5.6 1 +1897 10 14 5.8 5.6 5.6 1 +1897 10 15 6.2 6.0 6.0 1 +1897 10 16 9.5 9.3 9.3 1 +1897 10 17 11.3 11.1 11.1 1 +1897 10 18 11.6 11.4 11.4 1 +1897 10 19 10.0 9.8 9.8 1 +1897 10 20 8.4 8.2 8.2 1 +1897 10 21 6.6 6.4 6.4 1 +1897 10 22 9.9 9.7 9.7 1 +1897 10 23 9.7 9.5 9.5 1 +1897 10 24 7.8 7.6 7.6 1 +1897 10 25 4.5 4.3 4.3 1 +1897 10 26 4.2 4.0 4.0 1 +1897 10 27 3.8 3.6 3.6 1 +1897 10 28 3.7 3.5 3.5 1 +1897 10 29 4.0 3.8 3.8 1 +1897 10 30 3.1 2.9 2.9 1 +1897 10 31 5.4 5.2 5.2 1 +1897 11 1 4.6 4.3 4.3 1 +1897 11 2 2.9 2.6 2.6 1 +1897 11 3 1.8 1.5 1.5 1 +1897 11 4 1.9 1.6 1.6 1 +1897 11 5 4.0 3.7 3.7 1 +1897 11 6 2.1 1.8 1.8 1 +1897 11 7 1.4 1.1 1.1 1 +1897 11 8 3.9 3.6 3.6 1 +1897 11 9 3.1 2.8 2.8 1 +1897 11 10 4.1 3.8 3.8 1 +1897 11 11 2.3 2.0 2.0 1 +1897 11 12 0.8 0.5 0.5 1 +1897 11 13 8.0 7.7 7.7 1 +1897 11 14 9.9 9.6 9.6 1 +1897 11 15 4.8 4.5 4.5 1 +1897 11 16 -2.3 -2.6 -2.6 1 +1897 11 17 -4.2 -4.5 -4.5 1 +1897 11 18 3.0 2.7 2.7 1 +1897 11 19 7.1 6.8 6.8 1 +1897 11 20 5.6 5.3 5.3 1 +1897 11 21 4.2 3.9 3.9 1 +1897 11 22 7.6 7.3 7.3 1 +1897 11 23 0.7 0.4 0.4 1 +1897 11 24 -2.9 -3.2 -3.2 1 +1897 11 25 -7.1 -7.4 -7.4 1 +1897 11 26 -2.4 -2.7 -2.7 1 +1897 11 27 0.5 0.2 0.2 1 +1897 11 28 0.8 0.5 0.5 1 +1897 11 29 -4.6 -4.9 -4.9 1 +1897 11 30 -8.4 -8.7 -8.7 1 +1897 12 1 -0.6 -0.9 -0.9 1 +1897 12 2 1.0 0.7 0.7 1 +1897 12 3 0.4 0.1 0.1 1 +1897 12 4 -2.0 -2.3 -2.3 1 +1897 12 5 -4.4 -4.7 -4.7 1 +1897 12 6 -0.8 -1.1 -1.1 1 +1897 12 7 1.4 1.1 1.1 1 +1897 12 8 2.2 1.9 1.9 1 +1897 12 9 2.9 2.6 2.6 1 +1897 12 10 2.5 2.2 2.2 1 +1897 12 11 0.5 0.2 0.2 1 +1897 12 12 -1.8 -2.1 -2.1 1 +1897 12 13 -0.4 -0.7 -0.7 1 +1897 12 14 -0.3 -0.6 -0.6 1 +1897 12 15 2.4 2.1 2.1 1 +1897 12 16 2.8 2.5 2.5 1 +1897 12 17 5.5 5.2 5.2 1 +1897 12 18 4.6 4.3 4.3 1 +1897 12 19 1.1 0.8 0.8 1 +1897 12 20 -2.1 -2.4 -2.4 1 +1897 12 21 -1.2 -1.5 -1.5 1 +1897 12 22 -0.8 -1.2 -1.2 1 +1897 12 23 -5.3 -5.7 -5.7 1 +1897 12 24 -7.2 -7.6 -7.6 1 +1897 12 25 -2.0 -2.4 -2.4 1 +1897 12 26 -1.1 -1.5 -1.5 1 +1897 12 27 4.0 3.6 3.6 1 +1897 12 28 5.4 5.0 5.0 1 +1897 12 29 4.6 4.2 4.2 1 +1897 12 30 6.3 5.9 5.9 1 +1897 12 31 3.0 2.6 2.6 1 +1898 1 1 2.4 2.0 2.0 1 +1898 1 2 0.6 0.2 0.2 1 +1898 1 3 1.3 0.9 0.9 1 +1898 1 4 0.5 0.1 0.1 1 +1898 1 5 0.6 0.1 0.1 1 +1898 1 6 -2.9 -3.4 -3.4 1 +1898 1 7 0.6 0.1 0.1 1 +1898 1 8 -1.5 -2.0 -2.0 1 +1898 1 9 -1.1 -1.6 -1.6 1 +1898 1 10 1.0 0.5 0.5 1 +1898 1 11 1.9 1.4 1.4 1 +1898 1 12 0.0 -0.5 -0.5 1 +1898 1 13 2.2 1.7 1.7 1 +1898 1 14 6.2 5.7 5.7 1 +1898 1 15 2.8 2.3 2.3 1 +1898 1 16 2.9 2.4 2.4 1 +1898 1 17 4.4 3.9 3.9 1 +1898 1 18 5.0 4.5 4.5 1 +1898 1 19 8.8 8.3 8.3 1 +1898 1 20 4.7 4.2 4.2 1 +1898 1 21 1.8 1.3 1.3 1 +1898 1 22 -0.2 -0.7 -0.7 1 +1898 1 23 -3.0 -3.5 -3.5 1 +1898 1 24 -6.8 -7.3 -7.3 1 +1898 1 25 -4.5 -5.0 -5.0 1 +1898 1 26 4.9 4.4 4.4 1 +1898 1 27 4.2 3.7 3.7 1 +1898 1 28 -2.9 -3.4 -3.4 1 +1898 1 29 0.4 -0.1 -0.1 1 +1898 1 30 5.6 5.1 5.1 1 +1898 1 31 2.9 2.4 2.4 1 +1898 2 1 2.5 2.0 2.0 1 +1898 2 2 2.5 2.0 2.0 1 +1898 2 3 -0.7 -1.2 -1.2 1 +1898 2 4 -4.4 -4.9 -4.9 1 +1898 2 5 -7.5 -8.0 -8.0 1 +1898 2 6 -9.0 -9.5 -9.5 1 +1898 2 7 -4.9 -5.4 -5.4 1 +1898 2 8 -5.7 -6.2 -6.2 1 +1898 2 9 -8.0 -8.5 -8.5 1 +1898 2 10 -7.3 -7.8 -7.8 1 +1898 2 11 -3.5 -4.0 -4.0 1 +1898 2 12 0.1 -0.4 -0.4 1 +1898 2 13 2.2 1.7 1.7 1 +1898 2 14 -0.2 -0.7 -0.7 1 +1898 2 15 0.3 -0.2 -0.2 1 +1898 2 16 1.9 1.4 1.4 1 +1898 2 17 0.4 -0.1 -0.1 1 +1898 2 18 -1.0 -1.5 -1.5 1 +1898 2 19 -5.0 -5.5 -5.5 1 +1898 2 20 -4.4 -4.9 -4.9 1 +1898 2 21 -2.2 -2.7 -2.7 1 +1898 2 22 0.9 0.4 0.4 1 +1898 2 23 1.2 0.7 0.7 1 +1898 2 24 0.6 0.1 0.1 1 +1898 2 25 0.4 -0.1 -0.1 1 +1898 2 26 0.5 0.0 0.0 1 +1898 2 27 1.1 0.6 0.6 1 +1898 2 28 1.2 0.7 0.7 1 +1898 3 1 1.8 1.3 1.3 1 +1898 3 2 0.9 0.4 0.4 1 +1898 3 3 -3.1 -3.6 -3.6 1 +1898 3 4 -1.3 -1.8 -1.8 1 +1898 3 5 -4.4 -4.9 -4.9 1 +1898 3 6 -1.9 -2.4 -2.4 1 +1898 3 7 1.4 0.9 0.9 1 +1898 3 8 -1.8 -2.3 -2.3 1 +1898 3 9 -3.2 -3.7 -3.7 1 +1898 3 10 -0.9 -1.4 -1.4 1 +1898 3 11 -0.6 -1.1 -1.1 1 +1898 3 12 -1.9 -2.4 -2.4 1 +1898 3 13 -1.8 -2.3 -2.3 1 +1898 3 14 1.0 0.5 0.5 1 +1898 3 15 0.7 0.2 0.2 1 +1898 3 16 -0.1 -0.6 -0.6 1 +1898 3 17 1.3 0.8 0.8 1 +1898 3 18 3.0 2.5 2.5 1 +1898 3 19 2.3 1.8 1.8 1 +1898 3 20 1.4 0.9 0.9 1 +1898 3 21 0.9 0.4 0.4 1 +1898 3 22 -5.7 -6.2 -6.2 1 +1898 3 23 -7.6 -8.1 -8.1 1 +1898 3 24 -6.7 -7.2 -7.2 1 +1898 3 25 -2.2 -2.7 -2.7 1 +1898 3 26 0.1 -0.4 -0.4 1 +1898 3 27 -0.9 -1.4 -1.4 1 +1898 3 28 0.6 0.1 0.1 1 +1898 3 29 1.1 0.6 0.6 1 +1898 3 30 1.7 1.2 1.2 1 +1898 3 31 0.9 0.4 0.4 1 +1898 4 1 2.2 1.7 1.7 1 +1898 4 2 1.1 0.6 0.6 1 +1898 4 3 3.5 3.0 3.0 1 +1898 4 4 3.4 2.9 2.9 1 +1898 4 5 2.2 1.7 1.7 1 +1898 4 6 1.4 0.9 0.9 1 +1898 4 7 -0.1 -0.6 -0.6 1 +1898 4 8 0.1 -0.4 -0.4 1 +1898 4 9 1.0 0.5 0.5 1 +1898 4 10 -1.0 -1.5 -1.5 1 +1898 4 11 -1.1 -1.6 -1.6 1 +1898 4 12 -0.1 -0.6 -0.6 1 +1898 4 13 0.0 -0.5 -0.5 1 +1898 4 14 0.4 -0.1 -0.1 1 +1898 4 15 1.5 1.0 1.0 1 +1898 4 16 3.1 2.6 2.6 1 +1898 4 17 2.5 2.0 2.0 1 +1898 4 18 3.0 2.5 2.5 1 +1898 4 19 0.5 0.0 0.0 1 +1898 4 20 0.3 -0.2 -0.2 1 +1898 4 21 1.6 1.1 1.1 1 +1898 4 22 2.5 2.0 2.0 1 +1898 4 23 3.7 3.1 3.1 1 +1898 4 24 6.4 5.8 5.8 1 +1898 4 25 6.9 6.3 6.3 1 +1898 4 26 6.6 6.0 6.0 1 +1898 4 27 6.2 5.6 5.6 1 +1898 4 28 5.9 5.3 5.3 1 +1898 4 29 4.2 3.6 3.6 1 +1898 4 30 4.7 4.1 4.1 1 +1898 5 1 6.2 5.6 5.6 1 +1898 5 2 8.5 7.9 7.9 1 +1898 5 3 10.2 9.5 9.5 1 +1898 5 4 12.1 11.4 11.4 1 +1898 5 5 12.7 12.0 12.0 1 +1898 5 6 10.7 10.0 10.0 1 +1898 5 7 8.2 7.5 7.5 1 +1898 5 8 9.9 9.2 9.2 1 +1898 5 9 10.4 9.7 9.7 1 +1898 5 10 8.0 7.3 7.3 1 +1898 5 11 6.7 6.0 6.0 1 +1898 5 12 7.3 6.6 6.6 1 +1898 5 13 7.5 6.7 6.7 1 +1898 5 14 7.2 6.4 6.4 1 +1898 5 15 8.9 8.1 8.1 1 +1898 5 16 10.5 9.7 9.7 1 +1898 5 17 10.0 9.2 9.2 1 +1898 5 18 9.8 9.0 9.0 1 +1898 5 19 10.2 9.5 9.5 1 +1898 5 20 10.2 9.5 9.5 1 +1898 5 21 11.2 10.5 10.5 1 +1898 5 22 15.4 14.7 14.7 1 +1898 5 23 9.1 8.4 8.4 1 +1898 5 24 4.6 3.9 3.9 1 +1898 5 25 5.4 4.7 4.7 1 +1898 5 26 6.3 5.6 5.6 1 +1898 5 27 9.6 8.9 8.9 1 +1898 5 28 11.4 10.7 10.7 1 +1898 5 29 12.2 11.5 11.5 1 +1898 5 30 10.8 10.1 10.1 1 +1898 5 31 9.9 9.3 9.3 1 +1898 6 1 10.4 9.8 9.8 1 +1898 6 2 12.1 11.5 11.5 1 +1898 6 3 13.9 13.3 13.3 1 +1898 6 4 11.4 10.8 10.8 1 +1898 6 5 11.3 10.7 10.7 1 +1898 6 6 14.5 13.9 13.9 1 +1898 6 7 16.1 15.5 15.5 1 +1898 6 8 17.5 16.9 16.9 1 +1898 6 9 19.4 18.8 18.8 1 +1898 6 10 19.1 18.5 18.5 1 +1898 6 11 18.4 17.8 17.8 1 +1898 6 12 15.1 14.6 14.6 1 +1898 6 13 9.7 9.2 9.2 1 +1898 6 14 11.9 11.4 11.4 1 +1898 6 15 13.6 13.1 13.1 1 +1898 6 16 15.5 15.0 15.0 1 +1898 6 17 14.1 13.6 13.6 1 +1898 6 18 13.1 12.6 12.6 1 +1898 6 19 11.6 11.1 11.1 1 +1898 6 20 11.4 10.9 10.9 1 +1898 6 21 13.2 12.7 12.7 1 +1898 6 22 14.1 13.6 13.6 1 +1898 6 23 13.4 12.9 12.9 1 +1898 6 24 15.0 14.5 14.5 1 +1898 6 25 14.1 13.6 13.6 1 +1898 6 26 17.6 17.1 17.1 1 +1898 6 27 16.2 15.7 15.7 1 +1898 6 28 16.1 15.6 15.6 1 +1898 6 29 15.7 15.2 15.2 1 +1898 6 30 16.7 16.2 16.2 1 +1898 7 1 16.6 16.1 16.1 1 +1898 7 2 16.1 15.6 15.6 1 +1898 7 3 14.7 14.2 14.2 1 +1898 7 4 14.2 13.7 13.7 1 +1898 7 5 14.6 14.1 14.1 1 +1898 7 6 13.1 12.6 12.6 1 +1898 7 7 13.8 13.3 13.3 1 +1898 7 8 15.3 14.8 14.8 1 +1898 7 9 15.4 14.9 14.9 1 +1898 7 10 18.2 17.7 17.7 1 +1898 7 11 19.5 19.0 19.0 1 +1898 7 12 21.5 21.0 21.0 1 +1898 7 13 18.5 18.0 18.0 1 +1898 7 14 15.1 14.6 14.6 1 +1898 7 15 12.9 12.3 12.3 1 +1898 7 16 11.4 10.9 10.9 1 +1898 7 17 13.3 12.8 12.8 1 +1898 7 18 14.8 14.3 14.3 1 +1898 7 19 13.2 12.7 12.7 1 +1898 7 20 13.0 12.5 12.5 1 +1898 7 21 14.2 13.7 13.7 1 +1898 7 22 15.5 15.0 15.0 1 +1898 7 23 16.7 16.2 16.2 1 +1898 7 24 14.8 14.3 14.3 1 +1898 7 25 13.9 13.4 13.4 1 +1898 7 26 16.3 15.8 15.8 1 +1898 7 27 15.7 15.2 15.2 1 +1898 7 28 16.4 15.9 15.9 1 +1898 7 29 15.2 14.7 14.7 1 +1898 7 30 16.4 15.9 15.9 1 +1898 7 31 13.7 13.2 13.2 1 +1898 8 1 15.2 14.7 14.7 1 +1898 8 2 15.9 15.4 15.4 1 +1898 8 3 16.8 16.3 16.3 1 +1898 8 4 18.7 18.2 18.2 1 +1898 8 5 15.5 15.0 15.0 1 +1898 8 6 15.8 15.3 15.3 1 +1898 8 7 14.9 14.4 14.4 1 +1898 8 8 12.9 12.4 12.4 1 +1898 8 9 16.1 15.6 15.6 1 +1898 8 10 14.9 14.4 14.4 1 +1898 8 11 15.1 14.6 14.6 1 +1898 8 12 14.7 14.2 14.2 1 +1898 8 13 15.2 14.7 14.7 1 +1898 8 14 16.6 16.1 16.1 1 +1898 8 15 17.9 17.4 17.4 1 +1898 8 16 18.4 17.9 17.9 1 +1898 8 17 14.1 13.6 13.6 1 +1898 8 18 11.9 11.4 11.4 1 +1898 8 19 15.0 14.5 14.5 1 +1898 8 20 14.1 13.6 13.6 1 +1898 8 21 15.4 14.9 14.9 1 +1898 8 22 16.9 16.4 16.4 1 +1898 8 23 18.1 17.6 17.6 1 +1898 8 24 16.6 16.1 16.1 1 +1898 8 25 13.9 13.5 13.5 1 +1898 8 26 14.3 13.9 13.9 1 +1898 8 27 14.8 14.4 14.4 1 +1898 8 28 14.3 13.9 13.9 1 +1898 8 29 14.0 13.6 13.6 1 +1898 8 30 13.2 12.8 12.8 1 +1898 8 31 14.6 14.2 14.2 1 +1898 9 1 10.8 10.4 10.4 1 +1898 9 2 13.6 13.2 13.2 1 +1898 9 3 11.2 10.8 10.8 1 +1898 9 4 10.2 9.8 9.8 1 +1898 9 5 10.6 10.2 10.2 1 +1898 9 6 14.7 14.3 14.3 1 +1898 9 7 16.9 16.6 16.6 1 +1898 9 8 16.7 16.4 16.4 1 +1898 9 9 14.5 14.2 14.2 1 +1898 9 10 16.5 16.2 16.2 1 +1898 9 11 14.8 14.5 14.5 1 +1898 9 12 14.6 14.3 14.3 1 +1898 9 13 12.6 12.3 12.3 1 +1898 9 14 13.1 12.8 12.8 1 +1898 9 15 13.8 13.5 13.5 1 +1898 9 16 10.7 10.4 10.4 1 +1898 9 17 13.2 12.9 12.9 1 +1898 9 18 13.2 12.9 12.9 1 +1898 9 19 14.5 14.2 14.2 1 +1898 9 20 9.5 9.2 9.2 1 +1898 9 21 9.7 9.4 9.4 1 +1898 9 22 9.4 9.1 9.1 1 +1898 9 23 8.3 8.0 8.0 1 +1898 9 24 7.1 6.8 6.8 1 +1898 9 25 8.4 8.1 8.1 1 +1898 9 26 7.9 7.7 7.7 1 +1898 9 27 7.6 7.4 7.4 1 +1898 9 28 7.9 7.7 7.7 1 +1898 9 29 8.5 8.3 8.3 1 +1898 9 30 10.2 10.0 10.0 1 +1898 10 1 9.6 9.4 9.4 1 +1898 10 2 11.9 11.7 11.7 1 +1898 10 3 14.0 13.8 13.8 1 +1898 10 4 10.1 9.9 9.9 1 +1898 10 5 13.3 13.1 13.1 1 +1898 10 6 7.3 7.1 7.1 1 +1898 10 7 6.3 6.1 6.1 1 +1898 10 8 6.0 5.8 5.8 1 +1898 10 9 7.7 7.5 7.5 1 +1898 10 10 8.9 8.7 8.7 1 +1898 10 11 8.4 8.2 8.2 1 +1898 10 12 6.6 6.4 6.4 1 +1898 10 13 1.2 1.0 1.0 1 +1898 10 14 -0.5 -0.7 -0.7 1 +1898 10 15 0.4 0.2 0.2 1 +1898 10 16 2.2 2.0 2.0 1 +1898 10 17 -0.1 -0.3 -0.3 1 +1898 10 18 -0.7 -0.9 -0.9 1 +1898 10 19 1.2 1.0 1.0 1 +1898 10 20 3.7 3.5 3.5 1 +1898 10 21 1.5 1.3 1.3 1 +1898 10 22 2.1 1.9 1.9 1 +1898 10 23 10.0 9.8 9.8 1 +1898 10 24 7.1 6.9 6.9 1 +1898 10 25 7.9 7.7 7.7 1 +1898 10 26 6.1 5.9 5.9 1 +1898 10 27 6.7 6.5 6.5 1 +1898 10 28 7.1 6.9 6.9 1 +1898 10 29 8.6 8.4 8.4 1 +1898 10 30 8.3 8.1 8.1 1 +1898 10 31 8.3 8.1 8.1 1 +1898 11 1 8.9 8.6 8.6 1 +1898 11 2 7.2 6.9 6.9 1 +1898 11 3 8.7 8.4 8.4 1 +1898 11 4 6.1 5.8 5.8 1 +1898 11 5 7.4 7.1 7.1 1 +1898 11 6 3.0 2.7 2.7 1 +1898 11 7 1.5 1.2 1.2 1 +1898 11 8 4.5 4.2 4.2 1 +1898 11 9 4.5 4.2 4.2 1 +1898 11 10 3.6 3.3 3.3 1 +1898 11 11 4.6 4.3 4.3 1 +1898 11 12 3.4 3.1 3.1 1 +1898 11 13 5.0 4.7 4.7 1 +1898 11 14 5.9 5.6 5.6 1 +1898 11 15 6.7 6.4 6.4 1 +1898 11 16 4.5 4.2 4.2 1 +1898 11 17 5.4 5.1 5.1 1 +1898 11 18 5.8 5.5 5.5 1 +1898 11 19 6.3 6.0 6.0 1 +1898 11 20 4.0 3.7 3.7 1 +1898 11 21 5.5 5.2 5.2 1 +1898 11 22 1.8 1.5 1.5 1 +1898 11 23 -3.9 -4.2 -4.2 1 +1898 11 24 -4.6 -4.9 -4.9 1 +1898 11 25 0.5 0.2 0.2 1 +1898 11 26 2.5 2.2 2.2 1 +1898 11 27 2.5 2.2 2.2 1 +1898 11 28 2.1 1.8 1.8 1 +1898 11 29 -1.4 -1.7 -1.7 1 +1898 11 30 2.8 2.5 2.5 1 +1898 12 1 4.0 3.7 3.7 1 +1898 12 2 5.4 5.1 5.1 1 +1898 12 3 1.3 1.0 1.0 1 +1898 12 4 0.4 0.1 0.1 1 +1898 12 5 8.2 7.9 7.9 1 +1898 12 6 9.9 9.6 9.6 1 +1898 12 7 7.8 7.5 7.5 1 +1898 12 8 1.6 1.3 1.3 1 +1898 12 9 -1.2 -1.5 -1.5 1 +1898 12 10 3.5 3.2 3.2 1 +1898 12 11 -1.4 -1.7 -1.7 1 +1898 12 12 4.3 4.0 4.0 1 +1898 12 13 -0.2 -0.5 -0.5 1 +1898 12 14 -3.4 -3.7 -3.7 1 +1898 12 15 -8.7 -9.0 -9.0 1 +1898 12 16 -11.0 -11.3 -11.3 1 +1898 12 17 -2.8 -3.1 -3.1 1 +1898 12 18 -2.3 -2.6 -2.6 1 +1898 12 19 -0.7 -1.0 -1.0 1 +1898 12 20 -11.7 -12.0 -12.0 1 +1898 12 21 -8.0 -8.3 -8.3 1 +1898 12 22 -0.6 -1.0 -1.0 1 +1898 12 23 -0.4 -0.8 -0.8 1 +1898 12 24 2.6 2.2 2.2 1 +1898 12 25 3.4 3.0 3.0 1 +1898 12 26 5.7 5.3 5.3 1 +1898 12 27 4.7 4.3 4.3 1 +1898 12 28 4.7 4.3 4.3 1 +1898 12 29 1.9 1.5 1.5 1 +1898 12 30 -2.0 -2.4 -2.4 1 +1898 12 31 -2.2 -2.6 -2.6 1 +1899 1 1 -1.8 -2.2 -2.2 1 +1899 1 2 -3.2 -3.6 -3.6 1 +1899 1 3 -7.0 -7.4 -7.4 1 +1899 1 4 -8.4 -8.8 -8.8 1 +1899 1 5 -7.6 -8.1 -8.1 1 +1899 1 6 -10.2 -10.7 -10.7 1 +1899 1 7 -7.1 -7.6 -7.6 1 +1899 1 8 -2.6 -3.1 -3.1 1 +1899 1 9 -4.6 -5.1 -5.1 1 +1899 1 10 1.3 0.8 0.8 1 +1899 1 11 1.5 1.0 1.0 1 +1899 1 12 1.4 0.9 0.9 1 +1899 1 13 -0.2 -0.7 -0.7 1 +1899 1 14 -2.6 -3.1 -3.1 1 +1899 1 15 -4.9 -5.4 -5.4 1 +1899 1 16 -4.8 -5.3 -5.3 1 +1899 1 17 -0.4 -0.9 -0.9 1 +1899 1 18 -6.7 -7.2 -7.2 1 +1899 1 19 -4.9 -5.4 -5.4 1 +1899 1 20 -2.9 -3.4 -3.4 1 +1899 1 21 2.3 1.8 1.8 1 +1899 1 22 -1.4 -1.9 -1.9 1 +1899 1 23 -7.2 -7.7 -7.7 1 +1899 1 24 -13.0 -13.5 -13.5 1 +1899 1 25 -6.0 -6.5 -6.5 1 +1899 1 26 -3.1 -3.6 -3.6 1 +1899 1 27 -0.8 -1.3 -1.3 1 +1899 1 28 2.9 2.4 2.4 1 +1899 1 29 -1.9 -2.4 -2.4 1 +1899 1 30 -4.3 -4.8 -4.8 1 +1899 1 31 -2.7 -3.2 -3.2 1 +1899 2 1 -6.7 -7.2 -7.2 1 +1899 2 2 -10.8 -11.3 -11.3 1 +1899 2 3 -9.5 -10.0 -10.0 1 +1899 2 4 -8.3 -8.8 -8.8 1 +1899 2 5 -8.5 -9.0 -9.0 1 +1899 2 6 -9.5 -10.0 -10.0 1 +1899 2 7 -5.6 -6.1 -6.1 1 +1899 2 8 -9.5 -10.0 -10.0 1 +1899 2 9 -1.1 -1.6 -1.6 1 +1899 2 10 2.6 2.1 2.1 1 +1899 2 11 5.8 5.3 5.3 1 +1899 2 12 3.8 3.3 3.3 1 +1899 2 13 -3.9 -4.4 -4.4 1 +1899 2 14 0.6 0.1 0.1 1 +1899 2 15 2.5 2.0 2.0 1 +1899 2 16 2.2 1.7 1.7 1 +1899 2 17 2.0 1.5 1.5 1 +1899 2 18 2.9 2.4 2.4 1 +1899 2 19 2.2 1.7 1.7 1 +1899 2 20 -1.6 -2.1 -2.1 1 +1899 2 21 0.9 0.4 0.4 1 +1899 2 22 1.0 0.5 0.5 1 +1899 2 23 -3.7 -4.2 -4.2 1 +1899 2 24 -4.3 -4.8 -4.8 1 +1899 2 25 -1.1 -1.6 -1.6 1 +1899 2 26 -0.2 -0.7 -0.7 1 +1899 2 27 -0.2 -0.7 -0.7 1 +1899 2 28 2.5 2.0 2.0 1 +1899 3 1 -1.2 -1.7 -1.7 1 +1899 3 2 -1.6 -2.1 -2.1 1 +1899 3 3 -4.3 -4.8 -4.8 1 +1899 3 4 -9.9 -10.4 -10.4 1 +1899 3 5 -10.9 -11.4 -11.4 1 +1899 3 6 -9.4 -9.9 -9.9 1 +1899 3 7 -9.2 -9.7 -9.7 1 +1899 3 8 -5.2 -5.7 -5.7 1 +1899 3 9 -6.8 -7.3 -7.3 1 +1899 3 10 -1.5 -2.0 -2.0 1 +1899 3 11 2.1 1.6 1.6 1 +1899 3 12 6.1 5.6 5.6 1 +1899 3 13 3.9 3.4 3.4 1 +1899 3 14 4.4 3.9 3.9 1 +1899 3 15 6.8 6.3 6.3 1 +1899 3 16 5.6 5.1 5.1 1 +1899 3 17 6.0 5.5 5.5 1 +1899 3 18 -5.4 -5.9 -5.9 1 +1899 3 19 -8.4 -8.9 -8.9 1 +1899 3 20 -10.2 -10.7 -10.7 1 +1899 3 21 -10.9 -11.4 -11.4 1 +1899 3 22 -10.9 -11.4 -11.4 1 +1899 3 23 -10.2 -10.7 -10.7 1 +1899 3 24 -11.7 -12.2 -12.2 1 +1899 3 25 -6.3 -6.8 -6.8 1 +1899 3 26 -3.8 -4.3 -4.3 1 +1899 3 27 -1.8 -2.3 -2.3 1 +1899 3 28 1.0 0.5 0.5 1 +1899 3 29 5.6 5.1 5.1 1 +1899 3 30 3.0 2.5 2.5 1 +1899 3 31 1.0 0.5 0.5 1 +1899 4 1 1.0 0.5 0.5 1 +1899 4 2 3.8 3.3 3.3 1 +1899 4 3 2.2 1.7 1.7 1 +1899 4 4 6.1 5.6 5.6 1 +1899 4 5 7.3 6.8 6.8 1 +1899 4 6 5.0 4.5 4.5 1 +1899 4 7 4.4 3.9 3.9 1 +1899 4 8 0.5 0.0 0.0 1 +1899 4 9 2.8 2.3 2.3 1 +1899 4 10 3.3 2.8 2.8 1 +1899 4 11 3.2 2.7 2.7 1 +1899 4 12 2.9 2.4 2.4 1 +1899 4 13 2.7 2.2 2.2 1 +1899 4 14 3.5 3.0 3.0 1 +1899 4 15 2.7 2.2 2.2 1 +1899 4 16 3.0 2.5 2.5 1 +1899 4 17 3.3 2.8 2.8 1 +1899 4 18 4.2 3.7 3.7 1 +1899 4 19 4.6 4.1 4.1 1 +1899 4 20 6.0 5.5 5.5 1 +1899 4 21 4.8 4.3 4.3 1 +1899 4 22 0.3 -0.2 -0.2 1 +1899 4 23 1.0 0.4 0.4 1 +1899 4 24 5.6 5.0 5.0 1 +1899 4 25 6.1 5.5 5.5 1 +1899 4 26 8.4 7.8 7.8 1 +1899 4 27 4.3 3.7 3.7 1 +1899 4 28 5.4 4.8 4.8 1 +1899 4 29 5.2 4.6 4.6 1 +1899 4 30 -0.1 -0.7 -0.7 1 +1899 5 1 -1.2 -1.8 -1.8 1 +1899 5 2 0.7 0.1 0.1 1 +1899 5 3 1.9 1.2 1.2 1 +1899 5 4 5.8 5.1 5.1 1 +1899 5 5 5.8 5.1 5.1 1 +1899 5 6 7.1 6.4 6.4 1 +1899 5 7 7.3 6.6 6.6 1 +1899 5 8 8.8 8.1 8.1 1 +1899 5 9 12.4 11.7 11.7 1 +1899 5 10 13.7 13.0 13.0 1 +1899 5 11 13.9 13.2 13.2 1 +1899 5 12 3.7 3.0 3.0 1 +1899 5 13 3.5 2.7 2.7 1 +1899 5 14 8.3 7.5 7.5 1 +1899 5 15 10.0 9.2 9.2 1 +1899 5 16 13.5 12.7 12.7 1 +1899 5 17 12.1 11.3 11.3 1 +1899 5 18 11.6 10.8 10.8 1 +1899 5 19 11.7 11.0 11.0 1 +1899 5 20 11.5 10.8 10.8 1 +1899 5 21 3.7 3.0 3.0 1 +1899 5 22 3.0 2.3 2.3 1 +1899 5 23 6.7 6.0 6.0 1 +1899 5 24 7.4 6.7 6.7 1 +1899 5 25 6.6 5.9 5.9 1 +1899 5 26 6.3 5.6 5.6 1 +1899 5 27 7.0 6.3 6.3 1 +1899 5 28 6.6 5.9 5.9 1 +1899 5 29 10.6 9.9 9.9 1 +1899 5 30 7.6 6.9 6.9 1 +1899 5 31 12.9 12.3 12.3 1 +1899 6 1 10.0 9.4 9.4 1 +1899 6 2 7.3 6.7 6.7 1 +1899 6 3 7.7 7.1 7.1 1 +1899 6 4 10.6 10.0 10.0 1 +1899 6 5 15.5 14.9 14.9 1 +1899 6 6 10.5 9.9 9.9 1 +1899 6 7 8.3 7.7 7.7 1 +1899 6 8 9.5 8.9 8.9 1 +1899 6 9 8.8 8.2 8.2 1 +1899 6 10 8.5 7.9 7.9 1 +1899 6 11 10.5 9.9 9.9 1 +1899 6 12 8.6 8.1 8.1 1 +1899 6 13 8.2 7.7 7.7 1 +1899 6 14 13.0 12.5 12.5 1 +1899 6 15 16.2 15.7 15.7 1 +1899 6 16 16.0 15.5 15.5 1 +1899 6 17 15.4 14.9 14.9 1 +1899 6 18 13.5 13.0 13.0 1 +1899 6 19 13.3 12.8 12.8 1 +1899 6 20 11.8 11.3 11.3 1 +1899 6 21 12.1 11.6 11.6 1 +1899 6 22 11.5 11.0 11.0 1 +1899 6 23 9.8 9.3 9.3 1 +1899 6 24 9.1 8.6 8.6 1 +1899 6 25 12.7 12.2 12.2 1 +1899 6 26 12.2 11.7 11.7 1 +1899 6 27 16.8 16.3 16.3 1 +1899 6 28 17.3 16.8 16.8 1 +1899 6 29 14.1 13.6 13.6 1 +1899 6 30 16.4 15.9 15.9 1 +1899 7 1 15.9 15.4 15.4 1 +1899 7 2 15.4 14.9 14.9 1 +1899 7 3 19.1 18.6 18.6 1 +1899 7 4 20.5 20.0 20.0 1 +1899 7 5 21.5 21.0 21.0 1 +1899 7 6 16.9 16.4 16.4 1 +1899 7 7 18.7 18.2 18.2 1 +1899 7 8 20.0 19.5 19.5 1 +1899 7 9 19.8 19.3 19.3 1 +1899 7 10 21.1 20.6 20.6 1 +1899 7 11 21.7 21.2 21.2 1 +1899 7 12 23.4 22.9 22.9 1 +1899 7 13 22.3 21.8 21.8 1 +1899 7 14 22.8 22.3 22.3 1 +1899 7 15 23.1 22.5 22.5 1 +1899 7 16 23.3 22.8 22.8 1 +1899 7 17 23.2 22.7 22.7 1 +1899 7 18 23.2 22.7 22.7 1 +1899 7 19 22.0 21.5 21.5 1 +1899 7 20 19.9 19.4 19.4 1 +1899 7 21 17.9 17.4 17.4 1 +1899 7 22 14.4 13.9 13.9 1 +1899 7 23 17.3 16.8 16.8 1 +1899 7 24 19.0 18.5 18.5 1 +1899 7 25 19.9 19.4 19.4 1 +1899 7 26 17.9 17.4 17.4 1 +1899 7 27 16.4 15.9 15.9 1 +1899 7 28 14.5 14.0 14.0 1 +1899 7 29 17.2 16.7 16.7 1 +1899 7 30 20.2 19.7 19.7 1 +1899 7 31 17.8 17.3 17.3 1 +1899 8 1 20.9 20.4 20.4 1 +1899 8 2 18.9 18.4 18.4 1 +1899 8 3 15.8 15.3 15.3 1 +1899 8 4 16.6 16.1 16.1 1 +1899 8 5 17.3 16.8 16.8 1 +1899 8 6 12.6 12.1 12.1 1 +1899 8 7 11.7 11.2 11.2 1 +1899 8 8 14.4 13.9 13.9 1 +1899 8 9 16.1 15.6 15.6 1 +1899 8 10 14.6 14.1 14.1 1 +1899 8 11 17.3 16.8 16.8 1 +1899 8 12 14.0 13.5 13.5 1 +1899 8 13 16.5 16.0 16.0 1 +1899 8 14 15.1 14.6 14.6 1 +1899 8 15 18.4 17.9 17.9 1 +1899 8 16 18.2 17.7 17.7 1 +1899 8 17 14.9 14.4 14.4 1 +1899 8 18 12.6 12.1 12.1 1 +1899 8 19 12.0 11.5 11.5 1 +1899 8 20 12.4 11.9 11.9 1 +1899 8 21 14.5 14.0 14.0 1 +1899 8 22 17.9 17.4 17.4 1 +1899 8 23 13.8 13.3 13.3 1 +1899 8 24 12.6 12.1 12.1 1 +1899 8 25 10.3 9.9 9.9 1 +1899 8 26 9.8 9.4 9.4 1 +1899 8 27 9.9 9.5 9.5 1 +1899 8 28 9.5 9.1 9.1 1 +1899 8 29 13.2 12.8 12.8 1 +1899 8 30 12.9 12.5 12.5 1 +1899 8 31 15.2 14.8 14.8 1 +1899 9 1 14.0 13.6 13.6 1 +1899 9 2 15.1 14.7 14.7 1 +1899 9 3 12.1 11.7 11.7 1 +1899 9 4 11.8 11.4 11.4 1 +1899 9 5 12.9 12.5 12.5 1 +1899 9 6 15.6 15.2 15.2 1 +1899 9 7 13.0 12.7 12.7 1 +1899 9 8 12.1 11.8 11.8 1 +1899 9 9 12.4 12.1 12.1 1 +1899 9 10 11.6 11.3 11.3 1 +1899 9 11 12.0 11.7 11.7 1 +1899 9 12 12.6 12.3 12.3 1 +1899 9 13 12.1 11.8 11.8 1 +1899 9 14 11.5 11.2 11.2 1 +1899 9 15 12.9 12.6 12.6 1 +1899 9 16 10.6 10.3 10.3 1 +1899 9 17 11.8 11.5 11.5 1 +1899 9 18 11.8 11.5 11.5 1 +1899 9 19 10.0 9.7 9.7 1 +1899 9 20 10.8 10.5 10.5 1 +1899 9 21 9.9 9.6 9.6 1 +1899 9 22 9.7 9.4 9.4 1 +1899 9 23 10.8 10.5 10.5 1 +1899 9 24 9.3 9.0 9.0 1 +1899 9 25 7.6 7.3 7.3 1 +1899 9 26 10.7 10.5 10.5 1 +1899 9 27 10.6 10.4 10.4 1 +1899 9 28 12.4 12.2 12.2 1 +1899 9 29 9.5 9.3 9.3 1 +1899 9 30 9.3 9.1 9.1 1 +1899 10 1 9.8 9.6 9.6 1 +1899 10 2 12.5 12.3 12.3 1 +1899 10 3 12.0 11.8 11.8 1 +1899 10 4 11.0 10.8 10.8 1 +1899 10 5 8.0 7.8 7.8 1 +1899 10 6 3.4 3.2 3.2 1 +1899 10 7 3.2 3.0 3.0 1 +1899 10 8 2.2 2.0 2.0 1 +1899 10 9 6.5 6.3 6.3 1 +1899 10 10 9.2 9.0 9.0 1 +1899 10 11 9.6 9.4 9.4 1 +1899 10 12 10.3 10.1 10.1 1 +1899 10 13 9.1 8.9 8.9 1 +1899 10 14 8.3 8.1 8.1 1 +1899 10 15 3.7 3.5 3.5 1 +1899 10 16 3.2 3.0 3.0 1 +1899 10 17 3.9 3.7 3.7 1 +1899 10 18 4.3 4.1 4.1 1 +1899 10 19 7.1 6.9 6.9 1 +1899 10 20 9.7 9.5 9.5 1 +1899 10 21 6.4 6.2 6.2 1 +1899 10 22 3.2 3.0 3.0 1 +1899 10 23 6.9 6.7 6.7 1 +1899 10 24 6.7 6.5 6.5 1 +1899 10 25 -0.1 -0.3 -0.3 1 +1899 10 26 0.0 -0.2 -0.2 1 +1899 10 27 6.6 6.4 6.4 1 +1899 10 28 5.4 5.2 5.2 1 +1899 10 29 7.7 7.5 7.5 1 +1899 10 30 10.0 9.8 9.8 1 +1899 10 31 4.8 4.6 4.6 1 +1899 11 1 4.6 4.3 4.3 1 +1899 11 2 6.8 6.5 6.5 1 +1899 11 3 8.4 8.1 8.1 1 +1899 11 4 9.0 8.7 8.7 1 +1899 11 5 9.3 9.0 9.0 1 +1899 11 6 11.1 10.8 10.8 1 +1899 11 7 7.9 7.6 7.6 1 +1899 11 8 4.9 4.6 4.6 1 +1899 11 9 8.5 8.2 8.2 1 +1899 11 10 4.4 4.1 4.1 1 +1899 11 11 4.7 4.4 4.4 1 +1899 11 12 4.2 3.9 3.9 1 +1899 11 13 1.0 0.7 0.7 1 +1899 11 14 4.5 4.2 4.2 1 +1899 11 15 3.3 3.0 3.0 1 +1899 11 16 2.0 1.7 1.7 1 +1899 11 17 2.6 2.3 2.3 1 +1899 11 18 3.3 3.0 3.0 1 +1899 11 19 2.9 2.6 2.6 1 +1899 11 20 -0.4 -0.7 -0.7 1 +1899 11 21 -0.1 -0.4 -0.4 1 +1899 11 22 -1.4 -1.7 -1.7 1 +1899 11 23 -1.4 -1.7 -1.7 1 +1899 11 24 2.6 2.3 2.3 1 +1899 11 25 -5.2 -5.5 -5.5 1 +1899 11 26 2.4 2.1 2.1 1 +1899 11 27 6.0 5.7 5.7 1 +1899 11 28 6.0 5.7 5.7 1 +1899 11 29 3.1 2.8 2.8 1 +1899 11 30 3.2 2.9 2.9 1 +1899 12 1 6.4 6.1 6.1 1 +1899 12 2 1.6 1.3 1.3 1 +1899 12 3 -2.7 -3.0 -3.0 1 +1899 12 4 0.3 0.0 0.0 1 +1899 12 5 -2.8 -3.1 -3.1 1 +1899 12 6 -5.1 -5.4 -5.4 1 +1899 12 7 -3.5 -3.8 -3.8 1 +1899 12 8 -4.3 -4.6 -4.6 1 +1899 12 9 -4.3 -4.6 -4.6 1 +1899 12 10 -1.4 -1.7 -1.7 1 +1899 12 11 -2.2 -2.5 -2.5 1 +1899 12 12 -1.8 -2.1 -2.1 1 +1899 12 13 -3.7 -4.0 -4.0 1 +1899 12 14 -2.8 -3.1 -3.1 1 +1899 12 15 -2.2 -2.5 -2.5 1 +1899 12 16 -10.2 -10.5 -10.5 1 +1899 12 17 -0.3 -0.6 -0.6 1 +1899 12 18 1.2 0.9 0.9 1 +1899 12 19 -0.1 -0.4 -0.4 1 +1899 12 20 -0.9 -1.2 -1.2 1 +1899 12 21 -4.7 -5.0 -5.0 1 +1899 12 22 -8.5 -8.9 -8.9 1 +1899 12 23 -3.2 -3.6 -3.6 1 +1899 12 24 -4.2 -4.6 -4.6 1 +1899 12 25 -5.2 -5.6 -5.6 1 +1899 12 26 -2.6 -3.0 -3.0 1 +1899 12 27 -0.6 -1.0 -1.0 1 +1899 12 28 -1.3 -1.7 -1.7 1 +1899 12 29 0.9 0.5 0.5 1 +1899 12 30 1.7 1.3 1.3 1 +1899 12 31 1.8 1.4 1.4 1 +1900 1 1 1.1 0.7 0.7 1 +1900 1 2 -2.3 -2.7 -2.7 1 +1900 1 3 -0.7 -1.1 -1.1 1 +1900 1 4 -7.6 -8.0 -8.0 1 +1900 1 5 -7.7 -8.2 -8.2 1 +1900 1 6 -8.7 -9.2 -9.2 1 +1900 1 7 -5.1 -5.6 -5.6 1 +1900 1 8 -3.0 -3.5 -3.5 1 +1900 1 9 -0.6 -1.1 -1.1 1 +1900 1 10 0.5 0.0 0.0 1 +1900 1 11 -1.8 -2.3 -2.3 1 +1900 1 12 -5.4 -5.9 -5.9 1 +1900 1 13 -8.1 -8.6 -8.6 1 +1900 1 14 -7.0 -7.5 -7.5 1 +1900 1 15 -4.9 -5.4 -5.4 1 +1900 1 16 -0.7 -1.2 -1.2 1 +1900 1 17 -0.7 -1.2 -1.2 1 +1900 1 18 -1.8 -2.3 -2.3 1 +1900 1 19 -6.0 -6.5 -6.5 1 +1900 1 20 -0.9 -1.4 -1.4 1 +1900 1 21 -2.4 -2.9 -2.9 1 +1900 1 22 0.7 0.2 0.2 1 +1900 1 23 3.8 3.3 3.3 1 +1900 1 24 -0.3 -0.8 -0.8 1 +1900 1 25 -2.9 -3.4 -3.4 1 +1900 1 26 -1.6 -2.1 -2.1 1 +1900 1 27 -0.5 -1.0 -1.0 1 +1900 1 28 0.4 -0.1 -0.1 1 +1900 1 29 -1.0 -1.5 -1.5 1 +1900 1 30 -3.5 -4.0 -4.0 1 +1900 1 31 -6.2 -6.7 -6.7 1 +1900 2 1 -8.6 -9.1 -9.1 1 +1900 2 2 -10.6 -11.1 -11.1 1 +1900 2 3 -8.2 -8.7 -8.7 1 +1900 2 4 -7.4 -7.9 -7.9 1 +1900 2 5 -6.2 -6.7 -6.7 1 +1900 2 6 -11.8 -12.3 -12.3 1 +1900 2 7 -7.6 -8.1 -8.1 1 +1900 2 8 -2.6 -3.1 -3.1 1 +1900 2 9 -13.9 -14.4 -14.4 1 +1900 2 10 -11.5 -12.0 -12.0 1 +1900 2 11 -6.7 -7.2 -7.2 1 +1900 2 12 -4.7 -5.2 -5.2 1 +1900 2 13 -8.7 -9.2 -9.2 1 +1900 2 14 -12.8 -13.3 -13.3 1 +1900 2 15 -15.6 -16.1 -16.1 1 +1900 2 16 -11.2 -11.7 -11.7 1 +1900 2 17 -11.7 -12.2 -12.2 1 +1900 2 18 -10.1 -10.6 -10.6 1 +1900 2 19 -10.1 -10.6 -10.6 1 +1900 2 20 1.4 0.9 0.9 1 +1900 2 21 2.2 1.7 1.7 1 +1900 2 22 -0.3 -0.8 -0.8 1 +1900 2 23 -2.6 -3.1 -3.1 1 +1900 2 24 -2.5 -3.0 -3.0 1 +1900 2 25 1.0 0.5 0.5 1 +1900 2 26 -4.2 -4.7 -4.7 1 +1900 2 27 -5.2 -5.7 -5.7 1 +1900 2 28 -7.4 -7.9 -7.9 1 +1900 3 1 -8.4 -8.9 -8.9 1 +1900 3 2 -9.1 -9.6 -9.6 1 +1900 3 3 -9.6 -10.1 -10.1 1 +1900 3 4 -7.9 -8.4 -8.4 1 +1900 3 5 -3.6 -4.1 -4.1 1 +1900 3 6 -6.7 -7.2 -7.2 1 +1900 3 7 -9.5 -10.0 -10.0 1 +1900 3 8 -3.5 -4.0 -4.0 1 +1900 3 9 0.1 -0.4 -0.4 1 +1900 3 10 0.5 0.0 0.0 1 +1900 3 11 1.8 1.3 1.3 1 +1900 3 12 2.6 2.1 2.1 1 +1900 3 13 -1.5 -2.0 -2.0 1 +1900 3 14 -2.2 -2.7 -2.7 1 +1900 3 15 1.0 0.5 0.5 1 +1900 3 16 2.0 1.5 1.5 1 +1900 3 17 1.2 0.7 0.7 1 +1900 3 18 1.7 1.2 1.2 1 +1900 3 19 1.8 1.3 1.3 1 +1900 3 20 0.0 -0.5 -0.5 1 +1900 3 21 -0.8 -1.3 -1.3 1 +1900 3 22 -0.5 -1.0 -1.0 1 +1900 3 23 -1.7 -2.2 -2.2 1 +1900 3 24 -3.4 -3.9 -3.9 1 +1900 3 25 -1.5 -2.0 -2.0 1 +1900 3 26 -4.9 -5.4 -5.4 1 +1900 3 27 -3.7 -4.2 -4.2 1 +1900 3 28 -4.2 -4.7 -4.7 1 +1900 3 29 -4.2 -4.7 -4.7 1 +1900 3 30 -0.6 -1.1 -1.1 1 +1900 3 31 0.6 0.1 0.1 1 +1900 4 1 -3.2 -3.7 -3.7 1 +1900 4 2 -4.3 -4.8 -4.8 1 +1900 4 3 -1.1 -1.6 -1.6 1 +1900 4 4 0.8 0.3 0.3 1 +1900 4 5 0.6 0.1 0.1 1 +1900 4 6 1.0 0.5 0.5 1 +1900 4 7 1.0 0.5 0.5 1 +1900 4 8 1.8 1.3 1.3 1 +1900 4 9 2.7 2.2 2.2 1 +1900 4 10 3.3 2.8 2.8 1 +1900 4 11 3.3 2.8 2.8 1 +1900 4 12 5.3 4.8 4.8 1 +1900 4 13 3.9 3.4 3.4 1 +1900 4 14 3.6 3.1 3.1 1 +1900 4 15 5.1 4.6 4.6 1 +1900 4 16 3.9 3.4 3.4 1 +1900 4 17 3.2 2.7 2.7 1 +1900 4 18 3.7 3.2 3.2 1 +1900 4 19 7.9 7.4 7.4 1 +1900 4 20 10.5 10.0 10.0 1 +1900 4 21 7.8 7.3 7.3 1 +1900 4 22 3.9 3.4 3.4 1 +1900 4 23 5.0 4.4 4.4 1 +1900 4 24 6.9 6.3 6.3 1 +1900 4 25 1.4 0.8 0.8 1 +1900 4 26 2.6 2.0 2.0 1 +1900 4 27 0.9 0.3 0.3 1 +1900 4 28 4.9 4.3 4.3 1 +1900 4 29 7.6 7.0 7.0 1 +1900 4 30 1.2 0.6 0.6 1 +1900 5 1 2.7 2.1 2.1 1 +1900 5 2 3.1 2.5 2.5 1 +1900 5 3 6.2 5.5 5.5 1 +1900 5 4 9.6 8.9 8.9 1 +1900 5 5 10.2 9.5 9.5 1 +1900 5 6 13.8 13.1 13.1 1 +1900 5 7 14.5 13.8 13.8 1 +1900 5 8 7.0 6.3 6.3 1 +1900 5 9 2.2 1.5 1.5 1 +1900 5 10 -0.4 -1.1 -1.1 1 +1900 5 11 2.2 1.5 1.5 1 +1900 5 12 2.9 2.2 2.2 1 +1900 5 13 2.3 1.5 1.5 1 +1900 5 14 4.5 3.7 3.7 1 +1900 5 15 7.0 6.2 6.2 1 +1900 5 16 5.6 4.8 4.8 1 +1900 5 17 8.6 7.8 7.8 1 +1900 5 18 6.1 5.3 5.3 1 +1900 5 19 4.7 4.0 4.0 1 +1900 5 20 4.6 3.9 3.9 1 +1900 5 21 7.6 6.9 6.9 1 +1900 5 22 9.7 9.0 9.0 1 +1900 5 23 13.7 13.0 13.0 1 +1900 5 24 12.1 11.4 11.4 1 +1900 5 25 12.8 12.1 12.1 1 +1900 5 26 14.7 14.0 14.0 1 +1900 5 27 9.6 8.9 8.9 1 +1900 5 28 5.7 5.0 5.0 1 +1900 5 29 7.3 6.6 6.6 1 +1900 5 30 8.5 7.8 7.8 1 +1900 5 31 15.2 14.6 14.6 1 +1900 6 1 18.1 17.5 17.5 1 +1900 6 2 19.9 19.3 19.3 1 +1900 6 3 16.6 16.0 16.0 1 +1900 6 4 11.9 11.3 11.3 1 +1900 6 5 17.1 16.5 16.5 1 +1900 6 6 15.3 14.7 14.7 1 +1900 6 7 12.4 11.8 11.8 1 +1900 6 8 11.1 10.5 10.5 1 +1900 6 9 12.5 11.9 11.9 1 +1900 6 10 11.2 10.6 10.6 1 +1900 6 11 14.2 13.6 13.6 1 +1900 6 12 16.9 16.4 16.4 1 +1900 6 13 22.3 21.8 21.8 1 +1900 6 14 15.1 14.6 14.6 1 +1900 6 15 13.3 12.8 12.8 1 +1900 6 16 8.0 7.5 7.5 1 +1900 6 17 8.9 8.4 8.4 1 +1900 6 18 14.8 14.3 14.3 1 +1900 6 19 16.3 15.8 15.8 1 +1900 6 20 14.4 13.9 13.9 1 +1900 6 21 14.0 13.5 13.5 1 +1900 6 22 15.8 15.3 15.3 1 +1900 6 23 12.9 12.4 12.4 1 +1900 6 24 14.1 13.6 13.6 1 +1900 6 25 17.2 16.7 16.7 1 +1900 6 26 19.0 18.5 18.5 1 +1900 6 27 19.9 19.4 19.4 1 +1900 6 28 20.9 20.4 20.4 1 +1900 6 29 18.5 18.0 18.0 1 +1900 6 30 16.8 16.3 16.3 1 +1900 7 1 15.7 15.2 15.2 1 +1900 7 2 17.6 17.1 17.1 1 +1900 7 3 17.1 16.6 16.6 1 +1900 7 4 15.4 14.9 14.9 1 +1900 7 5 13.3 12.8 12.8 1 +1900 7 6 15.8 15.3 15.3 1 +1900 7 7 13.6 13.1 13.1 1 +1900 7 8 11.7 11.2 11.2 1 +1900 7 9 10.6 10.1 10.1 1 +1900 7 10 13.0 12.5 12.5 1 +1900 7 11 17.0 16.5 16.5 1 +1900 7 12 21.3 20.8 20.8 1 +1900 7 13 20.7 20.2 20.2 1 +1900 7 14 22.4 21.9 21.9 1 +1900 7 15 21.6 21.0 21.0 1 +1900 7 16 20.3 19.8 19.8 1 +1900 7 17 17.5 17.0 17.0 1 +1900 7 18 16.3 15.8 15.8 1 +1900 7 19 21.8 21.3 21.3 1 +1900 7 20 19.8 19.3 19.3 1 +1900 7 21 16.3 15.8 15.8 1 +1900 7 22 16.7 16.2 16.2 1 +1900 7 23 20.1 19.6 19.6 1 +1900 7 24 19.0 18.5 18.5 1 +1900 7 25 18.1 17.6 17.6 1 +1900 7 26 16.3 15.8 15.8 1 +1900 7 27 14.9 14.4 14.4 1 +1900 7 28 14.5 14.0 14.0 1 +1900 7 29 15.7 15.2 15.2 1 +1900 7 30 17.4 16.9 16.9 1 +1900 7 31 17.2 16.7 16.7 1 +1900 8 1 17.0 16.5 16.5 1 +1900 8 2 17.0 16.5 16.5 1 +1900 8 3 16.0 15.5 15.5 1 +1900 8 4 17.6 17.1 17.1 1 +1900 8 5 15.5 15.0 15.0 1 +1900 8 6 16.0 15.5 15.5 1 +1900 8 7 17.2 16.7 16.7 1 +1900 8 8 18.2 17.7 17.7 1 +1900 8 9 16.3 15.8 15.8 1 +1900 8 10 15.3 14.8 14.8 1 +1900 8 11 14.6 14.1 14.1 1 +1900 8 12 16.9 16.4 16.4 1 +1900 8 13 17.1 16.6 16.6 1 +1900 8 14 15.3 14.8 14.8 1 +1900 8 15 17.7 17.2 17.2 1 +1900 8 16 19.3 18.8 18.8 1 +1900 8 17 18.9 18.4 18.4 1 +1900 8 18 19.8 19.3 19.3 1 +1900 8 19 20.1 19.6 19.6 1 +1900 8 20 15.9 15.4 15.4 1 +1900 8 21 20.2 19.7 19.7 1 +1900 8 22 20.8 20.3 20.3 1 +1900 8 23 19.8 19.3 19.3 1 +1900 8 24 20.5 20.0 20.0 1 +1900 8 25 14.7 14.3 14.3 1 +1900 8 26 10.3 9.9 9.9 1 +1900 8 27 12.9 12.5 12.5 1 +1900 8 28 12.3 11.9 11.9 1 +1900 8 29 13.9 13.5 13.5 1 +1900 8 30 14.8 14.4 14.4 1 +1900 8 31 14.2 13.8 13.8 1 +1900 9 1 14.0 13.6 13.6 1 +1900 9 2 13.2 12.8 12.8 1 +1900 9 3 9.4 9.0 9.0 1 +1900 9 4 13.0 12.6 12.6 1 +1900 9 5 9.5 9.1 9.1 1 +1900 9 6 7.2 6.8 6.8 1 +1900 9 7 6.8 6.5 6.5 1 +1900 9 8 7.2 6.9 6.9 1 +1900 9 9 9.4 9.1 9.1 1 +1900 9 10 11.7 11.4 11.4 1 +1900 9 11 12.1 11.8 11.8 1 +1900 9 12 12.8 12.5 12.5 1 +1900 9 13 13.6 13.3 13.3 1 +1900 9 14 15.4 15.1 15.1 1 +1900 9 15 13.9 13.6 13.6 1 +1900 9 16 10.0 9.7 9.7 1 +1900 9 17 13.9 13.6 13.6 1 +1900 9 18 11.9 11.6 11.6 1 +1900 9 19 13.0 12.7 12.7 1 +1900 9 20 14.0 13.7 13.7 1 +1900 9 21 12.8 12.5 12.5 1 +1900 9 22 12.9 12.6 12.6 1 +1900 9 23 12.7 12.4 12.4 1 +1900 9 24 16.5 16.2 16.2 1 +1900 9 25 13.3 13.0 13.0 1 +1900 9 26 8.4 8.2 8.2 1 +1900 9 27 9.0 8.8 8.8 1 +1900 9 28 8.8 8.6 8.6 1 +1900 9 29 7.1 6.9 6.9 1 +1900 9 30 11.0 10.8 10.8 1 +1900 10 1 12.7 12.5 12.5 1 +1900 10 2 10.8 10.6 10.6 1 +1900 10 3 10.2 10.0 10.0 1 +1900 10 4 9.1 8.9 8.9 1 +1900 10 5 8.5 8.3 8.3 1 +1900 10 6 9.1 8.9 8.9 1 +1900 10 7 8.8 8.6 8.6 1 +1900 10 8 6.9 6.7 6.7 1 +1900 10 9 12.9 12.7 12.7 1 +1900 10 10 8.1 7.9 7.9 1 +1900 10 11 7.6 7.4 7.4 1 +1900 10 12 8.9 8.7 8.7 1 +1900 10 13 9.1 8.9 8.9 1 +1900 10 14 7.7 7.5 7.5 1 +1900 10 15 3.9 3.7 3.7 1 +1900 10 16 3.4 3.2 3.2 1 +1900 10 17 4.4 4.2 4.2 1 +1900 10 18 4.2 4.0 4.0 1 +1900 10 19 3.0 2.8 2.8 1 +1900 10 20 3.8 3.6 3.6 1 +1900 10 21 5.5 5.3 5.3 1 +1900 10 22 3.8 3.6 3.6 1 +1900 10 23 4.4 4.2 4.2 1 +1900 10 24 4.9 4.7 4.7 1 +1900 10 25 5.3 5.1 5.1 1 +1900 10 26 8.9 8.7 8.7 1 +1900 10 27 7.1 6.9 6.9 1 +1900 10 28 7.7 7.5 7.5 1 +1900 10 29 6.4 6.2 6.2 1 +1900 10 30 6.0 5.8 5.8 1 +1900 10 31 4.7 4.5 4.5 1 +1900 11 1 4.0 3.7 3.7 1 +1900 11 2 3.0 2.7 2.7 1 +1900 11 3 2.2 1.9 1.9 1 +1900 11 4 4.0 3.7 3.7 1 +1900 11 5 4.8 4.5 4.5 1 +1900 11 6 4.5 4.2 4.2 1 +1900 11 7 4.2 3.9 3.9 1 +1900 11 8 7.2 6.9 6.9 1 +1900 11 9 7.5 7.2 7.2 1 +1900 11 10 7.4 7.1 7.1 1 +1900 11 11 7.0 6.7 6.7 1 +1900 11 12 4.7 4.4 4.4 1 +1900 11 13 3.9 3.6 3.6 1 +1900 11 14 5.9 5.6 5.6 1 +1900 11 15 5.1 4.8 4.8 1 +1900 11 16 4.7 4.4 4.4 1 +1900 11 17 2.8 2.5 2.5 1 +1900 11 18 0.4 0.1 0.1 1 +1900 11 19 -2.5 -2.8 -2.8 1 +1900 11 20 -1.7 -2.0 -2.0 1 +1900 11 21 0.8 0.5 0.5 1 +1900 11 22 2.7 2.4 2.4 1 +1900 11 23 2.8 2.5 2.5 1 +1900 11 24 1.3 1.0 1.0 1 +1900 11 25 2.1 1.8 1.8 1 +1900 11 26 -0.9 -1.2 -1.2 1 +1900 11 27 -5.0 -5.3 -5.3 1 +1900 11 28 3.2 2.9 2.9 1 +1900 11 29 0.2 -0.1 -0.1 1 +1900 11 30 -3.3 -3.6 -3.6 1 +1900 12 1 -4.7 -5.0 -5.0 1 +1900 12 2 -6.6 -6.9 -6.9 1 +1900 12 3 -8.1 -8.4 -8.4 1 +1900 12 4 -0.4 -0.7 -0.7 1 +1900 12 5 -1.7 -2.0 -2.0 1 +1900 12 6 -3.9 -4.2 -4.2 1 +1900 12 7 -5.4 -5.7 -5.7 1 +1900 12 8 -3.3 -3.6 -3.6 1 +1900 12 9 4.5 4.2 4.2 1 +1900 12 10 5.1 4.8 4.8 1 +1900 12 11 3.1 2.8 2.8 1 +1900 12 12 0.9 0.6 0.6 1 +1900 12 13 3.1 2.8 2.8 1 +1900 12 14 4.3 4.0 4.0 1 +1900 12 15 6.2 5.9 5.9 1 +1900 12 16 3.4 3.1 3.1 1 +1900 12 17 5.0 4.7 4.7 1 +1900 12 18 6.0 5.7 5.7 1 +1900 12 19 2.3 2.0 2.0 1 +1900 12 20 3.7 3.4 3.4 1 +1900 12 21 5.6 5.3 5.3 1 +1900 12 22 3.9 3.5 3.5 1 +1900 12 23 1.8 1.4 1.4 1 +1900 12 24 -2.2 -2.6 -2.6 1 +1900 12 25 -2.7 -3.1 -3.1 1 +1900 12 26 -1.7 -2.1 -2.1 1 +1900 12 27 -3.0 -3.4 -3.4 1 +1900 12 28 -5.0 -5.4 -5.4 1 +1900 12 29 -7.7 -8.1 -8.1 1 +1900 12 30 -11.8 -12.2 -12.2 1 +1900 12 31 -14.1 -14.5 -14.5 1 +1901 1 1 -14.4 -14.8 -14.8 1 +1901 1 2 -7.8 -8.2 -8.2 1 +1901 1 3 -6.0 -6.4 -6.4 1 +1901 1 4 -4.9 -5.3 -5.3 1 +1901 1 5 -0.2 -0.7 -0.7 1 +1901 1 6 0.2 -0.3 -0.3 1 +1901 1 7 -2.3 -2.8 -2.8 1 +1901 1 8 -1.7 -2.2 -2.2 1 +1901 1 9 -1.1 -1.6 -1.6 1 +1901 1 10 -1.7 -2.2 -2.2 1 +1901 1 11 -4.4 -4.9 -4.9 1 +1901 1 12 -5.6 -6.1 -6.1 1 +1901 1 13 -5.7 -6.2 -6.2 1 +1901 1 14 -4.9 -5.4 -5.4 1 +1901 1 15 -2.4 -2.9 -2.9 1 +1901 1 16 -4.0 -4.5 -4.5 1 +1901 1 17 -7.2 -7.7 -7.7 1 +1901 1 18 -1.8 -2.3 -2.3 1 +1901 1 19 1.0 0.5 0.5 1 +1901 1 20 0.8 0.3 0.3 1 +1901 1 21 -0.6 -1.1 -1.1 1 +1901 1 22 4.1 3.6 3.6 1 +1901 1 23 2.8 2.3 2.3 1 +1901 1 24 2.4 1.9 1.9 1 +1901 1 25 1.2 0.7 0.7 1 +1901 1 26 0.3 -0.2 -0.2 1 +1901 1 27 -3.0 -3.5 -3.5 1 +1901 1 28 -3.9 -4.4 -4.4 1 +1901 1 29 -6.6 -7.1 -7.1 1 +1901 1 30 -10.1 -10.6 -10.6 1 +1901 1 31 -7.6 -8.1 -8.1 1 +1901 2 1 -3.4 -3.9 -3.9 1 +1901 2 2 -7.2 -7.7 -7.7 1 +1901 2 3 -3.1 -3.6 -3.6 1 +1901 2 4 -2.6 -3.1 -3.1 1 +1901 2 5 -0.3 -0.8 -0.8 1 +1901 2 6 -6.0 -6.5 -6.5 1 +1901 2 7 -5.6 -6.1 -6.1 1 +1901 2 8 -2.3 -2.8 -2.8 1 +1901 2 9 -1.0 -1.5 -1.5 1 +1901 2 10 -7.5 -8.0 -8.0 1 +1901 2 11 -11.1 -11.6 -11.6 1 +1901 2 12 -12.0 -12.5 -12.5 1 +1901 2 13 -12.1 -12.6 -12.6 1 +1901 2 14 -12.0 -12.5 -12.5 1 +1901 2 15 -12.5 -13.0 -13.0 1 +1901 2 16 -5.0 -5.5 -5.5 1 +1901 2 17 -5.0 -5.5 -5.5 1 +1901 2 18 -9.3 -9.8 -9.8 1 +1901 2 19 -6.6 -7.1 -7.1 1 +1901 2 20 -8.1 -8.6 -8.6 1 +1901 2 21 -2.9 -3.4 -3.4 1 +1901 2 22 -2.9 -3.4 -3.4 1 +1901 2 23 -7.9 -8.4 -8.4 1 +1901 2 24 -12.1 -12.6 -12.6 1 +1901 2 25 -6.3 -6.8 -6.8 1 +1901 2 26 -4.4 -4.9 -4.9 1 +1901 2 27 0.1 -0.4 -0.4 1 +1901 2 28 -5.2 -5.7 -5.7 1 +1901 3 1 -8.1 -8.6 -8.6 1 +1901 3 2 -7.2 -7.7 -7.7 1 +1901 3 3 -10.3 -10.8 -10.8 1 +1901 3 4 -2.9 -3.4 -3.4 1 +1901 3 5 0.2 -0.3 -0.3 1 +1901 3 6 1.1 0.6 0.6 1 +1901 3 7 1.6 1.1 1.1 1 +1901 3 8 -0.1 -0.6 -0.6 1 +1901 3 9 -0.2 -0.7 -0.7 1 +1901 3 10 3.6 3.1 3.1 1 +1901 3 11 3.9 3.4 3.4 1 +1901 3 12 0.1 -0.4 -0.4 1 +1901 3 13 0.9 0.4 0.4 1 +1901 3 14 1.4 0.9 0.9 1 +1901 3 15 0.7 0.2 0.2 1 +1901 3 16 1.4 0.9 0.9 1 +1901 3 17 0.7 0.2 0.2 1 +1901 3 18 -1.2 -1.7 -1.7 1 +1901 3 19 -1.7 -2.2 -2.2 1 +1901 3 20 -0.8 -1.3 -1.3 1 +1901 3 21 -1.9 -2.4 -2.4 1 +1901 3 22 -0.8 -1.3 -1.3 1 +1901 3 23 1.5 1.0 1.0 1 +1901 3 24 1.2 0.7 0.7 1 +1901 3 25 -7.4 -7.9 -7.9 1 +1901 3 26 -8.1 -8.6 -8.6 1 +1901 3 27 -6.3 -6.8 -6.8 1 +1901 3 28 -4.8 -5.3 -5.3 1 +1901 3 29 -3.6 -4.1 -4.1 1 +1901 3 30 -1.3 -1.8 -1.8 1 +1901 3 31 0.4 -0.1 -0.1 1 +1901 4 1 3.7 3.2 3.2 1 +1901 4 2 4.2 3.7 3.7 1 +1901 4 3 4.3 3.8 3.8 1 +1901 4 4 3.4 2.9 2.9 1 +1901 4 5 3.9 3.4 3.4 1 +1901 4 6 1.3 0.8 0.8 1 +1901 4 7 2.6 2.1 2.1 1 +1901 4 8 4.3 3.8 3.8 1 +1901 4 9 4.1 3.6 3.6 1 +1901 4 10 6.2 5.7 5.7 1 +1901 4 11 3.7 3.2 3.2 1 +1901 4 12 3.3 2.8 2.8 1 +1901 4 13 1.5 1.0 1.0 1 +1901 4 14 0.8 0.3 0.3 1 +1901 4 15 -1.4 -1.9 -1.9 1 +1901 4 16 -0.1 -0.6 -0.6 1 +1901 4 17 -0.3 -0.8 -0.8 1 +1901 4 18 2.9 2.4 2.4 1 +1901 4 19 4.3 3.8 3.8 1 +1901 4 20 4.9 4.4 4.4 1 +1901 4 21 3.4 2.9 2.9 1 +1901 4 22 4.7 4.2 4.2 1 +1901 4 23 12.3 11.7 11.7 1 +1901 4 24 6.6 6.0 6.0 1 +1901 4 25 6.0 5.4 5.4 1 +1901 4 26 6.6 6.0 6.0 1 +1901 4 27 6.1 5.5 5.5 1 +1901 4 28 8.5 7.9 7.9 1 +1901 4 29 11.1 10.5 10.5 1 +1901 4 30 10.7 10.1 10.1 1 +1901 5 1 10.3 9.7 9.7 1 +1901 5 2 12.0 11.4 11.4 1 +1901 5 3 9.2 8.5 8.5 1 +1901 5 4 4.6 3.9 3.9 1 +1901 5 5 2.3 1.6 1.6 1 +1901 5 6 3.0 2.3 2.3 1 +1901 5 7 3.9 3.2 3.2 1 +1901 5 8 5.2 4.5 4.5 1 +1901 5 9 7.2 6.5 6.5 1 +1901 5 10 11.5 10.8 10.8 1 +1901 5 11 14.1 13.4 13.4 1 +1901 5 12 16.2 15.5 15.5 1 +1901 5 13 15.0 14.2 14.2 1 +1901 5 14 15.1 14.3 14.3 1 +1901 5 15 16.5 15.7 15.7 1 +1901 5 16 11.4 10.6 10.6 1 +1901 5 17 5.5 4.7 4.7 1 +1901 5 18 6.6 5.8 5.8 1 +1901 5 19 8.9 8.2 8.2 1 +1901 5 20 7.9 7.2 7.2 1 +1901 5 21 9.5 8.8 8.8 1 +1901 5 22 11.7 11.0 11.0 1 +1901 5 23 14.5 13.8 13.8 1 +1901 5 24 13.0 12.3 12.3 1 +1901 5 25 14.0 13.3 13.3 1 +1901 5 26 17.7 17.0 17.0 1 +1901 5 27 14.6 13.9 13.9 1 +1901 5 28 18.2 17.5 17.5 1 +1901 5 29 11.9 11.2 11.2 1 +1901 5 30 10.6 9.9 9.9 1 +1901 5 31 12.4 11.8 11.8 1 +1901 6 1 16.0 15.4 15.4 1 +1901 6 2 13.3 12.7 12.7 1 +1901 6 3 15.8 15.2 15.2 1 +1901 6 4 15.8 15.2 15.2 1 +1901 6 5 16.0 15.4 15.4 1 +1901 6 6 18.0 17.4 17.4 1 +1901 6 7 18.3 17.7 17.7 1 +1901 6 8 17.3 16.7 16.7 1 +1901 6 9 18.9 18.3 18.3 1 +1901 6 10 16.8 16.2 16.2 1 +1901 6 11 14.0 13.4 13.4 1 +1901 6 12 11.2 10.7 10.7 1 +1901 6 13 11.6 11.1 11.1 1 +1901 6 14 11.6 11.1 11.1 1 +1901 6 15 14.8 14.3 14.3 1 +1901 6 16 13.6 13.1 13.1 1 +1901 6 17 11.3 10.8 10.8 1 +1901 6 18 13.5 13.0 13.0 1 +1901 6 19 12.6 12.1 12.1 1 +1901 6 20 15.7 15.2 15.2 1 +1901 6 21 18.9 18.4 18.4 1 +1901 6 22 18.2 17.7 17.7 1 +1901 6 23 20.0 19.5 19.5 1 +1901 6 24 23.4 22.9 22.9 1 +1901 6 25 21.7 21.2 21.2 1 +1901 6 26 16.2 15.7 15.7 1 +1901 6 27 12.6 12.1 12.1 1 +1901 6 28 16.2 15.7 15.7 1 +1901 6 29 15.4 14.9 14.9 1 +1901 6 30 16.4 15.9 15.9 1 +1901 7 1 14.9 14.4 14.4 1 +1901 7 2 16.3 15.8 15.8 1 +1901 7 3 14.5 14.0 14.0 1 +1901 7 4 15.6 15.1 15.1 1 +1901 7 5 19.3 18.8 18.8 1 +1901 7 6 19.0 18.5 18.5 1 +1901 7 7 21.5 21.0 21.0 1 +1901 7 8 20.0 19.5 19.5 1 +1901 7 9 19.5 19.0 19.0 1 +1901 7 10 22.5 22.0 22.0 1 +1901 7 11 25.9 25.4 25.4 1 +1901 7 12 23.0 22.5 22.5 1 +1901 7 13 22.8 22.3 22.3 1 +1901 7 14 21.0 20.5 20.5 1 +1901 7 15 18.7 18.1 18.1 1 +1901 7 16 17.8 17.3 17.3 1 +1901 7 17 21.0 20.5 20.5 1 +1901 7 18 23.0 22.5 22.5 1 +1901 7 19 24.0 23.5 23.5 1 +1901 7 20 25.0 24.5 24.5 1 +1901 7 21 25.6 25.1 25.1 1 +1901 7 22 24.8 24.3 24.3 1 +1901 7 23 24.6 24.1 24.1 1 +1901 7 24 23.8 23.3 23.3 1 +1901 7 25 22.4 21.9 21.9 1 +1901 7 26 21.8 21.3 21.3 1 +1901 7 27 21.8 21.3 21.3 1 +1901 7 28 23.2 22.7 22.7 1 +1901 7 29 22.7 22.2 22.2 1 +1901 7 30 20.9 20.4 20.4 1 +1901 7 31 20.5 20.0 20.0 1 +1901 8 1 20.4 19.9 19.9 1 +1901 8 2 22.0 21.5 21.5 1 +1901 8 3 17.8 17.3 17.3 1 +1901 8 4 16.9 16.4 16.4 1 +1901 8 5 18.8 18.3 18.3 1 +1901 8 6 17.8 17.3 17.3 1 +1901 8 7 17.3 16.8 16.8 1 +1901 8 8 18.8 18.3 18.3 1 +1901 8 9 17.6 17.1 17.1 1 +1901 8 10 19.8 19.3 19.3 1 +1901 8 11 21.1 20.6 20.6 1 +1901 8 12 20.6 20.1 20.1 1 +1901 8 13 21.0 20.5 20.5 1 +1901 8 14 21.5 21.0 21.0 1 +1901 8 15 20.2 19.7 19.7 1 +1901 8 16 21.9 21.4 21.4 1 +1901 8 17 19.3 18.8 18.8 1 +1901 8 18 18.9 18.4 18.4 1 +1901 8 19 18.6 18.1 18.1 1 +1901 8 20 16.5 16.0 16.0 1 +1901 8 21 16.3 15.8 15.8 1 +1901 8 22 18.6 18.1 18.1 1 +1901 8 23 17.0 16.5 16.5 1 +1901 8 24 13.8 13.3 13.3 1 +1901 8 25 15.6 15.2 15.2 1 +1901 8 26 16.8 16.4 16.4 1 +1901 8 27 17.3 16.9 16.9 1 +1901 8 28 14.9 14.5 14.5 1 +1901 8 29 15.3 14.9 14.9 1 +1901 8 30 14.1 13.7 13.7 1 +1901 8 31 13.7 13.3 13.3 1 +1901 9 1 11.4 11.0 11.0 1 +1901 9 2 8.3 7.9 7.9 1 +1901 9 3 8.3 7.9 7.9 1 +1901 9 4 10.6 10.2 10.2 1 +1901 9 5 10.5 10.1 10.1 1 +1901 9 6 11.1 10.7 10.7 1 +1901 9 7 11.5 11.2 11.2 1 +1901 9 8 12.0 11.7 11.7 1 +1901 9 9 11.9 11.6 11.6 1 +1901 9 10 13.4 13.1 13.1 1 +1901 9 11 11.3 11.0 11.0 1 +1901 9 12 12.1 11.8 11.8 1 +1901 9 13 12.0 11.7 11.7 1 +1901 9 14 12.9 12.6 12.6 1 +1901 9 15 12.0 11.7 11.7 1 +1901 9 16 14.5 14.2 14.2 1 +1901 9 17 14.9 14.6 14.6 1 +1901 9 18 12.2 11.9 11.9 1 +1901 9 19 14.4 14.1 14.1 1 +1901 9 20 13.3 13.0 13.0 1 +1901 9 21 13.6 13.3 13.3 1 +1901 9 22 13.6 13.3 13.3 1 +1901 9 23 14.8 14.5 14.5 1 +1901 9 24 16.0 15.7 15.7 1 +1901 9 25 14.7 14.4 14.4 1 +1901 9 26 14.7 14.5 14.5 1 +1901 9 27 14.3 14.1 14.1 1 +1901 9 28 16.1 15.9 15.9 1 +1901 9 29 17.5 17.3 17.3 1 +1901 9 30 16.4 16.2 16.2 1 +1901 10 1 12.4 12.2 12.2 1 +1901 10 2 12.7 12.5 12.5 1 +1901 10 3 14.7 14.5 14.5 1 +1901 10 4 15.2 15.0 15.0 1 +1901 10 5 13.6 13.4 13.4 1 +1901 10 6 9.7 9.5 9.5 1 +1901 10 7 9.4 9.2 9.2 1 +1901 10 8 6.7 6.5 6.5 1 +1901 10 9 9.3 9.1 9.1 1 +1901 10 10 8.5 8.3 8.3 1 +1901 10 11 9.3 9.1 9.1 1 +1901 10 12 8.2 8.0 8.0 1 +1901 10 13 9.9 9.7 9.7 1 +1901 10 14 9.6 9.4 9.4 1 +1901 10 15 9.8 9.6 9.6 1 +1901 10 16 10.6 10.4 10.4 1 +1901 10 17 11.3 11.1 11.1 1 +1901 10 18 10.7 10.5 10.5 1 +1901 10 19 10.6 10.4 10.4 1 +1901 10 20 10.3 10.1 10.1 1 +1901 10 21 10.3 10.1 10.1 1 +1901 10 22 11.0 10.8 10.8 1 +1901 10 23 9.7 9.5 9.5 1 +1901 10 24 10.3 10.1 10.1 1 +1901 10 25 8.9 8.7 8.7 1 +1901 10 26 10.2 10.0 10.0 1 +1901 10 27 8.2 8.0 8.0 1 +1901 10 28 12.5 12.3 12.3 1 +1901 10 29 7.6 7.4 7.4 1 +1901 10 30 4.4 4.2 4.2 1 +1901 10 31 4.3 4.1 4.1 1 +1901 11 1 3.7 3.4 3.4 1 +1901 11 2 3.5 3.2 3.2 1 +1901 11 3 3.0 2.7 2.7 1 +1901 11 4 2.8 2.5 2.5 1 +1901 11 5 4.0 3.7 3.7 1 +1901 11 6 6.0 5.7 5.7 1 +1901 11 7 3.4 3.1 3.1 1 +1901 11 8 0.2 -0.1 -0.1 1 +1901 11 9 -1.0 -1.3 -1.3 1 +1901 11 10 1.3 1.0 1.0 1 +1901 11 11 -1.9 -2.2 -2.2 1 +1901 11 12 -5.9 -6.2 -6.2 1 +1901 11 13 -4.7 -5.0 -5.0 1 +1901 11 14 -0.5 -0.8 -0.8 1 +1901 11 15 -3.9 -4.2 -4.2 1 +1901 11 16 -8.2 -8.5 -8.5 1 +1901 11 17 1.1 0.8 0.8 1 +1901 11 18 -5.2 -5.5 -5.5 1 +1901 11 19 1.8 1.5 1.5 1 +1901 11 20 -1.1 -1.4 -1.4 1 +1901 11 21 -3.9 -4.2 -4.2 1 +1901 11 22 -5.2 -5.5 -5.5 1 +1901 11 23 -3.0 -3.3 -3.3 1 +1901 11 24 -3.0 -3.3 -3.3 1 +1901 11 25 1.8 1.5 1.5 1 +1901 11 26 -0.1 -0.4 -0.4 1 +1901 11 27 1.1 0.8 0.8 1 +1901 11 28 -1.5 -1.8 -1.8 1 +1901 11 29 -6.5 -6.8 -6.8 1 +1901 11 30 -3.8 -4.1 -4.1 1 +1901 12 1 -2.9 -3.2 -3.2 1 +1901 12 2 -3.9 -4.2 -4.2 1 +1901 12 3 -3.6 -3.9 -3.9 1 +1901 12 4 -10.5 -10.8 -10.8 1 +1901 12 5 -0.4 -0.7 -0.7 1 +1901 12 6 0.5 0.2 0.2 1 +1901 12 7 2.2 1.9 1.9 1 +1901 12 8 -0.6 -0.9 -0.9 1 +1901 12 9 -0.4 -0.7 -0.7 1 +1901 12 10 -4.6 -4.9 -4.9 1 +1901 12 11 -7.8 -8.1 -8.1 1 +1901 12 12 -8.7 -9.0 -9.0 1 +1901 12 13 -10.5 -10.8 -10.8 1 +1901 12 14 -6.2 -6.5 -6.5 1 +1901 12 15 -6.4 -6.7 -6.7 1 +1901 12 16 -8.4 -8.7 -8.7 1 +1901 12 17 -10.7 -11.0 -11.0 1 +1901 12 18 -1.8 -2.1 -2.1 1 +1901 12 19 -2.6 -2.9 -2.9 1 +1901 12 20 -1.1 -1.4 -1.4 1 +1901 12 21 0.3 0.0 0.0 1 +1901 12 22 -1.2 -1.6 -1.6 1 +1901 12 23 -4.5 -4.9 -4.9 1 +1901 12 24 -4.8 -5.2 -5.2 1 +1901 12 25 -4.3 -4.7 -4.7 1 +1901 12 26 -1.1 -1.5 -1.5 1 +1901 12 27 -2.2 -2.6 -2.6 1 +1901 12 28 -1.9 -2.3 -2.3 1 +1901 12 29 0.7 0.3 0.3 1 +1901 12 30 1.3 0.9 0.9 1 +1901 12 31 2.8 2.4 2.4 1 +1902 1 1 2.2 1.8 1.8 1 +1902 1 2 -0.3 -0.7 -0.7 1 +1902 1 3 -4.7 -5.1 -5.1 1 +1902 1 4 2.3 1.9 1.9 1 +1902 1 5 1.5 1.0 1.0 1 +1902 1 6 -1.2 -1.7 -1.7 1 +1902 1 7 0.4 -0.1 -0.1 1 +1902 1 8 2.2 1.7 1.7 1 +1902 1 9 2.8 2.3 2.3 1 +1902 1 10 3.3 2.8 2.8 1 +1902 1 11 -2.1 -2.6 -2.6 1 +1902 1 12 -4.2 -4.7 -4.7 1 +1902 1 13 -5.8 -6.3 -6.3 1 +1902 1 14 -7.6 -8.1 -8.1 1 +1902 1 15 -6.0 -6.5 -6.5 1 +1902 1 16 2.0 1.5 1.5 1 +1902 1 17 -1.8 -2.3 -2.3 1 +1902 1 18 -6.2 -6.7 -6.7 1 +1902 1 19 -4.8 -5.3 -5.3 1 +1902 1 20 3.2 2.7 2.7 1 +1902 1 21 0.6 0.1 0.1 1 +1902 1 22 -1.5 -2.0 -2.0 1 +1902 1 23 1.4 0.9 0.9 1 +1902 1 24 4.6 4.1 4.1 1 +1902 1 25 2.2 1.7 1.7 1 +1902 1 26 0.8 0.3 0.3 1 +1902 1 27 -2.2 -2.7 -2.7 1 +1902 1 28 -3.5 -4.0 -4.0 1 +1902 1 29 -2.3 -2.8 -2.8 1 +1902 1 30 -3.1 -3.6 -3.6 1 +1902 1 31 -5.2 -5.7 -5.7 1 +1902 2 1 -0.7 -1.2 -1.2 1 +1902 2 2 -2.8 -3.3 -3.3 1 +1902 2 3 -3.6 -4.1 -4.1 1 +1902 2 4 -6.1 -6.6 -6.6 1 +1902 2 5 -8.7 -9.2 -9.2 1 +1902 2 6 -1.9 -2.4 -2.4 1 +1902 2 7 -3.5 -4.0 -4.0 1 +1902 2 8 -3.1 -3.6 -3.6 1 +1902 2 9 -9.8 -10.3 -10.3 1 +1902 2 10 -10.4 -10.9 -10.9 1 +1902 2 11 -12.4 -12.9 -12.9 1 +1902 2 12 -3.9 -4.4 -4.4 1 +1902 2 13 -5.7 -6.2 -6.2 1 +1902 2 14 -8.8 -9.3 -9.3 1 +1902 2 15 -4.5 -5.0 -5.0 1 +1902 2 16 1.1 0.6 0.6 1 +1902 2 17 -0.6 -1.1 -1.1 1 +1902 2 18 -5.0 -5.5 -5.5 1 +1902 2 19 -7.7 -8.2 -8.2 1 +1902 2 20 -5.1 -5.6 -5.6 1 +1902 2 21 -5.1 -5.6 -5.6 1 +1902 2 22 -1.8 -2.3 -2.3 1 +1902 2 23 -2.9 -3.4 -3.4 1 +1902 2 24 -5.1 -5.6 -5.6 1 +1902 2 25 -5.6 -6.1 -6.1 1 +1902 2 26 -2.4 -2.9 -2.9 1 +1902 2 27 -0.8 -1.3 -1.3 1 +1902 2 28 0.8 0.3 0.3 1 +1902 3 1 1.3 0.8 0.8 1 +1902 3 2 -0.7 -1.2 -1.2 1 +1902 3 3 -3.8 -4.3 -4.3 1 +1902 3 4 -3.8 -4.3 -4.3 1 +1902 3 5 1.1 0.6 0.6 1 +1902 3 6 1.9 1.4 1.4 1 +1902 3 7 0.5 0.0 0.0 1 +1902 3 8 -9.2 -9.7 -9.7 1 +1902 3 9 -12.1 -12.6 -12.6 1 +1902 3 10 -6.4 -6.9 -6.9 1 +1902 3 11 -5.9 -6.4 -6.4 1 +1902 3 12 -10.6 -11.1 -11.1 1 +1902 3 13 -3.6 -4.1 -4.1 1 +1902 3 14 -0.8 -1.3 -1.3 1 +1902 3 15 1.0 0.5 0.5 1 +1902 3 16 2.0 1.5 1.5 1 +1902 3 17 0.7 0.2 0.2 1 +1902 3 18 -1.7 -2.2 -2.2 1 +1902 3 19 3.7 3.2 3.2 1 +1902 3 20 2.6 2.1 2.1 1 +1902 3 21 -7.1 -7.6 -7.6 1 +1902 3 22 -5.7 -6.2 -6.2 1 +1902 3 23 -2.9 -3.4 -3.4 1 +1902 3 24 1.6 1.1 1.1 1 +1902 3 25 -1.2 -1.7 -1.7 1 +1902 3 26 -0.5 -1.0 -1.0 1 +1902 3 27 -2.0 -2.5 -2.5 1 +1902 3 28 -3.9 -4.4 -4.4 1 +1902 3 29 -2.6 -3.1 -3.1 1 +1902 3 30 -0.1 -0.6 -0.6 1 +1902 3 31 -1.7 -2.2 -2.2 1 +1902 4 1 -4.5 -5.0 -5.0 1 +1902 4 2 -3.4 -3.9 -3.9 1 +1902 4 3 -2.8 -3.3 -3.3 1 +1902 4 4 -0.3 -0.8 -0.8 1 +1902 4 5 -1.6 -2.1 -2.1 1 +1902 4 6 1.1 0.6 0.6 1 +1902 4 7 -0.3 -0.8 -0.8 1 +1902 4 8 -3.4 -3.9 -3.9 1 +1902 4 9 -1.3 -1.8 -1.8 1 +1902 4 10 -0.7 -1.2 -1.2 1 +1902 4 11 0.0 -0.5 -0.5 1 +1902 4 12 0.2 -0.3 -0.3 1 +1902 4 13 0.8 0.3 0.3 1 +1902 4 14 2.3 1.8 1.8 1 +1902 4 15 1.7 1.2 1.2 1 +1902 4 16 3.2 2.7 2.7 1 +1902 4 17 4.1 3.6 3.6 1 +1902 4 18 4.5 4.0 4.0 1 +1902 4 19 6.6 6.1 6.1 1 +1902 4 20 5.2 4.7 4.7 1 +1902 4 21 3.4 2.9 2.9 1 +1902 4 22 0.6 0.1 0.1 1 +1902 4 23 2.3 1.7 1.7 1 +1902 4 24 3.0 2.4 2.4 1 +1902 4 25 1.8 1.2 1.2 1 +1902 4 26 0.6 0.0 0.0 1 +1902 4 27 -0.6 -1.2 -1.2 1 +1902 4 28 1.1 0.5 0.5 1 +1902 4 29 2.9 2.3 2.3 1 +1902 4 30 1.3 0.7 0.7 1 +1902 5 1 1.0 0.4 0.4 1 +1902 5 2 2.2 1.6 1.6 1 +1902 5 3 3.1 2.4 2.4 1 +1902 5 4 2.7 2.0 2.0 1 +1902 5 5 4.2 3.5 3.5 1 +1902 5 6 3.1 2.4 2.4 1 +1902 5 7 2.2 1.5 1.5 1 +1902 5 8 0.2 -0.5 -0.5 1 +1902 5 9 0.4 -0.3 -0.3 1 +1902 5 10 1.5 0.8 0.8 1 +1902 5 11 2.4 1.7 1.7 1 +1902 5 12 2.1 1.4 1.4 1 +1902 5 13 5.1 4.3 4.3 1 +1902 5 14 4.4 3.6 3.6 1 +1902 5 15 6.4 5.6 5.6 1 +1902 5 16 6.4 5.6 5.6 1 +1902 5 17 4.9 4.1 4.1 1 +1902 5 18 7.4 6.6 6.6 1 +1902 5 19 4.7 4.0 4.0 1 +1902 5 20 5.9 5.2 5.2 1 +1902 5 21 9.1 8.4 8.4 1 +1902 5 22 10.6 9.9 9.9 1 +1902 5 23 10.3 9.6 9.6 1 +1902 5 24 11.1 10.4 10.4 1 +1902 5 25 13.0 12.3 12.3 1 +1902 5 26 10.4 9.7 9.7 1 +1902 5 27 12.1 11.4 11.4 1 +1902 5 28 12.2 11.5 11.5 1 +1902 5 29 14.6 13.9 13.9 1 +1902 5 30 12.7 12.0 12.0 1 +1902 5 31 14.4 13.8 13.8 1 +1902 6 1 6.6 6.0 6.0 1 +1902 6 2 9.6 9.0 9.0 1 +1902 6 3 15.2 14.6 14.6 1 +1902 6 4 18.5 17.9 17.9 1 +1902 6 5 14.0 13.4 13.4 1 +1902 6 6 6.3 5.7 5.7 1 +1902 6 7 8.5 7.9 7.9 1 +1902 6 8 8.7 8.1 8.1 1 +1902 6 9 5.7 5.1 5.1 1 +1902 6 10 8.1 7.5 7.5 1 +1902 6 11 11.3 10.7 10.7 1 +1902 6 12 11.0 10.5 10.5 1 +1902 6 13 12.5 12.0 12.0 1 +1902 6 14 13.7 13.2 13.2 1 +1902 6 15 11.0 10.5 10.5 1 +1902 6 16 8.6 8.1 8.1 1 +1902 6 17 10.8 10.3 10.3 1 +1902 6 18 12.9 12.4 12.4 1 +1902 6 19 14.6 14.1 14.1 1 +1902 6 20 13.3 12.8 12.8 1 +1902 6 21 9.6 9.1 9.1 1 +1902 6 22 7.7 7.2 7.2 1 +1902 6 23 8.1 7.6 7.6 1 +1902 6 24 12.8 12.3 12.3 1 +1902 6 25 16.5 16.0 16.0 1 +1902 6 26 17.4 16.9 16.9 1 +1902 6 27 17.0 16.5 16.5 1 +1902 6 28 21.8 21.3 21.3 1 +1902 6 29 15.0 14.5 14.5 1 +1902 6 30 14.6 14.1 14.1 1 +1902 7 1 15.1 14.6 14.6 1 +1902 7 2 11.3 10.8 10.8 1 +1902 7 3 11.3 10.8 10.8 1 +1902 7 4 15.4 14.9 14.9 1 +1902 7 5 12.0 11.5 11.5 1 +1902 7 6 14.4 13.9 13.9 1 +1902 7 7 14.3 13.8 13.8 1 +1902 7 8 12.7 12.2 12.2 1 +1902 7 9 12.4 11.9 11.9 1 +1902 7 10 11.3 10.8 10.8 1 +1902 7 11 10.5 10.0 10.0 1 +1902 7 12 10.7 10.2 10.2 1 +1902 7 13 13.8 13.3 13.3 1 +1902 7 14 12.3 11.8 11.8 1 +1902 7 15 13.6 13.0 13.0 1 +1902 7 16 16.8 16.3 16.3 1 +1902 7 17 16.2 15.7 15.7 1 +1902 7 18 15.7 15.2 15.2 1 +1902 7 19 15.0 14.5 14.5 1 +1902 7 20 13.7 13.2 13.2 1 +1902 7 21 14.7 14.2 14.2 1 +1902 7 22 15.3 14.8 14.8 1 +1902 7 23 15.1 14.6 14.6 1 +1902 7 24 14.3 13.8 13.8 1 +1902 7 25 16.3 15.8 15.8 1 +1902 7 26 14.9 14.4 14.4 1 +1902 7 27 15.0 14.5 14.5 1 +1902 7 28 14.0 13.5 13.5 1 +1902 7 29 12.2 11.7 11.7 1 +1902 7 30 12.9 12.4 12.4 1 +1902 7 31 12.7 12.2 12.2 1 +1902 8 1 13.2 12.7 12.7 1 +1902 8 2 15.3 14.8 14.8 1 +1902 8 3 15.8 15.3 15.3 1 +1902 8 4 13.7 13.2 13.2 1 +1902 8 5 13.8 13.3 13.3 1 +1902 8 6 13.6 13.1 13.1 1 +1902 8 7 14.3 13.8 13.8 1 +1902 8 8 14.0 13.5 13.5 1 +1902 8 9 13.3 12.8 12.8 1 +1902 8 10 12.3 11.8 11.8 1 +1902 8 11 12.7 12.2 12.2 1 +1902 8 12 12.6 12.1 12.1 1 +1902 8 13 12.3 11.8 11.8 1 +1902 8 14 12.8 12.3 12.3 1 +1902 8 15 11.7 11.2 11.2 1 +1902 8 16 12.8 12.3 12.3 1 +1902 8 17 12.5 12.0 12.0 1 +1902 8 18 14.3 13.8 13.8 1 +1902 8 19 14.3 13.8 13.8 1 +1902 8 20 14.7 14.2 14.2 1 +1902 8 21 12.6 12.1 12.1 1 +1902 8 22 11.7 11.2 11.2 1 +1902 8 23 11.9 11.4 11.4 1 +1902 8 24 14.0 13.5 13.5 1 +1902 8 25 14.1 13.7 13.7 1 +1902 8 26 14.6 14.2 14.2 1 +1902 8 27 13.9 13.5 13.5 1 +1902 8 28 13.7 13.3 13.3 1 +1902 8 29 13.6 13.2 13.2 1 +1902 8 30 12.7 12.3 12.3 1 +1902 8 31 13.8 13.4 13.4 1 +1902 9 1 12.3 11.9 11.9 1 +1902 9 2 12.9 12.5 12.5 1 +1902 9 3 14.7 14.3 14.3 1 +1902 9 4 15.6 15.2 15.2 1 +1902 9 5 15.7 15.3 15.3 1 +1902 9 6 13.7 13.3 13.3 1 +1902 9 7 10.9 10.6 10.6 1 +1902 9 8 12.4 12.1 12.1 1 +1902 9 9 15.1 14.8 14.8 1 +1902 9 10 10.1 9.8 9.8 1 +1902 9 11 8.3 8.0 8.0 1 +1902 9 12 10.4 10.1 10.1 1 +1902 9 13 7.2 6.9 6.9 1 +1902 9 14 6.8 6.5 6.5 1 +1902 9 15 9.3 9.0 9.0 1 +1902 9 16 11.4 11.1 11.1 1 +1902 9 17 10.5 10.2 10.2 1 +1902 9 18 6.8 6.5 6.5 1 +1902 9 19 5.0 4.7 4.7 1 +1902 9 20 4.0 3.7 3.7 1 +1902 9 21 4.1 3.8 3.8 1 +1902 9 22 8.1 7.8 7.8 1 +1902 9 23 8.6 8.3 8.3 1 +1902 9 24 9.4 9.1 9.1 1 +1902 9 25 9.0 8.7 8.7 1 +1902 9 26 9.1 8.9 8.9 1 +1902 9 27 9.0 8.8 8.8 1 +1902 9 28 6.2 6.0 6.0 1 +1902 9 29 9.6 9.4 9.4 1 +1902 9 30 4.5 4.3 4.3 1 +1902 10 1 3.3 3.1 3.1 1 +1902 10 2 2.8 2.6 2.6 1 +1902 10 3 7.8 7.6 7.6 1 +1902 10 4 2.5 2.3 2.3 1 +1902 10 5 4.3 4.1 4.1 1 +1902 10 6 5.0 4.8 4.8 1 +1902 10 7 4.1 3.9 3.9 1 +1902 10 8 3.4 3.2 3.2 1 +1902 10 9 2.0 1.8 1.8 1 +1902 10 10 5.1 4.9 4.9 1 +1902 10 11 5.4 5.2 5.2 1 +1902 10 12 4.1 3.9 3.9 1 +1902 10 13 4.4 4.2 4.2 1 +1902 10 14 7.7 7.5 7.5 1 +1902 10 15 2.8 2.6 2.6 1 +1902 10 16 5.9 5.7 5.7 1 +1902 10 17 8.5 8.3 8.3 1 +1902 10 18 6.7 6.5 6.5 1 +1902 10 19 1.8 1.6 1.6 1 +1902 10 20 -0.1 -0.3 -0.3 1 +1902 10 21 4.5 4.3 4.3 1 +1902 10 22 4.7 4.5 4.5 1 +1902 10 23 3.9 3.7 3.7 1 +1902 10 24 10.7 10.5 10.5 1 +1902 10 25 5.2 5.0 5.0 1 +1902 10 26 4.1 3.9 3.9 1 +1902 10 27 4.8 4.6 4.6 1 +1902 10 28 5.9 5.7 5.7 1 +1902 10 29 7.2 7.0 7.0 1 +1902 10 30 6.9 6.7 6.7 1 +1902 10 31 3.9 3.7 3.7 1 +1902 11 1 9.8 9.5 9.5 1 +1902 11 2 5.4 5.1 5.1 1 +1902 11 3 5.2 4.9 4.9 1 +1902 11 4 3.0 2.7 2.7 1 +1902 11 5 1.8 1.5 1.5 1 +1902 11 6 -0.5 -0.8 -0.8 1 +1902 11 7 2.6 2.3 2.3 1 +1902 11 8 4.6 4.3 4.3 1 +1902 11 9 5.7 5.4 5.4 1 +1902 11 10 6.5 6.2 6.2 1 +1902 11 11 5.2 4.9 4.9 1 +1902 11 12 3.4 3.1 3.1 1 +1902 11 13 5.7 5.4 5.4 1 +1902 11 14 6.5 6.2 6.2 1 +1902 11 15 3.4 3.1 3.1 1 +1902 11 16 0.6 0.3 0.3 1 +1902 11 17 -0.8 -1.1 -1.1 1 +1902 11 18 -1.7 -2.0 -2.0 1 +1902 11 19 -1.7 -2.0 -2.0 1 +1902 11 20 -1.2 -1.5 -1.5 1 +1902 11 21 0.5 0.2 0.2 1 +1902 11 22 0.5 0.2 0.2 1 +1902 11 23 -0.7 -1.0 -1.0 1 +1902 11 24 -3.4 -3.7 -3.7 1 +1902 11 25 -0.7 -1.0 -1.0 1 +1902 11 26 -3.9 -4.2 -4.2 1 +1902 11 27 -0.5 -0.8 -0.8 1 +1902 11 28 -2.3 -2.6 -2.6 1 +1902 11 29 -5.4 -5.7 -5.7 1 +1902 11 30 -5.3 -5.6 -5.6 1 +1902 12 1 -7.7 -8.0 -8.0 1 +1902 12 2 -10.1 -10.4 -10.4 1 +1902 12 3 -9.4 -9.7 -9.7 1 +1902 12 4 -8.2 -8.5 -8.5 1 +1902 12 5 -8.1 -8.4 -8.4 1 +1902 12 6 -9.0 -9.3 -9.3 1 +1902 12 7 -6.7 -7.0 -7.0 1 +1902 12 8 -5.5 -5.8 -5.8 1 +1902 12 9 -5.6 -5.9 -5.9 1 +1902 12 10 -5.6 -5.9 -5.9 1 +1902 12 11 -7.3 -7.6 -7.6 1 +1902 12 12 -8.0 -8.3 -8.3 1 +1902 12 13 -2.9 -3.2 -3.2 1 +1902 12 14 -3.1 -3.4 -3.4 1 +1902 12 15 2.4 2.1 2.1 1 +1902 12 16 0.6 0.3 0.3 1 +1902 12 17 1.5 1.2 1.2 1 +1902 12 18 -2.6 -2.9 -2.9 1 +1902 12 19 -1.7 -2.0 -2.0 1 +1902 12 20 0.4 0.1 0.1 1 +1902 12 21 -1.2 -1.5 -1.5 1 +1902 12 22 -6.1 -6.5 -6.5 1 +1902 12 23 0.7 0.3 0.3 1 +1902 12 24 2.3 1.9 1.9 1 +1902 12 25 2.8 2.4 2.4 1 +1902 12 26 -4.0 -4.4 -4.4 1 +1902 12 27 -3.6 -4.0 -4.0 1 +1902 12 28 -2.1 -2.5 -2.5 1 +1902 12 29 -3.1 -3.5 -3.5 1 +1902 12 30 -5.3 -5.7 -5.7 1 +1902 12 31 -11.3 -11.7 -11.7 1 +1903 1 1 -6.0 -6.4 -6.4 1 +1903 1 2 -13.2 -13.6 -13.6 1 +1903 1 3 -3.7 -4.1 -4.1 1 +1903 1 4 0.8 0.4 0.4 1 +1903 1 5 1.5 1.0 1.0 1 +1903 1 6 -0.1 -0.6 -0.6 1 +1903 1 7 3.4 2.9 2.9 1 +1903 1 8 2.1 1.6 1.6 1 +1903 1 9 -0.6 -1.1 -1.1 1 +1903 1 10 0.7 0.2 0.2 1 +1903 1 11 -3.7 -4.2 -4.2 1 +1903 1 12 -12.7 -13.2 -13.2 1 +1903 1 13 -11.6 -12.1 -12.1 1 +1903 1 14 -6.4 -6.9 -6.9 1 +1903 1 15 -8.5 -9.0 -9.0 1 +1903 1 16 -7.7 -8.2 -8.2 1 +1903 1 17 -3.3 -3.8 -3.8 1 +1903 1 18 -9.6 -10.1 -10.1 1 +1903 1 19 -8.5 -9.0 -9.0 1 +1903 1 20 -8.9 -9.4 -9.4 1 +1903 1 21 -10.2 -10.7 -10.7 1 +1903 1 22 -7.5 -8.0 -8.0 1 +1903 1 23 -3.8 -4.3 -4.3 1 +1903 1 24 -1.1 -1.6 -1.6 1 +1903 1 25 0.6 0.1 0.1 1 +1903 1 26 2.3 1.8 1.8 1 +1903 1 27 4.9 4.4 4.4 1 +1903 1 28 3.8 3.3 3.3 1 +1903 1 29 2.5 2.0 2.0 1 +1903 1 30 5.2 4.7 4.7 1 +1903 1 31 3.4 2.9 2.9 1 +1903 2 1 2.2 1.7 1.7 1 +1903 2 2 1.6 1.1 1.1 1 +1903 2 3 -1.7 -2.2 -2.2 1 +1903 2 4 0.4 -0.1 -0.1 1 +1903 2 5 4.6 4.1 4.1 1 +1903 2 6 3.3 2.8 2.8 1 +1903 2 7 3.6 3.1 3.1 1 +1903 2 8 3.8 3.3 3.3 1 +1903 2 9 1.3 0.8 0.8 1 +1903 2 10 0.5 0.0 0.0 1 +1903 2 11 5.2 4.7 4.7 1 +1903 2 12 -1.6 -2.1 -2.1 1 +1903 2 13 -4.9 -5.4 -5.4 1 +1903 2 14 -7.7 -8.2 -8.2 1 +1903 2 15 -7.8 -8.3 -8.3 1 +1903 2 16 -8.3 -8.8 -8.8 1 +1903 2 17 -1.8 -2.3 -2.3 1 +1903 2 18 -3.6 -4.1 -4.1 1 +1903 2 19 4.1 3.6 3.6 1 +1903 2 20 5.6 5.1 5.1 1 +1903 2 21 5.3 4.8 4.8 1 +1903 2 22 4.4 3.9 3.9 1 +1903 2 23 3.3 2.8 2.8 1 +1903 2 24 1.7 1.2 1.2 1 +1903 2 25 2.8 2.3 2.3 1 +1903 2 26 4.0 3.5 3.5 1 +1903 2 27 3.2 2.7 2.7 1 +1903 2 28 4.2 3.7 3.7 1 +1903 3 1 2.6 2.1 2.1 1 +1903 3 2 0.8 0.3 0.3 1 +1903 3 3 2.5 2.0 2.0 1 +1903 3 4 3.1 2.6 2.6 1 +1903 3 5 3.2 2.7 2.7 1 +1903 3 6 2.7 2.2 2.2 1 +1903 3 7 3.0 2.5 2.5 1 +1903 3 8 2.0 1.5 1.5 1 +1903 3 9 1.6 1.1 1.1 1 +1903 3 10 0.8 0.3 0.3 1 +1903 3 11 0.3 -0.2 -0.2 1 +1903 3 12 0.5 0.0 0.0 1 +1903 3 13 0.6 0.1 0.1 1 +1903 3 14 1.1 0.6 0.6 1 +1903 3 15 2.0 1.5 1.5 1 +1903 3 16 2.1 1.6 1.6 1 +1903 3 17 0.6 0.1 0.1 1 +1903 3 18 1.4 0.9 0.9 1 +1903 3 19 4.2 3.7 3.7 1 +1903 3 20 6.5 6.0 6.0 1 +1903 3 21 5.9 5.4 5.4 1 +1903 3 22 9.2 8.7 8.7 1 +1903 3 23 10.4 9.9 9.9 1 +1903 3 24 6.3 5.8 5.8 1 +1903 3 25 3.6 3.1 3.1 1 +1903 3 26 8.0 7.5 7.5 1 +1903 3 27 8.2 7.7 7.7 1 +1903 3 28 7.4 6.9 6.9 1 +1903 3 29 7.5 7.0 7.0 1 +1903 3 30 7.0 6.5 6.5 1 +1903 3 31 4.8 4.3 4.3 1 +1903 4 1 -0.7 -1.2 -1.2 1 +1903 4 2 -1.1 -1.6 -1.6 1 +1903 4 3 -3.1 -3.6 -3.6 1 +1903 4 4 -0.7 -1.2 -1.2 1 +1903 4 5 1.7 1.2 1.2 1 +1903 4 6 0.0 -0.5 -0.5 1 +1903 4 7 2.5 2.0 2.0 1 +1903 4 8 1.6 1.1 1.1 1 +1903 4 9 2.1 1.6 1.6 1 +1903 4 10 4.5 4.0 4.0 1 +1903 4 11 4.8 4.3 4.3 1 +1903 4 12 4.2 3.7 3.7 1 +1903 4 13 3.4 2.9 2.9 1 +1903 4 14 2.5 2.0 2.0 1 +1903 4 15 2.9 2.4 2.4 1 +1903 4 16 2.4 1.9 1.9 1 +1903 4 17 2.1 1.6 1.6 1 +1903 4 18 0.9 0.4 0.4 1 +1903 4 19 0.2 -0.3 -0.3 1 +1903 4 20 2.6 2.1 2.1 1 +1903 4 21 2.6 2.1 2.1 1 +1903 4 22 2.8 2.3 2.3 1 +1903 4 23 2.9 2.3 2.3 1 +1903 4 24 4.0 3.4 3.4 1 +1903 4 25 8.9 8.3 8.3 1 +1903 4 26 8.6 8.0 8.0 1 +1903 4 27 8.0 7.4 7.4 1 +1903 4 28 7.1 6.5 6.5 1 +1903 4 29 7.8 7.2 7.2 1 +1903 4 30 9.4 8.8 8.8 1 +1903 5 1 6.7 6.1 6.1 1 +1903 5 2 4.2 3.6 3.6 1 +1903 5 3 4.8 4.1 4.1 1 +1903 5 4 6.4 5.7 5.7 1 +1903 5 5 5.0 4.3 4.3 1 +1903 5 6 6.0 5.3 5.3 1 +1903 5 7 4.7 4.0 4.0 1 +1903 5 8 4.2 3.5 3.5 1 +1903 5 9 5.7 5.0 5.0 1 +1903 5 10 5.1 4.4 4.4 1 +1903 5 11 6.0 5.3 5.3 1 +1903 5 12 7.8 7.1 7.1 1 +1903 5 13 6.4 5.6 5.6 1 +1903 5 14 8.6 7.8 7.8 1 +1903 5 15 11.8 11.0 11.0 1 +1903 5 16 10.6 9.8 9.8 1 +1903 5 17 9.7 8.9 8.9 1 +1903 5 18 6.1 5.3 5.3 1 +1903 5 19 7.1 6.4 6.4 1 +1903 5 20 9.2 8.5 8.5 1 +1903 5 21 11.8 11.1 11.1 1 +1903 5 22 13.6 12.9 12.9 1 +1903 5 23 15.2 14.5 14.5 1 +1903 5 24 12.9 12.2 12.2 1 +1903 5 25 13.2 12.5 12.5 1 +1903 5 26 15.0 14.3 14.3 1 +1903 5 27 14.4 13.7 13.7 1 +1903 5 28 15.5 14.8 14.8 1 +1903 5 29 19.4 18.7 18.7 1 +1903 5 30 19.7 19.0 19.0 1 +1903 5 31 19.7 19.1 19.1 1 +1903 6 1 19.8 19.2 19.2 1 +1903 6 2 20.2 19.6 19.6 1 +1903 6 3 11.8 11.2 11.2 1 +1903 6 4 10.1 9.5 9.5 1 +1903 6 5 12.8 12.2 12.2 1 +1903 6 6 12.0 11.4 11.4 1 +1903 6 7 13.3 12.7 12.7 1 +1903 6 8 15.7 15.1 15.1 1 +1903 6 9 15.5 14.9 14.9 1 +1903 6 10 18.2 17.6 17.6 1 +1903 6 11 10.0 9.4 9.4 1 +1903 6 12 8.7 8.2 8.2 1 +1903 6 13 9.0 8.5 8.5 1 +1903 6 14 10.5 10.0 10.0 1 +1903 6 15 14.0 13.5 13.5 1 +1903 6 16 15.2 14.7 14.7 1 +1903 6 17 16.6 16.1 16.1 1 +1903 6 18 15.5 15.0 15.0 1 +1903 6 19 14.1 13.6 13.6 1 +1903 6 20 13.2 12.7 12.7 1 +1903 6 21 7.4 6.9 6.9 1 +1903 6 22 12.3 11.8 11.8 1 +1903 6 23 15.4 14.9 14.9 1 +1903 6 24 15.0 14.5 14.5 1 +1903 6 25 16.8 16.3 16.3 1 +1903 6 26 12.2 11.7 11.7 1 +1903 6 27 15.3 14.8 14.8 1 +1903 6 28 17.0 16.5 16.5 1 +1903 6 29 18.0 17.5 17.5 1 +1903 6 30 18.9 18.4 18.4 1 +1903 7 1 17.2 16.7 16.7 1 +1903 7 2 19.6 19.1 19.1 1 +1903 7 3 18.1 17.6 17.6 1 +1903 7 4 17.2 16.7 16.7 1 +1903 7 5 17.1 16.6 16.6 1 +1903 7 6 15.2 14.7 14.7 1 +1903 7 7 13.9 13.4 13.4 1 +1903 7 8 15.6 15.1 15.1 1 +1903 7 9 14.1 13.6 13.6 1 +1903 7 10 16.9 16.4 16.4 1 +1903 7 11 18.3 17.8 17.8 1 +1903 7 12 15.0 14.5 14.5 1 +1903 7 13 14.9 14.4 14.4 1 +1903 7 14 13.3 12.8 12.8 1 +1903 7 15 13.6 13.0 13.0 1 +1903 7 16 14.6 14.1 14.1 1 +1903 7 17 14.0 13.5 13.5 1 +1903 7 18 13.5 13.0 13.0 1 +1903 7 19 13.6 13.1 13.1 1 +1903 7 20 15.5 15.0 15.0 1 +1903 7 21 15.9 15.4 15.4 1 +1903 7 22 17.8 17.3 17.3 1 +1903 7 23 16.7 16.2 16.2 1 +1903 7 24 18.3 17.8 17.8 1 +1903 7 25 19.6 19.1 19.1 1 +1903 7 26 20.9 20.4 20.4 1 +1903 7 27 19.4 18.9 18.9 1 +1903 7 28 18.9 18.4 18.4 1 +1903 7 29 18.6 18.1 18.1 1 +1903 7 30 17.1 16.6 16.6 1 +1903 7 31 16.4 15.9 15.9 1 +1903 8 1 17.5 17.0 17.0 1 +1903 8 2 16.4 15.9 15.9 1 +1903 8 3 15.2 14.7 14.7 1 +1903 8 4 16.7 16.2 16.2 1 +1903 8 5 14.5 14.0 14.0 1 +1903 8 6 13.6 13.1 13.1 1 +1903 8 7 12.4 11.9 11.9 1 +1903 8 8 14.7 14.2 14.2 1 +1903 8 9 16.0 15.5 15.5 1 +1903 8 10 16.5 16.0 16.0 1 +1903 8 11 15.9 15.4 15.4 1 +1903 8 12 15.6 15.1 15.1 1 +1903 8 13 15.4 14.9 14.9 1 +1903 8 14 14.3 13.8 13.8 1 +1903 8 15 16.2 15.7 15.7 1 +1903 8 16 15.2 14.7 14.7 1 +1903 8 17 13.7 13.2 13.2 1 +1903 8 18 13.8 13.3 13.3 1 +1903 8 19 14.6 14.1 14.1 1 +1903 8 20 13.8 13.3 13.3 1 +1903 8 21 13.6 13.1 13.1 1 +1903 8 22 14.4 13.9 13.9 1 +1903 8 23 13.7 13.2 13.2 1 +1903 8 24 11.1 10.6 10.6 1 +1903 8 25 13.2 12.8 12.8 1 +1903 8 26 12.7 12.3 12.3 1 +1903 8 27 13.6 13.2 13.2 1 +1903 8 28 14.8 14.4 14.4 1 +1903 8 29 13.6 13.2 13.2 1 +1903 8 30 12.9 12.5 12.5 1 +1903 8 31 11.4 11.0 11.0 1 +1903 9 1 12.6 12.2 12.2 1 +1903 9 2 13.4 13.0 13.0 1 +1903 9 3 15.9 15.5 15.5 1 +1903 9 4 14.2 13.8 13.8 1 +1903 9 5 14.4 14.0 14.0 1 +1903 9 6 16.3 15.9 15.9 1 +1903 9 7 13.2 12.9 12.9 1 +1903 9 8 12.8 12.5 12.5 1 +1903 9 9 12.4 12.1 12.1 1 +1903 9 10 9.6 9.3 9.3 1 +1903 9 11 9.7 9.4 9.4 1 +1903 9 12 9.5 9.2 9.2 1 +1903 9 13 9.9 9.6 9.6 1 +1903 9 14 10.5 10.2 10.2 1 +1903 9 15 10.6 10.3 10.3 1 +1903 9 16 11.5 11.2 11.2 1 +1903 9 17 12.3 12.0 12.0 1 +1903 9 18 12.6 12.3 12.3 1 +1903 9 19 11.2 10.9 10.9 1 +1903 9 20 12.9 12.6 12.6 1 +1903 9 21 13.3 13.0 13.0 1 +1903 9 22 13.5 13.2 13.2 1 +1903 9 23 13.3 13.0 13.0 1 +1903 9 24 13.0 12.7 12.7 1 +1903 9 25 12.7 12.4 12.4 1 +1903 9 26 11.2 11.0 11.0 1 +1903 9 27 11.3 11.1 11.1 1 +1903 9 28 11.4 11.2 11.2 1 +1903 9 29 11.3 11.1 11.1 1 +1903 9 30 11.5 11.3 11.3 1 +1903 10 1 12.5 12.3 12.3 1 +1903 10 2 10.3 10.1 10.1 1 +1903 10 3 7.0 6.8 6.8 1 +1903 10 4 1.6 1.4 1.4 1 +1903 10 5 0.9 0.7 0.7 1 +1903 10 6 2.9 2.7 2.7 1 +1903 10 7 3.8 3.6 3.6 1 +1903 10 8 0.7 0.5 0.5 1 +1903 10 9 1.7 1.5 1.5 1 +1903 10 10 1.6 1.4 1.4 1 +1903 10 11 1.3 1.1 1.1 1 +1903 10 12 3.6 3.4 3.4 1 +1903 10 13 2.6 2.4 2.4 1 +1903 10 14 3.2 3.0 3.0 1 +1903 10 15 4.8 4.6 4.6 1 +1903 10 16 7.8 7.6 7.6 1 +1903 10 17 4.0 3.8 3.8 1 +1903 10 18 1.0 0.8 0.8 1 +1903 10 19 0.9 0.7 0.7 1 +1903 10 20 2.0 1.8 1.8 1 +1903 10 21 2.8 2.6 2.6 1 +1903 10 22 5.5 5.3 5.3 1 +1903 10 23 7.0 6.8 6.8 1 +1903 10 24 7.7 7.5 7.5 1 +1903 10 25 6.7 6.5 6.5 1 +1903 10 26 7.8 7.6 7.6 1 +1903 10 27 7.6 7.4 7.4 1 +1903 10 28 5.6 5.4 5.4 1 +1903 10 29 7.1 6.9 6.9 1 +1903 10 30 7.2 7.0 7.0 1 +1903 10 31 8.3 8.1 8.1 1 +1903 11 1 7.9 7.6 7.6 1 +1903 11 2 4.6 4.3 4.3 1 +1903 11 3 4.4 4.1 4.1 1 +1903 11 4 7.9 7.6 7.6 1 +1903 11 5 3.9 3.6 3.6 1 +1903 11 6 4.8 4.5 4.5 1 +1903 11 7 5.3 5.0 5.0 1 +1903 11 8 3.1 2.8 2.8 1 +1903 11 9 5.4 5.1 5.1 1 +1903 11 10 5.3 5.0 5.0 1 +1903 11 11 2.2 1.9 1.9 1 +1903 11 12 -0.6 -0.9 -0.9 1 +1903 11 13 -1.2 -1.5 -1.5 1 +1903 11 14 0.7 0.4 0.4 1 +1903 11 15 2.7 2.4 2.4 1 +1903 11 16 0.6 0.3 0.3 1 +1903 11 17 0.0 -0.3 -0.3 1 +1903 11 18 -1.2 -1.5 -1.5 1 +1903 11 19 -1.9 -2.2 -2.2 1 +1903 11 20 0.6 0.3 0.3 1 +1903 11 21 1.6 1.3 1.3 1 +1903 11 22 -3.6 -3.9 -3.9 1 +1903 11 23 -1.2 -1.5 -1.5 1 +1903 11 24 2.4 2.1 2.1 1 +1903 11 25 -1.5 -1.8 -1.8 1 +1903 11 26 -6.8 -7.1 -7.1 1 +1903 11 27 -6.6 -6.9 -6.9 1 +1903 11 28 -7.6 -7.9 -7.9 1 +1903 11 29 -5.0 -5.3 -5.3 1 +1903 11 30 -10.5 -10.8 -10.8 1 +1903 12 1 -1.6 -1.9 -1.9 1 +1903 12 2 -3.9 -4.2 -4.2 1 +1903 12 3 -6.1 -6.4 -6.4 1 +1903 12 4 1.6 1.3 1.3 1 +1903 12 5 2.5 2.2 2.2 1 +1903 12 6 0.9 0.6 0.6 1 +1903 12 7 2.2 1.9 1.9 1 +1903 12 8 3.8 3.5 3.5 1 +1903 12 9 3.1 2.8 2.8 1 +1903 12 10 4.2 3.9 3.9 1 +1903 12 11 1.8 1.5 1.5 1 +1903 12 12 2.9 2.6 2.6 1 +1903 12 13 2.6 2.3 2.3 1 +1903 12 14 1.1 0.8 0.8 1 +1903 12 15 -1.2 -1.5 -1.5 1 +1903 12 16 -1.0 -1.3 -1.3 1 +1903 12 17 -1.5 -1.8 -1.8 1 +1903 12 18 -0.7 -1.0 -1.0 1 +1903 12 19 -1.4 -1.7 -1.7 1 +1903 12 20 -2.7 -3.0 -3.0 1 +1903 12 21 -1.1 -1.4 -1.4 1 +1903 12 22 1.1 0.7 0.7 1 +1903 12 23 -0.6 -1.0 -1.0 1 +1903 12 24 -1.1 -1.5 -1.5 1 +1903 12 25 0.4 0.0 0.0 1 +1903 12 26 -1.2 -1.6 -1.6 1 +1903 12 27 -3.5 -3.9 -3.9 1 +1903 12 28 -2.8 -3.2 -3.2 1 +1903 12 29 -1.1 -1.5 -1.5 1 +1903 12 30 -2.3 -2.7 -2.7 1 +1903 12 31 -4.2 -4.6 -4.6 1 +1904 1 1 -5.0 -5.2 -5.2 1 +1904 1 2 -1.7 -1.9 -1.9 1 +1904 1 3 -1.4 -1.7 -1.7 1 +1904 1 4 -1.2 -1.5 -1.5 1 +1904 1 5 -0.8 -1.1 -1.1 1 +1904 1 6 -2.7 -3.0 -3.0 1 +1904 1 7 -3.4 -3.7 -3.7 1 +1904 1 8 -0.2 -0.5 -0.5 1 +1904 1 9 0.2 -0.1 -0.1 1 +1904 1 10 0.9 0.6 0.6 1 +1904 1 11 1.8 1.5 1.5 1 +1904 1 12 0.8 0.5 0.5 1 +1904 1 13 1.1 0.7 0.7 1 +1904 1 14 0.9 0.5 0.5 1 +1904 1 15 1.7 1.3 1.3 1 +1904 1 16 0.4 0.0 0.0 1 +1904 1 17 -2.2 -2.6 -2.6 1 +1904 1 18 -2.8 -3.2 -3.2 1 +1904 1 19 -2.7 -3.1 -3.1 1 +1904 1 20 1.0 0.7 0.7 1 +1904 1 21 -0.2 -0.5 -0.5 1 +1904 1 22 -3.4 -3.7 -3.7 1 +1904 1 23 3.5 3.2 3.2 1 +1904 1 24 2.1 1.8 1.8 1 +1904 1 25 1.6 1.3 1.3 1 +1904 1 26 0.7 0.4 0.4 1 +1904 1 27 0.8 0.5 0.5 1 +1904 1 28 2.3 2.0 2.0 1 +1904 1 29 1.9 1.6 1.6 1 +1904 1 30 0.8 0.5 0.5 1 +1904 1 31 0.7 0.4 0.4 1 +1904 2 1 -2.5 -2.8 -2.8 1 +1904 2 2 -1.8 -2.1 -2.1 1 +1904 2 3 -2.8 -3.1 -3.1 1 +1904 2 4 -4.2 -4.5 -4.5 1 +1904 2 5 -5.8 -6.1 -6.1 1 +1904 2 6 -1.4 -1.7 -1.7 1 +1904 2 7 -5.3 -5.6 -5.6 1 +1904 2 8 -8.3 -8.6 -8.6 1 +1904 2 9 -8.8 -9.1 -9.1 1 +1904 2 10 -8.3 -8.6 -8.6 1 +1904 2 11 -0.5 -0.7 -0.7 1 +1904 2 12 -13.2 -13.4 -13.4 1 +1904 2 13 -5.8 -6.0 -6.0 1 +1904 2 14 1.9 1.7 1.7 1 +1904 2 15 1.0 0.8 0.8 1 +1904 2 16 -3.1 -3.3 -3.3 1 +1904 2 17 -5.4 -5.6 -5.6 1 +1904 2 18 -1.3 -1.5 -1.5 1 +1904 2 19 -2.8 -3.0 -3.0 1 +1904 2 20 -5.3 -5.5 -5.5 1 +1904 2 21 -3.6 -3.9 -3.9 1 +1904 2 22 -3.5 -3.8 -3.8 1 +1904 2 23 -2.7 -3.0 -3.0 1 +1904 2 24 -3.5 -3.8 -3.8 1 +1904 2 25 -5.3 -5.6 -5.6 1 +1904 2 26 -7.1 -7.4 -7.4 1 +1904 2 27 -8.6 -8.9 -8.9 1 +1904 2 28 -8.9 -9.2 -9.2 1 +1904 2 29 -6.7 -7.0 -7.0 1 +1904 3 1 -3.8 -4.1 -4.1 1 +1904 3 2 -5.0 -5.3 -5.3 1 +1904 3 3 -3.3 -3.6 -3.6 1 +1904 3 4 -3.4 -3.7 -3.7 1 +1904 3 5 -4.4 -4.7 -4.7 1 +1904 3 6 -6.7 -7.0 -7.0 1 +1904 3 7 -7.5 -7.8 -7.8 1 +1904 3 8 -7.7 -8.0 -8.0 1 +1904 3 9 -5.4 -5.7 -5.7 1 +1904 3 10 -0.2 -0.5 -0.5 1 +1904 3 11 -2.6 -2.9 -2.9 1 +1904 3 12 -2.5 -2.8 -2.8 1 +1904 3 13 0.6 0.3 0.3 1 +1904 3 14 1.4 1.1 1.1 1 +1904 3 15 -0.2 -0.5 -0.5 1 +1904 3 16 -4.2 -4.5 -4.5 1 +1904 3 17 -2.1 -2.4 -2.4 1 +1904 3 18 -1.9 -2.2 -2.2 1 +1904 3 19 -0.6 -0.9 -0.9 1 +1904 3 20 0.8 0.5 0.5 1 +1904 3 21 1.2 0.9 0.9 1 +1904 3 22 2.0 1.7 1.7 1 +1904 3 23 0.6 0.3 0.3 1 +1904 3 24 -1.6 -1.9 -1.9 1 +1904 3 25 -1.6 -1.9 -1.9 1 +1904 3 26 0.0 -0.3 -0.3 1 +1904 3 27 0.4 0.1 0.1 1 +1904 3 28 0.8 0.5 0.5 1 +1904 3 29 1.8 1.5 1.5 1 +1904 3 30 0.1 -0.2 -0.2 1 +1904 3 31 -0.9 -1.2 -1.2 1 +1904 4 1 0.4 0.2 0.2 1 +1904 4 2 0.8 0.6 0.6 1 +1904 4 3 2.1 1.9 1.9 1 +1904 4 4 2.2 2.0 2.0 1 +1904 4 5 1.8 1.6 1.6 1 +1904 4 6 2.7 2.5 2.5 1 +1904 4 7 2.1 1.9 1.9 1 +1904 4 8 3.1 2.9 2.9 1 +1904 4 9 3.4 3.2 3.2 1 +1904 4 10 3.2 3.0 3.0 1 +1904 4 11 2.0 1.8 1.8 1 +1904 4 12 3.5 3.3 3.3 1 +1904 4 13 2.2 2.0 2.0 1 +1904 4 14 0.8 0.6 0.6 1 +1904 4 15 2.2 2.0 2.0 1 +1904 4 16 4.6 4.4 4.4 1 +1904 4 17 6.2 6.0 6.0 1 +1904 4 18 4.9 4.7 4.7 1 +1904 4 19 6.0 5.8 5.8 1 +1904 4 20 7.1 6.9 6.9 1 +1904 4 21 5.6 5.4 5.4 1 +1904 4 22 4.6 4.3 4.3 1 +1904 4 23 6.0 5.7 5.7 1 +1904 4 24 8.3 8.0 8.0 1 +1904 4 25 7.7 7.4 7.4 1 +1904 4 26 5.9 5.6 5.6 1 +1904 4 27 6.2 5.9 5.9 1 +1904 4 28 5.1 4.8 4.8 1 +1904 4 29 4.0 3.7 3.7 1 +1904 4 30 6.4 6.1 6.1 1 +1904 5 1 8.7 8.4 8.4 1 +1904 5 2 5.6 5.2 5.2 1 +1904 5 3 6.1 5.7 5.7 1 +1904 5 4 8.4 8.0 8.0 1 +1904 5 5 4.8 4.4 4.4 1 +1904 5 6 4.0 3.6 3.6 1 +1904 5 7 3.4 3.0 3.0 1 +1904 5 8 5.4 5.0 5.0 1 +1904 5 9 4.4 4.0 4.0 1 +1904 5 10 4.2 3.8 3.8 1 +1904 5 11 4.4 4.0 4.0 1 +1904 5 12 6.2 5.7 5.7 1 +1904 5 13 7.8 7.3 7.3 1 +1904 5 14 8.1 7.6 7.6 1 +1904 5 15 8.6 8.1 8.1 1 +1904 5 16 9.6 9.1 9.1 1 +1904 5 17 9.2 8.7 8.7 1 +1904 5 18 10.1 9.6 9.6 1 +1904 5 19 7.6 7.1 7.1 1 +1904 5 20 6.4 5.9 5.9 1 +1904 5 21 5.3 4.8 4.8 1 +1904 5 22 3.3 2.8 2.8 1 +1904 5 23 4.2 3.7 3.7 1 +1904 5 24 5.8 5.3 5.3 1 +1904 5 25 8.4 8.0 8.0 1 +1904 5 26 8.8 8.4 8.4 1 +1904 5 27 12.3 11.9 11.9 1 +1904 5 28 15.1 14.7 14.7 1 +1904 5 29 10.7 10.3 10.3 1 +1904 5 30 12.2 11.8 11.8 1 +1904 5 31 16.0 15.6 15.6 1 +1904 6 1 17.1 16.7 16.7 1 +1904 6 2 17.1 16.7 16.7 1 +1904 6 3 13.0 12.6 12.6 1 +1904 6 4 10.7 10.3 10.3 1 +1904 6 5 14.0 13.6 13.6 1 +1904 6 6 11.9 11.5 11.5 1 +1904 6 7 10.3 9.9 9.9 1 +1904 6 8 6.8 6.4 6.4 1 +1904 6 9 8.1 7.7 7.7 1 +1904 6 10 10.6 10.2 10.2 1 +1904 6 11 12.4 12.0 12.0 1 +1904 6 12 10.7 10.3 10.3 1 +1904 6 13 15.7 15.3 15.3 1 +1904 6 14 14.3 13.9 13.9 1 +1904 6 15 15.0 14.6 14.6 1 +1904 6 16 16.8 16.4 16.4 1 +1904 6 17 15.4 15.0 15.0 1 +1904 6 18 15.2 14.8 14.8 1 +1904 6 19 14.7 14.3 14.3 1 +1904 6 20 13.4 13.0 13.0 1 +1904 6 21 13.5 13.1 13.1 1 +1904 6 22 13.0 12.6 12.6 1 +1904 6 23 8.9 8.5 8.5 1 +1904 6 24 10.6 10.2 10.2 1 +1904 6 25 12.8 12.4 12.4 1 +1904 6 26 10.5 10.1 10.1 1 +1904 6 27 11.1 10.7 10.7 1 +1904 6 28 12.1 11.7 11.7 1 +1904 6 29 11.3 10.9 10.9 1 +1904 6 30 12.9 12.5 12.5 1 +1904 7 1 12.0 11.6 11.6 1 +1904 7 2 12.5 12.1 12.1 1 +1904 7 3 15.2 14.8 14.8 1 +1904 7 4 14.5 14.1 14.1 1 +1904 7 5 15.1 14.7 14.7 1 +1904 7 6 15.8 15.4 15.4 1 +1904 7 7 16.0 15.6 15.6 1 +1904 7 8 15.2 14.8 14.8 1 +1904 7 9 13.7 13.3 13.3 1 +1904 7 10 14.0 13.6 13.6 1 +1904 7 11 12.7 12.3 12.3 1 +1904 7 12 14.6 14.2 14.2 1 +1904 7 13 18.9 18.5 18.5 1 +1904 7 14 19.4 19.0 19.0 1 +1904 7 15 20.7 20.3 20.3 1 +1904 7 16 23.1 22.8 22.8 1 +1904 7 17 17.6 17.3 17.3 1 +1904 7 18 12.8 12.5 12.5 1 +1904 7 19 10.1 9.8 9.8 1 +1904 7 20 12.5 12.2 12.2 1 +1904 7 21 13.4 13.1 13.1 1 +1904 7 22 15.4 15.1 15.1 1 +1904 7 23 17.4 17.1 17.1 1 +1904 7 24 18.5 18.2 18.2 1 +1904 7 25 14.3 14.0 14.0 1 +1904 7 26 15.4 15.1 15.1 1 +1904 7 27 17.1 16.8 16.8 1 +1904 7 28 17.1 16.9 16.9 1 +1904 7 29 18.5 18.3 18.3 1 +1904 7 30 17.9 17.7 17.7 1 +1904 7 31 18.2 18.0 18.0 1 +1904 8 1 20.3 20.1 20.1 1 +1904 8 2 20.7 20.5 20.5 1 +1904 8 3 22.3 22.1 22.1 1 +1904 8 4 22.0 21.8 21.8 1 +1904 8 5 18.4 18.2 18.2 1 +1904 8 6 20.8 20.6 20.6 1 +1904 8 7 17.7 17.5 17.5 1 +1904 8 8 13.0 12.8 12.8 1 +1904 8 9 14.9 14.7 14.7 1 +1904 8 10 14.3 14.2 14.2 1 +1904 8 11 14.0 13.9 13.9 1 +1904 8 12 13.8 13.7 13.7 1 +1904 8 13 12.6 12.5 12.5 1 +1904 8 14 14.3 14.2 14.2 1 +1904 8 15 13.8 13.7 13.7 1 +1904 8 16 13.7 13.6 13.6 1 +1904 8 17 13.4 13.3 13.3 1 +1904 8 18 13.8 13.7 13.7 1 +1904 8 19 11.9 11.8 11.8 1 +1904 8 20 12.8 12.7 12.7 1 +1904 8 21 13.6 13.5 13.5 1 +1904 8 22 14.2 14.1 14.1 1 +1904 8 23 13.1 13.1 13.1 1 +1904 8 24 11.8 11.8 11.8 1 +1904 8 25 11.0 11.0 11.0 1 +1904 8 26 12.2 12.2 12.2 1 +1904 8 27 13.0 13.0 13.0 1 +1904 8 28 14.2 14.2 14.2 1 +1904 8 29 11.6 11.6 11.6 1 +1904 8 30 12.6 12.6 12.6 1 +1904 8 31 11.7 11.7 11.7 1 +1904 9 1 11.8 11.8 11.8 1 +1904 9 2 11.6 11.6 11.6 1 +1904 9 3 15.7 15.7 15.7 1 +1904 9 4 15.9 15.9 15.9 1 +1904 9 5 13.9 14.0 14.0 1 +1904 9 6 14.1 14.2 14.2 1 +1904 9 7 14.9 15.0 15.0 1 +1904 9 8 15.3 15.4 15.4 1 +1904 9 9 12.0 12.1 12.1 1 +1904 9 10 13.5 13.6 13.6 1 +1904 9 11 11.8 11.9 11.9 1 +1904 9 12 7.7 7.8 7.8 1 +1904 9 13 7.7 7.8 7.8 1 +1904 9 14 7.2 7.3 7.3 1 +1904 9 15 8.4 8.5 8.5 1 +1904 9 16 9.1 9.2 9.2 1 +1904 9 17 8.3 8.4 8.4 1 +1904 9 18 10.8 10.9 10.9 1 +1904 9 19 11.6 11.7 11.7 1 +1904 9 20 9.0 9.1 9.1 1 +1904 9 21 10.7 10.8 10.8 1 +1904 9 22 10.1 10.2 10.2 1 +1904 9 23 10.5 10.6 10.6 1 +1904 9 24 9.5 9.6 9.6 1 +1904 9 25 10.8 10.9 10.9 1 +1904 9 26 13.9 14.0 14.0 1 +1904 9 27 13.2 13.3 13.3 1 +1904 9 28 10.7 10.8 10.8 1 +1904 9 29 9.8 9.9 9.9 1 +1904 9 30 11.6 11.7 11.7 1 +1904 10 1 13.7 13.8 13.8 1 +1904 10 2 12.0 12.1 12.1 1 +1904 10 3 10.5 10.6 10.6 1 +1904 10 4 10.3 10.4 10.4 1 +1904 10 5 10.5 10.6 10.6 1 +1904 10 6 10.3 10.4 10.4 1 +1904 10 7 5.3 5.4 5.4 1 +1904 10 8 3.4 3.5 3.5 1 +1904 10 9 3.8 3.9 3.9 1 +1904 10 10 8.2 8.3 8.3 1 +1904 10 11 7.8 7.9 7.9 1 +1904 10 12 6.8 6.9 6.9 1 +1904 10 13 3.9 4.0 4.0 1 +1904 10 14 4.4 4.5 4.5 1 +1904 10 15 6.0 6.1 6.1 1 +1904 10 16 5.2 5.3 5.3 1 +1904 10 17 7.7 7.8 7.8 1 +1904 10 18 6.4 6.5 6.5 1 +1904 10 19 5.7 5.8 5.8 1 +1904 10 20 4.4 4.5 4.5 1 +1904 10 21 2.9 3.0 3.0 1 +1904 10 22 3.1 3.2 3.2 1 +1904 10 23 4.1 4.2 4.2 1 +1904 10 24 5.7 5.8 5.8 1 +1904 10 25 8.1 8.2 8.2 1 +1904 10 26 6.9 6.9 6.9 1 +1904 10 27 5.5 5.5 5.5 1 +1904 10 28 6.8 6.8 6.8 1 +1904 10 29 6.0 6.0 6.0 1 +1904 10 30 2.3 2.3 2.3 1 +1904 10 31 3.9 3.9 3.9 1 +1904 11 1 4.8 4.8 4.8 1 +1904 11 2 1.6 1.6 1.6 1 +1904 11 3 5.3 5.3 5.3 1 +1904 11 4 2.8 2.8 2.8 1 +1904 11 5 0.4 0.4 0.4 1 +1904 11 6 3.0 3.0 3.0 1 +1904 11 7 -1.6 -1.6 -1.6 1 +1904 11 8 1.7 1.7 1.7 1 +1904 11 9 0.4 0.4 0.4 1 +1904 11 10 -3.1 -3.1 -3.1 1 +1904 11 11 -0.1 -0.1 -0.1 1 +1904 11 12 -2.3 -2.4 -2.4 1 +1904 11 13 -1.8 -1.9 -1.9 1 +1904 11 14 3.2 3.1 3.1 1 +1904 11 15 2.2 2.1 2.1 1 +1904 11 16 4.2 4.1 4.1 1 +1904 11 17 3.9 3.8 3.8 1 +1904 11 18 4.1 4.0 4.0 1 +1904 11 19 5.7 5.6 5.6 1 +1904 11 20 1.1 1.0 1.0 1 +1904 11 21 -2.3 -2.4 -2.4 1 +1904 11 22 -4.3 -4.4 -4.4 1 +1904 11 23 1.7 1.6 1.6 1 +1904 11 24 0.2 0.1 0.1 1 +1904 11 25 -0.2 -0.3 -0.3 1 +1904 11 26 -0.7 -0.8 -0.8 1 +1904 11 27 -1.3 -1.4 -1.4 1 +1904 11 28 -4.7 -4.8 -4.8 1 +1904 11 29 -11.7 -11.8 -11.8 1 +1904 11 30 -13.3 -13.4 -13.4 1 +1904 12 1 -9.7 -9.8 -9.8 1 +1904 12 2 1.8 1.7 1.7 1 +1904 12 3 2.5 2.4 2.4 1 +1904 12 4 1.4 1.3 1.3 1 +1904 12 5 5.0 4.9 4.9 1 +1904 12 6 5.2 5.1 5.1 1 +1904 12 7 0.2 0.1 0.1 1 +1904 12 8 -2.8 -2.9 -2.9 1 +1904 12 9 -5.8 -5.9 -5.9 1 +1904 12 10 -4.0 -4.1 -4.1 1 +1904 12 11 0.5 0.4 0.4 1 +1904 12 12 -10.4 -10.5 -10.5 1 +1904 12 13 -6.9 -7.0 -7.0 1 +1904 12 14 -6.2 -6.3 -6.3 1 +1904 12 15 -0.6 -0.7 -0.7 1 +1904 12 16 1.0 0.9 0.9 1 +1904 12 17 5.2 5.1 5.1 1 +1904 12 18 6.5 6.4 6.4 1 +1904 12 19 1.6 1.5 1.5 1 +1904 12 20 0.3 0.2 0.2 1 +1904 12 21 1.0 0.9 0.9 1 +1904 12 22 2.6 2.5 2.5 1 +1904 12 23 1.1 1.0 1.0 1 +1904 12 24 -2.4 -2.6 -2.6 1 +1904 12 25 -5.6 -5.8 -5.8 1 +1904 12 26 -9.3 -9.5 -9.5 1 +1904 12 27 -10.4 -10.6 -10.6 1 +1904 12 28 0.0 -0.2 -0.2 1 +1904 12 29 -3.3 -3.5 -3.5 1 +1904 12 30 -7.3 -7.5 -7.5 1 +1904 12 31 -14.0 -14.2 -14.2 1 +1905 1 1 -12.8 -13.0 -13.0 1 +1905 1 2 -2.6 -2.8 -2.8 1 +1905 1 3 3.8 3.5 3.5 1 +1905 1 4 -3.7 -4.0 -4.0 1 +1905 1 5 -8.5 -8.8 -8.8 1 +1905 1 6 -7.9 -8.2 -8.2 1 +1905 1 7 -6.9 -7.2 -7.2 1 +1905 1 8 -2.1 -2.4 -2.4 1 +1905 1 9 4.6 4.3 4.3 1 +1905 1 10 -1.7 -2.0 -2.0 1 +1905 1 11 -1.3 -1.6 -1.6 1 +1905 1 12 -0.3 -0.6 -0.6 1 +1905 1 13 -10.2 -10.6 -10.6 1 +1905 1 14 -10.0 -10.4 -10.4 1 +1905 1 15 -6.3 -6.7 -6.7 1 +1905 1 16 -5.6 -6.0 -6.0 1 +1905 1 17 -2.4 -2.8 -2.8 1 +1905 1 18 -1.7 -2.1 -2.1 1 +1905 1 19 -2.2 -2.6 -2.6 1 +1905 1 20 -0.7 -1.0 -1.0 1 +1905 1 21 -2.4 -2.7 -2.7 1 +1905 1 22 -3.8 -4.1 -4.1 1 +1905 1 23 -5.0 -5.3 -5.3 1 +1905 1 24 0.1 -0.2 -0.2 1 +1905 1 25 0.7 0.4 0.4 1 +1905 1 26 -4.5 -4.8 -4.8 1 +1905 1 27 -7.8 -8.1 -8.1 1 +1905 1 28 1.1 0.8 0.8 1 +1905 1 29 1.9 1.6 1.6 1 +1905 1 30 2.3 2.0 2.0 1 +1905 1 31 -0.7 -1.0 -1.0 1 +1905 2 1 -8.3 -8.6 -8.6 1 +1905 2 2 -5.0 -5.3 -5.3 1 +1905 2 3 -7.8 -8.1 -8.1 1 +1905 2 4 -9.6 -9.9 -9.9 1 +1905 2 5 -4.0 -4.3 -4.3 1 +1905 2 6 4.8 4.5 4.5 1 +1905 2 7 0.8 0.5 0.5 1 +1905 2 8 -1.3 -1.6 -1.6 1 +1905 2 9 3.8 3.5 3.5 1 +1905 2 10 2.6 2.3 2.3 1 +1905 2 11 -2.5 -2.7 -2.7 1 +1905 2 12 -5.7 -5.9 -5.9 1 +1905 2 13 -6.5 -6.7 -6.7 1 +1905 2 14 -1.3 -1.5 -1.5 1 +1905 2 15 -3.9 -4.1 -4.1 1 +1905 2 16 3.5 3.3 3.3 1 +1905 2 17 4.0 3.8 3.8 1 +1905 2 18 2.9 2.7 2.7 1 +1905 2 19 3.9 3.7 3.7 1 +1905 2 20 1.7 1.5 1.5 1 +1905 2 21 -1.0 -1.3 -1.3 1 +1905 2 22 -2.1 -2.4 -2.4 1 +1905 2 23 -0.2 -0.5 -0.5 1 +1905 2 24 -1.5 -1.8 -1.8 1 +1905 2 25 -0.2 -0.5 -0.5 1 +1905 2 26 1.1 0.8 0.8 1 +1905 2 27 -0.3 -0.6 -0.6 1 +1905 2 28 -0.1 -0.4 -0.4 1 +1905 3 1 1.0 0.7 0.7 1 +1905 3 2 0.7 0.4 0.4 1 +1905 3 3 -1.0 -1.3 -1.3 1 +1905 3 4 -0.4 -0.7 -0.7 1 +1905 3 5 -1.4 -1.7 -1.7 1 +1905 3 6 -1.7 -2.0 -2.0 1 +1905 3 7 -2.6 -2.9 -2.9 1 +1905 3 8 -3.6 -3.9 -3.9 1 +1905 3 9 -0.2 -0.5 -0.5 1 +1905 3 10 2.4 2.1 2.1 1 +1905 3 11 1.3 1.0 1.0 1 +1905 3 12 3.6 3.3 3.3 1 +1905 3 13 2.0 1.7 1.7 1 +1905 3 14 2.4 2.1 2.1 1 +1905 3 15 1.6 1.3 1.3 1 +1905 3 16 1.1 0.8 0.8 1 +1905 3 17 1.3 1.0 1.0 1 +1905 3 18 0.6 0.3 0.3 1 +1905 3 19 -0.4 -0.7 -0.7 1 +1905 3 20 1.1 0.8 0.8 1 +1905 3 21 2.2 1.9 1.9 1 +1905 3 22 1.9 1.6 1.6 1 +1905 3 23 -0.2 -0.5 -0.5 1 +1905 3 24 -0.8 -1.1 -1.1 1 +1905 3 25 -1.5 -1.8 -1.8 1 +1905 3 26 -1.7 -2.0 -2.0 1 +1905 3 27 -0.9 -1.2 -1.2 1 +1905 3 28 0.5 0.2 0.2 1 +1905 3 29 1.7 1.4 1.4 1 +1905 3 30 4.4 4.1 4.1 1 +1905 3 31 3.4 3.1 3.1 1 +1905 4 1 1.6 1.4 1.4 1 +1905 4 2 -1.4 -1.6 -1.6 1 +1905 4 3 -0.3 -0.5 -0.5 1 +1905 4 4 2.6 2.4 2.4 1 +1905 4 5 0.4 0.2 0.2 1 +1905 4 6 -3.4 -3.6 -3.6 1 +1905 4 7 -2.4 -2.6 -2.6 1 +1905 4 8 -1.2 -1.4 -1.4 1 +1905 4 9 -0.7 -0.9 -0.9 1 +1905 4 10 -1.8 -2.0 -2.0 1 +1905 4 11 0.3 0.1 0.1 1 +1905 4 12 0.6 0.4 0.4 1 +1905 4 13 0.1 -0.1 -0.1 1 +1905 4 14 0.7 0.5 0.5 1 +1905 4 15 1.9 1.7 1.7 1 +1905 4 16 1.9 1.7 1.7 1 +1905 4 17 2.4 2.2 2.2 1 +1905 4 18 2.6 2.4 2.4 1 +1905 4 19 1.4 1.2 1.2 1 +1905 4 20 2.0 1.8 1.8 1 +1905 4 21 3.0 2.8 2.8 1 +1905 4 22 0.8 0.5 0.5 1 +1905 4 23 3.2 2.9 2.9 1 +1905 4 24 3.6 3.3 3.3 1 +1905 4 25 4.3 4.0 4.0 1 +1905 4 26 6.6 6.3 6.3 1 +1905 4 27 6.1 5.8 5.8 1 +1905 4 28 6.4 6.1 6.1 1 +1905 4 29 6.7 6.4 6.4 1 +1905 4 30 10.5 10.2 10.2 1 +1905 5 1 8.2 7.9 7.9 1 +1905 5 2 9.6 9.2 9.2 1 +1905 5 3 10.6 10.2 10.2 1 +1905 5 4 8.7 8.3 8.3 1 +1905 5 5 6.4 6.0 6.0 1 +1905 5 6 9.0 8.6 8.6 1 +1905 5 7 11.5 11.1 11.1 1 +1905 5 8 12.0 11.6 11.6 1 +1905 5 9 6.7 6.3 6.3 1 +1905 5 10 7.4 7.0 7.0 1 +1905 5 11 6.2 5.8 5.8 1 +1905 5 12 7.2 6.7 6.7 1 +1905 5 13 6.0 5.5 5.5 1 +1905 5 14 9.1 8.6 8.6 1 +1905 5 15 11.7 11.2 11.2 1 +1905 5 16 10.4 9.9 9.9 1 +1905 5 17 15.3 14.8 14.8 1 +1905 5 18 14.0 13.5 13.5 1 +1905 5 19 12.1 11.6 11.6 1 +1905 5 20 4.7 4.2 4.2 1 +1905 5 21 5.1 4.6 4.6 1 +1905 5 22 6.2 5.7 5.7 1 +1905 5 23 7.1 6.6 6.6 1 +1905 5 24 8.3 7.8 7.8 1 +1905 5 25 10.4 10.0 10.0 1 +1905 5 26 11.7 11.3 11.3 1 +1905 5 27 12.9 12.5 12.5 1 +1905 5 28 11.6 11.2 11.2 1 +1905 5 29 17.3 16.9 16.9 1 +1905 5 30 20.3 19.9 19.9 1 +1905 5 31 15.3 14.9 14.9 1 +1905 6 1 15.5 15.1 15.1 1 +1905 6 2 15.0 14.6 14.6 1 +1905 6 3 15.7 15.3 15.3 1 +1905 6 4 16.0 15.6 15.6 1 +1905 6 5 17.2 16.8 16.8 1 +1905 6 6 13.0 12.6 12.6 1 +1905 6 7 11.3 10.9 10.9 1 +1905 6 8 11.0 10.6 10.6 1 +1905 6 9 10.6 10.2 10.2 1 +1905 6 10 10.7 10.3 10.3 1 +1905 6 11 13.8 13.4 13.4 1 +1905 6 12 14.6 14.2 14.2 1 +1905 6 13 14.8 14.4 14.4 1 +1905 6 14 15.5 15.1 15.1 1 +1905 6 15 17.8 17.4 17.4 1 +1905 6 16 19.4 19.0 19.0 1 +1905 6 17 19.5 19.1 19.1 1 +1905 6 18 19.0 18.6 18.6 1 +1905 6 19 19.7 19.3 19.3 1 +1905 6 20 18.4 18.0 18.0 1 +1905 6 21 17.7 17.3 17.3 1 +1905 6 22 16.5 16.1 16.1 1 +1905 6 23 16.3 15.9 15.9 1 +1905 6 24 19.6 19.2 19.2 1 +1905 6 25 23.1 22.7 22.7 1 +1905 6 26 22.6 22.2 22.2 1 +1905 6 27 23.5 23.1 23.1 1 +1905 6 28 21.0 20.6 20.6 1 +1905 6 29 20.9 20.5 20.5 1 +1905 6 30 20.1 19.7 19.7 1 +1905 7 1 18.3 17.9 17.9 1 +1905 7 2 20.7 20.3 20.3 1 +1905 7 3 19.9 19.5 19.5 1 +1905 7 4 18.8 18.4 18.4 1 +1905 7 5 19.6 19.2 19.2 1 +1905 7 6 18.3 17.9 17.9 1 +1905 7 7 16.5 16.1 16.1 1 +1905 7 8 17.5 17.1 17.1 1 +1905 7 9 18.4 18.0 18.0 1 +1905 7 10 16.0 15.6 15.6 1 +1905 7 11 17.1 16.7 16.7 1 +1905 7 12 11.9 11.5 11.5 1 +1905 7 13 12.4 12.0 12.0 1 +1905 7 14 13.5 13.1 13.1 1 +1905 7 15 15.7 15.3 15.3 1 +1905 7 16 18.2 17.9 17.9 1 +1905 7 17 18.5 18.2 18.2 1 +1905 7 18 15.8 15.5 15.5 1 +1905 7 19 18.0 17.7 17.7 1 +1905 7 20 14.0 13.7 13.7 1 +1905 7 21 15.8 15.5 15.5 1 +1905 7 22 17.4 17.1 17.1 1 +1905 7 23 14.9 14.6 14.6 1 +1905 7 24 16.9 16.6 16.6 1 +1905 7 25 17.9 17.6 17.6 1 +1905 7 26 18.7 18.4 18.4 1 +1905 7 27 16.5 16.2 16.2 1 +1905 7 28 17.2 17.0 17.0 1 +1905 7 29 15.5 15.3 15.3 1 +1905 7 30 17.3 17.1 17.1 1 +1905 7 31 16.5 16.3 16.3 1 +1905 8 1 18.2 18.0 18.0 1 +1905 8 2 14.1 13.9 13.9 1 +1905 8 3 15.4 15.2 15.2 1 +1905 8 4 17.8 17.6 17.6 1 +1905 8 5 19.4 19.2 19.2 1 +1905 8 6 18.7 18.5 18.5 1 +1905 8 7 17.1 16.9 16.9 1 +1905 8 8 14.4 14.2 14.2 1 +1905 8 9 17.1 16.9 16.9 1 +1905 8 10 15.8 15.7 15.7 1 +1905 8 11 16.2 16.1 16.1 1 +1905 8 12 14.2 14.1 14.1 1 +1905 8 13 15.3 15.2 15.2 1 +1905 8 14 15.4 15.3 15.3 1 +1905 8 15 15.3 15.2 15.2 1 +1905 8 16 13.1 13.0 13.0 1 +1905 8 17 13.8 13.7 13.7 1 +1905 8 18 16.0 15.9 15.9 1 +1905 8 19 14.1 14.0 14.0 1 +1905 8 20 14.2 14.1 14.1 1 +1905 8 21 14.5 14.4 14.4 1 +1905 8 22 15.5 15.4 15.4 1 +1905 8 23 13.9 13.9 13.9 1 +1905 8 24 13.3 13.3 13.3 1 +1905 8 25 12.3 12.3 12.3 1 +1905 8 26 9.7 9.7 9.7 1 +1905 8 27 10.2 10.2 10.2 1 +1905 8 28 12.6 12.6 12.6 1 +1905 8 29 12.3 12.3 12.3 1 +1905 8 30 11.8 11.8 11.8 1 +1905 8 31 11.2 11.2 11.2 1 +1905 9 1 11.3 11.3 11.3 1 +1905 9 2 9.8 9.8 9.8 1 +1905 9 3 11.0 11.0 11.0 1 +1905 9 4 11.3 11.3 11.3 1 +1905 9 5 12.0 12.1 12.1 1 +1905 9 6 14.8 14.9 14.9 1 +1905 9 7 15.6 15.7 15.7 1 +1905 9 8 14.4 14.5 14.5 1 +1905 9 9 14.1 14.2 14.2 1 +1905 9 10 14.6 14.7 14.7 1 +1905 9 11 12.4 12.5 12.5 1 +1905 9 12 11.9 12.0 12.0 1 +1905 9 13 12.2 12.3 12.3 1 +1905 9 14 12.0 12.1 12.1 1 +1905 9 15 11.1 11.2 11.2 1 +1905 9 16 10.7 10.8 10.8 1 +1905 9 17 9.2 9.3 9.3 1 +1905 9 18 11.1 11.2 11.2 1 +1905 9 19 10.8 10.9 10.9 1 +1905 9 20 9.3 9.4 9.4 1 +1905 9 21 8.6 8.7 8.7 1 +1905 9 22 9.0 9.1 9.1 1 +1905 9 23 9.4 9.5 9.5 1 +1905 9 24 10.4 10.5 10.5 1 +1905 9 25 10.5 10.6 10.6 1 +1905 9 26 9.9 10.0 10.0 1 +1905 9 27 9.6 9.7 9.7 1 +1905 9 28 9.0 9.1 9.1 1 +1905 9 29 8.9 9.0 9.0 1 +1905 9 30 10.2 10.3 10.3 1 +1905 10 1 9.3 9.4 9.4 1 +1905 10 2 7.5 7.6 7.6 1 +1905 10 3 4.1 4.2 4.2 1 +1905 10 4 5.7 5.8 5.8 1 +1905 10 5 8.2 8.3 8.3 1 +1905 10 6 8.1 8.2 8.2 1 +1905 10 7 6.6 6.7 6.7 1 +1905 10 8 5.2 5.3 5.3 1 +1905 10 9 3.8 3.9 3.9 1 +1905 10 10 5.2 5.3 5.3 1 +1905 10 11 6.9 7.0 7.0 1 +1905 10 12 7.7 7.8 7.8 1 +1905 10 13 4.3 4.4 4.4 1 +1905 10 14 2.3 2.4 2.4 1 +1905 10 15 2.1 2.2 2.2 1 +1905 10 16 1.0 1.1 1.1 1 +1905 10 17 0.4 0.5 0.5 1 +1905 10 18 1.3 1.4 1.4 1 +1905 10 19 0.6 0.7 0.7 1 +1905 10 20 -0.3 -0.2 -0.2 1 +1905 10 21 1.3 1.4 1.4 1 +1905 10 22 2.2 2.3 2.3 1 +1905 10 23 1.8 1.9 1.9 1 +1905 10 24 3.1 3.2 3.2 1 +1905 10 25 2.0 2.1 2.1 1 +1905 10 26 1.9 1.9 1.9 1 +1905 10 27 3.4 3.4 3.4 1 +1905 10 28 4.4 4.4 4.4 1 +1905 10 29 0.5 0.5 0.5 1 +1905 10 30 2.6 2.6 2.6 1 +1905 10 31 6.3 6.3 6.3 1 +1905 11 1 6.7 6.7 6.7 1 +1905 11 2 6.5 6.5 6.5 1 +1905 11 3 6.1 6.1 6.1 1 +1905 11 4 6.3 6.3 6.3 1 +1905 11 5 6.0 6.0 6.0 1 +1905 11 6 6.2 6.2 6.2 1 +1905 11 7 7.0 7.0 7.0 1 +1905 11 8 5.7 5.7 5.7 1 +1905 11 9 2.7 2.7 2.7 1 +1905 11 10 0.1 0.1 0.1 1 +1905 11 11 0.3 0.3 0.3 1 +1905 11 12 0.1 0.0 0.0 1 +1905 11 13 -1.3 -1.4 -1.4 1 +1905 11 14 -1.7 -1.8 -1.8 1 +1905 11 15 -1.2 -1.3 -1.3 1 +1905 11 16 -2.2 -2.3 -2.3 1 +1905 11 17 -2.7 -2.8 -2.8 1 +1905 11 18 -4.0 -4.1 -4.1 1 +1905 11 19 -3.1 -3.2 -3.2 1 +1905 11 20 -1.9 -2.0 -2.0 1 +1905 11 21 0.5 0.4 0.4 1 +1905 11 22 4.2 4.1 4.1 1 +1905 11 23 3.5 3.4 3.4 1 +1905 11 24 2.0 1.9 1.9 1 +1905 11 25 1.6 1.5 1.5 1 +1905 11 26 2.6 2.5 2.5 1 +1905 11 27 5.4 5.3 5.3 1 +1905 11 28 3.1 3.0 3.0 1 +1905 11 29 -0.4 -0.5 -0.5 1 +1905 11 30 -3.5 -3.6 -3.6 1 +1905 12 1 -0.1 -0.2 -0.2 1 +1905 12 2 2.4 2.3 2.3 1 +1905 12 3 5.7 5.6 5.6 1 +1905 12 4 4.1 4.0 4.0 1 +1905 12 5 3.1 3.0 3.0 1 +1905 12 6 1.3 1.2 1.2 1 +1905 12 7 2.1 2.0 2.0 1 +1905 12 8 4.9 4.8 4.8 1 +1905 12 9 3.2 3.1 3.1 1 +1905 12 10 0.7 0.6 0.6 1 +1905 12 11 1.6 1.5 1.5 1 +1905 12 12 5.0 4.9 4.9 1 +1905 12 13 3.2 3.1 3.1 1 +1905 12 14 0.7 0.6 0.6 1 +1905 12 15 3.5 3.4 3.4 1 +1905 12 16 -0.9 -1.0 -1.0 1 +1905 12 17 -2.3 -2.4 -2.4 1 +1905 12 18 -5.1 -5.2 -5.2 1 +1905 12 19 -2.1 -2.2 -2.2 1 +1905 12 20 0.3 0.2 0.2 1 +1905 12 21 2.4 2.3 2.3 1 +1905 12 22 0.0 -0.1 -0.1 1 +1905 12 23 -1.6 -1.7 -1.7 1 +1905 12 24 -1.1 -1.3 -1.3 1 +1905 12 25 3.0 2.8 2.8 1 +1905 12 26 0.7 0.5 0.5 1 +1905 12 27 -2.0 -2.2 -2.2 1 +1905 12 28 -3.5 -3.7 -3.7 1 +1905 12 29 -9.0 -9.2 -9.2 1 +1905 12 30 -8.6 -8.8 -8.8 1 +1905 12 31 -6.5 -6.7 -6.7 1 +1906 1 1 -5.3 -5.5 -5.5 1 +1906 1 2 -6.9 -7.1 -7.1 1 +1906 1 3 -6.5 -6.8 -6.8 1 +1906 1 4 -1.4 -1.7 -1.7 1 +1906 1 5 1.0 0.7 0.7 1 +1906 1 6 1.0 0.7 0.7 1 +1906 1 7 1.9 1.6 1.6 1 +1906 1 8 2.0 1.7 1.7 1 +1906 1 9 1.6 1.3 1.3 1 +1906 1 10 1.2 0.9 0.9 1 +1906 1 11 1.7 1.4 1.4 1 +1906 1 12 0.5 0.2 0.2 1 +1906 1 13 1.0 0.6 0.6 1 +1906 1 14 0.5 0.1 0.1 1 +1906 1 15 2.4 2.0 2.0 1 +1906 1 16 1.8 1.4 1.4 1 +1906 1 17 2.2 1.8 1.8 1 +1906 1 18 1.5 1.1 1.1 1 +1906 1 19 0.0 -0.4 -0.4 1 +1906 1 20 -4.5 -4.8 -4.8 1 +1906 1 21 -6.5 -6.8 -6.8 1 +1906 1 22 -6.0 -6.3 -6.3 1 +1906 1 23 -3.4 -3.7 -3.7 1 +1906 1 24 0.4 0.1 0.1 1 +1906 1 25 -0.1 -0.4 -0.4 1 +1906 1 26 0.0 -0.3 -0.3 1 +1906 1 27 5.0 4.7 4.7 1 +1906 1 28 1.7 1.4 1.4 1 +1906 1 29 0.0 -0.3 -0.3 1 +1906 1 30 -3.6 -3.9 -3.9 1 +1906 1 31 -5.0 -5.3 -5.3 1 +1906 2 1 -0.1 -0.4 -0.4 1 +1906 2 2 1.8 1.5 1.5 1 +1906 2 3 0.0 -0.3 -0.3 1 +1906 2 4 -3.0 -3.3 -3.3 1 +1906 2 5 -4.4 -4.7 -4.7 1 +1906 2 6 -4.0 -4.3 -4.3 1 +1906 2 7 -2.3 -2.6 -2.6 1 +1906 2 8 -1.5 -1.8 -1.8 1 +1906 2 9 0.3 0.0 0.0 1 +1906 2 10 -3.1 -3.4 -3.4 1 +1906 2 11 -0.2 -0.4 -0.4 1 +1906 2 12 0.7 0.5 0.5 1 +1906 2 13 -0.4 -0.6 -0.6 1 +1906 2 14 0.4 0.2 0.2 1 +1906 2 15 1.1 0.9 0.9 1 +1906 2 16 0.7 0.5 0.5 1 +1906 2 17 0.9 0.7 0.7 1 +1906 2 18 0.3 0.1 0.1 1 +1906 2 19 -2.0 -2.2 -2.2 1 +1906 2 20 -5.4 -5.6 -5.6 1 +1906 2 21 0.1 -0.2 -0.2 1 +1906 2 22 0.3 0.0 0.0 1 +1906 2 23 -2.7 -3.0 -3.0 1 +1906 2 24 -0.4 -0.7 -0.7 1 +1906 2 25 -2.7 -3.0 -3.0 1 +1906 2 26 -0.8 -1.1 -1.1 1 +1906 2 27 1.1 0.8 0.8 1 +1906 2 28 -0.2 -0.5 -0.5 1 +1906 3 1 -0.4 -0.7 -0.7 1 +1906 3 2 -1.8 -2.1 -2.1 1 +1906 3 3 -6.8 -7.1 -7.1 1 +1906 3 4 1.2 0.9 0.9 1 +1906 3 5 3.5 3.2 3.2 1 +1906 3 6 3.8 3.5 3.5 1 +1906 3 7 4.5 4.2 4.2 1 +1906 3 8 4.5 4.2 4.2 1 +1906 3 9 0.1 -0.2 -0.2 1 +1906 3 10 -8.8 -9.1 -9.1 1 +1906 3 11 -2.6 -2.9 -2.9 1 +1906 3 12 0.2 -0.1 -0.1 1 +1906 3 13 -3.2 -3.5 -3.5 1 +1906 3 14 -3.1 -3.4 -3.4 1 +1906 3 15 -3.1 -3.4 -3.4 1 +1906 3 16 0.0 -0.3 -0.3 1 +1906 3 17 0.8 0.5 0.5 1 +1906 3 18 -1.4 -1.7 -1.7 1 +1906 3 19 -5.0 -5.3 -5.3 1 +1906 3 20 -6.1 -6.4 -6.4 1 +1906 3 21 -3.6 -3.9 -3.9 1 +1906 3 22 -2.7 -3.0 -3.0 1 +1906 3 23 -2.4 -2.7 -2.7 1 +1906 3 24 -1.1 -1.4 -1.4 1 +1906 3 25 -2.4 -2.7 -2.7 1 +1906 3 26 -4.8 -5.1 -5.1 1 +1906 3 27 -2.6 -2.9 -2.9 1 +1906 3 28 -1.6 -1.9 -1.9 1 +1906 3 29 -4.0 -4.3 -4.3 1 +1906 3 30 -4.7 -5.0 -5.0 1 +1906 3 31 0.9 0.6 0.6 1 +1906 4 1 1.4 1.2 1.2 1 +1906 4 2 3.3 3.1 3.1 1 +1906 4 3 4.0 3.8 3.8 1 +1906 4 4 3.0 2.8 2.8 1 +1906 4 5 4.0 3.8 3.8 1 +1906 4 6 5.8 5.6 5.6 1 +1906 4 7 6.6 6.4 6.4 1 +1906 4 8 8.4 8.2 8.2 1 +1906 4 9 8.4 8.2 8.2 1 +1906 4 10 10.4 10.2 10.2 1 +1906 4 11 11.1 10.9 10.9 1 +1906 4 12 4.9 4.7 4.7 1 +1906 4 13 10.2 10.0 10.0 1 +1906 4 14 10.9 10.7 10.7 1 +1906 4 15 7.8 7.6 7.6 1 +1906 4 16 6.6 6.4 6.4 1 +1906 4 17 5.7 5.5 5.5 1 +1906 4 18 1.5 1.3 1.3 1 +1906 4 19 1.4 1.2 1.2 1 +1906 4 20 0.3 0.1 0.1 1 +1906 4 21 5.9 5.7 5.7 1 +1906 4 22 5.6 5.3 5.3 1 +1906 4 23 4.6 4.3 4.3 1 +1906 4 24 4.2 3.9 3.9 1 +1906 4 25 3.5 3.2 3.2 1 +1906 4 26 3.2 2.9 2.9 1 +1906 4 27 2.4 2.1 2.1 1 +1906 4 28 4.4 4.1 4.1 1 +1906 4 29 5.8 5.5 5.5 1 +1906 4 30 8.0 7.7 7.7 1 +1906 5 1 7.5 7.2 7.2 1 +1906 5 2 7.0 6.6 6.6 1 +1906 5 3 6.3 5.9 5.9 1 +1906 5 4 8.6 8.2 8.2 1 +1906 5 5 10.3 9.9 9.9 1 +1906 5 6 12.5 12.1 12.1 1 +1906 5 7 15.8 15.4 15.4 1 +1906 5 8 18.4 18.0 18.0 1 +1906 5 9 17.4 17.0 17.0 1 +1906 5 10 16.0 15.6 15.6 1 +1906 5 11 12.3 11.9 11.9 1 +1906 5 12 11.4 10.9 10.9 1 +1906 5 13 9.1 8.6 8.6 1 +1906 5 14 8.3 7.8 7.8 1 +1906 5 15 11.6 11.1 11.1 1 +1906 5 16 13.9 13.4 13.4 1 +1906 5 17 16.2 15.7 15.7 1 +1906 5 18 15.8 15.3 15.3 1 +1906 5 19 5.9 5.4 5.4 1 +1906 5 20 2.3 1.8 1.8 1 +1906 5 21 6.5 6.0 6.0 1 +1906 5 22 7.9 7.4 7.4 1 +1906 5 23 11.2 10.7 10.7 1 +1906 5 24 11.9 11.4 11.4 1 +1906 5 25 13.2 12.8 12.8 1 +1906 5 26 12.7 12.3 12.3 1 +1906 5 27 11.0 10.6 10.6 1 +1906 5 28 11.7 11.3 11.3 1 +1906 5 29 11.0 10.6 10.6 1 +1906 5 30 9.8 9.4 9.4 1 +1906 5 31 9.7 9.3 9.3 1 +1906 6 1 9.0 8.6 8.6 1 +1906 6 2 9.9 9.5 9.5 1 +1906 6 3 9.4 9.0 9.0 1 +1906 6 4 10.3 9.9 9.9 1 +1906 6 5 9.8 9.4 9.4 1 +1906 6 6 11.7 11.3 11.3 1 +1906 6 7 12.0 11.6 11.6 1 +1906 6 8 13.1 12.7 12.7 1 +1906 6 9 15.0 14.6 14.6 1 +1906 6 10 14.7 14.3 14.3 1 +1906 6 11 15.3 14.9 14.9 1 +1906 6 12 15.6 15.2 15.2 1 +1906 6 13 15.3 14.9 14.9 1 +1906 6 14 9.9 9.5 9.5 1 +1906 6 15 14.6 14.2 14.2 1 +1906 6 16 16.8 16.4 16.4 1 +1906 6 17 17.7 17.3 17.3 1 +1906 6 18 15.9 15.5 15.5 1 +1906 6 19 18.1 17.7 17.7 1 +1906 6 20 23.0 22.6 22.6 1 +1906 6 21 21.0 20.6 20.6 1 +1906 6 22 14.6 14.2 14.2 1 +1906 6 23 10.9 10.5 10.5 1 +1906 6 24 15.6 15.2 15.2 1 +1906 6 25 19.1 18.7 18.7 1 +1906 6 26 18.2 17.8 17.8 1 +1906 6 27 17.7 17.3 17.3 1 +1906 6 28 16.8 16.4 16.4 1 +1906 6 29 15.1 14.7 14.7 1 +1906 6 30 8.2 7.8 7.8 1 +1906 7 1 10.6 10.2 10.2 1 +1906 7 2 13.4 13.0 13.0 1 +1906 7 3 14.4 14.0 14.0 1 +1906 7 4 15.9 15.5 15.5 1 +1906 7 5 16.1 15.7 15.7 1 +1906 7 6 17.0 16.6 16.6 1 +1906 7 7 20.2 19.8 19.8 1 +1906 7 8 22.0 21.6 21.6 1 +1906 7 9 20.9 20.5 20.5 1 +1906 7 10 20.1 19.7 19.7 1 +1906 7 11 19.4 19.0 19.0 1 +1906 7 12 17.8 17.4 17.4 1 +1906 7 13 18.3 17.9 17.9 1 +1906 7 14 19.4 19.0 19.0 1 +1906 7 15 18.3 17.9 17.9 1 +1906 7 16 15.2 14.9 14.9 1 +1906 7 17 14.8 14.5 14.5 1 +1906 7 18 14.7 14.4 14.4 1 +1906 7 19 17.4 17.1 17.1 1 +1906 7 20 15.2 14.9 14.9 1 +1906 7 21 12.2 11.9 11.9 1 +1906 7 22 15.5 15.2 15.2 1 +1906 7 23 16.7 16.4 16.4 1 +1906 7 24 17.1 16.8 16.8 1 +1906 7 25 18.4 18.1 18.1 1 +1906 7 26 17.3 17.0 17.0 1 +1906 7 27 17.1 16.8 16.8 1 +1906 7 28 19.8 19.6 19.6 1 +1906 7 29 21.8 21.6 21.6 1 +1906 7 30 22.1 21.9 21.9 1 +1906 7 31 22.6 22.4 22.4 1 +1906 8 1 22.8 22.6 22.6 1 +1906 8 2 21.6 21.4 21.4 1 +1906 8 3 22.3 22.1 22.1 1 +1906 8 4 20.8 20.6 20.6 1 +1906 8 5 13.9 13.7 13.7 1 +1906 8 6 13.6 13.4 13.4 1 +1906 8 7 13.5 13.3 13.3 1 +1906 8 8 15.2 15.0 15.0 1 +1906 8 9 13.4 13.2 13.2 1 +1906 8 10 12.8 12.7 12.7 1 +1906 8 11 13.4 13.3 13.3 1 +1906 8 12 15.7 15.6 15.6 1 +1906 8 13 15.3 15.2 15.2 1 +1906 8 14 17.1 17.0 17.0 1 +1906 8 15 18.0 17.9 17.9 1 +1906 8 16 17.1 17.0 17.0 1 +1906 8 17 16.4 16.3 16.3 1 +1906 8 18 16.7 16.6 16.6 1 +1906 8 19 14.8 14.7 14.7 1 +1906 8 20 13.5 13.4 13.4 1 +1906 8 21 15.6 15.5 15.5 1 +1906 8 22 11.9 11.8 11.8 1 +1906 8 23 11.6 11.6 11.6 1 +1906 8 24 11.7 11.7 11.7 1 +1906 8 25 12.4 12.4 12.4 1 +1906 8 26 10.1 10.1 10.1 1 +1906 8 27 9.9 9.9 9.9 1 +1906 8 28 11.2 11.2 11.2 1 +1906 8 29 12.4 12.4 12.4 1 +1906 8 30 13.6 13.6 13.6 1 +1906 8 31 11.1 11.1 11.1 1 +1906 9 1 17.4 17.4 17.4 1 +1906 9 2 13.0 13.0 13.0 1 +1906 9 3 12.5 12.5 12.5 1 +1906 9 4 13.5 13.5 13.5 1 +1906 9 5 13.6 13.7 13.7 1 +1906 9 6 12.7 12.8 12.8 1 +1906 9 7 11.9 12.0 12.0 1 +1906 9 8 13.5 13.6 13.6 1 +1906 9 9 12.4 12.5 12.5 1 +1906 9 10 10.4 10.5 10.5 1 +1906 9 11 10.4 10.5 10.5 1 +1906 9 12 10.0 10.1 10.1 1 +1906 9 13 12.2 12.3 12.3 1 +1906 9 14 12.1 12.2 12.2 1 +1906 9 15 12.1 12.2 12.2 1 +1906 9 16 12.5 12.6 12.6 1 +1906 9 17 12.4 12.5 12.5 1 +1906 9 18 11.3 11.4 11.4 1 +1906 9 19 11.8 11.9 11.9 1 +1906 9 20 12.3 12.4 12.4 1 +1906 9 21 12.5 12.6 12.6 1 +1906 9 22 8.5 8.6 8.6 1 +1906 9 23 5.6 5.7 5.7 1 +1906 9 24 4.8 4.9 4.9 1 +1906 9 25 4.9 5.0 5.0 1 +1906 9 26 7.9 8.0 8.0 1 +1906 9 27 10.9 11.0 11.0 1 +1906 9 28 9.2 9.3 9.3 1 +1906 9 29 5.5 5.6 5.6 1 +1906 9 30 6.9 7.0 7.0 1 +1906 10 1 5.7 5.8 5.8 1 +1906 10 2 9.1 9.2 9.2 1 +1906 10 3 6.2 6.3 6.3 1 +1906 10 4 5.2 5.3 5.3 1 +1906 10 5 6.3 6.4 6.4 1 +1906 10 6 8.9 9.0 9.0 1 +1906 10 7 10.2 10.3 10.3 1 +1906 10 8 6.1 6.2 6.2 1 +1906 10 9 6.0 6.1 6.1 1 +1906 10 10 6.5 6.6 6.6 1 +1906 10 11 6.7 6.8 6.8 1 +1906 10 12 9.3 9.4 9.4 1 +1906 10 13 10.1 10.2 10.2 1 +1906 10 14 8.3 8.4 8.4 1 +1906 10 15 7.7 7.8 7.8 1 +1906 10 16 9.6 9.7 9.7 1 +1906 10 17 9.9 10.0 10.0 1 +1906 10 18 10.1 10.2 10.2 1 +1906 10 19 8.6 8.7 8.7 1 +1906 10 20 8.1 8.2 8.2 1 +1906 10 21 5.5 5.6 5.6 1 +1906 10 22 3.1 3.2 3.2 1 +1906 10 23 3.4 3.5 3.5 1 +1906 10 24 3.8 3.9 3.9 1 +1906 10 25 3.7 3.8 3.8 1 +1906 10 26 3.2 3.2 3.2 1 +1906 10 27 3.8 3.8 3.8 1 +1906 10 28 5.2 5.2 5.2 1 +1906 10 29 6.1 6.1 6.1 1 +1906 10 30 7.5 7.5 7.5 1 +1906 10 31 6.2 6.2 6.2 1 +1906 11 1 6.0 6.0 6.0 1 +1906 11 2 5.9 5.9 5.9 1 +1906 11 3 5.3 5.3 5.3 1 +1906 11 4 5.0 5.0 5.0 1 +1906 11 5 5.1 5.1 5.1 1 +1906 11 6 5.2 5.2 5.2 1 +1906 11 7 5.3 5.3 5.3 1 +1906 11 8 5.3 5.3 5.3 1 +1906 11 9 3.9 3.9 3.9 1 +1906 11 10 -0.1 -0.1 -0.1 1 +1906 11 11 1.8 1.8 1.8 1 +1906 11 12 2.3 2.2 2.2 1 +1906 11 13 1.6 1.5 1.5 1 +1906 11 14 3.8 3.7 3.7 1 +1906 11 15 4.6 4.5 4.5 1 +1906 11 16 4.4 4.3 4.3 1 +1906 11 17 1.9 1.8 1.8 1 +1906 11 18 1.2 1.1 1.1 1 +1906 11 19 1.1 1.0 1.0 1 +1906 11 20 5.5 5.4 5.4 1 +1906 11 21 4.3 4.2 4.2 1 +1906 11 22 4.0 3.9 3.9 1 +1906 11 23 9.4 9.3 9.3 1 +1906 11 24 9.5 9.4 9.4 1 +1906 11 25 7.1 7.0 7.0 1 +1906 11 26 3.3 3.2 3.2 1 +1906 11 27 0.9 0.8 0.8 1 +1906 11 28 -1.2 -1.3 -1.3 1 +1906 11 29 3.9 3.8 3.8 1 +1906 11 30 0.4 0.3 0.3 1 +1906 12 1 -3.2 -3.3 -3.3 1 +1906 12 2 -4.5 -4.6 -4.6 1 +1906 12 3 3.3 3.2 3.2 1 +1906 12 4 -6.8 -6.9 -6.9 1 +1906 12 5 -1.8 -1.9 -1.9 1 +1906 12 6 -6.7 -6.8 -6.8 1 +1906 12 7 -2.7 -2.8 -2.8 1 +1906 12 8 5.0 4.9 4.9 1 +1906 12 9 0.7 0.6 0.6 1 +1906 12 10 -1.4 -1.5 -1.5 1 +1906 12 11 -2.9 -3.0 -3.0 1 +1906 12 12 -7.6 -7.7 -7.7 1 +1906 12 13 -7.1 -7.2 -7.2 1 +1906 12 14 1.2 1.1 1.1 1 +1906 12 15 0.4 0.3 0.3 1 +1906 12 16 -0.5 -0.6 -0.6 1 +1906 12 17 -1.4 -1.5 -1.5 1 +1906 12 18 -1.0 -1.1 -1.1 1 +1906 12 19 0.0 -0.1 -0.1 1 +1906 12 20 1.7 1.6 1.6 1 +1906 12 21 2.6 2.5 2.5 1 +1906 12 22 0.5 0.4 0.4 1 +1906 12 23 1.1 1.0 1.0 1 +1906 12 24 -1.1 -1.3 -1.3 1 +1906 12 25 0.4 0.2 0.2 1 +1906 12 26 -2.2 -2.4 -2.4 1 +1906 12 27 -8.9 -9.1 -9.1 1 +1906 12 28 -5.5 -5.7 -5.7 1 +1906 12 29 -6.8 -7.0 -7.0 1 +1906 12 30 -8.1 -8.3 -8.3 1 +1906 12 31 -8.5 -8.7 -8.7 1 +1907 1 1 -9.4 -9.6 -9.6 1 +1907 1 2 -7.5 -7.7 -7.7 1 +1907 1 3 0.6 0.3 0.3 1 +1907 1 4 1.0 0.7 0.7 1 +1907 1 5 -5.0 -5.3 -5.3 1 +1907 1 6 -1.2 -1.5 -1.5 1 +1907 1 7 -4.9 -5.2 -5.2 1 +1907 1 8 1.2 0.9 0.9 1 +1907 1 9 2.4 2.1 2.1 1 +1907 1 10 -1.6 -1.9 -1.9 1 +1907 1 11 -3.4 -3.7 -3.7 1 +1907 1 12 -2.8 -3.1 -3.1 1 +1907 1 13 -1.0 -1.4 -1.4 1 +1907 1 14 -2.2 -2.6 -2.6 1 +1907 1 15 -0.4 -0.8 -0.8 1 +1907 1 16 -1.3 -1.7 -1.7 1 +1907 1 17 -0.5 -0.9 -0.9 1 +1907 1 18 -0.6 -1.0 -1.0 1 +1907 1 19 -0.4 -0.8 -0.8 1 +1907 1 20 -4.3 -4.6 -4.6 1 +1907 1 21 -9.7 -10.0 -10.0 1 +1907 1 22 -8.1 -8.4 -8.4 1 +1907 1 23 -9.1 -9.4 -9.4 1 +1907 1 24 -7.8 -8.1 -8.1 1 +1907 1 25 -2.6 -2.9 -2.9 1 +1907 1 26 -8.1 -8.4 -8.4 1 +1907 1 27 -13.2 -13.5 -13.5 1 +1907 1 28 -4.1 -4.4 -4.4 1 +1907 1 29 -0.2 -0.5 -0.5 1 +1907 1 30 -4.9 -5.2 -5.2 1 +1907 1 31 -6.8 -7.1 -7.1 1 +1907 2 1 -7.2 -7.5 -7.5 1 +1907 2 2 -9.2 -9.5 -9.5 1 +1907 2 3 -9.6 -9.9 -9.9 1 +1907 2 4 -5.4 -5.7 -5.7 1 +1907 2 5 -4.7 -5.0 -5.0 1 +1907 2 6 -2.5 -2.8 -2.8 1 +1907 2 7 -2.8 -3.1 -3.1 1 +1907 2 8 -4.1 -4.4 -4.4 1 +1907 2 9 -3.9 -4.2 -4.2 1 +1907 2 10 -3.0 -3.3 -3.3 1 +1907 2 11 -2.0 -2.2 -2.2 1 +1907 2 12 -0.6 -0.8 -0.8 1 +1907 2 13 -1.8 -2.0 -2.0 1 +1907 2 14 -2.1 -2.3 -2.3 1 +1907 2 15 -2.4 -2.6 -2.6 1 +1907 2 16 1.4 1.2 1.2 1 +1907 2 17 -1.0 -1.2 -1.2 1 +1907 2 18 -4.6 -4.8 -4.8 1 +1907 2 19 1.7 1.5 1.5 1 +1907 2 20 0.9 0.7 0.7 1 +1907 2 21 0.1 -0.2 -0.2 1 +1907 2 22 -1.8 -2.1 -2.1 1 +1907 2 23 -1.6 -1.9 -1.9 1 +1907 2 24 -4.1 -4.4 -4.4 1 +1907 2 25 -3.7 -4.0 -4.0 1 +1907 2 26 1.9 1.6 1.6 1 +1907 2 27 -1.7 -2.0 -2.0 1 +1907 2 28 -2.0 -2.3 -2.3 1 +1907 3 1 -2.8 -3.1 -3.1 1 +1907 3 2 2.0 1.7 1.7 1 +1907 3 3 0.2 -0.1 -0.1 1 +1907 3 4 1.4 1.1 1.1 1 +1907 3 5 1.7 1.4 1.4 1 +1907 3 6 1.6 1.3 1.3 1 +1907 3 7 1.1 0.8 0.8 1 +1907 3 8 1.0 0.7 0.7 1 +1907 3 9 -1.4 -1.7 -1.7 1 +1907 3 10 -4.9 -5.2 -5.2 1 +1907 3 11 -3.5 -3.8 -3.8 1 +1907 3 12 -5.6 -5.9 -5.9 1 +1907 3 13 -6.3 -6.6 -6.6 1 +1907 3 14 -2.9 -3.2 -3.2 1 +1907 3 15 -3.8 -4.1 -4.1 1 +1907 3 16 0.2 -0.1 -0.1 1 +1907 3 17 2.6 2.3 2.3 1 +1907 3 18 2.2 1.9 1.9 1 +1907 3 19 0.3 0.0 0.0 1 +1907 3 20 -0.6 -0.9 -0.9 1 +1907 3 21 0.6 0.3 0.3 1 +1907 3 22 -0.4 -0.7 -0.7 1 +1907 3 23 -0.1 -0.4 -0.4 1 +1907 3 24 0.8 0.5 0.5 1 +1907 3 25 1.2 0.9 0.9 1 +1907 3 26 4.1 3.8 3.8 1 +1907 3 27 6.5 6.2 6.2 1 +1907 3 28 5.0 4.7 4.7 1 +1907 3 29 4.7 4.4 4.4 1 +1907 3 30 4.1 3.8 3.8 1 +1907 3 31 4.1 3.8 3.8 1 +1907 4 1 3.2 3.0 3.0 1 +1907 4 2 4.4 4.2 4.2 1 +1907 4 3 4.7 4.5 4.5 1 +1907 4 4 1.1 0.9 0.9 1 +1907 4 5 2.6 2.4 2.4 1 +1907 4 6 1.8 1.6 1.6 1 +1907 4 7 1.4 1.2 1.2 1 +1907 4 8 1.9 1.7 1.7 1 +1907 4 9 2.2 2.0 2.0 1 +1907 4 10 1.0 0.8 0.8 1 +1907 4 11 2.3 2.1 2.1 1 +1907 4 12 1.2 1.0 1.0 1 +1907 4 13 2.1 1.9 1.9 1 +1907 4 14 0.6 0.4 0.4 1 +1907 4 15 0.1 -0.1 -0.1 1 +1907 4 16 1.3 1.1 1.1 1 +1907 4 17 1.0 0.8 0.8 1 +1907 4 18 0.4 0.2 0.2 1 +1907 4 19 0.9 0.7 0.7 1 +1907 4 20 1.6 1.4 1.4 1 +1907 4 21 4.4 4.2 4.2 1 +1907 4 22 6.6 6.3 6.3 1 +1907 4 23 5.1 4.8 4.8 1 +1907 4 24 5.1 4.8 4.8 1 +1907 4 25 4.6 4.3 4.3 1 +1907 4 26 2.2 1.9 1.9 1 +1907 4 27 1.7 1.4 1.4 1 +1907 4 28 3.2 2.9 2.9 1 +1907 4 29 3.0 2.7 2.7 1 +1907 4 30 4.3 4.0 4.0 1 +1907 5 1 5.2 4.9 4.9 1 +1907 5 2 6.3 5.9 5.9 1 +1907 5 3 5.3 4.9 4.9 1 +1907 5 4 6.5 6.1 6.1 1 +1907 5 5 7.3 6.9 6.9 1 +1907 5 6 9.5 9.1 9.1 1 +1907 5 7 7.8 7.4 7.4 1 +1907 5 8 7.1 6.7 6.7 1 +1907 5 9 11.4 11.0 11.0 1 +1907 5 10 13.1 12.7 12.7 1 +1907 5 11 15.2 14.8 14.8 1 +1907 5 12 19.1 18.6 18.6 1 +1907 5 13 9.5 9.0 9.0 1 +1907 5 14 9.1 8.6 8.6 1 +1907 5 15 5.5 5.0 5.0 1 +1907 5 16 3.0 2.5 2.5 1 +1907 5 17 1.9 1.4 1.4 1 +1907 5 18 3.1 2.6 2.6 1 +1907 5 19 2.8 2.3 2.3 1 +1907 5 20 4.1 3.6 3.6 1 +1907 5 21 11.4 10.9 10.9 1 +1907 5 22 8.1 7.6 7.6 1 +1907 5 23 8.0 7.5 7.5 1 +1907 5 24 11.6 11.1 11.1 1 +1907 5 25 10.9 10.5 10.5 1 +1907 5 26 9.5 9.1 9.1 1 +1907 5 27 5.4 5.0 5.0 1 +1907 5 28 4.7 4.3 4.3 1 +1907 5 29 4.6 4.2 4.2 1 +1907 5 30 5.1 4.7 4.7 1 +1907 5 31 5.5 5.1 5.1 1 +1907 6 1 6.5 6.1 6.1 1 +1907 6 2 8.0 7.6 7.6 1 +1907 6 3 10.3 9.9 9.9 1 +1907 6 4 10.9 10.5 10.5 1 +1907 6 5 8.8 8.4 8.4 1 +1907 6 6 10.4 10.0 10.0 1 +1907 6 7 10.3 9.9 9.9 1 +1907 6 8 11.1 10.7 10.7 1 +1907 6 9 12.6 12.2 12.2 1 +1907 6 10 14.4 14.0 14.0 1 +1907 6 11 15.4 15.0 15.0 1 +1907 6 12 16.5 16.1 16.1 1 +1907 6 13 16.5 16.1 16.1 1 +1907 6 14 16.1 15.7 15.7 1 +1907 6 15 15.3 14.9 14.9 1 +1907 6 16 16.7 16.3 16.3 1 +1907 6 17 13.4 13.0 13.0 1 +1907 6 18 13.7 13.3 13.3 1 +1907 6 19 13.1 12.7 12.7 1 +1907 6 20 13.4 13.0 13.0 1 +1907 6 21 12.9 12.5 12.5 1 +1907 6 22 13.4 13.0 13.0 1 +1907 6 23 14.0 13.6 13.6 1 +1907 6 24 12.9 12.5 12.5 1 +1907 6 25 13.9 13.5 13.5 1 +1907 6 26 11.7 11.3 11.3 1 +1907 6 27 14.1 13.7 13.7 1 +1907 6 28 15.6 15.2 15.2 1 +1907 6 29 15.5 15.1 15.1 1 +1907 6 30 14.2 13.8 13.8 1 +1907 7 1 15.8 15.4 15.4 1 +1907 7 2 12.2 11.8 11.8 1 +1907 7 3 15.6 15.2 15.2 1 +1907 7 4 12.5 12.1 12.1 1 +1907 7 5 15.5 15.1 15.1 1 +1907 7 6 14.4 14.0 14.0 1 +1907 7 7 16.0 15.6 15.6 1 +1907 7 8 12.9 12.5 12.5 1 +1907 7 9 15.2 14.8 14.8 1 +1907 7 10 16.9 16.5 16.5 1 +1907 7 11 18.2 17.8 17.8 1 +1907 7 12 18.2 17.8 17.8 1 +1907 7 13 17.9 17.5 17.5 1 +1907 7 14 19.4 19.0 19.0 1 +1907 7 15 21.4 21.0 21.0 1 +1907 7 16 17.2 16.9 16.9 1 +1907 7 17 13.2 12.9 12.9 1 +1907 7 18 10.8 10.5 10.5 1 +1907 7 19 10.3 10.0 10.0 1 +1907 7 20 13.8 13.5 13.5 1 +1907 7 21 12.0 11.7 11.7 1 +1907 7 22 11.0 10.7 10.7 1 +1907 7 23 13.0 12.7 12.7 1 +1907 7 24 12.2 11.9 11.9 1 +1907 7 25 13.3 13.0 13.0 1 +1907 7 26 16.5 16.2 16.2 1 +1907 7 27 15.3 15.0 15.0 1 +1907 7 28 16.2 16.0 16.0 1 +1907 7 29 14.8 14.6 14.6 1 +1907 7 30 15.6 15.4 15.4 1 +1907 7 31 13.1 12.9 12.9 1 +1907 8 1 11.7 11.5 11.5 1 +1907 8 2 11.6 11.4 11.4 1 +1907 8 3 13.2 13.0 13.0 1 +1907 8 4 13.1 12.9 12.9 1 +1907 8 5 15.5 15.3 15.3 1 +1907 8 6 15.7 15.5 15.5 1 +1907 8 7 12.6 12.4 12.4 1 +1907 8 8 13.4 13.2 13.2 1 +1907 8 9 14.4 14.2 14.2 1 +1907 8 10 15.3 15.2 15.2 1 +1907 8 11 15.3 15.2 15.2 1 +1907 8 12 13.7 13.6 13.6 1 +1907 8 13 12.1 12.0 12.0 1 +1907 8 14 13.4 13.3 13.3 1 +1907 8 15 14.2 14.1 14.1 1 +1907 8 16 14.4 14.3 14.3 1 +1907 8 17 13.5 13.4 13.4 1 +1907 8 18 12.5 12.4 12.4 1 +1907 8 19 11.2 11.1 11.1 1 +1907 8 20 11.4 11.3 11.3 1 +1907 8 21 12.4 12.3 12.3 1 +1907 8 22 12.6 12.5 12.5 1 +1907 8 23 12.8 12.8 12.8 1 +1907 8 24 10.0 10.0 10.0 1 +1907 8 25 10.3 10.3 10.3 1 +1907 8 26 11.3 11.3 11.3 1 +1907 8 27 11.3 11.3 11.3 1 +1907 8 28 11.5 11.5 11.5 1 +1907 8 29 12.5 12.5 12.5 1 +1907 8 30 13.8 13.8 13.8 1 +1907 8 31 12.3 12.3 12.3 1 +1907 9 1 10.3 10.3 10.3 1 +1907 9 2 9.9 9.9 9.9 1 +1907 9 3 12.2 12.2 12.2 1 +1907 9 4 9.9 9.9 9.9 1 +1907 9 5 11.4 11.5 11.5 1 +1907 9 6 11.5 11.6 11.6 1 +1907 9 7 13.0 13.1 13.1 1 +1907 9 8 12.0 12.1 12.1 1 +1907 9 9 11.8 11.9 11.9 1 +1907 9 10 12.3 12.4 12.4 1 +1907 9 11 15.2 15.3 15.3 1 +1907 9 12 16.7 16.8 16.8 1 +1907 9 13 15.4 15.5 15.5 1 +1907 9 14 14.0 14.1 14.1 1 +1907 9 15 10.3 10.4 10.4 1 +1907 9 16 9.5 9.6 9.6 1 +1907 9 17 10.0 10.1 10.1 1 +1907 9 18 8.4 8.5 8.5 1 +1907 9 19 13.5 13.6 13.6 1 +1907 9 20 13.3 13.4 13.4 1 +1907 9 21 6.1 6.2 6.2 1 +1907 9 22 5.1 5.2 5.2 1 +1907 9 23 8.8 8.9 8.9 1 +1907 9 24 7.2 7.3 7.3 1 +1907 9 25 11.2 11.3 11.3 1 +1907 9 26 9.9 10.0 10.0 1 +1907 9 27 8.1 8.2 8.2 1 +1907 9 28 8.8 8.9 8.9 1 +1907 9 29 8.6 8.7 8.7 1 +1907 9 30 9.1 9.2 9.2 1 +1907 10 1 9.9 10.0 10.0 1 +1907 10 2 11.5 11.6 11.6 1 +1907 10 3 12.1 12.2 12.2 1 +1907 10 4 12.4 12.5 12.5 1 +1907 10 5 12.3 12.4 12.4 1 +1907 10 6 11.8 11.9 11.9 1 +1907 10 7 9.3 9.4 9.4 1 +1907 10 8 11.7 11.8 11.8 1 +1907 10 9 10.4 10.5 10.5 1 +1907 10 10 8.4 8.5 8.5 1 +1907 10 11 9.5 9.6 9.6 1 +1907 10 12 11.2 11.3 11.3 1 +1907 10 13 11.0 11.1 11.1 1 +1907 10 14 12.2 12.3 12.3 1 +1907 10 15 12.6 12.7 12.7 1 +1907 10 16 10.7 10.8 10.8 1 +1907 10 17 11.0 11.1 11.1 1 +1907 10 18 12.5 12.6 12.6 1 +1907 10 19 9.5 9.6 9.6 1 +1907 10 20 9.9 10.0 10.0 1 +1907 10 21 8.7 8.8 8.8 1 +1907 10 22 10.0 10.1 10.1 1 +1907 10 23 10.4 10.5 10.5 1 +1907 10 24 7.8 7.9 7.9 1 +1907 10 25 9.7 9.8 9.8 1 +1907 10 26 7.0 7.0 7.0 1 +1907 10 27 8.4 8.4 8.4 1 +1907 10 28 8.7 8.7 8.7 1 +1907 10 29 9.6 9.6 9.6 1 +1907 10 30 6.0 6.0 6.0 1 +1907 10 31 3.5 3.5 3.5 1 +1907 11 1 2.8 2.8 2.8 1 +1907 11 2 1.7 1.7 1.7 1 +1907 11 3 5.0 5.0 5.0 1 +1907 11 4 2.7 2.7 2.7 1 +1907 11 5 1.6 1.6 1.6 1 +1907 11 6 3.4 3.4 3.4 1 +1907 11 7 4.7 4.7 4.7 1 +1907 11 8 3.4 3.4 3.4 1 +1907 11 9 1.7 1.7 1.7 1 +1907 11 10 3.5 3.5 3.5 1 +1907 11 11 4.9 4.9 4.9 1 +1907 11 12 6.7 6.6 6.6 1 +1907 11 13 7.0 6.9 6.9 1 +1907 11 14 5.9 5.8 5.8 1 +1907 11 15 5.5 5.4 5.4 1 +1907 11 16 6.5 6.4 6.4 1 +1907 11 17 5.7 5.6 5.6 1 +1907 11 18 5.1 5.0 5.0 1 +1907 11 19 3.2 3.1 3.1 1 +1907 11 20 1.3 1.2 1.2 1 +1907 11 21 2.8 2.7 2.7 1 +1907 11 22 3.7 3.6 3.6 1 +1907 11 23 1.8 1.7 1.7 1 +1907 11 24 0.8 0.7 0.7 1 +1907 11 25 2.2 2.1 2.1 1 +1907 11 26 3.0 2.9 2.9 1 +1907 11 27 4.2 4.1 4.1 1 +1907 11 28 3.0 2.9 2.9 1 +1907 11 29 -1.8 -1.9 -1.9 1 +1907 11 30 -4.0 -4.1 -4.1 1 +1907 12 1 -1.3 -1.4 -1.4 1 +1907 12 2 1.8 1.7 1.7 1 +1907 12 3 1.8 1.7 1.7 1 +1907 12 4 3.3 3.2 3.2 1 +1907 12 5 4.4 4.3 4.3 1 +1907 12 6 2.8 2.7 2.7 1 +1907 12 7 2.8 2.7 2.7 1 +1907 12 8 2.3 2.2 2.2 1 +1907 12 9 1.7 1.6 1.6 1 +1907 12 10 0.4 0.3 0.3 1 +1907 12 11 -1.8 -1.9 -1.9 1 +1907 12 12 -3.5 -3.6 -3.6 1 +1907 12 13 -2.0 -2.1 -2.1 1 +1907 12 14 -3.1 -3.2 -3.2 1 +1907 12 15 -4.0 -4.1 -4.1 1 +1907 12 16 -5.7 -5.8 -5.8 1 +1907 12 17 -7.3 -7.4 -7.4 1 +1907 12 18 -3.4 -3.5 -3.5 1 +1907 12 19 -8.2 -8.3 -8.3 1 +1907 12 20 -12.7 -12.8 -12.8 1 +1907 12 21 -7.6 -7.7 -7.7 1 +1907 12 22 -9.6 -9.7 -9.7 1 +1907 12 23 -2.8 -2.9 -2.9 1 +1907 12 24 -0.1 -0.3 -0.3 1 +1907 12 25 -5.0 -5.2 -5.2 1 +1907 12 26 -7.0 -7.2 -7.2 1 +1907 12 27 -6.0 -6.2 -6.2 1 +1907 12 28 -8.6 -8.8 -8.8 1 +1907 12 29 -6.3 -6.5 -6.5 1 +1907 12 30 -8.8 -9.0 -9.0 1 +1907 12 31 -6.4 -6.6 -6.6 1 +1908 1 1 -12.6 -12.8 -12.8 1 +1908 1 2 -7.1 -7.3 -7.3 1 +1908 1 3 -2.0 -2.3 -2.3 1 +1908 1 4 1.1 0.8 0.8 1 +1908 1 5 -0.7 -1.0 -1.0 1 +1908 1 6 -1.8 -2.1 -2.1 1 +1908 1 7 -8.8 -9.1 -9.1 1 +1908 1 8 -10.8 -11.1 -11.1 1 +1908 1 9 -10.8 -11.1 -11.1 1 +1908 1 10 -12.8 -13.1 -13.1 1 +1908 1 11 -2.1 -2.4 -2.4 1 +1908 1 12 2.1 1.8 1.8 1 +1908 1 13 0.4 0.0 0.0 1 +1908 1 14 -0.8 -1.2 -1.2 1 +1908 1 15 0.2 -0.2 -0.2 1 +1908 1 16 2.9 2.5 2.5 1 +1908 1 17 2.5 2.1 2.1 1 +1908 1 18 4.6 4.2 4.2 1 +1908 1 19 1.3 0.9 0.9 1 +1908 1 20 1.3 1.0 1.0 1 +1908 1 21 1.0 0.7 0.7 1 +1908 1 22 1.9 1.6 1.6 1 +1908 1 23 0.8 0.5 0.5 1 +1908 1 24 3.3 3.0 3.0 1 +1908 1 25 -1.8 -2.1 -2.1 1 +1908 1 26 -0.3 -0.6 -0.6 1 +1908 1 27 -1.1 -1.4 -1.4 1 +1908 1 28 0.1 -0.2 -0.2 1 +1908 1 29 -3.2 -3.5 -3.5 1 +1908 1 30 -7.8 -8.1 -8.1 1 +1908 1 31 -0.2 -0.5 -0.5 1 +1908 2 1 -4.4 -4.7 -4.7 1 +1908 2 2 -3.5 -3.8 -3.8 1 +1908 2 3 -3.8 -4.1 -4.1 1 +1908 2 4 -2.5 -2.8 -2.8 1 +1908 2 5 -2.3 -2.6 -2.6 1 +1908 2 6 0.8 0.5 0.5 1 +1908 2 7 -2.8 -3.1 -3.1 1 +1908 2 8 -0.2 -0.5 -0.5 1 +1908 2 9 -6.1 -6.4 -6.4 1 +1908 2 10 -8.8 -9.1 -9.1 1 +1908 2 11 2.9 2.7 2.7 1 +1908 2 12 2.2 2.0 2.0 1 +1908 2 13 0.4 0.2 0.2 1 +1908 2 14 -0.1 -0.3 -0.3 1 +1908 2 15 1.7 1.5 1.5 1 +1908 2 16 1.2 1.0 1.0 1 +1908 2 17 -0.7 -0.9 -0.9 1 +1908 2 18 -0.2 -0.4 -0.4 1 +1908 2 19 -0.7 -0.9 -0.9 1 +1908 2 20 -5.1 -5.3 -5.3 1 +1908 2 21 -7.0 -7.3 -7.3 1 +1908 2 22 -0.2 -0.5 -0.5 1 +1908 2 23 0.7 0.4 0.4 1 +1908 2 24 1.1 0.8 0.8 1 +1908 2 25 -0.8 -1.1 -1.1 1 +1908 2 26 -1.6 -1.9 -1.9 1 +1908 2 27 0.1 -0.2 -0.2 1 +1908 2 28 1.3 1.0 1.0 1 +1908 2 29 0.8 0.5 0.5 1 +1908 3 1 -0.1 -0.4 -0.4 1 +1908 3 2 0.1 -0.2 -0.2 1 +1908 3 3 -1.3 -1.6 -1.6 1 +1908 3 4 -2.5 -2.8 -2.8 1 +1908 3 5 -2.0 -2.3 -2.3 1 +1908 3 6 0.1 -0.2 -0.2 1 +1908 3 7 0.6 0.3 0.3 1 +1908 3 8 1.1 0.8 0.8 1 +1908 3 9 0.0 -0.3 -0.3 1 +1908 3 10 -1.8 -2.1 -2.1 1 +1908 3 11 -6.1 -6.4 -6.4 1 +1908 3 12 -8.2 -8.5 -8.5 1 +1908 3 13 -8.7 -9.0 -9.0 1 +1908 3 14 -9.4 -9.7 -9.7 1 +1908 3 15 -7.7 -8.0 -8.0 1 +1908 3 16 -4.7 -5.0 -5.0 1 +1908 3 17 -4.0 -4.3 -4.3 1 +1908 3 18 -2.0 -2.3 -2.3 1 +1908 3 19 -1.7 -2.0 -2.0 1 +1908 3 20 -1.4 -1.7 -1.7 1 +1908 3 21 0.0 -0.3 -0.3 1 +1908 3 22 0.3 0.0 0.0 1 +1908 3 23 -0.7 -1.0 -1.0 1 +1908 3 24 -2.3 -2.6 -2.6 1 +1908 3 25 -1.6 -1.9 -1.9 1 +1908 3 26 -3.3 -3.6 -3.6 1 +1908 3 27 -2.0 -2.3 -2.3 1 +1908 3 28 2.6 2.3 2.3 1 +1908 3 29 4.2 3.9 3.9 1 +1908 3 30 3.5 3.2 3.2 1 +1908 3 31 2.1 1.8 1.8 1 +1908 4 1 2.1 1.9 1.9 1 +1908 4 2 1.3 1.1 1.1 1 +1908 4 3 2.7 2.5 2.5 1 +1908 4 4 2.3 2.1 2.1 1 +1908 4 5 1.1 0.9 0.9 1 +1908 4 6 3.0 2.8 2.8 1 +1908 4 7 1.2 1.0 1.0 1 +1908 4 8 1.8 1.6 1.6 1 +1908 4 9 4.0 3.8 3.8 1 +1908 4 10 3.1 2.9 2.9 1 +1908 4 11 1.9 1.7 1.7 1 +1908 4 12 2.2 2.0 2.0 1 +1908 4 13 3.2 3.0 3.0 1 +1908 4 14 4.4 4.2 4.2 1 +1908 4 15 5.4 5.2 5.2 1 +1908 4 16 5.5 5.3 5.3 1 +1908 4 17 5.9 5.7 5.7 1 +1908 4 18 1.1 0.9 0.9 1 +1908 4 19 -1.2 -1.4 -1.4 1 +1908 4 20 -1.3 -1.5 -1.5 1 +1908 4 21 0.9 0.7 0.7 1 +1908 4 22 -0.5 -0.8 -0.8 1 +1908 4 23 1.8 1.5 1.5 1 +1908 4 24 4.5 4.2 4.2 1 +1908 4 25 4.6 4.3 4.3 1 +1908 4 26 3.8 3.5 3.5 1 +1908 4 27 6.4 6.1 6.1 1 +1908 4 28 5.1 4.8 4.8 1 +1908 4 29 3.5 3.2 3.2 1 +1908 4 30 2.9 2.6 2.6 1 +1908 5 1 4.6 4.3 4.3 1 +1908 5 2 2.5 2.1 2.1 1 +1908 5 3 1.4 1.0 1.0 1 +1908 5 4 2.3 1.9 1.9 1 +1908 5 5 3.0 2.6 2.6 1 +1908 5 6 4.2 3.8 3.8 1 +1908 5 7 5.2 4.8 4.8 1 +1908 5 8 5.6 5.2 5.2 1 +1908 5 9 6.0 5.6 5.6 1 +1908 5 10 5.7 5.3 5.3 1 +1908 5 11 7.2 6.8 6.8 1 +1908 5 12 5.2 4.7 4.7 1 +1908 5 13 4.9 4.4 4.4 1 +1908 5 14 2.0 1.5 1.5 1 +1908 5 15 6.9 6.4 6.4 1 +1908 5 16 9.2 8.7 8.7 1 +1908 5 17 8.3 7.8 7.8 1 +1908 5 18 9.8 9.3 9.3 1 +1908 5 19 11.0 10.5 10.5 1 +1908 5 20 10.8 10.3 10.3 1 +1908 5 21 10.1 9.6 9.6 1 +1908 5 22 9.9 9.4 9.4 1 +1908 5 23 11.5 11.0 11.0 1 +1908 5 24 10.6 10.1 10.1 1 +1908 5 25 10.0 9.6 9.6 1 +1908 5 26 8.9 8.5 8.5 1 +1908 5 27 10.2 9.8 9.8 1 +1908 5 28 14.4 14.0 14.0 1 +1908 5 29 18.8 18.4 18.4 1 +1908 5 30 16.8 16.4 16.4 1 +1908 5 31 18.3 17.9 17.9 1 +1908 6 1 16.4 16.0 16.0 1 +1908 6 2 13.3 12.9 12.9 1 +1908 6 3 15.9 15.5 15.5 1 +1908 6 4 20.3 19.9 19.9 1 +1908 6 5 5.7 5.3 5.3 1 +1908 6 6 8.1 7.7 7.7 1 +1908 6 7 9.7 9.3 9.3 1 +1908 6 8 9.2 8.8 8.8 1 +1908 6 9 10.3 9.9 9.9 1 +1908 6 10 12.1 11.7 11.7 1 +1908 6 11 15.3 14.9 14.9 1 +1908 6 12 15.4 15.0 15.0 1 +1908 6 13 13.0 12.6 12.6 1 +1908 6 14 11.9 11.5 11.5 1 +1908 6 15 13.3 12.9 12.9 1 +1908 6 16 13.2 12.8 12.8 1 +1908 6 17 18.5 18.1 18.1 1 +1908 6 18 19.7 19.3 19.3 1 +1908 6 19 17.7 17.3 17.3 1 +1908 6 20 12.2 11.8 11.8 1 +1908 6 21 12.7 12.3 12.3 1 +1908 6 22 14.5 14.1 14.1 1 +1908 6 23 15.2 14.8 14.8 1 +1908 6 24 15.8 15.4 15.4 1 +1908 6 25 17.9 17.5 17.5 1 +1908 6 26 14.0 13.6 13.6 1 +1908 6 27 13.5 13.1 13.1 1 +1908 6 28 16.0 15.6 15.6 1 +1908 6 29 11.7 11.3 11.3 1 +1908 6 30 12.6 12.2 12.2 1 +1908 7 1 14.6 14.2 14.2 1 +1908 7 2 16.5 16.1 16.1 1 +1908 7 3 11.9 11.5 11.5 1 +1908 7 4 7.0 6.6 6.6 1 +1908 7 5 9.1 8.7 8.7 1 +1908 7 6 12.5 12.1 12.1 1 +1908 7 7 10.7 10.3 10.3 1 +1908 7 8 11.0 10.6 10.6 1 +1908 7 9 12.9 12.5 12.5 1 +1908 7 10 16.6 16.2 16.2 1 +1908 7 11 15.3 14.9 14.9 1 +1908 7 12 15.8 15.4 15.4 1 +1908 7 13 16.5 16.1 16.1 1 +1908 7 14 14.8 14.4 14.4 1 +1908 7 15 16.6 16.2 16.2 1 +1908 7 16 16.5 16.2 16.2 1 +1908 7 17 16.9 16.6 16.6 1 +1908 7 18 18.9 18.6 18.6 1 +1908 7 19 21.7 21.4 21.4 1 +1908 7 20 20.0 19.7 19.7 1 +1908 7 21 15.7 15.4 15.4 1 +1908 7 22 15.9 15.6 15.6 1 +1908 7 23 16.8 16.5 16.5 1 +1908 7 24 17.6 17.3 17.3 1 +1908 7 25 18.2 17.9 17.9 1 +1908 7 26 19.5 19.2 19.2 1 +1908 7 27 19.4 19.1 19.1 1 +1908 7 28 20.7 20.5 20.5 1 +1908 7 29 22.2 22.0 22.0 1 +1908 7 30 21.1 20.9 20.9 1 +1908 7 31 16.7 16.5 16.5 1 +1908 8 1 14.3 14.1 14.1 1 +1908 8 2 15.8 15.6 15.6 1 +1908 8 3 16.3 16.1 16.1 1 +1908 8 4 16.6 16.4 16.4 1 +1908 8 5 18.3 18.1 18.1 1 +1908 8 6 18.9 18.7 18.7 1 +1908 8 7 20.2 20.0 20.0 1 +1908 8 8 17.0 16.8 16.8 1 +1908 8 9 18.4 18.2 18.2 1 +1908 8 10 17.5 17.4 17.4 1 +1908 8 11 19.3 19.2 19.2 1 +1908 8 12 17.2 17.1 17.1 1 +1908 8 13 12.3 12.2 12.2 1 +1908 8 14 13.6 13.5 13.5 1 +1908 8 15 14.2 14.1 14.1 1 +1908 8 16 13.4 13.3 13.3 1 +1908 8 17 17.0 16.9 16.9 1 +1908 8 18 16.4 16.3 16.3 1 +1908 8 19 14.0 13.9 13.9 1 +1908 8 20 13.1 13.0 13.0 1 +1908 8 21 14.7 14.6 14.6 1 +1908 8 22 15.0 14.9 14.9 1 +1908 8 23 16.0 16.0 16.0 1 +1908 8 24 14.8 14.8 14.8 1 +1908 8 25 14.0 14.0 14.0 1 +1908 8 26 15.4 15.4 15.4 1 +1908 8 27 15.0 15.0 15.0 1 +1908 8 28 15.0 15.0 15.0 1 +1908 8 29 13.1 13.1 13.1 1 +1908 8 30 13.5 13.5 13.5 1 +1908 8 31 12.6 12.6 12.6 1 +1908 9 1 12.1 12.1 12.1 1 +1908 9 2 12.5 12.5 12.5 1 +1908 9 3 12.2 12.2 12.2 1 +1908 9 4 11.2 11.2 11.2 1 +1908 9 5 9.8 9.9 9.9 1 +1908 9 6 10.5 10.6 10.6 1 +1908 9 7 10.6 10.7 10.7 1 +1908 9 8 10.9 11.0 11.0 1 +1908 9 9 14.3 14.4 14.4 1 +1908 9 10 12.4 12.5 12.5 1 +1908 9 11 11.4 11.5 11.5 1 +1908 9 12 10.9 11.0 11.0 1 +1908 9 13 10.4 10.5 10.5 1 +1908 9 14 9.3 9.4 9.4 1 +1908 9 15 9.0 9.1 9.1 1 +1908 9 16 10.2 10.3 10.3 1 +1908 9 17 8.4 8.5 8.5 1 +1908 9 18 10.6 10.7 10.7 1 +1908 9 19 11.9 12.0 12.0 1 +1908 9 20 11.3 11.4 11.4 1 +1908 9 21 9.9 10.0 10.0 1 +1908 9 22 9.9 10.0 10.0 1 +1908 9 23 9.3 9.4 9.4 1 +1908 9 24 10.7 10.8 10.8 1 +1908 9 25 8.2 8.3 8.3 1 +1908 9 26 9.8 9.9 9.9 1 +1908 9 27 11.8 11.9 11.9 1 +1908 9 28 8.8 8.9 8.9 1 +1908 9 29 10.0 10.1 10.1 1 +1908 9 30 14.0 14.1 14.1 1 +1908 10 1 16.1 16.2 16.2 1 +1908 10 2 10.5 10.6 10.6 1 +1908 10 3 12.2 12.3 12.3 1 +1908 10 4 11.9 12.0 12.0 1 +1908 10 5 7.4 7.5 7.5 1 +1908 10 6 7.4 7.5 7.5 1 +1908 10 7 9.9 10.0 10.0 1 +1908 10 8 11.7 11.8 11.8 1 +1908 10 9 11.6 11.7 11.7 1 +1908 10 10 9.3 9.4 9.4 1 +1908 10 11 12.1 12.2 12.2 1 +1908 10 12 13.0 13.1 13.1 1 +1908 10 13 11.4 11.5 11.5 1 +1908 10 14 9.1 9.2 9.2 1 +1908 10 15 7.5 7.6 7.6 1 +1908 10 16 7.9 8.0 8.0 1 +1908 10 17 6.5 6.6 6.6 1 +1908 10 18 4.3 4.4 4.4 1 +1908 10 19 4.4 4.5 4.5 1 +1908 10 20 1.9 2.0 2.0 1 +1908 10 21 3.9 4.0 4.0 1 +1908 10 22 4.8 4.9 4.9 1 +1908 10 23 5.4 5.5 5.5 1 +1908 10 24 7.2 7.3 7.3 1 +1908 10 25 7.2 7.3 7.3 1 +1908 10 26 6.9 6.9 6.9 1 +1908 10 27 4.7 4.7 4.7 1 +1908 10 28 6.1 6.1 6.1 1 +1908 10 29 7.9 7.9 7.9 1 +1908 10 30 4.4 4.4 4.4 1 +1908 10 31 3.3 3.3 3.3 1 +1908 11 1 4.2 4.2 4.2 1 +1908 11 2 6.5 6.5 6.5 1 +1908 11 3 6.1 6.1 6.1 1 +1908 11 4 -2.1 -2.1 -2.1 1 +1908 11 5 -3.6 -3.6 -3.6 1 +1908 11 6 -3.4 -3.4 -3.4 1 +1908 11 7 -4.6 -4.6 -4.6 1 +1908 11 8 -5.6 -5.6 -5.6 1 +1908 11 9 -3.6 -3.6 -3.6 1 +1908 11 10 -2.8 -2.8 -2.8 1 +1908 11 11 2.0 2.0 2.0 1 +1908 11 12 -4.1 -4.2 -4.2 1 +1908 11 13 -5.4 -5.5 -5.5 1 +1908 11 14 -1.3 -1.4 -1.4 1 +1908 11 15 -2.4 -2.5 -2.5 1 +1908 11 16 0.6 0.5 0.5 1 +1908 11 17 2.3 2.2 2.2 1 +1908 11 18 3.1 3.0 3.0 1 +1908 11 19 0.5 0.4 0.4 1 +1908 11 20 -3.9 -4.0 -4.0 1 +1908 11 21 -6.4 -6.5 -6.5 1 +1908 11 22 -1.2 -1.3 -1.3 1 +1908 11 23 2.1 2.0 2.0 1 +1908 11 24 -1.5 -1.6 -1.6 1 +1908 11 25 2.4 2.3 2.3 1 +1908 11 26 3.0 2.9 2.9 1 +1908 11 27 -0.1 -0.2 -0.2 1 +1908 11 28 -0.7 -0.8 -0.8 1 +1908 11 29 3.4 3.3 3.3 1 +1908 11 30 2.7 2.6 2.6 1 +1908 12 1 -0.6 -0.7 -0.7 1 +1908 12 2 0.7 0.6 0.6 1 +1908 12 3 -2.6 -2.7 -2.7 1 +1908 12 4 -4.6 -4.7 -4.7 1 +1908 12 5 -5.1 -5.2 -5.2 1 +1908 12 6 -2.1 -2.2 -2.2 1 +1908 12 7 2.3 2.2 2.2 1 +1908 12 8 4.5 4.4 4.4 1 +1908 12 9 4.9 4.8 4.8 1 +1908 12 10 3.9 3.8 3.8 1 +1908 12 11 1.8 1.7 1.7 1 +1908 12 12 0.7 0.6 0.6 1 +1908 12 13 0.5 0.4 0.4 1 +1908 12 14 1.9 1.8 1.8 1 +1908 12 15 4.2 4.1 4.1 1 +1908 12 16 3.6 3.5 3.5 1 +1908 12 17 3.7 3.6 3.6 1 +1908 12 18 2.7 2.6 2.6 1 +1908 12 19 2.4 2.3 2.3 1 +1908 12 20 2.0 1.9 1.9 1 +1908 12 21 2.9 2.8 2.8 1 +1908 12 22 5.4 5.3 5.3 1 +1908 12 23 3.1 3.0 3.0 1 +1908 12 24 1.1 0.9 0.9 1 +1908 12 25 -3.8 -4.0 -4.0 1 +1908 12 26 -10.9 -11.1 -11.1 1 +1908 12 27 -13.3 -13.5 -13.5 1 +1908 12 28 -11.2 -11.4 -11.4 1 +1908 12 29 -9.5 -9.7 -9.7 1 +1908 12 30 -4.2 -4.4 -4.4 1 +1908 12 31 -4.9 -5.1 -5.1 1 +1909 1 1 -3.8 -4.0 -4.0 1 +1909 1 2 0.7 0.5 0.5 1 +1909 1 3 1.0 0.7 0.7 1 +1909 1 4 3.1 2.8 2.8 1 +1909 1 5 2.8 2.5 2.5 1 +1909 1 6 -0.4 -0.7 -0.7 1 +1909 1 7 -0.7 -1.0 -1.0 1 +1909 1 8 -0.1 -0.4 -0.4 1 +1909 1 9 -2.4 -2.7 -2.7 1 +1909 1 10 -1.4 -1.7 -1.7 1 +1909 1 11 1.7 1.4 1.4 1 +1909 1 12 1.0 0.7 0.7 1 +1909 1 13 -5.8 -6.2 -6.2 1 +1909 1 14 -6.4 -6.8 -6.8 1 +1909 1 15 -1.4 -1.8 -1.8 1 +1909 1 16 1.4 1.0 1.0 1 +1909 1 17 -0.1 -0.5 -0.5 1 +1909 1 18 2.6 2.2 2.2 1 +1909 1 19 2.3 1.9 1.9 1 +1909 1 20 -1.1 -1.4 -1.4 1 +1909 1 21 -3.0 -3.3 -3.3 1 +1909 1 22 -0.7 -1.0 -1.0 1 +1909 1 23 0.8 0.5 0.5 1 +1909 1 24 -2.6 -2.9 -2.9 1 +1909 1 25 -4.8 -5.1 -5.1 1 +1909 1 26 -5.9 -6.2 -6.2 1 +1909 1 27 -4.4 -4.7 -4.7 1 +1909 1 28 -1.7 -2.0 -2.0 1 +1909 1 29 -2.2 -2.5 -2.5 1 +1909 1 30 -0.6 -0.9 -0.9 1 +1909 1 31 -3.6 -3.9 -3.9 1 +1909 2 1 -7.1 -7.4 -7.4 1 +1909 2 2 -12.3 -12.6 -12.6 1 +1909 2 3 -2.6 -2.9 -2.9 1 +1909 2 4 -4.2 -4.5 -4.5 1 +1909 2 5 -8.1 -8.4 -8.4 1 +1909 2 6 -9.5 -9.8 -9.8 1 +1909 2 7 -9.5 -9.8 -9.8 1 +1909 2 8 -4.8 -5.1 -5.1 1 +1909 2 9 -5.2 -5.5 -5.5 1 +1909 2 10 -5.2 -5.5 -5.5 1 +1909 2 11 -7.7 -7.9 -7.9 1 +1909 2 12 -6.4 -6.6 -6.6 1 +1909 2 13 -4.0 -4.2 -4.2 1 +1909 2 14 0.5 0.3 0.3 1 +1909 2 15 -0.4 -0.6 -0.6 1 +1909 2 16 -7.3 -7.5 -7.5 1 +1909 2 17 -8.5 -8.7 -8.7 1 +1909 2 18 -7.6 -7.8 -7.8 1 +1909 2 19 -2.5 -2.7 -2.7 1 +1909 2 20 -2.1 -2.3 -2.3 1 +1909 2 21 -1.3 -1.6 -1.6 1 +1909 2 22 -1.3 -1.6 -1.6 1 +1909 2 23 -1.5 -1.8 -1.8 1 +1909 2 24 -4.8 -5.1 -5.1 1 +1909 2 25 -4.3 -4.6 -4.6 1 +1909 2 26 -2.6 -2.9 -2.9 1 +1909 2 27 -2.4 -2.7 -2.7 1 +1909 2 28 -5.5 -5.8 -5.8 1 +1909 3 1 -8.1 -8.4 -8.4 1 +1909 3 2 -10.4 -10.7 -10.7 1 +1909 3 3 -7.0 -7.3 -7.3 1 +1909 3 4 -2.2 -2.5 -2.5 1 +1909 3 5 -0.6 -0.9 -0.9 1 +1909 3 6 -0.7 -1.0 -1.0 1 +1909 3 7 -2.1 -2.4 -2.4 1 +1909 3 8 -2.2 -2.5 -2.5 1 +1909 3 9 -1.6 -1.9 -1.9 1 +1909 3 10 -3.9 -4.2 -4.2 1 +1909 3 11 -3.8 -4.1 -4.1 1 +1909 3 12 -2.7 -3.0 -3.0 1 +1909 3 13 -2.0 -2.3 -2.3 1 +1909 3 14 -2.3 -2.6 -2.6 1 +1909 3 15 -1.4 -1.7 -1.7 1 +1909 3 16 -1.4 -1.7 -1.7 1 +1909 3 17 -0.9 -1.2 -1.2 1 +1909 3 18 -1.9 -2.2 -2.2 1 +1909 3 19 -3.4 -3.7 -3.7 1 +1909 3 20 -3.3 -3.6 -3.6 1 +1909 3 21 -2.0 -2.3 -2.3 1 +1909 3 22 -2.1 -2.4 -2.4 1 +1909 3 23 -1.4 -1.7 -1.7 1 +1909 3 24 -1.2 -1.5 -1.5 1 +1909 3 25 -1.4 -1.7 -1.7 1 +1909 3 26 -0.4 -0.7 -0.7 1 +1909 3 27 1.1 0.8 0.8 1 +1909 3 28 1.4 1.1 1.1 1 +1909 3 29 1.4 1.1 1.1 1 +1909 3 30 1.5 1.2 1.2 1 +1909 3 31 2.0 1.7 1.7 1 +1909 4 1 -1.9 -2.1 -2.1 1 +1909 4 2 -4.4 -4.6 -4.6 1 +1909 4 3 -2.4 -2.6 -2.6 1 +1909 4 4 0.5 0.3 0.3 1 +1909 4 5 1.6 1.4 1.4 1 +1909 4 6 5.5 5.3 5.3 1 +1909 4 7 6.0 5.8 5.8 1 +1909 4 8 5.5 5.3 5.3 1 +1909 4 9 3.5 3.3 3.3 1 +1909 4 10 0.1 -0.1 -0.1 1 +1909 4 11 -2.8 -3.0 -3.0 1 +1909 4 12 -3.4 -3.6 -3.6 1 +1909 4 13 -2.0 -2.2 -2.2 1 +1909 4 14 -0.9 -1.1 -1.1 1 +1909 4 15 0.1 -0.1 -0.1 1 +1909 4 16 0.9 0.7 0.7 1 +1909 4 17 2.4 2.2 2.2 1 +1909 4 18 0.8 0.6 0.6 1 +1909 4 19 0.8 0.6 0.6 1 +1909 4 20 -0.9 -1.1 -1.1 1 +1909 4 21 -2.3 -2.5 -2.5 1 +1909 4 22 -0.2 -0.5 -0.5 1 +1909 4 23 0.4 0.1 0.1 1 +1909 4 24 0.8 0.5 0.5 1 +1909 4 25 2.5 2.2 2.2 1 +1909 4 26 8.3 8.0 8.0 1 +1909 4 27 8.3 8.0 8.0 1 +1909 4 28 6.9 6.6 6.6 1 +1909 4 29 6.2 5.9 5.9 1 +1909 4 30 4.8 4.5 4.5 1 +1909 5 1 1.9 1.6 1.6 1 +1909 5 2 2.8 2.4 2.4 1 +1909 5 3 6.8 6.4 6.4 1 +1909 5 4 6.6 6.2 6.2 1 +1909 5 5 4.6 4.2 4.2 1 +1909 5 6 5.3 4.9 4.9 1 +1909 5 7 3.7 3.3 3.3 1 +1909 5 8 1.3 0.9 0.9 1 +1909 5 9 3.6 3.2 3.2 1 +1909 5 10 4.0 3.6 3.6 1 +1909 5 11 4.5 4.1 4.1 1 +1909 5 12 4.7 4.2 4.2 1 +1909 5 13 3.0 2.5 2.5 1 +1909 5 14 2.6 2.1 2.1 1 +1909 5 15 4.7 4.2 4.2 1 +1909 5 16 4.9 4.4 4.4 1 +1909 5 17 5.6 5.1 5.1 1 +1909 5 18 5.0 4.5 4.5 1 +1909 5 19 4.1 3.6 3.6 1 +1909 5 20 4.5 4.0 4.0 1 +1909 5 21 5.8 5.3 5.3 1 +1909 5 22 5.0 4.5 4.5 1 +1909 5 23 4.2 3.7 3.7 1 +1909 5 24 5.1 4.6 4.6 1 +1909 5 25 7.6 7.2 7.2 1 +1909 5 26 6.5 6.1 6.1 1 +1909 5 27 8.6 8.2 8.2 1 +1909 5 28 9.8 9.4 9.4 1 +1909 5 29 11.3 10.9 10.9 1 +1909 5 30 13.2 12.8 12.8 1 +1909 5 31 14.0 13.6 13.6 1 +1909 6 1 12.1 11.7 11.7 1 +1909 6 2 11.0 10.6 10.6 1 +1909 6 3 11.7 11.3 11.3 1 +1909 6 4 10.1 9.7 9.7 1 +1909 6 5 9.6 9.2 9.2 1 +1909 6 6 5.2 4.8 4.8 1 +1909 6 7 9.2 8.8 8.8 1 +1909 6 8 9.7 9.3 9.3 1 +1909 6 9 7.4 7.0 7.0 1 +1909 6 10 10.4 10.0 10.0 1 +1909 6 11 9.2 8.8 8.8 1 +1909 6 12 9.2 8.8 8.8 1 +1909 6 13 10.2 9.8 9.8 1 +1909 6 14 10.6 10.2 10.2 1 +1909 6 15 13.3 12.9 12.9 1 +1909 6 16 18.4 18.0 18.0 1 +1909 6 17 18.0 17.6 17.6 1 +1909 6 18 19.1 18.7 18.7 1 +1909 6 19 13.2 12.8 12.8 1 +1909 6 20 12.4 12.0 12.0 1 +1909 6 21 16.2 15.8 15.8 1 +1909 6 22 17.2 16.8 16.8 1 +1909 6 23 19.0 18.6 18.6 1 +1909 6 24 15.1 14.7 14.7 1 +1909 6 25 16.7 16.3 16.3 1 +1909 6 26 18.4 18.0 18.0 1 +1909 6 27 20.1 19.7 19.7 1 +1909 6 28 20.9 20.5 20.5 1 +1909 6 29 19.0 18.6 18.6 1 +1909 6 30 11.3 10.9 10.9 1 +1909 7 1 12.2 11.8 11.8 1 +1909 7 2 13.4 13.0 13.0 1 +1909 7 3 15.6 15.2 15.2 1 +1909 7 4 16.4 16.0 16.0 1 +1909 7 5 16.0 15.6 15.6 1 +1909 7 6 16.2 15.8 15.8 1 +1909 7 7 16.7 16.3 16.3 1 +1909 7 8 17.7 17.3 17.3 1 +1909 7 9 18.4 18.0 18.0 1 +1909 7 10 17.3 16.9 16.9 1 +1909 7 11 18.7 18.3 18.3 1 +1909 7 12 17.3 16.9 16.9 1 +1909 7 13 18.8 18.4 18.4 1 +1909 7 14 19.6 19.2 19.2 1 +1909 7 15 17.9 17.5 17.5 1 +1909 7 16 16.3 16.0 16.0 1 +1909 7 17 16.0 15.7 15.7 1 +1909 7 18 15.7 15.4 15.4 1 +1909 7 19 13.9 13.6 13.6 1 +1909 7 20 12.5 12.2 12.2 1 +1909 7 21 14.1 13.8 13.8 1 +1909 7 22 13.2 12.9 12.9 1 +1909 7 23 14.2 13.9 13.9 1 +1909 7 24 13.2 12.9 12.9 1 +1909 7 25 12.7 12.4 12.4 1 +1909 7 26 14.3 14.0 14.0 1 +1909 7 27 13.8 13.5 13.5 1 +1909 7 28 15.0 14.8 14.8 1 +1909 7 29 13.8 13.6 13.6 1 +1909 7 30 13.0 12.8 12.8 1 +1909 7 31 12.9 12.7 12.7 1 +1909 8 1 13.2 13.0 13.0 1 +1909 8 2 15.2 15.0 15.0 1 +1909 8 3 16.2 16.0 16.0 1 +1909 8 4 16.7 16.5 16.5 1 +1909 8 5 16.4 16.2 16.2 1 +1909 8 6 14.6 14.4 14.4 1 +1909 8 7 17.9 17.7 17.7 1 +1909 8 8 16.6 16.4 16.4 1 +1909 8 9 16.1 15.9 15.9 1 +1909 8 10 16.5 16.4 16.4 1 +1909 8 11 13.0 12.9 12.9 1 +1909 8 12 15.2 15.1 15.1 1 +1909 8 13 14.9 14.8 14.8 1 +1909 8 14 11.6 11.5 11.5 1 +1909 8 15 11.9 11.8 11.8 1 +1909 8 16 13.8 13.7 13.7 1 +1909 8 17 16.6 16.5 16.5 1 +1909 8 18 16.6 16.5 16.5 1 +1909 8 19 16.2 16.1 16.1 1 +1909 8 20 15.0 14.9 14.9 1 +1909 8 21 16.4 16.3 16.3 1 +1909 8 22 17.7 17.6 17.6 1 +1909 8 23 14.3 14.3 14.3 1 +1909 8 24 14.4 14.4 14.4 1 +1909 8 25 16.0 16.0 16.0 1 +1909 8 26 16.2 16.2 16.2 1 +1909 8 27 15.3 15.3 15.3 1 +1909 8 28 14.6 14.6 14.6 1 +1909 8 29 14.9 14.9 14.9 1 +1909 8 30 15.0 15.0 15.0 1 +1909 8 31 12.4 12.4 12.4 1 +1909 9 1 10.8 10.8 10.8 1 +1909 9 2 11.1 11.1 11.1 1 +1909 9 3 12.3 12.3 12.3 1 +1909 9 4 13.2 13.2 13.2 1 +1909 9 5 13.3 13.4 13.4 1 +1909 9 6 10.9 11.0 11.0 1 +1909 9 7 12.3 12.4 12.4 1 +1909 9 8 13.4 13.5 13.5 1 +1909 9 9 11.2 11.3 11.3 1 +1909 9 10 11.5 11.6 11.6 1 +1909 9 11 10.2 10.3 10.3 1 +1909 9 12 9.8 9.9 9.9 1 +1909 9 13 10.0 10.1 10.1 1 +1909 9 14 8.5 8.6 8.6 1 +1909 9 15 9.2 9.3 9.3 1 +1909 9 16 10.6 10.7 10.7 1 +1909 9 17 13.2 13.3 13.3 1 +1909 9 18 13.9 14.0 14.0 1 +1909 9 19 12.6 12.7 12.7 1 +1909 9 20 13.3 13.4 13.4 1 +1909 9 21 13.0 13.1 13.1 1 +1909 9 22 10.6 10.7 10.7 1 +1909 9 23 11.1 11.2 11.2 1 +1909 9 24 10.8 10.9 10.9 1 +1909 9 25 12.5 12.6 12.6 1 +1909 9 26 7.8 7.9 7.9 1 +1909 9 27 6.3 6.4 6.4 1 +1909 9 28 7.2 7.3 7.3 1 +1909 9 29 8.3 8.4 8.4 1 +1909 9 30 7.6 7.7 7.7 1 +1909 10 1 5.2 5.3 5.3 1 +1909 10 2 6.1 6.2 6.2 1 +1909 10 3 11.6 11.7 11.7 1 +1909 10 4 12.7 12.8 12.8 1 +1909 10 5 13.6 13.7 13.7 1 +1909 10 6 10.3 10.4 10.4 1 +1909 10 7 9.9 10.0 10.0 1 +1909 10 8 10.3 10.4 10.4 1 +1909 10 9 11.7 11.8 11.8 1 +1909 10 10 10.2 10.3 10.3 1 +1909 10 11 10.1 10.2 10.2 1 +1909 10 12 10.3 10.4 10.4 1 +1909 10 13 9.8 9.9 9.9 1 +1909 10 14 11.4 11.5 11.5 1 +1909 10 15 11.5 11.6 11.6 1 +1909 10 16 10.3 10.4 10.4 1 +1909 10 17 11.2 11.3 11.3 1 +1909 10 18 12.1 12.2 12.2 1 +1909 10 19 11.2 11.3 11.3 1 +1909 10 20 11.4 11.5 11.5 1 +1909 10 21 12.3 12.4 12.4 1 +1909 10 22 9.4 9.5 9.5 1 +1909 10 23 9.6 9.7 9.7 1 +1909 10 24 10.3 10.4 10.4 1 +1909 10 25 8.4 8.5 8.5 1 +1909 10 26 6.1 6.1 6.1 1 +1909 10 27 6.0 6.0 6.0 1 +1909 10 28 7.8 7.8 7.8 1 +1909 10 29 8.0 8.0 8.0 1 +1909 10 30 9.0 9.0 9.0 1 +1909 10 31 6.1 6.1 6.1 1 +1909 11 1 4.0 4.0 4.0 1 +1909 11 2 3.7 3.7 3.7 1 +1909 11 3 3.7 3.7 3.7 1 +1909 11 4 3.0 3.0 3.0 1 +1909 11 5 2.1 2.1 2.1 1 +1909 11 6 4.3 4.3 4.3 1 +1909 11 7 5.3 5.3 5.3 1 +1909 11 8 0.5 0.5 0.5 1 +1909 11 9 5.8 5.8 5.8 1 +1909 11 10 6.6 6.6 6.6 1 +1909 11 11 0.9 0.9 0.9 1 +1909 11 12 -1.2 -1.3 -1.3 1 +1909 11 13 -3.6 -3.7 -3.7 1 +1909 11 14 -5.3 -5.4 -5.4 1 +1909 11 15 -4.5 -4.6 -4.6 1 +1909 11 16 -4.2 -4.3 -4.3 1 +1909 11 17 -3.5 -3.6 -3.6 1 +1909 11 18 -6.2 -6.3 -6.3 1 +1909 11 19 -2.5 -2.6 -2.6 1 +1909 11 20 -3.6 -3.7 -3.7 1 +1909 11 21 -5.1 -5.2 -5.2 1 +1909 11 22 -4.9 -5.0 -5.0 1 +1909 11 23 -6.0 -6.1 -6.1 1 +1909 11 24 -3.2 -3.3 -3.3 1 +1909 11 25 -6.4 -6.5 -6.5 1 +1909 11 26 -3.1 -3.2 -3.2 1 +1909 11 27 -8.0 -8.1 -8.1 1 +1909 11 28 -9.3 -9.4 -9.4 1 +1909 11 29 -9.0 -9.1 -9.1 1 +1909 11 30 1.0 0.9 0.9 1 +1909 12 1 1.1 1.0 1.0 1 +1909 12 2 0.7 0.6 0.6 1 +1909 12 3 -1.7 -1.8 -1.8 1 +1909 12 4 3.5 3.4 3.4 1 +1909 12 5 3.9 3.8 3.8 1 +1909 12 6 1.7 1.6 1.6 1 +1909 12 7 2.5 2.4 2.4 1 +1909 12 8 0.6 0.5 0.5 1 +1909 12 9 -0.6 -0.7 -0.7 1 +1909 12 10 1.2 1.1 1.1 1 +1909 12 11 1.7 1.6 1.6 1 +1909 12 12 1.8 1.7 1.7 1 +1909 12 13 -0.7 -0.8 -0.8 1 +1909 12 14 -1.8 -1.9 -1.9 1 +1909 12 15 -1.5 -1.6 -1.6 1 +1909 12 16 -0.7 -0.8 -0.8 1 +1909 12 17 -1.1 -1.2 -1.2 1 +1909 12 18 -0.6 -0.7 -0.7 1 +1909 12 19 -0.2 -0.3 -0.3 1 +1909 12 20 -5.1 -5.2 -5.2 1 +1909 12 21 -9.2 -9.3 -9.3 1 +1909 12 22 -8.1 -8.2 -8.2 1 +1909 12 23 -0.2 -0.3 -0.3 1 +1909 12 24 -0.7 -0.9 -0.9 1 +1909 12 25 -2.6 -2.8 -2.8 1 +1909 12 26 0.7 0.5 0.5 1 +1909 12 27 2.0 1.8 1.8 1 +1909 12 28 -2.4 -2.6 -2.6 1 +1909 12 29 0.2 0.0 0.0 1 +1909 12 30 -6.0 -6.2 -6.2 1 +1909 12 31 -4.3 -4.5 -4.5 1 +1910 1 1 -0.3 -0.5 -0.5 1 +1910 1 2 3.3 3.1 3.1 1 +1910 1 3 3.2 2.9 2.9 1 +1910 1 4 2.2 1.9 1.9 1 +1910 1 5 -0.4 -0.7 -0.7 1 +1910 1 6 -1.1 -1.4 -1.4 1 +1910 1 7 -0.5 -0.8 -0.8 1 +1910 1 8 2.0 1.7 1.7 1 +1910 1 9 1.6 1.3 1.3 1 +1910 1 10 4.9 4.6 4.6 1 +1910 1 11 2.7 2.4 2.4 1 +1910 1 12 0.7 0.4 0.4 1 +1910 1 13 -3.7 -4.1 -4.1 1 +1910 1 14 -3.5 -3.9 -3.9 1 +1910 1 15 -0.9 -1.3 -1.3 1 +1910 1 16 -0.9 -1.3 -1.3 1 +1910 1 17 2.9 2.5 2.5 1 +1910 1 18 1.6 1.2 1.2 1 +1910 1 19 -1.3 -1.7 -1.7 1 +1910 1 20 -2.6 -2.9 -2.9 1 +1910 1 21 -3.7 -4.0 -4.0 1 +1910 1 22 -3.3 -3.6 -3.6 1 +1910 1 23 -4.9 -5.2 -5.2 1 +1910 1 24 -8.5 -8.8 -8.8 1 +1910 1 25 -10.4 -10.7 -10.7 1 +1910 1 26 -6.6 -6.9 -6.9 1 +1910 1 27 -5.1 -5.4 -5.4 1 +1910 1 28 -11.2 -11.5 -11.5 1 +1910 1 29 -0.7 -1.0 -1.0 1 +1910 1 30 0.6 0.3 0.3 1 +1910 1 31 -3.5 -3.8 -3.8 1 +1910 2 1 -5.7 -6.0 -6.0 1 +1910 2 2 -0.2 -0.5 -0.5 1 +1910 2 3 0.5 0.2 0.2 1 +1910 2 4 0.5 0.2 0.2 1 +1910 2 5 1.0 0.7 0.7 1 +1910 2 6 1.3 1.0 1.0 1 +1910 2 7 0.7 0.4 0.4 1 +1910 2 8 -1.9 -2.2 -2.2 1 +1910 2 9 -2.3 -2.6 -2.6 1 +1910 2 10 -6.3 -6.6 -6.6 1 +1910 2 11 -0.9 -1.1 -1.1 1 +1910 2 12 -0.2 -0.4 -0.4 1 +1910 2 13 -2.5 -2.7 -2.7 1 +1910 2 14 -0.2 -0.4 -0.4 1 +1910 2 15 -0.1 -0.3 -0.3 1 +1910 2 16 1.3 1.1 1.1 1 +1910 2 17 0.8 0.6 0.6 1 +1910 2 18 3.8 3.6 3.6 1 +1910 2 19 3.3 3.1 3.1 1 +1910 2 20 1.7 1.5 1.5 1 +1910 2 21 2.3 2.0 2.0 1 +1910 2 22 2.4 2.1 2.1 1 +1910 2 23 0.4 0.1 0.1 1 +1910 2 24 0.4 0.1 0.1 1 +1910 2 25 -0.2 -0.5 -0.5 1 +1910 2 26 -0.5 -0.8 -0.8 1 +1910 2 27 0.0 -0.3 -0.3 1 +1910 2 28 2.2 1.9 1.9 1 +1910 3 1 0.7 0.4 0.4 1 +1910 3 2 1.4 1.1 1.1 1 +1910 3 3 2.5 2.2 2.2 1 +1910 3 4 1.2 0.9 0.9 1 +1910 3 5 -0.9 -1.2 -1.2 1 +1910 3 6 0.2 -0.1 -0.1 1 +1910 3 7 0.1 -0.2 -0.2 1 +1910 3 8 -0.5 -0.8 -0.8 1 +1910 3 9 0.2 -0.1 -0.1 1 +1910 3 10 3.9 3.6 3.6 1 +1910 3 11 4.3 4.0 4.0 1 +1910 3 12 2.7 2.4 2.4 1 +1910 3 13 1.9 1.6 1.6 1 +1910 3 14 -0.5 -0.8 -0.8 1 +1910 3 15 0.5 0.2 0.2 1 +1910 3 16 1.3 1.0 1.0 1 +1910 3 17 3.1 2.8 2.8 1 +1910 3 18 0.9 0.6 0.6 1 +1910 3 19 1.1 0.8 0.8 1 +1910 3 20 2.4 2.1 2.1 1 +1910 3 21 4.7 4.4 4.4 1 +1910 3 22 2.2 1.9 1.9 1 +1910 3 23 2.4 2.1 2.1 1 +1910 3 24 5.4 5.1 5.1 1 +1910 3 25 3.7 3.4 3.4 1 +1910 3 26 2.1 1.8 1.8 1 +1910 3 27 -0.8 -1.1 -1.1 1 +1910 3 28 -0.5 -0.8 -0.8 1 +1910 3 29 -1.3 -1.6 -1.6 1 +1910 3 30 0.2 -0.1 -0.1 1 +1910 3 31 4.5 4.2 4.2 1 +1910 4 1 2.6 2.4 2.4 1 +1910 4 2 2.6 2.4 2.4 1 +1910 4 3 2.8 2.6 2.6 1 +1910 4 4 4.0 3.8 3.8 1 +1910 4 5 3.3 3.1 3.1 1 +1910 4 6 2.3 2.1 2.1 1 +1910 4 7 3.4 3.2 3.2 1 +1910 4 8 4.3 4.1 4.1 1 +1910 4 9 2.7 2.5 2.5 1 +1910 4 10 -1.7 -1.9 -1.9 1 +1910 4 11 1.7 1.5 1.5 1 +1910 4 12 6.1 5.9 5.9 1 +1910 4 13 5.7 5.5 5.5 1 +1910 4 14 8.0 7.8 7.8 1 +1910 4 15 9.0 8.8 8.8 1 +1910 4 16 10.2 10.0 10.0 1 +1910 4 17 6.7 6.5 6.5 1 +1910 4 18 6.3 6.1 6.1 1 +1910 4 19 7.3 7.1 7.1 1 +1910 4 20 6.0 5.8 5.8 1 +1910 4 21 4.3 4.1 4.1 1 +1910 4 22 3.9 3.6 3.6 1 +1910 4 23 3.0 2.7 2.7 1 +1910 4 24 4.3 4.0 4.0 1 +1910 4 25 6.2 5.9 5.9 1 +1910 4 26 6.9 6.6 6.6 1 +1910 4 27 5.9 5.6 5.6 1 +1910 4 28 6.5 6.2 6.2 1 +1910 4 29 8.0 7.7 7.7 1 +1910 4 30 5.7 5.4 5.4 1 +1910 5 1 6.8 6.5 6.5 1 +1910 5 2 8.4 8.0 8.0 1 +1910 5 3 7.7 7.3 7.3 1 +1910 5 4 8.1 7.7 7.7 1 +1910 5 5 9.9 9.5 9.5 1 +1910 5 6 7.9 7.5 7.5 1 +1910 5 7 6.9 6.5 6.5 1 +1910 5 8 6.1 5.7 5.7 1 +1910 5 9 6.8 6.4 6.4 1 +1910 5 10 9.1 8.7 8.7 1 +1910 5 11 11.0 10.6 10.6 1 +1910 5 12 12.6 12.1 12.1 1 +1910 5 13 13.3 12.8 12.8 1 +1910 5 14 15.7 15.2 15.2 1 +1910 5 15 13.6 13.1 13.1 1 +1910 5 16 10.7 10.2 10.2 1 +1910 5 17 8.3 7.8 7.8 1 +1910 5 18 9.5 9.0 9.0 1 +1910 5 19 12.7 12.2 12.2 1 +1910 5 20 13.6 13.1 13.1 1 +1910 5 21 13.8 13.3 13.3 1 +1910 5 22 15.3 14.8 14.8 1 +1910 5 23 15.8 15.3 15.3 1 +1910 5 24 9.5 9.0 9.0 1 +1910 5 25 11.4 11.0 11.0 1 +1910 5 26 10.5 10.1 10.1 1 +1910 5 27 7.2 6.8 6.8 1 +1910 5 28 4.5 4.1 4.1 1 +1910 5 29 8.6 8.2 8.2 1 +1910 5 30 8.0 7.6 7.6 1 +1910 5 31 10.2 9.8 9.8 1 +1910 6 1 11.8 11.4 11.4 1 +1910 6 2 13.0 12.6 12.6 1 +1910 6 3 15.4 15.0 15.0 1 +1910 6 4 17.1 16.7 16.7 1 +1910 6 5 15.8 15.4 15.4 1 +1910 6 6 14.2 13.8 13.8 1 +1910 6 7 17.3 16.9 16.9 1 +1910 6 8 17.7 17.3 17.3 1 +1910 6 9 19.0 18.6 18.6 1 +1910 6 10 19.0 18.6 18.6 1 +1910 6 11 19.5 19.1 19.1 1 +1910 6 12 20.8 20.4 20.4 1 +1910 6 13 21.0 20.6 20.6 1 +1910 6 14 19.3 18.9 18.9 1 +1910 6 15 19.8 19.4 19.4 1 +1910 6 16 14.6 14.2 14.2 1 +1910 6 17 15.2 14.8 14.8 1 +1910 6 18 10.2 9.8 9.8 1 +1910 6 19 7.7 7.3 7.3 1 +1910 6 20 11.7 11.3 11.3 1 +1910 6 21 13.9 13.5 13.5 1 +1910 6 22 14.1 13.7 13.7 1 +1910 6 23 15.0 14.6 14.6 1 +1910 6 24 14.4 14.0 14.0 1 +1910 6 25 10.1 9.7 9.7 1 +1910 6 26 11.2 10.8 10.8 1 +1910 6 27 13.6 13.2 13.2 1 +1910 6 28 13.2 12.8 12.8 1 +1910 6 29 13.8 13.4 13.4 1 +1910 6 30 15.1 14.7 14.7 1 +1910 7 1 12.9 12.5 12.5 1 +1910 7 2 12.1 11.7 11.7 1 +1910 7 3 15.2 14.8 14.8 1 +1910 7 4 15.9 15.5 15.5 1 +1910 7 5 13.9 13.5 13.5 1 +1910 7 6 15.7 15.3 15.3 1 +1910 7 7 19.0 18.6 18.6 1 +1910 7 8 17.3 16.9 16.9 1 +1910 7 9 11.1 10.7 10.7 1 +1910 7 10 8.8 8.4 8.4 1 +1910 7 11 11.9 11.5 11.5 1 +1910 7 12 16.6 16.2 16.2 1 +1910 7 13 19.4 19.0 19.0 1 +1910 7 14 21.2 20.8 20.8 1 +1910 7 15 11.8 11.4 11.4 1 +1910 7 16 12.8 12.5 12.5 1 +1910 7 17 13.3 13.0 13.0 1 +1910 7 18 13.7 13.4 13.4 1 +1910 7 19 13.0 12.7 12.7 1 +1910 7 20 12.8 12.5 12.5 1 +1910 7 21 12.7 12.4 12.4 1 +1910 7 22 13.7 13.4 13.4 1 +1910 7 23 14.0 13.7 13.7 1 +1910 7 24 15.2 14.9 14.9 1 +1910 7 25 15.9 15.6 15.6 1 +1910 7 26 16.2 15.9 15.9 1 +1910 7 27 17.4 17.1 17.1 1 +1910 7 28 16.8 16.6 16.6 1 +1910 7 29 18.0 17.8 17.8 1 +1910 7 30 19.2 19.0 19.0 1 +1910 7 31 19.5 19.3 19.3 1 +1910 8 1 20.2 20.0 20.0 1 +1910 8 2 20.8 20.6 20.6 1 +1910 8 3 19.1 18.9 18.9 1 +1910 8 4 18.7 18.5 18.5 1 +1910 8 5 15.8 15.6 15.6 1 +1910 8 6 13.5 13.3 13.3 1 +1910 8 7 15.0 14.8 14.8 1 +1910 8 8 16.8 16.6 16.6 1 +1910 8 9 15.6 15.4 15.4 1 +1910 8 10 11.3 11.2 11.2 1 +1910 8 11 14.4 14.3 14.3 1 +1910 8 12 11.5 11.4 11.4 1 +1910 8 13 11.0 10.9 10.9 1 +1910 8 14 12.6 12.5 12.5 1 +1910 8 15 13.8 13.7 13.7 1 +1910 8 16 15.6 15.5 15.5 1 +1910 8 17 12.7 12.6 12.6 1 +1910 8 18 14.3 14.2 14.2 1 +1910 8 19 14.9 14.8 14.8 1 +1910 8 20 13.7 13.6 13.6 1 +1910 8 21 14.3 14.2 14.2 1 +1910 8 22 14.1 14.0 14.0 1 +1910 8 23 11.7 11.7 11.7 1 +1910 8 24 11.3 11.3 11.3 1 +1910 8 25 12.7 12.7 12.7 1 +1910 8 26 13.5 13.5 13.5 1 +1910 8 27 13.0 13.0 13.0 1 +1910 8 28 13.5 13.5 13.5 1 +1910 8 29 13.4 13.4 13.4 1 +1910 8 30 13.9 13.9 13.9 1 +1910 8 31 14.5 14.5 14.5 1 +1910 9 1 14.5 14.5 14.5 1 +1910 9 2 15.2 15.2 15.2 1 +1910 9 3 14.2 14.2 14.2 1 +1910 9 4 14.9 14.9 14.9 1 +1910 9 5 14.0 14.1 14.1 1 +1910 9 6 12.2 12.3 12.3 1 +1910 9 7 11.4 11.5 11.5 1 +1910 9 8 12.3 12.4 12.4 1 +1910 9 9 11.7 11.8 11.8 1 +1910 9 10 13.4 13.5 13.5 1 +1910 9 11 14.3 14.4 14.4 1 +1910 9 12 14.0 14.1 14.1 1 +1910 9 13 14.9 15.0 15.0 1 +1910 9 14 15.0 15.1 15.1 1 +1910 9 15 15.2 15.3 15.3 1 +1910 9 16 13.2 13.3 13.3 1 +1910 9 17 8.2 8.3 8.3 1 +1910 9 18 11.1 11.2 11.2 1 +1910 9 19 12.7 12.8 12.8 1 +1910 9 20 6.7 6.8 6.8 1 +1910 9 21 6.7 6.8 6.8 1 +1910 9 22 10.9 11.0 11.0 1 +1910 9 23 9.7 9.8 9.8 1 +1910 9 24 6.4 6.5 6.5 1 +1910 9 25 5.4 5.5 5.5 1 +1910 9 26 8.6 8.7 8.7 1 +1910 9 27 10.4 10.5 10.5 1 +1910 9 28 10.2 10.3 10.3 1 +1910 9 29 12.7 12.8 12.8 1 +1910 9 30 11.9 12.0 12.0 1 +1910 10 1 10.0 10.1 10.1 1 +1910 10 2 8.0 8.1 8.1 1 +1910 10 3 10.8 10.9 10.9 1 +1910 10 4 9.1 9.2 9.2 1 +1910 10 5 8.4 8.5 8.5 1 +1910 10 6 10.0 10.1 10.1 1 +1910 10 7 9.3 9.4 9.4 1 +1910 10 8 11.8 11.9 11.9 1 +1910 10 9 9.1 9.2 9.2 1 +1910 10 10 9.0 9.1 9.1 1 +1910 10 11 9.4 9.5 9.5 1 +1910 10 12 11.3 11.4 11.4 1 +1910 10 13 4.0 4.1 4.1 1 +1910 10 14 5.6 5.7 5.7 1 +1910 10 15 9.0 9.1 9.1 1 +1910 10 16 8.9 9.0 9.0 1 +1910 10 17 9.1 9.2 9.2 1 +1910 10 18 7.1 7.2 7.2 1 +1910 10 19 9.0 9.1 9.1 1 +1910 10 20 8.9 9.0 9.0 1 +1910 10 21 4.1 4.2 4.2 1 +1910 10 22 2.7 2.8 2.8 1 +1910 10 23 2.5 2.6 2.6 1 +1910 10 24 4.0 4.1 4.1 1 +1910 10 25 4.7 4.8 4.8 1 +1910 10 26 6.2 6.2 6.2 1 +1910 10 27 3.0 3.0 3.0 1 +1910 10 28 4.0 4.0 4.0 1 +1910 10 29 4.6 4.6 4.6 1 +1910 10 30 1.4 1.4 1.4 1 +1910 10 31 0.6 0.6 0.6 1 +1910 11 1 5.0 5.0 5.0 1 +1910 11 2 3.9 3.9 3.9 1 +1910 11 3 4.4 4.4 4.4 1 +1910 11 4 1.0 1.0 1.0 1 +1910 11 5 -2.8 -2.8 -2.8 1 +1910 11 6 -2.5 -2.5 -2.5 1 +1910 11 7 1.0 1.0 1.0 1 +1910 11 8 5.9 5.9 5.9 1 +1910 11 9 4.4 4.4 4.4 1 +1910 11 10 2.4 2.4 2.4 1 +1910 11 11 -1.8 -1.8 -1.8 1 +1910 11 12 -1.2 -1.3 -1.3 1 +1910 11 13 -3.4 -3.5 -3.5 1 +1910 11 14 0.7 0.6 0.6 1 +1910 11 15 3.4 3.3 3.3 1 +1910 11 16 3.5 3.4 3.4 1 +1910 11 17 2.4 2.3 2.3 1 +1910 11 18 1.4 1.3 1.3 1 +1910 11 19 2.0 1.9 1.9 1 +1910 11 20 3.4 3.3 3.3 1 +1910 11 21 2.6 2.5 2.5 1 +1910 11 22 2.6 2.5 2.5 1 +1910 11 23 0.8 0.7 0.7 1 +1910 11 24 -1.3 -1.4 -1.4 1 +1910 11 25 -0.9 -1.0 -1.0 1 +1910 11 26 -0.2 -0.3 -0.3 1 +1910 11 27 0.4 0.3 0.3 1 +1910 11 28 1.3 1.2 1.2 1 +1910 11 29 3.3 3.2 3.2 1 +1910 11 30 2.7 2.6 2.6 1 +1910 12 1 0.7 0.6 0.6 1 +1910 12 2 -2.5 -2.6 -2.6 1 +1910 12 3 -4.4 -4.5 -4.5 1 +1910 12 4 -4.6 -4.7 -4.7 1 +1910 12 5 -1.2 -1.3 -1.3 1 +1910 12 6 1.5 1.4 1.4 1 +1910 12 7 2.8 2.7 2.7 1 +1910 12 8 2.3 2.2 2.2 1 +1910 12 9 0.4 0.3 0.3 1 +1910 12 10 3.5 3.4 3.4 1 +1910 12 11 2.1 2.0 2.0 1 +1910 12 12 1.6 1.5 1.5 1 +1910 12 13 -0.5 -0.6 -0.6 1 +1910 12 14 0.4 0.3 0.3 1 +1910 12 15 2.8 2.7 2.7 1 +1910 12 16 4.4 4.3 4.3 1 +1910 12 17 5.6 5.5 5.5 1 +1910 12 18 5.4 5.3 5.3 1 +1910 12 19 2.9 2.8 2.8 1 +1910 12 20 2.3 2.2 2.2 1 +1910 12 21 -1.9 -2.0 -2.0 1 +1910 12 22 2.0 1.9 1.9 1 +1910 12 23 2.5 2.4 2.4 1 +1910 12 24 4.5 4.3 4.3 1 +1910 12 25 -2.0 -2.2 -2.2 1 +1910 12 26 -5.2 -5.4 -5.4 1 +1910 12 27 -5.5 -5.7 -5.7 1 +1910 12 28 -5.0 -5.2 -5.2 1 +1910 12 29 0.7 0.5 0.5 1 +1910 12 30 0.2 0.0 0.0 1 +1910 12 31 -2.1 -2.3 -2.3 1 +1911 1 1 2.7 2.5 2.5 1 +1911 1 2 2.1 1.9 1.9 1 +1911 1 3 -0.4 -0.7 -0.7 1 +1911 1 4 -1.8 -2.1 -2.1 1 +1911 1 5 -1.8 -2.1 -2.1 1 +1911 1 6 1.3 1.0 1.0 1 +1911 1 7 0.7 0.4 0.4 1 +1911 1 8 1.1 0.8 0.8 1 +1911 1 9 0.9 0.6 0.6 1 +1911 1 10 -0.4 -0.7 -0.7 1 +1911 1 11 -4.7 -5.0 -5.0 1 +1911 1 12 -3.8 -4.1 -4.1 1 +1911 1 13 -7.0 -7.4 -7.4 1 +1911 1 14 -6.3 -6.7 -6.7 1 +1911 1 15 -0.2 -0.6 -0.6 1 +1911 1 16 1.3 0.9 0.9 1 +1911 1 17 2.4 2.0 2.0 1 +1911 1 18 2.0 1.6 1.6 1 +1911 1 19 2.6 2.2 2.2 1 +1911 1 20 2.5 2.2 2.2 1 +1911 1 21 2.1 1.8 1.8 1 +1911 1 22 -0.7 -1.0 -1.0 1 +1911 1 23 -3.3 -3.6 -3.6 1 +1911 1 24 -2.7 -3.0 -3.0 1 +1911 1 25 1.4 1.1 1.1 1 +1911 1 26 0.8 0.5 0.5 1 +1911 1 27 -3.8 -4.1 -4.1 1 +1911 1 28 -5.5 -5.8 -5.8 1 +1911 1 29 -6.2 -6.5 -6.5 1 +1911 1 30 -6.8 -7.1 -7.1 1 +1911 1 31 -2.6 -2.9 -2.9 1 +1911 2 1 -2.2 -2.5 -2.5 1 +1911 2 2 0.3 0.0 0.0 1 +1911 2 3 0.0 -0.3 -0.3 1 +1911 2 4 3.1 2.8 2.8 1 +1911 2 5 -3.2 -3.5 -3.5 1 +1911 2 6 -8.7 -9.0 -9.0 1 +1911 2 7 -3.6 -3.9 -3.9 1 +1911 2 8 -5.1 -5.4 -5.4 1 +1911 2 9 -0.8 -1.1 -1.1 1 +1911 2 10 -1.5 -1.8 -1.8 1 +1911 2 11 -1.6 -1.8 -1.8 1 +1911 2 12 -0.7 -0.9 -0.9 1 +1911 2 13 -1.0 -1.2 -1.2 1 +1911 2 14 -0.2 -0.4 -0.4 1 +1911 2 15 0.5 0.3 0.3 1 +1911 2 16 -0.3 -0.5 -0.5 1 +1911 2 17 1.6 1.4 1.4 1 +1911 2 18 -4.4 -4.6 -4.6 1 +1911 2 19 -5.0 -5.2 -5.2 1 +1911 2 20 -7.0 -7.2 -7.2 1 +1911 2 21 -5.7 -6.0 -6.0 1 +1911 2 22 1.0 0.7 0.7 1 +1911 2 23 2.5 2.2 2.2 1 +1911 2 24 1.1 0.8 0.8 1 +1911 2 25 -5.3 -5.6 -5.6 1 +1911 2 26 -2.6 -2.9 -2.9 1 +1911 2 27 -0.7 -1.0 -1.0 1 +1911 2 28 -1.9 -2.2 -2.2 1 +1911 3 1 1.5 1.2 1.2 1 +1911 3 2 0.6 0.3 0.3 1 +1911 3 3 0.4 0.1 0.1 1 +1911 3 4 2.0 1.7 1.7 1 +1911 3 5 0.2 -0.1 -0.1 1 +1911 3 6 -0.7 -1.0 -1.0 1 +1911 3 7 -1.5 -1.8 -1.8 1 +1911 3 8 -2.5 -2.8 -2.8 1 +1911 3 9 -0.3 -0.6 -0.6 1 +1911 3 10 0.6 0.3 0.3 1 +1911 3 11 2.8 2.5 2.5 1 +1911 3 12 1.6 1.3 1.3 1 +1911 3 13 1.9 1.6 1.6 1 +1911 3 14 1.0 0.7 0.7 1 +1911 3 15 0.7 0.4 0.4 1 +1911 3 16 -0.9 -1.2 -1.2 1 +1911 3 17 -3.2 -3.5 -3.5 1 +1911 3 18 -2.2 -2.5 -2.5 1 +1911 3 19 -2.5 -2.8 -2.8 1 +1911 3 20 -0.8 -1.1 -1.1 1 +1911 3 21 -0.6 -0.9 -0.9 1 +1911 3 22 -0.1 -0.4 -0.4 1 +1911 3 23 0.6 0.3 0.3 1 +1911 3 24 -1.4 -1.7 -1.7 1 +1911 3 25 -1.6 -1.9 -1.9 1 +1911 3 26 1.7 1.4 1.4 1 +1911 3 27 5.1 4.8 4.8 1 +1911 3 28 3.7 3.4 3.4 1 +1911 3 29 1.1 0.8 0.8 1 +1911 3 30 3.7 3.4 3.4 1 +1911 3 31 4.8 4.5 4.5 1 +1911 4 1 3.8 3.6 3.6 1 +1911 4 2 3.6 3.4 3.4 1 +1911 4 3 -3.3 -3.5 -3.5 1 +1911 4 4 -6.7 -6.9 -6.9 1 +1911 4 5 -4.2 -4.4 -4.4 1 +1911 4 6 1.9 1.7 1.7 1 +1911 4 7 3.7 3.5 3.5 1 +1911 4 8 5.8 5.6 5.6 1 +1911 4 9 3.1 2.9 2.9 1 +1911 4 10 1.4 1.2 1.2 1 +1911 4 11 5.4 5.2 5.2 1 +1911 4 12 4.8 4.6 4.6 1 +1911 4 13 1.6 1.4 1.4 1 +1911 4 14 4.6 4.4 4.4 1 +1911 4 15 3.5 3.3 3.3 1 +1911 4 16 1.8 1.6 1.6 1 +1911 4 17 1.9 1.7 1.7 1 +1911 4 18 4.9 4.7 4.7 1 +1911 4 19 7.9 7.7 7.7 1 +1911 4 20 10.0 9.8 9.8 1 +1911 4 21 8.8 8.6 8.6 1 +1911 4 22 10.6 10.3 10.3 1 +1911 4 23 10.3 10.0 10.0 1 +1911 4 24 8.5 8.2 8.2 1 +1911 4 25 6.0 5.7 5.7 1 +1911 4 26 5.8 5.5 5.5 1 +1911 4 27 5.3 5.0 5.0 1 +1911 4 28 6.2 5.9 5.9 1 +1911 4 29 6.2 5.9 5.9 1 +1911 4 30 4.9 4.6 4.6 1 +1911 5 1 7.2 6.9 6.9 1 +1911 5 2 7.9 7.5 7.5 1 +1911 5 3 8.4 8.0 8.0 1 +1911 5 4 8.8 8.4 8.4 1 +1911 5 5 9.0 8.6 8.6 1 +1911 5 6 7.8 7.4 7.4 1 +1911 5 7 9.5 9.1 9.1 1 +1911 5 8 13.4 13.0 13.0 1 +1911 5 9 15.6 15.2 15.2 1 +1911 5 10 12.5 12.1 12.1 1 +1911 5 11 11.3 10.9 10.9 1 +1911 5 12 13.2 12.7 12.7 1 +1911 5 13 15.1 14.6 14.6 1 +1911 5 14 13.9 13.4 13.4 1 +1911 5 15 7.4 6.9 6.9 1 +1911 5 16 6.8 6.3 6.3 1 +1911 5 17 9.5 9.0 9.0 1 +1911 5 18 8.7 8.2 8.2 1 +1911 5 19 8.0 7.5 7.5 1 +1911 5 20 4.8 4.3 4.3 1 +1911 5 21 2.2 1.7 1.7 1 +1911 5 22 7.1 6.6 6.6 1 +1911 5 23 8.6 8.1 8.1 1 +1911 5 24 10.8 10.3 10.3 1 +1911 5 25 14.1 13.7 13.7 1 +1911 5 26 14.7 14.3 14.3 1 +1911 5 27 17.9 17.5 17.5 1 +1911 5 28 18.3 17.9 17.9 1 +1911 5 29 19.0 18.6 18.6 1 +1911 5 30 17.2 16.8 16.8 1 +1911 5 31 11.5 11.1 11.1 1 +1911 6 1 13.0 12.6 12.6 1 +1911 6 2 19.2 18.8 18.8 1 +1911 6 3 17.2 16.8 16.8 1 +1911 6 4 18.0 17.6 17.6 1 +1911 6 5 19.2 18.8 18.8 1 +1911 6 6 18.0 17.6 17.6 1 +1911 6 7 12.2 11.8 11.8 1 +1911 6 8 10.6 10.2 10.2 1 +1911 6 9 7.2 6.8 6.8 1 +1911 6 10 5.4 5.0 5.0 1 +1911 6 11 4.7 4.3 4.3 1 +1911 6 12 6.2 5.8 5.8 1 +1911 6 13 7.6 7.2 7.2 1 +1911 6 14 10.4 10.0 10.0 1 +1911 6 15 9.9 9.5 9.5 1 +1911 6 16 10.1 9.7 9.7 1 +1911 6 17 11.3 10.9 10.9 1 +1911 6 18 10.1 9.7 9.7 1 +1911 6 19 11.3 10.9 10.9 1 +1911 6 20 11.6 11.2 11.2 1 +1911 6 21 14.5 14.1 14.1 1 +1911 6 22 16.9 16.5 16.5 1 +1911 6 23 17.9 17.5 17.5 1 +1911 6 24 16.6 16.2 16.2 1 +1911 6 25 18.9 18.5 18.5 1 +1911 6 26 16.4 16.0 16.0 1 +1911 6 27 15.7 15.3 15.3 1 +1911 6 28 15.5 15.1 15.1 1 +1911 6 29 14.7 14.3 14.3 1 +1911 6 30 15.4 15.0 15.0 1 +1911 7 1 14.8 14.4 14.4 1 +1911 7 2 13.4 13.0 13.0 1 +1911 7 3 11.5 11.1 11.1 1 +1911 7 4 12.0 11.6 11.6 1 +1911 7 5 15.5 15.1 15.1 1 +1911 7 6 18.1 17.7 17.7 1 +1911 7 7 18.1 17.7 17.7 1 +1911 7 8 13.6 13.2 13.2 1 +1911 7 9 13.5 13.1 13.1 1 +1911 7 10 16.6 16.2 16.2 1 +1911 7 11 15.1 14.7 14.7 1 +1911 7 12 15.0 14.6 14.6 1 +1911 7 13 17.5 17.1 17.1 1 +1911 7 14 19.9 19.5 19.5 1 +1911 7 15 12.9 12.5 12.5 1 +1911 7 16 12.5 12.2 12.2 1 +1911 7 17 13.5 13.2 13.2 1 +1911 7 18 13.4 13.1 13.1 1 +1911 7 19 16.0 15.7 15.7 1 +1911 7 20 13.4 13.1 13.1 1 +1911 7 21 15.3 15.0 15.0 1 +1911 7 22 18.0 17.7 17.7 1 +1911 7 23 19.3 19.0 19.0 1 +1911 7 24 17.6 17.3 17.3 1 +1911 7 25 17.3 17.0 17.0 1 +1911 7 26 18.9 18.6 18.6 1 +1911 7 27 18.4 18.1 18.1 1 +1911 7 28 19.5 19.3 19.3 1 +1911 7 29 20.4 20.2 20.2 1 +1911 7 30 19.5 19.3 19.3 1 +1911 7 31 21.7 21.5 21.5 1 +1911 8 1 23.0 22.8 22.8 1 +1911 8 2 23.7 23.5 23.5 1 +1911 8 3 23.5 23.3 23.3 1 +1911 8 4 23.3 23.1 23.1 1 +1911 8 5 22.0 21.8 21.8 1 +1911 8 6 22.6 22.4 22.4 1 +1911 8 7 20.5 20.3 20.3 1 +1911 8 8 21.9 21.7 21.7 1 +1911 8 9 22.4 22.2 22.2 1 +1911 8 10 23.3 23.2 23.2 1 +1911 8 11 23.8 23.7 23.7 1 +1911 8 12 23.9 23.8 23.8 1 +1911 8 13 20.3 20.2 20.2 1 +1911 8 14 15.8 15.7 15.7 1 +1911 8 15 12.1 12.0 12.0 1 +1911 8 16 12.1 12.0 12.0 1 +1911 8 17 11.4 11.3 11.3 1 +1911 8 18 10.6 10.5 10.5 1 +1911 8 19 11.6 11.5 11.5 1 +1911 8 20 11.9 11.8 11.8 1 +1911 8 21 13.5 13.4 13.4 1 +1911 8 22 15.5 15.4 15.4 1 +1911 8 23 15.4 15.4 15.4 1 +1911 8 24 15.5 15.5 15.5 1 +1911 8 25 16.7 16.7 16.7 1 +1911 8 26 18.3 18.3 18.3 1 +1911 8 27 16.4 16.4 16.4 1 +1911 8 28 15.8 15.8 15.8 1 +1911 8 29 15.5 15.5 15.5 1 +1911 8 30 13.8 13.8 13.8 1 +1911 8 31 12.8 12.8 12.8 1 +1911 9 1 11.9 11.9 11.9 1 +1911 9 2 15.4 15.4 15.4 1 +1911 9 3 15.9 15.9 15.9 1 +1911 9 4 12.7 12.7 12.7 1 +1911 9 5 11.7 11.8 11.8 1 +1911 9 6 12.2 12.3 12.3 1 +1911 9 7 14.3 14.4 14.4 1 +1911 9 8 15.1 15.2 15.2 1 +1911 9 9 9.6 9.7 9.7 1 +1911 9 10 9.4 9.5 9.5 1 +1911 9 11 10.4 10.5 10.5 1 +1911 9 12 13.8 13.9 13.9 1 +1911 9 13 14.7 14.8 14.8 1 +1911 9 14 12.6 12.7 12.7 1 +1911 9 15 8.4 8.5 8.5 1 +1911 9 16 7.5 7.6 7.6 1 +1911 9 17 9.8 9.9 9.9 1 +1911 9 18 11.3 11.4 11.4 1 +1911 9 19 11.0 11.1 11.1 1 +1911 9 20 13.1 13.2 13.2 1 +1911 9 21 13.9 14.0 14.0 1 +1911 9 22 13.8 13.9 13.9 1 +1911 9 23 13.1 13.2 13.2 1 +1911 9 24 13.1 13.2 13.2 1 +1911 9 25 13.7 13.8 13.8 1 +1911 9 26 14.0 14.1 14.1 1 +1911 9 27 13.2 13.3 13.3 1 +1911 9 28 12.1 12.2 12.2 1 +1911 9 29 8.9 9.0 9.0 1 +1911 9 30 8.2 8.3 8.3 1 +1911 10 1 6.5 6.6 6.6 1 +1911 10 2 8.9 9.0 9.0 1 +1911 10 3 11.0 11.1 11.1 1 +1911 10 4 9.5 9.6 9.6 1 +1911 10 5 6.2 6.3 6.3 1 +1911 10 6 5.5 5.6 5.6 1 +1911 10 7 8.5 8.6 8.6 1 +1911 10 8 5.4 5.5 5.5 1 +1911 10 9 3.5 3.6 3.6 1 +1911 10 10 3.4 3.5 3.5 1 +1911 10 11 10.4 10.5 10.5 1 +1911 10 12 8.4 8.5 8.5 1 +1911 10 13 9.3 9.4 9.4 1 +1911 10 14 2.9 3.0 3.0 1 +1911 10 15 3.4 3.5 3.5 1 +1911 10 16 5.4 5.5 5.5 1 +1911 10 17 6.7 6.8 6.8 1 +1911 10 18 5.2 5.3 5.3 1 +1911 10 19 1.4 1.5 1.5 1 +1911 10 20 1.9 2.0 2.0 1 +1911 10 21 5.8 5.9 5.9 1 +1911 10 22 9.1 9.2 9.2 1 +1911 10 23 9.3 9.4 9.4 1 +1911 10 24 1.5 1.6 1.6 1 +1911 10 25 8.1 8.2 8.2 1 +1911 10 26 5.9 5.9 5.9 1 +1911 10 27 0.4 0.4 0.4 1 +1911 10 28 -0.1 -0.1 -0.1 1 +1911 10 29 -1.6 -1.6 -1.6 1 +1911 10 30 1.4 1.4 1.4 1 +1911 10 31 6.9 6.9 6.9 1 +1911 11 1 5.1 5.1 5.1 1 +1911 11 2 3.5 3.5 3.5 1 +1911 11 3 5.9 5.9 5.9 1 +1911 11 4 6.3 6.3 6.3 1 +1911 11 5 6.2 6.2 6.2 1 +1911 11 6 7.3 7.3 7.3 1 +1911 11 7 5.7 5.7 5.7 1 +1911 11 8 5.5 5.5 5.5 1 +1911 11 9 6.5 6.5 6.5 1 +1911 11 10 5.3 5.3 5.3 1 +1911 11 11 2.7 2.7 2.7 1 +1911 11 12 2.7 2.6 2.6 1 +1911 11 13 2.4 2.3 2.3 1 +1911 11 14 5.5 5.4 5.4 1 +1911 11 15 6.3 6.2 6.2 1 +1911 11 16 6.8 6.7 6.7 1 +1911 11 17 6.5 6.4 6.4 1 +1911 11 18 7.8 7.7 7.7 1 +1911 11 19 6.3 6.2 6.2 1 +1911 11 20 5.0 4.9 4.9 1 +1911 11 21 0.1 0.0 0.0 1 +1911 11 22 -3.0 -3.1 -3.1 1 +1911 11 23 -4.8 -4.9 -4.9 1 +1911 11 24 -2.6 -2.7 -2.7 1 +1911 11 25 -0.4 -0.5 -0.5 1 +1911 11 26 -0.7 -0.8 -0.8 1 +1911 11 27 -3.1 -3.2 -3.2 1 +1911 11 28 3.2 3.1 3.1 1 +1911 11 29 2.8 2.7 2.7 1 +1911 11 30 2.1 2.0 2.0 1 +1911 12 1 2.2 2.1 2.1 1 +1911 12 2 2.0 1.9 1.9 1 +1911 12 3 1.3 1.2 1.2 1 +1911 12 4 2.5 2.4 2.4 1 +1911 12 5 -0.3 -0.4 -0.4 1 +1911 12 6 0.9 0.8 0.8 1 +1911 12 7 2.9 2.8 2.8 1 +1911 12 8 2.6 2.5 2.5 1 +1911 12 9 3.4 3.3 3.3 1 +1911 12 10 3.9 3.8 3.8 1 +1911 12 11 2.2 2.1 2.1 1 +1911 12 12 4.6 4.5 4.5 1 +1911 12 13 2.6 2.5 2.5 1 +1911 12 14 0.4 0.3 0.3 1 +1911 12 15 -0.3 -0.4 -0.4 1 +1911 12 16 -0.7 -0.8 -0.8 1 +1911 12 17 2.9 2.8 2.8 1 +1911 12 18 4.6 4.5 4.5 1 +1911 12 19 4.7 4.6 4.6 1 +1911 12 20 4.8 4.7 4.7 1 +1911 12 21 3.5 3.4 3.4 1 +1911 12 22 1.6 1.5 1.5 1 +1911 12 23 0.4 0.3 0.3 1 +1911 12 24 -2.0 -2.2 -2.2 1 +1911 12 25 1.7 1.5 1.5 1 +1911 12 26 2.7 2.5 2.5 1 +1911 12 27 1.3 1.1 1.1 1 +1911 12 28 0.1 -0.1 -0.1 1 +1911 12 29 -1.0 -1.2 -1.2 1 +1911 12 30 -6.0 -6.2 -6.2 1 +1911 12 31 -3.7 -3.9 -3.9 1 +1912 1 1 1.9 1.7 1.7 1 +1912 1 2 4.7 4.5 4.5 1 +1912 1 3 -0.4 -0.7 -0.7 1 +1912 1 4 -5.0 -5.3 -5.3 1 +1912 1 5 -7.0 -7.3 -7.3 1 +1912 1 6 -6.6 -6.9 -6.9 1 +1912 1 7 -7.8 -8.1 -8.1 1 +1912 1 8 -12.8 -13.1 -13.1 1 +1912 1 9 -11.1 -11.4 -11.4 1 +1912 1 10 -8.8 -9.1 -9.1 1 +1912 1 11 -8.5 -8.8 -8.8 1 +1912 1 12 -2.1 -2.4 -2.4 1 +1912 1 13 -1.7 -2.1 -2.1 1 +1912 1 14 -3.6 -4.0 -4.0 1 +1912 1 15 -3.4 -3.8 -3.8 1 +1912 1 16 -2.9 -3.3 -3.3 1 +1912 1 17 -4.3 -4.7 -4.7 1 +1912 1 18 -6.7 -7.1 -7.1 1 +1912 1 19 -3.4 -3.8 -3.8 1 +1912 1 20 -2.7 -3.0 -3.0 1 +1912 1 21 -2.6 -2.9 -2.9 1 +1912 1 22 -3.7 -4.0 -4.0 1 +1912 1 23 -6.8 -7.1 -7.1 1 +1912 1 24 -5.0 -5.3 -5.3 1 +1912 1 25 -3.8 -4.1 -4.1 1 +1912 1 26 -11.0 -11.3 -11.3 1 +1912 1 27 -9.7 -10.0 -10.0 1 +1912 1 28 -3.4 -3.7 -3.7 1 +1912 1 29 -6.2 -6.5 -6.5 1 +1912 1 30 -4.9 -5.2 -5.2 1 +1912 1 31 -7.2 -7.5 -7.5 1 +1912 2 1 -11.7 -12.0 -12.0 1 +1912 2 2 -15.0 -15.3 -15.3 1 +1912 2 3 -16.6 -16.9 -16.9 1 +1912 2 4 -9.8 -10.1 -10.1 1 +1912 2 5 -4.0 -4.3 -4.3 1 +1912 2 6 -7.9 -8.2 -8.2 1 +1912 2 7 -1.9 -2.2 -2.2 1 +1912 2 8 0.2 -0.1 -0.1 1 +1912 2 9 1.7 1.4 1.4 1 +1912 2 10 -0.7 -1.0 -1.0 1 +1912 2 11 -1.1 -1.3 -1.3 1 +1912 2 12 -5.2 -5.4 -5.4 1 +1912 2 13 -7.2 -7.4 -7.4 1 +1912 2 14 -6.4 -6.6 -6.6 1 +1912 2 15 -3.9 -4.1 -4.1 1 +1912 2 16 -1.7 -1.9 -1.9 1 +1912 2 17 0.7 0.5 0.5 1 +1912 2 18 0.3 0.1 0.1 1 +1912 2 19 -2.2 -2.4 -2.4 1 +1912 2 20 -5.1 -5.3 -5.3 1 +1912 2 21 -6.9 -7.2 -7.2 1 +1912 2 22 -3.9 -4.2 -4.2 1 +1912 2 23 -7.0 -7.3 -7.3 1 +1912 2 24 -4.5 -4.8 -4.8 1 +1912 2 25 -3.2 -3.5 -3.5 1 +1912 2 26 1.2 0.9 0.9 1 +1912 2 27 2.3 2.0 2.0 1 +1912 2 28 1.4 1.1 1.1 1 +1912 2 29 3.3 3.0 3.0 1 +1912 3 1 4.8 4.5 4.5 1 +1912 3 2 3.8 3.5 3.5 1 +1912 3 3 4.9 4.6 4.6 1 +1912 3 4 4.6 4.3 4.3 1 +1912 3 5 3.0 2.7 2.7 1 +1912 3 6 3.4 3.1 3.1 1 +1912 3 7 2.0 1.7 1.7 1 +1912 3 8 1.6 1.3 1.3 1 +1912 3 9 1.3 1.0 1.0 1 +1912 3 10 -1.5 -1.8 -1.8 1 +1912 3 11 -1.3 -1.6 -1.6 1 +1912 3 12 -4.2 -4.5 -4.5 1 +1912 3 13 -5.2 -5.5 -5.5 1 +1912 3 14 -1.5 -1.8 -1.8 1 +1912 3 15 -0.9 -1.2 -1.2 1 +1912 3 16 0.6 0.3 0.3 1 +1912 3 17 1.2 0.9 0.9 1 +1912 3 18 0.3 0.0 0.0 1 +1912 3 19 0.4 0.1 0.1 1 +1912 3 20 0.7 0.4 0.4 1 +1912 3 21 1.9 1.6 1.6 1 +1912 3 22 1.0 0.7 0.7 1 +1912 3 23 3.5 3.2 3.2 1 +1912 3 24 3.7 3.4 3.4 1 +1912 3 25 3.5 3.2 3.2 1 +1912 3 26 3.1 2.8 2.8 1 +1912 3 27 5.5 5.2 5.2 1 +1912 3 28 2.7 2.4 2.4 1 +1912 3 29 2.3 2.0 2.0 1 +1912 3 30 2.5 2.2 2.2 1 +1912 3 31 0.0 -0.3 -0.3 1 +1912 4 1 0.1 -0.1 -0.1 1 +1912 4 2 -3.4 -3.6 -3.6 1 +1912 4 3 0.7 0.5 0.5 1 +1912 4 4 5.4 5.2 5.2 1 +1912 4 5 4.7 4.5 4.5 1 +1912 4 6 2.1 1.9 1.9 1 +1912 4 7 0.2 0.0 0.0 1 +1912 4 8 0.1 -0.1 -0.1 1 +1912 4 9 -4.4 -4.6 -4.6 1 +1912 4 10 -6.2 -6.4 -6.4 1 +1912 4 11 -5.2 -5.4 -5.4 1 +1912 4 12 -3.2 -3.4 -3.4 1 +1912 4 13 0.8 0.6 0.6 1 +1912 4 14 0.8 0.6 0.6 1 +1912 4 15 6.0 5.8 5.8 1 +1912 4 16 8.3 8.1 8.1 1 +1912 4 17 6.2 6.0 6.0 1 +1912 4 18 8.6 8.4 8.4 1 +1912 4 19 9.8 9.6 9.6 1 +1912 4 20 8.7 8.5 8.5 1 +1912 4 21 8.4 8.2 8.2 1 +1912 4 22 9.5 9.2 9.2 1 +1912 4 23 11.7 11.4 11.4 1 +1912 4 24 9.0 8.7 8.7 1 +1912 4 25 8.4 8.1 8.1 1 +1912 4 26 7.2 6.9 6.9 1 +1912 4 27 3.6 3.3 3.3 1 +1912 4 28 3.0 2.7 2.7 1 +1912 4 29 -0.3 -0.6 -0.6 1 +1912 4 30 3.2 2.9 2.9 1 +1912 5 1 5.1 4.8 4.8 1 +1912 5 2 5.6 5.2 5.2 1 +1912 5 3 5.0 4.6 4.6 1 +1912 5 4 1.4 1.0 1.0 1 +1912 5 5 1.5 1.1 1.1 1 +1912 5 6 4.1 3.7 3.7 1 +1912 5 7 4.3 3.9 3.9 1 +1912 5 8 4.9 4.5 4.5 1 +1912 5 9 7.6 7.2 7.2 1 +1912 5 10 6.2 5.8 5.8 1 +1912 5 11 6.4 6.0 6.0 1 +1912 5 12 8.7 8.2 8.2 1 +1912 5 13 5.7 5.2 5.2 1 +1912 5 14 7.7 7.2 7.2 1 +1912 5 15 8.7 8.2 8.2 1 +1912 5 16 10.7 10.2 10.2 1 +1912 5 17 8.3 7.8 7.8 1 +1912 5 18 6.1 5.6 5.6 1 +1912 5 19 10.1 9.6 9.6 1 +1912 5 20 11.1 10.6 10.6 1 +1912 5 21 11.3 10.8 10.8 1 +1912 5 22 10.8 10.3 10.3 1 +1912 5 23 8.9 8.4 8.4 1 +1912 5 24 12.1 11.6 11.6 1 +1912 5 25 11.8 11.4 11.4 1 +1912 5 26 8.3 7.9 7.9 1 +1912 5 27 8.3 7.9 7.9 1 +1912 5 28 10.7 10.3 10.3 1 +1912 5 29 8.9 8.5 8.5 1 +1912 5 30 7.8 7.4 7.4 1 +1912 5 31 7.2 6.8 6.8 1 +1912 6 1 8.9 8.5 8.5 1 +1912 6 2 10.1 9.7 9.7 1 +1912 6 3 10.3 9.9 9.9 1 +1912 6 4 9.4 9.0 9.0 1 +1912 6 5 10.5 10.1 10.1 1 +1912 6 6 9.5 9.1 9.1 1 +1912 6 7 14.1 13.7 13.7 1 +1912 6 8 15.1 14.7 14.7 1 +1912 6 9 15.9 15.5 15.5 1 +1912 6 10 14.1 13.7 13.7 1 +1912 6 11 15.8 15.4 15.4 1 +1912 6 12 16.5 16.1 16.1 1 +1912 6 13 16.9 16.5 16.5 1 +1912 6 14 12.7 12.3 12.3 1 +1912 6 15 11.6 11.2 11.2 1 +1912 6 16 10.5 10.1 10.1 1 +1912 6 17 11.5 11.1 11.1 1 +1912 6 18 12.0 11.6 11.6 1 +1912 6 19 13.1 12.7 12.7 1 +1912 6 20 13.3 12.9 12.9 1 +1912 6 21 11.8 11.4 11.4 1 +1912 6 22 14.8 14.4 14.4 1 +1912 6 23 16.7 16.3 16.3 1 +1912 6 24 16.9 16.5 16.5 1 +1912 6 25 16.6 16.2 16.2 1 +1912 6 26 18.0 17.6 17.6 1 +1912 6 27 18.9 18.5 18.5 1 +1912 6 28 16.5 16.1 16.1 1 +1912 6 29 19.8 19.4 19.4 1 +1912 6 30 21.5 21.1 21.1 1 +1912 7 1 15.7 15.3 15.3 1 +1912 7 2 12.1 11.7 11.7 1 +1912 7 3 12.9 12.5 12.5 1 +1912 7 4 15.2 14.8 14.8 1 +1912 7 5 18.5 18.1 18.1 1 +1912 7 6 17.4 17.0 17.0 1 +1912 7 7 21.3 20.9 20.9 1 +1912 7 8 19.8 19.4 19.4 1 +1912 7 9 18.7 18.3 18.3 1 +1912 7 10 16.9 16.5 16.5 1 +1912 7 11 18.4 18.0 18.0 1 +1912 7 12 20.0 19.6 19.6 1 +1912 7 13 20.6 20.2 20.2 1 +1912 7 14 20.6 20.2 20.2 1 +1912 7 15 21.1 20.7 20.7 1 +1912 7 16 22.1 21.8 21.8 1 +1912 7 17 16.0 15.7 15.7 1 +1912 7 18 17.8 17.5 17.5 1 +1912 7 19 19.2 18.9 18.9 1 +1912 7 20 18.5 18.2 18.2 1 +1912 7 21 18.2 17.9 17.9 1 +1912 7 22 17.6 17.3 17.3 1 +1912 7 23 17.3 17.0 17.0 1 +1912 7 24 19.8 19.5 19.5 1 +1912 7 25 20.7 20.4 20.4 1 +1912 7 26 20.4 20.1 20.1 1 +1912 7 27 19.9 19.6 19.6 1 +1912 7 28 20.9 20.7 20.7 1 +1912 7 29 18.6 18.4 18.4 1 +1912 7 30 18.5 18.3 18.3 1 +1912 7 31 16.0 15.8 15.8 1 +1912 8 1 18.4 18.2 18.2 1 +1912 8 2 18.2 18.0 18.0 1 +1912 8 3 15.5 15.3 15.3 1 +1912 8 4 16.2 16.0 16.0 1 +1912 8 5 17.5 17.3 17.3 1 +1912 8 6 18.7 18.5 18.5 1 +1912 8 7 18.3 18.1 18.1 1 +1912 8 8 19.1 18.9 18.9 1 +1912 8 9 21.3 21.1 21.1 1 +1912 8 10 21.5 21.4 21.4 1 +1912 8 11 19.6 19.5 19.5 1 +1912 8 12 17.7 17.6 17.6 1 +1912 8 13 15.1 15.0 15.0 1 +1912 8 14 14.5 14.4 14.4 1 +1912 8 15 14.3 14.2 14.2 1 +1912 8 16 14.4 14.3 14.3 1 +1912 8 17 13.8 13.7 13.7 1 +1912 8 18 15.5 15.4 15.4 1 +1912 8 19 16.9 16.8 16.8 1 +1912 8 20 17.3 17.2 17.2 1 +1912 8 21 16.4 16.3 16.3 1 +1912 8 22 14.8 14.7 14.7 1 +1912 8 23 13.8 13.8 13.8 1 +1912 8 24 13.6 13.6 13.6 1 +1912 8 25 13.5 13.5 13.5 1 +1912 8 26 13.0 13.0 13.0 1 +1912 8 27 12.4 12.4 12.4 1 +1912 8 28 11.8 11.8 11.8 1 +1912 8 29 11.8 11.8 11.8 1 +1912 8 30 13.3 13.3 13.3 1 +1912 8 31 14.2 14.2 14.2 1 +1912 9 1 12.1 12.1 12.1 1 +1912 9 2 11.4 11.4 11.4 1 +1912 9 3 10.6 10.6 10.6 1 +1912 9 4 11.4 11.4 11.4 1 +1912 9 5 11.9 12.0 12.0 1 +1912 9 6 11.4 11.5 11.5 1 +1912 9 7 11.6 11.7 11.7 1 +1912 9 8 11.6 11.7 11.7 1 +1912 9 9 10.9 11.0 11.0 1 +1912 9 10 9.0 9.1 9.1 1 +1912 9 11 10.4 10.5 10.5 1 +1912 9 12 9.4 9.5 9.5 1 +1912 9 13 11.5 11.6 11.6 1 +1912 9 14 10.0 10.1 10.1 1 +1912 9 15 8.1 8.2 8.2 1 +1912 9 16 7.9 8.0 8.0 1 +1912 9 17 8.5 8.6 8.6 1 +1912 9 18 7.4 7.5 7.5 1 +1912 9 19 5.7 5.8 5.8 1 +1912 9 20 8.1 8.2 8.2 1 +1912 9 21 10.9 11.0 11.0 1 +1912 9 22 11.0 11.1 11.1 1 +1912 9 23 5.5 5.6 5.6 1 +1912 9 24 4.0 4.1 4.1 1 +1912 9 25 4.3 4.4 4.4 1 +1912 9 26 7.6 7.7 7.7 1 +1912 9 27 7.8 7.9 7.9 1 +1912 9 28 6.8 6.9 6.9 1 +1912 9 29 6.8 6.9 6.9 1 +1912 9 30 7.3 7.4 7.4 1 +1912 10 1 6.9 7.0 7.0 1 +1912 10 2 1.5 1.6 1.6 1 +1912 10 3 -1.4 -1.3 -1.3 1 +1912 10 4 2.3 2.4 2.4 1 +1912 10 5 7.1 7.2 7.2 1 +1912 10 6 8.1 8.2 8.2 1 +1912 10 7 7.3 7.4 7.4 1 +1912 10 8 8.9 9.0 9.0 1 +1912 10 9 5.4 5.5 5.5 1 +1912 10 10 5.8 5.9 5.9 1 +1912 10 11 5.9 6.0 6.0 1 +1912 10 12 4.9 5.0 5.0 1 +1912 10 13 5.4 5.5 5.5 1 +1912 10 14 4.1 4.2 4.2 1 +1912 10 15 5.4 5.5 5.5 1 +1912 10 16 5.6 5.7 5.7 1 +1912 10 17 7.2 7.3 7.3 1 +1912 10 18 6.7 6.8 6.8 1 +1912 10 19 6.5 6.6 6.6 1 +1912 10 20 5.3 5.4 5.4 1 +1912 10 21 4.3 4.4 4.4 1 +1912 10 22 4.1 4.2 4.2 1 +1912 10 23 5.8 5.9 5.9 1 +1912 10 24 3.6 3.7 3.7 1 +1912 10 25 1.9 2.0 2.0 1 +1912 10 26 1.7 1.7 1.7 1 +1912 10 27 1.4 1.4 1.4 1 +1912 10 28 4.9 4.9 4.9 1 +1912 10 29 3.3 3.3 3.3 1 +1912 10 30 1.7 1.7 1.7 1 +1912 10 31 6.7 6.7 6.7 1 +1912 11 1 -2.2 -2.2 -2.2 1 +1912 11 2 -1.3 -1.3 -1.3 1 +1912 11 3 -2.7 -2.7 -2.7 1 +1912 11 4 -2.3 -2.3 -2.3 1 +1912 11 5 -3.4 -3.4 -3.4 1 +1912 11 6 -1.9 -1.9 -1.9 1 +1912 11 7 0.5 0.5 0.5 1 +1912 11 8 2.0 2.0 2.0 1 +1912 11 9 0.3 0.3 0.3 1 +1912 11 10 2.2 2.2 2.2 1 +1912 11 11 3.9 3.9 3.9 1 +1912 11 12 4.1 4.0 4.0 1 +1912 11 13 2.9 2.8 2.8 1 +1912 11 14 0.1 0.0 0.0 1 +1912 11 15 -1.4 -1.5 -1.5 1 +1912 11 16 -1.5 -1.6 -1.6 1 +1912 11 17 -0.5 -0.6 -0.6 1 +1912 11 18 2.2 2.1 2.1 1 +1912 11 19 2.2 2.1 2.1 1 +1912 11 20 1.7 1.6 1.6 1 +1912 11 21 0.0 -0.1 -0.1 1 +1912 11 22 2.5 2.4 2.4 1 +1912 11 23 7.5 7.4 7.4 1 +1912 11 24 5.5 5.4 5.4 1 +1912 11 25 5.7 5.6 5.6 1 +1912 11 26 3.7 3.6 3.6 1 +1912 11 27 5.0 4.9 4.9 1 +1912 11 28 2.7 2.6 2.6 1 +1912 11 29 -1.0 -1.1 -1.1 1 +1912 11 30 1.0 0.9 0.9 1 +1912 12 1 2.0 1.9 1.9 1 +1912 12 2 1.0 0.9 0.9 1 +1912 12 3 0.0 -0.1 -0.1 1 +1912 12 4 -0.5 -0.6 -0.6 1 +1912 12 5 5.6 5.5 5.5 1 +1912 12 6 3.8 3.7 3.7 1 +1912 12 7 1.1 1.0 1.0 1 +1912 12 8 2.9 2.8 2.8 1 +1912 12 9 0.9 0.8 0.8 1 +1912 12 10 -0.3 -0.4 -0.4 1 +1912 12 11 -0.5 -0.6 -0.6 1 +1912 12 12 0.9 0.8 0.8 1 +1912 12 13 2.2 2.1 2.1 1 +1912 12 14 4.0 3.9 3.9 1 +1912 12 15 2.1 2.0 2.0 1 +1912 12 16 -0.7 -0.8 -0.8 1 +1912 12 17 0.4 0.3 0.3 1 +1912 12 18 1.1 1.0 1.0 1 +1912 12 19 -0.1 -0.2 -0.2 1 +1912 12 20 4.6 4.5 4.5 1 +1912 12 21 7.6 7.5 7.5 1 +1912 12 22 4.8 4.7 4.7 1 +1912 12 23 3.5 3.4 3.4 1 +1912 12 24 2.1 1.9 1.9 1 +1912 12 25 4.0 3.8 3.8 1 +1912 12 26 3.2 3.0 3.0 1 +1912 12 27 0.5 0.3 0.3 1 +1912 12 28 -0.2 -0.4 -0.4 1 +1912 12 29 1.5 1.3 1.3 1 +1912 12 30 1.5 1.3 1.3 1 +1912 12 31 0.7 0.5 0.5 1 +1913 1 1 5.2 5.0 5.0 1 +1913 1 2 2.3 2.1 2.1 1 +1913 1 3 -1.7 -2.0 -2.0 1 +1913 1 4 1.0 0.7 0.7 1 +1913 1 5 2.0 1.7 1.7 1 +1913 1 6 2.7 2.4 2.4 1 +1913 1 7 1.7 1.4 1.4 1 +1913 1 8 3.1 2.8 2.8 1 +1913 1 9 2.4 2.1 2.1 1 +1913 1 10 -0.8 -1.1 -1.1 1 +1913 1 11 -1.6 -1.9 -1.9 1 +1913 1 12 -1.7 -2.0 -2.0 1 +1913 1 13 -3.2 -3.6 -3.6 1 +1913 1 14 -2.2 -2.6 -2.6 1 +1913 1 15 -2.6 -3.0 -3.0 1 +1913 1 16 -3.9 -4.3 -4.3 1 +1913 1 17 -1.1 -1.5 -1.5 1 +1913 1 18 -2.3 -2.7 -2.7 1 +1913 1 19 -4.4 -4.8 -4.8 1 +1913 1 20 -6.6 -6.9 -6.9 1 +1913 1 21 -4.4 -4.7 -4.7 1 +1913 1 22 -9.1 -9.4 -9.4 1 +1913 1 23 -12.0 -12.3 -12.3 1 +1913 1 24 -5.8 -6.1 -6.1 1 +1913 1 25 -5.1 -5.4 -5.4 1 +1913 1 26 -5.8 -6.1 -6.1 1 +1913 1 27 -8.9 -9.2 -9.2 1 +1913 1 28 -8.6 -8.9 -8.9 1 +1913 1 29 -9.3 -9.6 -9.6 1 +1913 1 30 -6.3 -6.6 -6.6 1 +1913 1 31 -1.4 -1.7 -1.7 1 +1913 2 1 0.3 0.0 0.0 1 +1913 2 2 0.0 -0.3 -0.3 1 +1913 2 3 -0.6 -0.9 -0.9 1 +1913 2 4 3.3 3.0 3.0 1 +1913 2 5 2.1 1.8 1.8 1 +1913 2 6 1.5 1.2 1.2 1 +1913 2 7 1.1 0.8 0.8 1 +1913 2 8 3.1 2.8 2.8 1 +1913 2 9 2.5 2.2 2.2 1 +1913 2 10 1.5 1.2 1.2 1 +1913 2 11 1.0 0.8 0.8 1 +1913 2 12 0.4 0.2 0.2 1 +1913 2 13 0.7 0.5 0.5 1 +1913 2 14 1.3 1.1 1.1 1 +1913 2 15 -0.5 -0.7 -0.7 1 +1913 2 16 -1.4 -1.6 -1.6 1 +1913 2 17 -0.1 -0.3 -0.3 1 +1913 2 18 -3.4 -3.6 -3.6 1 +1913 2 19 -1.7 -1.9 -1.9 1 +1913 2 20 -0.1 -0.3 -0.3 1 +1913 2 21 -5.3 -5.6 -5.6 1 +1913 2 22 -4.3 -4.6 -4.6 1 +1913 2 23 -2.9 -3.2 -3.2 1 +1913 2 24 1.0 0.7 0.7 1 +1913 2 25 -0.7 -1.0 -1.0 1 +1913 2 26 2.9 2.6 2.6 1 +1913 2 27 -1.0 -1.3 -1.3 1 +1913 2 28 -6.1 -6.4 -6.4 1 +1913 3 1 -8.2 -8.5 -8.5 1 +1913 3 2 -5.0 -5.3 -5.3 1 +1913 3 3 -0.1 -0.4 -0.4 1 +1913 3 4 2.5 2.2 2.2 1 +1913 3 5 4.6 4.3 4.3 1 +1913 3 6 4.9 4.6 4.6 1 +1913 3 7 3.4 3.1 3.1 1 +1913 3 8 0.6 0.3 0.3 1 +1913 3 9 0.6 0.3 0.3 1 +1913 3 10 4.7 4.4 4.4 1 +1913 3 11 2.7 2.4 2.4 1 +1913 3 12 2.9 2.6 2.6 1 +1913 3 13 1.7 1.4 1.4 1 +1913 3 14 2.5 2.2 2.2 1 +1913 3 15 3.0 2.7 2.7 1 +1913 3 16 1.8 1.5 1.5 1 +1913 3 17 1.2 0.9 0.9 1 +1913 3 18 0.6 0.3 0.3 1 +1913 3 19 0.8 0.5 0.5 1 +1913 3 20 1.9 1.6 1.6 1 +1913 3 21 3.0 2.7 2.7 1 +1913 3 22 2.5 2.2 2.2 1 +1913 3 23 2.9 2.6 2.6 1 +1913 3 24 4.6 4.3 4.3 1 +1913 3 25 1.9 1.6 1.6 1 +1913 3 26 5.6 5.3 5.3 1 +1913 3 27 4.3 4.0 4.0 1 +1913 3 28 1.8 1.5 1.5 1 +1913 3 29 1.8 1.5 1.5 1 +1913 3 30 3.3 3.0 3.0 1 +1913 3 31 5.0 4.7 4.7 1 +1913 4 1 5.8 5.6 5.6 1 +1913 4 2 7.6 7.4 7.4 1 +1913 4 3 6.8 6.6 6.6 1 +1913 4 4 6.7 6.5 6.5 1 +1913 4 5 5.4 5.2 5.2 1 +1913 4 6 4.1 3.9 3.9 1 +1913 4 7 1.0 0.8 0.8 1 +1913 4 8 2.9 2.7 2.7 1 +1913 4 9 3.9 3.7 3.7 1 +1913 4 10 1.3 1.1 1.1 1 +1913 4 11 -3.3 -3.5 -3.5 1 +1913 4 12 -3.0 -3.2 -3.2 1 +1913 4 13 -1.8 -2.0 -2.0 1 +1913 4 14 1.2 1.0 1.0 1 +1913 4 15 3.1 2.9 2.9 1 +1913 4 16 4.1 3.9 3.9 1 +1913 4 17 2.3 2.1 2.1 1 +1913 4 18 3.8 3.6 3.6 1 +1913 4 19 7.7 7.5 7.5 1 +1913 4 20 5.7 5.5 5.5 1 +1913 4 21 6.1 5.9 5.9 1 +1913 4 22 6.8 6.5 6.5 1 +1913 4 23 8.7 8.4 8.4 1 +1913 4 24 6.0 5.7 5.7 1 +1913 4 25 4.0 3.7 3.7 1 +1913 4 26 7.9 7.6 7.6 1 +1913 4 27 10.0 9.7 9.7 1 +1913 4 28 9.3 9.0 9.0 1 +1913 4 29 15.1 14.8 14.8 1 +1913 4 30 8.2 7.9 7.9 1 +1913 5 1 10.0 9.7 9.7 1 +1913 5 2 6.4 6.0 6.0 1 +1913 5 3 10.0 9.6 9.6 1 +1913 5 4 5.0 4.6 4.6 1 +1913 5 5 2.4 2.0 2.0 1 +1913 5 6 5.8 5.4 5.4 1 +1913 5 7 6.7 6.3 6.3 1 +1913 5 8 8.4 8.0 8.0 1 +1913 5 9 9.7 9.3 9.3 1 +1913 5 10 9.4 9.0 9.0 1 +1913 5 11 11.2 10.8 10.8 1 +1913 5 12 8.6 8.1 8.1 1 +1913 5 13 6.1 5.6 5.6 1 +1913 5 14 6.5 6.0 6.0 1 +1913 5 15 10.7 10.2 10.2 1 +1913 5 16 8.8 8.3 8.3 1 +1913 5 17 13.5 13.0 13.0 1 +1913 5 18 14.5 14.0 14.0 1 +1913 5 19 10.5 10.0 10.0 1 +1913 5 20 9.7 9.2 9.2 1 +1913 5 21 11.6 11.1 11.1 1 +1913 5 22 13.1 12.6 12.6 1 +1913 5 23 12.5 12.0 12.0 1 +1913 5 24 11.9 11.4 11.4 1 +1913 5 25 12.9 12.5 12.5 1 +1913 5 26 13.2 12.8 12.8 1 +1913 5 27 12.0 11.6 11.6 1 +1913 5 28 10.8 10.4 10.4 1 +1913 5 29 12.3 11.9 11.9 1 +1913 5 30 11.5 11.1 11.1 1 +1913 5 31 13.9 13.5 13.5 1 +1913 6 1 18.9 18.5 18.5 1 +1913 6 2 14.1 13.7 13.7 1 +1913 6 3 16.4 16.0 16.0 1 +1913 6 4 15.6 15.2 15.2 1 +1913 6 5 16.0 15.6 15.6 1 +1913 6 6 18.8 18.4 18.4 1 +1913 6 7 16.6 16.2 16.2 1 +1913 6 8 14.6 14.2 14.2 1 +1913 6 9 12.4 12.0 12.0 1 +1913 6 10 11.0 10.6 10.6 1 +1913 6 11 9.3 8.9 8.9 1 +1913 6 12 9.5 9.1 9.1 1 +1913 6 13 9.9 9.5 9.5 1 +1913 6 14 10.6 10.2 10.2 1 +1913 6 15 13.5 13.1 13.1 1 +1913 6 16 15.3 14.9 14.9 1 +1913 6 17 17.0 16.6 16.6 1 +1913 6 18 12.0 11.6 11.6 1 +1913 6 19 8.8 8.4 8.4 1 +1913 6 20 12.4 12.0 12.0 1 +1913 6 21 13.7 13.3 13.3 1 +1913 6 22 14.2 13.8 13.8 1 +1913 6 23 14.7 14.3 14.3 1 +1913 6 24 16.7 16.3 16.3 1 +1913 6 25 18.4 18.0 18.0 1 +1913 6 26 15.0 14.6 14.6 1 +1913 6 27 12.1 11.7 11.7 1 +1913 6 28 11.8 11.4 11.4 1 +1913 6 29 12.9 12.5 12.5 1 +1913 6 30 13.0 12.6 12.6 1 +1913 7 1 14.4 14.0 14.0 1 +1913 7 2 11.6 11.2 11.2 1 +1913 7 3 16.8 16.4 16.4 1 +1913 7 4 18.9 18.5 18.5 1 +1913 7 5 13.0 12.6 12.6 1 +1913 7 6 12.9 12.5 12.5 1 +1913 7 7 13.7 13.3 13.3 1 +1913 7 8 13.5 13.1 13.1 1 +1913 7 9 13.9 13.5 13.5 1 +1913 7 10 14.2 13.8 13.8 1 +1913 7 11 16.9 16.5 16.5 1 +1913 7 12 18.5 18.1 18.1 1 +1913 7 13 21.3 20.9 20.9 1 +1913 7 14 17.8 17.4 17.4 1 +1913 7 15 17.9 17.5 17.5 1 +1913 7 16 19.9 19.6 19.6 1 +1913 7 17 17.1 16.8 16.8 1 +1913 7 18 18.6 18.3 18.3 1 +1913 7 19 18.9 18.6 18.6 1 +1913 7 20 17.1 16.8 16.8 1 +1913 7 21 15.4 15.1 15.1 1 +1913 7 22 16.7 16.4 16.4 1 +1913 7 23 17.9 17.6 17.6 1 +1913 7 24 18.4 18.1 18.1 1 +1913 7 25 16.4 16.1 16.1 1 +1913 7 26 16.9 16.6 16.6 1 +1913 7 27 16.6 16.3 16.3 1 +1913 7 28 14.8 14.6 14.6 1 +1913 7 29 14.2 14.0 14.0 1 +1913 7 30 15.4 15.2 15.2 1 +1913 7 31 17.9 17.7 17.7 1 +1913 8 1 18.1 17.9 17.9 1 +1913 8 2 17.6 17.4 17.4 1 +1913 8 3 20.6 20.4 20.4 1 +1913 8 4 14.7 14.5 14.5 1 +1913 8 5 10.4 10.2 10.2 1 +1913 8 6 12.6 12.4 12.4 1 +1913 8 7 13.1 12.9 12.9 1 +1913 8 8 12.8 12.6 12.6 1 +1913 8 9 13.6 13.4 13.4 1 +1913 8 10 14.4 14.3 14.3 1 +1913 8 11 14.9 14.8 14.8 1 +1913 8 12 15.2 15.1 15.1 1 +1913 8 13 13.1 13.0 13.0 1 +1913 8 14 14.2 14.1 14.1 1 +1913 8 15 15.6 15.5 15.5 1 +1913 8 16 15.0 14.9 14.9 1 +1913 8 17 15.2 15.1 15.1 1 +1913 8 18 16.2 16.1 16.1 1 +1913 8 19 15.7 15.6 15.6 1 +1913 8 20 15.0 14.9 14.9 1 +1913 8 21 14.9 14.8 14.8 1 +1913 8 22 14.8 14.7 14.7 1 +1913 8 23 15.6 15.6 15.6 1 +1913 8 24 17.7 17.7 17.7 1 +1913 8 25 15.3 15.3 15.3 1 +1913 8 26 16.0 16.0 16.0 1 +1913 8 27 16.3 16.3 16.3 1 +1913 8 28 16.2 16.2 16.2 1 +1913 8 29 15.7 15.7 15.7 1 +1913 8 30 16.4 16.4 16.4 1 +1913 8 31 16.8 16.8 16.8 1 +1913 9 1 17.4 17.4 17.4 1 +1913 9 2 11.5 11.5 11.5 1 +1913 9 3 11.7 11.7 11.7 1 +1913 9 4 11.6 11.6 11.6 1 +1913 9 5 11.5 11.6 11.6 1 +1913 9 6 11.5 11.6 11.6 1 +1913 9 7 12.2 12.3 12.3 1 +1913 9 8 13.1 13.2 13.2 1 +1913 9 9 11.4 11.5 11.5 1 +1913 9 10 9.5 9.6 9.6 1 +1913 9 11 10.8 10.9 10.9 1 +1913 9 12 12.9 13.0 13.0 1 +1913 9 13 14.6 14.7 14.7 1 +1913 9 14 14.9 15.0 15.0 1 +1913 9 15 13.7 13.8 13.8 1 +1913 9 16 14.5 14.6 14.6 1 +1913 9 17 13.5 13.6 13.6 1 +1913 9 18 12.8 12.9 12.9 1 +1913 9 19 12.4 12.5 12.5 1 +1913 9 20 13.0 13.1 13.1 1 +1913 9 21 7.6 7.7 7.7 1 +1913 9 22 7.0 7.1 7.1 1 +1913 9 23 7.6 7.7 7.7 1 +1913 9 24 7.6 7.7 7.7 1 +1913 9 25 8.4 8.5 8.5 1 +1913 9 26 9.3 9.4 9.4 1 +1913 9 27 10.1 10.2 10.2 1 +1913 9 28 11.4 11.5 11.5 1 +1913 9 29 11.4 11.5 11.5 1 +1913 9 30 9.0 9.1 9.1 1 +1913 10 1 9.2 9.3 9.3 1 +1913 10 2 10.5 10.6 10.6 1 +1913 10 3 9.0 9.1 9.1 1 +1913 10 4 8.7 8.8 8.8 1 +1913 10 5 2.7 2.8 2.8 1 +1913 10 6 2.0 2.1 2.1 1 +1913 10 7 5.2 5.3 5.3 1 +1913 10 8 4.2 4.3 4.3 1 +1913 10 9 3.7 3.8 3.8 1 +1913 10 10 2.3 2.4 2.4 1 +1913 10 11 3.3 3.4 3.4 1 +1913 10 12 3.4 3.5 3.5 1 +1913 10 13 3.9 4.0 4.0 1 +1913 10 14 7.4 7.5 7.5 1 +1913 10 15 6.3 6.4 6.4 1 +1913 10 16 3.7 3.8 3.8 1 +1913 10 17 10.6 10.7 10.7 1 +1913 10 18 12.0 12.1 12.1 1 +1913 10 19 9.6 9.7 9.7 1 +1913 10 20 10.5 10.6 10.6 1 +1913 10 21 9.2 9.3 9.3 1 +1913 10 22 10.7 10.8 10.8 1 +1913 10 23 7.8 7.9 7.9 1 +1913 10 24 2.9 3.0 3.0 1 +1913 10 25 5.8 5.9 5.9 1 +1913 10 26 4.3 4.3 4.3 1 +1913 10 27 9.4 9.4 9.4 1 +1913 10 28 10.1 10.1 10.1 1 +1913 10 29 9.2 9.2 9.2 1 +1913 10 30 8.5 8.5 8.5 1 +1913 10 31 7.9 7.9 7.9 1 +1913 11 1 8.2 8.2 8.2 1 +1913 11 2 6.4 6.4 6.4 1 +1913 11 3 8.3 8.3 8.3 1 +1913 11 4 7.5 7.5 7.5 1 +1913 11 5 4.7 4.7 4.7 1 +1913 11 6 3.4 3.4 3.4 1 +1913 11 7 6.3 6.3 6.3 1 +1913 11 8 3.9 3.9 3.9 1 +1913 11 9 2.6 2.6 2.6 1 +1913 11 10 0.5 0.5 0.5 1 +1913 11 11 2.9 2.9 2.9 1 +1913 11 12 6.9 6.8 6.8 1 +1913 11 13 7.8 7.7 7.7 1 +1913 11 14 5.0 4.9 4.9 1 +1913 11 15 4.6 4.5 4.5 1 +1913 11 16 5.0 4.9 4.9 1 +1913 11 17 4.4 4.3 4.3 1 +1913 11 18 5.8 5.7 5.7 1 +1913 11 19 3.7 3.6 3.6 1 +1913 11 20 4.3 4.2 4.2 1 +1913 11 21 7.3 7.2 7.2 1 +1913 11 22 4.8 4.7 4.7 1 +1913 11 23 1.6 1.5 1.5 1 +1913 11 24 0.8 0.7 0.7 1 +1913 11 25 4.4 4.3 4.3 1 +1913 11 26 4.9 4.8 4.8 1 +1913 11 27 0.6 0.5 0.5 1 +1913 11 28 3.1 3.0 3.0 1 +1913 11 29 3.9 3.8 3.8 1 +1913 11 30 5.8 5.7 5.7 1 +1913 12 1 3.2 3.1 3.1 1 +1913 12 2 -1.8 -1.9 -1.9 1 +1913 12 3 3.3 3.2 3.2 1 +1913 12 4 6.4 6.3 6.3 1 +1913 12 5 1.5 1.4 1.4 1 +1913 12 6 -2.6 -2.7 -2.7 1 +1913 12 7 -4.4 -4.5 -4.5 1 +1913 12 8 -3.1 -3.2 -3.2 1 +1913 12 9 2.6 2.5 2.5 1 +1913 12 10 0.2 0.1 0.1 1 +1913 12 11 -1.3 -1.4 -1.4 1 +1913 12 12 1.6 1.5 1.5 1 +1913 12 13 2.7 2.6 2.6 1 +1913 12 14 -2.5 -2.6 -2.6 1 +1913 12 15 -4.0 -4.1 -4.1 1 +1913 12 16 -5.4 -5.5 -5.5 1 +1913 12 17 -2.5 -2.6 -2.6 1 +1913 12 18 -1.7 -1.8 -1.8 1 +1913 12 19 -2.5 -2.6 -2.6 1 +1913 12 20 -1.1 -1.2 -1.2 1 +1913 12 21 0.0 -0.1 -0.1 1 +1913 12 22 -2.9 -3.0 -3.0 1 +1913 12 23 -6.1 -6.2 -6.2 1 +1913 12 24 -1.3 -1.5 -1.5 1 +1913 12 25 -5.0 -5.2 -5.2 1 +1913 12 26 -4.0 -4.2 -4.2 1 +1913 12 27 -3.7 -3.9 -3.9 1 +1913 12 28 -4.8 -5.0 -5.0 1 +1913 12 29 -7.4 -7.6 -7.6 1 +1913 12 30 -7.0 -7.2 -7.2 1 +1913 12 31 -6.1 -6.3 -6.3 1 +1914 1 1 -0.5 -0.7 -0.7 1 +1914 1 2 1.6 1.4 1.4 1 +1914 1 3 -4.3 -4.6 -4.6 1 +1914 1 4 -2.1 -2.4 -2.4 1 +1914 1 5 0.0 -0.3 -0.3 1 +1914 1 6 -7.0 -7.3 -7.3 1 +1914 1 7 -9.9 -10.2 -10.2 1 +1914 1 8 -5.4 -5.7 -5.7 1 +1914 1 9 -7.6 -7.9 -7.9 1 +1914 1 10 -9.5 -9.8 -9.8 1 +1914 1 11 -11.8 -12.1 -12.1 1 +1914 1 12 -10.4 -10.7 -10.7 1 +1914 1 13 -12.3 -12.7 -12.7 1 +1914 1 14 -4.3 -4.7 -4.7 1 +1914 1 15 -0.2 -0.6 -0.6 1 +1914 1 16 0.1 -0.3 -0.3 1 +1914 1 17 0.0 -0.4 -0.4 1 +1914 1 18 -1.8 -2.2 -2.2 1 +1914 1 19 -4.7 -5.1 -5.1 1 +1914 1 20 -9.5 -9.8 -9.8 1 +1914 1 21 -4.9 -5.2 -5.2 1 +1914 1 22 -3.8 -4.1 -4.1 1 +1914 1 23 -4.0 -4.3 -4.3 1 +1914 1 24 -1.2 -1.5 -1.5 1 +1914 1 25 4.0 3.7 3.7 1 +1914 1 26 4.0 3.7 3.7 1 +1914 1 27 -0.5 -0.8 -0.8 1 +1914 1 28 -1.6 -1.9 -1.9 1 +1914 1 29 1.9 1.6 1.6 1 +1914 1 30 0.9 0.6 0.6 1 +1914 1 31 3.2 2.9 2.9 1 +1914 2 1 4.9 4.6 4.6 1 +1914 2 2 7.7 7.4 7.4 1 +1914 2 3 5.9 5.6 5.6 1 +1914 2 4 2.8 2.5 2.5 1 +1914 2 5 4.9 4.6 4.6 1 +1914 2 6 4.0 3.7 3.7 1 +1914 2 7 1.5 1.2 1.2 1 +1914 2 8 3.8 3.5 3.5 1 +1914 2 9 6.1 5.8 5.8 1 +1914 2 10 3.9 3.6 3.6 1 +1914 2 11 5.0 4.8 4.8 1 +1914 2 12 3.2 3.0 3.0 1 +1914 2 13 2.2 2.0 2.0 1 +1914 2 14 2.8 2.6 2.6 1 +1914 2 15 5.5 5.3 5.3 1 +1914 2 16 5.4 5.2 5.2 1 +1914 2 17 3.0 2.8 2.8 1 +1914 2 18 1.2 1.0 1.0 1 +1914 2 19 -0.5 -0.7 -0.7 1 +1914 2 20 -5.2 -5.4 -5.4 1 +1914 2 21 -5.0 -5.3 -5.3 1 +1914 2 22 -2.9 -3.2 -3.2 1 +1914 2 23 -2.9 -3.2 -3.2 1 +1914 2 24 -1.7 -2.0 -2.0 1 +1914 2 25 -1.3 -1.6 -1.6 1 +1914 2 26 -1.4 -1.7 -1.7 1 +1914 2 27 -2.7 -3.0 -3.0 1 +1914 2 28 -3.0 -3.3 -3.3 1 +1914 3 1 2.5 2.2 2.2 1 +1914 3 2 3.5 3.2 3.2 1 +1914 3 3 0.8 0.5 0.5 1 +1914 3 4 1.0 0.7 0.7 1 +1914 3 5 0.0 -0.3 -0.3 1 +1914 3 6 0.0 -0.3 -0.3 1 +1914 3 7 -1.8 -2.1 -2.1 1 +1914 3 8 -3.3 -3.6 -3.6 1 +1914 3 9 -3.9 -4.2 -4.2 1 +1914 3 10 -3.9 -4.2 -4.2 1 +1914 3 11 -5.2 -5.5 -5.5 1 +1914 3 12 -7.5 -7.8 -7.8 1 +1914 3 13 -4.8 -5.1 -5.1 1 +1914 3 14 -1.6 -1.9 -1.9 1 +1914 3 15 1.9 1.6 1.6 1 +1914 3 16 2.7 2.4 2.4 1 +1914 3 17 0.4 0.1 0.1 1 +1914 3 18 -1.7 -2.0 -2.0 1 +1914 3 19 -0.3 -0.6 -0.6 1 +1914 3 20 1.9 1.6 1.6 1 +1914 3 21 2.1 1.8 1.8 1 +1914 3 22 1.6 1.3 1.3 1 +1914 3 23 1.5 1.2 1.2 1 +1914 3 24 0.7 0.4 0.4 1 +1914 3 25 0.0 -0.3 -0.3 1 +1914 3 26 -1.1 -1.4 -1.4 1 +1914 3 27 -0.9 -1.2 -1.2 1 +1914 3 28 -1.4 -1.7 -1.7 1 +1914 3 29 -0.3 -0.6 -0.6 1 +1914 3 30 2.2 1.9 1.9 1 +1914 3 31 2.9 2.6 2.6 1 +1914 4 1 1.2 1.0 1.0 1 +1914 4 2 0.6 0.4 0.4 1 +1914 4 3 0.3 0.1 0.1 1 +1914 4 4 1.8 1.6 1.6 1 +1914 4 5 2.8 2.6 2.6 1 +1914 4 6 2.3 2.1 2.1 1 +1914 4 7 2.7 2.5 2.5 1 +1914 4 8 3.7 3.5 3.5 1 +1914 4 9 2.7 2.5 2.5 1 +1914 4 10 1.9 1.7 1.7 1 +1914 4 11 7.8 7.6 7.6 1 +1914 4 12 6.6 6.4 6.4 1 +1914 4 13 8.8 8.6 8.6 1 +1914 4 14 7.6 7.4 7.4 1 +1914 4 15 4.0 3.8 3.8 1 +1914 4 16 6.5 6.3 6.3 1 +1914 4 17 7.2 7.0 7.0 1 +1914 4 18 11.0 10.8 10.8 1 +1914 4 19 11.6 11.4 11.4 1 +1914 4 20 10.3 10.1 10.1 1 +1914 4 21 14.0 13.8 13.8 1 +1914 4 22 15.5 15.2 15.2 1 +1914 4 23 14.3 14.0 14.0 1 +1914 4 24 5.8 5.5 5.5 1 +1914 4 25 5.6 5.3 5.3 1 +1914 4 26 9.0 8.7 8.7 1 +1914 4 27 8.9 8.6 8.6 1 +1914 4 28 11.7 11.4 11.4 1 +1914 4 29 8.6 8.3 8.3 1 +1914 4 30 5.3 5.0 5.0 1 +1914 5 1 4.0 3.7 3.7 1 +1914 5 2 4.0 3.6 3.6 1 +1914 5 3 5.4 5.0 5.0 1 +1914 5 4 9.3 8.9 8.9 1 +1914 5 5 11.4 11.0 11.0 1 +1914 5 6 7.8 7.4 7.4 1 +1914 5 7 8.9 8.5 8.5 1 +1914 5 8 8.8 8.4 8.4 1 +1914 5 9 9.8 9.4 9.4 1 +1914 5 10 6.4 6.0 6.0 1 +1914 5 11 5.9 5.5 5.5 1 +1914 5 12 8.3 7.8 7.8 1 +1914 5 13 7.5 7.0 7.0 1 +1914 5 14 9.6 9.1 9.1 1 +1914 5 15 12.9 12.4 12.4 1 +1914 5 16 11.6 11.1 11.1 1 +1914 5 17 12.5 12.0 12.0 1 +1914 5 18 15.9 15.4 15.4 1 +1914 5 19 13.3 12.8 12.8 1 +1914 5 20 10.6 10.1 10.1 1 +1914 5 21 10.8 10.3 10.3 1 +1914 5 22 12.8 12.3 12.3 1 +1914 5 23 14.4 13.9 13.9 1 +1914 5 24 8.9 8.4 8.4 1 +1914 5 25 7.9 7.5 7.5 1 +1914 5 26 5.7 5.3 5.3 1 +1914 5 27 7.3 6.9 6.9 1 +1914 5 28 8.5 8.1 8.1 1 +1914 5 29 9.1 8.7 8.7 1 +1914 5 30 11.5 11.1 11.1 1 +1914 5 31 13.3 12.9 12.9 1 +1914 6 1 11.3 10.9 10.9 1 +1914 6 2 7.4 7.0 7.0 1 +1914 6 3 6.9 6.5 6.5 1 +1914 6 4 8.1 7.7 7.7 1 +1914 6 5 7.3 6.9 6.9 1 +1914 6 6 7.6 7.2 7.2 1 +1914 6 7 10.2 9.8 9.8 1 +1914 6 8 12.8 12.4 12.4 1 +1914 6 9 14.0 13.6 13.6 1 +1914 6 10 14.1 13.7 13.7 1 +1914 6 11 15.8 15.4 15.4 1 +1914 6 12 16.9 16.5 16.5 1 +1914 6 13 17.9 17.5 17.5 1 +1914 6 14 17.9 17.5 17.5 1 +1914 6 15 20.3 19.9 19.9 1 +1914 6 16 10.0 9.6 9.6 1 +1914 6 17 11.7 11.3 11.3 1 +1914 6 18 17.0 16.6 16.6 1 +1914 6 19 16.6 16.2 16.2 1 +1914 6 20 18.4 18.0 18.0 1 +1914 6 21 19.7 19.3 19.3 1 +1914 6 22 20.7 20.3 20.3 1 +1914 6 23 20.5 20.1 20.1 1 +1914 6 24 18.5 18.1 18.1 1 +1914 6 25 19.6 19.2 19.2 1 +1914 6 26 16.8 16.4 16.4 1 +1914 6 27 17.0 16.6 16.6 1 +1914 6 28 14.6 14.2 14.2 1 +1914 6 29 15.4 15.0 15.0 1 +1914 6 30 16.5 16.1 16.1 1 +1914 7 1 21.1 20.7 20.7 1 +1914 7 2 20.2 19.8 19.8 1 +1914 7 3 20.8 20.4 20.4 1 +1914 7 4 22.2 21.8 21.8 1 +1914 7 5 21.4 21.0 21.0 1 +1914 7 6 21.0 20.6 20.6 1 +1914 7 7 22.2 21.8 21.8 1 +1914 7 8 23.0 22.6 22.6 1 +1914 7 9 24.0 23.6 23.6 1 +1914 7 10 24.7 24.3 24.3 1 +1914 7 11 23.1 22.7 22.7 1 +1914 7 12 20.3 19.9 19.9 1 +1914 7 13 21.1 20.7 20.7 1 +1914 7 14 21.4 21.0 21.0 1 +1914 7 15 22.8 22.4 22.4 1 +1914 7 16 23.1 22.8 22.8 1 +1914 7 17 24.3 24.0 24.0 1 +1914 7 18 21.4 21.1 21.1 1 +1914 7 19 24.1 23.8 23.8 1 +1914 7 20 24.5 24.2 24.2 1 +1914 7 21 23.4 23.1 23.1 1 +1914 7 22 23.4 23.1 23.1 1 +1914 7 23 24.3 24.0 24.0 1 +1914 7 24 18.2 17.9 17.9 1 +1914 7 25 16.4 16.1 16.1 1 +1914 7 26 17.3 17.0 17.0 1 +1914 7 27 18.4 18.1 18.1 1 +1914 7 28 15.7 15.5 15.5 1 +1914 7 29 15.9 15.7 15.7 1 +1914 7 30 16.0 15.8 15.8 1 +1914 7 31 16.8 16.6 16.6 1 +1914 8 1 15.5 15.3 15.3 1 +1914 8 2 14.5 14.3 14.3 1 +1914 8 3 14.7 14.5 14.5 1 +1914 8 4 15.7 15.5 15.5 1 +1914 8 5 14.1 13.9 13.9 1 +1914 8 6 16.1 15.9 15.9 1 +1914 8 7 17.3 17.1 17.1 1 +1914 8 8 19.1 18.9 18.9 1 +1914 8 9 18.0 17.8 17.8 1 +1914 8 10 21.1 21.0 21.0 1 +1914 8 11 19.2 19.1 19.1 1 +1914 8 12 15.8 15.7 15.7 1 +1914 8 13 14.6 14.5 14.5 1 +1914 8 14 13.5 13.4 13.4 1 +1914 8 15 12.4 12.3 12.3 1 +1914 8 16 14.1 14.0 14.0 1 +1914 8 17 13.4 13.3 13.3 1 +1914 8 18 13.7 13.6 13.6 1 +1914 8 19 14.0 13.9 13.9 1 +1914 8 20 12.9 12.8 12.8 1 +1914 8 21 13.1 13.0 13.0 1 +1914 8 22 15.6 15.5 15.5 1 +1914 8 23 15.0 15.0 15.0 1 +1914 8 24 17.4 17.4 17.4 1 +1914 8 25 18.8 18.8 18.8 1 +1914 8 26 17.2 17.2 17.2 1 +1914 8 27 15.6 15.6 15.6 1 +1914 8 28 16.9 16.9 16.9 1 +1914 8 29 17.8 17.8 17.8 1 +1914 8 30 14.5 14.5 14.5 1 +1914 8 31 12.9 12.9 12.9 1 +1914 9 1 12.1 12.1 12.1 1 +1914 9 2 12.2 12.2 12.2 1 +1914 9 3 12.5 12.5 12.5 1 +1914 9 4 7.8 7.8 7.8 1 +1914 9 5 10.8 10.9 10.9 1 +1914 9 6 13.4 13.5 13.5 1 +1914 9 7 15.9 16.0 16.0 1 +1914 9 8 15.1 15.2 15.2 1 +1914 9 9 12.9 13.0 13.0 1 +1914 9 10 14.6 14.7 14.7 1 +1914 9 11 16.3 16.4 16.4 1 +1914 9 12 16.7 16.8 16.8 1 +1914 9 13 11.9 12.0 12.0 1 +1914 9 14 13.6 13.7 13.7 1 +1914 9 15 13.9 14.0 14.0 1 +1914 9 16 13.0 13.1 13.1 1 +1914 9 17 11.3 11.4 11.4 1 +1914 9 18 11.6 11.7 11.7 1 +1914 9 19 10.8 10.9 10.9 1 +1914 9 20 9.7 9.8 9.8 1 +1914 9 21 8.6 8.7 8.7 1 +1914 9 22 8.1 8.2 8.2 1 +1914 9 23 10.6 10.7 10.7 1 +1914 9 24 11.7 11.8 11.8 1 +1914 9 25 13.9 14.0 14.0 1 +1914 9 26 13.6 13.7 13.7 1 +1914 9 27 9.2 9.3 9.3 1 +1914 9 28 6.7 6.8 6.8 1 +1914 9 29 5.9 6.0 6.0 1 +1914 9 30 6.0 6.1 6.1 1 +1914 10 1 9.0 9.1 9.1 1 +1914 10 2 5.6 5.7 5.7 1 +1914 10 3 5.2 5.3 5.3 1 +1914 10 4 3.7 3.8 3.8 1 +1914 10 5 5.3 5.4 5.4 1 +1914 10 6 2.1 2.2 2.2 1 +1914 10 7 4.4 4.5 4.5 1 +1914 10 8 9.3 9.4 9.4 1 +1914 10 9 7.9 8.0 8.0 1 +1914 10 10 7.2 7.3 7.3 1 +1914 10 11 6.7 6.8 6.8 1 +1914 10 12 7.7 7.8 7.8 1 +1914 10 13 6.7 6.8 6.8 1 +1914 10 14 6.5 6.6 6.6 1 +1914 10 15 6.9 7.0 7.0 1 +1914 10 16 7.4 7.5 7.5 1 +1914 10 17 8.0 8.1 8.1 1 +1914 10 18 6.9 7.0 7.0 1 +1914 10 19 6.4 6.5 6.5 1 +1914 10 20 5.1 5.2 5.2 1 +1914 10 21 4.8 4.9 4.9 1 +1914 10 22 5.0 5.1 5.1 1 +1914 10 23 6.1 6.2 6.2 1 +1914 10 24 7.4 7.5 7.5 1 +1914 10 25 7.5 7.6 7.6 1 +1914 10 26 6.1 6.1 6.1 1 +1914 10 27 5.1 5.1 5.1 1 +1914 10 28 3.7 3.7 3.7 1 +1914 10 29 1.6 1.6 1.6 1 +1914 10 30 2.7 2.7 2.7 1 +1914 10 31 2.6 2.6 2.6 1 +1914 11 1 2.7 2.7 2.7 1 +1914 11 2 1.6 1.6 1.6 1 +1914 11 3 2.4 2.4 2.4 1 +1914 11 4 1.4 1.4 1.4 1 +1914 11 5 2.2 2.2 2.2 1 +1914 11 6 3.1 3.1 3.1 1 +1914 11 7 3.4 3.4 3.4 1 +1914 11 8 3.4 3.4 3.4 1 +1914 11 9 5.5 5.5 5.5 1 +1914 11 10 8.9 8.9 8.9 1 +1914 11 11 4.8 4.8 4.8 1 +1914 11 12 3.2 3.1 3.1 1 +1914 11 13 0.7 0.6 0.6 1 +1914 11 14 -1.0 -1.1 -1.1 1 +1914 11 15 -0.2 -0.3 -0.3 1 +1914 11 16 -3.9 -4.0 -4.0 1 +1914 11 17 -3.1 -3.2 -3.2 1 +1914 11 18 -0.5 -0.6 -0.6 1 +1914 11 19 -3.3 -3.4 -3.4 1 +1914 11 20 0.6 0.5 0.5 1 +1914 11 21 -0.4 -0.5 -0.5 1 +1914 11 22 -2.3 -2.4 -2.4 1 +1914 11 23 -0.5 -0.6 -0.6 1 +1914 11 24 0.9 0.8 0.8 1 +1914 11 25 -2.1 -2.2 -2.2 1 +1914 11 26 0.1 0.0 0.0 1 +1914 11 27 4.3 4.2 4.2 1 +1914 11 28 3.7 3.6 3.6 1 +1914 11 29 4.8 4.7 4.7 1 +1914 11 30 5.4 5.3 5.3 1 +1914 12 1 7.9 7.8 7.8 1 +1914 12 2 5.8 5.7 5.7 1 +1914 12 3 5.3 5.2 5.2 1 +1914 12 4 6.0 5.9 5.9 1 +1914 12 5 4.7 4.6 4.6 1 +1914 12 6 3.2 3.1 3.1 1 +1914 12 7 2.7 2.6 2.6 1 +1914 12 8 4.3 4.2 4.2 1 +1914 12 9 5.2 5.1 5.1 1 +1914 12 10 1.0 0.9 0.9 1 +1914 12 11 -3.8 -3.9 -3.9 1 +1914 12 12 -2.2 -2.3 -2.3 1 +1914 12 13 0.8 0.7 0.7 1 +1914 12 14 3.3 3.2 3.2 1 +1914 12 15 3.0 2.9 2.9 1 +1914 12 16 1.3 1.2 1.2 1 +1914 12 17 -0.8 -0.9 -0.9 1 +1914 12 18 2.5 2.4 2.4 1 +1914 12 19 4.1 4.0 4.0 1 +1914 12 20 3.8 3.7 3.7 1 +1914 12 21 3.1 3.0 3.0 1 +1914 12 22 2.9 2.8 2.8 1 +1914 12 23 1.0 0.9 0.9 1 +1914 12 24 0.7 0.5 0.5 1 +1914 12 25 1.1 0.9 0.9 1 +1914 12 26 -1.7 -1.9 -1.9 1 +1914 12 27 1.5 1.3 1.3 1 +1914 12 28 1.9 1.7 1.7 1 +1914 12 29 2.9 2.7 2.7 1 +1914 12 30 2.2 2.0 2.0 1 +1914 12 31 -2.0 -2.2 -2.2 1 +1915 1 1 0.1 -0.1 -0.1 1 +1915 1 2 0.8 0.5 0.5 1 +1915 1 3 -0.5 -0.8 -0.8 1 +1915 1 4 -1.3 -1.6 -1.6 1 +1915 1 5 -2.0 -2.3 -2.3 1 +1915 1 6 -3.6 -3.9 -3.9 1 +1915 1 7 -8.9 -9.2 -9.2 1 +1915 1 8 -7.8 -8.1 -8.1 1 +1915 1 9 -5.6 -5.9 -5.9 1 +1915 1 10 -3.2 -3.5 -3.5 1 +1915 1 11 -9.7 -10.0 -10.0 1 +1915 1 12 -5.9 -6.2 -6.2 1 +1915 1 13 -11.4 -11.8 -11.8 1 +1915 1 14 -4.1 -4.5 -4.5 1 +1915 1 15 1.1 0.7 0.7 1 +1915 1 16 -2.3 -2.7 -2.7 1 +1915 1 17 -7.1 -7.5 -7.5 1 +1915 1 18 -7.8 -8.2 -8.2 1 +1915 1 19 -10.1 -10.5 -10.5 1 +1915 1 20 1.5 1.1 1.1 1 +1915 1 21 1.0 0.6 0.6 1 +1915 1 22 0.8 0.5 0.5 1 +1915 1 23 0.6 0.3 0.3 1 +1915 1 24 -1.5 -1.8 -1.8 1 +1915 1 25 -3.9 -4.2 -4.2 1 +1915 1 26 -3.0 -3.3 -3.3 1 +1915 1 27 -5.3 -5.6 -5.6 1 +1915 1 28 -8.2 -8.5 -8.5 1 +1915 1 29 -7.4 -7.7 -7.7 1 +1915 1 30 -8.5 -8.8 -8.8 1 +1915 1 31 -11.5 -11.8 -11.8 1 +1915 2 1 -4.7 -5.0 -5.0 1 +1915 2 2 -0.6 -0.9 -0.9 1 +1915 2 3 0.1 -0.2 -0.2 1 +1915 2 4 -2.1 -2.4 -2.4 1 +1915 2 5 -5.2 -5.5 -5.5 1 +1915 2 6 -6.3 -6.6 -6.6 1 +1915 2 7 -4.8 -5.1 -5.1 1 +1915 2 8 -0.2 -0.5 -0.5 1 +1915 2 9 0.7 0.4 0.4 1 +1915 2 10 -1.1 -1.4 -1.4 1 +1915 2 11 -1.5 -1.8 -1.8 1 +1915 2 12 -1.8 -2.1 -2.1 1 +1915 2 13 -1.0 -1.3 -1.3 1 +1915 2 14 -0.4 -0.6 -0.6 1 +1915 2 15 -3.2 -3.4 -3.4 1 +1915 2 16 -5.0 -5.2 -5.2 1 +1915 2 17 -6.8 -7.0 -7.0 1 +1915 2 18 0.6 0.3 0.3 1 +1915 2 19 1.2 0.9 0.9 1 +1915 2 20 1.0 0.7 0.7 1 +1915 2 21 0.4 0.1 0.1 1 +1915 2 22 -0.4 -0.7 -0.7 1 +1915 2 23 -1.4 -1.7 -1.7 1 +1915 2 24 -2.0 -2.3 -2.3 1 +1915 2 25 -3.4 -3.7 -3.7 1 +1915 2 26 -4.7 -5.0 -5.0 1 +1915 2 27 -0.2 -0.5 -0.5 1 +1915 2 28 1.0 0.7 0.7 1 +1915 3 1 0.5 0.2 0.2 1 +1915 3 2 -3.3 -3.6 -3.6 1 +1915 3 3 -5.1 -5.4 -5.4 1 +1915 3 4 -6.5 -6.8 -6.8 1 +1915 3 5 -10.2 -10.5 -10.5 1 +1915 3 6 -8.8 -9.1 -9.1 1 +1915 3 7 -7.7 -8.0 -8.0 1 +1915 3 8 -8.9 -9.2 -9.2 1 +1915 3 9 -8.0 -8.3 -8.3 1 +1915 3 10 -3.2 -3.5 -3.5 1 +1915 3 11 0.1 -0.2 -0.2 1 +1915 3 12 0.5 0.2 0.2 1 +1915 3 13 1.6 1.3 1.3 1 +1915 3 14 4.5 4.2 4.2 1 +1915 3 15 2.5 2.2 2.2 1 +1915 3 16 -5.0 -5.3 -5.3 1 +1915 3 17 -9.4 -9.7 -9.7 1 +1915 3 18 -10.4 -10.7 -10.7 1 +1915 3 19 -5.6 -5.9 -5.9 1 +1915 3 20 -7.1 -7.4 -7.4 1 +1915 3 21 -2.1 -2.4 -2.4 1 +1915 3 22 0.8 0.5 0.5 1 +1915 3 23 -0.9 -1.2 -1.2 1 +1915 3 24 1.5 1.2 1.2 1 +1915 3 25 -1.0 -1.3 -1.3 1 +1915 3 26 -3.0 -3.3 -3.3 1 +1915 3 27 -7.0 -7.3 -7.3 1 +1915 3 28 -6.9 -7.2 -7.2 1 +1915 3 29 -3.5 -3.8 -3.8 1 +1915 3 30 -1.6 -1.9 -1.9 1 +1915 3 31 -2.7 -3.0 -3.0 1 +1915 4 1 -1.4 -1.7 -1.7 1 +1915 4 2 -2.1 -2.4 -2.4 1 +1915 4 3 0.0 -0.3 -0.3 1 +1915 4 4 -0.2 -0.4 -0.4 1 +1915 4 5 0.2 0.0 0.0 1 +1915 4 6 2.0 1.8 1.8 1 +1915 4 7 1.0 0.8 0.8 1 +1915 4 8 1.0 0.8 0.8 1 +1915 4 9 3.5 3.3 3.3 1 +1915 4 10 2.3 2.1 2.1 1 +1915 4 11 1.6 1.4 1.4 1 +1915 4 12 4.2 4.0 4.0 1 +1915 4 13 2.9 2.7 2.7 1 +1915 4 14 3.9 3.7 3.7 1 +1915 4 15 4.4 4.2 4.2 1 +1915 4 16 4.6 4.4 4.4 1 +1915 4 17 3.6 3.4 3.4 1 +1915 4 18 3.8 3.6 3.6 1 +1915 4 19 6.8 6.6 6.6 1 +1915 4 20 7.4 7.2 7.2 1 +1915 4 21 7.3 7.0 7.0 1 +1915 4 22 5.7 5.4 5.4 1 +1915 4 23 6.9 6.6 6.6 1 +1915 4 24 6.4 6.1 6.1 1 +1915 4 25 10.4 10.1 10.1 1 +1915 4 26 10.6 10.3 10.3 1 +1915 4 27 4.9 4.6 4.6 1 +1915 4 28 8.9 8.6 8.6 1 +1915 4 29 3.9 3.6 3.6 1 +1915 4 30 9.8 9.5 9.5 1 +1915 5 1 5.7 5.3 5.3 1 +1915 5 2 1.9 1.5 1.5 1 +1915 5 3 2.2 1.8 1.8 1 +1915 5 4 5.5 5.1 5.1 1 +1915 5 5 8.0 7.6 7.6 1 +1915 5 6 8.3 7.9 7.9 1 +1915 5 7 9.7 9.3 9.3 1 +1915 5 8 8.8 8.4 8.4 1 +1915 5 9 4.1 3.7 3.7 1 +1915 5 10 5.5 5.0 5.0 1 +1915 5 11 8.6 8.1 8.1 1 +1915 5 12 4.6 4.1 4.1 1 +1915 5 13 5.8 5.3 5.3 1 +1915 5 14 5.1 4.6 4.6 1 +1915 5 15 2.6 2.1 2.1 1 +1915 5 16 4.6 4.1 4.1 1 +1915 5 17 7.6 7.1 7.1 1 +1915 5 18 7.5 7.0 7.0 1 +1915 5 19 6.8 6.3 6.3 1 +1915 5 20 8.6 8.1 8.1 1 +1915 5 21 11.9 11.4 11.4 1 +1915 5 22 12.0 11.5 11.5 1 +1915 5 23 14.0 13.5 13.5 1 +1915 5 24 13.0 12.5 12.5 1 +1915 5 25 19.2 18.7 18.7 1 +1915 5 26 8.5 8.0 8.0 1 +1915 5 27 10.0 9.5 9.5 1 +1915 5 28 9.8 9.3 9.3 1 +1915 5 29 9.6 9.2 9.2 1 +1915 5 30 5.2 4.8 4.8 1 +1915 5 31 7.7 7.3 7.3 1 +1915 6 1 11.0 10.6 10.6 1 +1915 6 2 11.4 11.0 11.0 1 +1915 6 3 12.0 11.6 11.6 1 +1915 6 4 11.4 11.0 11.0 1 +1915 6 5 11.3 10.9 10.9 1 +1915 6 6 10.8 10.4 10.4 1 +1915 6 7 13.5 13.1 13.1 1 +1915 6 8 15.1 14.7 14.7 1 +1915 6 9 18.7 18.3 18.3 1 +1915 6 10 19.6 19.2 19.2 1 +1915 6 11 15.1 14.7 14.7 1 +1915 6 12 17.5 17.1 17.1 1 +1915 6 13 9.9 9.5 9.5 1 +1915 6 14 9.3 8.9 8.9 1 +1915 6 15 11.6 11.2 11.2 1 +1915 6 16 15.6 15.2 15.2 1 +1915 6 17 7.5 7.1 7.1 1 +1915 6 18 8.5 8.1 8.1 1 +1915 6 19 7.6 7.2 7.2 1 +1915 6 20 10.4 10.0 10.0 1 +1915 6 21 10.2 9.8 9.8 1 +1915 6 22 11.4 11.0 11.0 1 +1915 6 23 13.8 13.4 13.4 1 +1915 6 24 14.3 13.9 13.9 1 +1915 6 25 12.5 12.1 12.1 1 +1915 6 26 15.1 14.7 14.7 1 +1915 6 27 14.0 13.6 13.6 1 +1915 6 28 15.9 15.5 15.5 1 +1915 6 29 14.6 14.2 14.2 1 +1915 6 30 18.8 18.4 18.4 1 +1915 7 1 18.3 17.9 17.9 1 +1915 7 2 18.2 17.8 17.8 1 +1915 7 3 17.9 17.5 17.5 1 +1915 7 4 17.1 16.7 16.7 1 +1915 7 5 18.9 18.5 18.5 1 +1915 7 6 18.6 18.2 18.2 1 +1915 7 7 18.6 18.2 18.2 1 +1915 7 8 16.1 15.7 15.7 1 +1915 7 9 15.3 14.9 14.9 1 +1915 7 10 14.8 14.4 14.4 1 +1915 7 11 15.5 15.1 15.1 1 +1915 7 12 15.1 14.7 14.7 1 +1915 7 13 15.3 14.9 14.9 1 +1915 7 14 15.6 15.2 15.2 1 +1915 7 15 15.4 15.0 15.0 1 +1915 7 16 14.3 13.9 13.9 1 +1915 7 17 15.6 15.3 15.3 1 +1915 7 18 13.7 13.4 13.4 1 +1915 7 19 15.9 15.6 15.6 1 +1915 7 20 16.0 15.7 15.7 1 +1915 7 21 16.2 15.9 15.9 1 +1915 7 22 16.6 16.3 16.3 1 +1915 7 23 17.8 17.5 17.5 1 +1915 7 24 16.4 16.1 16.1 1 +1915 7 25 16.4 16.1 16.1 1 +1915 7 26 15.1 14.8 14.8 1 +1915 7 27 15.7 15.4 15.4 1 +1915 7 28 14.9 14.6 14.6 1 +1915 7 29 14.4 14.1 14.1 1 +1915 7 30 15.2 15.0 15.0 1 +1915 7 31 15.6 15.4 15.4 1 +1915 8 1 14.9 14.7 14.7 1 +1915 8 2 15.1 14.9 14.9 1 +1915 8 3 16.8 16.6 16.6 1 +1915 8 4 18.0 17.8 17.8 1 +1915 8 5 20.0 19.8 19.8 1 +1915 8 6 18.2 18.0 18.0 1 +1915 8 7 18.7 18.5 18.5 1 +1915 8 8 18.5 18.3 18.3 1 +1915 8 9 16.1 15.9 15.9 1 +1915 8 10 14.0 13.8 13.8 1 +1915 8 11 16.0 15.8 15.8 1 +1915 8 12 16.0 15.9 15.9 1 +1915 8 13 16.4 16.3 16.3 1 +1915 8 14 17.3 17.2 17.2 1 +1915 8 15 13.5 13.4 13.4 1 +1915 8 16 11.2 11.1 11.1 1 +1915 8 17 11.2 11.1 11.1 1 +1915 8 18 13.7 13.6 13.6 1 +1915 8 19 12.7 12.6 12.6 1 +1915 8 20 13.2 13.1 13.1 1 +1915 8 21 14.0 13.9 13.9 1 +1915 8 22 14.7 14.6 14.6 1 +1915 8 23 15.2 15.1 15.1 1 +1915 8 24 16.4 16.3 16.3 1 +1915 8 25 15.2 15.2 15.2 1 +1915 8 26 16.6 16.6 16.6 1 +1915 8 27 16.5 16.5 16.5 1 +1915 8 28 15.6 15.6 15.6 1 +1915 8 29 13.7 13.7 13.7 1 +1915 8 30 11.7 11.7 11.7 1 +1915 8 31 8.5 8.5 8.5 1 +1915 9 1 9.5 9.5 9.5 1 +1915 9 2 11.9 11.9 11.9 1 +1915 9 3 11.9 11.9 11.9 1 +1915 9 4 12.0 12.0 12.0 1 +1915 9 5 12.2 12.2 12.2 1 +1915 9 6 10.8 10.9 10.9 1 +1915 9 7 10.3 10.4 10.4 1 +1915 9 8 11.4 11.5 11.5 1 +1915 9 9 14.3 14.4 14.4 1 +1915 9 10 16.2 16.3 16.3 1 +1915 9 11 15.5 15.6 15.6 1 +1915 9 12 12.9 13.0 13.0 1 +1915 9 13 12.7 12.8 12.8 1 +1915 9 14 14.4 14.5 14.5 1 +1915 9 15 10.9 11.0 11.0 1 +1915 9 16 11.6 11.7 11.7 1 +1915 9 17 9.9 10.0 10.0 1 +1915 9 18 4.6 4.7 4.7 1 +1915 9 19 6.5 6.6 6.6 1 +1915 9 20 4.3 4.4 4.4 1 +1915 9 21 5.6 5.7 5.7 1 +1915 9 22 6.9 7.0 7.0 1 +1915 9 23 9.4 9.5 9.5 1 +1915 9 24 11.0 11.1 11.1 1 +1915 9 25 12.1 12.2 12.2 1 +1915 9 26 6.0 6.1 6.1 1 +1915 9 27 4.5 4.6 4.6 1 +1915 9 28 4.5 4.6 4.6 1 +1915 9 29 6.7 6.8 6.8 1 +1915 9 30 9.1 9.2 9.2 1 +1915 10 1 10.0 10.1 10.1 1 +1915 10 2 6.2 6.3 6.3 1 +1915 10 3 5.8 5.9 5.9 1 +1915 10 4 4.7 4.8 4.8 1 +1915 10 5 6.1 6.2 6.2 1 +1915 10 6 6.5 6.6 6.6 1 +1915 10 7 5.7 5.8 5.8 1 +1915 10 8 4.9 5.0 5.0 1 +1915 10 9 5.5 5.6 5.6 1 +1915 10 10 5.7 5.8 5.8 1 +1915 10 11 5.4 5.5 5.5 1 +1915 10 12 6.3 6.4 6.4 1 +1915 10 13 7.9 8.0 8.0 1 +1915 10 14 8.9 9.0 9.0 1 +1915 10 15 9.0 9.1 9.1 1 +1915 10 16 7.2 7.3 7.3 1 +1915 10 17 6.8 6.9 6.9 1 +1915 10 18 5.3 5.4 5.4 1 +1915 10 19 4.6 4.7 4.7 1 +1915 10 20 3.7 3.8 3.8 1 +1915 10 21 2.7 2.8 2.8 1 +1915 10 22 2.8 2.9 2.9 1 +1915 10 23 1.8 1.9 1.9 1 +1915 10 24 0.2 0.3 0.3 1 +1915 10 25 0.5 0.5 0.5 1 +1915 10 26 -0.7 -0.7 -0.7 1 +1915 10 27 -0.3 -0.3 -0.3 1 +1915 10 28 -1.7 -1.7 -1.7 1 +1915 10 29 -3.9 -3.9 -3.9 1 +1915 10 30 -1.8 -1.8 -1.8 1 +1915 10 31 2.1 2.1 2.1 1 +1915 11 1 0.7 0.7 0.7 1 +1915 11 2 1.4 1.4 1.4 1 +1915 11 3 1.1 1.1 1.1 1 +1915 11 4 0.8 0.8 0.8 1 +1915 11 5 -1.1 -1.1 -1.1 1 +1915 11 6 -1.6 -1.6 -1.6 1 +1915 11 7 2.1 2.1 2.1 1 +1915 11 8 1.7 1.7 1.7 1 +1915 11 9 -2.1 -2.1 -2.1 1 +1915 11 10 2.8 2.8 2.8 1 +1915 11 11 5.4 5.3 5.3 1 +1915 11 12 3.6 3.5 3.5 1 +1915 11 13 6.4 6.3 6.3 1 +1915 11 14 4.4 4.3 4.3 1 +1915 11 15 3.3 3.2 3.2 1 +1915 11 16 1.4 1.3 1.3 1 +1915 11 17 0.7 0.6 0.6 1 +1915 11 18 -0.6 -0.7 -0.7 1 +1915 11 19 -0.2 -0.3 -0.3 1 +1915 11 20 -0.3 -0.4 -0.4 1 +1915 11 21 -0.9 -1.0 -1.0 1 +1915 11 22 2.5 2.4 2.4 1 +1915 11 23 1.5 1.4 1.4 1 +1915 11 24 -0.6 -0.7 -0.7 1 +1915 11 25 -5.3 -5.4 -5.4 1 +1915 11 26 -6.6 -6.7 -6.7 1 +1915 11 27 -10.1 -10.2 -10.2 1 +1915 11 28 -0.4 -0.5 -0.5 1 +1915 11 29 0.8 0.7 0.7 1 +1915 11 30 -1.0 -1.1 -1.1 1 +1915 12 1 1.7 1.6 1.6 1 +1915 12 2 0.0 -0.1 -0.1 1 +1915 12 3 -2.5 -2.6 -2.6 1 +1915 12 4 -12.2 -12.3 -12.3 1 +1915 12 5 -13.6 -13.7 -13.7 1 +1915 12 6 -4.7 -4.8 -4.8 1 +1915 12 7 -0.7 -0.8 -0.8 1 +1915 12 8 -0.4 -0.5 -0.5 1 +1915 12 9 -7.4 -7.5 -7.5 1 +1915 12 10 -8.0 -8.1 -8.1 1 +1915 12 11 -1.1 -1.2 -1.2 1 +1915 12 12 -5.7 -5.8 -5.8 1 +1915 12 13 -13.1 -13.2 -13.2 1 +1915 12 14 -11.8 -11.9 -11.9 1 +1915 12 15 -4.9 -5.0 -5.0 1 +1915 12 16 -0.7 -0.8 -0.8 1 +1915 12 17 0.0 -0.1 -0.1 1 +1915 12 18 -1.2 -1.3 -1.3 1 +1915 12 19 -11.0 -11.1 -11.1 1 +1915 12 20 -9.0 -9.1 -9.1 1 +1915 12 21 -13.7 -13.8 -13.8 1 +1915 12 22 -19.6 -19.7 -19.7 1 +1915 12 23 -11.3 -11.5 -11.5 1 +1915 12 24 -8.5 -8.7 -8.7 1 +1915 12 25 -6.1 -6.3 -6.3 1 +1915 12 26 -7.8 -8.0 -8.0 1 +1915 12 27 -9.4 -9.6 -9.6 1 +1915 12 28 -3.1 -3.3 -3.3 1 +1915 12 29 -7.1 -7.3 -7.3 1 +1915 12 30 -10.3 -10.5 -10.5 1 +1915 12 31 -9.3 -9.5 -9.5 1 +1916 1 1 0.1 -0.2 -0.2 1 +1916 1 2 1.9 1.6 1.6 1 +1916 1 3 2.4 2.1 2.1 1 +1916 1 4 0.1 -0.2 -0.2 1 +1916 1 5 2.6 2.3 2.3 1 +1916 1 6 -2.0 -2.3 -2.3 1 +1916 1 7 0.4 0.1 0.1 1 +1916 1 8 -3.2 -3.5 -3.5 1 +1916 1 9 -8.4 -8.7 -8.7 1 +1916 1 10 0.2 -0.1 -0.1 1 +1916 1 11 -4.7 -5.0 -5.0 1 +1916 1 12 -10.0 -10.4 -10.4 1 +1916 1 13 -6.0 -6.4 -6.4 1 +1916 1 14 -10.2 -10.6 -10.6 1 +1916 1 15 -3.1 -3.5 -3.5 1 +1916 1 16 -10.9 -11.3 -11.3 1 +1916 1 17 -12.4 -12.8 -12.8 1 +1916 1 18 -7.3 -7.7 -7.7 1 +1916 1 19 1.7 1.3 1.3 1 +1916 1 20 3.4 3.0 3.0 1 +1916 1 21 1.9 1.5 1.5 1 +1916 1 22 4.1 3.7 3.7 1 +1916 1 23 2.0 1.6 1.6 1 +1916 1 24 2.0 1.7 1.7 1 +1916 1 25 2.6 2.3 2.3 1 +1916 1 26 4.8 4.5 4.5 1 +1916 1 27 0.1 -0.2 -0.2 1 +1916 1 28 -2.9 -3.2 -3.2 1 +1916 1 29 -1.5 -1.8 -1.8 1 +1916 1 30 2.2 1.9 1.9 1 +1916 1 31 1.8 1.5 1.5 1 +1916 2 1 1.6 1.3 1.3 1 +1916 2 2 -2.3 -2.6 -2.6 1 +1916 2 3 0.7 0.4 0.4 1 +1916 2 4 0.4 0.1 0.1 1 +1916 2 5 0.3 0.0 0.0 1 +1916 2 6 1.6 1.3 1.3 1 +1916 2 7 2.8 2.5 2.5 1 +1916 2 8 2.3 2.0 2.0 1 +1916 2 9 0.9 0.6 0.6 1 +1916 2 10 -0.1 -0.4 -0.4 1 +1916 2 11 -1.5 -1.8 -1.8 1 +1916 2 12 -5.3 -5.6 -5.6 1 +1916 2 13 -1.6 -1.9 -1.9 1 +1916 2 14 0.4 0.1 0.1 1 +1916 2 15 -0.7 -1.0 -1.0 1 +1916 2 16 -2.2 -2.5 -2.5 1 +1916 2 17 -2.3 -2.6 -2.6 1 +1916 2 18 -6.4 -6.7 -6.7 1 +1916 2 19 -10.1 -10.4 -10.4 1 +1916 2 20 -9.5 -9.8 -9.8 1 +1916 2 21 -3.4 -3.7 -3.7 1 +1916 2 22 -0.8 -1.1 -1.1 1 +1916 2 23 -4.6 -4.9 -4.9 1 +1916 2 24 -5.2 -5.5 -5.5 1 +1916 2 25 -5.1 -5.4 -5.4 1 +1916 2 26 -7.9 -8.2 -8.2 1 +1916 2 27 -0.9 -1.2 -1.2 1 +1916 2 28 -1.1 -1.4 -1.4 1 +1916 2 29 0.5 0.2 0.2 1 +1916 3 1 0.2 -0.1 -0.1 1 +1916 3 2 -1.4 -1.7 -1.7 1 +1916 3 3 -0.9 -1.2 -1.2 1 +1916 3 4 0.5 0.2 0.2 1 +1916 3 5 -1.7 -2.0 -2.0 1 +1916 3 6 -2.6 -2.9 -2.9 1 +1916 3 7 -7.6 -7.9 -7.9 1 +1916 3 8 -8.2 -8.5 -8.5 1 +1916 3 9 -4.7 -5.0 -5.0 1 +1916 3 10 -4.1 -4.4 -4.4 1 +1916 3 11 -6.1 -6.4 -6.4 1 +1916 3 12 -7.3 -7.6 -7.6 1 +1916 3 13 -2.7 -3.0 -3.0 1 +1916 3 14 -0.2 -0.6 -0.6 1 +1916 3 15 -0.6 -1.0 -1.0 1 +1916 3 16 -1.0 -1.3 -1.3 1 +1916 3 17 -0.8 -1.1 -1.1 1 +1916 3 18 -0.2 -0.5 -0.5 1 +1916 3 19 0.4 0.1 0.1 1 +1916 3 20 -0.3 -0.6 -0.6 1 +1916 3 21 -4.1 -4.4 -4.4 1 +1916 3 22 -12.1 -12.4 -12.4 1 +1916 3 23 -12.2 -12.5 -12.5 1 +1916 3 24 -6.7 -7.0 -7.0 1 +1916 3 25 -7.2 -7.5 -7.5 1 +1916 3 26 0.4 0.1 0.1 1 +1916 3 27 1.4 1.1 1.1 1 +1916 3 28 2.6 2.3 2.3 1 +1916 3 29 3.9 3.6 3.6 1 +1916 3 30 2.7 2.4 2.4 1 +1916 3 31 4.6 4.3 4.3 1 +1916 4 1 4.5 4.2 4.2 1 +1916 4 2 6.3 6.0 6.0 1 +1916 4 3 6.7 6.4 6.4 1 +1916 4 4 8.2 7.9 7.9 1 +1916 4 5 2.4 2.1 2.1 1 +1916 4 6 -1.7 -1.9 -1.9 1 +1916 4 7 -0.6 -0.8 -0.8 1 +1916 4 8 0.8 0.6 0.6 1 +1916 4 9 2.3 2.1 2.1 1 +1916 4 10 2.9 2.7 2.7 1 +1916 4 11 1.7 1.5 1.5 1 +1916 4 12 0.8 0.6 0.6 1 +1916 4 13 2.0 1.8 1.8 1 +1916 4 14 2.8 2.6 2.6 1 +1916 4 15 2.4 2.2 2.2 1 +1916 4 16 2.9 2.7 2.7 1 +1916 4 17 1.3 1.1 1.1 1 +1916 4 18 0.0 -0.2 -0.2 1 +1916 4 19 1.4 1.2 1.2 1 +1916 4 20 3.6 3.3 3.3 1 +1916 4 21 5.4 5.1 5.1 1 +1916 4 22 6.7 6.4 6.4 1 +1916 4 23 10.0 9.7 9.7 1 +1916 4 24 8.4 8.1 8.1 1 +1916 4 25 10.6 10.3 10.3 1 +1916 4 26 12.0 11.7 11.7 1 +1916 4 27 12.6 12.3 12.3 1 +1916 4 28 13.3 13.0 13.0 1 +1916 4 29 12.2 11.8 11.8 1 +1916 4 30 11.2 10.8 10.8 1 +1916 5 1 11.8 11.4 11.4 1 +1916 5 2 5.7 5.3 5.3 1 +1916 5 3 7.5 7.1 7.1 1 +1916 5 4 8.9 8.5 8.5 1 +1916 5 5 13.9 13.5 13.5 1 +1916 5 6 11.4 11.0 11.0 1 +1916 5 7 15.2 14.8 14.8 1 +1916 5 8 13.2 12.8 12.8 1 +1916 5 9 12.5 12.0 12.0 1 +1916 5 10 5.9 5.4 5.4 1 +1916 5 11 0.6 0.1 0.1 1 +1916 5 12 -1.1 -1.6 -1.6 1 +1916 5 13 0.6 0.1 0.1 1 +1916 5 14 6.3 5.8 5.8 1 +1916 5 15 9.6 9.1 9.1 1 +1916 5 16 7.5 7.0 7.0 1 +1916 5 17 7.3 6.8 6.8 1 +1916 5 18 6.9 6.4 6.4 1 +1916 5 19 6.1 5.6 5.6 1 +1916 5 20 4.5 4.0 4.0 1 +1916 5 21 8.3 7.8 7.8 1 +1916 5 22 5.6 5.1 5.1 1 +1916 5 23 6.8 6.3 6.3 1 +1916 5 24 8.5 8.0 8.0 1 +1916 5 25 7.0 6.5 6.5 1 +1916 5 26 9.1 8.6 8.6 1 +1916 5 27 11.3 10.8 10.8 1 +1916 5 28 11.6 11.1 11.1 1 +1916 5 29 10.7 10.2 10.2 1 +1916 5 30 12.9 12.4 12.4 1 +1916 5 31 12.9 12.4 12.4 1 +1916 6 1 9.1 8.7 8.7 1 +1916 6 2 11.5 11.1 11.1 1 +1916 6 3 11.4 11.0 11.0 1 +1916 6 4 10.3 9.9 9.9 1 +1916 6 5 11.3 10.9 10.9 1 +1916 6 6 9.5 9.1 9.1 1 +1916 6 7 12.9 12.5 12.5 1 +1916 6 8 12.2 11.8 11.8 1 +1916 6 9 11.9 11.5 11.5 1 +1916 6 10 13.7 13.3 13.3 1 +1916 6 11 11.2 10.8 10.8 1 +1916 6 12 11.9 11.5 11.5 1 +1916 6 13 8.4 8.0 8.0 1 +1916 6 14 11.3 10.9 10.9 1 +1916 6 15 6.9 6.5 6.5 1 +1916 6 16 6.7 6.3 6.3 1 +1916 6 17 5.1 4.7 4.7 1 +1916 6 18 9.1 8.7 8.7 1 +1916 6 19 10.6 10.2 10.2 1 +1916 6 20 8.0 7.6 7.6 1 +1916 6 21 8.3 7.9 7.9 1 +1916 6 22 11.2 10.8 10.8 1 +1916 6 23 15.7 15.3 15.3 1 +1916 6 24 16.7 16.3 16.3 1 +1916 6 25 17.9 17.5 17.5 1 +1916 6 26 17.8 17.4 17.4 1 +1916 6 27 17.6 17.2 17.2 1 +1916 6 28 18.5 18.1 18.1 1 +1916 6 29 16.3 15.9 15.9 1 +1916 6 30 17.0 16.6 16.6 1 +1916 7 1 15.7 15.3 15.3 1 +1916 7 2 14.3 13.9 13.9 1 +1916 7 3 15.2 14.8 14.8 1 +1916 7 4 17.3 16.9 16.9 1 +1916 7 5 17.3 16.9 16.9 1 +1916 7 6 15.4 15.0 15.0 1 +1916 7 7 13.9 13.5 13.5 1 +1916 7 8 15.6 15.2 15.2 1 +1916 7 9 17.7 17.3 17.3 1 +1916 7 10 17.3 16.9 16.9 1 +1916 7 11 14.3 13.9 13.9 1 +1916 7 12 15.5 15.1 15.1 1 +1916 7 13 15.8 15.4 15.4 1 +1916 7 14 14.9 14.5 14.5 1 +1916 7 15 15.9 15.5 15.5 1 +1916 7 16 13.8 13.4 13.4 1 +1916 7 17 14.6 14.2 14.2 1 +1916 7 18 15.0 14.6 14.6 1 +1916 7 19 15.5 15.2 15.2 1 +1916 7 20 19.0 18.7 18.7 1 +1916 7 21 18.3 18.0 18.0 1 +1916 7 22 16.5 16.2 16.2 1 +1916 7 23 17.6 17.3 17.3 1 +1916 7 24 19.0 18.7 18.7 1 +1916 7 25 19.6 19.3 19.3 1 +1916 7 26 21.1 20.8 20.8 1 +1916 7 27 21.9 21.6 21.6 1 +1916 7 28 20.7 20.4 20.4 1 +1916 7 29 18.9 18.6 18.6 1 +1916 7 30 18.2 17.9 17.9 1 +1916 7 31 16.5 16.2 16.2 1 +1916 8 1 14.6 14.4 14.4 1 +1916 8 2 15.1 14.9 14.9 1 +1916 8 3 11.8 11.6 11.6 1 +1916 8 4 12.1 11.9 11.9 1 +1916 8 5 13.0 12.8 12.8 1 +1916 8 6 13.2 13.0 13.0 1 +1916 8 7 11.7 11.5 11.5 1 +1916 8 8 15.4 15.2 15.2 1 +1916 8 9 14.3 14.1 14.1 1 +1916 8 10 12.5 12.3 12.3 1 +1916 8 11 12.1 11.9 11.9 1 +1916 8 12 12.7 12.5 12.5 1 +1916 8 13 13.2 13.0 13.0 1 +1916 8 14 12.6 12.5 12.5 1 +1916 8 15 14.3 14.2 14.2 1 +1916 8 16 16.1 16.0 16.0 1 +1916 8 17 15.6 15.5 15.5 1 +1916 8 18 13.8 13.7 13.7 1 +1916 8 19 14.4 14.3 14.3 1 +1916 8 20 12.4 12.3 12.3 1 +1916 8 21 9.5 9.4 9.4 1 +1916 8 22 12.8 12.7 12.7 1 +1916 8 23 14.6 14.5 14.5 1 +1916 8 24 13.6 13.5 13.5 1 +1916 8 25 11.7 11.6 11.6 1 +1916 8 26 11.9 11.9 11.9 1 +1916 8 27 12.5 12.5 12.5 1 +1916 8 28 12.6 12.6 12.6 1 +1916 8 29 11.5 11.5 11.5 1 +1916 8 30 12.7 12.7 12.7 1 +1916 8 31 13.2 13.2 13.2 1 +1916 9 1 13.4 13.4 13.4 1 +1916 9 2 13.8 13.8 13.8 1 +1916 9 3 12.1 12.1 12.1 1 +1916 9 4 11.2 11.2 11.2 1 +1916 9 5 12.3 12.3 12.3 1 +1916 9 6 12.6 12.6 12.6 1 +1916 9 7 14.5 14.5 14.5 1 +1916 9 8 12.2 12.3 12.3 1 +1916 9 9 15.0 15.1 15.1 1 +1916 9 10 13.5 13.6 13.6 1 +1916 9 11 12.4 12.5 12.5 1 +1916 9 12 12.9 13.0 13.0 1 +1916 9 13 10.8 10.9 10.9 1 +1916 9 14 9.0 9.1 9.1 1 +1916 9 15 7.4 7.5 7.5 1 +1916 9 16 6.0 6.1 6.1 1 +1916 9 17 7.0 7.1 7.1 1 +1916 9 18 9.6 9.7 9.7 1 +1916 9 19 11.4 11.5 11.5 1 +1916 9 20 8.5 8.6 8.6 1 +1916 9 21 5.3 5.4 5.4 1 +1916 9 22 4.6 4.7 4.7 1 +1916 9 23 9.7 9.8 9.8 1 +1916 9 24 10.7 10.8 10.8 1 +1916 9 25 10.0 10.1 10.1 1 +1916 9 26 7.7 7.8 7.8 1 +1916 9 27 4.9 5.0 5.0 1 +1916 9 28 7.9 8.0 8.0 1 +1916 9 29 4.8 4.9 4.9 1 +1916 9 30 2.8 2.9 2.9 1 +1916 10 1 2.9 3.0 3.0 1 +1916 10 2 2.4 2.5 2.5 1 +1916 10 3 1.9 2.0 2.0 1 +1916 10 4 7.5 7.6 7.6 1 +1916 10 5 6.0 6.1 6.1 1 +1916 10 6 5.2 5.3 5.3 1 +1916 10 7 8.4 8.5 8.5 1 +1916 10 8 9.8 9.9 9.9 1 +1916 10 9 7.6 7.7 7.7 1 +1916 10 10 9.4 9.5 9.5 1 +1916 10 11 7.8 7.9 7.9 1 +1916 10 12 6.8 6.9 6.9 1 +1916 10 13 8.4 8.5 8.5 1 +1916 10 14 5.8 5.9 5.9 1 +1916 10 15 11.4 11.5 11.5 1 +1916 10 16 5.0 5.1 5.1 1 +1916 10 17 0.6 0.7 0.7 1 +1916 10 18 0.2 0.3 0.3 1 +1916 10 19 1.1 1.2 1.2 1 +1916 10 20 1.2 1.3 1.3 1 +1916 10 21 0.8 0.9 0.9 1 +1916 10 22 0.0 0.1 0.1 1 +1916 10 23 2.6 2.6 2.6 1 +1916 10 24 5.1 5.1 5.1 1 +1916 10 25 5.3 5.3 5.3 1 +1916 10 26 6.9 6.9 6.9 1 +1916 10 27 6.3 6.3 6.3 1 +1916 10 28 5.2 5.2 5.2 1 +1916 10 29 5.5 5.5 5.5 1 +1916 10 30 6.7 6.7 6.7 1 +1916 10 31 7.7 7.7 7.7 1 +1916 11 1 8.0 8.0 8.0 1 +1916 11 2 7.8 7.8 7.8 1 +1916 11 3 5.7 5.7 5.7 1 +1916 11 4 6.3 6.3 6.3 1 +1916 11 5 7.3 7.3 7.3 1 +1916 11 6 7.8 7.8 7.8 1 +1916 11 7 6.6 6.6 6.6 1 +1916 11 8 8.0 8.0 8.0 1 +1916 11 9 7.8 7.7 7.7 1 +1916 11 10 6.0 5.9 5.9 1 +1916 11 11 6.8 6.7 6.7 1 +1916 11 12 6.9 6.8 6.8 1 +1916 11 13 3.8 3.7 3.7 1 +1916 11 14 -0.2 -0.3 -0.3 1 +1916 11 15 -2.2 -2.3 -2.3 1 +1916 11 16 -3.5 -3.6 -3.6 1 +1916 11 17 -0.7 -0.8 -0.8 1 +1916 11 18 0.6 0.5 0.5 1 +1916 11 19 1.6 1.5 1.5 1 +1916 11 20 1.1 1.0 1.0 1 +1916 11 21 2.8 2.7 2.7 1 +1916 11 22 4.0 3.9 3.9 1 +1916 11 23 4.4 4.3 4.3 1 +1916 11 24 6.1 6.0 6.0 1 +1916 11 25 6.4 6.3 6.3 1 +1916 11 26 5.6 5.5 5.5 1 +1916 11 27 3.9 3.8 3.8 1 +1916 11 28 1.6 1.5 1.5 1 +1916 11 29 6.4 6.3 6.3 1 +1916 11 30 6.7 6.6 6.6 1 +1916 12 1 2.3 2.2 2.2 1 +1916 12 2 1.7 1.6 1.6 1 +1916 12 3 2.9 2.8 2.8 1 +1916 12 4 4.0 3.9 3.9 1 +1916 12 5 1.4 1.3 1.3 1 +1916 12 6 1.9 1.8 1.8 1 +1916 12 7 1.4 1.3 1.3 1 +1916 12 8 3.3 3.2 3.2 1 +1916 12 9 4.0 3.9 3.9 1 +1916 12 10 1.3 1.2 1.2 1 +1916 12 11 2.8 2.7 2.7 1 +1916 12 12 2.6 2.5 2.5 1 +1916 12 13 2.5 2.4 2.4 1 +1916 12 14 3.0 2.9 2.9 1 +1916 12 15 0.9 0.8 0.8 1 +1916 12 16 -0.6 -0.7 -0.7 1 +1916 12 17 -0.5 -0.6 -0.6 1 +1916 12 18 -0.3 -0.4 -0.4 1 +1916 12 19 -1.4 -1.5 -1.5 1 +1916 12 20 0.0 -0.1 -0.1 1 +1916 12 21 -0.1 -0.2 -0.2 1 +1916 12 22 0.4 0.2 0.2 1 +1916 12 23 0.7 0.5 0.5 1 +1916 12 24 -0.7 -0.9 -0.9 1 +1916 12 25 -8.3 -8.5 -8.5 1 +1916 12 26 -10.8 -11.0 -11.0 1 +1916 12 27 -12.7 -12.9 -12.9 1 +1916 12 28 -11.8 -12.0 -12.0 1 +1916 12 29 -2.6 -2.8 -2.8 1 +1916 12 30 -3.1 -3.3 -3.3 1 +1916 12 31 -0.6 -0.8 -0.8 1 +1917 1 1 -9.0 -9.3 -9.3 1 +1917 1 2 -5.3 -5.6 -5.6 1 +1917 1 3 -9.9 -10.2 -10.2 1 +1917 1 4 -7.9 -8.2 -8.2 1 +1917 1 5 -12.0 -12.3 -12.3 1 +1917 1 6 -12.6 -12.9 -12.9 1 +1917 1 7 -7.8 -8.1 -8.1 1 +1917 1 8 -1.5 -1.8 -1.8 1 +1917 1 9 -2.6 -2.9 -2.9 1 +1917 1 10 -4.6 -4.9 -4.9 1 +1917 1 11 -8.0 -8.4 -8.4 1 +1917 1 12 -9.9 -10.3 -10.3 1 +1917 1 13 -2.6 -3.0 -3.0 1 +1917 1 14 -2.6 -3.0 -3.0 1 +1917 1 15 -9.0 -9.4 -9.4 1 +1917 1 16 -11.7 -12.1 -12.1 1 +1917 1 17 -10.7 -11.1 -11.1 1 +1917 1 18 -8.6 -9.0 -9.0 1 +1917 1 19 -14.0 -14.4 -14.4 1 +1917 1 20 -14.5 -14.9 -14.9 1 +1917 1 21 -12.8 -13.2 -13.2 1 +1917 1 22 -12.0 -12.4 -12.4 1 +1917 1 23 -5.3 -5.7 -5.7 1 +1917 1 24 -6.0 -6.4 -6.4 1 +1917 1 25 -2.9 -3.3 -3.3 1 +1917 1 26 -3.9 -4.2 -4.2 1 +1917 1 27 -6.3 -6.6 -6.6 1 +1917 1 28 -8.9 -9.2 -9.2 1 +1917 1 29 -4.9 -5.2 -5.2 1 +1917 1 30 -5.8 -6.1 -6.1 1 +1917 1 31 -5.8 -6.1 -6.1 1 +1917 2 1 -10.0 -10.3 -10.3 1 +1917 2 2 -13.4 -13.7 -13.7 1 +1917 2 3 -6.7 -7.0 -7.0 1 +1917 2 4 -7.8 -8.1 -8.1 1 +1917 2 5 -7.9 -8.2 -8.2 1 +1917 2 6 -9.5 -9.8 -9.8 1 +1917 2 7 -12.7 -13.0 -13.0 1 +1917 2 8 -1.5 -1.8 -1.8 1 +1917 2 9 2.6 2.3 2.3 1 +1917 2 10 0.6 0.3 0.3 1 +1917 2 11 -2.9 -3.2 -3.2 1 +1917 2 12 -5.1 -5.4 -5.4 1 +1917 2 13 -4.5 -4.8 -4.8 1 +1917 2 14 -1.7 -2.0 -2.0 1 +1917 2 15 -0.3 -0.6 -0.6 1 +1917 2 16 -1.9 -2.2 -2.2 1 +1917 2 17 -5.1 -5.4 -5.4 1 +1917 2 18 -7.3 -7.6 -7.6 1 +1917 2 19 -5.7 -6.0 -6.0 1 +1917 2 20 -11.4 -11.7 -11.7 1 +1917 2 21 -5.6 -5.9 -5.9 1 +1917 2 22 -10.5 -10.8 -10.8 1 +1917 2 23 -5.7 -6.0 -6.0 1 +1917 2 24 -0.5 -0.8 -0.8 1 +1917 2 25 0.1 -0.2 -0.2 1 +1917 2 26 0.8 0.5 0.5 1 +1917 2 27 -0.7 -1.0 -1.0 1 +1917 2 28 -4.0 -4.3 -4.3 1 +1917 3 1 -3.8 -4.1 -4.1 1 +1917 3 2 -3.7 -4.0 -4.0 1 +1917 3 3 -7.3 -7.6 -7.6 1 +1917 3 4 -11.3 -11.6 -11.6 1 +1917 3 5 -10.7 -11.0 -11.0 1 +1917 3 6 -9.8 -10.1 -10.1 1 +1917 3 7 -11.2 -11.5 -11.5 1 +1917 3 8 -7.9 -8.2 -8.2 1 +1917 3 9 -6.1 -6.4 -6.4 1 +1917 3 10 -8.3 -8.6 -8.6 1 +1917 3 11 -9.0 -9.4 -9.4 1 +1917 3 12 -6.9 -7.3 -7.3 1 +1917 3 13 -6.7 -7.1 -7.1 1 +1917 3 14 -8.2 -8.6 -8.6 1 +1917 3 15 -5.9 -6.3 -6.3 1 +1917 3 16 -6.7 -7.1 -7.1 1 +1917 3 17 -5.8 -6.2 -6.2 1 +1917 3 18 -1.2 -1.6 -1.6 1 +1917 3 19 -5.7 -6.0 -6.0 1 +1917 3 20 -12.7 -13.0 -13.0 1 +1917 3 21 -10.0 -10.3 -10.3 1 +1917 3 22 -10.4 -10.7 -10.7 1 +1917 3 23 -7.4 -7.7 -7.7 1 +1917 3 24 1.5 1.2 1.2 1 +1917 3 25 2.2 1.9 1.9 1 +1917 3 26 1.8 1.5 1.5 1 +1917 3 27 -5.4 -5.7 -5.7 1 +1917 3 28 -1.9 -2.2 -2.2 1 +1917 3 29 0.1 -0.2 -0.2 1 +1917 3 30 0.2 -0.1 -0.1 1 +1917 3 31 0.8 0.5 0.5 1 +1917 4 1 1.0 0.7 0.7 1 +1917 4 2 -1.1 -1.4 -1.4 1 +1917 4 3 -2.5 -2.8 -2.8 1 +1917 4 4 -2.6 -2.9 -2.9 1 +1917 4 5 -1.5 -1.8 -1.8 1 +1917 4 6 -0.6 -0.9 -0.9 1 +1917 4 7 0.2 -0.1 -0.1 1 +1917 4 8 0.6 0.4 0.4 1 +1917 4 9 -0.6 -0.8 -0.8 1 +1917 4 10 0.1 -0.1 -0.1 1 +1917 4 11 0.7 0.5 0.5 1 +1917 4 12 1.6 1.4 1.4 1 +1917 4 13 1.8 1.6 1.6 1 +1917 4 14 2.3 2.1 2.1 1 +1917 4 15 2.7 2.5 2.5 1 +1917 4 16 3.2 3.0 3.0 1 +1917 4 17 0.7 0.5 0.5 1 +1917 4 18 1.1 0.9 0.9 1 +1917 4 19 1.8 1.5 1.5 1 +1917 4 20 1.9 1.6 1.6 1 +1917 4 21 1.4 1.1 1.1 1 +1917 4 22 1.5 1.2 1.2 1 +1917 4 23 4.5 4.2 4.2 1 +1917 4 24 5.9 5.6 5.6 1 +1917 4 25 1.4 1.1 1.1 1 +1917 4 26 1.0 0.7 0.7 1 +1917 4 27 0.1 -0.2 -0.2 1 +1917 4 28 -1.3 -1.7 -1.7 1 +1917 4 29 0.2 -0.2 -0.2 1 +1917 4 30 0.8 0.4 0.4 1 +1917 5 1 3.6 3.2 3.2 1 +1917 5 2 4.5 4.1 4.1 1 +1917 5 3 3.4 3.0 3.0 1 +1917 5 4 8.1 7.7 7.7 1 +1917 5 5 7.4 7.0 7.0 1 +1917 5 6 3.7 3.3 3.3 1 +1917 5 7 3.2 2.7 2.7 1 +1917 5 8 3.2 2.7 2.7 1 +1917 5 9 3.7 3.2 3.2 1 +1917 5 10 2.8 2.3 2.3 1 +1917 5 11 6.2 5.7 5.7 1 +1917 5 12 5.3 4.8 4.8 1 +1917 5 13 7.8 7.3 7.3 1 +1917 5 14 8.1 7.6 7.6 1 +1917 5 15 11.3 10.8 10.8 1 +1917 5 16 6.3 5.8 5.8 1 +1917 5 17 5.3 4.8 4.8 1 +1917 5 18 7.8 7.3 7.3 1 +1917 5 19 10.4 9.9 9.9 1 +1917 5 20 2.8 2.3 2.3 1 +1917 5 21 5.2 4.7 4.7 1 +1917 5 22 12.5 12.0 12.0 1 +1917 5 23 16.2 15.7 15.7 1 +1917 5 24 16.8 16.3 16.3 1 +1917 5 25 12.2 11.7 11.7 1 +1917 5 26 12.7 12.2 12.2 1 +1917 5 27 18.3 17.8 17.8 1 +1917 5 28 18.8 18.3 18.3 1 +1917 5 29 19.7 19.2 19.2 1 +1917 5 30 19.2 18.7 18.7 1 +1917 5 31 15.8 15.3 15.3 1 +1917 6 1 15.3 14.8 14.8 1 +1917 6 2 16.0 15.5 15.5 1 +1917 6 3 13.7 13.2 13.2 1 +1917 6 4 15.0 14.5 14.5 1 +1917 6 5 14.3 13.9 13.9 1 +1917 6 6 12.2 11.8 11.8 1 +1917 6 7 8.5 8.1 8.1 1 +1917 6 8 11.9 11.5 11.5 1 +1917 6 9 15.3 14.9 14.9 1 +1917 6 10 18.7 18.3 18.3 1 +1917 6 11 18.6 18.2 18.2 1 +1917 6 12 20.0 19.6 19.6 1 +1917 6 13 19.9 19.5 19.5 1 +1917 6 14 19.5 19.1 19.1 1 +1917 6 15 22.1 21.7 21.7 1 +1917 6 16 22.2 21.8 21.8 1 +1917 6 17 24.2 23.8 23.8 1 +1917 6 18 23.3 22.9 22.9 1 +1917 6 19 23.6 23.2 23.2 1 +1917 6 20 23.5 23.1 23.1 1 +1917 6 21 25.1 24.7 24.7 1 +1917 6 22 22.6 22.2 22.2 1 +1917 6 23 16.1 15.7 15.7 1 +1917 6 24 16.9 16.5 16.5 1 +1917 6 25 16.7 16.3 16.3 1 +1917 6 26 18.8 18.4 18.4 1 +1917 6 27 17.4 17.0 17.0 1 +1917 6 28 17.1 16.7 16.7 1 +1917 6 29 19.1 18.7 18.7 1 +1917 6 30 14.9 14.5 14.5 1 +1917 7 1 15.0 14.6 14.6 1 +1917 7 2 15.9 15.5 15.5 1 +1917 7 3 17.6 17.2 17.2 1 +1917 7 4 15.1 14.7 14.7 1 +1917 7 5 12.0 11.6 11.6 1 +1917 7 6 10.5 10.1 10.1 1 +1917 7 7 11.3 10.9 10.9 1 +1917 7 8 13.5 13.1 13.1 1 +1917 7 9 14.9 14.5 14.5 1 +1917 7 10 15.7 15.3 15.3 1 +1917 7 11 17.8 17.4 17.4 1 +1917 7 12 19.2 18.8 18.8 1 +1917 7 13 19.4 19.0 19.0 1 +1917 7 14 20.7 20.3 20.3 1 +1917 7 15 20.5 20.1 20.1 1 +1917 7 16 16.3 15.9 15.9 1 +1917 7 17 17.9 17.5 17.5 1 +1917 7 18 18.6 18.2 18.2 1 +1917 7 19 19.8 19.4 19.4 1 +1917 7 20 16.2 15.9 15.9 1 +1917 7 21 17.0 16.7 16.7 1 +1917 7 22 15.1 14.8 14.8 1 +1917 7 23 11.8 11.5 11.5 1 +1917 7 24 12.3 12.0 12.0 1 +1917 7 25 15.0 14.7 14.7 1 +1917 7 26 16.3 16.0 16.0 1 +1917 7 27 18.2 17.9 17.9 1 +1917 7 28 18.0 17.7 17.7 1 +1917 7 29 17.0 16.7 16.7 1 +1917 7 30 17.4 17.1 17.1 1 +1917 7 31 17.1 16.8 16.8 1 +1917 8 1 19.3 19.0 19.0 1 +1917 8 2 20.6 20.4 20.4 1 +1917 8 3 19.8 19.6 19.6 1 +1917 8 4 21.8 21.6 21.6 1 +1917 8 5 16.9 16.7 16.7 1 +1917 8 6 15.3 15.1 15.1 1 +1917 8 7 13.5 13.3 13.3 1 +1917 8 8 13.0 12.8 12.8 1 +1917 8 9 17.3 17.1 17.1 1 +1917 8 10 18.9 18.7 18.7 1 +1917 8 11 19.0 18.8 18.8 1 +1917 8 12 16.7 16.5 16.5 1 +1917 8 13 18.3 18.1 18.1 1 +1917 8 14 19.2 19.0 19.0 1 +1917 8 15 17.7 17.6 17.6 1 +1917 8 16 17.8 17.7 17.7 1 +1917 8 17 18.0 17.9 17.9 1 +1917 8 18 17.9 17.8 17.8 1 +1917 8 19 17.4 17.3 17.3 1 +1917 8 20 16.4 16.3 16.3 1 +1917 8 21 16.3 16.2 16.2 1 +1917 8 22 16.4 16.3 16.3 1 +1917 8 23 17.0 16.9 16.9 1 +1917 8 24 18.7 18.6 18.6 1 +1917 8 25 17.5 17.4 17.4 1 +1917 8 26 15.3 15.2 15.2 1 +1917 8 27 15.7 15.6 15.6 1 +1917 8 28 17.7 17.7 17.7 1 +1917 8 29 16.1 16.1 16.1 1 +1917 8 30 15.8 15.8 15.8 1 +1917 8 31 15.2 15.2 15.2 1 +1917 9 1 14.2 14.2 14.2 1 +1917 9 2 15.1 15.1 15.1 1 +1917 9 3 14.3 14.3 14.3 1 +1917 9 4 13.1 13.1 13.1 1 +1917 9 5 11.2 11.2 11.2 1 +1917 9 6 10.9 10.9 10.9 1 +1917 9 7 14.4 14.4 14.4 1 +1917 9 8 14.7 14.7 14.7 1 +1917 9 9 13.8 13.9 13.9 1 +1917 9 10 12.9 13.0 13.0 1 +1917 9 11 13.4 13.5 13.5 1 +1917 9 12 13.1 13.2 13.2 1 +1917 9 13 10.4 10.5 10.5 1 +1917 9 14 10.6 10.7 10.7 1 +1917 9 15 9.3 9.4 9.4 1 +1917 9 16 11.3 11.4 11.4 1 +1917 9 17 12.3 12.4 12.4 1 +1917 9 18 13.2 13.3 13.3 1 +1917 9 19 11.4 11.5 11.5 1 +1917 9 20 11.3 11.4 11.4 1 +1917 9 21 12.0 12.1 12.1 1 +1917 9 22 11.1 11.2 11.2 1 +1917 9 23 11.9 12.0 12.0 1 +1917 9 24 9.1 9.2 9.2 1 +1917 9 25 14.5 14.6 14.6 1 +1917 9 26 15.5 15.6 15.6 1 +1917 9 27 13.3 13.4 13.4 1 +1917 9 28 14.4 14.5 14.5 1 +1917 9 29 8.5 8.6 8.6 1 +1917 9 30 5.4 5.5 5.5 1 +1917 10 1 8.6 8.7 8.7 1 +1917 10 2 12.5 12.6 12.6 1 +1917 10 3 13.4 13.5 13.5 1 +1917 10 4 10.4 10.5 10.5 1 +1917 10 5 8.5 8.6 8.6 1 +1917 10 6 6.4 6.5 6.5 1 +1917 10 7 5.0 5.1 5.1 1 +1917 10 8 5.5 5.6 5.6 1 +1917 10 9 7.1 7.2 7.2 1 +1917 10 10 8.0 8.1 8.1 1 +1917 10 11 7.0 7.1 7.1 1 +1917 10 12 6.7 6.8 6.8 1 +1917 10 13 8.3 8.4 8.4 1 +1917 10 14 8.4 8.5 8.5 1 +1917 10 15 6.8 6.9 6.9 1 +1917 10 16 5.7 5.8 5.8 1 +1917 10 17 7.9 8.0 8.0 1 +1917 10 18 8.2 8.3 8.3 1 +1917 10 19 8.6 8.7 8.7 1 +1917 10 20 7.3 7.4 7.4 1 +1917 10 21 7.6 7.7 7.7 1 +1917 10 22 8.0 8.0 8.0 1 +1917 10 23 7.7 7.7 7.7 1 +1917 10 24 7.4 7.4 7.4 1 +1917 10 25 5.5 5.5 5.5 1 +1917 10 26 5.8 5.8 5.8 1 +1917 10 27 4.2 4.2 4.2 1 +1917 10 28 4.0 4.0 4.0 1 +1917 10 29 3.4 3.4 3.4 1 +1917 10 30 4.1 4.1 4.1 1 +1917 10 31 6.8 6.8 6.8 1 +1917 11 1 6.1 6.1 6.1 1 +1917 11 2 5.2 5.2 5.2 1 +1917 11 3 3.3 3.3 3.3 1 +1917 11 4 0.3 0.3 0.3 1 +1917 11 5 1.4 1.4 1.4 1 +1917 11 6 6.0 6.0 6.0 1 +1917 11 7 5.8 5.8 5.8 1 +1917 11 8 6.4 6.3 6.3 1 +1917 11 9 3.9 3.8 3.8 1 +1917 11 10 5.6 5.5 5.5 1 +1917 11 11 4.3 4.2 4.2 1 +1917 11 12 1.6 1.5 1.5 1 +1917 11 13 2.6 2.5 2.5 1 +1917 11 14 5.6 5.5 5.5 1 +1917 11 15 2.4 2.3 2.3 1 +1917 11 16 1.3 1.2 1.2 1 +1917 11 17 1.7 1.6 1.6 1 +1917 11 18 5.5 5.4 5.4 1 +1917 11 19 3.9 3.8 3.8 1 +1917 11 20 3.9 3.8 3.8 1 +1917 11 21 0.2 0.1 0.1 1 +1917 11 22 1.1 1.0 1.0 1 +1917 11 23 1.9 1.8 1.8 1 +1917 11 24 0.1 0.0 0.0 1 +1917 11 25 -2.4 -2.5 -2.5 1 +1917 11 26 -3.9 -4.0 -4.0 1 +1917 11 27 2.2 2.1 2.1 1 +1917 11 28 -2.0 -2.1 -2.1 1 +1917 11 29 1.3 1.2 1.2 1 +1917 11 30 -1.0 -1.1 -1.1 1 +1917 12 1 1.1 1.0 1.0 1 +1917 12 2 0.2 0.1 0.1 1 +1917 12 3 -5.5 -5.6 -5.6 1 +1917 12 4 -8.1 -8.2 -8.2 1 +1917 12 5 -5.0 -5.1 -5.1 1 +1917 12 6 2.9 2.8 2.8 1 +1917 12 7 5.9 5.8 5.8 1 +1917 12 8 4.7 4.6 4.6 1 +1917 12 9 1.7 1.6 1.6 1 +1917 12 10 1.3 1.2 1.2 1 +1917 12 11 1.8 1.7 1.7 1 +1917 12 12 1.3 1.2 1.2 1 +1917 12 13 2.4 2.3 2.3 1 +1917 12 14 -0.5 -0.6 -0.6 1 +1917 12 15 -3.3 -3.4 -3.4 1 +1917 12 16 -7.2 -7.3 -7.3 1 +1917 12 17 -6.0 -6.1 -6.1 1 +1917 12 18 -5.4 -5.5 -5.5 1 +1917 12 19 -0.5 -0.6 -0.6 1 +1917 12 20 -0.1 -0.2 -0.2 1 +1917 12 21 -2.5 -2.7 -2.7 1 +1917 12 22 -10.4 -10.6 -10.6 1 +1917 12 23 -2.7 -2.9 -2.9 1 +1917 12 24 -2.6 -2.8 -2.8 1 +1917 12 25 -7.5 -7.7 -7.7 1 +1917 12 26 -2.8 -3.0 -3.0 1 +1917 12 27 -6.8 -7.0 -7.0 1 +1917 12 28 -8.6 -8.8 -8.8 1 +1917 12 29 -4.1 -4.3 -4.3 1 +1917 12 30 -2.8 -3.0 -3.0 1 +1917 12 31 -1.0 -1.3 -1.3 1 +1918 1 1 -2.6 -2.9 -2.9 1 +1918 1 2 -6.4 -6.7 -6.7 1 +1918 1 3 -10.1 -10.4 -10.4 1 +1918 1 4 -13.4 -13.7 -13.7 1 +1918 1 5 -4.8 -5.1 -5.1 1 +1918 1 6 -10.0 -10.3 -10.3 1 +1918 1 7 -6.7 -7.0 -7.0 1 +1918 1 8 -10.8 -11.1 -11.1 1 +1918 1 9 -17.3 -17.6 -17.6 1 +1918 1 10 -6.9 -7.3 -7.3 1 +1918 1 11 -6.1 -6.5 -6.5 1 +1918 1 12 -11.8 -12.2 -12.2 1 +1918 1 13 -15.7 -16.1 -16.1 1 +1918 1 14 -16.9 -17.3 -17.3 1 +1918 1 15 -3.1 -3.5 -3.5 1 +1918 1 16 -6.8 -7.2 -7.2 1 +1918 1 17 -10.9 -11.3 -11.3 1 +1918 1 18 -12.2 -12.6 -12.6 1 +1918 1 19 -8.3 -8.7 -8.7 1 +1918 1 20 -3.7 -4.1 -4.1 1 +1918 1 21 3.8 3.4 3.4 1 +1918 1 22 2.0 1.6 1.6 1 +1918 1 23 -1.8 -2.2 -2.2 1 +1918 1 24 -3.2 -3.6 -3.6 1 +1918 1 25 2.6 2.2 2.2 1 +1918 1 26 3.4 3.0 3.0 1 +1918 1 27 3.4 3.0 3.0 1 +1918 1 28 3.0 2.7 2.7 1 +1918 1 29 3.0 2.7 2.7 1 +1918 1 30 2.2 1.9 1.9 1 +1918 1 31 1.4 1.1 1.1 1 +1918 2 1 2.0 1.7 1.7 1 +1918 2 2 1.3 1.0 1.0 1 +1918 2 3 -1.3 -1.6 -1.6 1 +1918 2 4 -0.6 -0.9 -0.9 1 +1918 2 5 0.2 -0.1 -0.1 1 +1918 2 6 1.5 1.2 1.2 1 +1918 2 7 0.9 0.6 0.6 1 +1918 2 8 -0.5 -0.8 -0.8 1 +1918 2 9 0.5 0.2 0.2 1 +1918 2 10 1.3 1.0 1.0 1 +1918 2 11 -0.4 -0.7 -0.7 1 +1918 2 12 -1.0 -1.3 -1.3 1 +1918 2 13 -3.6 -3.9 -3.9 1 +1918 2 14 -5.5 -5.8 -5.8 1 +1918 2 15 -7.2 -7.5 -7.5 1 +1918 2 16 -4.9 -5.2 -5.2 1 +1918 2 17 -5.2 -5.5 -5.5 1 +1918 2 18 -4.6 -4.9 -4.9 1 +1918 2 19 -4.4 -4.7 -4.7 1 +1918 2 20 -6.0 -6.3 -6.3 1 +1918 2 21 -7.2 -7.5 -7.5 1 +1918 2 22 -7.2 -7.5 -7.5 1 +1918 2 23 -2.1 -2.4 -2.4 1 +1918 2 24 2.3 2.0 2.0 1 +1918 2 25 -0.1 -0.4 -0.4 1 +1918 2 26 2.6 2.3 2.3 1 +1918 2 27 1.9 1.6 1.6 1 +1918 2 28 -2.5 -2.8 -2.8 1 +1918 3 1 -5.0 -5.3 -5.3 1 +1918 3 2 -6.1 -6.4 -6.4 1 +1918 3 3 -4.0 -4.3 -4.3 1 +1918 3 4 -0.9 -1.2 -1.2 1 +1918 3 5 0.2 -0.1 -0.1 1 +1918 3 6 -1.0 -1.3 -1.3 1 +1918 3 7 -1.7 -2.0 -2.0 1 +1918 3 8 -0.5 -0.9 -0.9 1 +1918 3 9 2.2 1.8 1.8 1 +1918 3 10 2.0 1.6 1.6 1 +1918 3 11 1.7 1.3 1.3 1 +1918 3 12 -1.3 -1.7 -1.7 1 +1918 3 13 -0.4 -0.8 -0.8 1 +1918 3 14 1.9 1.5 1.5 1 +1918 3 15 3.2 2.8 2.8 1 +1918 3 16 -0.3 -0.7 -0.7 1 +1918 3 17 0.9 0.5 0.5 1 +1918 3 18 2.0 1.6 1.6 1 +1918 3 19 3.1 2.7 2.7 1 +1918 3 20 3.0 2.6 2.6 1 +1918 3 21 2.2 1.9 1.9 1 +1918 3 22 5.8 5.5 5.5 1 +1918 3 23 7.8 7.5 7.5 1 +1918 3 24 2.7 2.4 2.4 1 +1918 3 25 -7.6 -7.9 -7.9 1 +1918 3 26 -6.9 -7.2 -7.2 1 +1918 3 27 -4.6 -4.9 -4.9 1 +1918 3 28 0.5 0.2 0.2 1 +1918 3 29 3.0 2.7 2.7 1 +1918 3 30 2.1 1.8 1.8 1 +1918 3 31 2.1 1.8 1.8 1 +1918 4 1 -0.3 -0.6 -0.6 1 +1918 4 2 2.0 1.7 1.7 1 +1918 4 3 5.5 5.2 5.2 1 +1918 4 4 4.2 3.9 3.9 1 +1918 4 5 0.8 0.5 0.5 1 +1918 4 6 1.5 1.2 1.2 1 +1918 4 7 1.3 1.0 1.0 1 +1918 4 8 1.6 1.3 1.3 1 +1918 4 9 2.1 1.8 1.8 1 +1918 4 10 3.3 3.0 3.0 1 +1918 4 11 3.5 3.3 3.3 1 +1918 4 12 1.9 1.7 1.7 1 +1918 4 13 9.0 8.8 8.8 1 +1918 4 14 1.2 1.0 1.0 1 +1918 4 15 0.2 0.0 0.0 1 +1918 4 16 1.6 1.4 1.4 1 +1918 4 17 3.2 3.0 3.0 1 +1918 4 18 2.3 2.0 2.0 1 +1918 4 19 4.2 3.9 3.9 1 +1918 4 20 7.1 6.8 6.8 1 +1918 4 21 6.5 6.2 6.2 1 +1918 4 22 5.1 4.8 4.8 1 +1918 4 23 6.4 6.1 6.1 1 +1918 4 24 7.6 7.3 7.3 1 +1918 4 25 8.5 8.2 8.2 1 +1918 4 26 10.3 10.0 10.0 1 +1918 4 27 12.2 11.8 11.8 1 +1918 4 28 5.9 5.5 5.5 1 +1918 4 29 0.8 0.4 0.4 1 +1918 4 30 0.4 0.0 0.0 1 +1918 5 1 5.7 5.3 5.3 1 +1918 5 2 10.4 10.0 10.0 1 +1918 5 3 4.7 4.3 4.3 1 +1918 5 4 3.1 2.7 2.7 1 +1918 5 5 7.2 6.8 6.8 1 +1918 5 6 7.0 6.5 6.5 1 +1918 5 7 4.9 4.4 4.4 1 +1918 5 8 3.9 3.4 3.4 1 +1918 5 9 5.0 4.5 4.5 1 +1918 5 10 5.1 4.6 4.6 1 +1918 5 11 4.9 4.4 4.4 1 +1918 5 12 7.4 6.9 6.9 1 +1918 5 13 9.7 9.2 9.2 1 +1918 5 14 10.2 9.7 9.7 1 +1918 5 15 10.2 9.6 9.6 1 +1918 5 16 14.8 14.2 14.2 1 +1918 5 17 17.6 17.1 17.1 1 +1918 5 18 19.0 18.5 18.5 1 +1918 5 19 16.5 16.0 16.0 1 +1918 5 20 14.1 13.6 13.6 1 +1918 5 21 14.7 14.2 14.2 1 +1918 5 22 15.6 15.1 15.1 1 +1918 5 23 11.0 10.5 10.5 1 +1918 5 24 9.2 8.7 8.7 1 +1918 5 25 8.5 8.0 8.0 1 +1918 5 26 8.2 7.7 7.7 1 +1918 5 27 12.5 12.0 12.0 1 +1918 5 28 11.4 10.9 10.9 1 +1918 5 29 15.3 14.8 14.8 1 +1918 5 30 16.7 16.2 16.2 1 +1918 5 31 9.1 8.6 8.6 1 +1918 6 1 8.9 8.4 8.4 1 +1918 6 2 5.9 5.4 5.4 1 +1918 6 3 7.0 6.5 6.5 1 +1918 6 4 8.4 7.9 7.9 1 +1918 6 5 12.9 12.4 12.4 1 +1918 6 6 15.7 15.2 15.2 1 +1918 6 7 18.5 18.0 18.0 1 +1918 6 8 17.3 16.9 16.9 1 +1918 6 9 14.6 14.2 14.2 1 +1918 6 10 13.5 13.1 13.1 1 +1918 6 11 12.9 12.5 12.5 1 +1918 6 12 11.0 10.6 10.6 1 +1918 6 13 11.4 11.0 11.0 1 +1918 6 14 11.7 11.3 11.3 1 +1918 6 15 12.8 12.4 12.4 1 +1918 6 16 12.8 12.4 12.4 1 +1918 6 17 12.0 11.6 11.6 1 +1918 6 18 10.7 10.3 10.3 1 +1918 6 19 12.4 12.0 12.0 1 +1918 6 20 14.8 14.4 14.4 1 +1918 6 21 14.9 14.5 14.5 1 +1918 6 22 14.2 13.8 13.8 1 +1918 6 23 11.3 10.9 10.9 1 +1918 6 24 11.4 11.0 11.0 1 +1918 6 25 11.8 11.4 11.4 1 +1918 6 26 10.3 9.9 9.9 1 +1918 6 27 11.7 11.3 11.3 1 +1918 6 28 12.0 11.6 11.6 1 +1918 6 29 13.0 12.6 12.6 1 +1918 6 30 15.1 14.7 14.7 1 +1918 7 1 17.9 17.5 17.5 1 +1918 7 2 19.7 19.3 19.3 1 +1918 7 3 21.0 20.6 20.6 1 +1918 7 4 21.8 21.4 21.4 1 +1918 7 5 19.0 18.6 18.6 1 +1918 7 6 15.5 15.1 15.1 1 +1918 7 7 15.6 15.2 15.2 1 +1918 7 8 14.8 14.4 14.4 1 +1918 7 9 14.0 13.6 13.6 1 +1918 7 10 17.1 16.7 16.7 1 +1918 7 11 18.4 18.0 18.0 1 +1918 7 12 16.4 16.0 16.0 1 +1918 7 13 17.9 17.5 17.5 1 +1918 7 14 14.4 14.0 14.0 1 +1918 7 15 15.6 15.2 15.2 1 +1918 7 16 15.8 15.4 15.4 1 +1918 7 17 15.8 15.4 15.4 1 +1918 7 18 16.9 16.5 16.5 1 +1918 7 19 16.8 16.4 16.4 1 +1918 7 20 17.1 16.7 16.7 1 +1918 7 21 17.8 17.4 17.4 1 +1918 7 22 16.6 16.3 16.3 1 +1918 7 23 20.3 20.0 20.0 1 +1918 7 24 18.3 18.0 18.0 1 +1918 7 25 17.4 17.1 17.1 1 +1918 7 26 16.0 15.7 15.7 1 +1918 7 27 15.5 15.2 15.2 1 +1918 7 28 17.2 16.9 16.9 1 +1918 7 29 18.1 17.8 17.8 1 +1918 7 30 16.6 16.3 16.3 1 +1918 7 31 16.3 16.0 16.0 1 +1918 8 1 14.4 14.1 14.1 1 +1918 8 2 13.3 13.0 13.0 1 +1918 8 3 14.7 14.4 14.4 1 +1918 8 4 15.2 15.0 15.0 1 +1918 8 5 16.2 16.0 16.0 1 +1918 8 6 17.3 17.1 17.1 1 +1918 8 7 17.1 16.9 16.9 1 +1918 8 8 15.3 15.1 15.1 1 +1918 8 9 18.5 18.3 18.3 1 +1918 8 10 19.2 19.0 19.0 1 +1918 8 11 18.0 17.8 17.8 1 +1918 8 12 18.2 18.0 18.0 1 +1918 8 13 18.7 18.5 18.5 1 +1918 8 14 17.8 17.6 17.6 1 +1918 8 15 17.3 17.1 17.1 1 +1918 8 16 15.9 15.7 15.7 1 +1918 8 17 13.5 13.4 13.4 1 +1918 8 18 13.0 12.9 12.9 1 +1918 8 19 13.6 13.5 13.5 1 +1918 8 20 15.1 15.0 15.0 1 +1918 8 21 15.2 15.1 15.1 1 +1918 8 22 15.4 15.3 15.3 1 +1918 8 23 16.2 16.1 16.1 1 +1918 8 24 14.6 14.5 14.5 1 +1918 8 25 12.4 12.3 12.3 1 +1918 8 26 12.1 12.0 12.0 1 +1918 8 27 13.0 12.9 12.9 1 +1918 8 28 13.6 13.5 13.5 1 +1918 8 29 14.2 14.2 14.2 1 +1918 8 30 14.4 14.4 14.4 1 +1918 8 31 13.3 13.3 13.3 1 +1918 9 1 12.2 12.2 12.2 1 +1918 9 2 13.0 13.0 13.0 1 +1918 9 3 13.0 13.0 13.0 1 +1918 9 4 10.9 10.9 10.9 1 +1918 9 5 10.1 10.1 10.1 1 +1918 9 6 12.0 12.0 12.0 1 +1918 9 7 10.2 10.2 10.2 1 +1918 9 8 13.0 13.0 13.0 1 +1918 9 9 12.4 12.4 12.4 1 +1918 9 10 11.7 11.8 11.8 1 +1918 9 11 11.7 11.8 11.8 1 +1918 9 12 11.0 11.1 11.1 1 +1918 9 13 10.5 10.6 10.6 1 +1918 9 14 9.8 9.9 9.9 1 +1918 9 15 8.1 8.2 8.2 1 +1918 9 16 8.3 8.4 8.4 1 +1918 9 17 8.8 8.9 8.9 1 +1918 9 18 13.3 13.4 13.4 1 +1918 9 19 13.5 13.6 13.6 1 +1918 9 20 10.7 10.8 10.8 1 +1918 9 21 9.0 9.1 9.1 1 +1918 9 22 10.0 10.1 10.1 1 +1918 9 23 12.8 12.9 12.9 1 +1918 9 24 11.1 11.2 11.2 1 +1918 9 25 11.1 11.2 11.2 1 +1918 9 26 9.8 9.9 9.9 1 +1918 9 27 8.2 8.3 8.3 1 +1918 9 28 9.1 9.2 9.2 1 +1918 9 29 6.1 6.2 6.2 1 +1918 9 30 6.4 6.5 6.5 1 +1918 10 1 5.5 5.6 5.6 1 +1918 10 2 5.2 5.3 5.3 1 +1918 10 3 8.0 8.1 8.1 1 +1918 10 4 7.9 8.0 8.0 1 +1918 10 5 8.0 8.1 8.1 1 +1918 10 6 9.7 9.8 9.8 1 +1918 10 7 9.6 9.7 9.7 1 +1918 10 8 9.0 9.1 9.1 1 +1918 10 9 8.7 8.8 8.8 1 +1918 10 10 9.7 9.8 9.8 1 +1918 10 11 8.7 8.8 8.8 1 +1918 10 12 9.2 9.3 9.3 1 +1918 10 13 11.5 11.6 11.6 1 +1918 10 14 10.2 10.3 10.3 1 +1918 10 15 9.0 9.1 9.1 1 +1918 10 16 10.6 10.7 10.7 1 +1918 10 17 12.0 12.1 12.1 1 +1918 10 18 11.5 11.6 11.6 1 +1918 10 19 8.2 8.3 8.3 1 +1918 10 20 6.4 6.5 6.5 1 +1918 10 21 3.4 3.4 3.4 1 +1918 10 22 5.1 5.1 5.1 1 +1918 10 23 8.2 8.2 8.2 1 +1918 10 24 5.4 5.4 5.4 1 +1918 10 25 6.4 6.4 6.4 1 +1918 10 26 5.0 5.0 5.0 1 +1918 10 27 4.4 4.4 4.4 1 +1918 10 28 3.1 3.1 3.1 1 +1918 10 29 5.9 5.9 5.9 1 +1918 10 30 8.4 8.4 8.4 1 +1918 10 31 7.7 7.7 7.7 1 +1918 11 1 8.7 8.7 8.7 1 +1918 11 2 8.0 8.0 8.0 1 +1918 11 3 6.4 6.4 6.4 1 +1918 11 4 7.4 7.4 7.4 1 +1918 11 5 8.3 8.3 8.3 1 +1918 11 6 7.8 7.8 7.8 1 +1918 11 7 7.1 7.0 7.0 1 +1918 11 8 7.7 7.6 7.6 1 +1918 11 9 6.7 6.6 6.6 1 +1918 11 10 5.0 4.9 4.9 1 +1918 11 11 5.7 5.6 5.6 1 +1918 11 12 1.9 1.8 1.8 1 +1918 11 13 1.3 1.2 1.2 1 +1918 11 14 2.9 2.8 2.8 1 +1918 11 15 2.3 2.2 2.2 1 +1918 11 16 2.0 1.9 1.9 1 +1918 11 17 3.6 3.5 3.5 1 +1918 11 18 0.8 0.7 0.7 1 +1918 11 19 -0.9 -1.0 -1.0 1 +1918 11 20 -4.1 -4.2 -4.2 1 +1918 11 21 -3.2 -3.3 -3.3 1 +1918 11 22 4.2 4.1 4.1 1 +1918 11 23 3.0 2.9 2.9 1 +1918 11 24 4.4 4.3 4.3 1 +1918 11 25 3.5 3.4 3.4 1 +1918 11 26 1.1 1.0 1.0 1 +1918 11 27 2.9 2.8 2.8 1 +1918 11 28 3.3 3.2 3.2 1 +1918 11 29 1.9 1.8 1.8 1 +1918 11 30 1.0 0.9 0.9 1 +1918 12 1 0.9 0.8 0.8 1 +1918 12 2 3.0 2.9 2.9 1 +1918 12 3 6.5 6.4 6.4 1 +1918 12 4 1.0 0.9 0.9 1 +1918 12 5 -1.2 -1.3 -1.3 1 +1918 12 6 3.3 3.2 3.2 1 +1918 12 7 3.3 3.2 3.2 1 +1918 12 8 2.9 2.8 2.8 1 +1918 12 9 1.9 1.8 1.8 1 +1918 12 10 -2.5 -2.6 -2.6 1 +1918 12 11 -4.4 -4.5 -4.5 1 +1918 12 12 -4.7 -4.8 -4.8 1 +1918 12 13 -7.0 -7.1 -7.1 1 +1918 12 14 -1.4 -1.5 -1.5 1 +1918 12 15 2.8 2.7 2.7 1 +1918 12 16 3.2 3.1 3.1 1 +1918 12 17 -0.4 -0.5 -0.5 1 +1918 12 18 -4.1 -4.2 -4.2 1 +1918 12 19 -2.4 -2.5 -2.5 1 +1918 12 20 1.2 1.0 1.0 1 +1918 12 21 -0.6 -0.8 -0.8 1 +1918 12 22 -7.2 -7.4 -7.4 1 +1918 12 23 -4.2 -4.4 -4.4 1 +1918 12 24 -0.4 -0.6 -0.6 1 +1918 12 25 -2.5 -2.7 -2.7 1 +1918 12 26 -3.7 -3.9 -3.9 1 +1918 12 27 -0.4 -0.6 -0.6 1 +1918 12 28 1.3 1.1 1.1 1 +1918 12 29 -0.3 -0.5 -0.5 1 +1918 12 30 -6.4 -6.7 -6.7 1 +1918 12 31 -9.0 -9.3 -9.3 1 +1919 1 1 -8.1 -8.4 -8.4 1 +1919 1 2 -5.9 -6.2 -6.2 1 +1919 1 3 0.7 0.4 0.4 1 +1919 1 4 2.3 2.0 2.0 1 +1919 1 5 2.8 2.5 2.5 1 +1919 1 6 2.9 2.6 2.6 1 +1919 1 7 3.0 2.7 2.7 1 +1919 1 8 2.3 2.0 2.0 1 +1919 1 9 2.7 2.3 2.3 1 +1919 1 10 2.4 2.0 2.0 1 +1919 1 11 0.4 0.0 0.0 1 +1919 1 12 -1.2 -1.6 -1.6 1 +1919 1 13 1.1 0.7 0.7 1 +1919 1 14 -3.6 -4.0 -4.0 1 +1919 1 15 0.4 0.0 0.0 1 +1919 1 16 1.9 1.5 1.5 1 +1919 1 17 3.0 2.6 2.6 1 +1919 1 18 1.4 1.0 1.0 1 +1919 1 19 0.8 0.4 0.4 1 +1919 1 20 -0.5 -0.9 -0.9 1 +1919 1 21 -2.6 -3.0 -3.0 1 +1919 1 22 -4.3 -4.7 -4.7 1 +1919 1 23 -5.2 -5.6 -5.6 1 +1919 1 24 -8.5 -8.9 -8.9 1 +1919 1 25 -2.6 -3.0 -3.0 1 +1919 1 26 -1.7 -2.1 -2.1 1 +1919 1 27 -2.6 -3.0 -3.0 1 +1919 1 28 -1.4 -1.8 -1.8 1 +1919 1 29 -0.6 -1.0 -1.0 1 +1919 1 30 -5.8 -6.2 -6.2 1 +1919 1 31 -8.6 -8.9 -8.9 1 +1919 2 1 -6.9 -7.2 -7.2 1 +1919 2 2 -7.2 -7.5 -7.5 1 +1919 2 3 -6.9 -7.2 -7.2 1 +1919 2 4 -9.6 -9.9 -9.9 1 +1919 2 5 -11.7 -12.0 -12.0 1 +1919 2 6 -11.9 -12.2 -12.2 1 +1919 2 7 -10.6 -10.9 -10.9 1 +1919 2 8 -8.2 -8.5 -8.5 1 +1919 2 9 -4.4 -4.7 -4.7 1 +1919 2 10 2.0 1.7 1.7 1 +1919 2 11 4.5 4.2 4.2 1 +1919 2 12 3.1 2.8 2.8 1 +1919 2 13 0.3 0.0 0.0 1 +1919 2 14 0.2 -0.1 -0.1 1 +1919 2 15 -3.4 -3.7 -3.7 1 +1919 2 16 -6.2 -6.5 -6.5 1 +1919 2 17 -2.6 -2.9 -2.9 1 +1919 2 18 -2.4 -2.7 -2.7 1 +1919 2 19 -6.3 -6.6 -6.6 1 +1919 2 20 -0.5 -0.8 -0.8 1 +1919 2 21 -0.1 -0.4 -0.4 1 +1919 2 22 -2.1 -2.4 -2.4 1 +1919 2 23 -4.6 -4.9 -4.9 1 +1919 2 24 -4.4 -4.7 -4.7 1 +1919 2 25 -4.6 -4.9 -4.9 1 +1919 2 26 -5.7 -6.0 -6.0 1 +1919 2 27 -5.1 -5.4 -5.4 1 +1919 2 28 -4.0 -4.3 -4.3 1 +1919 3 1 -2.4 -2.7 -2.7 1 +1919 3 2 -1.5 -1.8 -1.8 1 +1919 3 3 1.5 1.2 1.2 1 +1919 3 4 0.1 -0.3 -0.3 1 +1919 3 5 -0.8 -1.2 -1.2 1 +1919 3 6 -1.4 -1.8 -1.8 1 +1919 3 7 0.0 -0.4 -0.4 1 +1919 3 8 -2.0 -2.4 -2.4 1 +1919 3 9 -2.4 -2.8 -2.8 1 +1919 3 10 1.0 0.6 0.6 1 +1919 3 11 3.2 2.8 2.8 1 +1919 3 12 2.5 2.1 2.1 1 +1919 3 13 -0.5 -0.9 -0.9 1 +1919 3 14 -2.8 -3.2 -3.2 1 +1919 3 15 -3.1 -3.5 -3.5 1 +1919 3 16 -1.3 -1.7 -1.7 1 +1919 3 17 -2.8 -3.2 -3.2 1 +1919 3 18 -4.8 -5.2 -5.2 1 +1919 3 19 -5.2 -5.6 -5.6 1 +1919 3 20 -3.9 -4.3 -4.3 1 +1919 3 21 -6.3 -6.7 -6.7 1 +1919 3 22 -4.0 -4.4 -4.4 1 +1919 3 23 -4.3 -4.7 -4.7 1 +1919 3 24 -10.8 -11.1 -11.1 1 +1919 3 25 -7.8 -8.1 -8.1 1 +1919 3 26 -1.2 -1.5 -1.5 1 +1919 3 27 -0.5 -0.8 -0.8 1 +1919 3 28 1.2 0.9 0.9 1 +1919 3 29 1.4 1.1 1.1 1 +1919 3 30 0.6 0.3 0.3 1 +1919 3 31 -2.0 -2.3 -2.3 1 +1919 4 1 -1.0 -1.3 -1.3 1 +1919 4 2 2.4 2.1 2.1 1 +1919 4 3 -2.7 -3.0 -3.0 1 +1919 4 4 -0.3 -0.6 -0.6 1 +1919 4 5 1.7 1.4 1.4 1 +1919 4 6 0.3 0.0 0.0 1 +1919 4 7 1.1 0.8 0.8 1 +1919 4 8 4.2 3.9 3.9 1 +1919 4 9 2.4 2.1 2.1 1 +1919 4 10 3.2 2.9 2.9 1 +1919 4 11 5.9 5.6 5.6 1 +1919 4 12 7.9 7.6 7.6 1 +1919 4 13 5.4 5.2 5.2 1 +1919 4 14 3.2 3.0 3.0 1 +1919 4 15 3.9 3.7 3.7 1 +1919 4 16 2.9 2.6 2.6 1 +1919 4 17 3.3 3.0 3.0 1 +1919 4 18 6.8 6.5 6.5 1 +1919 4 19 10.7 10.4 10.4 1 +1919 4 20 3.0 2.7 2.7 1 +1919 4 21 1.6 1.3 1.3 1 +1919 4 22 4.6 4.3 4.3 1 +1919 4 23 6.1 5.8 5.8 1 +1919 4 24 1.9 1.6 1.6 1 +1919 4 25 1.4 1.0 1.0 1 +1919 4 26 1.9 1.5 1.5 1 +1919 4 27 2.4 2.0 2.0 1 +1919 4 28 3.9 3.5 3.5 1 +1919 4 29 5.4 5.0 5.0 1 +1919 4 30 8.1 7.7 7.7 1 +1919 5 1 6.1 5.7 5.7 1 +1919 5 2 4.9 4.5 4.5 1 +1919 5 3 8.0 7.6 7.6 1 +1919 5 4 7.6 7.1 7.1 1 +1919 5 5 6.9 6.4 6.4 1 +1919 5 6 7.0 6.5 6.5 1 +1919 5 7 9.2 8.7 8.7 1 +1919 5 8 12.1 11.6 11.6 1 +1919 5 9 11.9 11.4 11.4 1 +1919 5 10 13.4 12.9 12.9 1 +1919 5 11 11.1 10.6 10.6 1 +1919 5 12 10.8 10.3 10.3 1 +1919 5 13 5.5 4.9 4.9 1 +1919 5 14 6.3 5.7 5.7 1 +1919 5 15 6.8 6.2 6.2 1 +1919 5 16 5.2 4.6 4.6 1 +1919 5 17 4.9 4.3 4.3 1 +1919 5 18 7.3 6.7 6.7 1 +1919 5 19 10.8 10.2 10.2 1 +1919 5 20 12.8 12.2 12.2 1 +1919 5 21 15.1 14.6 14.6 1 +1919 5 22 13.4 12.9 12.9 1 +1919 5 23 12.6 12.1 12.1 1 +1919 5 24 13.4 12.9 12.9 1 +1919 5 25 14.2 13.7 13.7 1 +1919 5 26 15.6 15.1 15.1 1 +1919 5 27 14.1 13.6 13.6 1 +1919 5 28 13.4 12.9 12.9 1 +1919 5 29 11.7 11.2 11.2 1 +1919 5 30 12.1 11.6 11.6 1 +1919 5 31 15.0 14.5 14.5 1 +1919 6 1 9.7 9.2 9.2 1 +1919 6 2 10.6 10.1 10.1 1 +1919 6 3 10.0 9.5 9.5 1 +1919 6 4 8.5 8.0 8.0 1 +1919 6 5 10.6 10.1 10.1 1 +1919 6 6 13.1 12.6 12.6 1 +1919 6 7 15.0 14.5 14.5 1 +1919 6 8 15.5 15.0 15.0 1 +1919 6 9 16.5 16.0 16.0 1 +1919 6 10 14.8 14.3 14.3 1 +1919 6 11 13.6 13.2 13.2 1 +1919 6 12 12.6 12.2 12.2 1 +1919 6 13 13.4 13.0 13.0 1 +1919 6 14 11.6 11.2 11.2 1 +1919 6 15 13.4 13.0 13.0 1 +1919 6 16 16.7 16.3 16.3 1 +1919 6 17 18.0 17.6 17.6 1 +1919 6 18 15.8 15.4 15.4 1 +1919 6 19 17.6 17.2 17.2 1 +1919 6 20 16.7 16.3 16.3 1 +1919 6 21 15.9 15.5 15.5 1 +1919 6 22 13.2 12.8 12.8 1 +1919 6 23 12.8 12.4 12.4 1 +1919 6 24 15.0 14.6 14.6 1 +1919 6 25 14.5 14.1 14.1 1 +1919 6 26 11.5 11.1 11.1 1 +1919 6 27 15.7 15.3 15.3 1 +1919 6 28 15.4 15.0 15.0 1 +1919 6 29 11.7 11.3 11.3 1 +1919 6 30 14.6 14.2 14.2 1 +1919 7 1 12.5 12.1 12.1 1 +1919 7 2 15.5 15.1 15.1 1 +1919 7 3 17.5 17.1 17.1 1 +1919 7 4 19.0 18.6 18.6 1 +1919 7 5 18.2 17.8 17.8 1 +1919 7 6 16.0 15.6 15.6 1 +1919 7 7 17.2 16.8 16.8 1 +1919 7 8 18.9 18.5 18.5 1 +1919 7 9 19.4 19.0 19.0 1 +1919 7 10 21.7 21.3 21.3 1 +1919 7 11 21.8 21.4 21.4 1 +1919 7 12 21.2 20.8 20.8 1 +1919 7 13 19.9 19.5 19.5 1 +1919 7 14 15.6 15.2 15.2 1 +1919 7 15 15.7 15.3 15.3 1 +1919 7 16 20.4 20.0 20.0 1 +1919 7 17 16.3 15.9 15.9 1 +1919 7 18 15.6 15.2 15.2 1 +1919 7 19 15.7 15.3 15.3 1 +1919 7 20 18.2 17.8 17.8 1 +1919 7 21 18.8 18.4 18.4 1 +1919 7 22 19.6 19.2 19.2 1 +1919 7 23 20.4 20.0 20.0 1 +1919 7 24 20.4 20.1 20.1 1 +1919 7 25 15.5 15.2 15.2 1 +1919 7 26 15.7 15.4 15.4 1 +1919 7 27 15.4 15.1 15.1 1 +1919 7 28 17.0 16.7 16.7 1 +1919 7 29 16.2 15.9 15.9 1 +1919 7 30 17.1 16.8 16.8 1 +1919 7 31 19.1 18.8 18.8 1 +1919 8 1 15.5 15.2 15.2 1 +1919 8 2 16.3 16.0 16.0 1 +1919 8 3 14.8 14.5 14.5 1 +1919 8 4 14.8 14.5 14.5 1 +1919 8 5 14.9 14.6 14.6 1 +1919 8 6 15.6 15.4 15.4 1 +1919 8 7 13.0 12.8 12.8 1 +1919 8 8 12.1 11.9 11.9 1 +1919 8 9 12.0 11.8 11.8 1 +1919 8 10 15.4 15.2 15.2 1 +1919 8 11 15.0 14.8 14.8 1 +1919 8 12 13.4 13.2 13.2 1 +1919 8 13 16.0 15.8 15.8 1 +1919 8 14 12.6 12.4 12.4 1 +1919 8 15 13.2 13.0 13.0 1 +1919 8 16 13.2 13.0 13.0 1 +1919 8 17 15.5 15.3 15.3 1 +1919 8 18 16.2 16.1 16.1 1 +1919 8 19 15.7 15.6 15.6 1 +1919 8 20 14.8 14.7 14.7 1 +1919 8 21 13.0 12.9 12.9 1 +1919 8 22 12.4 12.3 12.3 1 +1919 8 23 11.6 11.5 11.5 1 +1919 8 24 11.0 10.9 10.9 1 +1919 8 25 10.5 10.4 10.4 1 +1919 8 26 10.9 10.8 10.8 1 +1919 8 27 13.6 13.5 13.5 1 +1919 8 28 13.8 13.7 13.7 1 +1919 8 29 14.9 14.8 14.8 1 +1919 8 30 13.6 13.6 13.6 1 +1919 8 31 12.4 12.4 12.4 1 +1919 9 1 12.4 12.4 12.4 1 +1919 9 2 13.1 13.1 13.1 1 +1919 9 3 14.3 14.3 14.3 1 +1919 9 4 15.7 15.7 15.7 1 +1919 9 5 17.1 17.1 17.1 1 +1919 9 6 17.4 17.4 17.4 1 +1919 9 7 17.9 17.9 17.9 1 +1919 9 8 13.6 13.6 13.6 1 +1919 9 9 13.7 13.7 13.7 1 +1919 9 10 12.2 12.2 12.2 1 +1919 9 11 17.1 17.2 17.2 1 +1919 9 12 14.6 14.7 14.7 1 +1919 9 13 12.6 12.7 12.7 1 +1919 9 14 11.1 11.2 11.2 1 +1919 9 15 11.0 11.1 11.1 1 +1919 9 16 13.0 13.1 13.1 1 +1919 9 17 13.0 13.1 13.1 1 +1919 9 18 11.2 11.3 11.3 1 +1919 9 19 12.3 12.4 12.4 1 +1919 9 20 11.9 12.0 12.0 1 +1919 9 21 10.2 10.3 10.3 1 +1919 9 22 8.8 8.9 8.9 1 +1919 9 23 9.7 9.8 9.8 1 +1919 9 24 9.7 9.8 9.8 1 +1919 9 25 10.2 10.3 10.3 1 +1919 9 26 12.0 12.1 12.1 1 +1919 9 27 10.4 10.5 10.5 1 +1919 9 28 8.5 8.6 8.6 1 +1919 9 29 6.4 6.5 6.5 1 +1919 9 30 10.4 10.5 10.5 1 +1919 10 1 9.4 9.5 9.5 1 +1919 10 2 10.5 10.6 10.6 1 +1919 10 3 11.9 12.0 12.0 1 +1919 10 4 9.4 9.5 9.5 1 +1919 10 5 8.5 8.6 8.6 1 +1919 10 6 13.2 13.3 13.3 1 +1919 10 7 6.7 6.8 6.8 1 +1919 10 8 6.8 6.9 6.9 1 +1919 10 9 2.4 2.5 2.5 1 +1919 10 10 1.5 1.6 1.6 1 +1919 10 11 1.8 1.9 1.9 1 +1919 10 12 1.2 1.3 1.3 1 +1919 10 13 4.6 4.7 4.7 1 +1919 10 14 5.4 5.5 5.5 1 +1919 10 15 2.4 2.5 2.5 1 +1919 10 16 2.2 2.3 2.3 1 +1919 10 17 2.9 3.0 3.0 1 +1919 10 18 2.1 2.2 2.2 1 +1919 10 19 7.3 7.4 7.4 1 +1919 10 20 7.0 7.0 7.0 1 +1919 10 21 8.7 8.7 8.7 1 +1919 10 22 7.5 7.5 7.5 1 +1919 10 23 5.4 5.4 5.4 1 +1919 10 24 4.8 4.8 4.8 1 +1919 10 25 3.7 3.7 3.7 1 +1919 10 26 2.8 2.8 2.8 1 +1919 10 27 1.9 1.9 1.9 1 +1919 10 28 3.3 3.3 3.3 1 +1919 10 29 4.0 4.0 4.0 1 +1919 10 30 2.6 2.6 2.6 1 +1919 10 31 -1.9 -1.9 -1.9 1 +1919 11 1 0.0 0.0 0.0 1 +1919 11 2 1.1 1.1 1.1 1 +1919 11 3 0.7 0.7 0.7 1 +1919 11 4 0.2 0.2 0.2 1 +1919 11 5 -1.8 -1.8 -1.8 1 +1919 11 6 -0.5 -0.6 -0.6 1 +1919 11 7 -4.2 -4.3 -4.3 1 +1919 11 8 -7.4 -7.5 -7.5 1 +1919 11 9 -8.5 -8.6 -8.6 1 +1919 11 10 -7.2 -7.3 -7.3 1 +1919 11 11 -5.4 -5.5 -5.5 1 +1919 11 12 -4.2 -4.3 -4.3 1 +1919 11 13 -3.8 -3.9 -3.9 1 +1919 11 14 -5.1 -5.2 -5.2 1 +1919 11 15 -5.0 -5.1 -5.1 1 +1919 11 16 -7.5 -7.6 -7.6 1 +1919 11 17 -9.5 -9.6 -9.6 1 +1919 11 18 -3.1 -3.2 -3.2 1 +1919 11 19 1.3 1.2 1.2 1 +1919 11 20 2.3 2.2 2.2 1 +1919 11 21 1.1 1.0 1.0 1 +1919 11 22 0.0 -0.1 -0.1 1 +1919 11 23 0.0 -0.1 -0.1 1 +1919 11 24 0.9 0.8 0.8 1 +1919 11 25 2.4 2.3 2.3 1 +1919 11 26 3.8 3.7 3.7 1 +1919 11 27 2.0 1.9 1.9 1 +1919 11 28 0.7 0.6 0.6 1 +1919 11 29 0.6 0.5 0.5 1 +1919 11 30 2.3 2.2 2.2 1 +1919 12 1 1.2 1.1 1.1 1 +1919 12 2 3.0 2.9 2.9 1 +1919 12 3 3.3 3.2 3.2 1 +1919 12 4 2.7 2.6 2.6 1 +1919 12 5 2.4 2.3 2.3 1 +1919 12 6 2.2 2.1 2.1 1 +1919 12 7 1.9 1.8 1.8 1 +1919 12 8 -0.4 -0.5 -0.5 1 +1919 12 9 -4.3 -4.4 -4.4 1 +1919 12 10 -8.1 -8.2 -8.2 1 +1919 12 11 -5.1 -5.2 -5.2 1 +1919 12 12 -3.6 -3.7 -3.7 1 +1919 12 13 -2.0 -2.1 -2.1 1 +1919 12 14 -3.0 -3.1 -3.1 1 +1919 12 15 0.4 0.3 0.3 1 +1919 12 16 -1.1 -1.2 -1.2 1 +1919 12 17 -1.8 -1.9 -1.9 1 +1919 12 18 -1.3 -1.4 -1.4 1 +1919 12 19 -3.7 -3.9 -3.9 1 +1919 12 20 -4.4 -4.6 -4.6 1 +1919 12 21 -4.0 -4.2 -4.2 1 +1919 12 22 -3.6 -3.8 -3.8 1 +1919 12 23 -6.3 -6.5 -6.5 1 +1919 12 24 -9.9 -10.1 -10.1 1 +1919 12 25 -11.0 -11.2 -11.2 1 +1919 12 26 -7.1 -7.3 -7.3 1 +1919 12 27 -9.9 -10.1 -10.1 1 +1919 12 28 -8.9 -9.1 -9.1 1 +1919 12 29 -12.8 -13.1 -13.1 1 +1919 12 30 -1.8 -2.1 -2.1 1 +1919 12 31 -1.2 -1.5 -1.5 1 +1920 1 1 1.4 1.1 1.1 1 +1920 1 2 0.6 0.3 0.3 1 +1920 1 3 -0.2 -0.5 -0.5 1 +1920 1 4 -7.4 -7.7 -7.7 1 +1920 1 5 -8.7 -9.0 -9.0 1 +1920 1 6 -4.5 -4.8 -4.8 1 +1920 1 7 -2.6 -2.9 -2.9 1 +1920 1 8 1.2 0.8 0.8 1 +1920 1 9 -2.6 -3.0 -3.0 1 +1920 1 10 -3.9 -4.3 -4.3 1 +1920 1 11 -10.2 -10.6 -10.6 1 +1920 1 12 -0.3 -0.7 -0.7 1 +1920 1 13 -2.5 -2.9 -2.9 1 +1920 1 14 -3.8 -4.2 -4.2 1 +1920 1 15 -7.9 -8.3 -8.3 1 +1920 1 16 -0.8 -1.2 -1.2 1 +1920 1 17 -0.3 -0.7 -0.7 1 +1920 1 18 1.5 1.1 1.1 1 +1920 1 19 1.2 0.8 0.8 1 +1920 1 20 -3.5 -3.9 -3.9 1 +1920 1 21 -5.4 -5.8 -5.8 1 +1920 1 22 -4.8 -5.2 -5.2 1 +1920 1 23 -1.1 -1.5 -1.5 1 +1920 1 24 -0.1 -0.5 -0.5 1 +1920 1 25 0.4 0.0 0.0 1 +1920 1 26 -0.9 -1.3 -1.3 1 +1920 1 27 -4.4 -4.8 -4.8 1 +1920 1 28 -7.8 -8.2 -8.2 1 +1920 1 29 -6.3 -6.7 -6.7 1 +1920 1 30 -4.5 -4.9 -4.9 1 +1920 1 31 -2.0 -2.4 -2.4 1 +1920 2 1 -1.0 -1.4 -1.4 1 +1920 2 2 3.4 3.0 3.0 1 +1920 2 3 4.9 4.6 4.6 1 +1920 2 4 3.2 2.9 2.9 1 +1920 2 5 -0.1 -0.4 -0.4 1 +1920 2 6 0.1 -0.2 -0.2 1 +1920 2 7 -1.9 -2.2 -2.2 1 +1920 2 8 -1.4 -1.7 -1.7 1 +1920 2 9 2.0 1.7 1.7 1 +1920 2 10 2.4 2.1 2.1 1 +1920 2 11 2.4 2.1 2.1 1 +1920 2 12 0.3 0.0 0.0 1 +1920 2 13 -1.0 -1.3 -1.3 1 +1920 2 14 0.8 0.5 0.5 1 +1920 2 15 -2.3 -2.6 -2.6 1 +1920 2 16 -0.3 -0.6 -0.6 1 +1920 2 17 0.7 0.4 0.4 1 +1920 2 18 1.0 0.7 0.7 1 +1920 2 19 0.4 0.1 0.1 1 +1920 2 20 -4.9 -5.2 -5.2 1 +1920 2 21 -2.9 -3.2 -3.2 1 +1920 2 22 -0.9 -1.2 -1.2 1 +1920 2 23 5.8 5.5 5.5 1 +1920 2 24 3.3 3.0 3.0 1 +1920 2 25 1.6 1.3 1.3 1 +1920 2 26 1.5 1.2 1.2 1 +1920 2 27 0.2 -0.1 -0.1 1 +1920 2 28 -3.6 -3.9 -3.9 1 +1920 2 29 4.4 4.1 4.1 1 +1920 3 1 6.0 5.6 5.6 1 +1920 3 2 2.6 2.2 2.2 1 +1920 3 3 2.8 2.4 2.4 1 +1920 3 4 5.2 4.8 4.8 1 +1920 3 5 4.2 3.8 3.8 1 +1920 3 6 5.9 5.5 5.5 1 +1920 3 7 5.8 5.4 5.4 1 +1920 3 8 1.1 0.7 0.7 1 +1920 3 9 -1.1 -1.5 -1.5 1 +1920 3 10 0.3 -0.1 -0.1 1 +1920 3 11 2.1 1.7 1.7 1 +1920 3 12 0.9 0.5 0.5 1 +1920 3 13 0.9 0.5 0.5 1 +1920 3 14 -0.1 -0.5 -0.5 1 +1920 3 15 0.0 -0.4 -0.4 1 +1920 3 16 0.5 0.1 0.1 1 +1920 3 17 2.4 2.0 2.0 1 +1920 3 18 5.0 4.6 4.6 1 +1920 3 19 2.2 1.8 1.8 1 +1920 3 20 3.2 2.8 2.8 1 +1920 3 21 7.5 7.1 7.1 1 +1920 3 22 7.0 6.6 6.6 1 +1920 3 23 4.0 3.6 3.6 1 +1920 3 24 0.3 -0.1 -0.1 1 +1920 3 25 3.0 2.6 2.6 1 +1920 3 26 5.4 5.1 5.1 1 +1920 3 27 5.3 5.0 5.0 1 +1920 3 28 5.6 5.3 5.3 1 +1920 3 29 4.8 4.5 4.5 1 +1920 3 30 4.4 4.1 4.1 1 +1920 3 31 4.9 4.6 4.6 1 +1920 4 1 4.4 4.1 4.1 1 +1920 4 2 4.0 3.7 3.7 1 +1920 4 3 4.2 3.9 3.9 1 +1920 4 4 5.6 5.3 5.3 1 +1920 4 5 4.8 4.5 4.5 1 +1920 4 6 2.2 1.9 1.9 1 +1920 4 7 4.1 3.8 3.8 1 +1920 4 8 5.5 5.2 5.2 1 +1920 4 9 3.6 3.3 3.3 1 +1920 4 10 3.9 3.6 3.6 1 +1920 4 11 3.2 2.9 2.9 1 +1920 4 12 3.2 2.9 2.9 1 +1920 4 13 5.8 5.5 5.5 1 +1920 4 14 4.1 3.8 3.8 1 +1920 4 15 7.8 7.5 7.5 1 +1920 4 16 9.0 8.7 8.7 1 +1920 4 17 8.6 8.3 8.3 1 +1920 4 18 7.0 6.7 6.7 1 +1920 4 19 6.0 5.7 5.7 1 +1920 4 20 2.6 2.3 2.3 1 +1920 4 21 1.1 0.8 0.8 1 +1920 4 22 4.2 3.9 3.9 1 +1920 4 23 5.2 4.9 4.9 1 +1920 4 24 7.7 7.3 7.3 1 +1920 4 25 7.8 7.4 7.4 1 +1920 4 26 6.9 6.5 6.5 1 +1920 4 27 6.1 5.7 5.7 1 +1920 4 28 5.0 4.6 4.6 1 +1920 4 29 6.5 6.1 6.1 1 +1920 4 30 5.7 5.3 5.3 1 +1920 5 1 7.2 6.8 6.8 1 +1920 5 2 7.6 7.2 7.2 1 +1920 5 3 7.5 7.0 7.0 1 +1920 5 4 10.5 10.0 10.0 1 +1920 5 5 8.5 8.0 8.0 1 +1920 5 6 9.5 9.0 9.0 1 +1920 5 7 7.2 6.7 6.7 1 +1920 5 8 8.4 7.9 7.9 1 +1920 5 9 8.0 7.5 7.5 1 +1920 5 10 8.0 7.5 7.5 1 +1920 5 11 8.3 7.8 7.8 1 +1920 5 12 10.2 9.6 9.6 1 +1920 5 13 10.2 9.6 9.6 1 +1920 5 14 9.7 9.1 9.1 1 +1920 5 15 9.7 9.1 9.1 1 +1920 5 16 7.4 6.8 6.8 1 +1920 5 17 7.8 7.2 7.2 1 +1920 5 18 11.2 10.6 10.6 1 +1920 5 19 12.3 11.7 11.7 1 +1920 5 20 14.1 13.5 13.5 1 +1920 5 21 10.0 9.4 9.4 1 +1920 5 22 10.7 10.1 10.1 1 +1920 5 23 13.7 13.1 13.1 1 +1920 5 24 16.4 15.9 15.9 1 +1920 5 25 16.6 16.1 16.1 1 +1920 5 26 12.0 11.5 11.5 1 +1920 5 27 12.3 11.8 11.8 1 +1920 5 28 14.1 13.6 13.6 1 +1920 5 29 16.0 15.5 15.5 1 +1920 5 30 15.0 14.5 14.5 1 +1920 5 31 14.9 14.4 14.4 1 +1920 6 1 12.8 12.3 12.3 1 +1920 6 2 11.8 11.3 11.3 1 +1920 6 3 10.2 9.7 9.7 1 +1920 6 4 6.7 6.2 6.2 1 +1920 6 5 4.6 4.1 4.1 1 +1920 6 6 6.6 6.1 6.1 1 +1920 6 7 6.8 6.3 6.3 1 +1920 6 8 8.7 8.2 8.2 1 +1920 6 9 9.6 9.1 9.1 1 +1920 6 10 12.0 11.5 11.5 1 +1920 6 11 10.6 10.1 10.1 1 +1920 6 12 10.5 10.0 10.0 1 +1920 6 13 13.0 12.5 12.5 1 +1920 6 14 13.5 13.1 13.1 1 +1920 6 15 14.8 14.4 14.4 1 +1920 6 16 14.6 14.2 14.2 1 +1920 6 17 19.4 19.0 19.0 1 +1920 6 18 17.3 16.9 16.9 1 +1920 6 19 17.8 17.4 17.4 1 +1920 6 20 18.6 18.2 18.2 1 +1920 6 21 19.8 19.4 19.4 1 +1920 6 22 20.1 19.7 19.7 1 +1920 6 23 19.4 19.0 19.0 1 +1920 6 24 14.0 13.6 13.6 1 +1920 6 25 14.1 13.7 13.7 1 +1920 6 26 14.9 14.5 14.5 1 +1920 6 27 13.7 13.3 13.3 1 +1920 6 28 14.6 14.2 14.2 1 +1920 6 29 17.3 16.9 16.9 1 +1920 6 30 18.2 17.8 17.8 1 +1920 7 1 15.3 14.9 14.9 1 +1920 7 2 18.2 17.8 17.8 1 +1920 7 3 19.5 19.1 19.1 1 +1920 7 4 21.8 21.4 21.4 1 +1920 7 5 14.9 14.5 14.5 1 +1920 7 6 14.8 14.4 14.4 1 +1920 7 7 16.7 16.3 16.3 1 +1920 7 8 16.8 16.4 16.4 1 +1920 7 9 19.2 18.8 18.8 1 +1920 7 10 21.3 20.9 20.9 1 +1920 7 11 20.2 19.8 19.8 1 +1920 7 12 19.2 18.8 18.8 1 +1920 7 13 19.6 19.2 19.2 1 +1920 7 14 16.4 16.0 16.0 1 +1920 7 15 16.4 16.0 16.0 1 +1920 7 16 17.4 17.0 17.0 1 +1920 7 17 18.2 17.8 17.8 1 +1920 7 18 19.0 18.6 18.6 1 +1920 7 19 15.5 15.1 15.1 1 +1920 7 20 16.4 16.0 16.0 1 +1920 7 21 17.2 16.8 16.8 1 +1920 7 22 16.7 16.3 16.3 1 +1920 7 23 15.8 15.4 15.4 1 +1920 7 24 16.8 16.4 16.4 1 +1920 7 25 12.4 12.1 12.1 1 +1920 7 26 14.8 14.5 14.5 1 +1920 7 27 14.9 14.6 14.6 1 +1920 7 28 14.8 14.5 14.5 1 +1920 7 29 14.8 14.5 14.5 1 +1920 7 30 15.6 15.3 15.3 1 +1920 7 31 16.5 16.2 16.2 1 +1920 8 1 15.8 15.5 15.5 1 +1920 8 2 16.0 15.7 15.7 1 +1920 8 3 16.8 16.5 16.5 1 +1920 8 4 15.3 15.0 15.0 1 +1920 8 5 16.4 16.1 16.1 1 +1920 8 6 15.8 15.5 15.5 1 +1920 8 7 14.6 14.4 14.4 1 +1920 8 8 14.3 14.1 14.1 1 +1920 8 9 16.1 15.9 15.9 1 +1920 8 10 14.5 14.3 14.3 1 +1920 8 11 13.3 13.1 13.1 1 +1920 8 12 15.3 15.1 15.1 1 +1920 8 13 17.4 17.2 17.2 1 +1920 8 14 16.3 16.1 16.1 1 +1920 8 15 13.9 13.7 13.7 1 +1920 8 16 14.9 14.7 14.7 1 +1920 8 17 17.5 17.3 17.3 1 +1920 8 18 14.5 14.3 14.3 1 +1920 8 19 16.5 16.3 16.3 1 +1920 8 20 16.0 15.9 15.9 1 +1920 8 21 14.0 13.9 13.9 1 +1920 8 22 14.0 13.9 13.9 1 +1920 8 23 13.6 13.5 13.5 1 +1920 8 24 14.7 14.6 14.6 1 +1920 8 25 14.3 14.2 14.2 1 +1920 8 26 13.3 13.2 13.2 1 +1920 8 27 13.9 13.8 13.8 1 +1920 8 28 11.9 11.8 11.8 1 +1920 8 29 10.0 9.9 9.9 1 +1920 8 30 12.0 11.9 11.9 1 +1920 8 31 11.9 11.9 11.9 1 +1920 9 1 12.4 12.4 12.4 1 +1920 9 2 13.1 13.1 13.1 1 +1920 9 3 13.1 13.1 13.1 1 +1920 9 4 12.6 12.6 12.6 1 +1920 9 5 13.0 13.0 13.0 1 +1920 9 6 12.3 12.3 12.3 1 +1920 9 7 11.5 11.5 11.5 1 +1920 9 8 12.4 12.4 12.4 1 +1920 9 9 12.1 12.1 12.1 1 +1920 9 10 12.7 12.7 12.7 1 +1920 9 11 11.4 11.4 11.4 1 +1920 9 12 11.4 11.5 11.5 1 +1920 9 13 11.1 11.2 11.2 1 +1920 9 14 10.4 10.5 10.5 1 +1920 9 15 10.9 11.0 11.0 1 +1920 9 16 11.9 12.0 12.0 1 +1920 9 17 12.9 13.0 13.0 1 +1920 9 18 13.0 13.1 13.1 1 +1920 9 19 14.2 14.3 14.3 1 +1920 9 20 11.6 11.7 11.7 1 +1920 9 21 10.4 10.5 10.5 1 +1920 9 22 10.0 10.1 10.1 1 +1920 9 23 8.7 8.8 8.8 1 +1920 9 24 10.3 10.4 10.4 1 +1920 9 25 11.1 11.2 11.2 1 +1920 9 26 12.0 12.1 12.1 1 +1920 9 27 11.7 11.8 11.8 1 +1920 9 28 10.5 10.6 10.6 1 +1920 9 29 11.0 11.1 11.1 1 +1920 9 30 11.5 11.6 11.6 1 +1920 10 1 7.9 8.0 8.0 1 +1920 10 2 6.1 6.2 6.2 1 +1920 10 3 5.0 5.1 5.1 1 +1920 10 4 6.7 6.8 6.8 1 +1920 10 5 6.7 6.8 6.8 1 +1920 10 6 6.7 6.8 6.8 1 +1920 10 7 8.8 8.9 8.9 1 +1920 10 8 9.8 9.9 9.9 1 +1920 10 9 10.3 10.4 10.4 1 +1920 10 10 10.7 10.8 10.8 1 +1920 10 11 9.4 9.5 9.5 1 +1920 10 12 9.7 9.8 9.8 1 +1920 10 13 8.0 8.1 8.1 1 +1920 10 14 7.9 8.0 8.0 1 +1920 10 15 6.3 6.4 6.4 1 +1920 10 16 2.5 2.6 2.6 1 +1920 10 17 -0.2 -0.1 -0.1 1 +1920 10 18 0.8 0.9 0.9 1 +1920 10 19 1.8 1.8 1.8 1 +1920 10 20 4.3 4.3 4.3 1 +1920 10 21 4.6 4.6 4.6 1 +1920 10 22 6.7 6.7 6.7 1 +1920 10 23 2.5 2.5 2.5 1 +1920 10 24 4.6 4.6 4.6 1 +1920 10 25 6.4 6.4 6.4 1 +1920 10 26 6.8 6.8 6.8 1 +1920 10 27 5.9 5.9 5.9 1 +1920 10 28 4.4 4.4 4.4 1 +1920 10 29 4.0 4.0 4.0 1 +1920 10 30 5.2 5.2 5.2 1 +1920 10 31 0.9 0.9 0.9 1 +1920 11 1 -0.1 -0.1 -0.1 1 +1920 11 2 1.3 1.3 1.3 1 +1920 11 3 3.5 3.5 3.5 1 +1920 11 4 3.8 3.7 3.7 1 +1920 11 5 4.2 4.1 4.1 1 +1920 11 6 1.9 1.8 1.8 1 +1920 11 7 4.3 4.2 4.2 1 +1920 11 8 7.4 7.3 7.3 1 +1920 11 9 8.9 8.8 8.8 1 +1920 11 10 9.6 9.5 9.5 1 +1920 11 11 5.0 4.9 4.9 1 +1920 11 12 3.4 3.3 3.3 1 +1920 11 13 5.7 5.6 5.6 1 +1920 11 14 5.7 5.6 5.6 1 +1920 11 15 6.9 6.8 6.8 1 +1920 11 16 7.6 7.5 7.5 1 +1920 11 17 3.0 2.9 2.9 1 +1920 11 18 -0.9 -1.0 -1.0 1 +1920 11 19 2.1 2.0 2.0 1 +1920 11 20 2.8 2.7 2.7 1 +1920 11 21 5.5 5.4 5.4 1 +1920 11 22 3.1 3.0 3.0 1 +1920 11 23 -0.5 -0.6 -0.6 1 +1920 11 24 0.0 -0.1 -0.1 1 +1920 11 25 -0.5 -0.6 -0.6 1 +1920 11 26 -0.6 -0.7 -0.7 1 +1920 11 27 1.1 1.0 1.0 1 +1920 11 28 2.2 2.1 2.1 1 +1920 11 29 1.3 1.2 1.2 1 +1920 11 30 1.3 1.2 1.2 1 +1920 12 1 -0.4 -0.5 -0.5 1 +1920 12 2 0.4 0.3 0.3 1 +1920 12 3 -0.7 -0.8 -0.8 1 +1920 12 4 2.3 2.2 2.2 1 +1920 12 5 -0.7 -0.8 -0.8 1 +1920 12 6 -1.9 -2.0 -2.0 1 +1920 12 7 -3.5 -3.6 -3.6 1 +1920 12 8 1.3 1.2 1.2 1 +1920 12 9 0.5 0.4 0.4 1 +1920 12 10 -1.0 -1.1 -1.1 1 +1920 12 11 -1.0 -1.1 -1.1 1 +1920 12 12 -1.7 -1.8 -1.8 1 +1920 12 13 -3.0 -3.1 -3.1 1 +1920 12 14 -3.4 -3.5 -3.5 1 +1920 12 15 -0.9 -1.0 -1.0 1 +1920 12 16 0.5 0.4 0.4 1 +1920 12 17 0.4 0.3 0.3 1 +1920 12 18 -0.4 -0.6 -0.6 1 +1920 12 19 -0.7 -0.9 -0.9 1 +1920 12 20 1.8 1.6 1.6 1 +1920 12 21 0.7 0.5 0.5 1 +1920 12 22 2.7 2.5 2.5 1 +1920 12 23 2.1 1.9 1.9 1 +1920 12 24 -0.8 -1.0 -1.0 1 +1920 12 25 1.1 0.9 0.9 1 +1920 12 26 -1.5 -1.7 -1.7 1 +1920 12 27 -2.8 -3.0 -3.0 1 +1920 12 28 -6.8 -7.1 -7.1 1 +1920 12 29 -0.4 -0.7 -0.7 1 +1920 12 30 -1.1 -1.4 -1.4 1 +1920 12 31 -2.7 -3.0 -3.0 1 +1921 1 1 -1.7 -2.0 -2.0 1 +1921 1 2 1.2 0.9 0.9 1 +1921 1 3 0.4 0.1 0.1 1 +1921 1 4 -0.7 -1.0 -1.0 1 +1921 1 5 0.6 0.3 0.3 1 +1921 1 6 0.9 0.6 0.6 1 +1921 1 7 4.6 4.2 4.2 1 +1921 1 8 2.1 1.7 1.7 1 +1921 1 9 1.9 1.5 1.5 1 +1921 1 10 0.9 0.5 0.5 1 +1921 1 11 -0.3 -0.7 -0.7 1 +1921 1 12 -4.7 -5.1 -5.1 1 +1921 1 13 -1.2 -1.6 -1.6 1 +1921 1 14 -8.2 -8.6 -8.6 1 +1921 1 15 -6.4 -6.8 -6.8 1 +1921 1 16 -2.3 -2.7 -2.7 1 +1921 1 17 0.9 0.5 0.5 1 +1921 1 18 0.9 0.5 0.5 1 +1921 1 19 -0.4 -0.8 -0.8 1 +1921 1 20 0.7 0.3 0.3 1 +1921 1 21 0.3 -0.1 -0.1 1 +1921 1 22 2.9 2.5 2.5 1 +1921 1 23 -5.9 -6.3 -6.3 1 +1921 1 24 -6.7 -7.1 -7.1 1 +1921 1 25 -6.6 -7.0 -7.0 1 +1921 1 26 -5.6 -6.0 -6.0 1 +1921 1 27 -7.4 -7.8 -7.8 1 +1921 1 28 -7.8 -8.2 -8.2 1 +1921 1 29 1.8 1.4 1.4 1 +1921 1 30 0.7 0.3 0.3 1 +1921 1 31 1.3 0.9 0.9 1 +1921 2 1 -1.3 -1.7 -1.7 1 +1921 2 2 -1.7 -2.1 -2.1 1 +1921 2 3 -1.0 -1.4 -1.4 1 +1921 2 4 -0.9 -1.3 -1.3 1 +1921 2 5 -0.3 -0.6 -0.6 1 +1921 2 6 -0.8 -1.1 -1.1 1 +1921 2 7 -2.5 -2.8 -2.8 1 +1921 2 8 -2.7 -3.0 -3.0 1 +1921 2 9 -3.7 -4.0 -4.0 1 +1921 2 10 -3.2 -3.5 -3.5 1 +1921 2 11 0.6 0.3 0.3 1 +1921 2 12 -1.1 -1.4 -1.4 1 +1921 2 13 2.8 2.5 2.5 1 +1921 2 14 -3.9 -4.2 -4.2 1 +1921 2 15 -10.2 -10.5 -10.5 1 +1921 2 16 -4.5 -4.8 -4.8 1 +1921 2 17 -2.1 -2.4 -2.4 1 +1921 2 18 -5.1 -5.4 -5.4 1 +1921 2 19 -0.4 -0.7 -0.7 1 +1921 2 20 0.0 -0.3 -0.3 1 +1921 2 21 -2.1 -2.4 -2.4 1 +1921 2 22 -0.8 -1.1 -1.1 1 +1921 2 23 -3.1 -3.4 -3.4 1 +1921 2 24 -0.8 -1.1 -1.1 1 +1921 2 25 -0.4 -0.7 -0.7 1 +1921 2 26 -1.2 -1.6 -1.6 1 +1921 2 27 2.1 1.7 1.7 1 +1921 2 28 3.3 2.9 2.9 1 +1921 3 1 3.3 2.9 2.9 1 +1921 3 2 3.4 3.0 3.0 1 +1921 3 3 0.0 -0.4 -0.4 1 +1921 3 4 1.5 1.1 1.1 1 +1921 3 5 2.0 1.6 1.6 1 +1921 3 6 -1.6 -2.0 -2.0 1 +1921 3 7 -3.3 -3.7 -3.7 1 +1921 3 8 -2.4 -2.8 -2.8 1 +1921 3 9 2.3 1.9 1.9 1 +1921 3 10 5.1 4.7 4.7 1 +1921 3 11 4.0 3.6 3.6 1 +1921 3 12 2.5 2.1 2.1 1 +1921 3 13 3.5 3.1 3.1 1 +1921 3 14 3.6 3.2 3.2 1 +1921 3 15 5.6 5.2 5.2 1 +1921 3 16 6.0 5.6 5.6 1 +1921 3 17 7.5 7.1 7.1 1 +1921 3 18 3.8 3.4 3.4 1 +1921 3 19 4.2 3.8 3.8 1 +1921 3 20 4.0 3.6 3.6 1 +1921 3 21 4.2 3.8 3.8 1 +1921 3 22 6.8 6.4 6.4 1 +1921 3 23 6.2 5.8 5.8 1 +1921 3 24 8.9 8.5 8.5 1 +1921 3 25 8.1 7.7 7.7 1 +1921 3 26 4.9 4.5 4.5 1 +1921 3 27 3.2 2.8 2.8 1 +1921 3 28 3.1 2.7 2.7 1 +1921 3 29 5.0 4.7 4.7 1 +1921 3 30 7.0 6.7 6.7 1 +1921 3 31 5.2 4.9 4.9 1 +1921 4 1 3.5 3.2 3.2 1 +1921 4 2 9.2 8.9 8.9 1 +1921 4 3 9.1 8.8 8.8 1 +1921 4 4 5.4 5.1 5.1 1 +1921 4 5 4.2 3.9 3.9 1 +1921 4 6 3.0 2.7 2.7 1 +1921 4 7 3.9 3.6 3.6 1 +1921 4 8 5.1 4.8 4.8 1 +1921 4 9 5.4 5.1 5.1 1 +1921 4 10 7.3 7.0 7.0 1 +1921 4 11 9.0 8.7 8.7 1 +1921 4 12 10.2 9.9 9.9 1 +1921 4 13 7.7 7.4 7.4 1 +1921 4 14 3.9 3.6 3.6 1 +1921 4 15 2.6 2.3 2.3 1 +1921 4 16 4.7 4.4 4.4 1 +1921 4 17 5.4 5.1 5.1 1 +1921 4 18 1.7 1.4 1.4 1 +1921 4 19 3.0 2.7 2.7 1 +1921 4 20 4.5 4.2 4.2 1 +1921 4 21 5.4 5.1 5.1 1 +1921 4 22 5.4 5.1 5.1 1 +1921 4 23 7.7 7.3 7.3 1 +1921 4 24 9.9 9.5 9.5 1 +1921 4 25 13.1 12.7 12.7 1 +1921 4 26 13.0 12.6 12.6 1 +1921 4 27 14.5 14.1 14.1 1 +1921 4 28 15.7 15.3 15.3 1 +1921 4 29 7.9 7.5 7.5 1 +1921 4 30 8.6 8.2 8.2 1 +1921 5 1 10.2 9.8 9.8 1 +1921 5 2 11.8 11.3 11.3 1 +1921 5 3 2.7 2.2 2.2 1 +1921 5 4 6.1 5.6 5.6 1 +1921 5 5 6.9 6.4 6.4 1 +1921 5 6 8.0 7.5 7.5 1 +1921 5 7 8.6 8.1 8.1 1 +1921 5 8 11.3 10.8 10.8 1 +1921 5 9 15.5 15.0 15.0 1 +1921 5 10 15.9 15.3 15.3 1 +1921 5 11 9.5 8.9 8.9 1 +1921 5 12 10.8 10.2 10.2 1 +1921 5 13 12.2 11.6 11.6 1 +1921 5 14 15.0 14.4 14.4 1 +1921 5 15 14.7 14.1 14.1 1 +1921 5 16 13.1 12.5 12.5 1 +1921 5 17 12.4 11.8 11.8 1 +1921 5 18 12.9 12.3 12.3 1 +1921 5 19 14.7 14.1 14.1 1 +1921 5 20 15.4 14.8 14.8 1 +1921 5 21 12.8 12.2 12.2 1 +1921 5 22 16.4 15.8 15.8 1 +1921 5 23 13.5 12.9 12.9 1 +1921 5 24 14.4 13.8 13.8 1 +1921 5 25 17.0 16.4 16.4 1 +1921 5 26 19.0 18.4 18.4 1 +1921 5 27 18.4 17.8 17.8 1 +1921 5 28 17.4 16.9 16.9 1 +1921 5 29 13.4 12.9 12.9 1 +1921 5 30 13.9 13.4 13.4 1 +1921 5 31 16.2 15.7 15.7 1 +1921 6 1 18.8 18.3 18.3 1 +1921 6 2 18.9 18.4 18.4 1 +1921 6 3 18.5 18.0 18.0 1 +1921 6 4 18.4 17.9 17.9 1 +1921 6 5 11.9 11.4 11.4 1 +1921 6 6 10.5 10.0 10.0 1 +1921 6 7 16.1 15.6 15.6 1 +1921 6 8 16.2 15.7 15.7 1 +1921 6 9 18.7 18.2 18.2 1 +1921 6 10 15.1 14.6 14.6 1 +1921 6 11 13.4 12.9 12.9 1 +1921 6 12 12.6 12.1 12.1 1 +1921 6 13 8.9 8.4 8.4 1 +1921 6 14 12.6 12.1 12.1 1 +1921 6 15 12.2 11.7 11.7 1 +1921 6 16 11.5 11.0 11.0 1 +1921 6 17 15.6 15.1 15.1 1 +1921 6 18 7.4 6.9 6.9 1 +1921 6 19 8.7 8.2 8.2 1 +1921 6 20 10.0 9.5 9.5 1 +1921 6 21 9.8 9.3 9.3 1 +1921 6 22 10.9 10.4 10.4 1 +1921 6 23 15.0 14.5 14.5 1 +1921 6 24 15.5 15.0 15.0 1 +1921 6 25 14.5 14.0 14.0 1 +1921 6 26 19.9 19.4 19.4 1 +1921 6 27 11.2 10.7 10.7 1 +1921 6 28 12.9 12.5 12.5 1 +1921 6 29 13.4 13.0 13.0 1 +1921 6 30 12.0 11.6 11.6 1 +1921 7 1 13.1 12.7 12.7 1 +1921 7 2 14.8 14.4 14.4 1 +1921 7 3 15.5 15.1 15.1 1 +1921 7 4 17.8 17.4 17.4 1 +1921 7 5 11.3 10.9 10.9 1 +1921 7 6 12.7 12.3 12.3 1 +1921 7 7 15.3 14.9 14.9 1 +1921 7 8 19.4 19.0 19.0 1 +1921 7 9 16.6 16.2 16.2 1 +1921 7 10 17.1 16.7 16.7 1 +1921 7 11 18.8 18.4 18.4 1 +1921 7 12 12.1 11.7 11.7 1 +1921 7 13 11.7 11.3 11.3 1 +1921 7 14 10.9 10.5 10.5 1 +1921 7 15 12.9 12.5 12.5 1 +1921 7 16 16.9 16.5 16.5 1 +1921 7 17 14.4 14.0 14.0 1 +1921 7 18 14.5 14.1 14.1 1 +1921 7 19 17.8 17.4 17.4 1 +1921 7 20 13.2 12.8 12.8 1 +1921 7 21 13.3 12.9 12.9 1 +1921 7 22 12.7 12.3 12.3 1 +1921 7 23 15.1 14.7 14.7 1 +1921 7 24 14.2 13.8 13.8 1 +1921 7 25 15.7 15.3 15.3 1 +1921 7 26 17.1 16.7 16.7 1 +1921 7 27 17.5 17.2 17.2 1 +1921 7 28 15.5 15.2 15.2 1 +1921 7 29 17.8 17.5 17.5 1 +1921 7 30 17.2 16.9 16.9 1 +1921 7 31 15.8 15.5 15.5 1 +1921 8 1 17.1 16.8 16.8 1 +1921 8 2 19.3 19.0 19.0 1 +1921 8 3 22.0 21.7 21.7 1 +1921 8 4 17.3 17.0 17.0 1 +1921 8 5 16.1 15.8 15.8 1 +1921 8 6 16.0 15.7 15.7 1 +1921 8 7 13.3 13.0 13.0 1 +1921 8 8 13.1 12.8 12.8 1 +1921 8 9 13.1 12.9 12.9 1 +1921 8 10 14.5 14.3 14.3 1 +1921 8 11 16.0 15.8 15.8 1 +1921 8 12 14.8 14.6 14.6 1 +1921 8 13 16.5 16.3 16.3 1 +1921 8 14 17.2 17.0 17.0 1 +1921 8 15 14.4 14.2 14.2 1 +1921 8 16 14.2 14.0 14.0 1 +1921 8 17 13.5 13.3 13.3 1 +1921 8 18 14.5 14.3 14.3 1 +1921 8 19 13.9 13.7 13.7 1 +1921 8 20 15.5 15.3 15.3 1 +1921 8 21 16.6 16.5 16.5 1 +1921 8 22 17.7 17.6 17.6 1 +1921 8 23 18.1 18.0 18.0 1 +1921 8 24 17.6 17.5 17.5 1 +1921 8 25 17.4 17.3 17.3 1 +1921 8 26 13.9 13.8 13.8 1 +1921 8 27 12.7 12.6 12.6 1 +1921 8 28 11.8 11.7 11.7 1 +1921 8 29 13.3 13.2 13.2 1 +1921 8 30 12.3 12.2 12.2 1 +1921 8 31 9.7 9.6 9.6 1 +1921 9 1 9.7 9.6 9.6 1 +1921 9 2 12.5 12.5 12.5 1 +1921 9 3 13.2 13.2 13.2 1 +1921 9 4 10.1 10.1 10.1 1 +1921 9 5 11.4 11.4 11.4 1 +1921 9 6 12.9 12.9 12.9 1 +1921 9 7 14.5 14.5 14.5 1 +1921 9 8 16.1 16.1 16.1 1 +1921 9 9 15.9 15.9 15.9 1 +1921 9 10 16.1 16.1 16.1 1 +1921 9 11 13.2 13.2 13.2 1 +1921 9 12 12.7 12.7 12.7 1 +1921 9 13 10.3 10.4 10.4 1 +1921 9 14 10.0 10.1 10.1 1 +1921 9 15 9.6 9.7 9.7 1 +1921 9 16 9.4 9.5 9.5 1 +1921 9 17 6.8 6.9 6.9 1 +1921 9 18 8.2 8.3 8.3 1 +1921 9 19 8.3 8.4 8.4 1 +1921 9 20 9.5 9.6 9.6 1 +1921 9 21 11.2 11.3 11.3 1 +1921 9 22 13.0 13.1 13.1 1 +1921 9 23 13.6 13.7 13.7 1 +1921 9 24 10.8 10.9 10.9 1 +1921 9 25 7.3 7.4 7.4 1 +1921 9 26 6.7 6.8 6.8 1 +1921 9 27 7.5 7.6 7.6 1 +1921 9 28 11.5 11.6 11.6 1 +1921 9 29 7.4 7.5 7.5 1 +1921 9 30 6.5 6.6 6.6 1 +1921 10 1 9.7 9.8 9.8 1 +1921 10 2 10.4 10.5 10.5 1 +1921 10 3 11.1 11.2 11.2 1 +1921 10 4 5.2 5.3 5.3 1 +1921 10 5 5.0 5.1 5.1 1 +1921 10 6 10.5 10.6 10.6 1 +1921 10 7 9.7 9.8 9.8 1 +1921 10 8 10.5 10.6 10.6 1 +1921 10 9 9.2 9.3 9.3 1 +1921 10 10 10.1 10.2 10.2 1 +1921 10 11 8.6 8.7 8.7 1 +1921 10 12 7.5 7.6 7.6 1 +1921 10 13 10.7 10.8 10.8 1 +1921 10 14 8.8 8.9 8.9 1 +1921 10 15 6.8 6.9 6.9 1 +1921 10 16 11.1 11.2 11.2 1 +1921 10 17 9.3 9.4 9.4 1 +1921 10 18 11.4 11.4 11.4 1 +1921 10 19 14.8 14.8 14.8 1 +1921 10 20 8.9 8.9 8.9 1 +1921 10 21 7.8 7.8 7.8 1 +1921 10 22 4.3 4.3 4.3 1 +1921 10 23 1.1 1.1 1.1 1 +1921 10 24 0.4 0.4 0.4 1 +1921 10 25 0.3 0.3 0.3 1 +1921 10 26 3.5 3.5 3.5 1 +1921 10 27 4.8 4.8 4.8 1 +1921 10 28 3.6 3.6 3.6 1 +1921 10 29 1.5 1.5 1.5 1 +1921 10 30 -1.2 -1.2 -1.2 1 +1921 10 31 5.4 5.4 5.4 1 +1921 11 1 5.7 5.7 5.7 1 +1921 11 2 1.1 1.1 1.1 1 +1921 11 3 -2.3 -2.4 -2.4 1 +1921 11 4 -2.8 -2.9 -2.9 1 +1921 11 5 -0.5 -0.6 -0.6 1 +1921 11 6 -3.8 -3.9 -3.9 1 +1921 11 7 -4.2 -4.3 -4.3 1 +1921 11 8 -5.1 -5.2 -5.2 1 +1921 11 9 -6.2 -6.3 -6.3 1 +1921 11 10 -2.5 -2.6 -2.6 1 +1921 11 11 0.2 0.1 0.1 1 +1921 11 12 0.6 0.5 0.5 1 +1921 11 13 1.6 1.5 1.5 1 +1921 11 14 1.7 1.6 1.6 1 +1921 11 15 0.2 0.1 0.1 1 +1921 11 16 1.2 1.1 1.1 1 +1921 11 17 1.5 1.4 1.4 1 +1921 11 18 1.8 1.7 1.7 1 +1921 11 19 0.5 0.4 0.4 1 +1921 11 20 -0.8 -0.9 -0.9 1 +1921 11 21 0.9 0.8 0.8 1 +1921 11 22 1.7 1.6 1.6 1 +1921 11 23 0.7 0.6 0.6 1 +1921 11 24 0.6 0.5 0.5 1 +1921 11 25 1.1 1.0 1.0 1 +1921 11 26 0.5 0.4 0.4 1 +1921 11 27 -0.7 -0.8 -0.8 1 +1921 11 28 -2.5 -2.6 -2.6 1 +1921 11 29 -5.3 -5.4 -5.4 1 +1921 11 30 -5.4 -5.5 -5.5 1 +1921 12 1 -4.4 -4.5 -4.5 1 +1921 12 2 -2.6 -2.7 -2.7 1 +1921 12 3 -2.2 -2.3 -2.3 1 +1921 12 4 -2.7 -2.8 -2.8 1 +1921 12 5 -0.1 -0.2 -0.2 1 +1921 12 6 0.2 0.1 0.1 1 +1921 12 7 -0.4 -0.5 -0.5 1 +1921 12 8 -0.8 -0.9 -0.9 1 +1921 12 9 0.3 0.2 0.2 1 +1921 12 10 -1.2 -1.3 -1.3 1 +1921 12 11 -0.5 -0.6 -0.6 1 +1921 12 12 -0.3 -0.4 -0.4 1 +1921 12 13 -0.7 -0.8 -0.8 1 +1921 12 14 0.9 0.8 0.8 1 +1921 12 15 0.9 0.8 0.8 1 +1921 12 16 1.1 1.0 1.0 1 +1921 12 17 2.0 1.8 1.8 1 +1921 12 18 -1.2 -1.4 -1.4 1 +1921 12 19 -6.2 -6.4 -6.4 1 +1921 12 20 -0.4 -0.6 -0.6 1 +1921 12 21 2.3 2.1 2.1 1 +1921 12 22 -0.6 -0.8 -0.8 1 +1921 12 23 2.7 2.5 2.5 1 +1921 12 24 -3.3 -3.5 -3.5 1 +1921 12 25 -7.3 -7.5 -7.5 1 +1921 12 26 -3.1 -3.3 -3.3 1 +1921 12 27 2.1 1.8 1.8 1 +1921 12 28 0.1 -0.2 -0.2 1 +1921 12 29 -0.7 -1.0 -1.0 1 +1921 12 30 -1.8 -2.1 -2.1 1 +1921 12 31 0.6 0.3 0.3 1 +1922 1 1 -1.9 -2.2 -2.2 1 +1922 1 2 -0.7 -1.0 -1.0 1 +1922 1 3 -3.7 -4.0 -4.0 1 +1922 1 4 -12.2 -12.5 -12.5 1 +1922 1 5 -7.3 -7.6 -7.6 1 +1922 1 6 -4.9 -5.3 -5.3 1 +1922 1 7 -9.5 -9.9 -9.9 1 +1922 1 8 -3.4 -3.8 -3.8 1 +1922 1 9 -2.1 -2.5 -2.5 1 +1922 1 10 0.3 -0.1 -0.1 1 +1922 1 11 -3.8 -4.2 -4.2 1 +1922 1 12 -3.7 -4.1 -4.1 1 +1922 1 13 -1.6 -2.0 -2.0 1 +1922 1 14 -4.9 -5.3 -5.3 1 +1922 1 15 -2.1 -2.5 -2.5 1 +1922 1 16 -4.5 -4.9 -4.9 1 +1922 1 17 -6.9 -7.3 -7.3 1 +1922 1 18 -6.0 -6.4 -6.4 1 +1922 1 19 -8.3 -8.7 -8.7 1 +1922 1 20 -6.0 -6.4 -6.4 1 +1922 1 21 -3.2 -3.6 -3.6 1 +1922 1 22 -2.8 -3.2 -3.2 1 +1922 1 23 -9.6 -10.0 -10.0 1 +1922 1 24 -12.4 -12.8 -12.8 1 +1922 1 25 -5.7 -6.1 -6.1 1 +1922 1 26 -8.1 -8.5 -8.5 1 +1922 1 27 -8.8 -9.2 -9.2 1 +1922 1 28 -6.8 -7.2 -7.2 1 +1922 1 29 -5.6 -6.0 -6.0 1 +1922 1 30 -4.3 -4.7 -4.7 1 +1922 1 31 -4.6 -5.0 -5.0 1 +1922 2 1 -9.5 -9.9 -9.9 1 +1922 2 2 -12.6 -13.0 -13.0 1 +1922 2 3 -16.0 -16.4 -16.4 1 +1922 2 4 -15.7 -16.1 -16.1 1 +1922 2 5 -12.5 -12.9 -12.9 1 +1922 2 6 -10.9 -11.3 -11.3 1 +1922 2 7 -12.3 -12.7 -12.7 1 +1922 2 8 -10.0 -10.3 -10.3 1 +1922 2 9 -3.4 -3.7 -3.7 1 +1922 2 10 -4.4 -4.7 -4.7 1 +1922 2 11 -0.3 -0.6 -0.6 1 +1922 2 12 -2.6 -2.9 -2.9 1 +1922 2 13 -3.8 -4.1 -4.1 1 +1922 2 14 -2.1 -2.4 -2.4 1 +1922 2 15 -2.4 -2.7 -2.7 1 +1922 2 16 -2.7 -3.0 -3.0 1 +1922 2 17 -3.4 -3.7 -3.7 1 +1922 2 18 -1.7 -2.0 -2.0 1 +1922 2 19 -1.3 -1.6 -1.6 1 +1922 2 20 -0.1 -0.4 -0.4 1 +1922 2 21 -0.9 -1.2 -1.2 1 +1922 2 22 -0.7 -1.1 -1.1 1 +1922 2 23 0.8 0.4 0.4 1 +1922 2 24 1.5 1.1 1.1 1 +1922 2 25 3.5 3.1 3.1 1 +1922 2 26 3.5 3.1 3.1 1 +1922 2 27 3.1 2.7 2.7 1 +1922 2 28 2.1 1.7 1.7 1 +1922 3 1 0.9 0.5 0.5 1 +1922 3 2 0.7 0.3 0.3 1 +1922 3 3 0.7 0.3 0.3 1 +1922 3 4 0.8 0.4 0.4 1 +1922 3 5 0.7 0.3 0.3 1 +1922 3 6 3.1 2.7 2.7 1 +1922 3 7 3.1 2.7 2.7 1 +1922 3 8 0.3 -0.1 -0.1 1 +1922 3 9 -5.8 -6.2 -6.2 1 +1922 3 10 -6.1 -6.5 -6.5 1 +1922 3 11 0.6 0.2 0.2 1 +1922 3 12 0.9 0.5 0.5 1 +1922 3 13 2.0 1.6 1.6 1 +1922 3 14 1.5 1.1 1.1 1 +1922 3 15 0.7 0.3 0.3 1 +1922 3 16 1.6 1.2 1.2 1 +1922 3 17 0.1 -0.3 -0.3 1 +1922 3 18 -2.4 -2.8 -2.8 1 +1922 3 19 -3.2 -3.6 -3.6 1 +1922 3 20 -6.6 -7.0 -7.0 1 +1922 3 21 -7.8 -8.2 -8.2 1 +1922 3 22 -3.0 -3.4 -3.4 1 +1922 3 23 -0.4 -0.8 -0.8 1 +1922 3 24 -1.2 -1.6 -1.6 1 +1922 3 25 -1.3 -1.7 -1.7 1 +1922 3 26 -0.7 -1.1 -1.1 1 +1922 3 27 -2.5 -2.9 -2.9 1 +1922 3 28 -2.9 -3.3 -3.3 1 +1922 3 29 -4.3 -4.7 -4.7 1 +1922 3 30 -2.0 -2.4 -2.4 1 +1922 3 31 -0.7 -1.0 -1.0 1 +1922 4 1 -1.3 -1.6 -1.6 1 +1922 4 2 -1.8 -2.1 -2.1 1 +1922 4 3 -0.1 -0.4 -0.4 1 +1922 4 4 0.2 -0.1 -0.1 1 +1922 4 5 -0.7 -1.0 -1.0 1 +1922 4 6 -1.8 -2.1 -2.1 1 +1922 4 7 -2.5 -2.8 -2.8 1 +1922 4 8 -3.5 -3.8 -3.8 1 +1922 4 9 -2.9 -3.2 -3.2 1 +1922 4 10 -3.0 -3.3 -3.3 1 +1922 4 11 0.3 0.0 0.0 1 +1922 4 12 1.8 1.5 1.5 1 +1922 4 13 2.9 2.6 2.6 1 +1922 4 14 5.5 5.2 5.2 1 +1922 4 15 6.1 5.8 5.8 1 +1922 4 16 9.3 9.0 9.0 1 +1922 4 17 7.0 6.7 6.7 1 +1922 4 18 6.0 5.7 5.7 1 +1922 4 19 1.2 0.9 0.9 1 +1922 4 20 -1.3 -1.6 -1.6 1 +1922 4 21 0.9 0.6 0.6 1 +1922 4 22 1.5 1.1 1.1 1 +1922 4 23 2.9 2.5 2.5 1 +1922 4 24 3.7 3.3 3.3 1 +1922 4 25 4.8 4.4 4.4 1 +1922 4 26 3.7 3.3 3.3 1 +1922 4 27 5.6 5.2 5.2 1 +1922 4 28 4.5 4.1 4.1 1 +1922 4 29 5.5 5.1 5.1 1 +1922 4 30 4.6 4.1 4.1 1 +1922 5 1 4.5 4.0 4.0 1 +1922 5 2 4.9 4.4 4.4 1 +1922 5 3 7.2 6.7 6.7 1 +1922 5 4 7.9 7.4 7.4 1 +1922 5 5 7.8 7.3 7.3 1 +1922 5 6 9.5 9.0 9.0 1 +1922 5 7 7.8 7.3 7.3 1 +1922 5 8 11.8 11.3 11.3 1 +1922 5 9 6.0 5.4 5.4 1 +1922 5 10 4.4 3.8 3.8 1 +1922 5 11 6.5 5.9 5.9 1 +1922 5 12 7.1 6.5 6.5 1 +1922 5 13 7.3 6.7 6.7 1 +1922 5 14 7.9 7.3 7.3 1 +1922 5 15 8.2 7.6 7.6 1 +1922 5 16 9.4 8.8 8.8 1 +1922 5 17 10.0 9.4 9.4 1 +1922 5 18 12.3 11.7 11.7 1 +1922 5 19 11.8 11.2 11.2 1 +1922 5 20 12.0 11.4 11.4 1 +1922 5 21 13.0 12.4 12.4 1 +1922 5 22 12.4 11.8 11.8 1 +1922 5 23 15.9 15.3 15.3 1 +1922 5 24 17.3 16.7 16.7 1 +1922 5 25 16.3 15.7 15.7 1 +1922 5 26 14.1 13.5 13.5 1 +1922 5 27 13.7 13.1 13.1 1 +1922 5 28 11.8 11.2 11.2 1 +1922 5 29 10.2 9.6 9.6 1 +1922 5 30 15.2 14.6 14.6 1 +1922 5 31 13.5 13.0 13.0 1 +1922 6 1 8.4 7.9 7.9 1 +1922 6 2 9.9 9.4 9.4 1 +1922 6 3 13.0 12.5 12.5 1 +1922 6 4 13.7 13.2 13.2 1 +1922 6 5 14.4 13.9 13.9 1 +1922 6 6 12.9 12.4 12.4 1 +1922 6 7 13.5 13.0 13.0 1 +1922 6 8 15.2 14.7 14.7 1 +1922 6 9 13.6 13.1 13.1 1 +1922 6 10 17.0 16.5 16.5 1 +1922 6 11 16.6 16.1 16.1 1 +1922 6 12 17.6 17.1 17.1 1 +1922 6 13 16.2 15.7 15.7 1 +1922 6 14 17.1 16.6 16.6 1 +1922 6 15 16.7 16.2 16.2 1 +1922 6 16 16.4 15.9 15.9 1 +1922 6 17 17.4 16.9 16.9 1 +1922 6 18 15.8 15.3 15.3 1 +1922 6 19 13.3 12.8 12.8 1 +1922 6 20 15.0 14.5 14.5 1 +1922 6 21 17.7 17.2 17.2 1 +1922 6 22 15.9 15.4 15.4 1 +1922 6 23 14.9 14.4 14.4 1 +1922 6 24 13.9 13.4 13.4 1 +1922 6 25 14.3 13.8 13.8 1 +1922 6 26 13.0 12.5 12.5 1 +1922 6 27 14.0 13.5 13.5 1 +1922 6 28 13.6 13.1 13.1 1 +1922 6 29 12.4 11.9 11.9 1 +1922 6 30 12.7 12.2 12.2 1 +1922 7 1 13.4 12.9 12.9 1 +1922 7 2 15.8 15.3 15.3 1 +1922 7 3 16.2 15.7 15.7 1 +1922 7 4 16.4 15.9 15.9 1 +1922 7 5 15.0 14.5 14.5 1 +1922 7 6 17.0 16.5 16.5 1 +1922 7 7 15.1 14.6 14.6 1 +1922 7 8 14.9 14.4 14.4 1 +1922 7 9 15.0 14.5 14.5 1 +1922 7 10 14.5 14.0 14.0 1 +1922 7 11 14.9 14.4 14.4 1 +1922 7 12 14.0 13.5 13.5 1 +1922 7 13 15.0 14.5 14.5 1 +1922 7 14 14.8 14.3 14.3 1 +1922 7 15 13.0 12.5 12.5 1 +1922 7 16 13.8 13.4 13.4 1 +1922 7 17 14.8 14.4 14.4 1 +1922 7 18 13.9 13.5 13.5 1 +1922 7 19 14.0 13.6 13.6 1 +1922 7 20 16.4 16.0 16.0 1 +1922 7 21 18.4 18.0 18.0 1 +1922 7 22 18.4 18.0 18.0 1 +1922 7 23 16.4 16.0 16.0 1 +1922 7 24 18.4 18.0 18.0 1 +1922 7 25 14.9 14.5 14.5 1 +1922 7 26 17.6 17.2 17.2 1 +1922 7 27 18.6 18.2 18.2 1 +1922 7 28 16.3 15.9 15.9 1 +1922 7 29 17.9 17.6 17.6 1 +1922 7 30 15.9 15.6 15.6 1 +1922 7 31 17.0 16.7 16.7 1 +1922 8 1 16.9 16.6 16.6 1 +1922 8 2 15.8 15.5 15.5 1 +1922 8 3 13.0 12.7 12.7 1 +1922 8 4 12.7 12.4 12.4 1 +1922 8 5 13.9 13.6 13.6 1 +1922 8 6 12.5 12.2 12.2 1 +1922 8 7 13.5 13.2 13.2 1 +1922 8 8 13.6 13.3 13.3 1 +1922 8 9 15.4 15.1 15.1 1 +1922 8 10 14.0 13.7 13.7 1 +1922 8 11 14.8 14.6 14.6 1 +1922 8 12 12.5 12.3 12.3 1 +1922 8 13 12.9 12.7 12.7 1 +1922 8 14 12.9 12.7 12.7 1 +1922 8 15 12.4 12.2 12.2 1 +1922 8 16 13.9 13.7 13.7 1 +1922 8 17 14.7 14.5 14.5 1 +1922 8 18 14.3 14.1 14.1 1 +1922 8 19 13.7 13.5 13.5 1 +1922 8 20 14.1 13.9 13.9 1 +1922 8 21 15.4 15.2 15.2 1 +1922 8 22 15.5 15.3 15.3 1 +1922 8 23 15.4 15.3 15.3 1 +1922 8 24 14.5 14.4 14.4 1 +1922 8 25 14.0 13.9 13.9 1 +1922 8 26 14.5 14.4 14.4 1 +1922 8 27 13.8 13.7 13.7 1 +1922 8 28 13.9 13.8 13.8 1 +1922 8 29 15.3 15.2 15.2 1 +1922 8 30 16.7 16.6 16.6 1 +1922 8 31 16.8 16.7 16.7 1 +1922 9 1 16.1 16.0 16.0 1 +1922 9 2 15.2 15.1 15.1 1 +1922 9 3 14.1 14.1 14.1 1 +1922 9 4 13.9 13.9 13.9 1 +1922 9 5 13.2 13.2 13.2 1 +1922 9 6 12.3 12.3 12.3 1 +1922 9 7 12.5 12.5 12.5 1 +1922 9 8 12.8 12.8 12.8 1 +1922 9 9 11.3 11.3 11.3 1 +1922 9 10 11.7 11.7 11.7 1 +1922 9 11 11.9 11.9 11.9 1 +1922 9 12 12.9 12.9 12.9 1 +1922 9 13 16.2 16.2 16.2 1 +1922 9 14 13.2 13.3 13.3 1 +1922 9 15 12.1 12.2 12.2 1 +1922 9 16 11.9 12.0 12.0 1 +1922 9 17 11.6 11.7 11.7 1 +1922 9 18 10.6 10.7 10.7 1 +1922 9 19 6.2 6.3 6.3 1 +1922 9 20 9.3 9.4 9.4 1 +1922 9 21 7.8 7.9 7.9 1 +1922 9 22 7.2 7.3 7.3 1 +1922 9 23 7.1 7.2 7.2 1 +1922 9 24 6.7 6.8 6.8 1 +1922 9 25 5.7 5.8 5.8 1 +1922 9 26 5.3 5.4 5.4 1 +1922 9 27 5.9 6.0 6.0 1 +1922 9 28 6.1 6.2 6.2 1 +1922 9 29 7.0 7.1 7.1 1 +1922 9 30 7.8 7.9 7.9 1 +1922 10 1 7.8 7.9 7.9 1 +1922 10 2 8.4 8.5 8.5 1 +1922 10 3 7.5 7.6 7.6 1 +1922 10 4 7.1 7.2 7.2 1 +1922 10 5 4.8 4.9 4.9 1 +1922 10 6 6.1 6.2 6.2 1 +1922 10 7 6.9 7.0 7.0 1 +1922 10 8 4.7 4.8 4.8 1 +1922 10 9 6.7 6.8 6.8 1 +1922 10 10 6.1 6.2 6.2 1 +1922 10 11 6.4 6.5 6.5 1 +1922 10 12 8.1 8.2 8.2 1 +1922 10 13 6.5 6.6 6.6 1 +1922 10 14 9.3 9.4 9.4 1 +1922 10 15 9.4 9.5 9.5 1 +1922 10 16 6.5 6.6 6.6 1 +1922 10 17 6.1 6.1 6.1 1 +1922 10 18 4.4 4.4 4.4 1 +1922 10 19 5.1 5.1 5.1 1 +1922 10 20 5.0 5.0 5.0 1 +1922 10 21 1.9 1.9 1.9 1 +1922 10 22 2.2 2.2 2.2 1 +1922 10 23 -0.6 -0.6 -0.6 1 +1922 10 24 -0.7 -0.7 -0.7 1 +1922 10 25 1.2 1.2 1.2 1 +1922 10 26 0.6 0.6 0.6 1 +1922 10 27 -2.4 -2.4 -2.4 1 +1922 10 28 -2.5 -2.5 -2.5 1 +1922 10 29 1.0 1.0 1.0 1 +1922 10 30 -0.9 -0.9 -0.9 1 +1922 10 31 -0.8 -0.8 -0.8 1 +1922 11 1 0.0 0.0 0.0 1 +1922 11 2 2.3 2.2 2.2 1 +1922 11 3 4.1 4.0 4.0 1 +1922 11 4 3.5 3.4 3.4 1 +1922 11 5 0.6 0.5 0.5 1 +1922 11 6 -0.8 -0.9 -0.9 1 +1922 11 7 3.0 2.9 2.9 1 +1922 11 8 2.7 2.6 2.6 1 +1922 11 9 0.8 0.7 0.7 1 +1922 11 10 -0.2 -0.3 -0.3 1 +1922 11 11 2.0 1.9 1.9 1 +1922 11 12 3.9 3.8 3.8 1 +1922 11 13 5.0 4.9 4.9 1 +1922 11 14 6.7 6.6 6.6 1 +1922 11 15 2.2 2.1 2.1 1 +1922 11 16 3.9 3.8 3.8 1 +1922 11 17 3.4 3.3 3.3 1 +1922 11 18 -0.1 -0.2 -0.2 1 +1922 11 19 -1.2 -1.3 -1.3 1 +1922 11 20 -2.3 -2.4 -2.4 1 +1922 11 21 -1.0 -1.1 -1.1 1 +1922 11 22 0.5 0.4 0.4 1 +1922 11 23 4.5 4.4 4.4 1 +1922 11 24 0.5 0.4 0.4 1 +1922 11 25 -1.3 -1.4 -1.4 1 +1922 11 26 -6.0 -6.1 -6.1 1 +1922 11 27 -7.2 -7.3 -7.3 1 +1922 11 28 -2.7 -2.8 -2.8 1 +1922 11 29 -3.9 -4.0 -4.0 1 +1922 11 30 -5.7 -5.8 -5.8 1 +1922 12 1 1.4 1.3 1.3 1 +1922 12 2 1.2 1.1 1.1 1 +1922 12 3 -4.2 -4.3 -4.3 1 +1922 12 4 -1.2 -1.3 -1.3 1 +1922 12 5 -1.0 -1.1 -1.1 1 +1922 12 6 -0.3 -0.4 -0.4 1 +1922 12 7 -3.5 -3.6 -3.6 1 +1922 12 8 -6.1 -6.2 -6.2 1 +1922 12 9 -7.7 -7.8 -7.8 1 +1922 12 10 -3.3 -3.4 -3.4 1 +1922 12 11 1.0 0.9 0.9 1 +1922 12 12 -1.1 -1.2 -1.2 1 +1922 12 13 3.7 3.6 3.6 1 +1922 12 14 5.7 5.6 5.6 1 +1922 12 15 0.1 0.0 0.0 1 +1922 12 16 -2.9 -3.1 -3.1 1 +1922 12 17 -3.5 -3.7 -3.7 1 +1922 12 18 -3.2 -3.4 -3.4 1 +1922 12 19 -1.7 -1.9 -1.9 1 +1922 12 20 -2.4 -2.6 -2.6 1 +1922 12 21 -2.0 -2.2 -2.2 1 +1922 12 22 1.9 1.7 1.7 1 +1922 12 23 2.6 2.4 2.4 1 +1922 12 24 1.8 1.6 1.6 1 +1922 12 25 2.1 1.9 1.9 1 +1922 12 26 1.6 1.3 1.3 1 +1922 12 27 3.6 3.3 3.3 1 +1922 12 28 1.8 1.5 1.5 1 +1922 12 29 1.3 1.0 1.0 1 +1922 12 30 1.0 0.7 0.7 1 +1922 12 31 2.2 1.9 1.9 1 +1923 1 1 1.5 1.2 1.2 1 +1923 1 2 0.9 0.6 0.6 1 +1923 1 3 2.4 2.1 2.1 1 +1923 1 4 2.3 2.0 2.0 1 +1923 1 5 2.1 1.7 1.7 1 +1923 1 6 1.5 1.1 1.1 1 +1923 1 7 0.7 0.3 0.3 1 +1923 1 8 1.6 1.2 1.2 1 +1923 1 9 2.7 2.3 2.3 1 +1923 1 10 1.3 0.9 0.9 1 +1923 1 11 1.3 0.9 0.9 1 +1923 1 12 0.3 -0.1 -0.1 1 +1923 1 13 -2.4 -2.8 -2.8 1 +1923 1 14 -0.7 -1.1 -1.1 1 +1923 1 15 -1.3 -1.7 -1.7 1 +1923 1 16 -0.7 -1.1 -1.1 1 +1923 1 17 -4.1 -4.5 -4.5 1 +1923 1 18 -3.6 -4.0 -4.0 1 +1923 1 19 -1.5 -1.9 -1.9 1 +1923 1 20 0.3 -0.1 -0.1 1 +1923 1 21 -1.9 -2.3 -2.3 1 +1923 1 22 0.4 0.0 0.0 1 +1923 1 23 -3.7 -4.1 -4.1 1 +1923 1 24 1.7 1.3 1.3 1 +1923 1 25 3.5 3.1 3.1 1 +1923 1 26 3.5 3.1 3.1 1 +1923 1 27 1.4 1.0 1.0 1 +1923 1 28 -4.0 -4.4 -4.4 1 +1923 1 29 -5.5 -5.9 -5.9 1 +1923 1 30 -4.8 -5.2 -5.2 1 +1923 1 31 -5.6 -6.0 -6.0 1 +1923 2 1 -3.3 -3.7 -3.7 1 +1923 2 2 0.7 0.3 0.3 1 +1923 2 3 -2.1 -2.5 -2.5 1 +1923 2 4 -4.9 -5.3 -5.3 1 +1923 2 5 -2.7 -3.1 -3.1 1 +1923 2 6 -1.1 -1.5 -1.5 1 +1923 2 7 -0.3 -0.7 -0.7 1 +1923 2 8 -1.1 -1.5 -1.5 1 +1923 2 9 -1.1 -1.5 -1.5 1 +1923 2 10 -3.0 -3.4 -3.4 1 +1923 2 11 -4.1 -4.5 -4.5 1 +1923 2 12 -3.9 -4.2 -4.2 1 +1923 2 13 -4.3 -4.6 -4.6 1 +1923 2 14 -4.9 -5.2 -5.2 1 +1923 2 15 -4.1 -4.4 -4.4 1 +1923 2 16 -5.9 -6.2 -6.2 1 +1923 2 17 -9.2 -9.5 -9.5 1 +1923 2 18 -9.9 -10.2 -10.2 1 +1923 2 19 -9.9 -10.3 -10.3 1 +1923 2 20 -11.1 -11.5 -11.5 1 +1923 2 21 -9.6 -10.0 -10.0 1 +1923 2 22 -8.3 -8.7 -8.7 1 +1923 2 23 -7.6 -8.0 -8.0 1 +1923 2 24 -4.0 -4.4 -4.4 1 +1923 2 25 -5.3 -5.7 -5.7 1 +1923 2 26 -7.9 -8.3 -8.3 1 +1923 2 27 -10.1 -10.5 -10.5 1 +1923 2 28 -10.2 -10.6 -10.6 1 +1923 3 1 -6.9 -7.3 -7.3 1 +1923 3 2 -4.8 -5.2 -5.2 1 +1923 3 3 -5.1 -5.5 -5.5 1 +1923 3 4 -5.5 -5.9 -5.9 1 +1923 3 5 -6.0 -6.4 -6.4 1 +1923 3 6 -3.5 -3.9 -3.9 1 +1923 3 7 -1.9 -2.3 -2.3 1 +1923 3 8 -3.6 -4.0 -4.0 1 +1923 3 9 -5.3 -5.7 -5.7 1 +1923 3 10 -6.8 -7.2 -7.2 1 +1923 3 11 -5.3 -5.7 -5.7 1 +1923 3 12 -3.5 -3.9 -3.9 1 +1923 3 13 -4.4 -4.8 -4.8 1 +1923 3 14 -1.8 -2.2 -2.2 1 +1923 3 15 3.9 3.5 3.5 1 +1923 3 16 3.3 2.9 2.9 1 +1923 3 17 3.7 3.3 3.3 1 +1923 3 18 3.5 3.1 3.1 1 +1923 3 19 4.0 3.6 3.6 1 +1923 3 20 4.4 4.0 4.0 1 +1923 3 21 3.3 2.9 2.9 1 +1923 3 22 3.8 3.4 3.4 1 +1923 3 23 4.4 4.0 4.0 1 +1923 3 24 4.7 4.3 4.3 1 +1923 3 25 4.2 3.8 3.8 1 +1923 3 26 1.6 1.2 1.2 1 +1923 3 27 2.6 2.2 2.2 1 +1923 3 28 3.3 2.9 2.9 1 +1923 3 29 5.7 5.3 5.3 1 +1923 3 30 6.6 6.2 6.2 1 +1923 3 31 -2.4 -2.8 -2.8 1 +1923 4 1 -0.6 -1.0 -1.0 1 +1923 4 2 2.2 1.8 1.8 1 +1923 4 3 2.3 2.0 2.0 1 +1923 4 4 1.7 1.4 1.4 1 +1923 4 5 1.6 1.3 1.3 1 +1923 4 6 1.6 1.3 1.3 1 +1923 4 7 1.6 1.3 1.3 1 +1923 4 8 0.9 0.6 0.6 1 +1923 4 9 2.7 2.4 2.4 1 +1923 4 10 3.8 3.5 3.5 1 +1923 4 11 5.0 4.7 4.7 1 +1923 4 12 1.8 1.5 1.5 1 +1923 4 13 1.8 1.5 1.5 1 +1923 4 14 3.4 3.1 3.1 1 +1923 4 15 -0.2 -0.5 -0.5 1 +1923 4 16 0.0 -0.3 -0.3 1 +1923 4 17 1.0 0.7 0.7 1 +1923 4 18 2.4 2.1 2.1 1 +1923 4 19 4.1 3.8 3.8 1 +1923 4 20 1.8 1.5 1.5 1 +1923 4 21 0.8 0.4 0.4 1 +1923 4 22 1.0 0.6 0.6 1 +1923 4 23 1.8 1.4 1.4 1 +1923 4 24 1.1 0.7 0.7 1 +1923 4 25 0.3 -0.1 -0.1 1 +1923 4 26 2.1 1.7 1.7 1 +1923 4 27 6.4 6.0 6.0 1 +1923 4 28 4.7 4.3 4.3 1 +1923 4 29 3.7 3.2 3.2 1 +1923 4 30 6.3 5.8 5.8 1 +1923 5 1 2.8 2.3 2.3 1 +1923 5 2 4.6 4.1 4.1 1 +1923 5 3 4.7 4.2 4.2 1 +1923 5 4 6.5 6.0 6.0 1 +1923 5 5 7.4 6.9 6.9 1 +1923 5 6 11.5 11.0 11.0 1 +1923 5 7 10.6 10.1 10.1 1 +1923 5 8 8.2 7.6 7.6 1 +1923 5 9 5.6 5.0 5.0 1 +1923 5 10 7.2 6.6 6.6 1 +1923 5 11 7.6 7.0 7.0 1 +1923 5 12 6.2 5.6 5.6 1 +1923 5 13 5.8 5.2 5.2 1 +1923 5 14 6.2 5.6 5.6 1 +1923 5 15 8.8 8.2 8.2 1 +1923 5 16 8.5 7.9 7.9 1 +1923 5 17 7.2 6.6 6.6 1 +1923 5 18 9.4 8.8 8.8 1 +1923 5 19 7.2 6.6 6.6 1 +1923 5 20 9.4 8.8 8.8 1 +1923 5 21 11.0 10.4 10.4 1 +1923 5 22 8.8 8.2 8.2 1 +1923 5 23 8.6 8.0 8.0 1 +1923 5 24 9.4 8.8 8.8 1 +1923 5 25 9.9 9.3 9.3 1 +1923 5 26 10.7 10.1 10.1 1 +1923 5 27 9.8 9.2 9.2 1 +1923 5 28 8.3 7.7 7.7 1 +1923 5 29 10.5 9.9 9.9 1 +1923 5 30 7.5 6.9 6.9 1 +1923 5 31 8.6 8.0 8.0 1 +1923 6 1 9.7 9.1 9.1 1 +1923 6 2 6.7 6.1 6.1 1 +1923 6 3 7.4 6.9 6.9 1 +1923 6 4 7.1 6.6 6.6 1 +1923 6 5 7.5 7.0 7.0 1 +1923 6 6 6.5 6.0 6.0 1 +1923 6 7 10.3 9.8 9.8 1 +1923 6 8 12.7 12.2 12.2 1 +1923 6 9 11.4 10.9 10.9 1 +1923 6 10 12.9 12.4 12.4 1 +1923 6 11 11.2 10.7 10.7 1 +1923 6 12 9.1 8.6 8.6 1 +1923 6 13 10.1 9.6 9.6 1 +1923 6 14 8.8 8.3 8.3 1 +1923 6 15 9.4 8.9 8.9 1 +1923 6 16 9.5 9.0 9.0 1 +1923 6 17 11.4 10.9 10.9 1 +1923 6 18 9.7 9.2 9.2 1 +1923 6 19 14.0 13.5 13.5 1 +1923 6 20 11.6 11.1 11.1 1 +1923 6 21 13.1 12.6 12.6 1 +1923 6 22 11.6 11.1 11.1 1 +1923 6 23 13.2 12.7 12.7 1 +1923 6 24 10.5 10.0 10.0 1 +1923 6 25 10.8 10.3 10.3 1 +1923 6 26 9.5 9.0 9.0 1 +1923 6 27 10.6 10.1 10.1 1 +1923 6 28 11.0 10.5 10.5 1 +1923 6 29 11.8 11.3 11.3 1 +1923 6 30 12.5 12.0 12.0 1 +1923 7 1 14.1 13.6 13.6 1 +1923 7 2 15.9 15.4 15.4 1 +1923 7 3 16.6 16.1 16.1 1 +1923 7 4 16.1 15.6 15.6 1 +1923 7 5 18.1 17.6 17.6 1 +1923 7 6 20.5 20.0 20.0 1 +1923 7 7 19.7 19.2 19.2 1 +1923 7 8 16.1 15.6 15.6 1 +1923 7 9 17.5 17.0 17.0 1 +1923 7 10 22.2 21.7 21.7 1 +1923 7 11 22.3 21.8 21.8 1 +1923 7 12 25.0 24.5 24.5 1 +1923 7 13 23.9 23.4 23.4 1 +1923 7 14 17.8 17.3 17.3 1 +1923 7 15 17.2 16.7 16.7 1 +1923 7 16 17.6 17.1 17.1 1 +1923 7 17 18.1 17.7 17.7 1 +1923 7 18 18.2 17.8 17.8 1 +1923 7 19 15.2 14.8 14.8 1 +1923 7 20 16.3 15.9 15.9 1 +1923 7 21 15.4 15.0 15.0 1 +1923 7 22 14.9 14.5 14.5 1 +1923 7 23 16.0 15.6 15.6 1 +1923 7 24 14.2 13.8 13.8 1 +1923 7 25 14.2 13.8 13.8 1 +1923 7 26 14.3 13.9 13.9 1 +1923 7 27 13.7 13.3 13.3 1 +1923 7 28 15.6 15.2 15.2 1 +1923 7 29 14.7 14.3 14.3 1 +1923 7 30 15.0 14.7 14.7 1 +1923 7 31 14.2 13.9 13.9 1 +1923 8 1 14.8 14.5 14.5 1 +1923 8 2 13.5 13.2 13.2 1 +1923 8 3 15.4 15.1 15.1 1 +1923 8 4 14.4 14.1 14.1 1 +1923 8 5 15.5 15.2 15.2 1 +1923 8 6 16.1 15.8 15.8 1 +1923 8 7 15.8 15.5 15.5 1 +1923 8 8 15.9 15.6 15.6 1 +1923 8 9 16.6 16.3 16.3 1 +1923 8 10 15.4 15.1 15.1 1 +1923 8 11 13.8 13.5 13.5 1 +1923 8 12 14.2 14.0 14.0 1 +1923 8 13 14.2 14.0 14.0 1 +1923 8 14 13.4 13.2 13.2 1 +1923 8 15 15.2 15.0 15.0 1 +1923 8 16 10.8 10.6 10.6 1 +1923 8 17 11.5 11.3 11.3 1 +1923 8 18 12.7 12.5 12.5 1 +1923 8 19 11.9 11.7 11.7 1 +1923 8 20 11.6 11.4 11.4 1 +1923 8 21 12.0 11.8 11.8 1 +1923 8 22 14.2 14.0 14.0 1 +1923 8 23 13.0 12.8 12.8 1 +1923 8 24 14.2 14.1 14.1 1 +1923 8 25 14.3 14.2 14.2 1 +1923 8 26 12.6 12.5 12.5 1 +1923 8 27 14.0 13.9 13.9 1 +1923 8 28 14.2 14.1 14.1 1 +1923 8 29 12.7 12.6 12.6 1 +1923 8 30 12.8 12.7 12.7 1 +1923 8 31 12.1 12.0 12.0 1 +1923 9 1 11.3 11.2 11.2 1 +1923 9 2 11.1 11.0 11.0 1 +1923 9 3 10.6 10.5 10.5 1 +1923 9 4 10.7 10.7 10.7 1 +1923 9 5 10.3 10.3 10.3 1 +1923 9 6 10.2 10.2 10.2 1 +1923 9 7 10.7 10.7 10.7 1 +1923 9 8 9.0 9.0 9.0 1 +1923 9 9 10.5 10.5 10.5 1 +1923 9 10 13.2 13.2 13.2 1 +1923 9 11 10.1 10.1 10.1 1 +1923 9 12 12.1 12.1 12.1 1 +1923 9 13 10.9 10.9 10.9 1 +1923 9 14 10.6 10.6 10.6 1 +1923 9 15 12.7 12.8 12.8 1 +1923 9 16 14.6 14.7 14.7 1 +1923 9 17 10.6 10.7 10.7 1 +1923 9 18 12.3 12.4 12.4 1 +1923 9 19 11.6 11.7 11.7 1 +1923 9 20 10.2 10.3 10.3 1 +1923 9 21 9.3 9.4 9.4 1 +1923 9 22 8.9 9.0 9.0 1 +1923 9 23 10.2 10.3 10.3 1 +1923 9 24 10.4 10.5 10.5 1 +1923 9 25 11.3 11.4 11.4 1 +1923 9 26 10.3 10.4 10.4 1 +1923 9 27 9.8 9.9 9.9 1 +1923 9 28 9.7 9.8 9.8 1 +1923 9 29 8.8 8.9 8.9 1 +1923 9 30 8.8 8.9 8.9 1 +1923 10 1 9.5 9.6 9.6 1 +1923 10 2 10.0 10.1 10.1 1 +1923 10 3 8.6 8.7 8.7 1 +1923 10 4 7.1 7.2 7.2 1 +1923 10 5 7.5 7.6 7.6 1 +1923 10 6 6.4 6.5 6.5 1 +1923 10 7 5.6 5.7 5.7 1 +1923 10 8 6.5 6.6 6.6 1 +1923 10 9 7.9 8.0 8.0 1 +1923 10 10 7.8 7.9 7.9 1 +1923 10 11 5.2 5.3 5.3 1 +1923 10 12 5.8 5.9 5.9 1 +1923 10 13 6.3 6.3 6.3 1 +1923 10 14 7.1 7.1 7.1 1 +1923 10 15 5.7 5.7 5.7 1 +1923 10 16 5.3 5.3 5.3 1 +1923 10 17 4.5 4.5 4.5 1 +1923 10 18 5.6 5.6 5.6 1 +1923 10 19 5.9 5.9 5.9 1 +1923 10 20 8.2 8.2 8.2 1 +1923 10 21 6.2 6.2 6.2 1 +1923 10 22 8.6 8.6 8.6 1 +1923 10 23 8.0 8.0 8.0 1 +1923 10 24 8.0 8.0 8.0 1 +1923 10 25 7.6 7.6 7.6 1 +1923 10 26 6.7 6.7 6.7 1 +1923 10 27 6.1 6.1 6.1 1 +1923 10 28 6.9 6.9 6.9 1 +1923 10 29 7.8 7.8 7.8 1 +1923 10 30 7.8 7.8 7.8 1 +1923 10 31 9.1 9.1 9.1 1 +1923 11 1 6.6 6.5 6.5 1 +1923 11 2 5.6 5.5 5.5 1 +1923 11 3 6.2 6.1 6.1 1 +1923 11 4 5.7 5.6 5.6 1 +1923 11 5 3.8 3.7 3.7 1 +1923 11 6 2.7 2.6 2.6 1 +1923 11 7 1.2 1.1 1.1 1 +1923 11 8 0.3 0.2 0.2 1 +1923 11 9 2.8 2.7 2.7 1 +1923 11 10 0.5 0.4 0.4 1 +1923 11 11 1.8 1.7 1.7 1 +1923 11 12 8.9 8.8 8.8 1 +1923 11 13 5.4 5.3 5.3 1 +1923 11 14 7.0 6.9 6.9 1 +1923 11 15 3.9 3.8 3.8 1 +1923 11 16 4.0 3.9 3.9 1 +1923 11 17 4.6 4.5 4.5 1 +1923 11 18 2.8 2.7 2.7 1 +1923 11 19 2.8 2.7 2.7 1 +1923 11 20 1.0 0.9 0.9 1 +1923 11 21 -5.7 -5.8 -5.8 1 +1923 11 22 -9.6 -9.7 -9.7 1 +1923 11 23 -11.5 -11.6 -11.6 1 +1923 11 24 -9.7 -9.8 -9.8 1 +1923 11 25 -5.8 -5.9 -5.9 1 +1923 11 26 -4.9 -5.0 -5.0 1 +1923 11 27 -3.4 -3.5 -3.5 1 +1923 11 28 -3.4 -3.5 -3.5 1 +1923 11 29 0.1 0.0 0.0 1 +1923 11 30 -0.1 -0.2 -0.2 1 +1923 12 1 -6.9 -7.1 -7.1 1 +1923 12 2 -2.6 -2.8 -2.8 1 +1923 12 3 0.7 0.5 0.5 1 +1923 12 4 1.6 1.4 1.4 1 +1923 12 5 0.6 0.4 0.4 1 +1923 12 6 1.9 1.7 1.7 1 +1923 12 7 1.1 0.9 0.9 1 +1923 12 8 1.8 1.6 1.6 1 +1923 12 9 2.1 1.9 1.9 1 +1923 12 10 0.7 0.5 0.5 1 +1923 12 11 1.8 1.6 1.6 1 +1923 12 12 3.5 3.3 3.3 1 +1923 12 13 1.7 1.5 1.5 1 +1923 12 14 2.4 2.2 2.2 1 +1923 12 15 2.4 2.2 2.2 1 +1923 12 16 -0.6 -0.8 -0.8 1 +1923 12 17 -0.3 -0.5 -0.5 1 +1923 12 18 -0.5 -0.7 -0.7 1 +1923 12 19 -4.0 -4.2 -4.2 1 +1923 12 20 -10.8 -11.0 -11.0 1 +1923 12 21 -8.8 -9.0 -9.0 1 +1923 12 22 -11.4 -11.6 -11.6 1 +1923 12 23 -10.1 -10.3 -10.3 1 +1923 12 24 -16.4 -16.6 -16.6 1 +1923 12 25 -15.3 -15.6 -15.6 1 +1923 12 26 -9.8 -10.1 -10.1 1 +1923 12 27 -5.3 -5.6 -5.6 1 +1923 12 28 -12.1 -12.4 -12.4 1 +1923 12 29 -8.8 -9.1 -9.1 1 +1923 12 30 -6.5 -6.8 -6.8 1 +1923 12 31 -6.3 -6.6 -6.6 1 +1924 1 1 -7.1 -7.4 -7.4 1 +1924 1 2 -5.1 -5.4 -5.4 1 +1924 1 3 -7.2 -7.5 -7.5 1 +1924 1 4 -9.3 -9.6 -9.6 1 +1924 1 5 -8.1 -8.5 -8.5 1 +1924 1 6 -8.7 -9.1 -9.1 1 +1924 1 7 -5.8 -6.2 -6.2 1 +1924 1 8 -6.3 -6.7 -6.7 1 +1924 1 9 -3.9 -4.3 -4.3 1 +1924 1 10 -0.7 -1.1 -1.1 1 +1924 1 11 0.6 0.2 0.2 1 +1924 1 12 1.0 0.6 0.6 1 +1924 1 13 2.0 1.6 1.6 1 +1924 1 14 0.8 0.4 0.4 1 +1924 1 15 -1.2 -1.6 -1.6 1 +1924 1 16 -3.9 -4.3 -4.3 1 +1924 1 17 -1.7 -2.1 -2.1 1 +1924 1 18 -1.0 -1.4 -1.4 1 +1924 1 19 1.0 0.6 0.6 1 +1924 1 20 0.4 0.0 0.0 1 +1924 1 21 -7.1 -7.5 -7.5 1 +1924 1 22 -10.8 -11.2 -11.2 1 +1924 1 23 -13.0 -13.4 -13.4 1 +1924 1 24 -9.3 -9.7 -9.7 1 +1924 1 25 -1.9 -2.3 -2.3 1 +1924 1 26 -0.7 -1.1 -1.1 1 +1924 1 27 0.9 0.5 0.5 1 +1924 1 28 -1.4 -1.8 -1.8 1 +1924 1 29 -4.5 -4.9 -4.9 1 +1924 1 30 -0.8 -1.2 -1.2 1 +1924 1 31 0.6 0.2 0.2 1 +1924 2 1 2.0 1.6 1.6 1 +1924 2 2 -0.5 -0.9 -0.9 1 +1924 2 3 -1.8 -2.2 -2.2 1 +1924 2 4 -3.3 -3.7 -3.7 1 +1924 2 5 -2.9 -3.3 -3.3 1 +1924 2 6 -6.2 -6.6 -6.6 1 +1924 2 7 -9.9 -10.3 -10.3 1 +1924 2 8 -7.0 -7.4 -7.4 1 +1924 2 9 -8.3 -8.7 -8.7 1 +1924 2 10 -8.2 -8.6 -8.6 1 +1924 2 11 -5.9 -6.3 -6.3 1 +1924 2 12 -8.4 -8.8 -8.8 1 +1924 2 13 -10.4 -10.8 -10.8 1 +1924 2 14 -8.7 -9.1 -9.1 1 +1924 2 15 -11.7 -12.0 -12.0 1 +1924 2 16 -10.0 -10.4 -10.4 1 +1924 2 17 -1.9 -2.3 -2.3 1 +1924 2 18 0.1 -0.3 -0.3 1 +1924 2 19 -6.6 -7.0 -7.0 1 +1924 2 20 -3.5 -3.9 -3.9 1 +1924 2 21 -3.1 -3.5 -3.5 1 +1924 2 22 -8.6 -9.0 -9.0 1 +1924 2 23 -9.8 -10.2 -10.2 1 +1924 2 24 -6.8 -7.2 -7.2 1 +1924 2 25 -11.4 -11.8 -11.8 1 +1924 2 26 -13.3 -13.7 -13.7 1 +1924 2 27 -8.8 -9.2 -9.2 1 +1924 2 28 -5.2 -5.6 -5.6 1 +1924 2 29 -8.5 -8.9 -8.9 1 +1924 3 1 -5.8 -6.2 -6.2 1 +1924 3 2 -8.6 -9.0 -9.0 1 +1924 3 3 -4.7 -5.1 -5.1 1 +1924 3 4 0.3 -0.1 -0.1 1 +1924 3 5 -0.1 -0.5 -0.5 1 +1924 3 6 -3.0 -3.4 -3.4 1 +1924 3 7 -6.0 -6.4 -6.4 1 +1924 3 8 -2.9 -3.3 -3.3 1 +1924 3 9 0.9 0.5 0.5 1 +1924 3 10 -0.6 -1.0 -1.0 1 +1924 3 11 -7.2 -7.6 -7.6 1 +1924 3 12 -6.1 -6.5 -6.5 1 +1924 3 13 -4.0 -4.4 -4.4 1 +1924 3 14 -4.0 -4.4 -4.4 1 +1924 3 15 0.9 0.4 0.4 1 +1924 3 16 -2.3 -2.7 -2.7 1 +1924 3 17 -8.0 -8.4 -8.4 1 +1924 3 18 -9.5 -9.9 -9.9 1 +1924 3 19 -8.3 -8.7 -8.7 1 +1924 3 20 -7.9 -8.3 -8.3 1 +1924 3 21 -4.8 -5.2 -5.2 1 +1924 3 22 -2.7 -3.1 -3.1 1 +1924 3 23 -4.4 -4.8 -4.8 1 +1924 3 24 -4.2 -4.6 -4.6 1 +1924 3 25 -4.4 -4.8 -4.8 1 +1924 3 26 -3.4 -3.8 -3.8 1 +1924 3 27 0.5 0.1 0.1 1 +1924 3 28 -0.3 -0.7 -0.7 1 +1924 3 29 0.1 -0.3 -0.3 1 +1924 3 30 1.0 0.6 0.6 1 +1924 3 31 1.4 1.0 1.0 1 +1924 4 1 -0.4 -0.8 -0.8 1 +1924 4 2 -1.4 -1.8 -1.8 1 +1924 4 3 2.2 1.8 1.8 1 +1924 4 4 3.0 2.6 2.6 1 +1924 4 5 4.2 3.9 3.9 1 +1924 4 6 2.8 2.5 2.5 1 +1924 4 7 2.9 2.6 2.6 1 +1924 4 8 3.4 3.1 3.1 1 +1924 4 9 2.2 1.9 1.9 1 +1924 4 10 1.4 1.1 1.1 1 +1924 4 11 -1.0 -1.3 -1.3 1 +1924 4 12 0.4 0.1 0.1 1 +1924 4 13 0.7 0.4 0.4 1 +1924 4 14 2.4 2.1 2.1 1 +1924 4 15 2.6 2.3 2.3 1 +1924 4 16 2.7 2.4 2.4 1 +1924 4 17 3.6 3.3 3.3 1 +1924 4 18 2.9 2.6 2.6 1 +1924 4 19 2.6 2.3 2.3 1 +1924 4 20 4.4 4.0 4.0 1 +1924 4 21 1.2 0.8 0.8 1 +1924 4 22 0.4 0.0 0.0 1 +1924 4 23 -3.0 -3.4 -3.4 1 +1924 4 24 -1.2 -1.6 -1.6 1 +1924 4 25 -0.9 -1.3 -1.3 1 +1924 4 26 -0.3 -0.7 -0.7 1 +1924 4 27 0.6 0.2 0.2 1 +1924 4 28 1.8 1.3 1.3 1 +1924 4 29 2.4 1.9 1.9 1 +1924 4 30 2.9 2.4 2.4 1 +1924 5 1 3.1 2.6 2.6 1 +1924 5 2 6.0 5.5 5.5 1 +1924 5 3 6.2 5.7 5.7 1 +1924 5 4 4.9 4.4 4.4 1 +1924 5 5 5.2 4.7 4.7 1 +1924 5 6 4.6 4.0 4.0 1 +1924 5 7 6.5 5.9 5.9 1 +1924 5 8 6.5 5.9 5.9 1 +1924 5 9 7.4 6.8 6.8 1 +1924 5 10 9.5 8.9 8.9 1 +1924 5 11 10.0 9.4 9.4 1 +1924 5 12 9.6 9.0 9.0 1 +1924 5 13 11.5 10.9 10.9 1 +1924 5 14 12.6 12.0 12.0 1 +1924 5 15 14.4 13.7 13.7 1 +1924 5 16 10.2 9.5 9.5 1 +1924 5 17 5.5 4.9 4.9 1 +1924 5 18 9.3 8.7 8.7 1 +1924 5 19 8.9 8.3 8.3 1 +1924 5 20 7.7 7.1 7.1 1 +1924 5 21 8.3 7.7 7.7 1 +1924 5 22 10.0 9.4 9.4 1 +1924 5 23 9.6 9.0 9.0 1 +1924 5 24 12.8 12.2 12.2 1 +1924 5 25 11.4 10.8 10.8 1 +1924 5 26 12.3 11.7 11.7 1 +1924 5 27 13.1 12.5 12.5 1 +1924 5 28 14.3 13.7 13.7 1 +1924 5 29 11.9 11.3 11.3 1 +1924 5 30 13.1 12.5 12.5 1 +1924 5 31 12.2 11.6 11.6 1 +1924 6 1 10.1 9.5 9.5 1 +1924 6 2 13.6 13.0 13.0 1 +1924 6 3 9.7 9.1 9.1 1 +1924 6 4 9.0 8.4 8.4 1 +1924 6 5 8.9 8.3 8.3 1 +1924 6 6 7.3 6.8 6.8 1 +1924 6 7 11.3 10.8 10.8 1 +1924 6 8 11.9 11.4 11.4 1 +1924 6 9 14.2 13.7 13.7 1 +1924 6 10 13.6 13.1 13.1 1 +1924 6 11 12.6 12.1 12.1 1 +1924 6 12 15.0 14.5 14.5 1 +1924 6 13 9.1 8.6 8.6 1 +1924 6 14 10.8 10.3 10.3 1 +1924 6 15 9.5 9.0 9.0 1 +1924 6 16 10.7 10.2 10.2 1 +1924 6 17 16.6 16.1 16.1 1 +1924 6 18 17.9 17.4 17.4 1 +1924 6 19 17.2 16.7 16.7 1 +1924 6 20 20.3 19.8 19.8 1 +1924 6 21 16.5 16.0 16.0 1 +1924 6 22 15.5 15.0 15.0 1 +1924 6 23 16.5 16.0 16.0 1 +1924 6 24 13.9 13.4 13.4 1 +1924 6 25 12.2 11.7 11.7 1 +1924 6 26 13.7 13.2 13.2 1 +1924 6 27 13.6 13.1 13.1 1 +1924 6 28 12.6 12.1 12.1 1 +1924 6 29 14.2 13.7 13.7 1 +1924 6 30 14.7 14.2 14.2 1 +1924 7 1 14.3 13.8 13.8 1 +1924 7 2 14.4 13.9 13.9 1 +1924 7 3 14.3 13.8 13.8 1 +1924 7 4 13.7 13.2 13.2 1 +1924 7 5 13.9 13.4 13.4 1 +1924 7 6 14.6 14.1 14.1 1 +1924 7 7 14.7 14.2 14.2 1 +1924 7 8 14.8 14.3 14.3 1 +1924 7 9 13.8 13.3 13.3 1 +1924 7 10 13.0 12.5 12.5 1 +1924 7 11 15.2 14.7 14.7 1 +1924 7 12 18.6 18.1 18.1 1 +1924 7 13 18.4 17.9 17.9 1 +1924 7 14 16.9 16.4 16.4 1 +1924 7 15 17.3 16.8 16.8 1 +1924 7 16 18.0 17.5 17.5 1 +1924 7 17 18.4 17.9 17.9 1 +1924 7 18 18.5 18.0 18.0 1 +1924 7 19 19.5 19.1 19.1 1 +1924 7 20 15.7 15.3 15.3 1 +1924 7 21 17.4 17.0 17.0 1 +1924 7 22 20.2 19.8 19.8 1 +1924 7 23 18.8 18.4 18.4 1 +1924 7 24 17.9 17.5 17.5 1 +1924 7 25 17.2 16.8 16.8 1 +1924 7 26 16.4 16.0 16.0 1 +1924 7 27 17.8 17.4 17.4 1 +1924 7 28 16.0 15.6 15.6 1 +1924 7 29 17.0 16.6 16.6 1 +1924 7 30 19.1 18.7 18.7 1 +1924 7 31 19.9 19.5 19.5 1 +1924 8 1 20.3 20.0 20.0 1 +1924 8 2 20.2 19.9 19.9 1 +1924 8 3 20.2 19.9 19.9 1 +1924 8 4 18.2 17.9 17.9 1 +1924 8 5 17.2 16.9 16.9 1 +1924 8 6 16.3 16.0 16.0 1 +1924 8 7 15.9 15.6 15.6 1 +1924 8 8 16.3 16.0 16.0 1 +1924 8 9 16.1 15.8 15.8 1 +1924 8 10 18.1 17.8 17.8 1 +1924 8 11 16.5 16.2 16.2 1 +1924 8 12 17.2 16.9 16.9 1 +1924 8 13 19.4 19.1 19.1 1 +1924 8 14 20.9 20.7 20.7 1 +1924 8 15 21.2 21.0 21.0 1 +1924 8 16 17.4 17.2 17.2 1 +1924 8 17 16.6 16.4 16.4 1 +1924 8 18 17.3 17.1 17.1 1 +1924 8 19 15.9 15.7 15.7 1 +1924 8 20 15.0 14.8 14.8 1 +1924 8 21 13.9 13.7 13.7 1 +1924 8 22 14.1 13.9 13.9 1 +1924 8 23 14.7 14.5 14.5 1 +1924 8 24 13.8 13.6 13.6 1 +1924 8 25 13.6 13.5 13.5 1 +1924 8 26 13.5 13.4 13.4 1 +1924 8 27 14.5 14.4 14.4 1 +1924 8 28 14.6 14.5 14.5 1 +1924 8 29 14.1 14.0 14.0 1 +1924 8 30 14.8 14.7 14.7 1 +1924 8 31 15.4 15.3 15.3 1 +1924 9 1 15.9 15.8 15.8 1 +1924 9 2 14.7 14.6 14.6 1 +1924 9 3 15.6 15.5 15.5 1 +1924 9 4 16.6 16.5 16.5 1 +1924 9 5 16.6 16.6 16.6 1 +1924 9 6 16.9 16.9 16.9 1 +1924 9 7 15.7 15.7 15.7 1 +1924 9 8 14.0 14.0 14.0 1 +1924 9 9 15.7 15.7 15.7 1 +1924 9 10 13.2 13.2 13.2 1 +1924 9 11 10.2 10.2 10.2 1 +1924 9 12 10.8 10.8 10.8 1 +1924 9 13 15.0 15.0 15.0 1 +1924 9 14 15.1 15.1 15.1 1 +1924 9 15 11.6 11.6 11.6 1 +1924 9 16 12.0 12.0 12.0 1 +1924 9 17 12.8 12.8 12.8 1 +1924 9 18 13.5 13.5 13.5 1 +1924 9 19 12.2 12.2 12.2 1 +1924 9 20 11.3 11.3 11.3 1 +1924 9 21 13.0 13.0 13.0 1 +1924 9 22 11.7 11.7 11.7 1 +1924 9 23 10.1 10.1 10.1 1 +1924 9 24 11.3 11.3 11.3 1 +1924 9 25 11.2 11.2 11.2 1 +1924 9 26 9.5 9.5 9.5 1 +1924 9 27 9.2 9.2 9.2 1 +1924 9 28 7.6 7.6 7.6 1 +1924 9 29 9.8 9.8 9.8 1 +1924 9 30 10.4 10.4 10.4 1 +1924 10 1 10.7 10.7 10.7 1 +1924 10 2 11.8 11.8 11.8 1 +1924 10 3 11.4 11.4 11.4 1 +1924 10 4 11.5 11.5 11.5 1 +1924 10 5 10.3 10.3 10.3 1 +1924 10 6 11.4 11.4 11.4 1 +1924 10 7 10.5 10.5 10.5 1 +1924 10 8 10.4 10.4 10.4 1 +1924 10 9 10.6 10.6 10.6 1 +1924 10 10 8.4 8.4 8.4 1 +1924 10 11 11.0 11.0 11.0 1 +1924 10 12 11.1 11.1 11.1 1 +1924 10 13 10.5 10.5 10.5 1 +1924 10 14 8.9 8.9 8.9 1 +1924 10 15 7.9 7.9 7.9 1 +1924 10 16 8.9 8.9 8.9 1 +1924 10 17 8.3 8.3 8.3 1 +1924 10 18 7.1 7.1 7.1 1 +1924 10 19 3.1 3.1 3.1 1 +1924 10 20 4.7 4.7 4.7 1 +1924 10 21 5.1 5.1 5.1 1 +1924 10 22 1.2 1.2 1.2 1 +1924 10 23 1.8 1.8 1.8 1 +1924 10 24 5.1 5.1 5.1 1 +1924 10 25 4.3 4.3 4.3 1 +1924 10 26 4.5 4.5 4.5 1 +1924 10 27 6.8 6.8 6.8 1 +1924 10 28 8.3 8.3 8.3 1 +1924 10 29 7.5 7.5 7.5 1 +1924 10 30 7.8 7.8 7.8 1 +1924 10 31 8.7 8.6 8.6 1 +1924 11 1 7.6 7.5 7.5 1 +1924 11 2 3.7 3.6 3.6 1 +1924 11 3 3.1 3.0 3.0 1 +1924 11 4 0.2 0.1 0.1 1 +1924 11 5 1.8 1.7 1.7 1 +1924 11 6 3.1 3.0 3.0 1 +1924 11 7 2.9 2.8 2.8 1 +1924 11 8 4.3 4.2 4.2 1 +1924 11 9 3.0 2.9 2.9 1 +1924 11 10 0.3 0.2 0.2 1 +1924 11 11 2.8 2.7 2.7 1 +1924 11 12 3.2 3.1 3.1 1 +1924 11 13 2.3 2.2 2.2 1 +1924 11 14 1.3 1.2 1.2 1 +1924 11 15 -0.4 -0.5 -0.5 1 +1924 11 16 -0.1 -0.2 -0.2 1 +1924 11 17 1.7 1.6 1.6 1 +1924 11 18 3.4 3.3 3.3 1 +1924 11 19 0.8 0.7 0.7 1 +1924 11 20 0.0 -0.2 -0.2 1 +1924 11 21 1.7 1.5 1.5 1 +1924 11 22 6.6 6.4 6.4 1 +1924 11 23 3.9 3.7 3.7 1 +1924 11 24 6.6 6.4 6.4 1 +1924 11 25 4.2 4.0 4.0 1 +1924 11 26 4.4 4.2 4.2 1 +1924 11 27 4.0 3.8 3.8 1 +1924 11 28 3.4 3.2 3.2 1 +1924 11 29 4.7 4.5 4.5 1 +1924 11 30 4.9 4.7 4.7 1 +1924 12 1 6.2 6.0 6.0 1 +1924 12 2 2.0 1.8 1.8 1 +1924 12 3 -4.8 -5.0 -5.0 1 +1924 12 4 -9.3 -9.5 -9.5 1 +1924 12 5 -5.8 -6.0 -6.0 1 +1924 12 6 0.3 0.1 0.1 1 +1924 12 7 2.8 2.6 2.6 1 +1924 12 8 3.3 3.1 3.1 1 +1924 12 9 2.9 2.7 2.7 1 +1924 12 10 3.1 2.9 2.9 1 +1924 12 11 3.5 3.3 3.3 1 +1924 12 12 4.0 3.8 3.8 1 +1924 12 13 0.3 0.1 0.1 1 +1924 12 14 2.0 1.8 1.8 1 +1924 12 15 0.2 0.0 0.0 1 +1924 12 16 2.3 2.1 2.1 1 +1924 12 17 3.0 2.8 2.8 1 +1924 12 18 6.9 6.7 6.7 1 +1924 12 19 8.5 8.3 8.3 1 +1924 12 20 6.5 6.3 6.3 1 +1924 12 21 5.5 5.3 5.3 1 +1924 12 22 4.3 4.1 4.1 1 +1924 12 23 3.4 3.2 3.2 1 +1924 12 24 2.6 2.3 2.3 1 +1924 12 25 4.1 3.8 3.8 1 +1924 12 26 4.1 3.8 3.8 1 +1924 12 27 3.8 3.5 3.5 1 +1924 12 28 4.5 4.2 4.2 1 +1924 12 29 4.2 3.9 3.9 1 +1924 12 30 3.2 2.9 2.9 1 +1924 12 31 2.5 2.2 2.2 1 +1925 1 1 2.0 1.7 1.7 1 +1925 1 2 3.5 3.2 3.2 1 +1925 1 3 4.2 3.9 3.9 1 +1925 1 4 2.4 2.0 2.0 1 +1925 1 5 -0.3 -0.7 -0.7 1 +1925 1 6 -0.1 -0.5 -0.5 1 +1925 1 7 0.6 0.2 0.2 1 +1925 1 8 0.9 0.5 0.5 1 +1925 1 9 2.6 2.2 2.2 1 +1925 1 10 -0.5 -0.9 -0.9 1 +1925 1 11 3.8 3.4 3.4 1 +1925 1 12 0.9 0.5 0.5 1 +1925 1 13 2.9 2.5 2.5 1 +1925 1 14 2.4 2.0 2.0 1 +1925 1 15 5.0 4.5 4.5 1 +1925 1 16 4.8 4.3 4.3 1 +1925 1 17 4.0 3.5 3.5 1 +1925 1 18 5.4 5.0 5.0 1 +1925 1 19 4.1 3.7 3.7 1 +1925 1 20 -0.6 -1.0 -1.0 1 +1925 1 21 -0.2 -0.6 -0.6 1 +1925 1 22 -3.3 -3.7 -3.7 1 +1925 1 23 -5.0 -5.4 -5.4 1 +1925 1 24 -1.4 -1.8 -1.8 1 +1925 1 25 -0.7 -1.1 -1.1 1 +1925 1 26 -3.7 -4.1 -4.1 1 +1925 1 27 -3.5 -3.9 -3.9 1 +1925 1 28 -4.0 -4.4 -4.4 1 +1925 1 29 -1.0 -1.4 -1.4 1 +1925 1 30 1.3 0.9 0.9 1 +1925 1 31 2.8 2.4 2.4 1 +1925 2 1 0.5 0.1 0.1 1 +1925 2 2 0.0 -0.4 -0.4 1 +1925 2 3 2.0 1.6 1.6 1 +1925 2 4 2.3 1.9 1.9 1 +1925 2 5 3.3 2.9 2.9 1 +1925 2 6 2.5 2.1 2.1 1 +1925 2 7 0.1 -0.3 -0.3 1 +1925 2 8 -1.2 -1.6 -1.6 1 +1925 2 9 1.6 1.2 1.2 1 +1925 2 10 2.5 2.1 2.1 1 +1925 2 11 6.6 6.2 6.2 1 +1925 2 12 5.5 5.1 5.1 1 +1925 2 13 2.6 2.2 2.2 1 +1925 2 14 3.3 2.9 2.9 1 +1925 2 15 3.7 3.3 3.3 1 +1925 2 16 2.9 2.5 2.5 1 +1925 2 17 2.5 2.1 2.1 1 +1925 2 18 1.8 1.4 1.4 1 +1925 2 19 -2.6 -3.0 -3.0 1 +1925 2 20 -5.2 -5.6 -5.6 1 +1925 2 21 -6.1 -6.5 -6.5 1 +1925 2 22 -3.4 -3.8 -3.8 1 +1925 2 23 -0.5 -0.9 -0.9 1 +1925 2 24 -0.4 -0.8 -0.8 1 +1925 2 25 1.0 0.6 0.6 1 +1925 2 26 0.3 -0.1 -0.1 1 +1925 2 27 -0.6 -1.0 -1.0 1 +1925 2 28 1.0 0.6 0.6 1 +1925 3 1 0.4 0.0 0.0 1 +1925 3 2 -0.9 -1.3 -1.3 1 +1925 3 3 -2.9 -3.3 -3.3 1 +1925 3 4 -1.6 -2.0 -2.0 1 +1925 3 5 -0.6 -1.0 -1.0 1 +1925 3 6 -0.5 -0.9 -0.9 1 +1925 3 7 -5.4 -5.8 -5.8 1 +1925 3 8 -4.0 -4.4 -4.4 1 +1925 3 9 -3.8 -4.2 -4.2 1 +1925 3 10 -6.0 -6.4 -6.4 1 +1925 3 11 -9.0 -9.4 -9.4 1 +1925 3 12 -7.3 -7.8 -7.8 1 +1925 3 13 -9.0 -9.5 -9.5 1 +1925 3 14 -8.8 -9.3 -9.3 1 +1925 3 15 -9.1 -9.6 -9.6 1 +1925 3 16 -7.7 -8.2 -8.2 1 +1925 3 17 -3.6 -4.1 -4.1 1 +1925 3 18 0.8 0.4 0.4 1 +1925 3 19 3.4 3.0 3.0 1 +1925 3 20 2.1 1.7 1.7 1 +1925 3 21 0.6 0.2 0.2 1 +1925 3 22 -1.2 -1.6 -1.6 1 +1925 3 23 -0.2 -0.6 -0.6 1 +1925 3 24 -0.2 -0.6 -0.6 1 +1925 3 25 0.7 0.3 0.3 1 +1925 3 26 0.3 -0.1 -0.1 1 +1925 3 27 -0.6 -1.0 -1.0 1 +1925 3 28 -0.8 -1.2 -1.2 1 +1925 3 29 -1.5 -1.9 -1.9 1 +1925 3 30 1.6 1.2 1.2 1 +1925 3 31 4.9 4.5 4.5 1 +1925 4 1 4.9 4.5 4.5 1 +1925 4 2 2.2 1.8 1.8 1 +1925 4 3 2.9 2.5 2.5 1 +1925 4 4 1.9 1.5 1.5 1 +1925 4 5 3.0 2.6 2.6 1 +1925 4 6 4.6 4.2 4.2 1 +1925 4 7 6.7 6.3 6.3 1 +1925 4 8 9.2 8.9 8.9 1 +1925 4 9 8.9 8.6 8.6 1 +1925 4 10 9.9 9.6 9.6 1 +1925 4 11 9.0 8.7 8.7 1 +1925 4 12 9.8 9.5 9.5 1 +1925 4 13 6.5 6.2 6.2 1 +1925 4 14 3.3 3.0 3.0 1 +1925 4 15 5.2 4.9 4.9 1 +1925 4 16 5.4 5.1 5.1 1 +1925 4 17 4.7 4.4 4.4 1 +1925 4 18 6.3 6.0 6.0 1 +1925 4 19 4.4 4.0 4.0 1 +1925 4 20 5.1 4.7 4.7 1 +1925 4 21 6.1 5.7 5.7 1 +1925 4 22 6.7 6.3 6.3 1 +1925 4 23 9.9 9.5 9.5 1 +1925 4 24 9.1 8.7 8.7 1 +1925 4 25 7.3 6.9 6.9 1 +1925 4 26 8.3 7.9 7.9 1 +1925 4 27 6.9 6.4 6.4 1 +1925 4 28 5.4 4.9 4.9 1 +1925 4 29 2.5 2.0 2.0 1 +1925 4 30 4.2 3.7 3.7 1 +1925 5 1 3.6 3.1 3.1 1 +1925 5 2 7.1 6.6 6.6 1 +1925 5 3 6.8 6.3 6.3 1 +1925 5 4 8.7 8.2 8.2 1 +1925 5 5 10.7 10.1 10.1 1 +1925 5 6 8.9 8.3 8.3 1 +1925 5 7 8.2 7.6 7.6 1 +1925 5 8 7.4 6.8 6.8 1 +1925 5 9 8.7 8.1 8.1 1 +1925 5 10 9.4 8.8 8.8 1 +1925 5 11 8.0 7.4 7.4 1 +1925 5 12 12.1 11.5 11.5 1 +1925 5 13 14.1 13.4 13.4 1 +1925 5 14 11.7 11.0 11.0 1 +1925 5 15 11.0 10.3 10.3 1 +1925 5 16 11.7 11.0 11.0 1 +1925 5 17 13.5 12.8 12.8 1 +1925 5 18 15.3 14.6 14.6 1 +1925 5 19 17.6 16.9 16.9 1 +1925 5 20 16.0 15.3 15.3 1 +1925 5 21 6.5 5.9 5.9 1 +1925 5 22 7.0 6.4 6.4 1 +1925 5 23 5.8 5.2 5.2 1 +1925 5 24 6.0 5.4 5.4 1 +1925 5 25 8.3 7.7 7.7 1 +1925 5 26 7.7 7.1 7.1 1 +1925 5 27 9.8 9.2 9.2 1 +1925 5 28 10.4 9.8 9.8 1 +1925 5 29 14.1 13.5 13.5 1 +1925 5 30 13.7 13.1 13.1 1 +1925 5 31 12.8 12.2 12.2 1 +1925 6 1 12.8 12.2 12.2 1 +1925 6 2 13.2 12.6 12.6 1 +1925 6 3 13.1 12.5 12.5 1 +1925 6 4 13.1 12.5 12.5 1 +1925 6 5 13.6 13.0 13.0 1 +1925 6 6 14.8 14.2 14.2 1 +1925 6 7 16.4 15.8 15.8 1 +1925 6 8 14.5 13.9 13.9 1 +1925 6 9 16.9 16.4 16.4 1 +1925 6 10 18.0 17.5 17.5 1 +1925 6 11 18.0 17.5 17.5 1 +1925 6 12 13.5 13.0 13.0 1 +1925 6 13 14.7 14.2 14.2 1 +1925 6 14 11.1 10.6 10.6 1 +1925 6 15 10.5 10.0 10.0 1 +1925 6 16 16.2 15.7 15.7 1 +1925 6 17 11.2 10.7 10.7 1 +1925 6 18 10.9 10.4 10.4 1 +1925 6 19 11.9 11.4 11.4 1 +1925 6 20 14.2 13.7 13.7 1 +1925 6 21 13.2 12.7 12.7 1 +1925 6 22 13.1 12.6 12.6 1 +1925 6 23 14.2 13.7 13.7 1 +1925 6 24 13.7 13.2 13.2 1 +1925 6 25 14.6 14.1 14.1 1 +1925 6 26 14.7 14.2 14.2 1 +1925 6 27 15.8 15.3 15.3 1 +1925 6 28 16.8 16.3 16.3 1 +1925 6 29 17.3 16.8 16.8 1 +1925 6 30 19.1 18.6 18.6 1 +1925 7 1 17.0 16.5 16.5 1 +1925 7 2 17.5 17.0 17.0 1 +1925 7 3 15.0 14.5 14.5 1 +1925 7 4 17.5 17.0 17.0 1 +1925 7 5 17.6 17.1 17.1 1 +1925 7 6 18.5 18.0 18.0 1 +1925 7 7 18.2 17.7 17.7 1 +1925 7 8 19.0 18.5 18.5 1 +1925 7 9 17.6 17.1 17.1 1 +1925 7 10 15.7 15.2 15.2 1 +1925 7 11 15.0 14.5 14.5 1 +1925 7 12 15.4 14.9 14.9 1 +1925 7 13 17.8 17.3 17.3 1 +1925 7 14 19.8 19.3 19.3 1 +1925 7 15 20.8 20.3 20.3 1 +1925 7 16 20.5 20.0 20.0 1 +1925 7 17 20.4 19.9 19.9 1 +1925 7 18 20.6 20.1 20.1 1 +1925 7 19 20.9 20.4 20.4 1 +1925 7 20 20.5 20.0 20.0 1 +1925 7 21 21.6 21.2 21.2 1 +1925 7 22 22.7 22.3 22.3 1 +1925 7 23 22.7 22.3 22.3 1 +1925 7 24 23.7 23.3 23.3 1 +1925 7 25 23.9 23.5 23.5 1 +1925 7 26 23.9 23.5 23.5 1 +1925 7 27 23.7 23.3 23.3 1 +1925 7 28 19.4 19.0 19.0 1 +1925 7 29 18.0 17.6 17.6 1 +1925 7 30 16.6 16.2 16.2 1 +1925 7 31 17.0 16.6 16.6 1 +1925 8 1 17.8 17.4 17.4 1 +1925 8 2 16.7 16.3 16.3 1 +1925 8 3 17.9 17.6 17.6 1 +1925 8 4 18.0 17.7 17.7 1 +1925 8 5 17.2 16.9 16.9 1 +1925 8 6 15.1 14.8 14.8 1 +1925 8 7 15.3 15.0 15.0 1 +1925 8 8 14.9 14.6 14.6 1 +1925 8 9 18.5 18.2 18.2 1 +1925 8 10 18.3 18.0 18.0 1 +1925 8 11 20.0 19.7 19.7 1 +1925 8 12 18.1 17.8 17.8 1 +1925 8 13 18.2 17.9 17.9 1 +1925 8 14 18.5 18.2 18.2 1 +1925 8 15 15.4 15.1 15.1 1 +1925 8 16 13.0 12.8 12.8 1 +1925 8 17 13.8 13.6 13.6 1 +1925 8 18 13.6 13.4 13.4 1 +1925 8 19 15.0 14.8 14.8 1 +1925 8 20 17.0 16.8 16.8 1 +1925 8 21 16.2 16.0 16.0 1 +1925 8 22 15.9 15.7 15.7 1 +1925 8 23 15.7 15.5 15.5 1 +1925 8 24 14.8 14.6 14.6 1 +1925 8 25 16.2 16.0 16.0 1 +1925 8 26 15.4 15.3 15.3 1 +1925 8 27 15.2 15.1 15.1 1 +1925 8 28 15.2 15.1 15.1 1 +1925 8 29 15.5 15.4 15.4 1 +1925 8 30 13.8 13.7 13.7 1 +1925 8 31 14.4 14.3 14.3 1 +1925 9 1 13.4 13.3 13.3 1 +1925 9 2 13.9 13.8 13.8 1 +1925 9 3 12.1 12.0 12.0 1 +1925 9 4 12.6 12.5 12.5 1 +1925 9 5 11.5 11.4 11.4 1 +1925 9 6 11.1 11.1 11.1 1 +1925 9 7 10.6 10.6 10.6 1 +1925 9 8 9.4 9.4 9.4 1 +1925 9 9 11.0 11.0 11.0 1 +1925 9 10 11.0 11.0 11.0 1 +1925 9 11 9.8 9.8 9.8 1 +1925 9 12 9.8 9.8 9.8 1 +1925 9 13 10.2 10.2 10.2 1 +1925 9 14 11.7 11.7 11.7 1 +1925 9 15 12.7 12.7 12.7 1 +1925 9 16 11.7 11.7 11.7 1 +1925 9 17 11.8 11.8 11.8 1 +1925 9 18 10.2 10.2 10.2 1 +1925 9 19 8.1 8.1 8.1 1 +1925 9 20 11.3 11.3 11.3 1 +1925 9 21 12.3 12.3 12.3 1 +1925 9 22 11.1 11.1 11.1 1 +1925 9 23 13.8 13.8 13.8 1 +1925 9 24 12.9 12.9 12.9 1 +1925 9 25 12.2 12.2 12.2 1 +1925 9 26 9.5 9.5 9.5 1 +1925 9 27 9.7 9.7 9.7 1 +1925 9 28 8.2 8.2 8.2 1 +1925 9 29 8.9 8.9 8.9 1 +1925 9 30 11.7 11.7 11.7 1 +1925 10 1 11.5 11.5 11.5 1 +1925 10 2 11.6 11.6 11.6 1 +1925 10 3 9.6 9.6 9.6 1 +1925 10 4 6.4 6.4 6.4 1 +1925 10 5 5.6 5.6 5.6 1 +1925 10 6 4.8 4.8 4.8 1 +1925 10 7 4.7 4.7 4.7 1 +1925 10 8 3.7 3.7 3.7 1 +1925 10 9 9.0 9.0 9.0 1 +1925 10 10 5.1 5.1 5.1 1 +1925 10 11 2.2 2.2 2.2 1 +1925 10 12 1.9 1.9 1.9 1 +1925 10 13 1.1 1.1 1.1 1 +1925 10 14 1.7 1.7 1.7 1 +1925 10 15 -1.0 -1.0 -1.0 1 +1925 10 16 -2.2 -2.2 -2.2 1 +1925 10 17 -1.9 -1.9 -1.9 1 +1925 10 18 -1.9 -1.9 -1.9 1 +1925 10 19 -2.7 -2.7 -2.7 1 +1925 10 20 -0.1 -0.1 -0.1 1 +1925 10 21 0.1 0.1 0.1 1 +1925 10 22 2.7 2.7 2.7 1 +1925 10 23 5.3 5.3 5.3 1 +1925 10 24 7.4 7.4 7.4 1 +1925 10 25 7.2 7.2 7.2 1 +1925 10 26 8.0 8.0 8.0 1 +1925 10 27 8.5 8.5 8.5 1 +1925 10 28 9.6 9.6 9.6 1 +1925 10 29 7.8 7.7 7.7 1 +1925 10 30 7.1 7.0 7.0 1 +1925 10 31 0.7 0.6 0.6 1 +1925 11 1 -0.8 -0.9 -0.9 1 +1925 11 2 0.6 0.5 0.5 1 +1925 11 3 3.8 3.7 3.7 1 +1925 11 4 4.7 4.6 4.6 1 +1925 11 5 1.2 1.1 1.1 1 +1925 11 6 -0.7 -0.8 -0.8 1 +1925 11 7 -4.2 -4.3 -4.3 1 +1925 11 8 -5.4 -5.5 -5.5 1 +1925 11 9 -3.0 -3.1 -3.1 1 +1925 11 10 -1.3 -1.4 -1.4 1 +1925 11 11 -5.6 -5.7 -5.7 1 +1925 11 12 -3.5 -3.6 -3.6 1 +1925 11 13 1.1 1.0 1.0 1 +1925 11 14 2.1 2.0 2.0 1 +1925 11 15 1.2 1.0 1.0 1 +1925 11 16 0.0 -0.2 -0.2 1 +1925 11 17 -1.2 -1.4 -1.4 1 +1925 11 18 0.1 -0.1 -0.1 1 +1925 11 19 2.6 2.4 2.4 1 +1925 11 20 4.2 4.0 4.0 1 +1925 11 21 0.6 0.4 0.4 1 +1925 11 22 -1.3 -1.5 -1.5 1 +1925 11 23 -1.1 -1.3 -1.3 1 +1925 11 24 -4.1 -4.3 -4.3 1 +1925 11 25 -6.0 -6.2 -6.2 1 +1925 11 26 -7.9 -8.1 -8.1 1 +1925 11 27 -1.1 -1.3 -1.3 1 +1925 11 28 -4.0 -4.2 -4.2 1 +1925 11 29 -7.3 -7.5 -7.5 1 +1925 11 30 -8.7 -8.9 -8.9 1 +1925 12 1 -10.8 -11.0 -11.0 1 +1925 12 2 -13.0 -13.2 -13.2 1 +1925 12 3 -9.9 -10.1 -10.1 1 +1925 12 4 -6.3 -6.5 -6.5 1 +1925 12 5 -3.3 -3.5 -3.5 1 +1925 12 6 2.7 2.5 2.5 1 +1925 12 7 -1.3 -1.5 -1.5 1 +1925 12 8 0.2 0.0 0.0 1 +1925 12 9 1.6 1.4 1.4 1 +1925 12 10 1.3 1.1 1.1 1 +1925 12 11 1.1 0.9 0.9 1 +1925 12 12 -1.4 -1.6 -1.6 1 +1925 12 13 -9.3 -9.5 -9.5 1 +1925 12 14 -8.6 -8.8 -8.8 1 +1925 12 15 -9.7 -9.9 -9.9 1 +1925 12 16 -9.4 -9.6 -9.6 1 +1925 12 17 -3.1 -3.3 -3.3 1 +1925 12 18 -8.0 -8.2 -8.2 1 +1925 12 19 -14.6 -14.8 -14.8 1 +1925 12 20 -14.1 -14.3 -14.3 1 +1925 12 21 -3.1 -3.3 -3.3 1 +1925 12 22 1.0 0.8 0.8 1 +1925 12 23 1.1 0.8 0.8 1 +1925 12 24 -1.3 -1.6 -1.6 1 +1925 12 25 -1.6 -1.9 -1.9 1 +1925 12 26 -6.6 -6.9 -6.9 1 +1925 12 27 -7.7 -8.0 -8.0 1 +1925 12 28 -1.0 -1.3 -1.3 1 +1925 12 29 0.9 0.6 0.6 1 +1925 12 30 3.3 3.0 3.0 1 +1925 12 31 -0.1 -0.4 -0.4 1 +1926 1 1 -3.1 -3.4 -3.4 1 +1926 1 2 -3.8 -4.1 -4.1 1 +1926 1 3 -1.8 -2.2 -2.2 1 +1926 1 4 -1.4 -1.8 -1.8 1 +1926 1 5 -1.9 -2.3 -2.3 1 +1926 1 6 -0.8 -1.2 -1.2 1 +1926 1 7 0.8 0.4 0.4 1 +1926 1 8 -0.7 -1.1 -1.1 1 +1926 1 9 -2.7 -3.1 -3.1 1 +1926 1 10 -5.0 -5.4 -5.4 1 +1926 1 11 -4.3 -4.7 -4.7 1 +1926 1 12 -4.8 -5.2 -5.2 1 +1926 1 13 -5.1 -5.5 -5.5 1 +1926 1 14 -3.2 -3.7 -3.7 1 +1926 1 15 -2.0 -2.5 -2.5 1 +1926 1 16 -4.2 -4.7 -4.7 1 +1926 1 17 -5.0 -5.5 -5.5 1 +1926 1 18 -3.3 -3.8 -3.8 1 +1926 1 19 -3.6 -4.1 -4.1 1 +1926 1 20 -5.0 -5.4 -5.4 1 +1926 1 21 -6.6 -7.0 -7.0 1 +1926 1 22 -7.1 -7.5 -7.5 1 +1926 1 23 -2.1 -2.5 -2.5 1 +1926 1 24 1.4 1.0 1.0 1 +1926 1 25 -1.0 -1.4 -1.4 1 +1926 1 26 -8.2 -8.6 -8.6 1 +1926 1 27 -9.4 -9.8 -9.8 1 +1926 1 28 -0.1 -0.5 -0.5 1 +1926 1 29 -8.9 -9.3 -9.3 1 +1926 1 30 -2.4 -2.8 -2.8 1 +1926 1 31 0.3 -0.1 -0.1 1 +1926 2 1 0.2 -0.2 -0.2 1 +1926 2 2 0.4 0.0 0.0 1 +1926 2 3 -1.1 -1.5 -1.5 1 +1926 2 4 -5.3 -5.7 -5.7 1 +1926 2 5 -12.6 -13.0 -13.0 1 +1926 2 6 -13.8 -14.2 -14.2 1 +1926 2 7 -13.9 -14.3 -14.3 1 +1926 2 8 -11.1 -11.5 -11.5 1 +1926 2 9 -8.1 -8.5 -8.5 1 +1926 2 10 -5.6 -6.0 -6.0 1 +1926 2 11 -9.2 -9.6 -9.6 1 +1926 2 12 -13.3 -13.7 -13.7 1 +1926 2 13 -5.6 -6.0 -6.0 1 +1926 2 14 -8.8 -9.2 -9.2 1 +1926 2 15 -3.5 -3.9 -3.9 1 +1926 2 16 1.7 1.3 1.3 1 +1926 2 17 1.4 1.0 1.0 1 +1926 2 18 0.6 0.2 0.2 1 +1926 2 19 -1.5 -1.9 -1.9 1 +1926 2 20 -4.4 -4.8 -4.8 1 +1926 2 21 -5.0 -5.4 -5.4 1 +1926 2 22 -10.1 -10.5 -10.5 1 +1926 2 23 -1.7 -2.1 -2.1 1 +1926 2 24 -1.7 -2.1 -2.1 1 +1926 2 25 0.6 0.2 0.2 1 +1926 2 26 2.2 1.8 1.8 1 +1926 2 27 0.8 0.4 0.4 1 +1926 2 28 0.4 0.0 0.0 1 +1926 3 1 2.0 1.6 1.6 1 +1926 3 2 5.9 5.5 5.5 1 +1926 3 3 4.0 3.6 3.6 1 +1926 3 4 1.3 0.9 0.9 1 +1926 3 5 -0.6 -1.0 -1.0 1 +1926 3 6 -3.3 -3.7 -3.7 1 +1926 3 7 -2.5 -2.9 -2.9 1 +1926 3 8 2.0 1.6 1.6 1 +1926 3 9 4.3 3.8 3.8 1 +1926 3 10 -0.4 -0.9 -0.9 1 +1926 3 11 -0.6 -1.1 -1.1 1 +1926 3 12 0.2 -0.3 -0.3 1 +1926 3 13 -0.4 -0.9 -0.9 1 +1926 3 14 -1.0 -1.5 -1.5 1 +1926 3 15 -2.4 -2.9 -2.9 1 +1926 3 16 -0.6 -1.1 -1.1 1 +1926 3 17 -2.2 -2.7 -2.7 1 +1926 3 18 -2.1 -2.6 -2.6 1 +1926 3 19 -2.4 -2.9 -2.9 1 +1926 3 20 -2.4 -2.9 -2.9 1 +1926 3 21 -2.6 -3.0 -3.0 1 +1926 3 22 -2.6 -3.0 -3.0 1 +1926 3 23 1.2 0.8 0.8 1 +1926 3 24 1.3 0.9 0.9 1 +1926 3 25 -1.6 -2.0 -2.0 1 +1926 3 26 -0.3 -0.7 -0.7 1 +1926 3 27 -0.7 -1.1 -1.1 1 +1926 3 28 2.1 1.7 1.7 1 +1926 3 29 0.9 0.5 0.5 1 +1926 3 30 1.4 1.0 1.0 1 +1926 3 31 4.2 3.8 3.8 1 +1926 4 1 3.5 3.1 3.1 1 +1926 4 2 0.3 -0.1 -0.1 1 +1926 4 3 0.8 0.4 0.4 1 +1926 4 4 5.4 5.0 5.0 1 +1926 4 5 7.4 7.0 7.0 1 +1926 4 6 4.7 4.3 4.3 1 +1926 4 7 -1.4 -1.8 -1.8 1 +1926 4 8 0.6 0.2 0.2 1 +1926 4 9 0.0 -0.4 -0.4 1 +1926 4 10 1.5 1.2 1.2 1 +1926 4 11 1.7 1.4 1.4 1 +1926 4 12 2.5 2.2 2.2 1 +1926 4 13 3.3 3.0 3.0 1 +1926 4 14 4.5 4.2 4.2 1 +1926 4 15 4.0 3.7 3.7 1 +1926 4 16 12.1 11.8 11.8 1 +1926 4 17 8.2 7.9 7.9 1 +1926 4 18 1.6 1.2 1.2 1 +1926 4 19 1.9 1.5 1.5 1 +1926 4 20 1.3 0.9 0.9 1 +1926 4 21 1.3 0.9 0.9 1 +1926 4 22 3.9 3.5 3.5 1 +1926 4 23 3.7 3.3 3.3 1 +1926 4 24 3.0 2.6 2.6 1 +1926 4 25 4.1 3.7 3.7 1 +1926 4 26 5.8 5.3 5.3 1 +1926 4 27 6.5 6.0 6.0 1 +1926 4 28 4.2 3.7 3.7 1 +1926 4 29 6.0 5.5 5.5 1 +1926 4 30 8.3 7.8 7.8 1 +1926 5 1 8.7 8.2 8.2 1 +1926 5 2 5.8 5.3 5.3 1 +1926 5 3 3.2 2.7 2.7 1 +1926 5 4 4.1 3.5 3.5 1 +1926 5 5 2.8 2.2 2.2 1 +1926 5 6 3.6 3.0 3.0 1 +1926 5 7 4.3 3.7 3.7 1 +1926 5 8 5.9 5.3 5.3 1 +1926 5 9 3.0 2.4 2.4 1 +1926 5 10 3.9 3.3 3.3 1 +1926 5 11 5.2 4.6 4.6 1 +1926 5 12 9.3 8.6 8.6 1 +1926 5 13 9.5 8.8 8.8 1 +1926 5 14 10.9 10.2 10.2 1 +1926 5 15 10.1 9.4 9.4 1 +1926 5 16 7.7 7.0 7.0 1 +1926 5 17 8.1 7.4 7.4 1 +1926 5 18 9.6 8.9 8.9 1 +1926 5 19 8.6 7.9 7.9 1 +1926 5 20 11.0 10.3 10.3 1 +1926 5 21 10.5 9.8 9.8 1 +1926 5 22 12.5 11.8 11.8 1 +1926 5 23 12.2 11.5 11.5 1 +1926 5 24 9.5 8.9 8.9 1 +1926 5 25 9.3 8.7 8.7 1 +1926 5 26 11.8 11.2 11.2 1 +1926 5 27 13.8 13.2 13.2 1 +1926 5 28 13.8 13.2 13.2 1 +1926 5 29 12.8 12.2 12.2 1 +1926 5 30 12.5 11.9 11.9 1 +1926 5 31 12.8 12.2 12.2 1 +1926 6 1 12.5 11.9 11.9 1 +1926 6 2 13.3 12.7 12.7 1 +1926 6 3 13.7 13.1 13.1 1 +1926 6 4 15.7 15.1 15.1 1 +1926 6 5 15.7 15.1 15.1 1 +1926 6 6 17.3 16.7 16.7 1 +1926 6 7 18.9 18.3 18.3 1 +1926 6 8 19.4 18.8 18.8 1 +1926 6 9 11.9 11.3 11.3 1 +1926 6 10 9.8 9.2 9.2 1 +1926 6 11 11.5 11.0 11.0 1 +1926 6 12 11.6 11.1 11.1 1 +1926 6 13 12.6 12.1 12.1 1 +1926 6 14 14.2 13.7 13.7 1 +1926 6 15 16.6 16.1 16.1 1 +1926 6 16 15.6 15.1 15.1 1 +1926 6 17 10.1 9.6 9.6 1 +1926 6 18 9.7 9.2 9.2 1 +1926 6 19 13.3 12.8 12.8 1 +1926 6 20 11.7 11.2 11.2 1 +1926 6 21 12.1 11.6 11.6 1 +1926 6 22 14.8 14.3 14.3 1 +1926 6 23 13.5 13.0 13.0 1 +1926 6 24 14.2 13.7 13.7 1 +1926 6 25 14.5 14.0 14.0 1 +1926 6 26 15.1 14.6 14.6 1 +1926 6 27 15.0 14.5 14.5 1 +1926 6 28 15.4 14.9 14.9 1 +1926 6 29 17.6 17.1 17.1 1 +1926 6 30 16.2 15.7 15.7 1 +1926 7 1 19.0 18.5 18.5 1 +1926 7 2 20.3 19.8 19.8 1 +1926 7 3 19.5 19.0 19.0 1 +1926 7 4 17.1 16.6 16.6 1 +1926 7 5 17.6 17.1 17.1 1 +1926 7 6 19.7 19.2 19.2 1 +1926 7 7 20.9 20.4 20.4 1 +1926 7 8 18.4 17.9 17.9 1 +1926 7 9 20.6 20.1 20.1 1 +1926 7 10 18.4 17.9 17.9 1 +1926 7 11 20.4 19.9 19.9 1 +1926 7 12 22.9 22.4 22.4 1 +1926 7 13 23.6 23.1 23.1 1 +1926 7 14 24.8 24.3 24.3 1 +1926 7 15 17.6 17.1 17.1 1 +1926 7 16 15.1 14.6 14.6 1 +1926 7 17 18.3 17.8 17.8 1 +1926 7 18 19.0 18.5 18.5 1 +1926 7 19 19.9 19.4 19.4 1 +1926 7 20 19.0 18.5 18.5 1 +1926 7 21 18.5 18.0 18.0 1 +1926 7 22 14.4 14.0 14.0 1 +1926 7 23 16.8 16.4 16.4 1 +1926 7 24 18.3 17.9 17.9 1 +1926 7 25 17.7 17.3 17.3 1 +1926 7 26 16.8 16.4 16.4 1 +1926 7 27 17.0 16.6 16.6 1 +1926 7 28 15.3 14.9 14.9 1 +1926 7 29 16.7 16.3 16.3 1 +1926 7 30 18.2 17.8 17.8 1 +1926 7 31 17.8 17.4 17.4 1 +1926 8 1 14.3 13.9 13.9 1 +1926 8 2 16.7 16.3 16.3 1 +1926 8 3 15.6 15.2 15.2 1 +1926 8 4 15.8 15.5 15.5 1 +1926 8 5 16.5 16.2 16.2 1 +1926 8 6 17.4 17.1 17.1 1 +1926 8 7 16.7 16.4 16.4 1 +1926 8 8 17.9 17.6 17.6 1 +1926 8 9 17.6 17.3 17.3 1 +1926 8 10 19.4 19.1 19.1 1 +1926 8 11 19.1 18.8 18.8 1 +1926 8 12 18.1 17.8 17.8 1 +1926 8 13 16.4 16.1 16.1 1 +1926 8 14 17.4 17.1 17.1 1 +1926 8 15 16.4 16.1 16.1 1 +1926 8 16 13.9 13.6 13.6 1 +1926 8 17 13.7 13.5 13.5 1 +1926 8 18 15.9 15.7 15.7 1 +1926 8 19 17.3 17.1 17.1 1 +1926 8 20 17.4 17.2 17.2 1 +1926 8 21 15.0 14.8 14.8 1 +1926 8 22 14.3 14.1 14.1 1 +1926 8 23 14.0 13.8 13.8 1 +1926 8 24 12.9 12.7 12.7 1 +1926 8 25 15.0 14.8 14.8 1 +1926 8 26 13.4 13.2 13.2 1 +1926 8 27 12.8 12.6 12.6 1 +1926 8 28 12.8 12.7 12.7 1 +1926 8 29 13.6 13.5 13.5 1 +1926 8 30 15.1 15.0 15.0 1 +1926 8 31 16.8 16.7 16.7 1 +1926 9 1 14.3 14.2 14.2 1 +1926 9 2 14.6 14.5 14.5 1 +1926 9 3 12.9 12.8 12.8 1 +1926 9 4 14.7 14.6 14.6 1 +1926 9 5 15.0 14.9 14.9 1 +1926 9 6 14.6 14.5 14.5 1 +1926 9 7 13.9 13.9 13.9 1 +1926 9 8 11.6 11.6 11.6 1 +1926 9 9 8.7 8.7 8.7 1 +1926 9 10 11.7 11.7 11.7 1 +1926 9 11 13.6 13.6 13.6 1 +1926 9 12 16.5 16.5 16.5 1 +1926 9 13 11.2 11.2 11.2 1 +1926 9 14 8.5 8.5 8.5 1 +1926 9 15 9.5 9.5 9.5 1 +1926 9 16 6.8 6.8 6.8 1 +1926 9 17 6.8 6.8 6.8 1 +1926 9 18 9.0 9.0 9.0 1 +1926 9 19 11.6 11.6 11.6 1 +1926 9 20 11.2 11.2 11.2 1 +1926 9 21 10.5 10.5 10.5 1 +1926 9 22 10.3 10.3 10.3 1 +1926 9 23 11.2 11.2 11.2 1 +1926 9 24 10.2 10.2 10.2 1 +1926 9 25 10.2 10.2 10.2 1 +1926 9 26 10.8 10.8 10.8 1 +1926 9 27 12.0 12.0 12.0 1 +1926 9 28 11.2 11.2 11.2 1 +1926 9 29 8.9 8.9 8.9 1 +1926 9 30 9.9 9.9 9.9 1 +1926 10 1 11.3 11.3 11.3 1 +1926 10 2 9.4 9.4 9.4 1 +1926 10 3 9.3 9.3 9.3 1 +1926 10 4 7.9 7.9 7.9 1 +1926 10 5 8.6 8.6 8.6 1 +1926 10 6 8.6 8.6 8.6 1 +1926 10 7 10.5 10.5 10.5 1 +1926 10 8 10.6 10.6 10.6 1 +1926 10 9 11.6 11.6 11.6 1 +1926 10 10 9.5 9.5 9.5 1 +1926 10 11 5.1 5.1 5.1 1 +1926 10 12 6.6 6.6 6.6 1 +1926 10 13 2.9 2.9 2.9 1 +1926 10 14 2.5 2.5 2.5 1 +1926 10 15 2.0 2.0 2.0 1 +1926 10 16 1.0 1.0 1.0 1 +1926 10 17 2.9 2.9 2.9 1 +1926 10 18 1.3 1.3 1.3 1 +1926 10 19 0.5 0.5 0.5 1 +1926 10 20 -0.5 -0.5 -0.5 1 +1926 10 21 -1.0 -1.0 -1.0 1 +1926 10 22 0.2 0.2 0.2 1 +1926 10 23 0.7 0.7 0.7 1 +1926 10 24 -2.5 -2.5 -2.5 1 +1926 10 25 -1.8 -1.8 -1.8 1 +1926 10 26 1.8 1.8 1.8 1 +1926 10 27 1.4 1.4 1.4 1 +1926 10 28 0.7 0.6 0.6 1 +1926 10 29 1.7 1.6 1.6 1 +1926 10 30 1.0 0.9 0.9 1 +1926 10 31 0.0 -0.1 -0.1 1 +1926 11 1 -4.7 -4.8 -4.8 1 +1926 11 2 -2.7 -2.8 -2.8 1 +1926 11 3 1.6 1.5 1.5 1 +1926 11 4 0.6 0.5 0.5 1 +1926 11 5 4.3 4.2 4.2 1 +1926 11 6 6.1 6.0 6.0 1 +1926 11 7 6.8 6.7 6.7 1 +1926 11 8 4.0 3.9 3.9 1 +1926 11 9 5.7 5.6 5.6 1 +1926 11 10 6.7 6.6 6.6 1 +1926 11 11 5.2 5.1 5.1 1 +1926 11 12 4.8 4.7 4.7 1 +1926 11 13 6.3 6.2 6.2 1 +1926 11 14 7.5 7.3 7.3 1 +1926 11 15 7.5 7.3 7.3 1 +1926 11 16 5.6 5.4 5.4 1 +1926 11 17 3.7 3.5 3.5 1 +1926 11 18 5.4 5.2 5.2 1 +1926 11 19 3.8 3.6 3.6 1 +1926 11 20 6.7 6.5 6.5 1 +1926 11 21 7.3 7.1 7.1 1 +1926 11 22 6.6 6.4 6.4 1 +1926 11 23 2.5 2.3 2.3 1 +1926 11 24 3.1 2.9 2.9 1 +1926 11 25 5.1 4.9 4.9 1 +1926 11 26 3.1 2.9 2.9 1 +1926 11 27 1.8 1.6 1.6 1 +1926 11 28 -1.1 -1.3 -1.3 1 +1926 11 29 -1.2 -1.4 -1.4 1 +1926 11 30 -3.3 -3.5 -3.5 1 +1926 12 1 -3.3 -3.5 -3.5 1 +1926 12 2 -3.2 -3.4 -3.4 1 +1926 12 3 0.7 0.5 0.5 1 +1926 12 4 0.7 0.5 0.5 1 +1926 12 5 -0.6 -0.8 -0.8 1 +1926 12 6 -0.1 -0.3 -0.3 1 +1926 12 7 -0.9 -1.1 -1.1 1 +1926 12 8 1.0 0.8 0.8 1 +1926 12 9 -0.6 -0.8 -0.8 1 +1926 12 10 2.8 2.6 2.6 1 +1926 12 11 1.5 1.3 1.3 1 +1926 12 12 4.1 3.9 3.9 1 +1926 12 13 -0.8 -1.0 -1.0 1 +1926 12 14 -4.2 -4.4 -4.4 1 +1926 12 15 -7.7 -7.9 -7.9 1 +1926 12 16 -6.9 -7.1 -7.1 1 +1926 12 17 -7.3 -7.5 -7.5 1 +1926 12 18 -7.0 -7.2 -7.2 1 +1926 12 19 -3.7 -3.9 -3.9 1 +1926 12 20 -3.4 -3.6 -3.6 1 +1926 12 21 -3.0 -3.2 -3.2 1 +1926 12 22 -9.0 -9.3 -9.3 1 +1926 12 23 -6.8 -7.1 -7.1 1 +1926 12 24 -5.0 -5.3 -5.3 1 +1926 12 25 -4.0 -4.3 -4.3 1 +1926 12 26 -4.7 -5.0 -5.0 1 +1926 12 27 3.5 3.2 3.2 1 +1926 12 28 1.8 1.5 1.5 1 +1926 12 29 -6.4 -6.7 -6.7 1 +1926 12 30 -3.9 -4.2 -4.2 1 +1926 12 31 -5.8 -6.1 -6.1 1 +1927 1 1 -7.4 -7.7 -7.7 1 +1927 1 2 -9.9 -10.3 -10.3 1 +1927 1 3 2.6 2.2 2.2 1 +1927 1 4 2.5 2.1 2.1 1 +1927 1 5 -3.1 -3.5 -3.5 1 +1927 1 6 -8.1 -8.5 -8.5 1 +1927 1 7 -2.6 -3.0 -3.0 1 +1927 1 8 -0.6 -1.0 -1.0 1 +1927 1 9 0.2 -0.2 -0.2 1 +1927 1 10 -1.1 -1.5 -1.5 1 +1927 1 11 -6.0 -6.4 -6.4 1 +1927 1 12 -1.0 -1.4 -1.4 1 +1927 1 13 -1.8 -2.3 -2.3 1 +1927 1 14 -2.5 -3.0 -3.0 1 +1927 1 15 -0.8 -1.3 -1.3 1 +1927 1 16 1.5 1.0 1.0 1 +1927 1 17 0.4 -0.1 -0.1 1 +1927 1 18 0.1 -0.4 -0.4 1 +1927 1 19 -1.3 -1.8 -1.8 1 +1927 1 20 -0.6 -1.1 -1.1 1 +1927 1 21 -1.9 -2.4 -2.4 1 +1927 1 22 -2.5 -3.0 -3.0 1 +1927 1 23 -4.9 -5.3 -5.3 1 +1927 1 24 -6.1 -6.5 -6.5 1 +1927 1 25 -0.3 -0.7 -0.7 1 +1927 1 26 2.5 2.1 2.1 1 +1927 1 27 1.7 1.3 1.3 1 +1927 1 28 3.1 2.7 2.7 1 +1927 1 29 4.1 3.7 3.7 1 +1927 1 30 2.0 1.6 1.6 1 +1927 1 31 0.9 0.5 0.5 1 +1927 2 1 1.8 1.4 1.4 1 +1927 2 2 1.3 0.9 0.9 1 +1927 2 3 0.5 0.1 0.1 1 +1927 2 4 2.9 2.5 2.5 1 +1927 2 5 1.4 1.0 1.0 1 +1927 2 6 -2.5 -2.9 -2.9 1 +1927 2 7 -3.5 -3.9 -3.9 1 +1927 2 8 -3.9 -4.3 -4.3 1 +1927 2 9 -0.5 -0.9 -0.9 1 +1927 2 10 -0.2 -0.6 -0.6 1 +1927 2 11 -3.0 -3.4 -3.4 1 +1927 2 12 -4.7 -5.1 -5.1 1 +1927 2 13 -4.3 -4.7 -4.7 1 +1927 2 14 -3.5 -3.9 -3.9 1 +1927 2 15 -3.2 -3.6 -3.6 1 +1927 2 16 1.1 0.7 0.7 1 +1927 2 17 -4.4 -4.8 -4.8 1 +1927 2 18 -6.2 -6.6 -6.6 1 +1927 2 19 -7.7 -8.1 -8.1 1 +1927 2 20 -6.2 -6.6 -6.6 1 +1927 2 21 -3.6 -4.0 -4.0 1 +1927 2 22 -1.5 -1.9 -1.9 1 +1927 2 23 0.2 -0.2 -0.2 1 +1927 2 24 -0.2 -0.6 -0.6 1 +1927 2 25 -0.7 -1.1 -1.1 1 +1927 2 26 0.0 -0.4 -0.4 1 +1927 2 27 1.6 1.2 1.2 1 +1927 2 28 0.6 0.2 0.2 1 +1927 3 1 1.2 0.8 0.8 1 +1927 3 2 1.8 1.4 1.4 1 +1927 3 3 3.0 2.6 2.6 1 +1927 3 4 2.5 2.1 2.1 1 +1927 3 5 1.3 0.8 0.8 1 +1927 3 6 2.1 1.6 1.6 1 +1927 3 7 3.2 2.7 2.7 1 +1927 3 8 1.1 0.6 0.6 1 +1927 3 9 1.7 1.2 1.2 1 +1927 3 10 0.8 0.3 0.3 1 +1927 3 11 0.4 -0.1 -0.1 1 +1927 3 12 -0.6 -1.1 -1.1 1 +1927 3 13 1.0 0.5 0.5 1 +1927 3 14 3.0 2.5 2.5 1 +1927 3 15 3.7 3.2 3.2 1 +1927 3 16 2.5 2.0 2.0 1 +1927 3 17 4.7 4.2 4.2 1 +1927 3 18 6.1 5.6 5.6 1 +1927 3 19 4.7 4.2 4.2 1 +1927 3 20 6.5 6.0 6.0 1 +1927 3 21 5.8 5.3 5.3 1 +1927 3 22 4.5 4.0 4.0 1 +1927 3 23 -2.2 -2.6 -2.6 1 +1927 3 24 -1.9 -2.3 -2.3 1 +1927 3 25 0.3 -0.1 -0.1 1 +1927 3 26 1.8 1.4 1.4 1 +1927 3 27 0.1 -0.3 -0.3 1 +1927 3 28 0.6 0.2 0.2 1 +1927 3 29 -2.0 -2.4 -2.4 1 +1927 3 30 -0.9 -1.3 -1.3 1 +1927 3 31 1.3 0.9 0.9 1 +1927 4 1 -1.0 -1.4 -1.4 1 +1927 4 2 0.3 -0.1 -0.1 1 +1927 4 3 0.0 -0.4 -0.4 1 +1927 4 4 1.1 0.7 0.7 1 +1927 4 5 0.7 0.3 0.3 1 +1927 4 6 2.2 1.8 1.8 1 +1927 4 7 2.8 2.4 2.4 1 +1927 4 8 1.4 1.0 1.0 1 +1927 4 9 2.3 1.9 1.9 1 +1927 4 10 4.9 4.5 4.5 1 +1927 4 11 5.2 4.8 4.8 1 +1927 4 12 2.6 2.3 2.3 1 +1927 4 13 4.2 3.9 3.9 1 +1927 4 14 3.6 3.3 3.3 1 +1927 4 15 4.6 4.3 4.3 1 +1927 4 16 3.6 3.3 3.3 1 +1927 4 17 3.3 2.9 2.9 1 +1927 4 18 7.7 7.3 7.3 1 +1927 4 19 6.4 6.0 6.0 1 +1927 4 20 7.7 7.3 7.3 1 +1927 4 21 2.3 1.9 1.9 1 +1927 4 22 3.1 2.7 2.7 1 +1927 4 23 3.5 3.1 3.1 1 +1927 4 24 1.9 1.5 1.5 1 +1927 4 25 1.0 0.5 0.5 1 +1927 4 26 1.2 0.7 0.7 1 +1927 4 27 2.9 2.4 2.4 1 +1927 4 28 3.5 3.0 3.0 1 +1927 4 29 3.4 2.9 2.9 1 +1927 4 30 2.9 2.4 2.4 1 +1927 5 1 4.9 4.4 4.4 1 +1927 5 2 5.9 5.4 5.4 1 +1927 5 3 7.2 6.6 6.6 1 +1927 5 4 8.4 7.8 7.8 1 +1927 5 5 7.7 7.1 7.1 1 +1927 5 6 3.4 2.8 2.8 1 +1927 5 7 6.5 5.9 5.9 1 +1927 5 8 8.6 8.0 8.0 1 +1927 5 9 6.3 5.7 5.7 1 +1927 5 10 1.7 1.1 1.1 1 +1927 5 11 2.2 1.5 1.5 1 +1927 5 12 2.0 1.3 1.3 1 +1927 5 13 2.6 1.9 1.9 1 +1927 5 14 1.9 1.2 1.2 1 +1927 5 15 3.2 2.5 2.5 1 +1927 5 16 6.3 5.6 5.6 1 +1927 5 17 7.1 6.4 6.4 1 +1927 5 18 4.8 4.1 4.1 1 +1927 5 19 8.2 7.5 7.5 1 +1927 5 20 5.8 5.1 5.1 1 +1927 5 21 8.2 7.5 7.5 1 +1927 5 22 6.8 6.1 6.1 1 +1927 5 23 8.1 7.4 7.4 1 +1927 5 24 8.9 8.2 8.2 1 +1927 5 25 7.5 6.8 6.8 1 +1927 5 26 5.9 5.2 5.2 1 +1927 5 27 7.2 6.6 6.6 1 +1927 5 28 6.4 5.8 5.8 1 +1927 5 29 8.9 8.3 8.3 1 +1927 5 30 9.4 8.8 8.8 1 +1927 5 31 11.1 10.5 10.5 1 +1927 6 1 7.8 7.2 7.2 1 +1927 6 2 12.1 11.5 11.5 1 +1927 6 3 12.9 12.3 12.3 1 +1927 6 4 14.0 13.4 13.4 1 +1927 6 5 12.1 11.5 11.5 1 +1927 6 6 12.4 11.8 11.8 1 +1927 6 7 13.6 13.0 13.0 1 +1927 6 8 11.9 11.3 11.3 1 +1927 6 9 11.1 10.5 10.5 1 +1927 6 10 9.4 8.8 8.8 1 +1927 6 11 10.8 10.2 10.2 1 +1927 6 12 11.6 11.0 11.0 1 +1927 6 13 13.6 13.0 13.0 1 +1927 6 14 14.2 13.7 13.7 1 +1927 6 15 15.0 14.5 14.5 1 +1927 6 16 14.1 13.6 13.6 1 +1927 6 17 16.1 15.6 15.6 1 +1927 6 18 16.9 16.4 16.4 1 +1927 6 19 14.8 14.3 14.3 1 +1927 6 20 11.6 11.1 11.1 1 +1927 6 21 13.9 13.4 13.4 1 +1927 6 22 12.0 11.5 11.5 1 +1927 6 23 13.8 13.3 13.3 1 +1927 6 24 12.9 12.4 12.4 1 +1927 6 25 10.5 10.0 10.0 1 +1927 6 26 10.7 10.2 10.2 1 +1927 6 27 14.5 14.0 14.0 1 +1927 6 28 16.7 16.2 16.2 1 +1927 6 29 11.4 10.9 10.9 1 +1927 6 30 11.1 10.6 10.6 1 +1927 7 1 14.3 13.8 13.8 1 +1927 7 2 15.9 15.4 15.4 1 +1927 7 3 15.9 15.4 15.4 1 +1927 7 4 16.6 16.1 16.1 1 +1927 7 5 20.9 20.4 20.4 1 +1927 7 6 20.7 20.2 20.2 1 +1927 7 7 21.6 21.1 21.1 1 +1927 7 8 22.9 22.4 22.4 1 +1927 7 9 21.0 20.5 20.5 1 +1927 7 10 20.4 19.9 19.9 1 +1927 7 11 21.6 21.1 21.1 1 +1927 7 12 23.0 22.5 22.5 1 +1927 7 13 21.8 21.3 21.3 1 +1927 7 14 23.0 22.5 22.5 1 +1927 7 15 23.9 23.4 23.4 1 +1927 7 16 23.7 23.2 23.2 1 +1927 7 17 22.7 22.2 22.2 1 +1927 7 18 22.3 21.8 21.8 1 +1927 7 19 18.5 18.0 18.0 1 +1927 7 20 13.7 13.2 13.2 1 +1927 7 21 15.7 15.2 15.2 1 +1927 7 22 17.3 16.8 16.8 1 +1927 7 23 17.0 16.5 16.5 1 +1927 7 24 15.7 15.3 15.3 1 +1927 7 25 16.7 16.3 16.3 1 +1927 7 26 17.4 17.0 17.0 1 +1927 7 27 15.8 15.4 15.4 1 +1927 7 28 18.5 18.1 18.1 1 +1927 7 29 17.7 17.3 17.3 1 +1927 7 30 18.6 18.2 18.2 1 +1927 7 31 21.0 20.6 20.6 1 +1927 8 1 21.2 20.8 20.8 1 +1927 8 2 21.6 21.2 21.2 1 +1927 8 3 17.6 17.2 17.2 1 +1927 8 4 16.8 16.4 16.4 1 +1927 8 5 17.9 17.5 17.5 1 +1927 8 6 19.1 18.8 18.8 1 +1927 8 7 21.3 21.0 21.0 1 +1927 8 8 21.6 21.3 21.3 1 +1927 8 9 22.0 21.7 21.7 1 +1927 8 10 22.2 21.9 21.9 1 +1927 8 11 18.6 18.3 18.3 1 +1927 8 12 17.6 17.3 17.3 1 +1927 8 13 18.0 17.7 17.7 1 +1927 8 14 15.5 15.2 15.2 1 +1927 8 15 15.6 15.3 15.3 1 +1927 8 16 15.4 15.1 15.1 1 +1927 8 17 15.3 15.0 15.0 1 +1927 8 18 15.6 15.4 15.4 1 +1927 8 19 16.5 16.3 16.3 1 +1927 8 20 16.0 15.8 15.8 1 +1927 8 21 15.7 15.5 15.5 1 +1927 8 22 16.1 15.9 15.9 1 +1927 8 23 16.7 16.5 16.5 1 +1927 8 24 16.5 16.3 16.3 1 +1927 8 25 14.7 14.5 14.5 1 +1927 8 26 14.1 13.9 13.9 1 +1927 8 27 14.7 14.5 14.5 1 +1927 8 28 16.8 16.6 16.6 1 +1927 8 29 15.9 15.8 15.8 1 +1927 8 30 15.8 15.7 15.7 1 +1927 8 31 14.5 14.4 14.4 1 +1927 9 1 15.4 15.3 15.3 1 +1927 9 2 14.9 14.8 14.8 1 +1927 9 3 15.5 15.4 15.4 1 +1927 9 4 15.9 15.8 15.8 1 +1927 9 5 16.6 16.5 16.5 1 +1927 9 6 16.0 15.9 15.9 1 +1927 9 7 17.2 17.1 17.1 1 +1927 9 8 14.4 14.4 14.4 1 +1927 9 9 11.8 11.8 11.8 1 +1927 9 10 13.0 13.0 13.0 1 +1927 9 11 9.5 9.5 9.5 1 +1927 9 12 8.7 8.7 8.7 1 +1927 9 13 8.2 8.2 8.2 1 +1927 9 14 8.4 8.4 8.4 1 +1927 9 15 8.4 8.4 8.4 1 +1927 9 16 11.6 11.6 11.6 1 +1927 9 17 13.8 13.8 13.8 1 +1927 9 18 11.6 11.6 11.6 1 +1927 9 19 9.2 9.2 9.2 1 +1927 9 20 8.9 8.9 8.9 1 +1927 9 21 9.7 9.7 9.7 1 +1927 9 22 8.9 8.9 8.9 1 +1927 9 23 9.1 9.1 9.1 1 +1927 9 24 10.9 10.9 10.9 1 +1927 9 25 10.6 10.6 10.6 1 +1927 9 26 11.1 11.1 11.1 1 +1927 9 27 10.4 10.4 10.4 1 +1927 9 28 9.0 9.0 9.0 1 +1927 9 29 8.5 8.5 8.5 1 +1927 9 30 10.0 10.0 10.0 1 +1927 10 1 10.8 10.8 10.8 1 +1927 10 2 11.6 11.6 11.6 1 +1927 10 3 8.8 8.8 8.8 1 +1927 10 4 8.7 8.7 8.7 1 +1927 10 5 7.5 7.5 7.5 1 +1927 10 6 6.1 6.1 6.1 1 +1927 10 7 6.2 6.2 6.2 1 +1927 10 8 8.4 8.4 8.4 1 +1927 10 9 8.4 8.4 8.4 1 +1927 10 10 9.7 9.7 9.7 1 +1927 10 11 5.8 5.8 5.8 1 +1927 10 12 1.6 1.6 1.6 1 +1927 10 13 3.6 3.6 3.6 1 +1927 10 14 2.7 2.7 2.7 1 +1927 10 15 2.4 2.4 2.4 1 +1927 10 16 5.2 5.2 5.2 1 +1927 10 17 5.3 5.3 5.3 1 +1927 10 18 3.3 3.3 3.3 1 +1927 10 19 4.8 4.8 4.8 1 +1927 10 20 2.2 2.2 2.2 1 +1927 10 21 2.5 2.5 2.5 1 +1927 10 22 2.0 2.0 2.0 1 +1927 10 23 0.9 0.9 0.9 1 +1927 10 24 2.6 2.6 2.6 1 +1927 10 25 1.2 1.2 1.2 1 +1927 10 26 5.1 5.1 5.1 1 +1927 10 27 5.8 5.7 5.7 1 +1927 10 28 5.3 5.2 5.2 1 +1927 10 29 8.0 7.9 7.9 1 +1927 10 30 3.8 3.7 3.7 1 +1927 10 31 9.8 9.7 9.7 1 +1927 11 1 3.1 3.0 3.0 1 +1927 11 2 -0.5 -0.6 -0.6 1 +1927 11 3 4.3 4.2 4.2 1 +1927 11 4 6.9 6.8 6.8 1 +1927 11 5 3.6 3.5 3.5 1 +1927 11 6 4.0 3.9 3.9 1 +1927 11 7 2.5 2.4 2.4 1 +1927 11 8 -1.1 -1.2 -1.2 1 +1927 11 9 -3.1 -3.2 -3.2 1 +1927 11 10 -2.4 -2.5 -2.5 1 +1927 11 11 -2.9 -3.0 -3.0 1 +1927 11 12 -5.1 -5.3 -5.3 1 +1927 11 13 -4.6 -4.8 -4.8 1 +1927 11 14 -6.1 -6.3 -6.3 1 +1927 11 15 -6.3 -6.5 -6.5 1 +1927 11 16 -1.4 -1.6 -1.6 1 +1927 11 17 -1.5 -1.7 -1.7 1 +1927 11 18 -1.7 -1.9 -1.9 1 +1927 11 19 -2.0 -2.2 -2.2 1 +1927 11 20 -2.4 -2.6 -2.6 1 +1927 11 21 -0.8 -1.0 -1.0 1 +1927 11 22 -1.7 -1.9 -1.9 1 +1927 11 23 -0.6 -0.8 -0.8 1 +1927 11 24 -0.7 -0.9 -0.9 1 +1927 11 25 1.4 1.2 1.2 1 +1927 11 26 0.8 0.6 0.6 1 +1927 11 27 3.8 3.6 3.6 1 +1927 11 28 1.8 1.6 1.6 1 +1927 11 29 0.5 0.3 0.3 1 +1927 11 30 -0.7 -0.9 -0.9 1 +1927 12 1 -2.7 -2.9 -2.9 1 +1927 12 2 -2.6 -2.8 -2.8 1 +1927 12 3 -1.7 -1.9 -1.9 1 +1927 12 4 -0.9 -1.1 -1.1 1 +1927 12 5 0.4 0.2 0.2 1 +1927 12 6 0.3 0.1 0.1 1 +1927 12 7 0.2 0.0 0.0 1 +1927 12 8 0.0 -0.2 -0.2 1 +1927 12 9 -1.0 -1.2 -1.2 1 +1927 12 10 -3.5 -3.7 -3.7 1 +1927 12 11 -6.3 -6.5 -6.5 1 +1927 12 12 -3.9 -4.1 -4.1 1 +1927 12 13 -6.7 -6.9 -6.9 1 +1927 12 14 -6.6 -6.8 -6.8 1 +1927 12 15 -8.6 -8.8 -8.8 1 +1927 12 16 -9.2 -9.4 -9.4 1 +1927 12 17 -7.9 -8.1 -8.1 1 +1927 12 18 -8.4 -8.6 -8.6 1 +1927 12 19 -9.9 -10.1 -10.1 1 +1927 12 20 -10.2 -10.4 -10.4 1 +1927 12 21 -9.4 -9.7 -9.7 1 +1927 12 22 -3.8 -4.1 -4.1 1 +1927 12 23 -1.8 -2.1 -2.1 1 +1927 12 24 -4.4 -4.7 -4.7 1 +1927 12 25 -9.7 -10.0 -10.0 1 +1927 12 26 -12.3 -12.6 -12.6 1 +1927 12 27 -10.8 -11.1 -11.1 1 +1927 12 28 -8.7 -9.0 -9.0 1 +1927 12 29 -2.7 -3.0 -3.0 1 +1927 12 30 -4.0 -4.3 -4.3 1 +1927 12 31 -6.0 -6.3 -6.3 1 +1928 1 1 -5.9 -6.3 -6.3 1 +1928 1 2 -5.6 -6.0 -6.0 1 +1928 1 3 -6.9 -7.3 -7.3 1 +1928 1 4 -4.8 -5.2 -5.2 1 +1928 1 5 -1.4 -1.8 -1.8 1 +1928 1 6 -5.4 -5.8 -5.8 1 +1928 1 7 -8.0 -8.4 -8.4 1 +1928 1 8 -2.2 -2.6 -2.6 1 +1928 1 9 -0.3 -0.7 -0.7 1 +1928 1 10 0.3 -0.1 -0.1 1 +1928 1 11 1.9 1.5 1.5 1 +1928 1 12 1.1 0.6 0.6 1 +1928 1 13 1.4 0.9 0.9 1 +1928 1 14 -0.6 -1.1 -1.1 1 +1928 1 15 -3.8 -4.3 -4.3 1 +1928 1 16 -4.9 -5.4 -5.4 1 +1928 1 17 -7.3 -7.8 -7.8 1 +1928 1 18 -10.1 -10.6 -10.6 1 +1928 1 19 -7.0 -7.5 -7.5 1 +1928 1 20 -4.0 -4.5 -4.5 1 +1928 1 21 -3.8 -4.3 -4.3 1 +1928 1 22 -1.9 -2.4 -2.4 1 +1928 1 23 -3.1 -3.6 -3.6 1 +1928 1 24 -2.4 -2.9 -2.9 1 +1928 1 25 1.4 0.9 0.9 1 +1928 1 26 1.6 1.1 1.1 1 +1928 1 27 0.3 -0.1 -0.1 1 +1928 1 28 -0.8 -1.2 -1.2 1 +1928 1 29 0.0 -0.4 -0.4 1 +1928 1 30 0.1 -0.3 -0.3 1 +1928 1 31 -0.4 -0.8 -0.8 1 +1928 2 1 -0.1 -0.5 -0.5 1 +1928 2 2 1.2 0.8 0.8 1 +1928 2 3 -0.4 -0.8 -0.8 1 +1928 2 4 0.1 -0.3 -0.3 1 +1928 2 5 0.4 0.0 0.0 1 +1928 2 6 1.5 1.1 1.1 1 +1928 2 7 1.3 0.9 0.9 1 +1928 2 8 3.2 2.8 2.8 1 +1928 2 9 5.1 4.7 4.7 1 +1928 2 10 1.3 0.9 0.9 1 +1928 2 11 -0.7 -1.1 -1.1 1 +1928 2 12 -4.2 -4.6 -4.6 1 +1928 2 13 -7.7 -8.1 -8.1 1 +1928 2 14 -7.1 -7.5 -7.5 1 +1928 2 15 -3.9 -4.3 -4.3 1 +1928 2 16 1.2 0.8 0.8 1 +1928 2 17 -5.1 -5.5 -5.5 1 +1928 2 18 -9.7 -10.1 -10.1 1 +1928 2 19 -7.2 -7.6 -7.6 1 +1928 2 20 -6.0 -6.4 -6.4 1 +1928 2 21 -5.7 -6.1 -6.1 1 +1928 2 22 -6.3 -6.7 -6.7 1 +1928 2 23 -2.2 -2.6 -2.6 1 +1928 2 24 -1.7 -2.1 -2.1 1 +1928 2 25 -1.9 -2.3 -2.3 1 +1928 2 26 0.3 -0.1 -0.1 1 +1928 2 27 -0.3 -0.7 -0.7 1 +1928 2 28 -0.7 -1.1 -1.1 1 +1928 2 29 -5.3 -5.7 -5.7 1 +1928 3 1 -5.2 -5.6 -5.6 1 +1928 3 2 -2.0 -2.5 -2.5 1 +1928 3 3 -0.4 -0.9 -0.9 1 +1928 3 4 -4.5 -5.0 -5.0 1 +1928 3 5 0.3 -0.2 -0.2 1 +1928 3 6 -1.0 -1.5 -1.5 1 +1928 3 7 -4.6 -5.1 -5.1 1 +1928 3 8 -6.6 -7.1 -7.1 1 +1928 3 9 -7.7 -8.2 -8.2 1 +1928 3 10 -8.1 -8.6 -8.6 1 +1928 3 11 -4.7 -5.2 -5.2 1 +1928 3 12 -1.7 -2.2 -2.2 1 +1928 3 13 -2.6 -3.1 -3.1 1 +1928 3 14 -4.7 -5.2 -5.2 1 +1928 3 15 -2.3 -2.8 -2.8 1 +1928 3 16 -1.8 -2.3 -2.3 1 +1928 3 17 -1.2 -1.7 -1.7 1 +1928 3 18 -0.2 -0.7 -0.7 1 +1928 3 19 0.7 0.2 0.2 1 +1928 3 20 0.5 0.0 0.0 1 +1928 3 21 0.2 -0.3 -0.3 1 +1928 3 22 2.1 1.6 1.6 1 +1928 3 23 2.5 2.0 2.0 1 +1928 3 24 2.2 1.7 1.7 1 +1928 3 25 0.4 -0.1 -0.1 1 +1928 3 26 -0.2 -0.6 -0.6 1 +1928 3 27 0.7 0.3 0.3 1 +1928 3 28 -0.3 -0.7 -0.7 1 +1928 3 29 0.8 0.4 0.4 1 +1928 3 30 1.0 0.6 0.6 1 +1928 3 31 1.1 0.7 0.7 1 +1928 4 1 2.9 2.5 2.5 1 +1928 4 2 3.2 2.8 2.8 1 +1928 4 3 1.2 0.8 0.8 1 +1928 4 4 2.9 2.5 2.5 1 +1928 4 5 1.9 1.5 1.5 1 +1928 4 6 3.8 3.4 3.4 1 +1928 4 7 5.9 5.5 5.5 1 +1928 4 8 7.2 6.8 6.8 1 +1928 4 9 7.4 7.0 7.0 1 +1928 4 10 2.4 2.0 2.0 1 +1928 4 11 -1.2 -1.6 -1.6 1 +1928 4 12 -1.3 -1.7 -1.7 1 +1928 4 13 -2.1 -2.5 -2.5 1 +1928 4 14 -1.3 -1.7 -1.7 1 +1928 4 15 1.0 0.7 0.7 1 +1928 4 16 -0.2 -0.6 -0.6 1 +1928 4 17 0.2 -0.2 -0.2 1 +1928 4 18 0.5 0.1 0.1 1 +1928 4 19 0.9 0.5 0.5 1 +1928 4 20 2.8 2.4 2.4 1 +1928 4 21 2.4 2.0 2.0 1 +1928 4 22 4.7 4.3 4.3 1 +1928 4 23 6.0 5.6 5.6 1 +1928 4 24 5.7 5.2 5.2 1 +1928 4 25 7.9 7.4 7.4 1 +1928 4 26 10.1 9.6 9.6 1 +1928 4 27 10.6 10.1 10.1 1 +1928 4 28 10.0 9.5 9.5 1 +1928 4 29 10.5 10.0 10.0 1 +1928 4 30 10.4 9.9 9.9 1 +1928 5 1 10.7 10.2 10.2 1 +1928 5 2 6.1 5.5 5.5 1 +1928 5 3 8.0 7.4 7.4 1 +1928 5 4 7.8 7.2 7.2 1 +1928 5 5 11.3 10.7 10.7 1 +1928 5 6 12.8 12.2 12.2 1 +1928 5 7 5.1 4.5 4.5 1 +1928 5 8 1.5 0.9 0.9 1 +1928 5 9 4.0 3.3 3.3 1 +1928 5 10 4.9 4.2 4.2 1 +1928 5 11 5.3 4.6 4.6 1 +1928 5 12 6.1 5.4 5.4 1 +1928 5 13 5.6 4.9 4.9 1 +1928 5 14 7.8 7.1 7.1 1 +1928 5 15 8.1 7.4 7.4 1 +1928 5 16 6.8 6.1 6.1 1 +1928 5 17 6.1 5.4 5.4 1 +1928 5 18 8.1 7.4 7.4 1 +1928 5 19 8.5 7.8 7.8 1 +1928 5 20 10.0 9.3 9.3 1 +1928 5 21 9.2 8.5 8.5 1 +1928 5 22 8.4 7.7 7.7 1 +1928 5 23 11.4 10.7 10.7 1 +1928 5 24 11.7 11.0 11.0 1 +1928 5 25 13.4 12.7 12.7 1 +1928 5 26 13.2 12.5 12.5 1 +1928 5 27 8.7 8.0 8.0 1 +1928 5 28 9.5 8.8 8.8 1 +1928 5 29 15.7 15.1 15.1 1 +1928 5 30 9.9 9.3 9.3 1 +1928 5 31 6.9 6.3 6.3 1 +1928 6 1 4.8 4.2 4.2 1 +1928 6 2 9.0 8.4 8.4 1 +1928 6 3 10.4 9.8 9.8 1 +1928 6 4 5.6 5.0 5.0 1 +1928 6 5 6.1 5.5 5.5 1 +1928 6 6 4.2 3.6 3.6 1 +1928 6 7 9.9 9.3 9.3 1 +1928 6 8 8.6 8.0 8.0 1 +1928 6 9 13.6 13.0 13.0 1 +1928 6 10 14.6 14.0 14.0 1 +1928 6 11 15.2 14.6 14.6 1 +1928 6 12 12.0 11.4 11.4 1 +1928 6 13 12.1 11.5 11.5 1 +1928 6 14 10.9 10.3 10.3 1 +1928 6 15 11.8 11.2 11.2 1 +1928 6 16 11.1 10.5 10.5 1 +1928 6 17 10.3 9.7 9.7 1 +1928 6 18 9.1 8.5 8.5 1 +1928 6 19 9.7 9.1 9.1 1 +1928 6 20 7.5 6.9 6.9 1 +1928 6 21 8.6 8.0 8.0 1 +1928 6 22 13.4 12.9 12.9 1 +1928 6 23 11.4 10.9 10.9 1 +1928 6 24 11.6 11.1 11.1 1 +1928 6 25 13.0 12.5 12.5 1 +1928 6 26 13.7 13.2 13.2 1 +1928 6 27 11.9 11.4 11.4 1 +1928 6 28 12.9 12.4 12.4 1 +1928 6 29 14.2 13.7 13.7 1 +1928 6 30 17.2 16.7 16.7 1 +1928 7 1 14.0 13.5 13.5 1 +1928 7 2 13.2 12.7 12.7 1 +1928 7 3 14.6 14.1 14.1 1 +1928 7 4 13.9 13.4 13.4 1 +1928 7 5 15.0 14.5 14.5 1 +1928 7 6 14.1 13.6 13.6 1 +1928 7 7 13.0 12.5 12.5 1 +1928 7 8 12.9 12.4 12.4 1 +1928 7 9 15.4 14.9 14.9 1 +1928 7 10 15.0 14.5 14.5 1 +1928 7 11 15.9 15.4 15.4 1 +1928 7 12 19.4 18.9 18.9 1 +1928 7 13 20.5 20.0 20.0 1 +1928 7 14 18.6 18.1 18.1 1 +1928 7 15 21.8 21.3 21.3 1 +1928 7 16 16.7 16.2 16.2 1 +1928 7 17 16.1 15.6 15.6 1 +1928 7 18 15.0 14.5 14.5 1 +1928 7 19 11.5 11.0 11.0 1 +1928 7 20 13.3 12.8 12.8 1 +1928 7 21 11.2 10.7 10.7 1 +1928 7 22 13.2 12.7 12.7 1 +1928 7 23 14.9 14.4 14.4 1 +1928 7 24 11.3 10.8 10.8 1 +1928 7 25 14.1 13.6 13.6 1 +1928 7 26 14.6 14.2 14.2 1 +1928 7 27 15.0 14.6 14.6 1 +1928 7 28 14.5 14.1 14.1 1 +1928 7 29 16.4 16.0 16.0 1 +1928 7 30 14.0 13.6 13.6 1 +1928 7 31 13.8 13.4 13.4 1 +1928 8 1 12.1 11.7 11.7 1 +1928 8 2 12.8 12.4 12.4 1 +1928 8 3 14.7 14.3 14.3 1 +1928 8 4 15.0 14.6 14.6 1 +1928 8 5 14.5 14.1 14.1 1 +1928 8 6 13.4 13.0 13.0 1 +1928 8 7 11.9 11.5 11.5 1 +1928 8 8 13.3 13.0 13.0 1 +1928 8 9 13.6 13.3 13.3 1 +1928 8 10 14.3 14.0 14.0 1 +1928 8 11 13.3 13.0 13.0 1 +1928 8 12 13.8 13.5 13.5 1 +1928 8 13 16.0 15.7 15.7 1 +1928 8 14 14.1 13.8 13.8 1 +1928 8 15 14.6 14.3 14.3 1 +1928 8 16 15.5 15.2 15.2 1 +1928 8 17 14.2 13.9 13.9 1 +1928 8 18 14.5 14.2 14.2 1 +1928 8 19 14.0 13.7 13.7 1 +1928 8 20 14.2 14.0 14.0 1 +1928 8 21 15.4 15.2 15.2 1 +1928 8 22 14.1 13.9 13.9 1 +1928 8 23 13.4 13.2 13.2 1 +1928 8 24 13.8 13.6 13.6 1 +1928 8 25 14.0 13.8 13.8 1 +1928 8 26 15.2 15.0 15.0 1 +1928 8 27 15.3 15.1 15.1 1 +1928 8 28 13.5 13.3 13.3 1 +1928 8 29 14.7 14.5 14.5 1 +1928 8 30 14.5 14.4 14.4 1 +1928 8 31 10.2 10.1 10.1 1 +1928 9 1 11.2 11.1 11.1 1 +1928 9 2 13.4 13.3 13.3 1 +1928 9 3 13.5 13.4 13.4 1 +1928 9 4 13.2 13.1 13.1 1 +1928 9 5 14.1 14.0 14.0 1 +1928 9 6 16.0 15.9 15.9 1 +1928 9 7 13.4 13.3 13.3 1 +1928 9 8 13.3 13.2 13.2 1 +1928 9 9 15.4 15.4 15.4 1 +1928 9 10 15.9 15.9 15.9 1 +1928 9 11 14.0 14.0 14.0 1 +1928 9 12 13.2 13.2 13.2 1 +1928 9 13 12.0 12.0 12.0 1 +1928 9 14 13.4 13.4 13.4 1 +1928 9 15 12.0 12.0 12.0 1 +1928 9 16 11.3 11.3 11.3 1 +1928 9 17 11.6 11.6 11.6 1 +1928 9 18 14.3 14.3 14.3 1 +1928 9 19 12.3 12.3 12.3 1 +1928 9 20 10.5 10.5 10.5 1 +1928 9 21 8.3 8.3 8.3 1 +1928 9 22 7.9 7.9 7.9 1 +1928 9 23 7.4 7.4 7.4 1 +1928 9 24 6.7 6.7 6.7 1 +1928 9 25 8.2 8.2 8.2 1 +1928 9 26 6.6 6.6 6.6 1 +1928 9 27 7.6 7.6 7.6 1 +1928 9 28 1.8 1.8 1.8 1 +1928 9 29 2.8 2.8 2.8 1 +1928 9 30 6.3 6.3 6.3 1 +1928 10 1 3.5 3.5 3.5 1 +1928 10 2 4.2 4.2 4.2 1 +1928 10 3 6.5 6.5 6.5 1 +1928 10 4 8.3 8.3 8.3 1 +1928 10 5 7.2 7.2 7.2 1 +1928 10 6 8.6 8.6 8.6 1 +1928 10 7 9.2 9.2 9.2 1 +1928 10 8 9.8 9.8 9.8 1 +1928 10 9 12.8 12.8 12.8 1 +1928 10 10 4.0 4.0 4.0 1 +1928 10 11 2.8 2.8 2.8 1 +1928 10 12 1.3 1.3 1.3 1 +1928 10 13 2.0 2.0 2.0 1 +1928 10 14 2.9 2.9 2.9 1 +1928 10 15 2.9 2.9 2.9 1 +1928 10 16 2.9 2.9 2.9 1 +1928 10 17 4.0 4.0 4.0 1 +1928 10 18 5.6 5.6 5.6 1 +1928 10 19 6.1 6.1 6.1 1 +1928 10 20 8.3 8.3 8.3 1 +1928 10 21 10.2 10.2 10.2 1 +1928 10 22 8.7 8.7 8.7 1 +1928 10 23 7.1 7.1 7.1 1 +1928 10 24 8.9 8.9 8.9 1 +1928 10 25 10.1 10.1 10.1 1 +1928 10 26 8.3 8.2 8.2 1 +1928 10 27 9.2 9.1 9.1 1 +1928 10 28 8.1 8.0 8.0 1 +1928 10 29 8.9 8.8 8.8 1 +1928 10 30 6.7 6.6 6.6 1 +1928 10 31 9.3 9.2 9.2 1 +1928 11 1 6.2 6.1 6.1 1 +1928 11 2 3.3 3.2 3.2 1 +1928 11 3 2.3 2.2 2.2 1 +1928 11 4 2.7 2.6 2.6 1 +1928 11 5 1.0 0.9 0.9 1 +1928 11 6 -0.4 -0.5 -0.5 1 +1928 11 7 -2.4 -2.5 -2.5 1 +1928 11 8 -3.2 -3.3 -3.3 1 +1928 11 9 -3.0 -3.1 -3.1 1 +1928 11 10 1.0 0.9 0.9 1 +1928 11 11 -1.7 -1.9 -1.9 1 +1928 11 12 1.7 1.5 1.5 1 +1928 11 13 8.0 7.8 7.8 1 +1928 11 14 6.6 6.4 6.4 1 +1928 11 15 4.9 4.7 4.7 1 +1928 11 16 6.8 6.6 6.6 1 +1928 11 17 7.5 7.3 7.3 1 +1928 11 18 4.4 4.2 4.2 1 +1928 11 19 2.3 2.1 2.1 1 +1928 11 20 4.4 4.2 4.2 1 +1928 11 21 5.5 5.3 5.3 1 +1928 11 22 6.5 6.3 6.3 1 +1928 11 23 6.3 6.1 6.1 1 +1928 11 24 7.1 6.9 6.9 1 +1928 11 25 6.4 6.2 6.2 1 +1928 11 26 5.1 4.9 4.9 1 +1928 11 27 1.9 1.7 1.7 1 +1928 11 28 1.7 1.5 1.5 1 +1928 11 29 1.1 0.9 0.9 1 +1928 11 30 2.3 2.1 2.1 1 +1928 12 1 2.3 2.1 2.1 1 +1928 12 2 1.7 1.5 1.5 1 +1928 12 3 -0.4 -0.6 -0.6 1 +1928 12 4 0.3 0.1 0.1 1 +1928 12 5 1.9 1.7 1.7 1 +1928 12 6 1.7 1.5 1.5 1 +1928 12 7 2.3 2.1 2.1 1 +1928 12 8 1.6 1.4 1.4 1 +1928 12 9 -1.0 -1.2 -1.2 1 +1928 12 10 -3.1 -3.3 -3.3 1 +1928 12 11 -1.0 -1.2 -1.2 1 +1928 12 12 -1.7 -1.9 -1.9 1 +1928 12 13 -3.6 -3.8 -3.8 1 +1928 12 14 -4.9 -5.1 -5.1 1 +1928 12 15 -4.8 -5.0 -5.0 1 +1928 12 16 -2.7 -2.9 -2.9 1 +1928 12 17 -2.2 -2.4 -2.4 1 +1928 12 18 -3.6 -3.8 -3.8 1 +1928 12 19 -1.0 -1.2 -1.2 1 +1928 12 20 0.0 -0.3 -0.3 1 +1928 12 21 -1.0 -1.3 -1.3 1 +1928 12 22 -0.6 -0.9 -0.9 1 +1928 12 23 -1.5 -1.8 -1.8 1 +1928 12 24 2.0 1.7 1.7 1 +1928 12 25 2.9 2.6 2.6 1 +1928 12 26 1.8 1.5 1.5 1 +1928 12 27 0.9 0.6 0.6 1 +1928 12 28 -2.2 -2.5 -2.5 1 +1928 12 29 -4.9 -5.2 -5.2 1 +1928 12 30 -3.4 -3.7 -3.7 1 +1928 12 31 -6.9 -7.2 -7.2 1 +1929 1 1 -5.4 -5.8 -5.8 1 +1929 1 2 -5.7 -6.1 -6.1 1 +1929 1 3 -5.8 -6.2 -6.2 1 +1929 1 4 -4.9 -5.3 -5.3 1 +1929 1 5 -3.5 -3.9 -3.9 1 +1929 1 6 -2.0 -2.4 -2.4 1 +1929 1 7 -5.0 -5.4 -5.4 1 +1929 1 8 -2.2 -2.6 -2.6 1 +1929 1 9 -3.3 -3.7 -3.7 1 +1929 1 10 -5.7 -6.1 -6.1 1 +1929 1 11 -1.6 -2.1 -2.1 1 +1929 1 12 2.3 1.8 1.8 1 +1929 1 13 -1.1 -1.6 -1.6 1 +1929 1 14 -9.5 -10.0 -10.0 1 +1929 1 15 -8.2 -8.7 -8.7 1 +1929 1 16 -8.2 -8.7 -8.7 1 +1929 1 17 -8.2 -8.7 -8.7 1 +1929 1 18 -7.7 -8.2 -8.2 1 +1929 1 19 -6.9 -7.4 -7.4 1 +1929 1 20 -11.6 -12.1 -12.1 1 +1929 1 21 -0.8 -1.3 -1.3 1 +1929 1 22 -0.3 -0.8 -0.8 1 +1929 1 23 -4.0 -4.5 -4.5 1 +1929 1 24 -4.2 -4.7 -4.7 1 +1929 1 25 -3.1 -3.6 -3.6 1 +1929 1 26 -2.7 -3.2 -3.2 1 +1929 1 27 -2.1 -2.6 -2.6 1 +1929 1 28 -1.0 -1.5 -1.5 1 +1929 1 29 -1.0 -1.5 -1.5 1 +1929 1 30 -0.9 -1.3 -1.3 1 +1929 1 31 -1.9 -2.3 -2.3 1 +1929 2 1 -3.9 -4.3 -4.3 1 +1929 2 2 -6.5 -6.9 -6.9 1 +1929 2 3 -6.7 -7.1 -7.1 1 +1929 2 4 -5.8 -6.2 -6.2 1 +1929 2 5 -8.6 -9.0 -9.0 1 +1929 2 6 -7.2 -7.6 -7.6 1 +1929 2 7 -5.7 -6.1 -6.1 1 +1929 2 8 -4.9 -5.3 -5.3 1 +1929 2 9 -8.3 -8.7 -8.7 1 +1929 2 10 -9.5 -9.9 -9.9 1 +1929 2 11 -12.3 -12.7 -12.7 1 +1929 2 12 -9.1 -9.5 -9.5 1 +1929 2 13 -9.0 -9.4 -9.4 1 +1929 2 14 -7.5 -7.9 -7.9 1 +1929 2 15 -8.0 -8.4 -8.4 1 +1929 2 16 -8.9 -9.3 -9.3 1 +1929 2 17 -8.1 -8.5 -8.5 1 +1929 2 18 -8.7 -9.1 -9.1 1 +1929 2 19 -11.2 -11.6 -11.6 1 +1929 2 20 -11.9 -12.3 -12.3 1 +1929 2 21 -5.9 -6.3 -6.3 1 +1929 2 22 -5.0 -5.4 -5.4 1 +1929 2 23 -12.8 -13.2 -13.2 1 +1929 2 24 -13.9 -14.3 -14.3 1 +1929 2 25 -12.9 -13.3 -13.3 1 +1929 2 26 -15.6 -16.0 -16.0 1 +1929 2 27 -11.3 -11.8 -11.8 1 +1929 2 28 -3.1 -3.6 -3.6 1 +1929 3 1 -1.2 -1.7 -1.7 1 +1929 3 2 0.7 0.2 0.2 1 +1929 3 3 -1.8 -2.3 -2.3 1 +1929 3 4 -2.8 -3.3 -3.3 1 +1929 3 5 -5.0 -5.5 -5.5 1 +1929 3 6 -10.3 -10.8 -10.8 1 +1929 3 7 -7.8 -8.3 -8.3 1 +1929 3 8 0.1 -0.4 -0.4 1 +1929 3 9 -7.1 -7.6 -7.6 1 +1929 3 10 -4.4 -4.9 -4.9 1 +1929 3 11 0.8 0.3 0.3 1 +1929 3 12 5.0 4.5 4.5 1 +1929 3 13 5.6 5.1 5.1 1 +1929 3 14 4.6 4.1 4.1 1 +1929 3 15 -1.7 -2.2 -2.2 1 +1929 3 16 0.3 -0.2 -0.2 1 +1929 3 17 2.4 1.9 1.9 1 +1929 3 18 2.8 2.3 2.3 1 +1929 3 19 3.6 3.1 3.1 1 +1929 3 20 3.9 3.4 3.4 1 +1929 3 21 4.2 3.7 3.7 1 +1929 3 22 6.8 6.3 6.3 1 +1929 3 23 3.2 2.7 2.7 1 +1929 3 24 2.9 2.4 2.4 1 +1929 3 25 1.3 0.8 0.8 1 +1929 3 26 1.0 0.5 0.5 1 +1929 3 27 5.8 5.3 5.3 1 +1929 3 28 8.9 8.5 8.5 1 +1929 3 29 4.4 4.0 4.0 1 +1929 3 30 -2.4 -2.8 -2.8 1 +1929 3 31 -2.9 -3.3 -3.3 1 +1929 4 1 -4.6 -5.0 -5.0 1 +1929 4 2 -5.9 -6.3 -6.3 1 +1929 4 3 -5.5 -5.9 -5.9 1 +1929 4 4 -3.8 -4.2 -4.2 1 +1929 4 5 -3.1 -3.5 -3.5 1 +1929 4 6 0.2 -0.2 -0.2 1 +1929 4 7 1.0 0.6 0.6 1 +1929 4 8 0.2 -0.2 -0.2 1 +1929 4 9 2.3 1.9 1.9 1 +1929 4 10 0.2 -0.2 -0.2 1 +1929 4 11 2.2 1.8 1.8 1 +1929 4 12 6.2 5.8 5.8 1 +1929 4 13 8.1 7.7 7.7 1 +1929 4 14 6.4 6.0 6.0 1 +1929 4 15 -1.9 -2.3 -2.3 1 +1929 4 16 1.3 0.9 0.9 1 +1929 4 17 5.6 5.2 5.2 1 +1929 4 18 5.8 5.4 5.4 1 +1929 4 19 8.3 7.9 7.9 1 +1929 4 20 -4.3 -4.7 -4.7 1 +1929 4 21 -4.1 -4.5 -4.5 1 +1929 4 22 1.7 1.3 1.3 1 +1929 4 23 1.1 0.6 0.6 1 +1929 4 24 1.6 1.1 1.1 1 +1929 4 25 1.6 1.1 1.1 1 +1929 4 26 0.8 0.3 0.3 1 +1929 4 27 0.3 -0.2 -0.2 1 +1929 4 28 0.9 0.4 0.4 1 +1929 4 29 4.2 3.7 3.7 1 +1929 4 30 2.7 2.1 2.1 1 +1929 5 1 0.9 0.3 0.3 1 +1929 5 2 0.2 -0.4 -0.4 1 +1929 5 3 2.6 2.0 2.0 1 +1929 5 4 5.2 4.6 4.6 1 +1929 5 5 6.6 6.0 6.0 1 +1929 5 6 9.5 8.9 8.9 1 +1929 5 7 14.3 13.7 13.7 1 +1929 5 8 9.7 9.0 9.0 1 +1929 5 9 10.9 10.2 10.2 1 +1929 5 10 10.8 10.1 10.1 1 +1929 5 11 13.0 12.3 12.3 1 +1929 5 12 12.0 11.3 11.3 1 +1929 5 13 12.7 12.0 12.0 1 +1929 5 14 9.6 8.9 8.9 1 +1929 5 15 12.0 11.3 11.3 1 +1929 5 16 12.3 11.6 11.6 1 +1929 5 17 9.3 8.6 8.6 1 +1929 5 18 3.3 2.6 2.6 1 +1929 5 19 4.2 3.5 3.5 1 +1929 5 20 6.4 5.7 5.7 1 +1929 5 21 8.2 7.5 7.5 1 +1929 5 22 11.5 10.8 10.8 1 +1929 5 23 14.1 13.4 13.4 1 +1929 5 24 14.6 13.9 13.9 1 +1929 5 25 15.3 14.6 14.6 1 +1929 5 26 13.8 13.1 13.1 1 +1929 5 27 16.7 16.0 16.0 1 +1929 5 28 14.1 13.4 13.4 1 +1929 5 29 9.4 8.7 8.7 1 +1929 5 30 8.8 8.1 8.1 1 +1929 5 31 4.5 3.8 3.8 1 +1929 6 1 6.5 5.9 5.9 1 +1929 6 2 6.6 6.0 6.0 1 +1929 6 3 8.5 7.9 7.9 1 +1929 6 4 9.4 8.8 8.8 1 +1929 6 5 7.1 6.5 6.5 1 +1929 6 6 10.0 9.4 9.4 1 +1929 6 7 10.2 9.6 9.6 1 +1929 6 8 8.8 8.2 8.2 1 +1929 6 9 9.7 9.1 9.1 1 +1929 6 10 12.7 12.1 12.1 1 +1929 6 11 13.8 13.2 13.2 1 +1929 6 12 15.4 14.8 14.8 1 +1929 6 13 16.9 16.3 16.3 1 +1929 6 14 17.4 16.8 16.8 1 +1929 6 15 16.8 16.2 16.2 1 +1929 6 16 15.4 14.8 14.8 1 +1929 6 17 15.1 14.5 14.5 1 +1929 6 18 16.7 16.1 16.1 1 +1929 6 19 16.6 16.0 16.0 1 +1929 6 20 18.2 17.6 17.6 1 +1929 6 21 16.0 15.4 15.4 1 +1929 6 22 14.3 13.7 13.7 1 +1929 6 23 11.4 10.8 10.8 1 +1929 6 24 10.8 10.2 10.2 1 +1929 6 25 10.8 10.2 10.2 1 +1929 6 26 10.0 9.4 9.4 1 +1929 6 27 12.8 12.2 12.2 1 +1929 6 28 14.5 13.9 13.9 1 +1929 6 29 15.2 14.6 14.6 1 +1929 6 30 14.8 14.2 14.2 1 +1929 7 1 13.5 12.9 12.9 1 +1929 7 2 16.3 15.7 15.7 1 +1929 7 3 15.9 15.3 15.3 1 +1929 7 4 14.1 13.5 13.5 1 +1929 7 5 15.9 15.3 15.3 1 +1929 7 6 15.6 15.1 15.1 1 +1929 7 7 13.2 12.7 12.7 1 +1929 7 8 10.9 10.4 10.4 1 +1929 7 9 10.6 10.1 10.1 1 +1929 7 10 15.6 15.1 15.1 1 +1929 7 11 18.5 18.0 18.0 1 +1929 7 12 19.9 19.4 19.4 1 +1929 7 13 15.3 14.8 14.8 1 +1929 7 14 15.0 14.5 14.5 1 +1929 7 15 16.2 15.7 15.7 1 +1929 7 16 15.3 14.8 14.8 1 +1929 7 17 13.2 12.7 12.7 1 +1929 7 18 14.1 13.6 13.6 1 +1929 7 19 18.5 18.0 18.0 1 +1929 7 20 21.4 20.9 20.9 1 +1929 7 21 21.5 21.0 21.0 1 +1929 7 22 20.8 20.3 20.3 1 +1929 7 23 18.0 17.5 17.5 1 +1929 7 24 14.2 13.7 13.7 1 +1929 7 25 12.6 12.1 12.1 1 +1929 7 26 14.9 14.4 14.4 1 +1929 7 27 14.9 14.5 14.5 1 +1929 7 28 13.9 13.5 13.5 1 +1929 7 29 16.3 15.9 15.9 1 +1929 7 30 15.3 14.9 14.9 1 +1929 7 31 16.1 15.7 15.7 1 +1929 8 1 15.5 15.1 15.1 1 +1929 8 2 15.2 14.8 14.8 1 +1929 8 3 13.9 13.5 13.5 1 +1929 8 4 15.7 15.3 15.3 1 +1929 8 5 16.1 15.7 15.7 1 +1929 8 6 14.4 14.0 14.0 1 +1929 8 7 15.6 15.2 15.2 1 +1929 8 8 15.6 15.2 15.2 1 +1929 8 9 15.5 15.2 15.2 1 +1929 8 10 15.3 15.0 15.0 1 +1929 8 11 15.4 15.1 15.1 1 +1929 8 12 16.9 16.6 16.6 1 +1929 8 13 14.2 13.9 13.9 1 +1929 8 14 13.5 13.2 13.2 1 +1929 8 15 14.0 13.7 13.7 1 +1929 8 16 14.9 14.6 14.6 1 +1929 8 17 16.9 16.6 16.6 1 +1929 8 18 16.7 16.4 16.4 1 +1929 8 19 13.9 13.6 13.6 1 +1929 8 20 11.7 11.4 11.4 1 +1929 8 21 14.1 13.9 13.9 1 +1929 8 22 13.2 13.0 13.0 1 +1929 8 23 14.1 13.9 13.9 1 +1929 8 24 15.0 14.8 14.8 1 +1929 8 25 12.7 12.5 12.5 1 +1929 8 26 12.9 12.7 12.7 1 +1929 8 27 14.3 14.1 14.1 1 +1929 8 28 12.6 12.4 12.4 1 +1929 8 29 15.9 15.7 15.7 1 +1929 8 30 15.7 15.5 15.5 1 +1929 8 31 14.4 14.3 14.3 1 +1929 9 1 14.7 14.6 14.6 1 +1929 9 2 15.1 15.0 15.0 1 +1929 9 3 14.5 14.4 14.4 1 +1929 9 4 13.5 13.4 13.4 1 +1929 9 5 15.1 15.0 15.0 1 +1929 9 6 10.9 10.8 10.8 1 +1929 9 7 10.3 10.2 10.2 1 +1929 9 8 8.4 8.3 8.3 1 +1929 9 9 8.5 8.4 8.4 1 +1929 9 10 9.4 9.4 9.4 1 +1929 9 11 11.3 11.3 11.3 1 +1929 9 12 13.0 13.0 13.0 1 +1929 9 13 12.7 12.7 12.7 1 +1929 9 14 13.7 13.7 13.7 1 +1929 9 15 14.5 14.5 14.5 1 +1929 9 16 13.0 13.0 13.0 1 +1929 9 17 12.5 12.5 12.5 1 +1929 9 18 10.6 10.6 10.6 1 +1929 9 19 13.8 13.8 13.8 1 +1929 9 20 13.1 13.1 13.1 1 +1929 9 21 8.8 8.8 8.8 1 +1929 9 22 7.7 7.7 7.7 1 +1929 9 23 7.7 7.7 7.7 1 +1929 9 24 8.7 8.7 8.7 1 +1929 9 25 11.8 11.8 11.8 1 +1929 9 26 11.2 11.2 11.2 1 +1929 9 27 11.5 11.5 11.5 1 +1929 9 28 10.5 10.5 10.5 1 +1929 9 29 13.5 13.5 13.5 1 +1929 9 30 11.3 11.3 11.3 1 +1929 10 1 8.7 8.7 8.7 1 +1929 10 2 9.0 9.0 9.0 1 +1929 10 3 9.2 9.2 9.2 1 +1929 10 4 9.8 9.8 9.8 1 +1929 10 5 9.5 9.5 9.5 1 +1929 10 6 8.8 8.8 8.8 1 +1929 10 7 11.0 11.0 11.0 1 +1929 10 8 10.1 10.1 10.1 1 +1929 10 9 11.7 11.7 11.7 1 +1929 10 10 8.2 8.2 8.2 1 +1929 10 11 8.6 8.6 8.6 1 +1929 10 12 8.3 8.3 8.3 1 +1929 10 13 8.0 8.0 8.0 1 +1929 10 14 9.1 9.1 9.1 1 +1929 10 15 6.3 6.3 6.3 1 +1929 10 16 3.5 3.5 3.5 1 +1929 10 17 4.1 4.1 4.1 1 +1929 10 18 4.9 4.9 4.9 1 +1929 10 19 6.4 6.4 6.4 1 +1929 10 20 4.0 4.0 4.0 1 +1929 10 21 3.5 3.5 3.5 1 +1929 10 22 7.9 7.9 7.9 1 +1929 10 23 7.4 7.4 7.4 1 +1929 10 24 9.3 9.3 9.3 1 +1929 10 25 9.8 9.7 9.7 1 +1929 10 26 8.7 8.6 8.6 1 +1929 10 27 8.1 8.0 8.0 1 +1929 10 28 5.2 5.1 5.1 1 +1929 10 29 4.8 4.7 4.7 1 +1929 10 30 5.2 5.1 5.1 1 +1929 10 31 2.3 2.2 2.2 1 +1929 11 1 -0.1 -0.2 -0.2 1 +1929 11 2 0.4 0.3 0.3 1 +1929 11 3 2.3 2.2 2.2 1 +1929 11 4 2.3 2.2 2.2 1 +1929 11 5 6.0 5.9 5.9 1 +1929 11 6 6.5 6.4 6.4 1 +1929 11 7 5.0 4.9 4.9 1 +1929 11 8 5.0 4.9 4.9 1 +1929 11 9 5.2 5.1 5.1 1 +1929 11 10 4.5 4.3 4.3 1 +1929 11 11 5.8 5.6 5.6 1 +1929 11 12 6.6 6.4 6.4 1 +1929 11 13 4.2 4.0 4.0 1 +1929 11 14 3.3 3.1 3.1 1 +1929 11 15 6.4 6.2 6.2 1 +1929 11 16 4.6 4.4 4.4 1 +1929 11 17 1.1 0.9 0.9 1 +1929 11 18 -0.1 -0.3 -0.3 1 +1929 11 19 -0.2 -0.4 -0.4 1 +1929 11 20 0.9 0.7 0.7 1 +1929 11 21 5.4 5.2 5.2 1 +1929 11 22 5.4 5.2 5.2 1 +1929 11 23 4.8 4.6 4.6 1 +1929 11 24 5.5 5.3 5.3 1 +1929 11 25 5.7 5.5 5.5 1 +1929 11 26 6.1 5.9 5.9 1 +1929 11 27 5.7 5.5 5.5 1 +1929 11 28 4.9 4.7 4.7 1 +1929 11 29 4.9 4.7 4.7 1 +1929 11 30 3.7 3.5 3.5 1 +1929 12 1 2.8 2.6 2.6 1 +1929 12 2 6.4 6.2 6.2 1 +1929 12 3 6.1 5.9 5.9 1 +1929 12 4 3.3 3.1 3.1 1 +1929 12 5 5.9 5.7 5.7 1 +1929 12 6 6.0 5.8 5.8 1 +1929 12 7 6.2 6.0 6.0 1 +1929 12 8 6.4 6.2 6.2 1 +1929 12 9 5.0 4.8 4.8 1 +1929 12 10 4.3 4.1 4.1 1 +1929 12 11 4.0 3.8 3.8 1 +1929 12 12 5.0 4.8 4.8 1 +1929 12 13 2.8 2.6 2.6 1 +1929 12 14 4.9 4.7 4.7 1 +1929 12 15 3.3 3.1 3.1 1 +1929 12 16 0.8 0.6 0.6 1 +1929 12 17 -2.0 -2.2 -2.2 1 +1929 12 18 -1.2 -1.4 -1.4 1 +1929 12 19 3.9 3.6 3.6 1 +1929 12 20 2.7 2.4 2.4 1 +1929 12 21 1.3 1.0 1.0 1 +1929 12 22 2.9 2.6 2.6 1 +1929 12 23 1.1 0.8 0.8 1 +1929 12 24 -1.5 -1.8 -1.8 1 +1929 12 25 -1.8 -2.1 -2.1 1 +1929 12 26 4.5 4.2 4.2 1 +1929 12 27 3.6 3.3 3.3 1 +1929 12 28 3.5 3.2 3.2 1 +1929 12 29 3.3 3.0 3.0 1 +1929 12 30 4.2 3.9 3.9 1 +1929 12 31 2.9 2.5 2.5 1 +1930 1 1 1.4 1.0 1.0 1 +1930 1 2 2.2 1.8 1.8 1 +1930 1 3 3.8 3.4 3.4 1 +1930 1 4 3.9 3.5 3.5 1 +1930 1 5 3.0 2.6 2.6 1 +1930 1 6 4.4 4.0 4.0 1 +1930 1 7 5.0 4.6 4.6 1 +1930 1 8 5.6 5.2 5.2 1 +1930 1 9 3.1 2.7 2.7 1 +1930 1 10 2.9 2.4 2.4 1 +1930 1 11 2.7 2.2 2.2 1 +1930 1 12 3.2 2.7 2.7 1 +1930 1 13 1.7 1.2 1.2 1 +1930 1 14 2.3 1.8 1.8 1 +1930 1 15 6.3 5.8 5.8 1 +1930 1 16 1.6 1.1 1.1 1 +1930 1 17 -0.6 -1.1 -1.1 1 +1930 1 18 1.6 1.1 1.1 1 +1930 1 19 2.4 1.9 1.9 1 +1930 1 20 5.4 4.9 4.9 1 +1930 1 21 2.7 2.2 2.2 1 +1930 1 22 -0.6 -1.1 -1.1 1 +1930 1 23 0.5 0.0 0.0 1 +1930 1 24 2.1 1.6 1.6 1 +1930 1 25 2.0 1.5 1.5 1 +1930 1 26 1.1 0.6 0.6 1 +1930 1 27 1.0 0.5 0.5 1 +1930 1 28 0.1 -0.4 -0.4 1 +1930 1 29 -0.8 -1.3 -1.3 1 +1930 1 30 -2.7 -3.2 -3.2 1 +1930 1 31 -3.6 -4.1 -4.1 1 +1930 2 1 -3.5 -4.0 -4.0 1 +1930 2 2 -3.5 -4.0 -4.0 1 +1930 2 3 -3.9 -4.3 -4.3 1 +1930 2 4 -2.9 -3.3 -3.3 1 +1930 2 5 -2.0 -2.4 -2.4 1 +1930 2 6 -4.8 -5.2 -5.2 1 +1930 2 7 -7.6 -8.0 -8.0 1 +1930 2 8 -6.0 -6.4 -6.4 1 +1930 2 9 -2.4 -2.8 -2.8 1 +1930 2 10 1.1 0.7 0.7 1 +1930 2 11 1.5 1.1 1.1 1 +1930 2 12 2.3 1.9 1.9 1 +1930 2 13 1.0 0.6 0.6 1 +1930 2 14 2.0 1.6 1.6 1 +1930 2 15 1.9 1.5 1.5 1 +1930 2 16 -3.0 -3.4 -3.4 1 +1930 2 17 -3.1 -3.5 -3.5 1 +1930 2 18 0.8 0.4 0.4 1 +1930 2 19 0.1 -0.3 -0.3 1 +1930 2 20 -0.9 -1.3 -1.3 1 +1930 2 21 -1.4 -1.8 -1.8 1 +1930 2 22 -1.1 -1.5 -1.5 1 +1930 2 23 -1.2 -1.7 -1.7 1 +1930 2 24 -1.8 -2.3 -2.3 1 +1930 2 25 -0.8 -1.3 -1.3 1 +1930 2 26 -0.2 -0.7 -0.7 1 +1930 2 27 0.1 -0.4 -0.4 1 +1930 2 28 -2.2 -2.7 -2.7 1 +1930 3 1 1.6 1.1 1.1 1 +1930 3 2 3.4 2.9 2.9 1 +1930 3 3 0.9 0.4 0.4 1 +1930 3 4 0.5 0.0 0.0 1 +1930 3 5 -0.3 -0.8 -0.8 1 +1930 3 6 0.7 0.2 0.2 1 +1930 3 7 3.4 2.9 2.9 1 +1930 3 8 6.3 5.8 5.8 1 +1930 3 9 4.6 4.1 4.1 1 +1930 3 10 3.7 3.2 3.2 1 +1930 3 11 0.3 -0.2 -0.2 1 +1930 3 12 -2.8 -3.3 -3.3 1 +1930 3 13 -3.5 -4.0 -4.0 1 +1930 3 14 -3.7 -4.2 -4.2 1 +1930 3 15 -2.7 -3.2 -3.2 1 +1930 3 16 -3.0 -3.5 -3.5 1 +1930 3 17 -1.3 -1.8 -1.8 1 +1930 3 18 -0.3 -0.8 -0.8 1 +1930 3 19 2.2 1.7 1.7 1 +1930 3 20 1.4 0.9 0.9 1 +1930 3 21 1.0 0.5 0.5 1 +1930 3 22 2.6 2.1 2.1 1 +1930 3 23 2.6 2.1 2.1 1 +1930 3 24 2.2 1.7 1.7 1 +1930 3 25 1.5 1.0 1.0 1 +1930 3 26 2.4 1.9 1.9 1 +1930 3 27 0.8 0.3 0.3 1 +1930 3 28 2.1 1.6 1.6 1 +1930 3 29 2.3 1.8 1.8 1 +1930 3 30 2.6 2.2 2.2 1 +1930 3 31 3.6 3.2 3.2 1 +1930 4 1 2.5 2.1 2.1 1 +1930 4 2 1.5 1.1 1.1 1 +1930 4 3 3.1 2.7 2.7 1 +1930 4 4 4.7 4.3 4.3 1 +1930 4 5 6.0 5.6 5.6 1 +1930 4 6 4.7 4.3 4.3 1 +1930 4 7 6.0 5.6 5.6 1 +1930 4 8 7.2 6.8 6.8 1 +1930 4 9 7.4 7.0 7.0 1 +1930 4 10 7.4 7.0 7.0 1 +1930 4 11 8.4 8.0 8.0 1 +1930 4 12 6.9 6.5 6.5 1 +1930 4 13 7.2 6.8 6.8 1 +1930 4 14 7.5 7.1 7.1 1 +1930 4 15 9.0 8.6 8.6 1 +1930 4 16 8.6 8.2 8.2 1 +1930 4 17 4.0 3.6 3.6 1 +1930 4 18 0.2 -0.2 -0.2 1 +1930 4 19 0.3 -0.1 -0.1 1 +1930 4 20 -0.1 -0.5 -0.5 1 +1930 4 21 3.9 3.5 3.5 1 +1930 4 22 4.0 3.5 3.5 1 +1930 4 23 6.1 5.6 5.6 1 +1930 4 24 7.5 7.0 7.0 1 +1930 4 25 7.3 6.8 6.8 1 +1930 4 26 4.3 3.8 3.8 1 +1930 4 27 5.7 5.2 5.2 1 +1930 4 28 8.3 7.8 7.8 1 +1930 4 29 6.3 5.7 5.7 1 +1930 4 30 9.7 9.1 9.1 1 +1930 5 1 11.5 10.9 10.9 1 +1930 5 2 10.0 9.4 9.4 1 +1930 5 3 8.4 7.8 7.8 1 +1930 5 4 5.8 5.2 5.2 1 +1930 5 5 6.9 6.3 6.3 1 +1930 5 6 6.0 5.4 5.4 1 +1930 5 7 6.7 6.0 6.0 1 +1930 5 8 7.3 6.6 6.6 1 +1930 5 9 9.7 9.0 9.0 1 +1930 5 10 8.1 7.4 7.4 1 +1930 5 11 10.0 9.3 9.3 1 +1930 5 12 10.6 9.9 9.9 1 +1930 5 13 10.5 9.8 9.8 1 +1930 5 14 8.4 7.7 7.7 1 +1930 5 15 8.6 7.8 7.8 1 +1930 5 16 11.0 10.2 10.2 1 +1930 5 17 11.4 10.7 10.7 1 +1930 5 18 12.3 11.6 11.6 1 +1930 5 19 14.5 13.8 13.8 1 +1930 5 20 11.1 10.4 10.4 1 +1930 5 21 13.3 12.6 12.6 1 +1930 5 22 13.5 12.8 12.8 1 +1930 5 23 15.1 14.4 14.4 1 +1930 5 24 16.3 15.6 15.6 1 +1930 5 25 16.6 15.9 15.9 1 +1930 5 26 13.9 13.2 13.2 1 +1930 5 27 16.1 15.4 15.4 1 +1930 5 28 13.9 13.2 13.2 1 +1930 5 29 10.9 10.2 10.2 1 +1930 5 30 9.6 8.9 8.9 1 +1930 5 31 13.4 12.7 12.7 1 +1930 6 1 7.0 6.3 6.3 1 +1930 6 2 6.7 6.0 6.0 1 +1930 6 3 7.2 6.5 6.5 1 +1930 6 4 12.3 11.7 11.7 1 +1930 6 5 15.6 15.0 15.0 1 +1930 6 6 15.8 15.2 15.2 1 +1930 6 7 16.8 16.2 16.2 1 +1930 6 8 12.8 12.2 12.2 1 +1930 6 9 11.8 11.2 11.2 1 +1930 6 10 15.0 14.4 14.4 1 +1930 6 11 16.1 15.5 15.5 1 +1930 6 12 16.8 16.2 16.2 1 +1930 6 13 14.2 13.6 13.6 1 +1930 6 14 13.9 13.3 13.3 1 +1930 6 15 14.2 13.6 13.6 1 +1930 6 16 15.7 15.1 15.1 1 +1930 6 17 18.7 18.1 18.1 1 +1930 6 18 19.2 18.6 18.6 1 +1930 6 19 20.2 19.6 19.6 1 +1930 6 20 22.6 22.0 22.0 1 +1930 6 21 23.8 23.2 23.2 1 +1930 6 22 22.9 22.3 22.3 1 +1930 6 23 22.4 21.8 21.8 1 +1930 6 24 22.1 21.5 21.5 1 +1930 6 25 17.4 16.8 16.8 1 +1930 6 26 16.4 15.8 15.8 1 +1930 6 27 17.3 16.7 16.7 1 +1930 6 28 16.9 16.3 16.3 1 +1930 6 29 13.4 12.8 12.8 1 +1930 6 30 17.7 17.1 17.1 1 +1930 7 1 21.6 21.0 21.0 1 +1930 7 2 23.3 22.7 22.7 1 +1930 7 3 19.5 18.9 18.9 1 +1930 7 4 19.5 18.9 18.9 1 +1930 7 5 20.3 19.7 19.7 1 +1930 7 6 20.5 19.9 19.9 1 +1930 7 7 18.5 17.9 17.9 1 +1930 7 8 14.6 14.0 14.0 1 +1930 7 9 14.4 13.8 13.8 1 +1930 7 10 18.6 18.0 18.0 1 +1930 7 11 17.5 16.9 16.9 1 +1930 7 12 18.3 17.7 17.7 1 +1930 7 13 16.3 15.7 15.7 1 +1930 7 14 14.3 13.7 13.7 1 +1930 7 15 16.7 16.1 16.1 1 +1930 7 16 16.9 16.4 16.4 1 +1930 7 17 17.1 16.6 16.6 1 +1930 7 18 17.7 17.2 17.2 1 +1930 7 19 17.8 17.3 17.3 1 +1930 7 20 17.5 17.0 17.0 1 +1930 7 21 17.3 16.8 16.8 1 +1930 7 22 18.7 18.2 18.2 1 +1930 7 23 18.2 17.7 17.7 1 +1930 7 24 19.8 19.3 19.3 1 +1930 7 25 19.6 19.1 19.1 1 +1930 7 26 19.9 19.4 19.4 1 +1930 7 27 20.1 19.6 19.6 1 +1930 7 28 17.9 17.4 17.4 1 +1930 7 29 19.1 18.7 18.7 1 +1930 7 30 16.7 16.3 16.3 1 +1930 7 31 15.7 15.3 15.3 1 +1930 8 1 16.4 16.0 16.0 1 +1930 8 2 18.1 17.7 17.7 1 +1930 8 3 19.0 18.6 18.6 1 +1930 8 4 18.8 18.4 18.4 1 +1930 8 5 17.5 17.1 17.1 1 +1930 8 6 17.8 17.4 17.4 1 +1930 8 7 15.9 15.5 15.5 1 +1930 8 8 15.8 15.4 15.4 1 +1930 8 9 15.2 14.8 14.8 1 +1930 8 10 15.5 15.1 15.1 1 +1930 8 11 15.6 15.3 15.3 1 +1930 8 12 16.2 15.9 15.9 1 +1930 8 13 14.2 13.9 13.9 1 +1930 8 14 15.5 15.2 15.2 1 +1930 8 15 14.5 14.2 14.2 1 +1930 8 16 15.7 15.4 15.4 1 +1930 8 17 15.7 15.4 15.4 1 +1930 8 18 16.0 15.7 15.7 1 +1930 8 19 16.5 16.2 16.2 1 +1930 8 20 17.3 17.0 17.0 1 +1930 8 21 16.2 15.9 15.9 1 +1930 8 22 16.5 16.3 16.3 1 +1930 8 23 15.1 14.9 14.9 1 +1930 8 24 14.5 14.3 14.3 1 +1930 8 25 15.3 15.1 15.1 1 +1930 8 26 15.9 15.7 15.7 1 +1930 8 27 14.6 14.4 14.4 1 +1930 8 28 16.7 16.5 16.5 1 +1930 8 29 17.4 17.2 17.2 1 +1930 8 30 18.2 18.0 18.0 1 +1930 8 31 17.7 17.5 17.5 1 +1930 9 1 12.5 12.4 12.4 1 +1930 9 2 12.2 12.1 12.1 1 +1930 9 3 10.6 10.5 10.5 1 +1930 9 4 9.5 9.4 9.4 1 +1930 9 5 8.5 8.4 8.4 1 +1930 9 6 9.6 9.5 9.5 1 +1930 9 7 10.3 10.2 10.2 1 +1930 9 8 9.3 9.2 9.2 1 +1930 9 9 8.2 8.1 8.1 1 +1930 9 10 8.7 8.6 8.6 1 +1930 9 11 8.6 8.6 8.6 1 +1930 9 12 9.9 9.9 9.9 1 +1930 9 13 10.7 10.7 10.7 1 +1930 9 14 10.0 10.0 10.0 1 +1930 9 15 12.4 12.4 12.4 1 +1930 9 16 12.4 12.4 12.4 1 +1930 9 17 8.8 8.8 8.8 1 +1930 9 18 6.0 6.0 6.0 1 +1930 9 19 6.4 6.4 6.4 1 +1930 9 20 9.4 9.4 9.4 1 +1930 9 21 12.6 12.6 12.6 1 +1930 9 22 9.7 9.7 9.7 1 +1930 9 23 9.4 9.4 9.4 1 +1930 9 24 12.5 12.5 12.5 1 +1930 9 25 13.6 13.6 13.6 1 +1930 9 26 11.6 11.6 11.6 1 +1930 9 27 8.5 8.5 8.5 1 +1930 9 28 9.5 9.5 9.5 1 +1930 9 29 11.5 11.5 11.5 1 +1930 9 30 6.1 6.1 6.1 1 +1930 10 1 4.2 4.2 4.2 1 +1930 10 2 7.0 7.0 7.0 1 +1930 10 3 9.6 9.6 9.6 1 +1930 10 4 5.6 5.6 5.6 1 +1930 10 5 7.8 7.8 7.8 1 +1930 10 6 5.2 5.2 5.2 1 +1930 10 7 2.5 2.5 2.5 1 +1930 10 8 6.0 6.0 6.0 1 +1930 10 9 6.9 6.9 6.9 1 +1930 10 10 4.8 4.8 4.8 1 +1930 10 11 5.6 5.6 5.6 1 +1930 10 12 8.2 8.2 8.2 1 +1930 10 13 8.7 8.7 8.7 1 +1930 10 14 10.8 10.8 10.8 1 +1930 10 15 11.2 11.2 11.2 1 +1930 10 16 11.9 11.9 11.9 1 +1930 10 17 12.5 12.5 12.5 1 +1930 10 18 10.8 10.8 10.8 1 +1930 10 19 10.1 10.1 10.1 1 +1930 10 20 9.2 9.2 9.2 1 +1930 10 21 9.4 9.4 9.4 1 +1930 10 22 9.7 9.7 9.7 1 +1930 10 23 9.7 9.7 9.7 1 +1930 10 24 9.2 9.1 9.1 1 +1930 10 25 9.1 9.0 9.0 1 +1930 10 26 6.4 6.3 6.3 1 +1930 10 27 6.6 6.5 6.5 1 +1930 10 28 7.5 7.4 7.4 1 +1930 10 29 6.8 6.7 6.7 1 +1930 10 30 5.7 5.6 5.6 1 +1930 10 31 4.7 4.6 4.6 1 +1930 11 1 2.8 2.7 2.7 1 +1930 11 2 4.8 4.7 4.7 1 +1930 11 3 8.6 8.5 8.5 1 +1930 11 4 7.8 7.7 7.7 1 +1930 11 5 5.0 4.9 4.9 1 +1930 11 6 1.5 1.4 1.4 1 +1930 11 7 3.4 3.3 3.3 1 +1930 11 8 4.3 4.2 4.2 1 +1930 11 9 6.5 6.3 6.3 1 +1930 11 10 3.9 3.7 3.7 1 +1930 11 11 0.6 0.4 0.4 1 +1930 11 12 1.4 1.2 1.2 1 +1930 11 13 8.5 8.3 8.3 1 +1930 11 14 4.0 3.8 3.8 1 +1930 11 15 3.7 3.5 3.5 1 +1930 11 16 -1.3 -1.5 -1.5 1 +1930 11 17 -4.1 -4.3 -4.3 1 +1930 11 18 -3.9 -4.1 -4.1 1 +1930 11 19 -3.8 -4.0 -4.0 1 +1930 11 20 -2.7 -2.9 -2.9 1 +1930 11 21 0.3 0.1 0.1 1 +1930 11 22 3.6 3.4 3.4 1 +1930 11 23 4.6 4.4 4.4 1 +1930 11 24 1.2 1.0 1.0 1 +1930 11 25 0.8 0.6 0.6 1 +1930 11 26 4.2 4.0 4.0 1 +1930 11 27 6.1 5.9 5.9 1 +1930 11 28 5.1 4.9 4.9 1 +1930 11 29 4.7 4.5 4.5 1 +1930 11 30 3.2 3.0 3.0 1 +1930 12 1 1.2 1.0 1.0 1 +1930 12 2 2.1 1.9 1.9 1 +1930 12 3 4.5 4.3 4.3 1 +1930 12 4 5.4 5.2 5.2 1 +1930 12 5 4.2 4.0 4.0 1 +1930 12 6 3.9 3.7 3.7 1 +1930 12 7 3.9 3.7 3.7 1 +1930 12 8 3.3 3.1 3.1 1 +1930 12 9 4.1 3.9 3.9 1 +1930 12 10 3.7 3.5 3.5 1 +1930 12 11 3.6 3.4 3.4 1 +1930 12 12 3.4 3.2 3.2 1 +1930 12 13 1.1 0.9 0.9 1 +1930 12 14 -0.9 -1.1 -1.1 1 +1930 12 15 -0.7 -0.9 -0.9 1 +1930 12 16 -1.0 -1.2 -1.2 1 +1930 12 17 -2.9 -3.1 -3.1 1 +1930 12 18 -5.5 -5.8 -5.8 1 +1930 12 19 -2.2 -2.5 -2.5 1 +1930 12 20 3.0 2.7 2.7 1 +1930 12 21 2.8 2.5 2.5 1 +1930 12 22 0.4 0.1 0.1 1 +1930 12 23 -1.8 -2.1 -2.1 1 +1930 12 24 -0.7 -1.0 -1.0 1 +1930 12 25 -1.2 -1.5 -1.5 1 +1930 12 26 -2.4 -2.7 -2.7 1 +1930 12 27 -2.9 -3.2 -3.2 1 +1930 12 28 -0.3 -0.6 -0.6 1 +1930 12 29 2.3 1.9 1.9 1 +1930 12 30 1.9 1.5 1.5 1 +1930 12 31 1.7 1.3 1.3 1 +1931 1 1 -0.3 -0.7 -0.7 1 +1931 1 2 0.1 -0.3 -0.3 1 +1931 1 3 -1.5 -1.9 -1.9 1 +1931 1 4 -2.8 -3.2 -3.2 1 +1931 1 5 -3.2 -3.6 -3.6 1 +1931 1 6 -4.6 -5.0 -5.0 1 +1931 1 7 -2.4 -2.8 -2.8 1 +1931 1 8 -5.5 -5.9 -5.9 1 +1931 1 9 -6.4 -6.9 -6.9 1 +1931 1 10 -1.0 -1.5 -1.5 1 +1931 1 11 0.3 -0.2 -0.2 1 +1931 1 12 1.5 1.0 1.0 1 +1931 1 13 -2.0 -2.5 -2.5 1 +1931 1 14 -2.0 -2.5 -2.5 1 +1931 1 15 -0.7 -1.2 -1.2 1 +1931 1 16 -6.1 -6.6 -6.6 1 +1931 1 17 -4.9 -5.4 -5.4 1 +1931 1 18 -10.2 -10.7 -10.7 1 +1931 1 19 -8.1 -8.6 -8.6 1 +1931 1 20 -10.1 -10.6 -10.6 1 +1931 1 21 -10.3 -10.8 -10.8 1 +1931 1 22 -3.6 -4.1 -4.1 1 +1931 1 23 -0.1 -0.6 -0.6 1 +1931 1 24 1.4 0.9 0.9 1 +1931 1 25 2.0 1.5 1.5 1 +1931 1 26 1.2 0.7 0.7 1 +1931 1 27 1.2 0.7 0.7 1 +1931 1 28 -0.2 -0.7 -0.7 1 +1931 1 29 -5.4 -5.9 -5.9 1 +1931 1 30 -6.0 -6.5 -6.5 1 +1931 1 31 -5.4 -5.9 -5.9 1 +1931 2 1 -4.4 -4.9 -4.9 1 +1931 2 2 -3.5 -4.0 -4.0 1 +1931 2 3 -6.9 -7.4 -7.4 1 +1931 2 4 -4.5 -5.0 -5.0 1 +1931 2 5 -6.4 -6.9 -6.9 1 +1931 2 6 -9.7 -10.2 -10.2 1 +1931 2 7 -11.7 -12.2 -12.2 1 +1931 2 8 -7.1 -7.5 -7.5 1 +1931 2 9 -1.4 -1.8 -1.8 1 +1931 2 10 0.7 0.3 0.3 1 +1931 2 11 2.0 1.6 1.6 1 +1931 2 12 1.2 0.8 0.8 1 +1931 2 13 -1.5 -1.9 -1.9 1 +1931 2 14 -3.8 -4.2 -4.2 1 +1931 2 15 -2.0 -2.4 -2.4 1 +1931 2 16 -4.1 -4.5 -4.5 1 +1931 2 17 -5.8 -6.2 -6.2 1 +1931 2 18 -4.8 -5.2 -5.2 1 +1931 2 19 -2.3 -2.7 -2.7 1 +1931 2 20 -0.1 -0.6 -0.6 1 +1931 2 21 0.8 0.3 0.3 1 +1931 2 22 0.6 0.1 0.1 1 +1931 2 23 -1.1 -1.6 -1.6 1 +1931 2 24 -4.3 -4.8 -4.8 1 +1931 2 25 -0.9 -1.4 -1.4 1 +1931 2 26 -1.3 -1.8 -1.8 1 +1931 2 27 -5.7 -6.2 -6.2 1 +1931 2 28 -4.5 -5.0 -5.0 1 +1931 3 1 -8.7 -9.2 -9.2 1 +1931 3 2 -9.4 -9.9 -9.9 1 +1931 3 3 -7.3 -7.8 -7.8 1 +1931 3 4 -6.9 -7.4 -7.4 1 +1931 3 5 -8.0 -8.5 -8.5 1 +1931 3 6 -6.0 -6.5 -6.5 1 +1931 3 7 -5.2 -5.7 -5.7 1 +1931 3 8 -7.4 -7.9 -7.9 1 +1931 3 9 -8.0 -8.5 -8.5 1 +1931 3 10 -5.6 -6.1 -6.1 1 +1931 3 11 -4.9 -5.4 -5.4 1 +1931 3 12 -6.0 -6.5 -6.5 1 +1931 3 13 -9.6 -10.1 -10.1 1 +1931 3 14 -6.1 -6.6 -6.6 1 +1931 3 15 -7.2 -7.7 -7.7 1 +1931 3 16 -6.4 -6.9 -6.9 1 +1931 3 17 -5.5 -6.0 -6.0 1 +1931 3 18 -3.2 -3.7 -3.7 1 +1931 3 19 -2.1 -2.6 -2.6 1 +1931 3 20 1.7 1.2 1.2 1 +1931 3 21 3.5 3.0 3.0 1 +1931 3 22 4.3 3.8 3.8 1 +1931 3 23 2.3 1.8 1.8 1 +1931 3 24 0.8 0.3 0.3 1 +1931 3 25 -1.2 -1.7 -1.7 1 +1931 3 26 3.2 2.7 2.7 1 +1931 3 27 4.2 3.7 3.7 1 +1931 3 28 -3.8 -4.3 -4.3 1 +1931 3 29 -4.1 -4.6 -4.6 1 +1931 3 30 -4.1 -4.6 -4.6 1 +1931 3 31 -1.5 -2.0 -2.0 1 +1931 4 1 -1.7 -2.2 -2.2 1 +1931 4 2 -1.8 -2.2 -2.2 1 +1931 4 3 0.4 0.0 0.0 1 +1931 4 4 0.0 -0.4 -0.4 1 +1931 4 5 1.8 1.4 1.4 1 +1931 4 6 0.1 -0.3 -0.3 1 +1931 4 7 -1.8 -2.2 -2.2 1 +1931 4 8 -1.4 -1.8 -1.8 1 +1931 4 9 -1.5 -1.9 -1.9 1 +1931 4 10 -0.8 -1.2 -1.2 1 +1931 4 11 0.2 -0.2 -0.2 1 +1931 4 12 0.6 0.2 0.2 1 +1931 4 13 0.0 -0.4 -0.4 1 +1931 4 14 0.1 -0.3 -0.3 1 +1931 4 15 1.4 1.0 1.0 1 +1931 4 16 1.9 1.5 1.5 1 +1931 4 17 2.4 2.0 2.0 1 +1931 4 18 1.2 0.8 0.8 1 +1931 4 19 1.1 0.7 0.7 1 +1931 4 20 1.6 1.2 1.2 1 +1931 4 21 2.0 1.5 1.5 1 +1931 4 22 2.4 1.9 1.9 1 +1931 4 23 3.4 2.9 2.9 1 +1931 4 24 6.7 6.2 6.2 1 +1931 4 25 6.7 6.2 6.2 1 +1931 4 26 4.6 4.1 4.1 1 +1931 4 27 4.0 3.5 3.5 1 +1931 4 28 7.0 6.4 6.4 1 +1931 4 29 7.0 6.4 6.4 1 +1931 4 30 6.4 5.8 5.8 1 +1931 5 1 6.6 6.0 6.0 1 +1931 5 2 7.0 6.4 6.4 1 +1931 5 3 5.9 5.3 5.3 1 +1931 5 4 5.8 5.2 5.2 1 +1931 5 5 10.1 9.5 9.5 1 +1931 5 6 11.4 10.7 10.7 1 +1931 5 7 10.9 10.2 10.2 1 +1931 5 8 10.2 9.5 9.5 1 +1931 5 9 7.0 6.3 6.3 1 +1931 5 10 6.0 5.3 5.3 1 +1931 5 11 7.3 6.6 6.6 1 +1931 5 12 7.9 7.2 7.2 1 +1931 5 13 12.1 11.3 11.3 1 +1931 5 14 13.4 12.6 12.6 1 +1931 5 15 12.8 12.0 12.0 1 +1931 5 16 10.7 9.9 9.9 1 +1931 5 17 10.6 9.8 9.8 1 +1931 5 18 10.7 9.9 9.9 1 +1931 5 19 13.0 12.2 12.2 1 +1931 5 20 7.6 6.9 6.9 1 +1931 5 21 7.8 7.1 7.1 1 +1931 5 22 6.9 6.2 6.2 1 +1931 5 23 10.0 9.3 9.3 1 +1931 5 24 13.2 12.5 12.5 1 +1931 5 25 17.0 16.3 16.3 1 +1931 5 26 16.8 16.1 16.1 1 +1931 5 27 15.2 14.5 14.5 1 +1931 5 28 13.7 13.0 13.0 1 +1931 5 29 9.2 8.5 8.5 1 +1931 5 30 8.2 7.5 7.5 1 +1931 5 31 9.5 8.8 8.8 1 +1931 6 1 11.6 10.9 10.9 1 +1931 6 2 11.7 11.0 11.0 1 +1931 6 3 8.5 7.8 7.8 1 +1931 6 4 8.1 7.4 7.4 1 +1931 6 5 6.3 5.6 5.6 1 +1931 6 6 7.0 6.3 6.3 1 +1931 6 7 8.3 7.7 7.7 1 +1931 6 8 9.1 8.5 8.5 1 +1931 6 9 10.1 9.5 9.5 1 +1931 6 10 13.2 12.6 12.6 1 +1931 6 11 10.1 9.5 9.5 1 +1931 6 12 10.3 9.7 9.7 1 +1931 6 13 11.8 11.2 11.2 1 +1931 6 14 13.8 13.2 13.2 1 +1931 6 15 15.0 14.4 14.4 1 +1931 6 16 14.7 14.1 14.1 1 +1931 6 17 15.5 14.9 14.9 1 +1931 6 18 15.6 15.0 15.0 1 +1931 6 19 15.0 14.4 14.4 1 +1931 6 20 13.6 13.0 13.0 1 +1931 6 21 13.3 12.7 12.7 1 +1931 6 22 11.8 11.2 11.2 1 +1931 6 23 14.0 13.4 13.4 1 +1931 6 24 13.2 12.6 12.6 1 +1931 6 25 13.1 12.5 12.5 1 +1931 6 26 17.4 16.8 16.8 1 +1931 6 27 18.1 17.5 17.5 1 +1931 6 28 15.5 14.9 14.9 1 +1931 6 29 14.2 13.6 13.6 1 +1931 6 30 13.7 13.1 13.1 1 +1931 7 1 13.3 12.7 12.7 1 +1931 7 2 14.5 13.9 13.9 1 +1931 7 3 15.0 14.4 14.4 1 +1931 7 4 17.7 17.1 17.1 1 +1931 7 5 20.8 20.2 20.2 1 +1931 7 6 21.3 20.7 20.7 1 +1931 7 7 16.5 15.9 15.9 1 +1931 7 8 16.3 15.7 15.7 1 +1931 7 9 12.9 12.3 12.3 1 +1931 7 10 16.2 15.6 15.6 1 +1931 7 11 15.2 14.6 14.6 1 +1931 7 12 16.4 15.8 15.8 1 +1931 7 13 15.9 15.3 15.3 1 +1931 7 14 16.5 15.9 15.9 1 +1931 7 15 15.4 14.8 14.8 1 +1931 7 16 14.0 13.4 13.4 1 +1931 7 17 14.8 14.2 14.2 1 +1931 7 18 15.2 14.7 14.7 1 +1931 7 19 13.1 12.6 12.6 1 +1931 7 20 14.5 14.0 14.0 1 +1931 7 21 14.1 13.6 13.6 1 +1931 7 22 14.7 14.2 14.2 1 +1931 7 23 16.9 16.4 16.4 1 +1931 7 24 18.5 18.0 18.0 1 +1931 7 25 19.8 19.3 19.3 1 +1931 7 26 19.7 19.2 19.2 1 +1931 7 27 17.6 17.1 17.1 1 +1931 7 28 17.5 17.0 17.0 1 +1931 7 29 15.6 15.1 15.1 1 +1931 7 30 16.9 16.4 16.4 1 +1931 7 31 15.8 15.4 15.4 1 +1931 8 1 18.4 18.0 18.0 1 +1931 8 2 19.1 18.7 18.7 1 +1931 8 3 19.9 19.5 19.5 1 +1931 8 4 23.5 23.1 23.1 1 +1931 8 5 20.4 20.0 20.0 1 +1931 8 6 20.0 19.6 19.6 1 +1931 8 7 19.4 19.0 19.0 1 +1931 8 8 15.5 15.1 15.1 1 +1931 8 9 15.0 14.6 14.6 1 +1931 8 10 14.5 14.1 14.1 1 +1931 8 11 13.5 13.1 13.1 1 +1931 8 12 14.0 13.6 13.6 1 +1931 8 13 13.0 12.7 12.7 1 +1931 8 14 13.0 12.7 12.7 1 +1931 8 15 14.6 14.3 14.3 1 +1931 8 16 15.4 15.1 15.1 1 +1931 8 17 14.6 14.3 14.3 1 +1931 8 18 14.2 13.9 13.9 1 +1931 8 19 15.0 14.7 14.7 1 +1931 8 20 15.6 15.3 15.3 1 +1931 8 21 15.5 15.2 15.2 1 +1931 8 22 14.5 14.2 14.2 1 +1931 8 23 12.4 12.2 12.2 1 +1931 8 24 12.1 11.9 11.9 1 +1931 8 25 12.2 12.0 12.0 1 +1931 8 26 11.6 11.4 11.4 1 +1931 8 27 12.1 11.9 11.9 1 +1931 8 28 13.8 13.6 13.6 1 +1931 8 29 14.9 14.7 14.7 1 +1931 8 30 11.6 11.4 11.4 1 +1931 8 31 13.9 13.7 13.7 1 +1931 9 1 11.3 11.1 11.1 1 +1931 9 2 10.3 10.2 10.2 1 +1931 9 3 14.9 14.8 14.8 1 +1931 9 4 10.2 10.1 10.1 1 +1931 9 5 10.1 10.0 10.0 1 +1931 9 6 7.9 7.8 7.8 1 +1931 9 7 9.1 9.0 9.0 1 +1931 9 8 8.0 7.9 7.9 1 +1931 9 9 7.7 7.6 7.6 1 +1931 9 10 6.6 6.5 6.5 1 +1931 9 11 8.1 8.0 8.0 1 +1931 9 12 8.5 8.5 8.5 1 +1931 9 13 6.9 6.9 6.9 1 +1931 9 14 7.6 7.6 7.6 1 +1931 9 15 9.4 9.4 9.4 1 +1931 9 16 13.3 13.3 13.3 1 +1931 9 17 11.7 11.7 11.7 1 +1931 9 18 10.6 10.6 10.6 1 +1931 9 19 9.6 9.6 9.6 1 +1931 9 20 7.9 7.9 7.9 1 +1931 9 21 5.0 5.0 5.0 1 +1931 9 22 4.3 4.3 4.3 1 +1931 9 23 6.2 6.2 6.2 1 +1931 9 24 10.1 10.1 10.1 1 +1931 9 25 6.8 6.8 6.8 1 +1931 9 26 3.1 3.1 3.1 1 +1931 9 27 5.2 5.2 5.2 1 +1931 9 28 7.4 7.4 7.4 1 +1931 9 29 8.4 8.4 8.4 1 +1931 9 30 7.2 7.2 7.2 1 +1931 10 1 9.7 9.7 9.7 1 +1931 10 2 11.8 11.8 11.8 1 +1931 10 3 10.5 10.5 10.5 1 +1931 10 4 5.9 5.9 5.9 1 +1931 10 5 9.8 9.8 9.8 1 +1931 10 6 10.4 10.4 10.4 1 +1931 10 7 11.2 11.2 11.2 1 +1931 10 8 9.4 9.4 9.4 1 +1931 10 9 10.5 10.5 10.5 1 +1931 10 10 12.2 12.2 12.2 1 +1931 10 11 10.2 10.2 10.2 1 +1931 10 12 9.2 9.2 9.2 1 +1931 10 13 10.8 10.8 10.8 1 +1931 10 14 6.9 6.9 6.9 1 +1931 10 15 5.8 5.8 5.8 1 +1931 10 16 8.3 8.3 8.3 1 +1931 10 17 8.3 8.3 8.3 1 +1931 10 18 2.4 2.4 2.4 1 +1931 10 19 6.4 6.4 6.4 1 +1931 10 20 3.8 3.8 3.8 1 +1931 10 21 1.8 1.8 1.8 1 +1931 10 22 0.5 0.5 0.5 1 +1931 10 23 1.2 1.1 1.1 1 +1931 10 24 0.0 -0.1 -0.1 1 +1931 10 25 -1.4 -1.5 -1.5 1 +1931 10 26 -3.1 -3.2 -3.2 1 +1931 10 27 0.7 0.6 0.6 1 +1931 10 28 2.3 2.2 2.2 1 +1931 10 29 0.1 0.0 0.0 1 +1931 10 30 -0.2 -0.3 -0.3 1 +1931 10 31 -2.1 -2.2 -2.2 1 +1931 11 1 -3.3 -3.4 -3.4 1 +1931 11 2 4.0 3.9 3.9 1 +1931 11 3 6.2 6.1 6.1 1 +1931 11 4 11.3 11.2 11.2 1 +1931 11 5 9.6 9.5 9.5 1 +1931 11 6 5.8 5.7 5.7 1 +1931 11 7 6.0 5.8 5.8 1 +1931 11 8 6.7 6.5 6.5 1 +1931 11 9 6.0 5.8 5.8 1 +1931 11 10 6.9 6.7 6.7 1 +1931 11 11 6.8 6.6 6.6 1 +1931 11 12 7.2 7.0 7.0 1 +1931 11 13 6.6 6.4 6.4 1 +1931 11 14 5.6 5.4 5.4 1 +1931 11 15 3.7 3.5 3.5 1 +1931 11 16 3.1 2.9 2.9 1 +1931 11 17 3.0 2.8 2.8 1 +1931 11 18 3.4 3.2 3.2 1 +1931 11 19 2.2 2.0 2.0 1 +1931 11 20 2.4 2.2 2.2 1 +1931 11 21 2.8 2.6 2.6 1 +1931 11 22 2.1 1.9 1.9 1 +1931 11 23 1.8 1.6 1.6 1 +1931 11 24 1.4 1.2 1.2 1 +1931 11 25 3.0 2.8 2.8 1 +1931 11 26 3.5 3.3 3.3 1 +1931 11 27 1.1 0.9 0.9 1 +1931 11 28 0.2 0.0 0.0 1 +1931 11 29 -0.5 -0.7 -0.7 1 +1931 11 30 -2.5 -2.7 -2.7 1 +1931 12 1 -1.8 -2.0 -2.0 1 +1931 12 2 -1.0 -1.2 -1.2 1 +1931 12 3 1.5 1.3 1.3 1 +1931 12 4 2.9 2.7 2.7 1 +1931 12 5 3.2 3.0 3.0 1 +1931 12 6 1.7 1.5 1.5 1 +1931 12 7 0.2 0.0 0.0 1 +1931 12 8 -1.0 -1.2 -1.2 1 +1931 12 9 -2.3 -2.5 -2.5 1 +1931 12 10 -5.2 -5.4 -5.4 1 +1931 12 11 -1.7 -1.9 -1.9 1 +1931 12 12 1.2 1.0 1.0 1 +1931 12 13 0.1 -0.1 -0.1 1 +1931 12 14 -0.6 -0.8 -0.8 1 +1931 12 15 -1.6 -1.8 -1.8 1 +1931 12 16 -4.8 -5.0 -5.0 1 +1931 12 17 -4.7 -5.0 -5.0 1 +1931 12 18 -3.8 -4.1 -4.1 1 +1931 12 19 0.7 0.4 0.4 1 +1931 12 20 -2.9 -3.2 -3.2 1 +1931 12 21 -1.3 -1.6 -1.6 1 +1931 12 22 -2.9 -3.2 -3.2 1 +1931 12 23 -2.1 -2.4 -2.4 1 +1931 12 24 3.4 3.1 3.1 1 +1931 12 25 3.2 2.9 2.9 1 +1931 12 26 -1.8 -2.1 -2.1 1 +1931 12 27 0.0 -0.3 -0.3 1 +1931 12 28 -1.4 -1.8 -1.8 1 +1931 12 29 -5.5 -5.9 -5.9 1 +1931 12 30 -8.8 -9.2 -9.2 1 +1931 12 31 -9.8 -10.2 -10.2 1 +1932 1 1 -6.7 -7.1 -7.1 1 +1932 1 2 -1.7 -2.1 -2.1 1 +1932 1 3 -6.3 -6.7 -6.7 1 +1932 1 4 -10.3 -10.7 -10.7 1 +1932 1 5 0.4 0.0 0.0 1 +1932 1 6 2.8 2.4 2.4 1 +1932 1 7 1.5 1.1 1.1 1 +1932 1 8 0.2 -0.3 -0.3 1 +1932 1 9 -5.4 -5.9 -5.9 1 +1932 1 10 -3.2 -3.7 -3.7 1 +1932 1 11 1.0 0.5 0.5 1 +1932 1 12 1.6 1.1 1.1 1 +1932 1 13 2.5 2.0 2.0 1 +1932 1 14 3.5 3.0 3.0 1 +1932 1 15 0.7 0.2 0.2 1 +1932 1 16 3.6 3.1 3.1 1 +1932 1 17 4.8 4.3 4.3 1 +1932 1 18 5.8 5.3 5.3 1 +1932 1 19 8.9 8.4 8.4 1 +1932 1 20 6.5 6.0 6.0 1 +1932 1 21 5.6 5.1 5.1 1 +1932 1 22 2.7 2.2 2.2 1 +1932 1 23 2.0 1.5 1.5 1 +1932 1 24 3.6 3.1 3.1 1 +1932 1 25 2.4 1.9 1.9 1 +1932 1 26 3.1 2.6 2.6 1 +1932 1 27 4.9 4.4 4.4 1 +1932 1 28 5.6 5.1 5.1 1 +1932 1 29 4.1 3.6 3.6 1 +1932 1 30 1.6 1.1 1.1 1 +1932 1 31 -1.4 -1.9 -1.9 1 +1932 2 1 1.4 0.9 0.9 1 +1932 2 2 -2.1 -2.6 -2.6 1 +1932 2 3 -1.1 -1.6 -1.6 1 +1932 2 4 2.0 1.5 1.5 1 +1932 2 5 -6.0 -6.5 -6.5 1 +1932 2 6 0.6 0.1 0.1 1 +1932 2 7 1.3 0.8 0.8 1 +1932 2 8 -4.7 -5.2 -5.2 1 +1932 2 9 -9.9 -10.4 -10.4 1 +1932 2 10 -8.1 -8.6 -8.6 1 +1932 2 11 -3.7 -4.2 -4.2 1 +1932 2 12 -4.6 -5.1 -5.1 1 +1932 2 13 -3.3 -3.7 -3.7 1 +1932 2 14 -3.8 -4.2 -4.2 1 +1932 2 15 -0.7 -1.1 -1.1 1 +1932 2 16 -2.4 -2.8 -2.8 1 +1932 2 17 1.1 0.6 0.6 1 +1932 2 18 -0.4 -0.9 -0.9 1 +1932 2 19 0.9 0.4 0.4 1 +1932 2 20 -4.8 -5.3 -5.3 1 +1932 2 21 0.7 0.2 0.2 1 +1932 2 22 -1.5 -2.0 -2.0 1 +1932 2 23 -5.8 -6.3 -6.3 1 +1932 2 24 -6.3 -6.8 -6.8 1 +1932 2 25 -4.1 -4.6 -4.6 1 +1932 2 26 0.0 -0.5 -0.5 1 +1932 2 27 -1.7 -2.2 -2.2 1 +1932 2 28 -2.5 -3.0 -3.0 1 +1932 2 29 -0.9 -1.4 -1.4 1 +1932 3 1 -2.7 -3.2 -3.2 1 +1932 3 2 -1.5 -2.0 -2.0 1 +1932 3 3 -1.4 -1.9 -1.9 1 +1932 3 4 -2.7 -3.2 -3.2 1 +1932 3 5 -1.8 -2.3 -2.3 1 +1932 3 6 -2.2 -2.7 -2.7 1 +1932 3 7 -3.2 -3.7 -3.7 1 +1932 3 8 -5.5 -6.0 -6.0 1 +1932 3 9 -7.7 -8.2 -8.2 1 +1932 3 10 -10.7 -11.2 -11.2 1 +1932 3 11 -10.9 -11.4 -11.4 1 +1932 3 12 -6.6 -7.1 -7.1 1 +1932 3 13 -3.9 -4.4 -4.4 1 +1932 3 14 -0.6 -1.1 -1.1 1 +1932 3 15 -1.2 -1.7 -1.7 1 +1932 3 16 -0.4 -0.9 -0.9 1 +1932 3 17 -2.8 -3.3 -3.3 1 +1932 3 18 -3.0 -3.5 -3.5 1 +1932 3 19 -3.1 -3.6 -3.6 1 +1932 3 20 -2.9 -3.4 -3.4 1 +1932 3 21 -4.2 -4.7 -4.7 1 +1932 3 22 -0.6 -1.1 -1.1 1 +1932 3 23 0.0 -0.5 -0.5 1 +1932 3 24 -1.9 -2.4 -2.4 1 +1932 3 25 1.2 0.7 0.7 1 +1932 3 26 2.8 2.3 2.3 1 +1932 3 27 3.6 3.1 3.1 1 +1932 3 28 2.2 1.7 1.7 1 +1932 3 29 1.6 1.1 1.1 1 +1932 3 30 3.0 2.5 2.5 1 +1932 3 31 3.2 2.7 2.7 1 +1932 4 1 2.4 1.9 1.9 1 +1932 4 2 2.5 2.0 2.0 1 +1932 4 3 3.9 3.4 3.4 1 +1932 4 4 2.5 2.1 2.1 1 +1932 4 5 0.7 0.3 0.3 1 +1932 4 6 1.3 0.9 0.9 1 +1932 4 7 0.9 0.5 0.5 1 +1932 4 8 -0.3 -0.7 -0.7 1 +1932 4 9 1.0 0.6 0.6 1 +1932 4 10 3.3 2.9 2.9 1 +1932 4 11 5.2 4.8 4.8 1 +1932 4 12 5.8 5.4 5.4 1 +1932 4 13 5.6 5.2 5.2 1 +1932 4 14 4.8 4.4 4.4 1 +1932 4 15 2.5 2.1 2.1 1 +1932 4 16 2.9 2.5 2.5 1 +1932 4 17 3.0 2.6 2.6 1 +1932 4 18 2.6 2.2 2.2 1 +1932 4 19 2.3 1.9 1.9 1 +1932 4 20 3.4 2.9 2.9 1 +1932 4 21 4.8 4.3 4.3 1 +1932 4 22 8.3 7.8 7.8 1 +1932 4 23 7.1 6.6 6.6 1 +1932 4 24 6.6 6.1 6.1 1 +1932 4 25 5.0 4.5 4.5 1 +1932 4 26 5.2 4.7 4.7 1 +1932 4 27 4.8 4.2 4.2 1 +1932 4 28 4.9 4.3 4.3 1 +1932 4 29 5.5 4.9 4.9 1 +1932 4 30 4.0 3.4 3.4 1 +1932 5 1 7.8 7.2 7.2 1 +1932 5 2 6.6 6.0 6.0 1 +1932 5 3 7.4 6.8 6.8 1 +1932 5 4 5.6 5.0 5.0 1 +1932 5 5 3.7 3.0 3.0 1 +1932 5 6 3.7 3.0 3.0 1 +1932 5 7 4.3 3.6 3.6 1 +1932 5 8 6.5 5.8 5.8 1 +1932 5 9 6.3 5.6 5.6 1 +1932 5 10 3.1 2.4 2.4 1 +1932 5 11 7.0 6.3 6.3 1 +1932 5 12 8.5 7.7 7.7 1 +1932 5 13 9.8 9.0 9.0 1 +1932 5 14 11.1 10.3 10.3 1 +1932 5 15 10.0 9.2 9.2 1 +1932 5 16 11.8 11.0 11.0 1 +1932 5 17 15.0 14.2 14.2 1 +1932 5 18 16.5 15.7 15.7 1 +1932 5 19 13.1 12.3 12.3 1 +1932 5 20 14.2 13.4 13.4 1 +1932 5 21 13.2 12.4 12.4 1 +1932 5 22 6.8 6.0 6.0 1 +1932 5 23 9.3 8.6 8.6 1 +1932 5 24 11.3 10.6 10.6 1 +1932 5 25 7.4 6.7 6.7 1 +1932 5 26 9.5 8.8 8.8 1 +1932 5 27 10.2 9.5 9.5 1 +1932 5 28 10.9 10.2 10.2 1 +1932 5 29 13.2 12.5 12.5 1 +1932 5 30 15.2 14.5 14.5 1 +1932 5 31 15.2 14.5 14.5 1 +1932 6 1 12.4 11.7 11.7 1 +1932 6 2 12.6 11.9 11.9 1 +1932 6 3 9.7 9.0 9.0 1 +1932 6 4 8.8 8.1 8.1 1 +1932 6 5 8.3 7.6 7.6 1 +1932 6 6 11.4 10.7 10.7 1 +1932 6 7 12.3 11.6 11.6 1 +1932 6 8 8.3 7.6 7.6 1 +1932 6 9 8.9 8.3 8.3 1 +1932 6 10 11.4 10.8 10.8 1 +1932 6 11 15.3 14.7 14.7 1 +1932 6 12 14.7 14.1 14.1 1 +1932 6 13 13.0 12.4 12.4 1 +1932 6 14 14.0 13.4 13.4 1 +1932 6 15 12.7 12.1 12.1 1 +1932 6 16 11.0 10.4 10.4 1 +1932 6 17 8.5 7.9 7.9 1 +1932 6 18 11.2 10.6 10.6 1 +1932 6 19 9.9 9.3 9.3 1 +1932 6 20 10.0 9.4 9.4 1 +1932 6 21 9.8 9.2 9.2 1 +1932 6 22 13.2 12.6 12.6 1 +1932 6 23 15.7 15.1 15.1 1 +1932 6 24 14.8 14.2 14.2 1 +1932 6 25 15.5 14.9 14.9 1 +1932 6 26 14.0 13.4 13.4 1 +1932 6 27 16.4 15.8 15.8 1 +1932 6 28 18.1 17.5 17.5 1 +1932 6 29 17.5 16.9 16.9 1 +1932 6 30 14.9 14.3 14.3 1 +1932 7 1 15.9 15.3 15.3 1 +1932 7 2 17.5 16.9 16.9 1 +1932 7 3 19.5 18.9 18.9 1 +1932 7 4 19.3 18.7 18.7 1 +1932 7 5 20.5 19.9 19.9 1 +1932 7 6 21.0 20.4 20.4 1 +1932 7 7 21.4 20.8 20.8 1 +1932 7 8 20.5 19.9 19.9 1 +1932 7 9 19.7 19.1 19.1 1 +1932 7 10 20.1 19.5 19.5 1 +1932 7 11 21.2 20.6 20.6 1 +1932 7 12 23.0 22.4 22.4 1 +1932 7 13 17.9 17.3 17.3 1 +1932 7 14 18.5 17.9 17.9 1 +1932 7 15 17.6 17.0 17.0 1 +1932 7 16 17.7 17.1 17.1 1 +1932 7 17 17.8 17.2 17.2 1 +1932 7 18 18.7 18.1 18.1 1 +1932 7 19 14.1 13.6 13.6 1 +1932 7 20 15.3 14.8 14.8 1 +1932 7 21 17.9 17.4 17.4 1 +1932 7 22 18.3 17.8 17.8 1 +1932 7 23 19.0 18.5 18.5 1 +1932 7 24 18.7 18.2 18.2 1 +1932 7 25 19.1 18.6 18.6 1 +1932 7 26 21.6 21.1 21.1 1 +1932 7 27 20.5 20.0 20.0 1 +1932 7 28 19.3 18.8 18.8 1 +1932 7 29 18.0 17.5 17.5 1 +1932 7 30 17.3 16.8 16.8 1 +1932 7 31 19.0 18.5 18.5 1 +1932 8 1 19.3 18.9 18.9 1 +1932 8 2 17.3 16.9 16.9 1 +1932 8 3 17.0 16.6 16.6 1 +1932 8 4 15.0 14.6 14.6 1 +1932 8 5 17.3 16.9 16.9 1 +1932 8 6 16.9 16.5 16.5 1 +1932 8 7 18.6 18.2 18.2 1 +1932 8 8 14.7 14.3 14.3 1 +1932 8 9 14.4 14.0 14.0 1 +1932 8 10 15.6 15.2 15.2 1 +1932 8 11 16.3 15.9 15.9 1 +1932 8 12 18.2 17.8 17.8 1 +1932 8 13 18.9 18.5 18.5 1 +1932 8 14 20.1 19.8 19.8 1 +1932 8 15 19.1 18.8 18.8 1 +1932 8 16 18.0 17.7 17.7 1 +1932 8 17 18.5 18.2 18.2 1 +1932 8 18 18.5 18.2 18.2 1 +1932 8 19 16.6 16.3 16.3 1 +1932 8 20 15.0 14.7 14.7 1 +1932 8 21 14.8 14.5 14.5 1 +1932 8 22 12.8 12.5 12.5 1 +1932 8 23 15.5 15.2 15.2 1 +1932 8 24 14.3 14.1 14.1 1 +1932 8 25 16.6 16.4 16.4 1 +1932 8 26 15.4 15.2 15.2 1 +1932 8 27 15.9 15.7 15.7 1 +1932 8 28 13.4 13.2 13.2 1 +1932 8 29 13.6 13.4 13.4 1 +1932 8 30 13.4 13.2 13.2 1 +1932 8 31 15.2 15.0 15.0 1 +1932 9 1 15.7 15.5 15.5 1 +1932 9 2 15.1 14.9 14.9 1 +1932 9 3 14.5 14.4 14.4 1 +1932 9 4 12.1 12.0 12.0 1 +1932 9 5 12.9 12.8 12.8 1 +1932 9 6 12.7 12.6 12.6 1 +1932 9 7 15.8 15.7 15.7 1 +1932 9 8 13.8 13.7 13.7 1 +1932 9 9 14.9 14.8 14.8 1 +1932 9 10 16.6 16.5 16.5 1 +1932 9 11 13.3 13.2 13.2 1 +1932 9 12 12.2 12.1 12.1 1 +1932 9 13 10.9 10.9 10.9 1 +1932 9 14 8.8 8.8 8.8 1 +1932 9 15 13.2 13.2 13.2 1 +1932 9 16 12.3 12.3 12.3 1 +1932 9 17 10.2 10.2 10.2 1 +1932 9 18 12.4 12.4 12.4 1 +1932 9 19 12.8 12.8 12.8 1 +1932 9 20 10.1 10.1 10.1 1 +1932 9 21 7.3 7.3 7.3 1 +1932 9 22 6.0 6.0 6.0 1 +1932 9 23 8.4 8.4 8.4 1 +1932 9 24 7.8 7.8 7.8 1 +1932 9 25 9.2 9.2 9.2 1 +1932 9 26 11.9 11.9 11.9 1 +1932 9 27 9.9 9.9 9.9 1 +1932 9 28 8.4 8.4 8.4 1 +1932 9 29 13.2 13.2 13.2 1 +1932 9 30 12.8 12.8 12.8 1 +1932 10 1 12.1 12.1 12.1 1 +1932 10 2 6.4 6.4 6.4 1 +1932 10 3 4.3 4.3 4.3 1 +1932 10 4 4.8 4.8 4.8 1 +1932 10 5 2.5 2.5 2.5 1 +1932 10 6 3.4 3.4 3.4 1 +1932 10 7 7.5 7.5 7.5 1 +1932 10 8 8.3 8.3 8.3 1 +1932 10 9 7.9 7.9 7.9 1 +1932 10 10 7.3 7.3 7.3 1 +1932 10 11 7.4 7.4 7.4 1 +1932 10 12 8.6 8.6 8.6 1 +1932 10 13 8.6 8.6 8.6 1 +1932 10 14 8.5 8.5 8.5 1 +1932 10 15 8.9 8.9 8.9 1 +1932 10 16 7.0 7.0 7.0 1 +1932 10 17 7.7 7.7 7.7 1 +1932 10 18 5.8 5.8 5.8 1 +1932 10 19 3.6 3.6 3.6 1 +1932 10 20 0.7 0.7 0.7 1 +1932 10 21 4.3 4.3 4.3 1 +1932 10 22 5.4 5.3 5.3 1 +1932 10 23 8.9 8.8 8.8 1 +1932 10 24 3.8 3.7 3.7 1 +1932 10 25 1.4 1.3 1.3 1 +1932 10 26 1.5 1.4 1.4 1 +1932 10 27 2.3 2.2 2.2 1 +1932 10 28 0.9 0.8 0.8 1 +1932 10 29 0.9 0.8 0.8 1 +1932 10 30 0.7 0.6 0.6 1 +1932 10 31 -0.7 -0.8 -0.8 1 +1932 11 1 -1.3 -1.4 -1.4 1 +1932 11 2 2.1 2.0 2.0 1 +1932 11 3 4.4 4.3 4.3 1 +1932 11 4 6.5 6.4 6.4 1 +1932 11 5 5.3 5.2 5.2 1 +1932 11 6 1.4 1.2 1.2 1 +1932 11 7 3.3 3.1 3.1 1 +1932 11 8 3.5 3.3 3.3 1 +1932 11 9 5.7 5.5 5.5 1 +1932 11 10 6.0 5.8 5.8 1 +1932 11 11 2.9 2.7 2.7 1 +1932 11 12 1.1 0.9 0.9 1 +1932 11 13 -0.4 -0.6 -0.6 1 +1932 11 14 -1.3 -1.5 -1.5 1 +1932 11 15 1.9 1.7 1.7 1 +1932 11 16 1.0 0.8 0.8 1 +1932 11 17 2.2 2.0 2.0 1 +1932 11 18 -0.7 -0.9 -0.9 1 +1932 11 19 1.6 1.4 1.4 1 +1932 11 20 2.0 1.8 1.8 1 +1932 11 21 4.1 3.9 3.9 1 +1932 11 22 3.8 3.6 3.6 1 +1932 11 23 3.7 3.5 3.5 1 +1932 11 24 2.3 2.1 2.1 1 +1932 11 25 1.8 1.6 1.6 1 +1932 11 26 -0.9 -1.1 -1.1 1 +1932 11 27 4.8 4.6 4.6 1 +1932 11 28 2.2 2.0 2.0 1 +1932 11 29 5.6 5.4 5.4 1 +1932 11 30 6.7 6.5 6.5 1 +1932 12 1 3.1 2.9 2.9 1 +1932 12 2 3.2 3.0 3.0 1 +1932 12 3 3.7 3.5 3.5 1 +1932 12 4 3.5 3.3 3.3 1 +1932 12 5 3.2 3.0 3.0 1 +1932 12 6 0.5 0.3 0.3 1 +1932 12 7 -1.9 -2.1 -2.1 1 +1932 12 8 -1.7 -1.9 -1.9 1 +1932 12 9 -1.0 -1.2 -1.2 1 +1932 12 10 0.1 -0.1 -0.1 1 +1932 12 11 0.7 0.5 0.5 1 +1932 12 12 -1.4 -1.6 -1.6 1 +1932 12 13 -1.1 -1.3 -1.3 1 +1932 12 14 1.7 1.5 1.5 1 +1932 12 15 1.7 1.5 1.5 1 +1932 12 16 4.0 3.7 3.7 1 +1932 12 17 6.4 6.1 6.1 1 +1932 12 18 8.7 8.4 8.4 1 +1932 12 19 7.5 7.2 7.2 1 +1932 12 20 5.4 5.1 5.1 1 +1932 12 21 3.1 2.8 2.8 1 +1932 12 22 3.4 3.1 3.1 1 +1932 12 23 3.0 2.7 2.7 1 +1932 12 24 4.1 3.8 3.8 1 +1932 12 25 1.7 1.4 1.4 1 +1932 12 26 3.1 2.8 2.8 1 +1932 12 27 4.4 4.0 4.0 1 +1932 12 28 4.7 4.3 4.3 1 +1932 12 29 4.7 4.3 4.3 1 +1932 12 30 0.4 0.0 0.0 1 +1932 12 31 0.8 0.4 0.4 1 +1933 1 1 2.5 2.1 2.1 1 +1933 1 2 2.6 2.2 2.2 1 +1933 1 3 3.9 3.5 3.5 1 +1933 1 4 3.3 2.9 2.9 1 +1933 1 5 3.6 3.2 3.2 1 +1933 1 6 3.3 2.9 2.9 1 +1933 1 7 1.7 1.2 1.2 1 +1933 1 8 1.6 1.1 1.1 1 +1933 1 9 1.4 0.9 0.9 1 +1933 1 10 1.1 0.6 0.6 1 +1933 1 11 -0.8 -1.3 -1.3 1 +1933 1 12 -0.7 -1.2 -1.2 1 +1933 1 13 -1.8 -2.3 -2.3 1 +1933 1 14 -2.4 -2.9 -2.9 1 +1933 1 15 -2.8 -3.3 -3.3 1 +1933 1 16 -2.4 -2.9 -2.9 1 +1933 1 17 -4.8 -5.3 -5.3 1 +1933 1 18 -5.5 -6.0 -6.0 1 +1933 1 19 -7.0 -7.5 -7.5 1 +1933 1 20 -9.1 -9.6 -9.6 1 +1933 1 21 -9.7 -10.2 -10.2 1 +1933 1 22 -13.6 -14.1 -14.1 1 +1933 1 23 -11.9 -12.4 -12.4 1 +1933 1 24 -4.9 -5.4 -5.4 1 +1933 1 25 -0.9 -1.4 -1.4 1 +1933 1 26 -0.4 -0.9 -0.9 1 +1933 1 27 -1.3 -1.8 -1.8 1 +1933 1 28 0.7 0.2 0.2 1 +1933 1 29 -1.4 -1.9 -1.9 1 +1933 1 30 -4.0 -4.5 -4.5 1 +1933 1 31 -0.6 -1.1 -1.1 1 +1933 2 1 -0.2 -0.7 -0.7 1 +1933 2 2 2.4 1.9 1.9 1 +1933 2 3 1.2 0.7 0.7 1 +1933 2 4 -0.7 -1.2 -1.2 1 +1933 2 5 0.4 -0.1 -0.1 1 +1933 2 6 -3.2 -3.7 -3.7 1 +1933 2 7 -4.4 -4.9 -4.9 1 +1933 2 8 -0.4 -0.9 -0.9 1 +1933 2 9 3.7 3.2 3.2 1 +1933 2 10 -1.4 -1.9 -1.9 1 +1933 2 11 -3.1 -3.6 -3.6 1 +1933 2 12 0.0 -0.5 -0.5 1 +1933 2 13 -0.6 -1.1 -1.1 1 +1933 2 14 -4.0 -4.5 -4.5 1 +1933 2 15 -6.0 -6.5 -6.5 1 +1933 2 16 -7.3 -7.8 -7.8 1 +1933 2 17 -7.7 -8.2 -8.2 1 +1933 2 18 -8.4 -8.9 -8.9 1 +1933 2 19 -9.9 -10.4 -10.4 1 +1933 2 20 -6.7 -7.2 -7.2 1 +1933 2 21 -2.9 -3.4 -3.4 1 +1933 2 22 -4.8 -5.3 -5.3 1 +1933 2 23 -6.0 -6.5 -6.5 1 +1933 2 24 -3.9 -4.4 -4.4 1 +1933 2 25 -3.8 -4.3 -4.3 1 +1933 2 26 -2.7 -3.2 -3.2 1 +1933 2 27 -3.8 -4.3 -4.3 1 +1933 2 28 -2.3 -2.8 -2.8 1 +1933 3 1 -3.8 -4.3 -4.3 1 +1933 3 2 -2.0 -2.5 -2.5 1 +1933 3 3 -1.6 -2.1 -2.1 1 +1933 3 4 -2.6 -3.1 -3.1 1 +1933 3 5 -2.8 -3.3 -3.3 1 +1933 3 6 -2.3 -2.8 -2.8 1 +1933 3 7 -2.5 -3.0 -3.0 1 +1933 3 8 -1.0 -1.5 -1.5 1 +1933 3 9 -0.9 -1.4 -1.4 1 +1933 3 10 1.0 0.5 0.5 1 +1933 3 11 2.2 1.7 1.7 1 +1933 3 12 1.2 0.7 0.7 1 +1933 3 13 1.6 1.0 1.0 1 +1933 3 14 0.5 -0.1 -0.1 1 +1933 3 15 2.9 2.3 2.3 1 +1933 3 16 4.1 3.5 3.5 1 +1933 3 17 4.9 4.3 4.3 1 +1933 3 18 4.3 3.8 3.8 1 +1933 3 19 -4.2 -4.7 -4.7 1 +1933 3 20 -1.8 -2.3 -2.3 1 +1933 3 21 -2.6 -3.1 -3.1 1 +1933 3 22 -1.9 -2.4 -2.4 1 +1933 3 23 0.7 0.2 0.2 1 +1933 3 24 3.5 3.0 3.0 1 +1933 3 25 6.6 6.1 6.1 1 +1933 3 26 5.1 4.6 4.6 1 +1933 3 27 4.1 3.6 3.6 1 +1933 3 28 7.8 7.3 7.3 1 +1933 3 29 7.7 7.2 7.2 1 +1933 3 30 8.4 7.9 7.9 1 +1933 3 31 5.6 5.1 5.1 1 +1933 4 1 5.4 4.9 4.9 1 +1933 4 2 -0.7 -1.2 -1.2 1 +1933 4 3 0.0 -0.5 -0.5 1 +1933 4 4 0.3 -0.2 -0.2 1 +1933 4 5 1.4 0.9 0.9 1 +1933 4 6 3.1 2.6 2.6 1 +1933 4 7 0.0 -0.4 -0.4 1 +1933 4 8 1.6 1.2 1.2 1 +1933 4 9 5.2 4.8 4.8 1 +1933 4 10 6.0 5.6 5.6 1 +1933 4 11 7.7 7.3 7.3 1 +1933 4 12 5.8 5.4 5.4 1 +1933 4 13 6.4 6.0 6.0 1 +1933 4 14 3.4 3.0 3.0 1 +1933 4 15 2.9 2.5 2.5 1 +1933 4 16 -1.2 -1.6 -1.6 1 +1933 4 17 -1.3 -1.7 -1.7 1 +1933 4 18 0.2 -0.2 -0.2 1 +1933 4 19 0.2 -0.3 -0.3 1 +1933 4 20 -0.1 -0.6 -0.6 1 +1933 4 21 1.1 0.6 0.6 1 +1933 4 22 5.6 5.1 5.1 1 +1933 4 23 3.5 3.0 3.0 1 +1933 4 24 5.3 4.8 4.8 1 +1933 4 25 5.5 5.0 5.0 1 +1933 4 26 7.6 7.0 7.0 1 +1933 4 27 7.0 6.4 6.4 1 +1933 4 28 8.3 7.7 7.7 1 +1933 4 29 10.3 9.7 9.7 1 +1933 4 30 9.0 8.4 8.4 1 +1933 5 1 3.9 3.3 3.3 1 +1933 5 2 4.6 4.0 4.0 1 +1933 5 3 7.5 6.9 6.9 1 +1933 5 4 4.7 4.0 4.0 1 +1933 5 5 6.2 5.5 5.5 1 +1933 5 6 10.7 10.0 10.0 1 +1933 5 7 5.6 4.9 4.9 1 +1933 5 8 5.5 4.8 4.8 1 +1933 5 9 6.1 5.4 5.4 1 +1933 5 10 6.7 6.0 6.0 1 +1933 5 11 6.3 5.5 5.5 1 +1933 5 12 6.1 5.3 5.3 1 +1933 5 13 6.3 5.5 5.5 1 +1933 5 14 6.4 5.6 5.6 1 +1933 5 15 4.7 3.9 3.9 1 +1933 5 16 4.9 4.1 4.1 1 +1933 5 17 5.5 4.7 4.7 1 +1933 5 18 8.1 7.3 7.3 1 +1933 5 19 11.3 10.5 10.5 1 +1933 5 20 14.4 13.6 13.6 1 +1933 5 21 9.5 8.7 8.7 1 +1933 5 22 8.5 7.7 7.7 1 +1933 5 23 8.7 7.9 7.9 1 +1933 5 24 12.2 11.4 11.4 1 +1933 5 25 7.4 6.6 6.6 1 +1933 5 26 12.4 11.7 11.7 1 +1933 5 27 12.1 11.4 11.4 1 +1933 5 28 12.4 11.7 11.7 1 +1933 5 29 12.5 11.8 11.8 1 +1933 5 30 12.1 11.4 11.4 1 +1933 5 31 14.0 13.3 13.3 1 +1933 6 1 12.4 11.7 11.7 1 +1933 6 2 8.5 7.8 7.8 1 +1933 6 3 10.1 9.4 9.4 1 +1933 6 4 14.4 13.7 13.7 1 +1933 6 5 13.9 13.2 13.2 1 +1933 6 6 13.2 12.5 12.5 1 +1933 6 7 16.0 15.3 15.3 1 +1933 6 8 16.3 15.6 15.6 1 +1933 6 9 17.6 16.9 16.9 1 +1933 6 10 18.5 17.8 17.8 1 +1933 6 11 20.2 19.5 19.5 1 +1933 6 12 17.7 17.1 17.1 1 +1933 6 13 16.4 15.8 15.8 1 +1933 6 14 17.2 16.6 16.6 1 +1933 6 15 17.6 17.0 17.0 1 +1933 6 16 18.5 17.9 17.9 1 +1933 6 17 18.0 17.4 17.4 1 +1933 6 18 16.0 15.4 15.4 1 +1933 6 19 17.9 17.3 17.3 1 +1933 6 20 16.9 16.3 16.3 1 +1933 6 21 16.9 16.3 16.3 1 +1933 6 22 17.8 17.2 17.2 1 +1933 6 23 18.7 18.1 18.1 1 +1933 6 24 13.3 12.7 12.7 1 +1933 6 25 11.8 11.2 11.2 1 +1933 6 26 12.5 11.9 11.9 1 +1933 6 27 13.8 13.2 13.2 1 +1933 6 28 11.1 10.5 10.5 1 +1933 6 29 12.1 11.5 11.5 1 +1933 6 30 14.8 14.2 14.2 1 +1933 7 1 16.0 15.4 15.4 1 +1933 7 2 18.0 17.4 17.4 1 +1933 7 3 14.8 14.2 14.2 1 +1933 7 4 14.8 14.2 14.2 1 +1933 7 5 18.5 17.9 17.9 1 +1933 7 6 20.6 20.0 20.0 1 +1933 7 7 23.1 22.5 22.5 1 +1933 7 8 24.7 24.1 24.1 1 +1933 7 9 26.4 25.8 25.8 1 +1933 7 10 25.2 24.6 24.6 1 +1933 7 11 21.8 21.2 21.2 1 +1933 7 12 18.8 18.2 18.2 1 +1933 7 13 18.8 18.2 18.2 1 +1933 7 14 16.2 15.6 15.6 1 +1933 7 15 18.4 17.8 17.8 1 +1933 7 16 18.9 18.3 18.3 1 +1933 7 17 15.4 14.8 14.8 1 +1933 7 18 15.1 14.5 14.5 1 +1933 7 19 15.4 14.8 14.8 1 +1933 7 20 19.1 18.5 18.5 1 +1933 7 21 20.2 19.7 19.7 1 +1933 7 22 20.3 19.8 19.8 1 +1933 7 23 18.2 17.7 17.7 1 +1933 7 24 15.3 14.8 14.8 1 +1933 7 25 17.8 17.3 17.3 1 +1933 7 26 16.1 15.6 15.6 1 +1933 7 27 19.3 18.8 18.8 1 +1933 7 28 17.8 17.3 17.3 1 +1933 7 29 18.1 17.6 17.6 1 +1933 7 30 16.6 16.1 16.1 1 +1933 7 31 18.0 17.5 17.5 1 +1933 8 1 16.9 16.4 16.4 1 +1933 8 2 17.6 17.1 17.1 1 +1933 8 3 19.7 19.3 19.3 1 +1933 8 4 16.4 16.0 16.0 1 +1933 8 5 16.6 16.2 16.2 1 +1933 8 6 16.5 16.1 16.1 1 +1933 8 7 16.7 16.3 16.3 1 +1933 8 8 14.6 14.2 14.2 1 +1933 8 9 18.0 17.6 17.6 1 +1933 8 10 13.7 13.3 13.3 1 +1933 8 11 13.7 13.3 13.3 1 +1933 8 12 13.9 13.5 13.5 1 +1933 8 13 14.5 14.1 14.1 1 +1933 8 14 17.0 16.6 16.6 1 +1933 8 15 16.9 16.5 16.5 1 +1933 8 16 16.1 15.8 15.8 1 +1933 8 17 16.3 16.0 16.0 1 +1933 8 18 16.1 15.8 15.8 1 +1933 8 19 15.0 14.7 14.7 1 +1933 8 20 14.7 14.4 14.4 1 +1933 8 21 15.7 15.4 15.4 1 +1933 8 22 15.2 14.9 14.9 1 +1933 8 23 15.1 14.8 14.8 1 +1933 8 24 15.4 15.1 15.1 1 +1933 8 25 14.3 14.1 14.1 1 +1933 8 26 14.9 14.7 14.7 1 +1933 8 27 15.3 15.1 15.1 1 +1933 8 28 17.6 17.4 17.4 1 +1933 8 29 19.0 18.8 18.8 1 +1933 8 30 18.9 18.7 18.7 1 +1933 8 31 16.8 16.6 16.6 1 +1933 9 1 15.2 15.0 15.0 1 +1933 9 2 13.2 13.0 13.0 1 +1933 9 3 12.9 12.7 12.7 1 +1933 9 4 14.5 14.4 14.4 1 +1933 9 5 13.8 13.7 13.7 1 +1933 9 6 12.0 11.9 11.9 1 +1933 9 7 10.9 10.8 10.8 1 +1933 9 8 11.1 11.0 11.0 1 +1933 9 9 14.0 13.9 13.9 1 +1933 9 10 18.3 18.2 18.2 1 +1933 9 11 14.9 14.8 14.8 1 +1933 9 12 13.2 13.1 13.1 1 +1933 9 13 13.9 13.9 13.9 1 +1933 9 14 8.8 8.8 8.8 1 +1933 9 15 8.2 8.2 8.2 1 +1933 9 16 9.2 9.2 9.2 1 +1933 9 17 9.9 9.9 9.9 1 +1933 9 18 9.6 9.6 9.6 1 +1933 9 19 9.2 9.2 9.2 1 +1933 9 20 12.0 12.0 12.0 1 +1933 9 21 10.5 10.5 10.5 1 +1933 9 22 10.5 10.5 10.5 1 +1933 9 23 12.3 12.3 12.3 1 +1933 9 24 11.7 11.7 11.7 1 +1933 9 25 13.2 13.2 13.2 1 +1933 9 26 11.3 11.3 11.3 1 +1933 9 27 11.7 11.7 11.7 1 +1933 9 28 11.5 11.5 11.5 1 +1933 9 29 12.3 12.3 12.3 1 +1933 9 30 11.5 11.5 11.5 1 +1933 10 1 11.3 11.3 11.3 1 +1933 10 2 7.7 7.7 7.7 1 +1933 10 3 5.6 5.6 5.6 1 +1933 10 4 8.0 8.0 8.0 1 +1933 10 5 7.8 7.8 7.8 1 +1933 10 6 7.1 7.1 7.1 1 +1933 10 7 11.1 11.1 11.1 1 +1933 10 8 5.5 5.5 5.5 1 +1933 10 9 6.1 6.1 6.1 1 +1933 10 10 10.9 10.9 10.9 1 +1933 10 11 14.4 14.4 14.4 1 +1933 10 12 9.7 9.7 9.7 1 +1933 10 13 6.2 6.2 6.2 1 +1933 10 14 8.7 8.7 8.7 1 +1933 10 15 10.5 10.5 10.5 1 +1933 10 16 9.5 9.5 9.5 1 +1933 10 17 9.2 9.2 9.2 1 +1933 10 18 5.7 5.7 5.7 1 +1933 10 19 8.4 8.4 8.4 1 +1933 10 20 8.2 8.2 8.2 1 +1933 10 21 7.6 7.5 7.5 1 +1933 10 22 6.8 6.7 6.7 1 +1933 10 23 6.4 6.3 6.3 1 +1933 10 24 7.4 7.3 7.3 1 +1933 10 25 6.4 6.3 6.3 1 +1933 10 26 6.1 6.0 6.0 1 +1933 10 27 5.9 5.8 5.8 1 +1933 10 28 6.6 6.5 6.5 1 +1933 10 29 7.2 7.1 7.1 1 +1933 10 30 6.6 6.5 6.5 1 +1933 10 31 4.1 4.0 4.0 1 +1933 11 1 7.2 7.1 7.1 1 +1933 11 2 6.1 6.0 6.0 1 +1933 11 3 4.6 4.5 4.5 1 +1933 11 4 3.3 3.2 3.2 1 +1933 11 5 4.3 4.1 4.1 1 +1933 11 6 3.1 2.9 2.9 1 +1933 11 7 1.4 1.2 1.2 1 +1933 11 8 1.3 1.1 1.1 1 +1933 11 9 4.6 4.4 4.4 1 +1933 11 10 7.8 7.6 7.6 1 +1933 11 11 4.5 4.3 4.3 1 +1933 11 12 0.2 0.0 0.0 1 +1933 11 13 0.3 0.1 0.1 1 +1933 11 14 1.7 1.5 1.5 1 +1933 11 15 0.6 0.4 0.4 1 +1933 11 16 -1.8 -2.0 -2.0 1 +1933 11 17 -2.1 -2.3 -2.3 1 +1933 11 18 -1.8 -2.0 -2.0 1 +1933 11 19 0.0 -0.2 -0.2 1 +1933 11 20 1.1 0.9 0.9 1 +1933 11 21 1.6 1.4 1.4 1 +1933 11 22 -0.1 -0.3 -0.3 1 +1933 11 23 -1.3 -1.5 -1.5 1 +1933 11 24 0.3 0.1 0.1 1 +1933 11 25 -2.7 -2.9 -2.9 1 +1933 11 26 -5.2 -5.4 -5.4 1 +1933 11 27 -1.6 -1.8 -1.8 1 +1933 11 28 2.2 2.0 2.0 1 +1933 11 29 0.8 0.6 0.6 1 +1933 11 30 -1.4 -1.6 -1.6 1 +1933 12 1 -1.9 -2.1 -2.1 1 +1933 12 2 -3.1 -3.3 -3.3 1 +1933 12 3 -3.3 -3.5 -3.5 1 +1933 12 4 -0.6 -0.8 -0.8 1 +1933 12 5 1.5 1.3 1.3 1 +1933 12 6 0.4 0.2 0.2 1 +1933 12 7 -4.3 -4.5 -4.5 1 +1933 12 8 -2.5 -2.7 -2.7 1 +1933 12 9 -2.6 -2.9 -2.9 1 +1933 12 10 -1.4 -1.7 -1.7 1 +1933 12 11 -3.3 -3.6 -3.6 1 +1933 12 12 -8.8 -9.1 -9.1 1 +1933 12 13 -8.1 -8.4 -8.4 1 +1933 12 14 -2.0 -2.3 -2.3 1 +1933 12 15 -8.3 -8.6 -8.6 1 +1933 12 16 -6.0 -6.3 -6.3 1 +1933 12 17 -1.0 -1.3 -1.3 1 +1933 12 18 -2.5 -2.8 -2.8 1 +1933 12 19 -1.9 -2.2 -2.2 1 +1933 12 20 -2.6 -2.9 -2.9 1 +1933 12 21 -1.4 -1.7 -1.7 1 +1933 12 22 0.5 0.2 0.2 1 +1933 12 23 0.3 0.0 0.0 1 +1933 12 24 2.1 1.8 1.8 1 +1933 12 25 -0.3 -0.6 -0.6 1 +1933 12 26 -2.4 -2.8 -2.8 1 +1933 12 27 -6.0 -6.4 -6.4 1 +1933 12 28 -6.6 -7.0 -7.0 1 +1933 12 29 -4.3 -4.7 -4.7 1 +1933 12 30 -3.3 -3.7 -3.7 1 +1933 12 31 -3.8 -4.2 -4.2 1 +1934 1 1 -5.3 -5.7 -5.7 1 +1934 1 2 -1.3 -1.7 -1.7 1 +1934 1 3 -0.3 -0.7 -0.7 1 +1934 1 4 -0.3 -0.7 -0.7 1 +1934 1 5 0.7 0.3 0.3 1 +1934 1 6 -1.0 -1.5 -1.5 1 +1934 1 7 3.2 2.7 2.7 1 +1934 1 8 3.3 2.8 2.8 1 +1934 1 9 0.8 0.3 0.3 1 +1934 1 10 -1.7 -2.2 -2.2 1 +1934 1 11 0.9 0.4 0.4 1 +1934 1 12 1.0 0.5 0.5 1 +1934 1 13 -0.8 -1.3 -1.3 1 +1934 1 14 1.3 0.8 0.8 1 +1934 1 15 -0.2 -0.7 -0.7 1 +1934 1 16 1.8 1.3 1.3 1 +1934 1 17 2.0 1.5 1.5 1 +1934 1 18 3.1 2.6 2.6 1 +1934 1 19 3.3 2.8 2.8 1 +1934 1 20 -0.1 -0.6 -0.6 1 +1934 1 21 -0.1 -0.6 -0.6 1 +1934 1 22 0.5 0.0 0.0 1 +1934 1 23 0.3 -0.2 -0.2 1 +1934 1 24 4.1 3.6 3.6 1 +1934 1 25 1.6 1.1 1.1 1 +1934 1 26 -1.9 -2.4 -2.4 1 +1934 1 27 1.1 0.6 0.6 1 +1934 1 28 0.8 0.3 0.3 1 +1934 1 29 0.5 0.0 0.0 1 +1934 1 30 1.7 1.2 1.2 1 +1934 1 31 -4.7 -5.2 -5.2 1 +1934 2 1 -5.1 -5.6 -5.6 1 +1934 2 2 -1.6 -2.1 -2.1 1 +1934 2 3 -1.6 -2.1 -2.1 1 +1934 2 4 0.8 0.3 0.3 1 +1934 2 5 2.8 2.3 2.3 1 +1934 2 6 4.1 3.6 3.6 1 +1934 2 7 -1.0 -1.5 -1.5 1 +1934 2 8 -3.5 -4.0 -4.0 1 +1934 2 9 -5.2 -5.7 -5.7 1 +1934 2 10 4.0 3.5 3.5 1 +1934 2 11 0.5 0.0 0.0 1 +1934 2 12 -3.3 -3.8 -3.8 1 +1934 2 13 1.3 0.8 0.8 1 +1934 2 14 0.0 -0.5 -0.5 1 +1934 2 15 0.8 0.3 0.3 1 +1934 2 16 3.7 3.2 3.2 1 +1934 2 17 5.0 4.5 4.5 1 +1934 2 18 3.2 2.7 2.7 1 +1934 2 19 3.1 2.6 2.6 1 +1934 2 20 -2.9 -3.4 -3.4 1 +1934 2 21 -3.3 -3.8 -3.8 1 +1934 2 22 1.1 0.6 0.6 1 +1934 2 23 3.6 3.1 3.1 1 +1934 2 24 0.9 0.4 0.4 1 +1934 2 25 1.8 1.3 1.3 1 +1934 2 26 3.5 3.0 3.0 1 +1934 2 27 2.8 2.3 2.3 1 +1934 2 28 2.3 1.8 1.8 1 +1934 3 1 0.4 -0.1 -0.1 1 +1934 3 2 -1.0 -1.5 -1.5 1 +1934 3 3 -0.3 -0.8 -0.8 1 +1934 3 4 1.8 1.3 1.3 1 +1934 3 5 2.5 2.0 2.0 1 +1934 3 6 2.5 2.0 2.0 1 +1934 3 7 1.5 1.0 1.0 1 +1934 3 8 1.1 0.6 0.6 1 +1934 3 9 -1.6 -2.2 -2.2 1 +1934 3 10 -1.6 -2.2 -2.2 1 +1934 3 11 -2.4 -3.0 -3.0 1 +1934 3 12 -1.7 -2.3 -2.3 1 +1934 3 13 -1.5 -2.1 -2.1 1 +1934 3 14 -3.1 -3.7 -3.7 1 +1934 3 15 -0.9 -1.5 -1.5 1 +1934 3 16 3.1 2.5 2.5 1 +1934 3 17 1.6 1.0 1.0 1 +1934 3 18 0.8 0.2 0.2 1 +1934 3 19 3.0 2.4 2.4 1 +1934 3 20 3.7 3.2 3.2 1 +1934 3 21 1.9 1.4 1.4 1 +1934 3 22 1.0 0.5 0.5 1 +1934 3 23 1.1 0.6 0.6 1 +1934 3 24 2.4 1.9 1.9 1 +1934 3 25 2.8 2.3 2.3 1 +1934 3 26 0.9 0.4 0.4 1 +1934 3 27 0.4 -0.1 -0.1 1 +1934 3 28 0.8 0.3 0.3 1 +1934 3 29 0.8 0.3 0.3 1 +1934 3 30 0.7 0.2 0.2 1 +1934 3 31 0.8 0.3 0.3 1 +1934 4 1 1.9 1.4 1.4 1 +1934 4 2 2.9 2.4 2.4 1 +1934 4 3 1.8 1.3 1.3 1 +1934 4 4 4.0 3.5 3.5 1 +1934 4 5 3.0 2.5 2.5 1 +1934 4 6 -0.6 -1.1 -1.1 1 +1934 4 7 1.6 1.1 1.1 1 +1934 4 8 2.2 1.7 1.7 1 +1934 4 9 0.6 0.2 0.2 1 +1934 4 10 -0.9 -1.3 -1.3 1 +1934 4 11 0.1 -0.3 -0.3 1 +1934 4 12 2.2 1.8 1.8 1 +1934 4 13 3.7 3.3 3.3 1 +1934 4 14 4.2 3.8 3.8 1 +1934 4 15 4.6 4.2 4.2 1 +1934 4 16 8.6 8.2 8.2 1 +1934 4 17 11.0 10.6 10.6 1 +1934 4 18 9.5 9.0 9.0 1 +1934 4 19 10.2 9.7 9.7 1 +1934 4 20 7.3 6.8 6.8 1 +1934 4 21 7.7 7.2 7.2 1 +1934 4 22 9.0 8.5 8.5 1 +1934 4 23 6.0 5.5 5.5 1 +1934 4 24 7.1 6.6 6.6 1 +1934 4 25 8.8 8.2 8.2 1 +1934 4 26 9.8 9.2 9.2 1 +1934 4 27 8.0 7.4 7.4 1 +1934 4 28 11.9 11.3 11.3 1 +1934 4 29 12.4 11.8 11.8 1 +1934 4 30 12.5 11.9 11.9 1 +1934 5 1 13.8 13.2 13.2 1 +1934 5 2 15.0 14.3 14.3 1 +1934 5 3 13.7 13.0 13.0 1 +1934 5 4 12.1 11.4 11.4 1 +1934 5 5 16.1 15.4 15.4 1 +1934 5 6 17.5 16.8 16.8 1 +1934 5 7 18.2 17.5 17.5 1 +1934 5 8 17.6 16.9 16.9 1 +1934 5 9 19.5 18.8 18.8 1 +1934 5 10 15.7 14.9 14.9 1 +1934 5 11 12.2 11.4 11.4 1 +1934 5 12 16.2 15.4 15.4 1 +1934 5 13 6.4 5.6 5.6 1 +1934 5 14 8.5 7.7 7.7 1 +1934 5 15 6.6 5.8 5.8 1 +1934 5 16 9.0 8.2 8.2 1 +1934 5 17 12.3 11.5 11.5 1 +1934 5 18 9.2 8.4 8.4 1 +1934 5 19 12.3 11.5 11.5 1 +1934 5 20 13.0 12.2 12.2 1 +1934 5 21 10.9 10.1 10.1 1 +1934 5 22 10.4 9.6 9.6 1 +1934 5 23 7.4 6.6 6.6 1 +1934 5 24 7.3 6.5 6.5 1 +1934 5 25 8.5 7.7 7.7 1 +1934 5 26 9.2 8.4 8.4 1 +1934 5 27 8.1 7.3 7.3 1 +1934 5 28 9.6 8.9 8.9 1 +1934 5 29 10.1 9.4 9.4 1 +1934 5 30 13.8 13.1 13.1 1 +1934 5 31 11.8 11.1 11.1 1 +1934 6 1 12.5 11.8 11.8 1 +1934 6 2 13.3 12.6 12.6 1 +1934 6 3 10.4 9.7 9.7 1 +1934 6 4 6.8 6.1 6.1 1 +1934 6 5 11.2 10.5 10.5 1 +1934 6 6 12.8 12.1 12.1 1 +1934 6 7 17.9 17.2 17.2 1 +1934 6 8 19.5 18.8 18.8 1 +1934 6 9 16.0 15.3 15.3 1 +1934 6 10 15.8 15.1 15.1 1 +1934 6 11 13.0 12.3 12.3 1 +1934 6 12 17.8 17.1 17.1 1 +1934 6 13 13.6 12.9 12.9 1 +1934 6 14 9.0 8.4 8.4 1 +1934 6 15 11.0 10.4 10.4 1 +1934 6 16 15.4 14.8 14.8 1 +1934 6 17 15.8 15.2 15.2 1 +1934 6 18 17.8 17.2 17.2 1 +1934 6 19 16.2 15.6 15.6 1 +1934 6 20 15.4 14.8 14.8 1 +1934 6 21 15.2 14.6 14.6 1 +1934 6 22 14.4 13.8 13.8 1 +1934 6 23 12.6 12.0 12.0 1 +1934 6 24 13.6 13.0 13.0 1 +1934 6 25 18.3 17.7 17.7 1 +1934 6 26 19.1 18.5 18.5 1 +1934 6 27 16.7 16.1 16.1 1 +1934 6 28 19.0 18.4 18.4 1 +1934 6 29 22.0 21.4 21.4 1 +1934 6 30 19.9 19.3 19.3 1 +1934 7 1 15.4 14.8 14.8 1 +1934 7 2 16.8 16.2 16.2 1 +1934 7 3 13.8 13.2 13.2 1 +1934 7 4 11.8 11.2 11.2 1 +1934 7 5 12.3 11.7 11.7 1 +1934 7 6 13.5 12.9 12.9 1 +1934 7 7 11.5 10.9 10.9 1 +1934 7 8 14.3 13.7 13.7 1 +1934 7 9 16.8 16.2 16.2 1 +1934 7 10 15.4 14.8 14.8 1 +1934 7 11 13.3 12.7 12.7 1 +1934 7 12 14.9 14.3 14.3 1 +1934 7 13 15.2 14.6 14.6 1 +1934 7 14 15.8 15.2 15.2 1 +1934 7 15 18.9 18.3 18.3 1 +1934 7 16 21.5 20.9 20.9 1 +1934 7 17 23.4 22.8 22.8 1 +1934 7 18 21.6 21.0 21.0 1 +1934 7 19 17.5 16.9 16.9 1 +1934 7 20 16.6 16.0 16.0 1 +1934 7 21 15.9 15.3 15.3 1 +1934 7 22 17.1 16.5 16.5 1 +1934 7 23 18.0 17.5 17.5 1 +1934 7 24 17.2 16.7 16.7 1 +1934 7 25 19.6 19.1 19.1 1 +1934 7 26 19.6 19.1 19.1 1 +1934 7 27 16.8 16.3 16.3 1 +1934 7 28 17.0 16.5 16.5 1 +1934 7 29 16.6 16.1 16.1 1 +1934 7 30 15.7 15.2 15.2 1 +1934 7 31 20.1 19.6 19.6 1 +1934 8 1 18.7 18.2 18.2 1 +1934 8 2 20.2 19.7 19.7 1 +1934 8 3 19.4 18.9 18.9 1 +1934 8 4 19.3 18.8 18.8 1 +1934 8 5 16.8 16.4 16.4 1 +1934 8 6 18.4 18.0 18.0 1 +1934 8 7 18.9 18.5 18.5 1 +1934 8 8 20.9 20.5 20.5 1 +1934 8 9 20.2 19.8 19.8 1 +1934 8 10 20.0 19.6 19.6 1 +1934 8 11 17.2 16.8 16.8 1 +1934 8 12 16.5 16.1 16.1 1 +1934 8 13 17.2 16.8 16.8 1 +1934 8 14 16.2 15.8 15.8 1 +1934 8 15 16.2 15.8 15.8 1 +1934 8 16 17.1 16.7 16.7 1 +1934 8 17 13.4 13.1 13.1 1 +1934 8 18 16.6 16.3 16.3 1 +1934 8 19 15.3 15.0 15.0 1 +1934 8 20 15.7 15.4 15.4 1 +1934 8 21 15.7 15.4 15.4 1 +1934 8 22 16.3 16.0 16.0 1 +1934 8 23 18.0 17.7 17.7 1 +1934 8 24 15.4 15.1 15.1 1 +1934 8 25 15.7 15.4 15.4 1 +1934 8 26 15.8 15.6 15.6 1 +1934 8 27 15.0 14.8 14.8 1 +1934 8 28 16.5 16.3 16.3 1 +1934 8 29 16.3 16.1 16.1 1 +1934 8 30 17.0 16.8 16.8 1 +1934 8 31 14.5 14.3 14.3 1 +1934 9 1 16.2 16.0 16.0 1 +1934 9 2 15.4 15.2 15.2 1 +1934 9 3 15.2 15.0 15.0 1 +1934 9 4 15.8 15.6 15.6 1 +1934 9 5 16.7 16.6 16.6 1 +1934 9 6 17.3 17.2 17.2 1 +1934 9 7 16.1 16.0 16.0 1 +1934 9 8 14.7 14.6 14.6 1 +1934 9 9 16.9 16.8 16.8 1 +1934 9 10 18.1 18.0 18.0 1 +1934 9 11 16.1 16.0 16.0 1 +1934 9 12 15.7 15.6 15.6 1 +1934 9 13 15.4 15.3 15.3 1 +1934 9 14 14.6 14.6 14.6 1 +1934 9 15 16.3 16.3 16.3 1 +1934 9 16 14.9 14.9 14.9 1 +1934 9 17 15.3 15.3 15.3 1 +1934 9 18 15.8 15.8 15.8 1 +1934 9 19 17.7 17.7 17.7 1 +1934 9 20 18.1 18.1 18.1 1 +1934 9 21 14.6 14.6 14.6 1 +1934 9 22 12.1 12.1 12.1 1 +1934 9 23 11.9 11.9 11.9 1 +1934 9 24 11.5 11.5 11.5 1 +1934 9 25 11.4 11.4 11.4 1 +1934 9 26 11.2 11.2 11.2 1 +1934 9 27 13.5 13.5 13.5 1 +1934 9 28 12.0 12.0 12.0 1 +1934 9 29 12.4 12.4 12.4 1 +1934 9 30 13.1 13.1 13.1 1 +1934 10 1 13.6 13.6 13.6 1 +1934 10 2 13.2 13.2 13.2 1 +1934 10 3 11.0 11.0 11.0 1 +1934 10 4 12.0 12.0 12.0 1 +1934 10 5 14.0 14.0 14.0 1 +1934 10 6 10.9 10.9 10.9 1 +1934 10 7 11.4 11.4 11.4 1 +1934 10 8 12.8 12.8 12.8 1 +1934 10 9 9.6 9.6 9.6 1 +1934 10 10 9.5 9.5 9.5 1 +1934 10 11 10.1 10.1 10.1 1 +1934 10 12 7.9 7.9 7.9 1 +1934 10 13 6.4 6.4 6.4 1 +1934 10 14 5.3 5.3 5.3 1 +1934 10 15 5.0 5.0 5.0 1 +1934 10 16 3.5 3.5 3.5 1 +1934 10 17 2.6 2.6 2.6 1 +1934 10 18 3.9 3.9 3.9 1 +1934 10 19 7.4 7.3 7.3 1 +1934 10 20 7.4 7.3 7.3 1 +1934 10 21 11.6 11.5 11.5 1 +1934 10 22 12.4 12.3 12.3 1 +1934 10 23 10.2 10.1 10.1 1 +1934 10 24 8.1 8.0 8.0 1 +1934 10 25 5.7 5.6 5.6 1 +1934 10 26 8.0 7.9 7.9 1 +1934 10 27 8.8 8.7 8.7 1 +1934 10 28 6.0 5.9 5.9 1 +1934 10 29 6.1 6.0 6.0 1 +1934 10 30 4.4 4.3 4.3 1 +1934 10 31 4.6 4.5 4.5 1 +1934 11 1 2.0 1.9 1.9 1 +1934 11 2 2.4 2.3 2.3 1 +1934 11 3 1.8 1.7 1.7 1 +1934 11 4 2.0 1.8 1.8 1 +1934 11 5 4.5 4.3 4.3 1 +1934 11 6 6.9 6.7 6.7 1 +1934 11 7 8.2 8.0 8.0 1 +1934 11 8 8.1 7.9 7.9 1 +1934 11 9 5.9 5.7 5.7 1 +1934 11 10 4.0 3.8 3.8 1 +1934 11 11 2.9 2.7 2.7 1 +1934 11 12 6.3 6.1 6.1 1 +1934 11 13 7.2 7.0 7.0 1 +1934 11 14 6.2 6.0 6.0 1 +1934 11 15 3.6 3.4 3.4 1 +1934 11 16 1.9 1.7 1.7 1 +1934 11 17 2.9 2.7 2.7 1 +1934 11 18 0.1 -0.1 -0.1 1 +1934 11 19 -1.2 -1.4 -1.4 1 +1934 11 20 0.8 0.6 0.6 1 +1934 11 21 4.9 4.7 4.7 1 +1934 11 22 5.4 5.2 5.2 1 +1934 11 23 0.7 0.5 0.5 1 +1934 11 24 -0.8 -1.0 -1.0 1 +1934 11 25 0.9 0.7 0.7 1 +1934 11 26 4.9 4.7 4.7 1 +1934 11 27 7.3 7.1 7.1 1 +1934 11 28 6.8 6.6 6.6 1 +1934 11 29 0.9 0.7 0.7 1 +1934 11 30 0.4 0.2 0.2 1 +1934 12 1 0.7 0.5 0.5 1 +1934 12 2 4.1 3.9 3.9 1 +1934 12 3 4.7 4.4 4.4 1 +1934 12 4 3.5 3.2 3.2 1 +1934 12 5 4.4 4.1 4.1 1 +1934 12 6 4.0 3.7 3.7 1 +1934 12 7 5.2 4.9 4.9 1 +1934 12 8 4.8 4.5 4.5 1 +1934 12 9 5.4 5.1 5.1 1 +1934 12 10 5.6 5.3 5.3 1 +1934 12 11 4.7 4.4 4.4 1 +1934 12 12 4.4 4.1 4.1 1 +1934 12 13 3.1 2.8 2.8 1 +1934 12 14 5.1 4.8 4.8 1 +1934 12 15 4.6 4.3 4.3 1 +1934 12 16 5.2 4.9 4.9 1 +1934 12 17 5.1 4.8 4.8 1 +1934 12 18 5.8 5.5 5.5 1 +1934 12 19 5.0 4.7 4.7 1 +1934 12 20 4.9 4.6 4.6 1 +1934 12 21 4.7 4.4 4.4 1 +1934 12 22 2.7 2.4 2.4 1 +1934 12 23 0.2 -0.1 -0.1 1 +1934 12 24 -1.4 -1.7 -1.7 1 +1934 12 25 -2.8 -3.2 -3.2 1 +1934 12 26 -4.8 -5.2 -5.2 1 +1934 12 27 -2.2 -2.6 -2.6 1 +1934 12 28 -0.7 -1.1 -1.1 1 +1934 12 29 0.0 -0.4 -0.4 1 +1934 12 30 0.9 0.5 0.5 1 +1934 12 31 2.7 2.3 2.3 1 +1935 1 1 3.4 3.0 3.0 1 +1935 1 2 -0.6 -1.0 -1.0 1 +1935 1 3 -2.8 -3.2 -3.2 1 +1935 1 4 0.8 0.4 0.4 1 +1935 1 5 -0.8 -1.3 -1.3 1 +1935 1 6 -3.0 -3.5 -3.5 1 +1935 1 7 -3.8 -4.3 -4.3 1 +1935 1 8 -3.6 -4.1 -4.1 1 +1935 1 9 -4.5 -5.0 -5.0 1 +1935 1 10 -4.0 -4.5 -4.5 1 +1935 1 11 -0.2 -0.7 -0.7 1 +1935 1 12 -1.1 -1.6 -1.6 1 +1935 1 13 -0.2 -0.7 -0.7 1 +1935 1 14 -1.3 -1.8 -1.8 1 +1935 1 15 -4.4 -4.9 -4.9 1 +1935 1 16 -2.4 -2.9 -2.9 1 +1935 1 17 -1.8 -2.3 -2.3 1 +1935 1 18 -0.3 -0.8 -0.8 1 +1935 1 19 -1.4 -1.9 -1.9 1 +1935 1 20 -0.4 -0.9 -0.9 1 +1935 1 21 -0.3 -0.8 -0.8 1 +1935 1 22 1.5 1.0 1.0 1 +1935 1 23 2.1 1.6 1.6 1 +1935 1 24 0.0 -0.5 -0.5 1 +1935 1 25 0.7 0.2 0.2 1 +1935 1 26 -4.7 -5.2 -5.2 1 +1935 1 27 -5.5 -6.0 -6.0 1 +1935 1 28 -7.9 -8.4 -8.4 1 +1935 1 29 -5.5 -6.0 -6.0 1 +1935 1 30 -2.3 -2.8 -2.8 1 +1935 1 31 -7.4 -7.9 -7.9 1 +1935 2 1 -3.7 -4.2 -4.2 1 +1935 2 2 1.3 0.8 0.8 1 +1935 2 3 -1.3 -1.8 -1.8 1 +1935 2 4 -3.4 -3.9 -3.9 1 +1935 2 5 -6.1 -6.6 -6.6 1 +1935 2 6 -7.3 -7.8 -7.8 1 +1935 2 7 -4.2 -4.7 -4.7 1 +1935 2 8 -4.2 -4.7 -4.7 1 +1935 2 9 -3.4 -3.9 -3.9 1 +1935 2 10 -3.8 -4.3 -4.3 1 +1935 2 11 -3.7 -4.2 -4.2 1 +1935 2 12 -0.4 -0.9 -0.9 1 +1935 2 13 1.0 0.5 0.5 1 +1935 2 14 1.5 1.0 1.0 1 +1935 2 15 -1.2 -1.7 -1.7 1 +1935 2 16 -2.1 -2.6 -2.6 1 +1935 2 17 -2.6 -3.1 -3.1 1 +1935 2 18 -0.9 -1.4 -1.4 1 +1935 2 19 5.0 4.5 4.5 1 +1935 2 20 2.1 1.6 1.6 1 +1935 2 21 5.2 4.7 4.7 1 +1935 2 22 4.8 4.3 4.3 1 +1935 2 23 4.0 3.5 3.5 1 +1935 2 24 1.1 0.6 0.6 1 +1935 2 25 1.5 1.0 1.0 1 +1935 2 26 2.9 2.4 2.4 1 +1935 2 27 0.4 -0.1 -0.1 1 +1935 2 28 -0.8 -1.3 -1.3 1 +1935 3 1 -1.6 -2.1 -2.1 1 +1935 3 2 -5.2 -5.7 -5.7 1 +1935 3 3 -4.6 -5.1 -5.1 1 +1935 3 4 -4.6 -5.1 -5.1 1 +1935 3 5 -4.3 -4.8 -4.8 1 +1935 3 6 -2.8 -3.4 -3.4 1 +1935 3 7 -2.7 -3.3 -3.3 1 +1935 3 8 -1.2 -1.8 -1.8 1 +1935 3 9 2.6 2.0 2.0 1 +1935 3 10 2.0 1.4 1.4 1 +1935 3 11 2.8 2.2 2.2 1 +1935 3 12 3.3 2.7 2.7 1 +1935 3 13 2.4 1.8 1.8 1 +1935 3 14 2.5 1.9 1.9 1 +1935 3 15 2.4 1.8 1.8 1 +1935 3 16 1.8 1.2 1.2 1 +1935 3 17 0.4 -0.2 -0.2 1 +1935 3 18 0.1 -0.5 -0.5 1 +1935 3 19 -1.3 -1.9 -1.9 1 +1935 3 20 0.9 0.3 0.3 1 +1935 3 21 -0.3 -0.9 -0.9 1 +1935 3 22 3.1 2.6 2.6 1 +1935 3 23 4.8 4.3 4.3 1 +1935 3 24 -0.6 -1.1 -1.1 1 +1935 3 25 2.5 2.0 2.0 1 +1935 3 26 3.5 3.0 3.0 1 +1935 3 27 -0.8 -1.3 -1.3 1 +1935 3 28 0.1 -0.4 -0.4 1 +1935 3 29 -1.5 -2.0 -2.0 1 +1935 3 30 0.2 -0.3 -0.3 1 +1935 3 31 -0.3 -0.8 -0.8 1 +1935 4 1 1.0 0.5 0.5 1 +1935 4 2 1.4 0.9 0.9 1 +1935 4 3 1.8 1.3 1.3 1 +1935 4 4 2.4 1.9 1.9 1 +1935 4 5 2.8 2.3 2.3 1 +1935 4 6 1.3 0.8 0.8 1 +1935 4 7 1.4 0.9 0.9 1 +1935 4 8 2.4 1.9 1.9 1 +1935 4 9 3.6 3.1 3.1 1 +1935 4 10 4.5 4.0 4.0 1 +1935 4 11 8.4 7.9 7.9 1 +1935 4 12 7.0 6.6 6.6 1 +1935 4 13 4.1 3.7 3.7 1 +1935 4 14 1.8 1.4 1.4 1 +1935 4 15 4.0 3.6 3.6 1 +1935 4 16 5.3 4.9 4.9 1 +1935 4 17 5.9 5.4 5.4 1 +1935 4 18 5.8 5.3 5.3 1 +1935 4 19 7.2 6.7 6.7 1 +1935 4 20 7.8 7.3 7.3 1 +1935 4 21 9.7 9.2 9.2 1 +1935 4 22 8.8 8.3 8.3 1 +1935 4 23 9.2 8.7 8.7 1 +1935 4 24 8.3 7.7 7.7 1 +1935 4 25 10.0 9.4 9.4 1 +1935 4 26 10.5 9.9 9.9 1 +1935 4 27 7.4 6.8 6.8 1 +1935 4 28 2.3 1.7 1.7 1 +1935 4 29 -0.1 -0.7 -0.7 1 +1935 4 30 -1.1 -1.7 -1.7 1 +1935 5 1 2.0 1.3 1.3 1 +1935 5 2 5.8 5.1 5.1 1 +1935 5 3 6.2 5.5 5.5 1 +1935 5 4 11.3 10.6 10.6 1 +1935 5 5 12.9 12.2 12.2 1 +1935 5 6 14.6 13.9 13.9 1 +1935 5 7 5.4 4.7 4.7 1 +1935 5 8 4.5 3.8 3.8 1 +1935 5 9 12.5 11.7 11.7 1 +1935 5 10 9.2 8.4 8.4 1 +1935 5 11 5.8 5.0 5.0 1 +1935 5 12 3.3 2.5 2.5 1 +1935 5 13 2.0 1.2 1.2 1 +1935 5 14 3.3 2.5 2.5 1 +1935 5 15 6.1 5.3 5.3 1 +1935 5 16 6.7 5.9 5.9 1 +1935 5 17 7.0 6.2 6.2 1 +1935 5 18 5.0 4.2 4.2 1 +1935 5 19 7.4 6.6 6.6 1 +1935 5 20 7.4 6.6 6.6 1 +1935 5 21 7.9 7.1 7.1 1 +1935 5 22 8.3 7.5 7.5 1 +1935 5 23 13.0 12.2 12.2 1 +1935 5 24 14.1 13.3 13.3 1 +1935 5 25 13.4 12.6 12.6 1 +1935 5 26 11.5 10.7 10.7 1 +1935 5 27 12.0 11.2 11.2 1 +1935 5 28 13.0 12.2 12.2 1 +1935 5 29 8.4 7.6 7.6 1 +1935 5 30 2.4 1.6 1.6 1 +1935 5 31 5.5 4.8 4.8 1 +1935 6 1 7.3 6.6 6.6 1 +1935 6 2 9.3 8.6 8.6 1 +1935 6 3 11.6 10.9 10.9 1 +1935 6 4 11.6 10.9 10.9 1 +1935 6 5 11.3 10.6 10.6 1 +1935 6 6 12.6 11.9 11.9 1 +1935 6 7 15.2 14.5 14.5 1 +1935 6 8 15.1 14.4 14.4 1 +1935 6 9 12.7 12.0 12.0 1 +1935 6 10 13.3 12.6 12.6 1 +1935 6 11 13.5 12.8 12.8 1 +1935 6 12 12.5 11.8 11.8 1 +1935 6 13 15.1 14.4 14.4 1 +1935 6 14 16.4 15.7 15.7 1 +1935 6 15 13.9 13.2 13.2 1 +1935 6 16 14.2 13.5 13.5 1 +1935 6 17 14.7 14.0 14.0 1 +1935 6 18 15.1 14.4 14.4 1 +1935 6 19 16.0 15.4 15.4 1 +1935 6 20 16.2 15.6 15.6 1 +1935 6 21 19.5 18.9 18.9 1 +1935 6 22 22.6 22.0 22.0 1 +1935 6 23 24.1 23.5 23.5 1 +1935 6 24 24.2 23.6 23.6 1 +1935 6 25 24.2 23.6 23.6 1 +1935 6 26 22.7 22.1 22.1 1 +1935 6 27 22.3 21.7 21.7 1 +1935 6 28 19.3 18.7 18.7 1 +1935 6 29 19.5 18.9 18.9 1 +1935 6 30 17.9 17.3 17.3 1 +1935 7 1 20.3 19.7 19.7 1 +1935 7 2 22.1 21.5 21.5 1 +1935 7 3 19.5 18.9 18.9 1 +1935 7 4 16.4 15.8 15.8 1 +1935 7 5 13.7 13.1 13.1 1 +1935 7 6 14.0 13.4 13.4 1 +1935 7 7 15.1 14.5 14.5 1 +1935 7 8 15.2 14.6 14.6 1 +1935 7 9 17.8 17.2 17.2 1 +1935 7 10 17.0 16.4 16.4 1 +1935 7 11 18.3 17.7 17.7 1 +1935 7 12 19.0 18.4 18.4 1 +1935 7 13 20.6 20.0 20.0 1 +1935 7 14 20.7 20.1 20.1 1 +1935 7 15 18.9 18.3 18.3 1 +1935 7 16 18.6 18.0 18.0 1 +1935 7 17 18.5 17.9 17.9 1 +1935 7 18 16.9 16.3 16.3 1 +1935 7 19 16.4 15.8 15.8 1 +1935 7 20 16.5 15.9 15.9 1 +1935 7 21 16.6 16.0 16.0 1 +1935 7 22 18.1 17.5 17.5 1 +1935 7 23 21.6 21.0 21.0 1 +1935 7 24 21.5 21.0 21.0 1 +1935 7 25 15.7 15.2 15.2 1 +1935 7 26 18.7 18.2 18.2 1 +1935 7 27 17.3 16.8 16.8 1 +1935 7 28 14.5 14.0 14.0 1 +1935 7 29 14.0 13.5 13.5 1 +1935 7 30 13.9 13.4 13.4 1 +1935 7 31 15.8 15.3 15.3 1 +1935 8 1 16.9 16.4 16.4 1 +1935 8 2 17.5 17.0 17.0 1 +1935 8 3 18.6 18.1 18.1 1 +1935 8 4 16.5 16.0 16.0 1 +1935 8 5 16.0 15.5 15.5 1 +1935 8 6 16.5 16.1 16.1 1 +1935 8 7 20.2 19.8 19.8 1 +1935 8 8 23.1 22.7 22.7 1 +1935 8 9 20.5 20.1 20.1 1 +1935 8 10 20.0 19.6 19.6 1 +1935 8 11 19.0 18.6 18.6 1 +1935 8 12 19.2 18.8 18.8 1 +1935 8 13 15.8 15.4 15.4 1 +1935 8 14 15.5 15.1 15.1 1 +1935 8 15 15.1 14.7 14.7 1 +1935 8 16 14.3 13.9 13.9 1 +1935 8 17 14.8 14.4 14.4 1 +1935 8 18 11.9 11.6 11.6 1 +1935 8 19 11.4 11.1 11.1 1 +1935 8 20 14.3 14.0 14.0 1 +1935 8 21 14.1 13.8 13.8 1 +1935 8 22 13.5 13.2 13.2 1 +1935 8 23 12.0 11.7 11.7 1 +1935 8 24 10.0 9.7 9.7 1 +1935 8 25 13.2 12.9 12.9 1 +1935 8 26 12.9 12.6 12.6 1 +1935 8 27 13.6 13.3 13.3 1 +1935 8 28 14.6 14.4 14.4 1 +1935 8 29 14.9 14.7 14.7 1 +1935 8 30 14.4 14.2 14.2 1 +1935 8 31 13.8 13.6 13.6 1 +1935 9 1 15.3 15.1 15.1 1 +1935 9 2 15.0 14.8 14.8 1 +1935 9 3 15.5 15.3 15.3 1 +1935 9 4 14.8 14.6 14.6 1 +1935 9 5 14.6 14.4 14.4 1 +1935 9 6 13.1 13.0 13.0 1 +1935 9 7 11.5 11.4 11.4 1 +1935 9 8 10.3 10.2 10.2 1 +1935 9 9 8.6 8.5 8.5 1 +1935 9 10 9.6 9.5 9.5 1 +1935 9 11 9.0 8.9 8.9 1 +1935 9 12 9.0 8.9 8.9 1 +1935 9 13 13.0 12.9 12.9 1 +1935 9 14 14.0 13.9 13.9 1 +1935 9 15 13.5 13.5 13.5 1 +1935 9 16 13.4 13.4 13.4 1 +1935 9 17 12.7 12.7 12.7 1 +1935 9 18 14.0 14.0 14.0 1 +1935 9 19 13.1 13.1 13.1 1 +1935 9 20 12.5 12.5 12.5 1 +1935 9 21 11.7 11.7 11.7 1 +1935 9 22 10.4 10.4 10.4 1 +1935 9 23 11.2 11.2 11.2 1 +1935 9 24 9.9 9.9 9.9 1 +1935 9 25 8.2 8.2 8.2 1 +1935 9 26 6.5 6.5 6.5 1 +1935 9 27 4.4 4.4 4.4 1 +1935 9 28 5.1 5.1 5.1 1 +1935 9 29 10.7 10.7 10.7 1 +1935 9 30 10.2 10.2 10.2 1 +1935 10 1 9.4 9.4 9.4 1 +1935 10 2 9.5 9.5 9.5 1 +1935 10 3 9.1 9.1 9.1 1 +1935 10 4 10.5 10.5 10.5 1 +1935 10 5 12.2 12.2 12.2 1 +1935 10 6 12.0 12.0 12.0 1 +1935 10 7 9.8 9.8 9.8 1 +1935 10 8 10.2 10.2 10.2 1 +1935 10 9 10.7 10.7 10.7 1 +1935 10 10 11.4 11.4 11.4 1 +1935 10 11 8.8 8.8 8.8 1 +1935 10 12 8.8 8.8 8.8 1 +1935 10 13 10.5 10.5 10.5 1 +1935 10 14 10.3 10.3 10.3 1 +1935 10 15 11.4 11.4 11.4 1 +1935 10 16 11.2 11.2 11.2 1 +1935 10 17 9.5 9.5 9.5 1 +1935 10 18 6.6 6.5 6.5 1 +1935 10 19 7.1 7.0 7.0 1 +1935 10 20 6.5 6.4 6.4 1 +1935 10 21 3.8 3.7 3.7 1 +1935 10 22 3.0 2.9 2.9 1 +1935 10 23 2.1 2.0 2.0 1 +1935 10 24 2.5 2.4 2.4 1 +1935 10 25 3.0 2.9 2.9 1 +1935 10 26 1.1 1.0 1.0 1 +1935 10 27 2.7 2.6 2.6 1 +1935 10 28 3.3 3.2 3.2 1 +1935 10 29 2.7 2.6 2.6 1 +1935 10 30 4.3 4.2 4.2 1 +1935 10 31 7.8 7.7 7.7 1 +1935 11 1 9.9 9.8 9.8 1 +1935 11 2 8.8 8.7 8.7 1 +1935 11 3 7.1 6.9 6.9 1 +1935 11 4 5.1 4.9 4.9 1 +1935 11 5 4.9 4.7 4.7 1 +1935 11 6 4.9 4.7 4.7 1 +1935 11 7 5.4 5.2 5.2 1 +1935 11 8 6.4 6.2 6.2 1 +1935 11 9 7.2 7.0 7.0 1 +1935 11 10 7.2 7.0 7.0 1 +1935 11 11 4.6 4.4 4.4 1 +1935 11 12 7.0 6.8 6.8 1 +1935 11 13 6.8 6.6 6.6 1 +1935 11 14 6.9 6.7 6.7 1 +1935 11 15 5.7 5.5 5.5 1 +1935 11 16 6.1 5.9 5.9 1 +1935 11 17 5.6 5.4 5.4 1 +1935 11 18 5.2 5.0 5.0 1 +1935 11 19 4.4 4.2 4.2 1 +1935 11 20 3.5 3.3 3.3 1 +1935 11 21 1.5 1.3 1.3 1 +1935 11 22 1.8 1.6 1.6 1 +1935 11 23 2.1 1.9 1.9 1 +1935 11 24 0.8 0.6 0.6 1 +1935 11 25 0.6 0.4 0.4 1 +1935 11 26 1.0 0.8 0.8 1 +1935 11 27 2.8 2.5 2.5 1 +1935 11 28 1.2 0.9 0.9 1 +1935 11 29 3.9 3.6 3.6 1 +1935 11 30 4.5 4.2 4.2 1 +1935 12 1 5.3 5.0 5.0 1 +1935 12 2 2.9 2.6 2.6 1 +1935 12 3 1.8 1.5 1.5 1 +1935 12 4 1.5 1.2 1.2 1 +1935 12 5 1.1 0.8 0.8 1 +1935 12 6 1.5 1.2 1.2 1 +1935 12 7 -1.7 -2.0 -2.0 1 +1935 12 8 -2.1 -2.4 -2.4 1 +1935 12 9 -2.2 -2.5 -2.5 1 +1935 12 10 -3.7 -4.0 -4.0 1 +1935 12 11 -2.6 -2.9 -2.9 1 +1935 12 12 -4.0 -4.3 -4.3 1 +1935 12 13 -3.8 -4.1 -4.1 1 +1935 12 14 -2.4 -2.7 -2.7 1 +1935 12 15 -0.3 -0.6 -0.6 1 +1935 12 16 1.5 1.2 1.2 1 +1935 12 17 1.4 1.1 1.1 1 +1935 12 18 1.2 0.9 0.9 1 +1935 12 19 2.0 1.7 1.7 1 +1935 12 20 0.3 0.0 0.0 1 +1935 12 21 2.5 2.2 2.2 1 +1935 12 22 -0.1 -0.4 -0.4 1 +1935 12 23 -0.4 -0.7 -0.7 1 +1935 12 24 -3.1 -3.5 -3.5 1 +1935 12 25 -1.9 -2.3 -2.3 1 +1935 12 26 1.7 1.3 1.3 1 +1935 12 27 3.5 3.1 3.1 1 +1935 12 28 3.8 3.4 3.4 1 +1935 12 29 4.5 4.1 4.1 1 +1935 12 30 4.1 3.7 3.7 1 +1935 12 31 4.7 4.3 4.3 1 +1936 1 1 5.2 4.8 4.8 1 +1936 1 2 4.4 4.0 4.0 1 +1936 1 3 4.2 3.8 3.8 1 +1936 1 4 0.1 -0.4 -0.4 1 +1936 1 5 -6.0 -6.5 -6.5 1 +1936 1 6 -7.1 -7.6 -7.6 1 +1936 1 7 0.3 -0.2 -0.2 1 +1936 1 8 -2.5 -3.0 -3.0 1 +1936 1 9 0.4 -0.1 -0.1 1 +1936 1 10 4.3 3.8 3.8 1 +1936 1 11 3.9 3.4 3.4 1 +1936 1 12 -0.4 -0.9 -0.9 1 +1936 1 13 -2.0 -2.5 -2.5 1 +1936 1 14 -6.6 -7.1 -7.1 1 +1936 1 15 -7.5 -8.0 -8.0 1 +1936 1 16 -7.2 -7.7 -7.7 1 +1936 1 17 -0.7 -1.2 -1.2 1 +1936 1 18 -0.5 -1.0 -1.0 1 +1936 1 19 -1.6 -2.1 -2.1 1 +1936 1 20 -1.5 -2.0 -2.0 1 +1936 1 21 1.9 1.4 1.4 1 +1936 1 22 1.8 1.3 1.3 1 +1936 1 23 0.9 0.4 0.4 1 +1936 1 24 -1.4 -1.9 -1.9 1 +1936 1 25 -3.4 -3.9 -3.9 1 +1936 1 26 -5.2 -5.7 -5.7 1 +1936 1 27 0.1 -0.4 -0.4 1 +1936 1 28 -2.2 -2.7 -2.7 1 +1936 1 29 -3.5 -4.0 -4.0 1 +1936 1 30 -2.2 -2.7 -2.7 1 +1936 1 31 1.0 0.5 0.5 1 +1936 2 1 0.6 0.1 0.1 1 +1936 2 2 -1.7 -2.2 -2.2 1 +1936 2 3 -1.9 -2.4 -2.4 1 +1936 2 4 -2.5 -3.0 -3.0 1 +1936 2 5 -3.9 -4.4 -4.4 1 +1936 2 6 -7.0 -7.5 -7.5 1 +1936 2 7 -4.1 -4.6 -4.6 1 +1936 2 8 1.1 0.6 0.6 1 +1936 2 9 -7.6 -8.1 -8.1 1 +1936 2 10 -8.3 -8.8 -8.8 1 +1936 2 11 -1.4 -1.9 -1.9 1 +1936 2 12 -3.5 -4.0 -4.0 1 +1936 2 13 -8.0 -8.5 -8.5 1 +1936 2 14 -10.2 -10.7 -10.7 1 +1936 2 15 -8.5 -9.0 -9.0 1 +1936 2 16 -5.1 -5.6 -5.6 1 +1936 2 17 -3.6 -4.1 -4.1 1 +1936 2 18 -3.4 -3.9 -3.9 1 +1936 2 19 -3.8 -4.3 -4.3 1 +1936 2 20 -6.5 -7.0 -7.0 1 +1936 2 21 -9.2 -9.7 -9.7 1 +1936 2 22 -7.9 -8.4 -8.4 1 +1936 2 23 -4.5 -5.0 -5.0 1 +1936 2 24 -4.7 -5.2 -5.2 1 +1936 2 25 -5.9 -6.4 -6.4 1 +1936 2 26 -4.3 -4.8 -4.8 1 +1936 2 27 -4.1 -4.6 -4.6 1 +1936 2 28 -3.5 -4.0 -4.0 1 +1936 2 29 -0.5 -1.0 -1.0 1 +1936 3 1 1.8 1.3 1.3 1 +1936 3 2 -0.3 -0.8 -0.8 1 +1936 3 3 0.0 -0.6 -0.6 1 +1936 3 4 -0.2 -0.8 -0.8 1 +1936 3 5 0.0 -0.6 -0.6 1 +1936 3 6 0.6 0.0 0.0 1 +1936 3 7 1.6 1.0 1.0 1 +1936 3 8 0.1 -0.5 -0.5 1 +1936 3 9 0.9 0.3 0.3 1 +1936 3 10 0.4 -0.2 -0.2 1 +1936 3 11 -0.7 -1.3 -1.3 1 +1936 3 12 0.3 -0.3 -0.3 1 +1936 3 13 -0.3 -0.9 -0.9 1 +1936 3 14 -0.6 -1.2 -1.2 1 +1936 3 15 -1.0 -1.6 -1.6 1 +1936 3 16 -1.1 -1.7 -1.7 1 +1936 3 17 -0.7 -1.3 -1.3 1 +1936 3 18 3.5 2.9 2.9 1 +1936 3 19 1.2 0.6 0.6 1 +1936 3 20 0.9 0.3 0.3 1 +1936 3 21 2.3 1.7 1.7 1 +1936 3 22 4.0 3.4 3.4 1 +1936 3 23 1.1 0.5 0.5 1 +1936 3 24 -1.5 -2.1 -2.1 1 +1936 3 25 -0.4 -0.9 -0.9 1 +1936 3 26 2.1 1.6 1.6 1 +1936 3 27 2.1 1.6 1.6 1 +1936 3 28 1.3 0.8 0.8 1 +1936 3 29 2.6 2.1 2.1 1 +1936 3 30 2.4 1.9 1.9 1 +1936 3 31 4.2 3.7 3.7 1 +1936 4 1 5.3 4.8 4.8 1 +1936 4 2 2.6 2.1 2.1 1 +1936 4 3 -0.2 -0.7 -0.7 1 +1936 4 4 -1.7 -2.2 -2.2 1 +1936 4 5 -1.9 -2.4 -2.4 1 +1936 4 6 1.8 1.3 1.3 1 +1936 4 7 1.0 0.5 0.5 1 +1936 4 8 1.6 1.1 1.1 1 +1936 4 9 3.8 3.3 3.3 1 +1936 4 10 2.3 1.8 1.8 1 +1936 4 11 1.4 0.9 0.9 1 +1936 4 12 2.3 1.8 1.8 1 +1936 4 13 4.1 3.6 3.6 1 +1936 4 14 2.1 1.7 1.7 1 +1936 4 15 -0.5 -0.9 -0.9 1 +1936 4 16 0.8 0.3 0.3 1 +1936 4 17 3.5 3.0 3.0 1 +1936 4 18 5.0 4.5 4.5 1 +1936 4 19 4.8 4.3 4.3 1 +1936 4 20 4.4 3.9 3.9 1 +1936 4 21 3.9 3.4 3.4 1 +1936 4 22 3.3 2.8 2.8 1 +1936 4 23 5.6 5.0 5.0 1 +1936 4 24 5.3 4.7 4.7 1 +1936 4 25 6.0 5.4 5.4 1 +1936 4 26 6.4 5.8 5.8 1 +1936 4 27 9.4 8.8 8.8 1 +1936 4 28 10.6 10.0 10.0 1 +1936 4 29 11.2 10.6 10.6 1 +1936 4 30 7.1 6.4 6.4 1 +1936 5 1 5.7 5.0 5.0 1 +1936 5 2 6.1 5.4 5.4 1 +1936 5 3 8.0 7.3 7.3 1 +1936 5 4 6.8 6.1 6.1 1 +1936 5 5 7.1 6.4 6.4 1 +1936 5 6 8.5 7.8 7.8 1 +1936 5 7 10.2 9.4 9.4 1 +1936 5 8 10.5 9.7 9.7 1 +1936 5 9 11.1 10.3 10.3 1 +1936 5 10 13.0 12.2 12.2 1 +1936 5 11 12.6 11.8 11.8 1 +1936 5 12 12.0 11.2 11.2 1 +1936 5 13 11.0 10.2 10.2 1 +1936 5 14 12.2 11.4 11.4 1 +1936 5 15 7.8 6.9 6.9 1 +1936 5 16 7.6 6.7 6.7 1 +1936 5 17 11.2 10.4 10.4 1 +1936 5 18 13.3 12.5 12.5 1 +1936 5 19 14.6 13.8 13.8 1 +1936 5 20 14.5 13.7 13.7 1 +1936 5 21 6.9 6.1 6.1 1 +1936 5 22 9.6 8.8 8.8 1 +1936 5 23 7.6 6.8 6.8 1 +1936 5 24 9.7 8.9 8.9 1 +1936 5 25 13.2 12.4 12.4 1 +1936 5 26 15.1 14.3 14.3 1 +1936 5 27 12.4 11.6 11.6 1 +1936 5 28 6.9 6.1 6.1 1 +1936 5 29 9.1 8.3 8.3 1 +1936 5 30 7.9 7.1 7.1 1 +1936 5 31 11.7 10.9 10.9 1 +1936 6 1 11.7 10.9 10.9 1 +1936 6 2 8.6 7.9 7.9 1 +1936 6 3 13.7 13.0 13.0 1 +1936 6 4 13.9 13.2 13.2 1 +1936 6 5 14.8 14.1 14.1 1 +1936 6 6 16.6 15.9 15.9 1 +1936 6 7 17.5 16.8 16.8 1 +1936 6 8 17.8 17.1 17.1 1 +1936 6 9 15.0 14.3 14.3 1 +1936 6 10 17.1 16.4 16.4 1 +1936 6 11 20.2 19.5 19.5 1 +1936 6 12 19.4 18.7 18.7 1 +1936 6 13 19.6 18.9 18.9 1 +1936 6 14 20.0 19.3 19.3 1 +1936 6 15 20.4 19.7 19.7 1 +1936 6 16 17.1 16.4 16.4 1 +1936 6 17 18.2 17.5 17.5 1 +1936 6 18 20.9 20.2 20.2 1 +1936 6 19 21.6 20.9 20.9 1 +1936 6 20 18.8 18.1 18.1 1 +1936 6 21 20.4 19.7 19.7 1 +1936 6 22 23.0 22.3 22.3 1 +1936 6 23 23.8 23.1 23.1 1 +1936 6 24 23.0 22.3 22.3 1 +1936 6 25 16.5 15.8 15.8 1 +1936 6 26 22.0 21.3 21.3 1 +1936 6 27 17.6 16.9 16.9 1 +1936 6 28 16.6 15.9 15.9 1 +1936 6 29 18.9 18.2 18.2 1 +1936 6 30 18.3 17.7 17.7 1 +1936 7 1 20.3 19.7 19.7 1 +1936 7 2 23.2 22.6 22.6 1 +1936 7 3 22.5 21.9 21.9 1 +1936 7 4 22.0 21.4 21.4 1 +1936 7 5 18.7 18.1 18.1 1 +1936 7 6 19.0 18.4 18.4 1 +1936 7 7 19.3 18.7 18.7 1 +1936 7 8 21.5 20.9 20.9 1 +1936 7 9 19.3 18.7 18.7 1 +1936 7 10 20.8 20.2 20.2 1 +1936 7 11 20.0 19.4 19.4 1 +1936 7 12 18.3 17.7 17.7 1 +1936 7 13 17.2 16.6 16.6 1 +1936 7 14 18.4 17.8 17.8 1 +1936 7 15 18.8 18.2 18.2 1 +1936 7 16 15.9 15.3 15.3 1 +1936 7 17 18.1 17.5 17.5 1 +1936 7 18 19.1 18.5 18.5 1 +1936 7 19 18.8 18.2 18.2 1 +1936 7 20 18.5 17.9 17.9 1 +1936 7 21 17.8 17.2 17.2 1 +1936 7 22 19.3 18.7 18.7 1 +1936 7 23 20.6 20.0 20.0 1 +1936 7 24 20.9 20.3 20.3 1 +1936 7 25 19.9 19.3 19.3 1 +1936 7 26 18.3 17.8 17.8 1 +1936 7 27 17.3 16.8 16.8 1 +1936 7 28 17.6 17.1 17.1 1 +1936 7 29 15.2 14.7 14.7 1 +1936 7 30 16.4 15.9 15.9 1 +1936 7 31 16.8 16.3 16.3 1 +1936 8 1 17.6 17.1 17.1 1 +1936 8 2 15.9 15.4 15.4 1 +1936 8 3 16.5 16.0 16.0 1 +1936 8 4 16.0 15.5 15.5 1 +1936 8 5 16.3 15.8 15.8 1 +1936 8 6 16.3 15.8 15.8 1 +1936 8 7 16.3 15.8 15.8 1 +1936 8 8 16.1 15.7 15.7 1 +1936 8 9 17.9 17.5 17.5 1 +1936 8 10 17.9 17.5 17.5 1 +1936 8 11 18.7 18.3 18.3 1 +1936 8 12 19.4 19.0 19.0 1 +1936 8 13 18.9 18.5 18.5 1 +1936 8 14 20.0 19.6 19.6 1 +1936 8 15 19.3 18.9 18.9 1 +1936 8 16 17.7 17.3 17.3 1 +1936 8 17 18.0 17.6 17.6 1 +1936 8 18 17.6 17.2 17.2 1 +1936 8 19 17.8 17.5 17.5 1 +1936 8 20 16.7 16.4 16.4 1 +1936 8 21 15.9 15.6 15.6 1 +1936 8 22 15.1 14.8 14.8 1 +1936 8 23 13.9 13.6 13.6 1 +1936 8 24 15.1 14.8 14.8 1 +1936 8 25 14.0 13.7 13.7 1 +1936 8 26 13.8 13.5 13.5 1 +1936 8 27 14.0 13.7 13.7 1 +1936 8 28 17.6 17.3 17.3 1 +1936 8 29 15.7 15.5 15.5 1 +1936 8 30 14.7 14.5 14.5 1 +1936 8 31 11.8 11.6 11.6 1 +1936 9 1 9.3 9.1 9.1 1 +1936 9 2 12.3 12.1 12.1 1 +1936 9 3 11.7 11.5 11.5 1 +1936 9 4 11.7 11.5 11.5 1 +1936 9 5 11.6 11.4 11.4 1 +1936 9 6 13.4 13.2 13.2 1 +1936 9 7 13.3 13.2 13.2 1 +1936 9 8 10.3 10.2 10.2 1 +1936 9 9 9.4 9.3 9.3 1 +1936 9 10 10.5 10.4 10.4 1 +1936 9 11 13.9 13.8 13.8 1 +1936 9 12 14.6 14.5 14.5 1 +1936 9 13 14.2 14.1 14.1 1 +1936 9 14 14.3 14.2 14.2 1 +1936 9 15 14.2 14.1 14.1 1 +1936 9 16 12.9 12.8 12.8 1 +1936 9 17 13.9 13.8 13.8 1 +1936 9 18 12.9 12.8 12.8 1 +1936 9 19 13.2 13.1 13.1 1 +1936 9 20 13.3 13.3 13.3 1 +1936 9 21 14.3 14.3 14.3 1 +1936 9 22 15.1 15.1 15.1 1 +1936 9 23 11.9 11.9 11.9 1 +1936 9 24 7.8 7.8 7.8 1 +1936 9 25 6.7 6.7 6.7 1 +1936 9 26 4.2 4.2 4.2 1 +1936 9 27 3.6 3.6 3.6 1 +1936 9 28 4.6 4.6 4.6 1 +1936 9 29 6.5 6.5 6.5 1 +1936 9 30 4.3 4.3 4.3 1 +1936 10 1 4.7 4.7 4.7 1 +1936 10 2 3.4 3.4 3.4 1 +1936 10 3 5.2 5.2 5.2 1 +1936 10 4 3.5 3.5 3.5 1 +1936 10 5 3.9 3.9 3.9 1 +1936 10 6 3.6 3.6 3.6 1 +1936 10 7 3.2 3.2 3.2 1 +1936 10 8 5.4 5.4 5.4 1 +1936 10 9 3.9 3.9 3.9 1 +1936 10 10 3.9 3.9 3.9 1 +1936 10 11 4.8 4.8 4.8 1 +1936 10 12 5.8 5.8 5.8 1 +1936 10 13 4.3 4.3 4.3 1 +1936 10 14 3.3 3.3 3.3 1 +1936 10 15 3.9 3.9 3.9 1 +1936 10 16 5.6 5.6 5.6 1 +1936 10 17 4.6 4.5 4.5 1 +1936 10 18 4.9 4.8 4.8 1 +1936 10 19 0.5 0.4 0.4 1 +1936 10 20 0.2 0.1 0.1 1 +1936 10 21 2.9 2.8 2.8 1 +1936 10 22 3.7 3.6 3.6 1 +1936 10 23 6.0 5.9 5.9 1 +1936 10 24 8.8 8.7 8.7 1 +1936 10 25 9.1 9.0 9.0 1 +1936 10 26 6.6 6.5 6.5 1 +1936 10 27 7.0 6.9 6.9 1 +1936 10 28 5.9 5.8 5.8 1 +1936 10 29 3.7 3.6 3.6 1 +1936 10 30 5.1 5.0 5.0 1 +1936 10 31 6.1 6.0 6.0 1 +1936 11 1 1.8 1.7 1.7 1 +1936 11 2 2.2 2.0 2.0 1 +1936 11 3 3.8 3.6 3.6 1 +1936 11 4 5.6 5.4 5.4 1 +1936 11 5 6.7 6.5 6.5 1 +1936 11 6 7.7 7.5 7.5 1 +1936 11 7 7.7 7.5 7.5 1 +1936 11 8 8.0 7.8 7.8 1 +1936 11 9 6.5 6.3 6.3 1 +1936 11 10 7.3 7.1 7.1 1 +1936 11 11 6.3 6.1 6.1 1 +1936 11 12 5.3 5.1 5.1 1 +1936 11 13 5.3 5.1 5.1 1 +1936 11 14 1.9 1.7 1.7 1 +1936 11 15 0.2 0.0 0.0 1 +1936 11 16 4.6 4.4 4.4 1 +1936 11 17 4.1 3.9 3.9 1 +1936 11 18 2.4 2.2 2.2 1 +1936 11 19 1.3 1.1 1.1 1 +1936 11 20 0.7 0.5 0.5 1 +1936 11 21 6.2 6.0 6.0 1 +1936 11 22 2.7 2.4 2.4 1 +1936 11 23 2.7 2.4 2.4 1 +1936 11 24 2.5 2.2 2.2 1 +1936 11 25 0.8 0.5 0.5 1 +1936 11 26 1.9 1.6 1.6 1 +1936 11 27 1.2 0.9 0.9 1 +1936 11 28 1.5 1.2 1.2 1 +1936 11 29 1.8 1.5 1.5 1 +1936 11 30 2.7 2.4 2.4 1 +1936 12 1 2.3 2.0 2.0 1 +1936 12 2 0.4 0.1 0.1 1 +1936 12 3 0.4 0.1 0.1 1 +1936 12 4 3.1 2.8 2.8 1 +1936 12 5 2.0 1.7 1.7 1 +1936 12 6 3.0 2.7 2.7 1 +1936 12 7 0.5 0.2 0.2 1 +1936 12 8 -0.5 -0.8 -0.8 1 +1936 12 9 1.9 1.6 1.6 1 +1936 12 10 3.5 3.2 3.2 1 +1936 12 11 1.9 1.6 1.6 1 +1936 12 12 2.8 2.5 2.5 1 +1936 12 13 2.3 2.0 2.0 1 +1936 12 14 3.5 3.2 3.2 1 +1936 12 15 4.1 3.8 3.8 1 +1936 12 16 3.1 2.8 2.8 1 +1936 12 17 3.6 3.3 3.3 1 +1936 12 18 6.8 6.5 6.5 1 +1936 12 19 5.6 5.3 5.3 1 +1936 12 20 6.7 6.4 6.4 1 +1936 12 21 8.4 8.1 8.1 1 +1936 12 22 7.7 7.4 7.4 1 +1936 12 23 1.1 0.7 0.7 1 +1936 12 24 5.0 4.6 4.6 1 +1936 12 25 3.1 2.7 2.7 1 +1936 12 26 -0.9 -1.3 -1.3 1 +1936 12 27 1.7 1.3 1.3 1 +1936 12 28 0.6 0.2 0.2 1 +1936 12 29 0.6 0.2 0.2 1 +1936 12 30 3.8 3.4 3.4 1 +1936 12 31 5.9 5.5 5.5 1 +1937 1 1 5.1 4.7 4.7 1 +1937 1 2 3.4 3.0 3.0 1 +1937 1 3 3.6 3.1 3.1 1 +1937 1 4 3.8 3.3 3.3 1 +1937 1 5 4.5 4.0 4.0 1 +1937 1 6 2.8 2.3 2.3 1 +1937 1 7 0.1 -0.4 -0.4 1 +1937 1 8 -4.0 -4.5 -4.5 1 +1937 1 9 -1.3 -1.8 -1.8 1 +1937 1 10 2.2 1.7 1.7 1 +1937 1 11 1.5 1.0 1.0 1 +1937 1 12 0.7 0.2 0.2 1 +1937 1 13 -1.1 -1.6 -1.6 1 +1937 1 14 1.1 0.6 0.6 1 +1937 1 15 1.4 0.8 0.8 1 +1937 1 16 -1.3 -1.8 -1.8 1 +1937 1 17 -0.8 -1.3 -1.3 1 +1937 1 18 -1.0 -1.5 -1.5 1 +1937 1 19 -2.4 -2.9 -2.9 1 +1937 1 20 -4.5 -5.0 -5.0 1 +1937 1 21 -5.2 -5.7 -5.7 1 +1937 1 22 -3.4 -3.9 -3.9 1 +1937 1 23 -1.5 -2.0 -2.0 1 +1937 1 24 -2.8 -3.3 -3.3 1 +1937 1 25 -4.0 -4.5 -4.5 1 +1937 1 26 -4.8 -5.3 -5.3 1 +1937 1 27 -6.2 -6.7 -6.7 1 +1937 1 28 -5.0 -5.5 -5.5 1 +1937 1 29 -5.6 -6.1 -6.1 1 +1937 1 30 -7.5 -8.0 -8.0 1 +1937 1 31 -5.9 -6.4 -6.4 1 +1937 2 1 -4.7 -5.2 -5.2 1 +1937 2 2 -0.6 -1.1 -1.1 1 +1937 2 3 -2.3 -2.8 -2.8 1 +1937 2 4 -1.3 -1.8 -1.8 1 +1937 2 5 1.6 1.1 1.1 1 +1937 2 6 1.3 0.8 0.8 1 +1937 2 7 -5.4 -5.9 -5.9 1 +1937 2 8 -8.5 -9.0 -9.0 1 +1937 2 9 -7.9 -8.4 -8.4 1 +1937 2 10 -1.9 -2.4 -2.4 1 +1937 2 11 0.1 -0.4 -0.4 1 +1937 2 12 -2.2 -2.7 -2.7 1 +1937 2 13 -5.0 -5.5 -5.5 1 +1937 2 14 -7.0 -7.5 -7.5 1 +1937 2 15 -2.3 -2.8 -2.8 1 +1937 2 16 -1.3 -1.8 -1.8 1 +1937 2 17 0.5 0.0 0.0 1 +1937 2 18 -5.0 -5.5 -5.5 1 +1937 2 19 -1.5 -2.0 -2.0 1 +1937 2 20 -1.8 -2.3 -2.3 1 +1937 2 21 -2.5 -3.0 -3.0 1 +1937 2 22 -1.9 -2.4 -2.4 1 +1937 2 23 -2.4 -2.9 -2.9 1 +1937 2 24 -3.8 -4.3 -4.3 1 +1937 2 25 -5.2 -5.7 -5.7 1 +1937 2 26 -10.1 -10.6 -10.6 1 +1937 2 27 -3.3 -3.8 -3.8 1 +1937 2 28 1.6 1.0 1.0 1 +1937 3 1 1.1 0.5 0.5 1 +1937 3 2 0.7 0.1 0.1 1 +1937 3 3 0.4 -0.2 -0.2 1 +1937 3 4 -1.0 -1.6 -1.6 1 +1937 3 5 -2.8 -3.4 -3.4 1 +1937 3 6 -4.5 -5.1 -5.1 1 +1937 3 7 -6.4 -7.0 -7.0 1 +1937 3 8 -6.9 -7.5 -7.5 1 +1937 3 9 -7.4 -8.0 -8.0 1 +1937 3 10 -10.2 -10.8 -10.8 1 +1937 3 11 -9.0 -9.6 -9.6 1 +1937 3 12 -7.7 -8.3 -8.3 1 +1937 3 13 -2.2 -2.8 -2.8 1 +1937 3 14 -1.8 -2.4 -2.4 1 +1937 3 15 0.7 0.1 0.1 1 +1937 3 16 0.8 0.2 0.2 1 +1937 3 17 1.4 0.8 0.8 1 +1937 3 18 1.4 0.8 0.8 1 +1937 3 19 0.5 -0.1 -0.1 1 +1937 3 20 0.8 0.2 0.2 1 +1937 3 21 0.3 -0.3 -0.3 1 +1937 3 22 0.1 -0.5 -0.5 1 +1937 3 23 -0.2 -0.8 -0.8 1 +1937 3 24 0.1 -0.5 -0.5 1 +1937 3 25 0.8 0.2 0.2 1 +1937 3 26 0.1 -0.5 -0.5 1 +1937 3 27 -1.1 -1.6 -1.6 1 +1937 3 28 -0.3 -0.8 -0.8 1 +1937 3 29 0.0 -0.5 -0.5 1 +1937 3 30 -0.4 -0.9 -0.9 1 +1937 3 31 0.6 0.1 0.1 1 +1937 4 1 0.8 0.3 0.3 1 +1937 4 2 1.3 0.8 0.8 1 +1937 4 3 2.9 2.4 2.4 1 +1937 4 4 2.5 2.0 2.0 1 +1937 4 5 2.5 2.0 2.0 1 +1937 4 6 3.4 2.9 2.9 1 +1937 4 7 4.5 4.0 4.0 1 +1937 4 8 5.3 4.8 4.8 1 +1937 4 9 5.6 5.1 5.1 1 +1937 4 10 4.3 3.8 3.8 1 +1937 4 11 4.8 4.3 4.3 1 +1937 4 12 5.2 4.7 4.7 1 +1937 4 13 5.5 5.0 5.0 1 +1937 4 14 6.8 6.3 6.3 1 +1937 4 15 6.4 5.9 5.9 1 +1937 4 16 6.6 6.1 6.1 1 +1937 4 17 6.6 6.1 6.1 1 +1937 4 18 4.7 4.2 4.2 1 +1937 4 19 6.8 6.3 6.3 1 +1937 4 20 5.4 4.9 4.9 1 +1937 4 21 7.5 7.0 7.0 1 +1937 4 22 8.3 7.7 7.7 1 +1937 4 23 5.0 4.4 4.4 1 +1937 4 24 7.7 7.1 7.1 1 +1937 4 25 4.6 4.0 4.0 1 +1937 4 26 5.8 5.2 5.2 1 +1937 4 27 5.6 5.0 5.0 1 +1937 4 28 4.3 3.7 3.7 1 +1937 4 29 7.5 6.8 6.8 1 +1937 4 30 12.2 11.5 11.5 1 +1937 5 1 13.8 13.1 13.1 1 +1937 5 2 11.7 11.0 11.0 1 +1937 5 3 14.7 14.0 14.0 1 +1937 5 4 15.8 15.1 15.1 1 +1937 5 5 16.4 15.7 15.7 1 +1937 5 6 15.4 14.6 14.6 1 +1937 5 7 9.3 8.5 8.5 1 +1937 5 8 7.6 6.8 6.8 1 +1937 5 9 7.2 6.4 6.4 1 +1937 5 10 8.7 7.9 7.9 1 +1937 5 11 7.8 7.0 7.0 1 +1937 5 12 7.7 6.9 6.9 1 +1937 5 13 10.2 9.3 9.3 1 +1937 5 14 11.8 10.9 10.9 1 +1937 5 15 11.8 10.9 10.9 1 +1937 5 16 13.2 12.3 12.3 1 +1937 5 17 11.5 10.6 10.6 1 +1937 5 18 13.8 12.9 12.9 1 +1937 5 19 14.4 13.5 13.5 1 +1937 5 20 15.0 14.2 14.2 1 +1937 5 21 13.4 12.6 12.6 1 +1937 5 22 16.2 15.4 15.4 1 +1937 5 23 15.3 14.5 14.5 1 +1937 5 24 16.1 15.3 15.3 1 +1937 5 25 18.1 17.3 17.3 1 +1937 5 26 20.2 19.4 19.4 1 +1937 5 27 17.8 17.0 17.0 1 +1937 5 28 10.4 9.6 9.6 1 +1937 5 29 8.6 7.8 7.8 1 +1937 5 30 14.4 13.6 13.6 1 +1937 5 31 13.6 12.8 12.8 1 +1937 6 1 13.0 12.2 12.2 1 +1937 6 2 11.6 10.8 10.8 1 +1937 6 3 8.7 7.9 7.9 1 +1937 6 4 10.8 10.0 10.0 1 +1937 6 5 10.8 10.1 10.1 1 +1937 6 6 11.5 10.8 10.8 1 +1937 6 7 17.9 17.2 17.2 1 +1937 6 8 18.6 17.9 17.9 1 +1937 6 9 20.7 20.0 20.0 1 +1937 6 10 20.1 19.4 19.4 1 +1937 6 11 21.6 20.9 20.9 1 +1937 6 12 14.2 13.5 13.5 1 +1937 6 13 15.0 14.3 14.3 1 +1937 6 14 18.3 17.6 17.6 1 +1937 6 15 17.1 16.4 16.4 1 +1937 6 16 16.3 15.6 15.6 1 +1937 6 17 14.7 14.0 14.0 1 +1937 6 18 15.2 14.5 14.5 1 +1937 6 19 16.3 15.6 15.6 1 +1937 6 20 16.3 15.6 15.6 1 +1937 6 21 18.8 18.1 18.1 1 +1937 6 22 16.1 15.4 15.4 1 +1937 6 23 16.9 16.2 16.2 1 +1937 6 24 17.2 16.5 16.5 1 +1937 6 25 14.3 13.6 13.6 1 +1937 6 26 18.9 18.2 18.2 1 +1937 6 27 20.3 19.6 19.6 1 +1937 6 28 18.8 18.1 18.1 1 +1937 6 29 18.9 18.2 18.2 1 +1937 6 30 14.9 14.2 14.2 1 +1937 7 1 14.9 14.2 14.2 1 +1937 7 2 16.0 15.3 15.3 1 +1937 7 3 20.6 19.9 19.9 1 +1937 7 4 22.7 22.0 22.0 1 +1937 7 5 22.3 21.6 21.6 1 +1937 7 6 20.9 20.2 20.2 1 +1937 7 7 21.3 20.6 20.6 1 +1937 7 8 19.9 19.2 19.2 1 +1937 7 9 21.3 20.6 20.6 1 +1937 7 10 17.9 17.3 17.3 1 +1937 7 11 18.0 17.4 17.4 1 +1937 7 12 18.6 18.0 18.0 1 +1937 7 13 19.3 18.7 18.7 1 +1937 7 14 19.5 18.9 18.9 1 +1937 7 15 18.5 17.9 17.9 1 +1937 7 16 18.8 18.2 18.2 1 +1937 7 17 18.7 18.1 18.1 1 +1937 7 18 15.6 15.0 15.0 1 +1937 7 19 19.3 18.7 18.7 1 +1937 7 20 20.7 20.1 20.1 1 +1937 7 21 21.8 21.2 21.2 1 +1937 7 22 20.7 20.1 20.1 1 +1937 7 23 17.8 17.2 17.2 1 +1937 7 24 18.2 17.6 17.6 1 +1937 7 25 18.2 17.6 17.6 1 +1937 7 26 17.7 17.1 17.1 1 +1937 7 27 16.8 16.2 16.2 1 +1937 7 28 18.1 17.6 17.6 1 +1937 7 29 18.0 17.5 17.5 1 +1937 7 30 18.5 18.0 18.0 1 +1937 7 31 17.5 17.0 17.0 1 +1937 8 1 17.2 16.7 16.7 1 +1937 8 2 17.2 16.7 16.7 1 +1937 8 3 18.4 17.9 17.9 1 +1937 8 4 19.1 18.6 18.6 1 +1937 8 5 17.8 17.3 17.3 1 +1937 8 6 19.6 19.1 19.1 1 +1937 8 7 19.7 19.2 19.2 1 +1937 8 8 20.8 20.3 20.3 1 +1937 8 9 20.3 19.8 19.8 1 +1937 8 10 19.9 19.5 19.5 1 +1937 8 11 18.4 18.0 18.0 1 +1937 8 12 17.7 17.3 17.3 1 +1937 8 13 16.1 15.7 15.7 1 +1937 8 14 18.0 17.6 17.6 1 +1937 8 15 17.9 17.5 17.5 1 +1937 8 16 18.5 18.1 18.1 1 +1937 8 17 19.2 18.8 18.8 1 +1937 8 18 19.7 19.3 19.3 1 +1937 8 19 19.7 19.3 19.3 1 +1937 8 20 19.6 19.2 19.2 1 +1937 8 21 19.2 18.9 18.9 1 +1937 8 22 18.7 18.4 18.4 1 +1937 8 23 20.2 19.9 19.9 1 +1937 8 24 20.4 20.1 20.1 1 +1937 8 25 20.9 20.6 20.6 1 +1937 8 26 19.9 19.6 19.6 1 +1937 8 27 18.2 17.9 17.9 1 +1937 8 28 16.5 16.2 16.2 1 +1937 8 29 17.3 17.0 17.0 1 +1937 8 30 17.8 17.6 17.6 1 +1937 8 31 14.8 14.6 14.6 1 +1937 9 1 14.5 14.3 14.3 1 +1937 9 2 16.3 16.1 16.1 1 +1937 9 3 16.2 16.0 16.0 1 +1937 9 4 15.4 15.2 15.2 1 +1937 9 5 14.9 14.7 14.7 1 +1937 9 6 14.5 14.3 14.3 1 +1937 9 7 16.2 16.1 16.1 1 +1937 9 8 13.7 13.6 13.6 1 +1937 9 9 12.6 12.5 12.5 1 +1937 9 10 12.0 11.9 11.9 1 +1937 9 11 11.5 11.4 11.4 1 +1937 9 12 10.7 10.6 10.6 1 +1937 9 13 11.2 11.1 11.1 1 +1937 9 14 9.3 9.2 9.2 1 +1937 9 15 10.7 10.6 10.6 1 +1937 9 16 12.7 12.6 12.6 1 +1937 9 17 14.5 14.4 14.4 1 +1937 9 18 13.4 13.3 13.3 1 +1937 9 19 14.4 14.3 14.3 1 +1937 9 20 13.3 13.2 13.2 1 +1937 9 21 12.1 12.0 12.0 1 +1937 9 22 11.1 11.0 11.0 1 +1937 9 23 12.6 12.5 12.5 1 +1937 9 24 12.4 12.3 12.3 1 +1937 9 25 12.1 12.0 12.0 1 +1937 9 26 10.2 10.1 10.1 1 +1937 9 27 10.5 10.4 10.4 1 +1937 9 28 12.0 11.9 11.9 1 +1937 9 29 10.6 10.5 10.5 1 +1937 9 30 10.2 10.1 10.1 1 +1937 10 1 10.7 10.6 10.6 1 +1937 10 2 11.2 11.1 11.1 1 +1937 10 3 8.9 8.8 8.8 1 +1937 10 4 9.6 9.5 9.5 1 +1937 10 5 9.3 9.3 9.3 1 +1937 10 6 9.5 9.5 9.5 1 +1937 10 7 8.2 8.2 8.2 1 +1937 10 8 8.3 8.3 8.3 1 +1937 10 9 8.0 8.0 8.0 1 +1937 10 10 5.1 5.1 5.1 1 +1937 10 11 5.0 5.0 5.0 1 +1937 10 12 6.2 6.2 6.2 1 +1937 10 13 4.5 4.5 4.5 1 +1937 10 14 6.0 6.0 6.0 1 +1937 10 15 7.8 7.8 7.8 1 +1937 10 16 11.3 11.2 11.2 1 +1937 10 17 8.3 8.2 8.2 1 +1937 10 18 12.6 12.5 12.5 1 +1937 10 19 9.3 9.2 9.2 1 +1937 10 20 9.0 8.9 8.9 1 +1937 10 21 8.7 8.6 8.6 1 +1937 10 22 7.7 7.6 7.6 1 +1937 10 23 10.4 10.3 10.3 1 +1937 10 24 9.7 9.6 9.6 1 +1937 10 25 10.6 10.5 10.5 1 +1937 10 26 9.5 9.4 9.4 1 +1937 10 27 10.7 10.6 10.6 1 +1937 10 28 9.8 9.7 9.7 1 +1937 10 29 10.2 10.1 10.1 1 +1937 10 30 9.4 9.3 9.3 1 +1937 10 31 9.4 9.3 9.3 1 +1937 11 1 8.0 7.8 7.8 1 +1937 11 2 6.5 6.3 6.3 1 +1937 11 3 6.4 6.2 6.2 1 +1937 11 4 7.0 6.8 6.8 1 +1937 11 5 7.1 6.9 6.9 1 +1937 11 6 7.5 7.3 7.3 1 +1937 11 7 6.8 6.6 6.6 1 +1937 11 8 6.8 6.6 6.6 1 +1937 11 9 6.5 6.3 6.3 1 +1937 11 10 6.4 6.2 6.2 1 +1937 11 11 6.0 5.8 5.8 1 +1937 11 12 3.5 3.3 3.3 1 +1937 11 13 -1.4 -1.6 -1.6 1 +1937 11 14 -1.8 -2.0 -2.0 1 +1937 11 15 -3.5 -3.7 -3.7 1 +1937 11 16 -0.5 -0.7 -0.7 1 +1937 11 17 0.3 0.0 0.0 1 +1937 11 18 0.1 -0.2 -0.2 1 +1937 11 19 1.0 0.7 0.7 1 +1937 11 20 4.9 4.6 4.6 1 +1937 11 21 4.9 4.6 4.6 1 +1937 11 22 1.0 0.7 0.7 1 +1937 11 23 2.5 2.2 2.2 1 +1937 11 24 1.1 0.8 0.8 1 +1937 11 25 1.1 0.8 0.8 1 +1937 11 26 2.0 1.7 1.7 1 +1937 11 27 0.2 -0.1 -0.1 1 +1937 11 28 -1.2 -1.5 -1.5 1 +1937 11 29 -1.1 -1.4 -1.4 1 +1937 11 30 -1.2 -1.5 -1.5 1 +1937 12 1 -0.6 -0.9 -0.9 1 +1937 12 2 -2.3 -2.6 -2.6 1 +1937 12 3 -4.1 -4.4 -4.4 1 +1937 12 4 -7.6 -7.9 -7.9 1 +1937 12 5 -7.2 -7.5 -7.5 1 +1937 12 6 -6.0 -6.3 -6.3 1 +1937 12 7 -5.7 -6.0 -6.0 1 +1937 12 8 -7.9 -8.2 -8.2 1 +1937 12 9 -7.1 -7.4 -7.4 1 +1937 12 10 -4.7 -5.0 -5.0 1 +1937 12 11 -7.0 -7.3 -7.3 1 +1937 12 12 -3.2 -3.5 -3.5 1 +1937 12 13 1.5 1.2 1.2 1 +1937 12 14 -0.8 -1.1 -1.1 1 +1937 12 15 0.6 0.3 0.3 1 +1937 12 16 -0.5 -0.8 -0.8 1 +1937 12 17 -2.2 -2.5 -2.5 1 +1937 12 18 -3.1 -3.4 -3.4 1 +1937 12 19 -3.7 -4.0 -4.0 1 +1937 12 20 -9.9 -10.2 -10.2 1 +1937 12 21 -9.4 -9.7 -9.7 1 +1937 12 22 -6.9 -7.3 -7.3 1 +1937 12 23 -4.0 -4.4 -4.4 1 +1937 12 24 0.1 -0.3 -0.3 1 +1937 12 25 0.1 -0.3 -0.3 1 +1937 12 26 -1.7 -2.1 -2.1 1 +1937 12 27 -0.3 -0.7 -0.7 1 +1937 12 28 -1.5 -1.9 -1.9 1 +1937 12 29 -2.8 -3.2 -3.2 1 +1937 12 30 -3.0 -3.4 -3.4 1 +1937 12 31 -0.1 -0.5 -0.5 1 +1938 1 1 -1.5 -1.9 -1.9 1 +1938 1 2 -3.4 -3.9 -3.9 1 +1938 1 3 -4.1 -4.6 -4.6 1 +1938 1 4 -3.4 -3.9 -3.9 1 +1938 1 5 -1.8 -2.3 -2.3 1 +1938 1 6 -5.4 -5.9 -5.9 1 +1938 1 7 -9.6 -10.1 -10.1 1 +1938 1 8 -11.1 -11.6 -11.6 1 +1938 1 9 -1.3 -1.8 -1.8 1 +1938 1 10 -1.5 -2.0 -2.0 1 +1938 1 11 -0.7 -1.2 -1.2 1 +1938 1 12 -4.8 -5.3 -5.3 1 +1938 1 13 0.2 -0.3 -0.3 1 +1938 1 14 2.5 1.9 1.9 1 +1938 1 15 0.9 0.3 0.3 1 +1938 1 16 2.0 1.4 1.4 1 +1938 1 17 2.3 1.7 1.7 1 +1938 1 18 0.2 -0.4 -0.4 1 +1938 1 19 -2.9 -3.5 -3.5 1 +1938 1 20 -1.0 -1.6 -1.6 1 +1938 1 21 0.9 0.3 0.3 1 +1938 1 22 1.3 0.8 0.8 1 +1938 1 23 3.6 3.1 3.1 1 +1938 1 24 2.2 1.7 1.7 1 +1938 1 25 2.3 1.8 1.8 1 +1938 1 26 2.0 1.5 1.5 1 +1938 1 27 0.6 0.1 0.1 1 +1938 1 28 -2.0 -2.5 -2.5 1 +1938 1 29 1.4 0.9 0.9 1 +1938 1 30 1.3 0.8 0.8 1 +1938 1 31 0.3 -0.2 -0.2 1 +1938 2 1 2.3 1.8 1.8 1 +1938 2 2 3.1 2.6 2.6 1 +1938 2 3 2.3 1.8 1.8 1 +1938 2 4 3.4 2.9 2.9 1 +1938 2 5 6.2 5.7 5.7 1 +1938 2 6 4.3 3.8 3.8 1 +1938 2 7 0.8 0.3 0.3 1 +1938 2 8 -0.4 -0.9 -0.9 1 +1938 2 9 -1.0 -1.5 -1.5 1 +1938 2 10 1.0 0.5 0.5 1 +1938 2 11 -0.4 -0.9 -0.9 1 +1938 2 12 -2.0 -2.5 -2.5 1 +1938 2 13 -2.6 -3.1 -3.1 1 +1938 2 14 -3.8 -4.3 -4.3 1 +1938 2 15 -2.9 -3.4 -3.4 1 +1938 2 16 0.1 -0.4 -0.4 1 +1938 2 17 0.2 -0.3 -0.3 1 +1938 2 18 1.8 1.3 1.3 1 +1938 2 19 1.7 1.2 1.2 1 +1938 2 20 1.2 0.7 0.7 1 +1938 2 21 1.3 0.8 0.8 1 +1938 2 22 -2.0 -2.5 -2.5 1 +1938 2 23 0.2 -0.3 -0.3 1 +1938 2 24 3.4 2.9 2.9 1 +1938 2 25 -0.9 -1.5 -1.5 1 +1938 2 26 1.8 1.2 1.2 1 +1938 2 27 3.7 3.1 3.1 1 +1938 2 28 2.7 2.1 2.1 1 +1938 3 1 4.1 3.5 3.5 1 +1938 3 2 2.5 1.9 1.9 1 +1938 3 3 2.1 1.5 1.5 1 +1938 3 4 7.1 6.5 6.5 1 +1938 3 5 7.1 6.5 6.5 1 +1938 3 6 4.3 3.7 3.7 1 +1938 3 7 1.5 0.9 0.9 1 +1938 3 8 0.4 -0.2 -0.2 1 +1938 3 9 4.8 4.2 4.2 1 +1938 3 10 3.3 2.7 2.7 1 +1938 3 11 -0.8 -1.4 -1.4 1 +1938 3 12 0.8 0.2 0.2 1 +1938 3 13 3.8 3.2 3.2 1 +1938 3 14 4.2 3.6 3.6 1 +1938 3 15 4.6 4.0 4.0 1 +1938 3 16 7.0 6.4 6.4 1 +1938 3 17 2.4 1.8 1.8 1 +1938 3 18 5.8 5.2 5.2 1 +1938 3 19 7.9 7.3 7.3 1 +1938 3 20 7.0 6.4 6.4 1 +1938 3 21 10.9 10.3 10.3 1 +1938 3 22 5.8 5.2 5.2 1 +1938 3 23 6.3 5.7 5.7 1 +1938 3 24 8.0 7.4 7.4 1 +1938 3 25 8.8 8.2 8.2 1 +1938 3 26 2.2 1.6 1.6 1 +1938 3 27 -1.4 -2.0 -2.0 1 +1938 3 28 -1.6 -2.2 -2.2 1 +1938 3 29 2.8 2.2 2.2 1 +1938 3 30 5.8 5.3 5.3 1 +1938 3 31 2.4 1.9 1.9 1 +1938 4 1 1.6 1.1 1.1 1 +1938 4 2 3.8 3.3 3.3 1 +1938 4 3 1.5 1.0 1.0 1 +1938 4 4 0.0 -0.5 -0.5 1 +1938 4 5 2.7 2.2 2.2 1 +1938 4 6 6.4 5.9 5.9 1 +1938 4 7 5.0 4.5 4.5 1 +1938 4 8 2.0 1.5 1.5 1 +1938 4 9 -0.5 -1.0 -1.0 1 +1938 4 10 5.8 5.3 5.3 1 +1938 4 11 8.8 8.3 8.3 1 +1938 4 12 9.9 9.4 9.4 1 +1938 4 13 5.7 5.2 5.2 1 +1938 4 14 8.6 8.1 8.1 1 +1938 4 15 9.5 9.0 9.0 1 +1938 4 16 6.2 5.7 5.7 1 +1938 4 17 1.4 0.9 0.9 1 +1938 4 18 0.7 0.2 0.2 1 +1938 4 19 0.5 0.0 0.0 1 +1938 4 20 1.9 1.4 1.4 1 +1938 4 21 3.7 3.1 3.1 1 +1938 4 22 4.4 3.8 3.8 1 +1938 4 23 2.8 2.2 2.2 1 +1938 4 24 3.9 3.3 3.3 1 +1938 4 25 6.8 6.2 6.2 1 +1938 4 26 8.9 8.3 8.3 1 +1938 4 27 8.5 7.9 7.9 1 +1938 4 28 9.5 8.8 8.8 1 +1938 4 29 9.9 9.2 9.2 1 +1938 4 30 4.2 3.5 3.5 1 +1938 5 1 6.9 6.2 6.2 1 +1938 5 2 6.4 5.7 5.7 1 +1938 5 3 4.2 3.5 3.5 1 +1938 5 4 7.4 6.7 6.7 1 +1938 5 5 8.7 7.9 7.9 1 +1938 5 6 8.3 7.5 7.5 1 +1938 5 7 7.3 6.5 6.5 1 +1938 5 8 4.7 3.9 3.9 1 +1938 5 9 7.1 6.3 6.3 1 +1938 5 10 6.0 5.2 5.2 1 +1938 5 11 7.4 6.6 6.6 1 +1938 5 12 10.7 9.8 9.8 1 +1938 5 13 16.1 15.2 15.2 1 +1938 5 14 13.8 12.9 12.9 1 +1938 5 15 17.5 16.6 16.6 1 +1938 5 16 20.4 19.5 19.5 1 +1938 5 17 15.6 14.7 14.7 1 +1938 5 18 10.0 9.1 9.1 1 +1938 5 19 2.5 1.6 1.6 1 +1938 5 20 3.3 2.4 2.4 1 +1938 5 21 6.2 5.3 5.3 1 +1938 5 22 8.3 7.4 7.4 1 +1938 5 23 11.2 10.4 10.4 1 +1938 5 24 10.8 10.0 10.0 1 +1938 5 25 11.5 10.7 10.7 1 +1938 5 26 11.0 10.2 10.2 1 +1938 5 27 12.2 11.4 11.4 1 +1938 5 28 13.9 13.1 13.1 1 +1938 5 29 10.6 9.8 9.8 1 +1938 5 30 10.5 9.7 9.7 1 +1938 5 31 12.3 11.5 11.5 1 +1938 6 1 12.6 11.8 11.8 1 +1938 6 2 13.3 12.5 12.5 1 +1938 6 3 16.8 16.0 16.0 1 +1938 6 4 12.9 12.1 12.1 1 +1938 6 5 16.0 15.2 15.2 1 +1938 6 6 17.5 16.7 16.7 1 +1938 6 7 18.3 17.6 17.6 1 +1938 6 8 19.8 19.1 19.1 1 +1938 6 9 19.3 18.6 18.6 1 +1938 6 10 18.1 17.4 17.4 1 +1938 6 11 14.9 14.2 14.2 1 +1938 6 12 13.0 12.3 12.3 1 +1938 6 13 13.5 12.8 12.8 1 +1938 6 14 14.9 14.2 14.2 1 +1938 6 15 11.8 11.1 11.1 1 +1938 6 16 12.4 11.7 11.7 1 +1938 6 17 13.4 12.7 12.7 1 +1938 6 18 14.1 13.4 13.4 1 +1938 6 19 15.4 14.7 14.7 1 +1938 6 20 14.0 13.3 13.3 1 +1938 6 21 13.2 12.5 12.5 1 +1938 6 22 14.8 14.1 14.1 1 +1938 6 23 14.4 13.7 13.7 1 +1938 6 24 14.3 13.6 13.6 1 +1938 6 25 15.0 14.3 14.3 1 +1938 6 26 12.0 11.3 11.3 1 +1938 6 27 14.3 13.6 13.6 1 +1938 6 28 13.8 13.1 13.1 1 +1938 6 29 13.3 12.6 12.6 1 +1938 6 30 15.0 14.3 14.3 1 +1938 7 1 15.3 14.6 14.6 1 +1938 7 2 13.1 12.4 12.4 1 +1938 7 3 15.1 14.4 14.4 1 +1938 7 4 16.3 15.6 15.6 1 +1938 7 5 17.1 16.4 16.4 1 +1938 7 6 13.8 13.1 13.1 1 +1938 7 7 15.5 14.8 14.8 1 +1938 7 8 17.6 16.9 16.9 1 +1938 7 9 19.2 18.5 18.5 1 +1938 7 10 16.1 15.4 15.4 1 +1938 7 11 16.9 16.2 16.2 1 +1938 7 12 13.7 13.0 13.0 1 +1938 7 13 16.0 15.3 15.3 1 +1938 7 14 16.3 15.6 15.6 1 +1938 7 15 19.2 18.5 18.5 1 +1938 7 16 18.7 18.1 18.1 1 +1938 7 17 20.4 19.8 19.8 1 +1938 7 18 16.6 16.0 16.0 1 +1938 7 19 18.2 17.6 17.6 1 +1938 7 20 18.4 17.8 17.8 1 +1938 7 21 17.3 16.7 16.7 1 +1938 7 22 20.9 20.3 20.3 1 +1938 7 23 19.5 18.9 18.9 1 +1938 7 24 18.3 17.7 17.7 1 +1938 7 25 18.2 17.6 17.6 1 +1938 7 26 20.5 19.9 19.9 1 +1938 7 27 20.7 20.1 20.1 1 +1938 7 28 21.4 20.8 20.8 1 +1938 7 29 21.5 21.0 21.0 1 +1938 7 30 20.1 19.6 19.6 1 +1938 7 31 24.2 23.7 23.7 1 +1938 8 1 22.6 22.1 22.1 1 +1938 8 2 20.2 19.7 19.7 1 +1938 8 3 17.2 16.7 16.7 1 +1938 8 4 17.9 17.4 17.4 1 +1938 8 5 18.9 18.4 18.4 1 +1938 8 6 20.6 20.1 20.1 1 +1938 8 7 21.9 21.4 21.4 1 +1938 8 8 21.7 21.2 21.2 1 +1938 8 9 22.2 21.7 21.7 1 +1938 8 10 22.5 22.0 22.0 1 +1938 8 11 21.3 20.9 20.9 1 +1938 8 12 23.1 22.7 22.7 1 +1938 8 13 22.3 21.9 21.9 1 +1938 8 14 22.4 22.0 22.0 1 +1938 8 15 21.6 21.2 21.2 1 +1938 8 16 19.3 18.9 18.9 1 +1938 8 17 17.6 17.2 17.2 1 +1938 8 18 15.2 14.8 14.8 1 +1938 8 19 16.4 16.0 16.0 1 +1938 8 20 16.2 15.8 15.8 1 +1938 8 21 15.5 15.1 15.1 1 +1938 8 22 14.1 13.8 13.8 1 +1938 8 23 14.5 14.2 14.2 1 +1938 8 24 14.8 14.5 14.5 1 +1938 8 25 16.7 16.4 16.4 1 +1938 8 26 15.6 15.3 15.3 1 +1938 8 27 15.0 14.7 14.7 1 +1938 8 28 14.8 14.5 14.5 1 +1938 8 29 15.4 15.1 15.1 1 +1938 8 30 17.4 17.2 17.2 1 +1938 8 31 18.5 18.3 18.3 1 +1938 9 1 19.5 19.3 19.3 1 +1938 9 2 18.5 18.3 18.3 1 +1938 9 3 15.8 15.6 15.6 1 +1938 9 4 15.4 15.2 15.2 1 +1938 9 5 14.5 14.3 14.3 1 +1938 9 6 15.2 15.0 15.0 1 +1938 9 7 15.3 15.1 15.1 1 +1938 9 8 14.9 14.8 14.8 1 +1938 9 9 14.2 14.1 14.1 1 +1938 9 10 13.5 13.4 13.4 1 +1938 9 11 13.0 12.9 12.9 1 +1938 9 12 13.3 13.2 13.2 1 +1938 9 13 14.4 14.3 14.3 1 +1938 9 14 9.6 9.5 9.5 1 +1938 9 15 8.2 8.1 8.1 1 +1938 9 16 7.8 7.7 7.7 1 +1938 9 17 10.5 10.4 10.4 1 +1938 9 18 12.1 12.0 12.0 1 +1938 9 19 15.1 15.0 15.0 1 +1938 9 20 14.4 14.3 14.3 1 +1938 9 21 14.6 14.5 14.5 1 +1938 9 22 15.3 15.2 15.2 1 +1938 9 23 15.0 14.9 14.9 1 +1938 9 24 14.3 14.2 14.2 1 +1938 9 25 13.4 13.3 13.3 1 +1938 9 26 14.3 14.2 14.2 1 +1938 9 27 14.1 14.0 14.0 1 +1938 9 28 12.9 12.8 12.8 1 +1938 9 29 12.2 12.1 12.1 1 +1938 9 30 11.8 11.7 11.7 1 +1938 10 1 12.9 12.8 12.8 1 +1938 10 2 14.6 14.5 14.5 1 +1938 10 3 13.6 13.5 13.5 1 +1938 10 4 11.6 11.5 11.5 1 +1938 10 5 11.8 11.7 11.7 1 +1938 10 6 10.9 10.8 10.8 1 +1938 10 7 9.1 9.0 9.0 1 +1938 10 8 9.2 9.1 9.1 1 +1938 10 9 10.3 10.2 10.2 1 +1938 10 10 10.5 10.4 10.4 1 +1938 10 11 9.5 9.4 9.4 1 +1938 10 12 8.3 8.2 8.2 1 +1938 10 13 9.2 9.1 9.1 1 +1938 10 14 10.4 10.3 10.3 1 +1938 10 15 7.5 7.4 7.4 1 +1938 10 16 7.2 7.1 7.1 1 +1938 10 17 10.2 10.1 10.1 1 +1938 10 18 10.1 10.0 10.0 1 +1938 10 19 7.0 6.9 6.9 1 +1938 10 20 5.6 5.5 5.5 1 +1938 10 21 4.7 4.6 4.6 1 +1938 10 22 3.5 3.4 3.4 1 +1938 10 23 4.6 4.5 4.5 1 +1938 10 24 5.1 5.0 5.0 1 +1938 10 25 4.5 4.4 4.4 1 +1938 10 26 6.0 5.9 5.9 1 +1938 10 27 8.1 8.0 8.0 1 +1938 10 28 7.5 7.4 7.4 1 +1938 10 29 5.0 4.9 4.9 1 +1938 10 30 6.5 6.4 6.4 1 +1938 10 31 6.6 6.4 6.4 1 +1938 11 1 7.4 7.2 7.2 1 +1938 11 2 7.3 7.1 7.1 1 +1938 11 3 4.6 4.4 4.4 1 +1938 11 4 4.9 4.7 4.7 1 +1938 11 5 2.5 2.3 2.3 1 +1938 11 6 2.3 2.1 2.1 1 +1938 11 7 9.4 9.2 9.2 1 +1938 11 8 4.5 4.3 4.3 1 +1938 11 9 1.1 0.9 0.9 1 +1938 11 10 1.9 1.7 1.7 1 +1938 11 11 4.8 4.6 4.6 1 +1938 11 12 6.9 6.7 6.7 1 +1938 11 13 8.0 7.8 7.8 1 +1938 11 14 10.8 10.6 10.6 1 +1938 11 15 6.3 6.0 6.0 1 +1938 11 16 3.6 3.3 3.3 1 +1938 11 17 2.1 1.8 1.8 1 +1938 11 18 3.0 2.7 2.7 1 +1938 11 19 5.7 5.4 5.4 1 +1938 11 20 4.3 4.0 4.0 1 +1938 11 21 6.2 5.9 5.9 1 +1938 11 22 7.1 6.8 6.8 1 +1938 11 23 4.1 3.8 3.8 1 +1938 11 24 7.2 6.9 6.9 1 +1938 11 25 5.0 4.7 4.7 1 +1938 11 26 7.1 6.8 6.8 1 +1938 11 27 6.3 6.0 6.0 1 +1938 11 28 4.9 4.6 4.6 1 +1938 11 29 6.1 5.8 5.8 1 +1938 11 30 6.2 5.9 5.9 1 +1938 12 1 5.7 5.4 5.4 1 +1938 12 2 6.2 5.9 5.9 1 +1938 12 3 3.8 3.5 3.5 1 +1938 12 4 0.6 0.3 0.3 1 +1938 12 5 1.6 1.3 1.3 1 +1938 12 6 4.1 3.8 3.8 1 +1938 12 7 4.1 3.8 3.8 1 +1938 12 8 6.6 6.3 6.3 1 +1938 12 9 4.9 4.6 4.6 1 +1938 12 10 5.1 4.8 4.8 1 +1938 12 11 4.1 3.8 3.8 1 +1938 12 12 4.6 4.3 4.3 1 +1938 12 13 3.2 2.9 2.9 1 +1938 12 14 2.5 2.2 2.2 1 +1938 12 15 1.4 1.1 1.1 1 +1938 12 16 -1.1 -1.4 -1.4 1 +1938 12 17 -1.6 -1.9 -1.9 1 +1938 12 18 -3.7 -4.0 -4.0 1 +1938 12 19 -5.4 -5.7 -5.7 1 +1938 12 20 -5.6 -6.0 -6.0 1 +1938 12 21 -1.6 -2.0 -2.0 1 +1938 12 22 -0.9 -1.3 -1.3 1 +1938 12 23 -3.8 -4.2 -4.2 1 +1938 12 24 -5.0 -5.4 -5.4 1 +1938 12 25 -7.0 -7.4 -7.4 1 +1938 12 26 -8.3 -8.7 -8.7 1 +1938 12 27 -6.0 -6.4 -6.4 1 +1938 12 28 -6.7 -7.1 -7.1 1 +1938 12 29 -7.0 -7.4 -7.4 1 +1938 12 30 0.2 -0.2 -0.2 1 +1938 12 31 -0.1 -0.5 -0.5 1 +1939 1 1 -2.9 -3.4 -3.4 1 +1939 1 2 -0.7 -1.2 -1.2 1 +1939 1 3 0.0 -0.5 -0.5 1 +1939 1 4 0.8 0.3 0.3 1 +1939 1 5 -5.0 -5.5 -5.5 1 +1939 1 6 -9.3 -9.8 -9.8 1 +1939 1 7 -9.4 -9.9 -9.9 1 +1939 1 8 -4.0 -4.5 -4.5 1 +1939 1 9 -1.9 -2.4 -2.4 1 +1939 1 10 -2.2 -2.7 -2.7 1 +1939 1 11 -4.0 -4.5 -4.5 1 +1939 1 12 -1.6 -2.1 -2.1 1 +1939 1 13 1.5 0.9 0.9 1 +1939 1 14 0.2 -0.4 -0.4 1 +1939 1 15 0.2 -0.4 -0.4 1 +1939 1 16 3.7 3.1 3.1 1 +1939 1 17 4.5 3.9 3.9 1 +1939 1 18 -0.6 -1.2 -1.2 1 +1939 1 19 -4.1 -4.7 -4.7 1 +1939 1 20 -0.4 -1.0 -1.0 1 +1939 1 21 1.5 0.9 0.9 1 +1939 1 22 2.2 1.6 1.6 1 +1939 1 23 1.2 0.6 0.6 1 +1939 1 24 2.3 1.7 1.7 1 +1939 1 25 2.6 2.0 2.0 1 +1939 1 26 1.8 1.2 1.2 1 +1939 1 27 -1.6 -2.2 -2.2 1 +1939 1 28 -2.3 -2.9 -2.9 1 +1939 1 29 -2.0 -2.5 -2.5 1 +1939 1 30 0.9 0.4 0.4 1 +1939 1 31 0.3 -0.2 -0.2 1 +1939 2 1 -0.1 -0.6 -0.6 1 +1939 2 2 -1.0 -1.5 -1.5 1 +1939 2 3 -2.2 -2.7 -2.7 1 +1939 2 4 1.2 0.7 0.7 1 +1939 2 5 3.7 3.2 3.2 1 +1939 2 6 4.8 4.3 4.3 1 +1939 2 7 4.6 4.1 4.1 1 +1939 2 8 5.5 5.0 5.0 1 +1939 2 9 4.8 4.3 4.3 1 +1939 2 10 2.3 1.8 1.8 1 +1939 2 11 4.6 4.1 4.1 1 +1939 2 12 6.5 6.0 6.0 1 +1939 2 13 -2.0 -2.5 -2.5 1 +1939 2 14 -2.5 -3.0 -3.0 1 +1939 2 15 4.8 4.3 4.3 1 +1939 2 16 6.0 5.5 5.5 1 +1939 2 17 2.1 1.6 1.6 1 +1939 2 18 2.4 1.9 1.9 1 +1939 2 19 1.3 0.8 0.8 1 +1939 2 20 0.6 0.1 0.1 1 +1939 2 21 0.8 0.2 0.2 1 +1939 2 22 -0.1 -0.7 -0.7 1 +1939 2 23 0.8 0.2 0.2 1 +1939 2 24 1.5 0.9 0.9 1 +1939 2 25 1.3 0.7 0.7 1 +1939 2 26 3.3 2.7 2.7 1 +1939 2 27 2.4 1.8 1.8 1 +1939 2 28 1.9 1.3 1.3 1 +1939 3 1 0.2 -0.4 -0.4 1 +1939 3 2 0.0 -0.6 -0.6 1 +1939 3 3 1.3 0.7 0.7 1 +1939 3 4 1.5 0.9 0.9 1 +1939 3 5 1.8 1.2 1.2 1 +1939 3 6 4.8 4.2 4.2 1 +1939 3 7 4.5 3.9 3.9 1 +1939 3 8 3.3 2.7 2.7 1 +1939 3 9 1.1 0.5 0.5 1 +1939 3 10 0.3 -0.3 -0.3 1 +1939 3 11 0.4 -0.2 -0.2 1 +1939 3 12 -0.4 -1.0 -1.0 1 +1939 3 13 0.9 0.3 0.3 1 +1939 3 14 1.9 1.3 1.3 1 +1939 3 15 -1.2 -1.8 -1.8 1 +1939 3 16 -3.4 -4.0 -4.0 1 +1939 3 17 -2.4 -3.0 -3.0 1 +1939 3 18 -2.9 -3.5 -3.5 1 +1939 3 19 -2.0 -2.6 -2.6 1 +1939 3 20 -1.6 -2.2 -2.2 1 +1939 3 21 -2.1 -2.7 -2.7 1 +1939 3 22 -2.1 -2.7 -2.7 1 +1939 3 23 -2.1 -2.7 -2.7 1 +1939 3 24 -1.0 -1.6 -1.6 1 +1939 3 25 0.5 -0.1 -0.1 1 +1939 3 26 1.1 0.5 0.5 1 +1939 3 27 1.6 1.0 1.0 1 +1939 3 28 0.8 0.2 0.2 1 +1939 3 29 0.4 -0.2 -0.2 1 +1939 3 30 0.5 -0.1 -0.1 1 +1939 3 31 0.6 0.0 0.0 1 +1939 4 1 -0.8 -1.3 -1.3 1 +1939 4 2 0.7 0.2 0.2 1 +1939 4 3 2.8 2.3 2.3 1 +1939 4 4 1.5 1.0 1.0 1 +1939 4 5 3.6 3.1 3.1 1 +1939 4 6 3.3 2.8 2.8 1 +1939 4 7 4.7 4.2 4.2 1 +1939 4 8 5.6 5.1 5.1 1 +1939 4 9 5.8 5.3 5.3 1 +1939 4 10 3.2 2.7 2.7 1 +1939 4 11 5.9 5.4 5.4 1 +1939 4 12 3.4 2.9 2.9 1 +1939 4 13 4.0 3.5 3.5 1 +1939 4 14 11.1 10.6 10.6 1 +1939 4 15 8.3 7.8 7.8 1 +1939 4 16 7.8 7.3 7.3 1 +1939 4 17 9.0 8.5 8.5 1 +1939 4 18 5.6 5.1 5.1 1 +1939 4 19 8.4 7.9 7.9 1 +1939 4 20 9.9 9.3 9.3 1 +1939 4 21 6.0 5.4 5.4 1 +1939 4 22 5.3 4.7 4.7 1 +1939 4 23 5.3 4.7 4.7 1 +1939 4 24 3.4 2.8 2.8 1 +1939 4 25 2.9 2.3 2.3 1 +1939 4 26 2.0 1.4 1.4 1 +1939 4 27 4.9 4.2 4.2 1 +1939 4 28 5.7 5.0 5.0 1 +1939 4 29 6.0 5.3 5.3 1 +1939 4 30 8.1 7.4 7.4 1 +1939 5 1 4.8 4.1 4.1 1 +1939 5 2 5.5 4.8 4.8 1 +1939 5 3 2.9 2.2 2.2 1 +1939 5 4 4.2 3.4 3.4 1 +1939 5 5 6.2 5.4 5.4 1 +1939 5 6 7.4 6.6 6.6 1 +1939 5 7 6.3 5.5 5.5 1 +1939 5 8 5.0 4.2 4.2 1 +1939 5 9 8.1 7.3 7.3 1 +1939 5 10 11.0 10.2 10.2 1 +1939 5 11 12.1 11.2 11.2 1 +1939 5 12 10.6 9.7 9.7 1 +1939 5 13 8.0 7.1 7.1 1 +1939 5 14 8.0 7.1 7.1 1 +1939 5 15 10.7 9.8 9.8 1 +1939 5 16 13.8 12.9 12.9 1 +1939 5 17 11.3 10.4 10.4 1 +1939 5 18 9.6 8.7 8.7 1 +1939 5 19 8.9 8.0 8.0 1 +1939 5 20 10.7 9.8 9.8 1 +1939 5 21 11.5 10.6 10.6 1 +1939 5 22 13.4 12.5 12.5 1 +1939 5 23 14.9 14.0 14.0 1 +1939 5 24 14.4 13.5 13.5 1 +1939 5 25 10.3 9.5 9.5 1 +1939 5 26 14.8 14.0 14.0 1 +1939 5 27 11.5 10.7 10.7 1 +1939 5 28 12.1 11.3 11.3 1 +1939 5 29 10.2 9.4 9.4 1 +1939 5 30 13.6 12.8 12.8 1 +1939 5 31 16.0 15.2 15.2 1 +1939 6 1 10.1 9.3 9.3 1 +1939 6 2 16.6 15.8 15.8 1 +1939 6 3 10.0 9.2 9.2 1 +1939 6 4 10.7 9.9 9.9 1 +1939 6 5 13.6 12.8 12.8 1 +1939 6 6 16.6 15.8 15.8 1 +1939 6 7 18.8 18.0 18.0 1 +1939 6 8 11.8 11.0 11.0 1 +1939 6 9 11.2 10.4 10.4 1 +1939 6 10 16.3 15.6 15.6 1 +1939 6 11 16.0 15.3 15.3 1 +1939 6 12 14.1 13.4 13.4 1 +1939 6 13 12.8 12.1 12.1 1 +1939 6 14 15.5 14.8 14.8 1 +1939 6 15 13.4 12.7 12.7 1 +1939 6 16 16.7 16.0 16.0 1 +1939 6 17 18.3 17.6 17.6 1 +1939 6 18 19.5 18.8 18.8 1 +1939 6 19 20.8 20.1 20.1 1 +1939 6 20 21.8 21.1 21.1 1 +1939 6 21 22.4 21.7 21.7 1 +1939 6 22 13.2 12.5 12.5 1 +1939 6 23 13.4 12.7 12.7 1 +1939 6 24 15.9 15.2 15.2 1 +1939 6 25 14.4 13.7 13.7 1 +1939 6 26 16.8 16.1 16.1 1 +1939 6 27 14.4 13.7 13.7 1 +1939 6 28 15.1 14.4 14.4 1 +1939 6 29 16.3 15.6 15.6 1 +1939 6 30 18.5 17.8 17.8 1 +1939 7 1 18.6 17.9 17.9 1 +1939 7 2 16.7 16.0 16.0 1 +1939 7 3 15.6 14.9 14.9 1 +1939 7 4 17.2 16.5 16.5 1 +1939 7 5 19.1 18.4 18.4 1 +1939 7 6 20.6 19.9 19.9 1 +1939 7 7 19.5 18.8 18.8 1 +1939 7 8 18.4 17.7 17.7 1 +1939 7 9 17.5 16.8 16.8 1 +1939 7 10 16.0 15.3 15.3 1 +1939 7 11 14.6 13.9 13.9 1 +1939 7 12 16.3 15.6 15.6 1 +1939 7 13 17.0 16.3 16.3 1 +1939 7 14 15.7 15.0 15.0 1 +1939 7 15 17.6 16.9 16.9 1 +1939 7 16 18.9 18.2 18.2 1 +1939 7 17 19.8 19.1 19.1 1 +1939 7 18 19.0 18.4 18.4 1 +1939 7 19 19.8 19.2 19.2 1 +1939 7 20 18.1 17.5 17.5 1 +1939 7 21 19.9 19.3 19.3 1 +1939 7 22 19.0 18.4 18.4 1 +1939 7 23 16.9 16.3 16.3 1 +1939 7 24 18.5 17.9 17.9 1 +1939 7 25 18.3 17.7 17.7 1 +1939 7 26 16.5 15.9 15.9 1 +1939 7 27 17.8 17.2 17.2 1 +1939 7 28 20.2 19.6 19.6 1 +1939 7 29 19.5 18.9 18.9 1 +1939 7 30 18.8 18.2 18.2 1 +1939 7 31 21.8 21.3 21.3 1 +1939 8 1 16.6 16.1 16.1 1 +1939 8 2 17.1 16.6 16.6 1 +1939 8 3 16.2 15.7 15.7 1 +1939 8 4 17.1 16.6 16.6 1 +1939 8 5 17.5 17.0 17.0 1 +1939 8 6 21.2 20.7 20.7 1 +1939 8 7 22.2 21.7 21.7 1 +1939 8 8 18.1 17.6 17.6 1 +1939 8 9 19.5 19.0 19.0 1 +1939 8 10 20.2 19.7 19.7 1 +1939 8 11 20.6 20.1 20.1 1 +1939 8 12 19.5 19.0 19.0 1 +1939 8 13 18.4 18.0 18.0 1 +1939 8 14 20.7 20.3 20.3 1 +1939 8 15 20.9 20.5 20.5 1 +1939 8 16 17.3 16.9 16.9 1 +1939 8 17 19.9 19.5 19.5 1 +1939 8 18 18.8 18.4 18.4 1 +1939 8 19 19.1 18.7 18.7 1 +1939 8 20 20.6 20.2 20.2 1 +1939 8 21 20.5 20.1 20.1 1 +1939 8 22 20.9 20.5 20.5 1 +1939 8 23 22.3 22.0 22.0 1 +1939 8 24 19.1 18.8 18.8 1 +1939 8 25 20.8 20.5 20.5 1 +1939 8 26 20.7 20.4 20.4 1 +1939 8 27 21.0 20.7 20.7 1 +1939 8 28 21.0 20.7 20.7 1 +1939 8 29 19.3 19.0 19.0 1 +1939 8 30 19.2 18.9 18.9 1 +1939 8 31 18.7 18.5 18.5 1 +1939 9 1 18.1 17.9 17.9 1 +1939 9 2 15.7 15.5 15.5 1 +1939 9 3 15.7 15.5 15.5 1 +1939 9 4 17.7 17.5 17.5 1 +1939 9 5 18.0 17.8 17.8 1 +1939 9 6 17.7 17.5 17.5 1 +1939 9 7 17.6 17.4 17.4 1 +1939 9 8 17.5 17.3 17.3 1 +1939 9 9 18.0 17.9 17.9 1 +1939 9 10 15.4 15.3 15.3 1 +1939 9 11 9.6 9.5 9.5 1 +1939 9 12 10.3 10.2 10.2 1 +1939 9 13 13.0 12.9 12.9 1 +1939 9 14 14.5 14.4 14.4 1 +1939 9 15 12.9 12.8 12.8 1 +1939 9 16 10.3 10.2 10.2 1 +1939 9 17 12.0 11.9 11.9 1 +1939 9 18 12.4 12.3 12.3 1 +1939 9 19 13.5 13.4 13.4 1 +1939 9 20 13.8 13.7 13.7 1 +1939 9 21 14.2 14.1 14.1 1 +1939 9 22 8.0 7.9 7.9 1 +1939 9 23 5.6 5.5 5.5 1 +1939 9 24 4.1 4.0 4.0 1 +1939 9 25 4.2 4.1 4.1 1 +1939 9 26 2.7 2.6 2.6 1 +1939 9 27 6.5 6.4 6.4 1 +1939 9 28 8.5 8.4 8.4 1 +1939 9 29 8.8 8.7 8.7 1 +1939 9 30 4.7 4.6 4.6 1 +1939 10 1 2.4 2.3 2.3 1 +1939 10 2 4.4 4.3 4.3 1 +1939 10 3 5.7 5.6 5.6 1 +1939 10 4 8.4 8.3 8.3 1 +1939 10 5 8.6 8.5 8.5 1 +1939 10 6 5.9 5.8 5.8 1 +1939 10 7 4.4 4.3 4.3 1 +1939 10 8 3.2 3.1 3.1 1 +1939 10 9 3.8 3.7 3.7 1 +1939 10 10 5.0 4.9 4.9 1 +1939 10 11 4.3 4.2 4.2 1 +1939 10 12 4.2 4.1 4.1 1 +1939 10 13 5.1 5.0 5.0 1 +1939 10 14 5.9 5.8 5.8 1 +1939 10 15 5.7 5.6 5.6 1 +1939 10 16 5.0 4.9 4.9 1 +1939 10 17 4.2 4.1 4.1 1 +1939 10 18 3.2 3.1 3.1 1 +1939 10 19 2.9 2.8 2.8 1 +1939 10 20 3.1 3.0 3.0 1 +1939 10 21 3.2 3.1 3.1 1 +1939 10 22 3.8 3.7 3.7 1 +1939 10 23 4.1 4.0 4.0 1 +1939 10 24 5.3 5.2 5.2 1 +1939 10 25 2.1 2.0 2.0 1 +1939 10 26 1.1 1.0 1.0 1 +1939 10 27 1.7 1.6 1.6 1 +1939 10 28 1.6 1.5 1.5 1 +1939 10 29 4.4 4.2 4.2 1 +1939 10 30 1.2 1.0 1.0 1 +1939 10 31 1.9 1.7 1.7 1 +1939 11 1 4.1 3.9 3.9 1 +1939 11 2 3.2 3.0 3.0 1 +1939 11 3 2.8 2.6 2.6 1 +1939 11 4 3.1 2.9 2.9 1 +1939 11 5 4.1 3.9 3.9 1 +1939 11 6 7.0 6.8 6.8 1 +1939 11 7 8.1 7.9 7.9 1 +1939 11 8 7.6 7.4 7.4 1 +1939 11 9 9.3 9.1 9.1 1 +1939 11 10 8.2 8.0 8.0 1 +1939 11 11 5.2 5.0 5.0 1 +1939 11 12 6.1 5.9 5.9 1 +1939 11 13 2.7 2.5 2.5 1 +1939 11 14 5.7 5.4 5.4 1 +1939 11 15 8.6 8.3 8.3 1 +1939 11 16 6.8 6.5 6.5 1 +1939 11 17 3.3 3.0 3.0 1 +1939 11 18 -0.7 -1.0 -1.0 1 +1939 11 19 -2.0 -2.3 -2.3 1 +1939 11 20 -4.3 -4.6 -4.6 1 +1939 11 21 -3.0 -3.3 -3.3 1 +1939 11 22 0.5 0.2 0.2 1 +1939 11 23 1.1 0.8 0.8 1 +1939 11 24 2.4 2.1 2.1 1 +1939 11 25 1.1 0.8 0.8 1 +1939 11 26 1.7 1.4 1.4 1 +1939 11 27 4.1 3.8 3.8 1 +1939 11 28 2.6 2.3 2.3 1 +1939 11 29 0.3 0.0 0.0 1 +1939 11 30 2.4 2.1 2.1 1 +1939 12 1 1.7 1.4 1.4 1 +1939 12 2 1.6 1.3 1.3 1 +1939 12 3 4.3 4.0 4.0 1 +1939 12 4 2.8 2.5 2.5 1 +1939 12 5 1.6 1.3 1.3 1 +1939 12 6 1.4 1.1 1.1 1 +1939 12 7 0.7 0.4 0.4 1 +1939 12 8 0.2 -0.1 -0.1 1 +1939 12 9 -0.8 -1.1 -1.1 1 +1939 12 10 0.3 0.0 0.0 1 +1939 12 11 -1.2 -1.5 -1.5 1 +1939 12 12 -2.1 -2.4 -2.4 1 +1939 12 13 -0.3 -0.6 -0.6 1 +1939 12 14 0.1 -0.2 -0.2 1 +1939 12 15 -3.1 -3.4 -3.4 1 +1939 12 16 -6.9 -7.2 -7.2 1 +1939 12 17 -4.5 -4.8 -4.8 1 +1939 12 18 1.5 1.2 1.2 1 +1939 12 19 0.1 -0.3 -0.3 1 +1939 12 20 -6.0 -6.4 -6.4 1 +1939 12 21 -3.8 -4.2 -4.2 1 +1939 12 22 -2.1 -2.5 -2.5 1 +1939 12 23 -0.5 -0.9 -0.9 1 +1939 12 24 -6.4 -6.8 -6.8 1 +1939 12 25 -8.5 -8.9 -8.9 1 +1939 12 26 -8.9 -9.3 -9.3 1 +1939 12 27 -13.4 -13.8 -13.8 1 +1939 12 28 -9.8 -10.2 -10.2 1 +1939 12 29 -8.6 -9.0 -9.0 1 +1939 12 30 -1.7 -2.1 -2.1 1 +1939 12 31 -5.3 -5.7 -5.7 1 +1940 1 1 -10.4 -10.9 -10.9 1 +1940 1 2 -3.5 -4.0 -4.0 1 +1940 1 3 -5.5 -6.0 -6.0 1 +1940 1 4 -6.9 -7.4 -7.4 1 +1940 1 5 -1.3 -1.8 -1.8 1 +1940 1 6 -3.3 -3.8 -3.8 1 +1940 1 7 -4.1 -4.6 -4.6 1 +1940 1 8 -3.8 -4.3 -4.3 1 +1940 1 9 -5.1 -5.6 -5.6 1 +1940 1 10 -4.0 -4.5 -4.5 1 +1940 1 11 -0.9 -1.4 -1.4 1 +1940 1 12 -0.5 -1.1 -1.1 1 +1940 1 13 -0.2 -0.8 -0.8 1 +1940 1 14 -0.9 -1.5 -1.5 1 +1940 1 15 -15.3 -15.9 -15.9 1 +1940 1 16 -14.9 -15.5 -15.5 1 +1940 1 17 -17.5 -18.1 -18.1 1 +1940 1 18 -16.9 -17.5 -17.5 1 +1940 1 19 -11.6 -12.2 -12.2 1 +1940 1 20 -10.5 -11.1 -11.1 1 +1940 1 21 -8.0 -8.6 -8.6 1 +1940 1 22 -6.1 -6.7 -6.7 1 +1940 1 23 -4.0 -4.6 -4.6 1 +1940 1 24 -8.7 -9.3 -9.3 1 +1940 1 25 -6.4 -7.0 -7.0 1 +1940 1 26 -9.2 -9.8 -9.8 1 +1940 1 27 -6.0 -6.6 -6.6 1 +1940 1 28 -6.3 -6.9 -6.9 1 +1940 1 29 -9.2 -9.8 -9.8 1 +1940 1 30 -5.6 -6.2 -6.2 1 +1940 1 31 -5.9 -6.5 -6.5 1 +1940 2 1 -7.1 -7.7 -7.7 1 +1940 2 2 -10.7 -11.3 -11.3 1 +1940 2 3 -14.1 -14.7 -14.7 1 +1940 2 4 -14.1 -14.7 -14.7 1 +1940 2 5 -14.8 -15.4 -15.4 1 +1940 2 6 -15.2 -15.8 -15.8 1 +1940 2 7 -15.0 -15.5 -15.5 1 +1940 2 8 -14.8 -15.3 -15.3 1 +1940 2 9 -16.1 -16.6 -16.6 1 +1940 2 10 -18.0 -18.5 -18.5 1 +1940 2 11 -17.4 -17.9 -17.9 1 +1940 2 12 -11.7 -12.2 -12.2 1 +1940 2 13 -9.9 -10.4 -10.4 1 +1940 2 14 -11.7 -12.2 -12.2 1 +1940 2 15 -14.7 -15.2 -15.2 1 +1940 2 16 -11.3 -11.8 -11.8 1 +1940 2 17 -10.2 -10.7 -10.7 1 +1940 2 18 -13.3 -13.9 -13.9 1 +1940 2 19 -17.0 -17.6 -17.6 1 +1940 2 20 -12.9 -13.5 -13.5 1 +1940 2 21 -5.2 -5.8 -5.8 1 +1940 2 22 0.1 -0.5 -0.5 1 +1940 2 23 1.7 1.1 1.1 1 +1940 2 24 -2.1 -2.7 -2.7 1 +1940 2 25 -7.5 -8.1 -8.1 1 +1940 2 26 -4.7 -5.3 -5.3 1 +1940 2 27 -3.3 -3.9 -3.9 1 +1940 2 28 -0.5 -1.1 -1.1 1 +1940 2 29 -6.5 -7.1 -7.1 1 +1940 3 1 -7.2 -7.8 -7.8 1 +1940 3 2 -4.6 -5.2 -5.2 1 +1940 3 3 -0.5 -1.1 -1.1 1 +1940 3 4 -1.2 -1.8 -1.8 1 +1940 3 5 -7.8 -8.4 -8.4 1 +1940 3 6 -6.7 -7.3 -7.3 1 +1940 3 7 -6.5 -7.1 -7.1 1 +1940 3 8 -7.4 -8.0 -8.0 1 +1940 3 9 -3.4 -4.0 -4.0 1 +1940 3 10 -8.4 -9.0 -9.0 1 +1940 3 11 -1.8 -2.4 -2.4 1 +1940 3 12 -3.6 -4.2 -4.2 1 +1940 3 13 -9.8 -10.4 -10.4 1 +1940 3 14 -10.9 -11.5 -11.5 1 +1940 3 15 -11.6 -12.2 -12.2 1 +1940 3 16 -9.9 -10.5 -10.5 1 +1940 3 17 -6.6 -7.2 -7.2 1 +1940 3 18 -5.6 -6.2 -6.2 1 +1940 3 19 -6.0 -6.6 -6.6 1 +1940 3 20 -4.5 -5.1 -5.1 1 +1940 3 21 -1.8 -2.4 -2.4 1 +1940 3 22 -1.1 -1.7 -1.7 1 +1940 3 23 -3.7 -4.3 -4.3 1 +1940 3 24 -3.0 -3.6 -3.6 1 +1940 3 25 -0.5 -1.1 -1.1 1 +1940 3 26 -3.0 -3.6 -3.6 1 +1940 3 27 -1.8 -2.4 -2.4 1 +1940 3 28 -4.7 -5.3 -5.3 1 +1940 3 29 -6.4 -7.0 -7.0 1 +1940 3 30 -2.4 -3.0 -3.0 1 +1940 3 31 1.7 1.1 1.1 1 +1940 4 1 5.6 5.0 5.0 1 +1940 4 2 6.3 5.7 5.7 1 +1940 4 3 -1.2 -1.7 -1.7 1 +1940 4 4 0.3 -0.2 -0.2 1 +1940 4 5 0.4 -0.1 -0.1 1 +1940 4 6 1.9 1.4 1.4 1 +1940 4 7 3.7 3.2 3.2 1 +1940 4 8 2.7 2.2 2.2 1 +1940 4 9 2.6 2.1 2.1 1 +1940 4 10 1.8 1.3 1.3 1 +1940 4 11 0.0 -0.5 -0.5 1 +1940 4 12 -1.7 -2.2 -2.2 1 +1940 4 13 -0.3 -0.8 -0.8 1 +1940 4 14 0.3 -0.2 -0.2 1 +1940 4 15 1.6 1.1 1.1 1 +1940 4 16 2.6 2.1 2.1 1 +1940 4 17 3.8 3.3 3.3 1 +1940 4 18 5.0 4.5 4.5 1 +1940 4 19 3.7 3.2 3.2 1 +1940 4 20 3.9 3.3 3.3 1 +1940 4 21 4.6 4.0 4.0 1 +1940 4 22 3.4 2.8 2.8 1 +1940 4 23 6.9 6.3 6.3 1 +1940 4 24 4.1 3.5 3.5 1 +1940 4 25 4.2 3.6 3.6 1 +1940 4 26 3.6 2.9 2.9 1 +1940 4 27 3.9 3.2 3.2 1 +1940 4 28 3.2 2.5 2.5 1 +1940 4 29 3.0 2.3 2.3 1 +1940 4 30 5.1 4.4 4.4 1 +1940 5 1 6.0 5.3 5.3 1 +1940 5 2 8.5 7.8 7.8 1 +1940 5 3 10.5 9.7 9.7 1 +1940 5 4 11.1 10.3 10.3 1 +1940 5 5 12.1 11.3 11.3 1 +1940 5 6 9.8 9.0 9.0 1 +1940 5 7 10.2 9.4 9.4 1 +1940 5 8 10.9 10.1 10.1 1 +1940 5 9 13.3 12.5 12.5 1 +1940 5 10 13.1 12.2 12.2 1 +1940 5 11 5.6 4.7 4.7 1 +1940 5 12 4.2 3.3 3.3 1 +1940 5 13 6.0 5.1 5.1 1 +1940 5 14 5.8 4.9 4.9 1 +1940 5 15 7.0 6.1 6.1 1 +1940 5 16 10.4 9.5 9.5 1 +1940 5 17 9.3 8.4 8.4 1 +1940 5 18 9.7 8.8 8.8 1 +1940 5 19 9.3 8.4 8.4 1 +1940 5 20 14.0 13.1 13.1 1 +1940 5 21 17.2 16.3 16.3 1 +1940 5 22 17.0 16.1 16.1 1 +1940 5 23 18.1 17.2 17.2 1 +1940 5 24 16.0 15.1 15.1 1 +1940 5 25 13.9 13.0 13.0 1 +1940 5 26 10.6 9.7 9.7 1 +1940 5 27 9.2 8.3 8.3 1 +1940 5 28 12.4 11.6 11.6 1 +1940 5 29 14.9 14.1 14.1 1 +1940 5 30 14.0 13.2 13.2 1 +1940 5 31 14.0 13.2 13.2 1 +1940 6 1 10.8 10.0 10.0 1 +1940 6 2 16.7 15.9 15.9 1 +1940 6 3 16.1 15.3 15.3 1 +1940 6 4 15.2 14.4 14.4 1 +1940 6 5 17.9 17.1 17.1 1 +1940 6 6 15.8 15.0 15.0 1 +1940 6 7 12.8 12.0 12.0 1 +1940 6 8 12.3 11.5 11.5 1 +1940 6 9 10.8 10.0 10.0 1 +1940 6 10 11.5 10.7 10.7 1 +1940 6 11 14.0 13.2 13.2 1 +1940 6 12 14.0 13.3 13.3 1 +1940 6 13 14.6 13.9 13.9 1 +1940 6 14 16.1 15.4 15.4 1 +1940 6 15 19.1 18.4 18.4 1 +1940 6 16 19.5 18.8 18.8 1 +1940 6 17 16.1 15.4 15.4 1 +1940 6 18 17.5 16.8 16.8 1 +1940 6 19 16.6 15.9 15.9 1 +1940 6 20 16.8 16.1 16.1 1 +1940 6 21 13.7 13.0 13.0 1 +1940 6 22 13.6 12.9 12.9 1 +1940 6 23 16.1 15.4 15.4 1 +1940 6 24 19.4 18.7 18.7 1 +1940 6 25 20.7 20.0 20.0 1 +1940 6 26 17.2 16.5 16.5 1 +1940 6 27 18.9 18.2 18.2 1 +1940 6 28 18.8 18.1 18.1 1 +1940 6 29 20.9 20.2 20.2 1 +1940 6 30 20.3 19.6 19.6 1 +1940 7 1 21.2 20.5 20.5 1 +1940 7 2 20.5 19.8 19.8 1 +1940 7 3 18.1 17.4 17.4 1 +1940 7 4 19.3 18.6 18.6 1 +1940 7 5 18.7 18.0 18.0 1 +1940 7 6 17.5 16.8 16.8 1 +1940 7 7 19.8 19.1 19.1 1 +1940 7 8 21.0 20.3 20.3 1 +1940 7 9 18.5 17.8 17.8 1 +1940 7 10 21.4 20.7 20.7 1 +1940 7 11 21.4 20.7 20.7 1 +1940 7 12 22.0 21.3 21.3 1 +1940 7 13 20.8 20.1 20.1 1 +1940 7 14 19.8 19.1 19.1 1 +1940 7 15 18.9 18.2 18.2 1 +1940 7 16 18.7 18.0 18.0 1 +1940 7 17 18.9 18.2 18.2 1 +1940 7 18 20.4 19.7 19.7 1 +1940 7 19 19.0 18.4 18.4 1 +1940 7 20 19.0 18.4 18.4 1 +1940 7 21 17.5 16.9 16.9 1 +1940 7 22 17.3 16.7 16.7 1 +1940 7 23 15.6 15.0 15.0 1 +1940 7 24 15.4 14.8 14.8 1 +1940 7 25 17.1 16.5 16.5 1 +1940 7 26 16.0 15.4 15.4 1 +1940 7 27 16.3 15.7 15.7 1 +1940 7 28 14.5 13.9 13.9 1 +1940 7 29 14.3 13.7 13.7 1 +1940 7 30 12.7 12.1 12.1 1 +1940 7 31 14.9 14.3 14.3 1 +1940 8 1 15.8 15.2 15.2 1 +1940 8 2 18.1 17.6 17.6 1 +1940 8 3 17.4 16.9 16.9 1 +1940 8 4 19.0 18.5 18.5 1 +1940 8 5 19.2 18.7 18.7 1 +1940 8 6 18.8 18.3 18.3 1 +1940 8 7 17.3 16.8 16.8 1 +1940 8 8 16.8 16.3 16.3 1 +1940 8 9 14.1 13.6 13.6 1 +1940 8 10 17.1 16.6 16.6 1 +1940 8 11 16.9 16.4 16.4 1 +1940 8 12 15.4 14.9 14.9 1 +1940 8 13 15.2 14.7 14.7 1 +1940 8 14 14.7 14.2 14.2 1 +1940 8 15 16.1 15.7 15.7 1 +1940 8 16 13.6 13.2 13.2 1 +1940 8 17 14.7 14.3 14.3 1 +1940 8 18 14.7 14.3 14.3 1 +1940 8 19 15.2 14.8 14.8 1 +1940 8 20 13.3 12.9 12.9 1 +1940 8 21 14.4 14.0 14.0 1 +1940 8 22 14.3 13.9 13.9 1 +1940 8 23 13.0 12.6 12.6 1 +1940 8 24 12.2 11.9 11.9 1 +1940 8 25 15.2 14.9 14.9 1 +1940 8 26 14.0 13.7 13.7 1 +1940 8 27 12.4 12.1 12.1 1 +1940 8 28 10.5 10.2 10.2 1 +1940 8 29 10.1 9.8 9.8 1 +1940 8 30 9.4 9.1 9.1 1 +1940 8 31 11.2 10.9 10.9 1 +1940 9 1 12.5 12.3 12.3 1 +1940 9 2 12.4 12.2 12.2 1 +1940 9 3 10.9 10.7 10.7 1 +1940 9 4 10.7 10.5 10.5 1 +1940 9 5 12.8 12.6 12.6 1 +1940 9 6 14.2 14.0 14.0 1 +1940 9 7 12.8 12.6 12.6 1 +1940 9 8 12.7 12.5 12.5 1 +1940 9 9 12.0 11.8 11.8 1 +1940 9 10 11.2 11.1 11.1 1 +1940 9 11 11.0 10.9 10.9 1 +1940 9 12 9.4 9.3 9.3 1 +1940 9 13 10.4 10.3 10.3 1 +1940 9 14 11.0 10.9 10.9 1 +1940 9 15 10.8 10.7 10.7 1 +1940 9 16 10.4 10.3 10.3 1 +1940 9 17 10.5 10.4 10.4 1 +1940 9 18 11.8 11.7 11.7 1 +1940 9 19 11.5 11.4 11.4 1 +1940 9 20 12.3 12.2 12.2 1 +1940 9 21 10.8 10.7 10.7 1 +1940 9 22 10.5 10.4 10.4 1 +1940 9 23 10.0 9.9 9.9 1 +1940 9 24 9.9 9.8 9.8 1 +1940 9 25 8.7 8.6 8.6 1 +1940 9 26 7.6 7.5 7.5 1 +1940 9 27 7.4 7.3 7.3 1 +1940 9 28 7.0 6.9 6.9 1 +1940 9 29 5.7 5.6 5.6 1 +1940 9 30 6.8 6.7 6.7 1 +1940 10 1 8.4 8.3 8.3 1 +1940 10 2 9.2 9.1 9.1 1 +1940 10 3 8.5 8.4 8.4 1 +1940 10 4 8.8 8.7 8.7 1 +1940 10 5 10.1 10.0 10.0 1 +1940 10 6 9.7 9.6 9.6 1 +1940 10 7 10.5 10.4 10.4 1 +1940 10 8 7.2 7.1 7.1 1 +1940 10 9 6.9 6.8 6.8 1 +1940 10 10 9.3 9.2 9.2 1 +1940 10 11 9.2 9.1 9.1 1 +1940 10 12 8.5 8.4 8.4 1 +1940 10 13 9.7 9.6 9.6 1 +1940 10 14 9.6 9.5 9.5 1 +1940 10 15 7.8 7.7 7.7 1 +1940 10 16 8.0 7.9 7.9 1 +1940 10 17 7.1 7.0 7.0 1 +1940 10 18 7.1 7.0 7.0 1 +1940 10 19 6.8 6.7 6.7 1 +1940 10 20 6.0 5.9 5.9 1 +1940 10 21 3.7 3.6 3.6 1 +1940 10 22 2.0 1.9 1.9 1 +1940 10 23 1.2 1.1 1.1 1 +1940 10 24 1.5 1.4 1.4 1 +1940 10 25 1.1 1.0 1.0 1 +1940 10 26 1.2 1.1 1.1 1 +1940 10 27 1.6 1.5 1.5 1 +1940 10 28 2.0 1.8 1.8 1 +1940 10 29 2.5 2.3 2.3 1 +1940 10 30 3.0 2.8 2.8 1 +1940 10 31 4.3 4.1 4.1 1 +1940 11 1 5.1 4.9 4.9 1 +1940 11 2 3.5 3.3 3.3 1 +1940 11 3 3.7 3.5 3.5 1 +1940 11 4 1.6 1.4 1.4 1 +1940 11 5 -0.9 -1.1 -1.1 1 +1940 11 6 -1.2 -1.4 -1.4 1 +1940 11 7 -0.7 -0.9 -0.9 1 +1940 11 8 -2.5 -2.7 -2.7 1 +1940 11 9 -2.4 -2.6 -2.6 1 +1940 11 10 -0.8 -1.0 -1.0 1 +1940 11 11 3.7 3.5 3.5 1 +1940 11 12 4.9 4.6 4.6 1 +1940 11 13 6.5 6.2 6.2 1 +1940 11 14 5.5 5.2 5.2 1 +1940 11 15 5.4 5.1 5.1 1 +1940 11 16 3.8 3.5 3.5 1 +1940 11 17 2.8 2.5 2.5 1 +1940 11 18 4.0 3.7 3.7 1 +1940 11 19 4.8 4.5 4.5 1 +1940 11 20 4.6 4.3 4.3 1 +1940 11 21 5.6 5.3 5.3 1 +1940 11 22 5.7 5.4 5.4 1 +1940 11 23 3.2 2.9 2.9 1 +1940 11 24 5.6 5.3 5.3 1 +1940 11 25 5.5 5.2 5.2 1 +1940 11 26 9.7 9.4 9.4 1 +1940 11 27 8.5 8.2 8.2 1 +1940 11 28 -1.6 -1.9 -1.9 1 +1940 11 29 -2.1 -2.4 -2.4 1 +1940 11 30 -2.4 -2.7 -2.7 1 +1940 12 1 4.9 4.6 4.6 1 +1940 12 2 4.0 3.7 3.7 1 +1940 12 3 2.1 1.8 1.8 1 +1940 12 4 0.4 0.1 0.1 1 +1940 12 5 3.3 3.0 3.0 1 +1940 12 6 1.8 1.5 1.5 1 +1940 12 7 1.8 1.5 1.5 1 +1940 12 8 0.6 0.3 0.3 1 +1940 12 9 -3.0 -3.3 -3.3 1 +1940 12 10 -3.0 -3.3 -3.3 1 +1940 12 11 -0.2 -0.5 -0.5 1 +1940 12 12 -3.4 -3.7 -3.7 1 +1940 12 13 -5.8 -6.1 -6.1 1 +1940 12 14 -6.5 -6.8 -6.8 1 +1940 12 15 -5.0 -5.3 -5.3 1 +1940 12 16 -3.2 -3.5 -3.5 1 +1940 12 17 -1.2 -1.5 -1.5 1 +1940 12 18 -0.6 -1.0 -1.0 1 +1940 12 19 -1.5 -1.9 -1.9 1 +1940 12 20 -3.1 -3.5 -3.5 1 +1940 12 21 -3.6 -4.0 -4.0 1 +1940 12 22 -3.2 -3.6 -3.6 1 +1940 12 23 -2.3 -2.7 -2.7 1 +1940 12 24 -3.4 -3.8 -3.8 1 +1940 12 25 -5.5 -5.9 -5.9 1 +1940 12 26 -2.9 -3.3 -3.3 1 +1940 12 27 -4.1 -4.5 -4.5 1 +1940 12 28 -1.9 -2.3 -2.3 1 +1940 12 29 -2.2 -2.6 -2.6 1 +1940 12 30 -10.4 -10.8 -10.8 1 +1940 12 31 -14.3 -14.8 -14.8 1 +1941 1 1 -14.7 -15.2 -15.2 1 +1941 1 2 -15.3 -15.8 -15.8 1 +1941 1 3 -13.8 -14.3 -14.3 1 +1941 1 4 -10.8 -11.3 -11.3 1 +1941 1 5 -7.7 -8.2 -8.2 1 +1941 1 6 -7.2 -7.7 -7.7 1 +1941 1 7 -6.1 -6.6 -6.6 1 +1941 1 8 -4.4 -4.9 -4.9 1 +1941 1 9 -4.4 -4.9 -4.9 1 +1941 1 10 2.2 1.7 1.7 1 +1941 1 11 -4.1 -4.7 -4.7 1 +1941 1 12 -9.2 -9.8 -9.8 1 +1941 1 13 -7.5 -8.1 -8.1 1 +1941 1 14 -7.7 -8.3 -8.3 1 +1941 1 15 -12.1 -12.7 -12.7 1 +1941 1 16 -10.4 -11.0 -11.0 1 +1941 1 17 -6.8 -7.4 -7.4 1 +1941 1 18 -12.0 -12.6 -12.6 1 +1941 1 19 -17.5 -18.1 -18.1 1 +1941 1 20 -12.0 -12.6 -12.6 1 +1941 1 21 -11.9 -12.5 -12.5 1 +1941 1 22 -10.0 -10.6 -10.6 1 +1941 1 23 -7.3 -7.9 -7.9 1 +1941 1 24 -10.9 -11.5 -11.5 1 +1941 1 25 -15.5 -16.1 -16.1 1 +1941 1 26 -16.5 -17.1 -17.1 1 +1941 1 27 -16.9 -17.5 -17.5 1 +1941 1 28 -14.0 -14.6 -14.6 1 +1941 1 29 -14.7 -15.3 -15.3 1 +1941 1 30 -13.5 -14.1 -14.1 1 +1941 1 31 -8.9 -9.5 -9.5 1 +1941 2 1 -7.2 -7.8 -7.8 1 +1941 2 2 -7.9 -8.5 -8.5 1 +1941 2 3 -10.5 -11.1 -11.1 1 +1941 2 4 -11.0 -11.6 -11.6 1 +1941 2 5 -13.4 -14.0 -14.0 1 +1941 2 6 -10.5 -11.1 -11.1 1 +1941 2 7 -11.9 -12.5 -12.5 1 +1941 2 8 -5.8 -6.4 -6.4 1 +1941 2 9 -1.4 -2.0 -2.0 1 +1941 2 10 1.7 1.1 1.1 1 +1941 2 11 -1.3 -1.9 -1.9 1 +1941 2 12 -5.7 -6.3 -6.3 1 +1941 2 13 -9.5 -10.1 -10.1 1 +1941 2 14 -7.6 -8.2 -8.2 1 +1941 2 15 -5.5 -6.1 -6.1 1 +1941 2 16 -8.1 -8.7 -8.7 1 +1941 2 17 -8.8 -9.4 -9.4 1 +1941 2 18 -5.7 -6.3 -6.3 1 +1941 2 19 -3.3 -3.9 -3.9 1 +1941 2 20 -0.7 -1.3 -1.3 1 +1941 2 21 -0.2 -0.8 -0.8 1 +1941 2 22 -4.8 -5.4 -5.4 1 +1941 2 23 -4.5 -5.1 -5.1 1 +1941 2 24 -4.9 -5.5 -5.5 1 +1941 2 25 -5.8 -6.4 -6.4 1 +1941 2 26 -8.5 -9.1 -9.1 1 +1941 2 27 -3.3 -3.9 -3.9 1 +1941 2 28 -2.7 -3.3 -3.3 1 +1941 3 1 1.8 1.2 1.2 1 +1941 3 2 1.5 0.9 0.9 1 +1941 3 3 -4.6 -5.2 -5.2 1 +1941 3 4 -3.2 -3.8 -3.8 1 +1941 3 5 -3.0 -3.6 -3.6 1 +1941 3 6 0.2 -0.4 -0.4 1 +1941 3 7 1.2 0.6 0.6 1 +1941 3 8 -0.4 -1.0 -1.0 1 +1941 3 9 -2.3 -2.9 -2.9 1 +1941 3 10 -1.2 -1.8 -1.8 1 +1941 3 11 -1.1 -1.7 -1.7 1 +1941 3 12 -2.3 -2.9 -2.9 1 +1941 3 13 2.8 2.2 2.2 1 +1941 3 14 4.5 3.8 3.8 1 +1941 3 15 3.2 2.5 2.5 1 +1941 3 16 1.2 0.5 0.5 1 +1941 3 17 -5.1 -5.7 -5.7 1 +1941 3 18 0.9 0.3 0.3 1 +1941 3 19 -1.0 -1.6 -1.6 1 +1941 3 20 -2.7 -3.3 -3.3 1 +1941 3 21 -0.1 -0.7 -0.7 1 +1941 3 22 -6.2 -6.8 -6.8 1 +1941 3 23 -8.8 -9.4 -9.4 1 +1941 3 24 -9.0 -9.6 -9.6 1 +1941 3 25 -8.0 -8.6 -8.6 1 +1941 3 26 -7.5 -8.1 -8.1 1 +1941 3 27 -8.3 -8.9 -8.9 1 +1941 3 28 -8.0 -8.6 -8.6 1 +1941 3 29 -5.7 -6.3 -6.3 1 +1941 3 30 -2.8 -3.4 -3.4 1 +1941 3 31 -2.7 -3.3 -3.3 1 +1941 4 1 -0.4 -1.0 -1.0 1 +1941 4 2 -5.9 -6.5 -6.5 1 +1941 4 3 -5.5 -6.1 -6.1 1 +1941 4 4 -3.3 -3.9 -3.9 1 +1941 4 5 -0.1 -0.7 -0.7 1 +1941 4 6 -0.5 -1.0 -1.0 1 +1941 4 7 -0.5 -1.0 -1.0 1 +1941 4 8 -0.6 -1.1 -1.1 1 +1941 4 9 -0.1 -0.6 -0.6 1 +1941 4 10 -0.2 -0.7 -0.7 1 +1941 4 11 2.0 1.5 1.5 1 +1941 4 12 1.6 1.1 1.1 1 +1941 4 13 3.0 2.5 2.5 1 +1941 4 14 4.4 3.9 3.9 1 +1941 4 15 3.1 2.6 2.6 1 +1941 4 16 3.0 2.5 2.5 1 +1941 4 17 4.5 4.0 4.0 1 +1941 4 18 5.7 5.2 5.2 1 +1941 4 19 4.2 3.6 3.6 1 +1941 4 20 3.3 2.7 2.7 1 +1941 4 21 1.5 0.9 0.9 1 +1941 4 22 1.0 0.4 0.4 1 +1941 4 23 1.4 0.8 0.8 1 +1941 4 24 2.6 2.0 2.0 1 +1941 4 25 2.5 1.8 1.8 1 +1941 4 26 2.2 1.5 1.5 1 +1941 4 27 3.0 2.3 2.3 1 +1941 4 28 4.5 3.8 3.8 1 +1941 4 29 7.8 7.1 7.1 1 +1941 4 30 8.8 8.1 8.1 1 +1941 5 1 4.4 3.7 3.7 1 +1941 5 2 1.0 0.2 0.2 1 +1941 5 3 1.7 0.9 0.9 1 +1941 5 4 6.3 5.5 5.5 1 +1941 5 5 6.0 5.2 5.2 1 +1941 5 6 1.0 0.2 0.2 1 +1941 5 7 1.3 0.5 0.5 1 +1941 5 8 1.3 0.5 0.5 1 +1941 5 9 2.2 1.3 1.3 1 +1941 5 10 4.1 3.2 3.2 1 +1941 5 11 6.8 5.9 5.9 1 +1941 5 12 11.4 10.5 10.5 1 +1941 5 13 7.2 6.3 6.3 1 +1941 5 14 5.6 4.7 4.7 1 +1941 5 15 5.6 4.7 4.7 1 +1941 5 16 5.3 4.4 4.4 1 +1941 5 17 3.7 2.8 2.8 1 +1941 5 18 6.7 5.8 5.8 1 +1941 5 19 7.8 6.9 6.9 1 +1941 5 20 9.5 8.6 8.6 1 +1941 5 21 12.2 11.3 11.3 1 +1941 5 22 13.2 12.3 12.3 1 +1941 5 23 13.4 12.5 12.5 1 +1941 5 24 14.3 13.4 13.4 1 +1941 5 25 16.2 15.3 15.3 1 +1941 5 26 17.1 16.2 16.2 1 +1941 5 27 19.1 18.2 18.2 1 +1941 5 28 18.8 17.9 17.9 1 +1941 5 29 16.7 15.8 15.8 1 +1941 5 30 14.4 13.6 13.6 1 +1941 5 31 14.6 13.8 13.8 1 +1941 6 1 12.3 11.5 11.5 1 +1941 6 2 9.4 8.6 8.6 1 +1941 6 3 13.3 12.5 12.5 1 +1941 6 4 17.1 16.3 16.3 1 +1941 6 5 10.3 9.5 9.5 1 +1941 6 6 10.7 9.9 9.9 1 +1941 6 7 7.0 6.2 6.2 1 +1941 6 8 8.0 7.2 7.2 1 +1941 6 9 10.8 10.0 10.0 1 +1941 6 10 13.2 12.4 12.4 1 +1941 6 11 14.1 13.3 13.3 1 +1941 6 12 14.5 13.7 13.7 1 +1941 6 13 11.9 11.1 11.1 1 +1941 6 14 14.1 13.4 13.4 1 +1941 6 15 14.3 13.6 13.6 1 +1941 6 16 14.5 13.8 13.8 1 +1941 6 17 16.7 16.0 16.0 1 +1941 6 18 18.9 18.2 18.2 1 +1941 6 19 14.9 14.2 14.2 1 +1941 6 20 15.2 14.5 14.5 1 +1941 6 21 19.7 19.0 19.0 1 +1941 6 22 19.9 19.2 19.2 1 +1941 6 23 18.5 17.8 17.8 1 +1941 6 24 16.3 15.6 15.6 1 +1941 6 25 16.6 15.9 15.9 1 +1941 6 26 21.2 20.5 20.5 1 +1941 6 27 20.7 20.0 20.0 1 +1941 6 28 14.3 13.6 13.6 1 +1941 6 29 16.4 15.7 15.7 1 +1941 6 30 14.3 13.6 13.6 1 +1941 7 1 16.9 16.2 16.2 1 +1941 7 2 19.0 18.3 18.3 1 +1941 7 3 18.8 18.1 18.1 1 +1941 7 4 18.1 17.4 17.4 1 +1941 7 5 15.3 14.6 14.6 1 +1941 7 6 16.8 16.1 16.1 1 +1941 7 7 20.0 19.3 19.3 1 +1941 7 8 24.5 23.8 23.8 1 +1941 7 9 24.6 23.9 23.9 1 +1941 7 10 24.5 23.8 23.8 1 +1941 7 11 25.1 24.4 24.4 1 +1941 7 12 26.0 25.3 25.3 1 +1941 7 13 25.6 24.9 24.9 1 +1941 7 14 24.5 23.8 23.8 1 +1941 7 15 19.7 19.0 19.0 1 +1941 7 16 16.3 15.6 15.6 1 +1941 7 17 15.9 15.2 15.2 1 +1941 7 18 16.3 15.6 15.6 1 +1941 7 19 17.6 16.9 16.9 1 +1941 7 20 18.8 18.1 18.1 1 +1941 7 21 18.2 17.6 17.6 1 +1941 7 22 18.3 17.7 17.7 1 +1941 7 23 17.7 17.1 17.1 1 +1941 7 24 19.0 18.4 18.4 1 +1941 7 25 19.8 19.2 19.2 1 +1941 7 26 21.5 20.9 20.9 1 +1941 7 27 22.9 22.3 22.3 1 +1941 7 28 22.6 22.0 22.0 1 +1941 7 29 22.9 22.3 22.3 1 +1941 7 30 23.2 22.6 22.6 1 +1941 7 31 24.3 23.7 23.7 1 +1941 8 1 24.5 23.9 23.9 1 +1941 8 2 24.3 23.7 23.7 1 +1941 8 3 21.5 21.0 21.0 1 +1941 8 4 19.3 18.8 18.8 1 +1941 8 5 19.2 18.7 18.7 1 +1941 8 6 16.2 15.7 15.7 1 +1941 8 7 15.2 14.7 14.7 1 +1941 8 8 14.6 14.1 14.1 1 +1941 8 9 14.1 13.6 13.6 1 +1941 8 10 15.8 15.3 15.3 1 +1941 8 11 15.7 15.2 15.2 1 +1941 8 12 16.0 15.5 15.5 1 +1941 8 13 15.3 14.8 14.8 1 +1941 8 14 14.8 14.3 14.3 1 +1941 8 15 15.7 15.2 15.2 1 +1941 8 16 16.5 16.1 16.1 1 +1941 8 17 17.7 17.3 17.3 1 +1941 8 18 16.4 16.0 16.0 1 +1941 8 19 17.2 16.8 16.8 1 +1941 8 20 16.0 15.6 15.6 1 +1941 8 21 15.7 15.3 15.3 1 +1941 8 22 11.3 10.9 10.9 1 +1941 8 23 13.1 12.7 12.7 1 +1941 8 24 14.1 13.7 13.7 1 +1941 8 25 13.2 12.9 12.9 1 +1941 8 26 12.7 12.4 12.4 1 +1941 8 27 12.0 11.7 11.7 1 +1941 8 28 12.3 12.0 12.0 1 +1941 8 29 13.4 13.1 13.1 1 +1941 8 30 12.8 12.5 12.5 1 +1941 8 31 12.1 11.8 11.8 1 +1941 9 1 10.8 10.5 10.5 1 +1941 9 2 10.9 10.7 10.7 1 +1941 9 3 12.6 12.4 12.4 1 +1941 9 4 14.1 13.9 13.9 1 +1941 9 5 12.9 12.7 12.7 1 +1941 9 6 11.3 11.1 11.1 1 +1941 9 7 8.5 8.3 8.3 1 +1941 9 8 9.4 9.2 9.2 1 +1941 9 9 10.1 9.9 9.9 1 +1941 9 10 10.7 10.5 10.5 1 +1941 9 11 11.5 11.4 11.4 1 +1941 9 12 12.2 12.1 12.1 1 +1941 9 13 10.9 10.8 10.8 1 +1941 9 14 9.5 9.4 9.4 1 +1941 9 15 8.0 7.9 7.9 1 +1941 9 16 11.8 11.7 11.7 1 +1941 9 17 13.7 13.6 13.6 1 +1941 9 18 12.4 12.3 12.3 1 +1941 9 19 11.1 11.0 11.0 1 +1941 9 20 14.2 14.1 14.1 1 +1941 9 21 13.0 12.9 12.9 1 +1941 9 22 13.3 13.2 13.2 1 +1941 9 23 12.5 12.4 12.4 1 +1941 9 24 11.1 11.0 11.0 1 +1941 9 25 10.9 10.8 10.8 1 +1941 9 26 8.9 8.8 8.8 1 +1941 9 27 8.5 8.4 8.4 1 +1941 9 28 9.2 9.1 9.1 1 +1941 9 29 8.9 8.8 8.8 1 +1941 9 30 10.4 10.3 10.3 1 +1941 10 1 11.2 11.1 11.1 1 +1941 10 2 11.6 11.5 11.5 1 +1941 10 3 13.1 13.0 13.0 1 +1941 10 4 10.1 10.0 10.0 1 +1941 10 5 10.7 10.6 10.6 1 +1941 10 6 11.1 11.0 11.0 1 +1941 10 7 11.5 11.4 11.4 1 +1941 10 8 10.4 10.3 10.3 1 +1941 10 9 2.8 2.7 2.7 1 +1941 10 10 2.2 2.1 2.1 1 +1941 10 11 1.4 1.3 1.3 1 +1941 10 12 3.5 3.4 3.4 1 +1941 10 13 4.0 3.9 3.9 1 +1941 10 14 4.8 4.7 4.7 1 +1941 10 15 2.0 1.9 1.9 1 +1941 10 16 3.8 3.7 3.7 1 +1941 10 17 6.7 6.6 6.6 1 +1941 10 18 7.4 7.3 7.3 1 +1941 10 19 6.0 5.9 5.9 1 +1941 10 20 7.3 7.2 7.2 1 +1941 10 21 5.3 5.2 5.2 1 +1941 10 22 2.9 2.8 2.8 1 +1941 10 23 2.7 2.6 2.6 1 +1941 10 24 2.9 2.8 2.8 1 +1941 10 25 2.4 2.3 2.3 1 +1941 10 26 2.4 2.3 2.3 1 +1941 10 27 -2.3 -2.5 -2.5 1 +1941 10 28 -2.8 -3.0 -3.0 1 +1941 10 29 0.5 0.3 0.3 1 +1941 10 30 0.9 0.7 0.7 1 +1941 10 31 -1.2 -1.4 -1.4 1 +1941 11 1 -1.6 -1.8 -1.8 1 +1941 11 2 -2.8 -3.0 -3.0 1 +1941 11 3 0.1 -0.1 -0.1 1 +1941 11 4 2.3 2.1 2.1 1 +1941 11 5 1.2 1.0 1.0 1 +1941 11 6 3.0 2.8 2.8 1 +1941 11 7 2.8 2.6 2.6 1 +1941 11 8 0.3 0.1 0.1 1 +1941 11 9 -2.4 -2.6 -2.6 1 +1941 11 10 -0.7 -0.9 -0.9 1 +1941 11 11 0.3 0.0 0.0 1 +1941 11 12 -1.1 -1.4 -1.4 1 +1941 11 13 -0.7 -1.0 -1.0 1 +1941 11 14 -1.0 -1.3 -1.3 1 +1941 11 15 -1.8 -2.1 -2.1 1 +1941 11 16 0.9 0.6 0.6 1 +1941 11 17 2.0 1.7 1.7 1 +1941 11 18 1.6 1.3 1.3 1 +1941 11 19 1.2 0.9 0.9 1 +1941 11 20 3.0 2.7 2.7 1 +1941 11 21 2.2 1.9 1.9 1 +1941 11 22 3.4 3.1 3.1 1 +1941 11 23 2.1 1.8 1.8 1 +1941 11 24 1.4 1.1 1.1 1 +1941 11 25 2.5 2.2 2.2 1 +1941 11 26 3.7 3.4 3.4 1 +1941 11 27 3.0 2.7 2.7 1 +1941 11 28 2.6 2.3 2.3 1 +1941 11 29 2.8 2.5 2.5 1 +1941 11 30 -0.2 -0.5 -0.5 1 +1941 12 1 -1.6 -1.9 -1.9 1 +1941 12 2 -3.3 -3.6 -3.6 1 +1941 12 3 0.7 0.4 0.4 1 +1941 12 4 -0.4 -0.7 -0.7 1 +1941 12 5 -0.9 -1.2 -1.2 1 +1941 12 6 -0.3 -0.6 -0.6 1 +1941 12 7 2.5 2.2 2.2 1 +1941 12 8 -3.7 -4.0 -4.0 1 +1941 12 9 -5.3 -5.6 -5.6 1 +1941 12 10 1.9 1.6 1.6 1 +1941 12 11 6.1 5.8 5.8 1 +1941 12 12 -6.0 -6.3 -6.3 1 +1941 12 13 -3.0 -3.3 -3.3 1 +1941 12 14 -5.8 -6.1 -6.1 1 +1941 12 15 -2.0 -2.3 -2.3 1 +1941 12 16 0.5 0.2 0.2 1 +1941 12 17 2.2 1.8 1.8 1 +1941 12 18 -3.4 -3.8 -3.8 1 +1941 12 19 -3.8 -4.2 -4.2 1 +1941 12 20 -0.5 -0.9 -0.9 1 +1941 12 21 3.0 2.6 2.6 1 +1941 12 22 3.7 3.3 3.3 1 +1941 12 23 -2.8 -3.2 -3.2 1 +1941 12 24 -3.9 -4.3 -4.3 1 +1941 12 25 -7.5 -7.9 -7.9 1 +1941 12 26 -8.5 -8.9 -8.9 1 +1941 12 27 -10.1 -10.5 -10.5 1 +1941 12 28 -11.1 -11.5 -11.5 1 +1941 12 29 -4.7 -5.1 -5.1 1 +1941 12 30 -3.5 -4.0 -4.0 1 +1941 12 31 -2.6 -3.1 -3.1 1 +1942 1 1 -0.6 -1.1 -1.1 1 +1942 1 2 0.3 -0.2 -0.2 1 +1942 1 3 -2.7 -3.2 -3.2 1 +1942 1 4 1.1 0.6 0.6 1 +1942 1 5 -6.1 -6.6 -6.6 1 +1942 1 6 -9.3 -9.8 -9.8 1 +1942 1 7 -7.0 -7.5 -7.5 1 +1942 1 8 -7.4 -7.9 -7.9 1 +1942 1 9 -8.9 -9.4 -9.4 1 +1942 1 10 -9.7 -10.3 -10.3 1 +1942 1 11 -10.6 -11.2 -11.2 1 +1942 1 12 -13.6 -14.2 -14.2 1 +1942 1 13 -8.7 -9.3 -9.3 1 +1942 1 14 -7.9 -8.5 -8.5 1 +1942 1 15 -8.8 -9.4 -9.4 1 +1942 1 16 -8.9 -9.5 -9.5 1 +1942 1 17 -5.9 -6.5 -6.5 1 +1942 1 18 -8.0 -8.6 -8.6 1 +1942 1 19 -14.2 -14.8 -14.8 1 +1942 1 20 -13.4 -14.0 -14.0 1 +1942 1 21 -19.3 -19.9 -19.9 1 +1942 1 22 -15.8 -16.4 -16.4 1 +1942 1 23 -14.4 -15.0 -15.0 1 +1942 1 24 -19.8 -20.4 -20.4 1 +1942 1 25 -23.7 -24.3 -24.3 1 +1942 1 26 -12.6 -13.2 -13.2 1 +1942 1 27 -16.0 -16.6 -16.6 1 +1942 1 28 -13.7 -14.3 -14.3 1 +1942 1 29 -15.1 -15.7 -15.7 1 +1942 1 30 -17.2 -17.8 -17.8 1 +1942 1 31 -11.0 -11.6 -11.6 1 +1942 2 1 -9.6 -10.2 -10.2 1 +1942 2 2 -12.4 -13.0 -13.0 1 +1942 2 3 -10.1 -10.7 -10.7 1 +1942 2 4 -6.9 -7.5 -7.5 1 +1942 2 5 -9.7 -10.3 -10.3 1 +1942 2 6 -12.0 -12.6 -12.6 1 +1942 2 7 -16.9 -17.5 -17.5 1 +1942 2 8 -10.9 -11.5 -11.5 1 +1942 2 9 -10.1 -10.7 -10.7 1 +1942 2 10 -10.6 -11.2 -11.2 1 +1942 2 11 -11.4 -12.0 -12.0 1 +1942 2 12 -8.5 -9.1 -9.1 1 +1942 2 13 -2.2 -2.8 -2.8 1 +1942 2 14 -7.3 -7.9 -7.9 1 +1942 2 15 -8.0 -8.6 -8.6 1 +1942 2 16 -9.9 -10.5 -10.5 1 +1942 2 17 -10.3 -10.9 -10.9 1 +1942 2 18 -11.4 -12.0 -12.0 1 +1942 2 19 -10.7 -11.3 -11.3 1 +1942 2 20 -13.3 -13.9 -13.9 1 +1942 2 21 -13.2 -13.8 -13.8 1 +1942 2 22 -12.6 -13.2 -13.2 1 +1942 2 23 -11.0 -11.6 -11.6 1 +1942 2 24 -10.2 -10.8 -10.8 1 +1942 2 25 -12.6 -13.2 -13.2 1 +1942 2 26 -12.7 -13.3 -13.3 1 +1942 2 27 -12.8 -13.4 -13.4 1 +1942 2 28 -6.5 -7.1 -7.1 1 +1942 3 1 -1.8 -2.4 -2.4 1 +1942 3 2 -3.5 -4.1 -4.1 1 +1942 3 3 -5.5 -6.1 -6.1 1 +1942 3 4 -15.7 -16.3 -16.3 1 +1942 3 5 -16.3 -16.9 -16.9 1 +1942 3 6 -10.2 -10.8 -10.8 1 +1942 3 7 -7.2 -7.8 -7.8 1 +1942 3 8 -5.1 -5.7 -5.7 1 +1942 3 9 -5.3 -5.9 -5.9 1 +1942 3 10 -9.0 -9.7 -9.7 1 +1942 3 11 -13.8 -14.5 -14.5 1 +1942 3 12 -13.5 -14.2 -14.2 1 +1942 3 13 -11.7 -12.4 -12.4 1 +1942 3 14 -10.2 -10.9 -10.9 1 +1942 3 15 -13.3 -14.0 -14.0 1 +1942 3 16 -9.1 -9.8 -9.8 1 +1942 3 17 -11.8 -12.5 -12.5 1 +1942 3 18 -12.3 -13.0 -13.0 1 +1942 3 19 -12.4 -13.0 -13.0 1 +1942 3 20 -9.3 -9.9 -9.9 1 +1942 3 21 -6.2 -6.8 -6.8 1 +1942 3 22 -3.0 -3.6 -3.6 1 +1942 3 23 0.9 0.3 0.3 1 +1942 3 24 4.8 4.2 4.2 1 +1942 3 25 4.6 4.0 4.0 1 +1942 3 26 2.0 1.4 1.4 1 +1942 3 27 -2.6 -3.2 -3.2 1 +1942 3 28 -3.9 -4.5 -4.5 1 +1942 3 29 -0.5 -1.1 -1.1 1 +1942 3 30 -0.7 -1.3 -1.3 1 +1942 3 31 -1.5 -2.1 -2.1 1 +1942 4 1 -2.6 -3.2 -3.2 1 +1942 4 2 -4.9 -5.5 -5.5 1 +1942 4 3 -7.1 -7.7 -7.7 1 +1942 4 4 -4.6 -5.2 -5.2 1 +1942 4 5 -3.0 -3.6 -3.6 1 +1942 4 6 0.3 -0.3 -0.3 1 +1942 4 7 3.6 3.0 3.0 1 +1942 4 8 4.1 3.6 3.6 1 +1942 4 9 5.4 4.9 4.9 1 +1942 4 10 3.8 3.3 3.3 1 +1942 4 11 4.1 3.6 3.6 1 +1942 4 12 3.4 2.9 2.9 1 +1942 4 13 4.9 4.4 4.4 1 +1942 4 14 4.1 3.6 3.6 1 +1942 4 15 5.9 5.4 5.4 1 +1942 4 16 10.2 9.7 9.7 1 +1942 4 17 12.1 11.6 11.6 1 +1942 4 18 12.3 11.7 11.7 1 +1942 4 19 8.5 7.9 7.9 1 +1942 4 20 9.1 8.5 8.5 1 +1942 4 21 8.1 7.5 7.5 1 +1942 4 22 10.7 10.1 10.1 1 +1942 4 23 4.6 4.0 4.0 1 +1942 4 24 2.2 1.6 1.6 1 +1942 4 25 6.3 5.6 5.6 1 +1942 4 26 4.7 4.0 4.0 1 +1942 4 27 4.1 3.4 3.4 1 +1942 4 28 5.6 4.9 4.9 1 +1942 4 29 7.7 7.0 7.0 1 +1942 4 30 8.6 7.9 7.9 1 +1942 5 1 8.0 7.2 7.2 1 +1942 5 2 6.9 6.1 6.1 1 +1942 5 3 1.6 0.8 0.8 1 +1942 5 4 0.5 -0.3 -0.3 1 +1942 5 5 4.7 3.9 3.9 1 +1942 5 6 1.8 1.0 1.0 1 +1942 5 7 2.5 1.7 1.7 1 +1942 5 8 5.4 4.5 4.5 1 +1942 5 9 8.4 7.5 7.5 1 +1942 5 10 9.5 8.6 8.6 1 +1942 5 11 7.5 6.6 6.6 1 +1942 5 12 6.4 5.5 5.5 1 +1942 5 13 5.6 4.7 4.7 1 +1942 5 14 8.9 8.0 8.0 1 +1942 5 15 11.0 10.0 10.0 1 +1942 5 16 11.8 10.8 10.8 1 +1942 5 17 8.8 7.8 7.8 1 +1942 5 18 6.9 6.0 6.0 1 +1942 5 19 6.9 6.0 6.0 1 +1942 5 20 7.2 6.3 6.3 1 +1942 5 21 6.7 5.8 5.8 1 +1942 5 22 11.0 10.1 10.1 1 +1942 5 23 13.0 12.1 12.1 1 +1942 5 24 14.0 13.1 13.1 1 +1942 5 25 11.8 10.9 10.9 1 +1942 5 26 13.0 12.1 12.1 1 +1942 5 27 8.6 7.7 7.7 1 +1942 5 28 12.1 11.2 11.2 1 +1942 5 29 15.0 14.1 14.1 1 +1942 5 30 10.9 10.0 10.0 1 +1942 5 31 12.8 11.9 11.9 1 +1942 6 1 13.6 12.8 12.8 1 +1942 6 2 11.5 10.7 10.7 1 +1942 6 3 15.2 14.4 14.4 1 +1942 6 4 15.5 14.7 14.7 1 +1942 6 5 13.4 12.6 12.6 1 +1942 6 6 12.1 11.3 11.3 1 +1942 6 7 10.4 9.6 9.6 1 +1942 6 8 13.1 12.3 12.3 1 +1942 6 9 10.0 9.2 9.2 1 +1942 6 10 11.2 10.4 10.4 1 +1942 6 11 10.0 9.2 9.2 1 +1942 6 12 9.2 8.4 8.4 1 +1942 6 13 11.8 11.0 11.0 1 +1942 6 14 11.0 10.2 10.2 1 +1942 6 15 11.8 11.0 11.0 1 +1942 6 16 14.2 13.4 13.4 1 +1942 6 17 15.5 14.8 14.8 1 +1942 6 18 14.6 13.9 13.9 1 +1942 6 19 11.2 10.5 10.5 1 +1942 6 20 10.5 9.8 9.8 1 +1942 6 21 8.8 8.1 8.1 1 +1942 6 22 14.6 13.9 13.9 1 +1942 6 23 18.0 17.3 17.3 1 +1942 6 24 18.3 17.6 17.6 1 +1942 6 25 13.8 13.1 13.1 1 +1942 6 26 12.4 11.7 11.7 1 +1942 6 27 11.8 11.1 11.1 1 +1942 6 28 14.3 13.6 13.6 1 +1942 6 29 17.6 16.9 16.9 1 +1942 6 30 14.4 13.7 13.7 1 +1942 7 1 14.0 13.3 13.3 1 +1942 7 2 14.1 13.4 13.4 1 +1942 7 3 15.5 14.8 14.8 1 +1942 7 4 18.6 17.9 17.9 1 +1942 7 5 20.3 19.6 19.6 1 +1942 7 6 22.3 21.6 21.6 1 +1942 7 7 20.7 20.0 20.0 1 +1942 7 8 18.7 18.0 18.0 1 +1942 7 9 16.6 15.9 15.9 1 +1942 7 10 16.2 15.5 15.5 1 +1942 7 11 16.5 15.8 15.8 1 +1942 7 12 14.4 13.7 13.7 1 +1942 7 13 16.8 16.1 16.1 1 +1942 7 14 18.0 17.3 17.3 1 +1942 7 15 16.2 15.5 15.5 1 +1942 7 16 17.1 16.4 16.4 1 +1942 7 17 16.2 15.5 15.5 1 +1942 7 18 14.8 14.1 14.1 1 +1942 7 19 13.5 12.8 12.8 1 +1942 7 20 15.0 14.3 14.3 1 +1942 7 21 17.9 17.2 17.2 1 +1942 7 22 14.6 13.9 13.9 1 +1942 7 23 16.4 15.8 15.8 1 +1942 7 24 15.3 14.7 14.7 1 +1942 7 25 16.5 15.9 15.9 1 +1942 7 26 15.8 15.2 15.2 1 +1942 7 27 15.6 15.0 15.0 1 +1942 7 28 15.2 14.6 14.6 1 +1942 7 29 13.5 12.9 12.9 1 +1942 7 30 15.3 14.7 14.7 1 +1942 7 31 18.0 17.4 17.4 1 +1942 8 1 17.0 16.4 16.4 1 +1942 8 2 15.5 14.9 14.9 1 +1942 8 3 13.0 12.4 12.4 1 +1942 8 4 13.7 13.1 13.1 1 +1942 8 5 12.8 12.3 12.3 1 +1942 8 6 13.5 13.0 13.0 1 +1942 8 7 14.0 13.5 13.5 1 +1942 8 8 14.8 14.3 14.3 1 +1942 8 9 16.3 15.8 15.8 1 +1942 8 10 16.2 15.7 15.7 1 +1942 8 11 17.3 16.8 16.8 1 +1942 8 12 17.6 17.1 17.1 1 +1942 8 13 17.4 16.9 16.9 1 +1942 8 14 16.1 15.6 15.6 1 +1942 8 15 17.2 16.7 16.7 1 +1942 8 16 17.4 16.9 16.9 1 +1942 8 17 17.5 17.1 17.1 1 +1942 8 18 18.0 17.6 17.6 1 +1942 8 19 20.2 19.8 19.8 1 +1942 8 20 21.1 20.7 20.7 1 +1942 8 21 20.1 19.7 19.7 1 +1942 8 22 19.3 18.9 18.9 1 +1942 8 23 19.0 18.6 18.6 1 +1942 8 24 19.6 19.2 19.2 1 +1942 8 25 18.2 17.8 17.8 1 +1942 8 26 16.9 16.6 16.6 1 +1942 8 27 19.7 19.4 19.4 1 +1942 8 28 21.3 21.0 21.0 1 +1942 8 29 18.8 18.5 18.5 1 +1942 8 30 11.1 10.8 10.8 1 +1942 8 31 11.9 11.6 11.6 1 +1942 9 1 16.3 16.0 16.0 1 +1942 9 2 17.4 17.1 17.1 1 +1942 9 3 16.4 16.2 16.2 1 +1942 9 4 17.8 17.6 17.6 1 +1942 9 5 15.8 15.6 15.6 1 +1942 9 6 16.6 16.4 16.4 1 +1942 9 7 14.7 14.5 14.5 1 +1942 9 8 14.0 13.8 13.8 1 +1942 9 9 14.5 14.3 14.3 1 +1942 9 10 14.0 13.8 13.8 1 +1942 9 11 15.5 15.4 15.4 1 +1942 9 12 12.9 12.8 12.8 1 +1942 9 13 10.1 10.0 10.0 1 +1942 9 14 9.7 9.6 9.6 1 +1942 9 15 11.9 11.8 11.8 1 +1942 9 16 11.5 11.4 11.4 1 +1942 9 17 10.2 10.1 10.1 1 +1942 9 18 9.5 9.4 9.4 1 +1942 9 19 9.7 9.6 9.6 1 +1942 9 20 7.9 7.8 7.8 1 +1942 9 21 8.6 8.5 8.5 1 +1942 9 22 12.1 12.0 12.0 1 +1942 9 23 11.7 11.6 11.6 1 +1942 9 24 10.5 10.4 10.4 1 +1942 9 25 10.2 10.1 10.1 1 +1942 9 26 10.0 9.9 9.9 1 +1942 9 27 9.6 9.5 9.5 1 +1942 9 28 9.0 8.9 8.9 1 +1942 9 29 11.6 11.5 11.5 1 +1942 9 30 13.2 13.1 13.1 1 +1942 10 1 10.0 9.9 9.9 1 +1942 10 2 11.0 10.9 10.9 1 +1942 10 3 9.7 9.6 9.6 1 +1942 10 4 8.7 8.6 8.6 1 +1942 10 5 12.6 12.5 12.5 1 +1942 10 6 10.3 10.2 10.2 1 +1942 10 7 9.0 8.9 8.9 1 +1942 10 8 10.7 10.6 10.6 1 +1942 10 9 10.7 10.6 10.6 1 +1942 10 10 9.7 9.6 9.6 1 +1942 10 11 9.0 8.9 8.9 1 +1942 10 12 8.8 8.7 8.7 1 +1942 10 13 5.6 5.5 5.5 1 +1942 10 14 7.8 7.7 7.7 1 +1942 10 15 9.4 9.3 9.3 1 +1942 10 16 9.6 9.5 9.5 1 +1942 10 17 5.6 5.5 5.5 1 +1942 10 18 3.9 3.8 3.8 1 +1942 10 19 1.8 1.7 1.7 1 +1942 10 20 1.8 1.7 1.7 1 +1942 10 21 1.8 1.7 1.7 1 +1942 10 22 5.4 5.3 5.3 1 +1942 10 23 7.7 7.6 7.6 1 +1942 10 24 7.8 7.7 7.7 1 +1942 10 25 7.0 6.9 6.9 1 +1942 10 26 5.8 5.6 5.6 1 +1942 10 27 8.0 7.8 7.8 1 +1942 10 28 7.2 7.0 7.0 1 +1942 10 29 7.6 7.4 7.4 1 +1942 10 30 8.4 8.2 8.2 1 +1942 10 31 8.0 7.8 7.8 1 +1942 11 1 8.0 7.8 7.8 1 +1942 11 2 8.1 7.9 7.9 1 +1942 11 3 5.2 5.0 5.0 1 +1942 11 4 0.8 0.6 0.6 1 +1942 11 5 2.7 2.5 2.5 1 +1942 11 6 1.2 1.0 1.0 1 +1942 11 7 2.8 2.6 2.6 1 +1942 11 8 3.9 3.7 3.7 1 +1942 11 9 5.1 4.9 4.9 1 +1942 11 10 4.2 3.9 3.9 1 +1942 11 11 4.5 4.2 4.2 1 +1942 11 12 5.2 4.9 4.9 1 +1942 11 13 1.9 1.6 1.6 1 +1942 11 14 4.3 4.0 4.0 1 +1942 11 15 9.0 8.7 8.7 1 +1942 11 16 3.2 2.9 2.9 1 +1942 11 17 0.9 0.6 0.6 1 +1942 11 18 2.9 2.6 2.6 1 +1942 11 19 3.1 2.8 2.8 1 +1942 11 20 3.0 2.7 2.7 1 +1942 11 21 -0.3 -0.6 -0.6 1 +1942 11 22 -1.6 -1.9 -1.9 1 +1942 11 23 -3.0 -3.3 -3.3 1 +1942 11 24 0.9 0.6 0.6 1 +1942 11 25 6.1 5.8 5.8 1 +1942 11 26 3.6 3.3 3.3 1 +1942 11 27 -1.7 -2.0 -2.0 1 +1942 11 28 -4.1 -4.4 -4.4 1 +1942 11 29 -8.5 -8.8 -8.8 1 +1942 11 30 -7.9 -8.2 -8.2 1 +1942 12 1 -5.9 -6.2 -6.2 1 +1942 12 2 -7.8 -8.1 -8.1 1 +1942 12 3 -8.1 -8.4 -8.4 1 +1942 12 4 -6.0 -6.3 -6.3 1 +1942 12 5 -2.8 -3.1 -3.1 1 +1942 12 6 -0.5 -0.8 -0.8 1 +1942 12 7 -9.0 -9.3 -9.3 1 +1942 12 8 0.4 0.1 0.1 1 +1942 12 9 -0.2 -0.5 -0.5 1 +1942 12 10 4.2 3.9 3.9 1 +1942 12 11 3.2 2.9 2.9 1 +1942 12 12 4.7 4.4 4.4 1 +1942 12 13 4.1 3.8 3.8 1 +1942 12 14 4.2 3.9 3.9 1 +1942 12 15 1.3 1.0 1.0 1 +1942 12 16 1.0 0.6 0.6 1 +1942 12 17 1.7 1.3 1.3 1 +1942 12 18 2.4 2.0 2.0 1 +1942 12 19 2.7 2.3 2.3 1 +1942 12 20 2.7 2.3 2.3 1 +1942 12 21 2.6 2.2 2.2 1 +1942 12 22 3.3 2.9 2.9 1 +1942 12 23 4.2 3.8 3.8 1 +1942 12 24 3.5 3.1 3.1 1 +1942 12 25 4.4 4.0 4.0 1 +1942 12 26 4.4 4.0 4.0 1 +1942 12 27 1.9 1.5 1.5 1 +1942 12 28 1.1 0.6 0.6 1 +1942 12 29 1.0 0.5 0.5 1 +1942 12 30 -2.6 -3.1 -3.1 1 +1942 12 31 -9.3 -9.8 -9.8 1 +1943 1 1 -1.9 -2.4 -2.4 1 +1943 1 2 -2.7 -3.2 -3.2 1 +1943 1 3 -0.8 -1.3 -1.3 1 +1943 1 4 -3.8 -4.3 -4.3 1 +1943 1 5 -7.8 -8.3 -8.3 1 +1943 1 6 -6.6 -7.1 -7.1 1 +1943 1 7 -4.4 -4.9 -4.9 1 +1943 1 8 -4.3 -4.8 -4.8 1 +1943 1 9 -11.8 -12.4 -12.4 1 +1943 1 10 -13.2 -13.8 -13.8 1 +1943 1 11 -10.5 -11.1 -11.1 1 +1943 1 12 -5.0 -5.6 -5.6 1 +1943 1 13 -3.1 -3.7 -3.7 1 +1943 1 14 -1.2 -1.8 -1.8 1 +1943 1 15 -1.3 -1.9 -1.9 1 +1943 1 16 1.4 0.8 0.8 1 +1943 1 17 -3.2 -3.8 -3.8 1 +1943 1 18 -0.2 -0.8 -0.8 1 +1943 1 19 -0.1 -0.7 -0.7 1 +1943 1 20 0.1 -0.5 -0.5 1 +1943 1 21 -4.8 -5.4 -5.4 1 +1943 1 22 -2.3 -2.9 -2.9 1 +1943 1 23 -5.2 -5.8 -5.8 1 +1943 1 24 -5.6 -6.2 -6.2 1 +1943 1 25 -6.6 -7.2 -7.2 1 +1943 1 26 -2.1 -2.7 -2.7 1 +1943 1 27 0.8 0.2 0.2 1 +1943 1 28 0.2 -0.4 -0.4 1 +1943 1 29 2.4 1.8 1.8 1 +1943 1 30 2.5 1.9 1.9 1 +1943 1 31 2.2 1.6 1.6 1 +1943 2 1 3.0 2.4 2.4 1 +1943 2 2 3.4 2.8 2.8 1 +1943 2 3 2.4 1.8 1.8 1 +1943 2 4 1.2 0.6 0.6 1 +1943 2 5 1.9 1.3 1.3 1 +1943 2 6 1.9 1.3 1.3 1 +1943 2 7 0.2 -0.4 -0.4 1 +1943 2 8 -4.5 -5.1 -5.1 1 +1943 2 9 -0.8 -1.4 -1.4 1 +1943 2 10 0.6 0.0 0.0 1 +1943 2 11 -0.6 -1.2 -1.2 1 +1943 2 12 5.2 4.6 4.6 1 +1943 2 13 1.0 0.4 0.4 1 +1943 2 14 -3.3 -3.9 -3.9 1 +1943 2 15 -0.1 -0.7 -0.7 1 +1943 2 16 -1.7 -2.3 -2.3 1 +1943 2 17 -2.1 -2.7 -2.7 1 +1943 2 18 4.4 3.8 3.8 1 +1943 2 19 3.0 2.4 2.4 1 +1943 2 20 4.2 3.6 3.6 1 +1943 2 21 1.7 1.1 1.1 1 +1943 2 22 5.1 4.5 4.5 1 +1943 2 23 1.7 1.1 1.1 1 +1943 2 24 4.7 4.1 4.1 1 +1943 2 25 3.5 2.9 2.9 1 +1943 2 26 4.3 3.7 3.7 1 +1943 2 27 5.9 5.3 5.3 1 +1943 2 28 7.6 7.0 7.0 1 +1943 3 1 3.0 2.4 2.4 1 +1943 3 2 3.2 2.6 2.6 1 +1943 3 3 -0.7 -1.3 -1.3 1 +1943 3 4 1.7 1.1 1.1 1 +1943 3 5 1.7 1.1 1.1 1 +1943 3 6 1.4 0.8 0.8 1 +1943 3 7 3.7 3.0 3.0 1 +1943 3 8 1.5 0.8 0.8 1 +1943 3 9 3.7 3.0 3.0 1 +1943 3 10 4.1 3.4 3.4 1 +1943 3 11 6.6 5.9 5.9 1 +1943 3 12 2.2 1.5 1.5 1 +1943 3 13 1.6 0.9 0.9 1 +1943 3 14 2.0 1.3 1.3 1 +1943 3 15 2.6 1.9 1.9 1 +1943 3 16 3.5 2.8 2.8 1 +1943 3 17 3.9 3.2 3.2 1 +1943 3 18 2.2 1.5 1.5 1 +1943 3 19 1.7 1.0 1.0 1 +1943 3 20 2.5 1.8 1.8 1 +1943 3 21 3.2 2.5 2.5 1 +1943 3 22 4.1 3.5 3.5 1 +1943 3 23 4.7 4.1 4.1 1 +1943 3 24 -0.1 -0.7 -0.7 1 +1943 3 25 1.4 0.8 0.8 1 +1943 3 26 2.9 2.3 2.3 1 +1943 3 27 1.6 1.0 1.0 1 +1943 3 28 5.7 5.1 5.1 1 +1943 3 29 6.9 6.3 6.3 1 +1943 3 30 5.9 5.3 5.3 1 +1943 3 31 6.0 5.4 5.4 1 +1943 4 1 5.0 4.4 4.4 1 +1943 4 2 4.7 4.1 4.1 1 +1943 4 3 3.5 2.9 2.9 1 +1943 4 4 6.2 5.6 5.6 1 +1943 4 5 8.8 8.2 8.2 1 +1943 4 6 4.3 3.7 3.7 1 +1943 4 7 4.3 3.7 3.7 1 +1943 4 8 1.8 1.2 1.2 1 +1943 4 9 2.1 1.5 1.5 1 +1943 4 10 5.8 5.2 5.2 1 +1943 4 11 6.8 6.3 6.3 1 +1943 4 12 2.8 2.3 2.3 1 +1943 4 13 5.0 4.5 4.5 1 +1943 4 14 10.4 9.9 9.9 1 +1943 4 15 12.5 12.0 12.0 1 +1943 4 16 8.9 8.4 8.4 1 +1943 4 17 6.0 5.4 5.4 1 +1943 4 18 7.5 6.9 6.9 1 +1943 4 19 9.4 8.8 8.8 1 +1943 4 20 8.3 7.7 7.7 1 +1943 4 21 9.8 9.2 9.2 1 +1943 4 22 10.4 9.8 9.8 1 +1943 4 23 14.0 13.4 13.4 1 +1943 4 24 13.2 12.5 12.5 1 +1943 4 25 10.8 10.1 10.1 1 +1943 4 26 8.8 8.1 8.1 1 +1943 4 27 7.6 6.9 6.9 1 +1943 4 28 4.8 4.1 4.1 1 +1943 4 29 4.0 3.3 3.3 1 +1943 4 30 3.5 2.7 2.7 1 +1943 5 1 5.4 4.6 4.6 1 +1943 5 2 7.4 6.6 6.6 1 +1943 5 3 10.2 9.4 9.4 1 +1943 5 4 11.4 10.6 10.6 1 +1943 5 5 13.6 12.8 12.8 1 +1943 5 6 12.8 12.0 12.0 1 +1943 5 7 11.2 10.3 10.3 1 +1943 5 8 9.9 9.0 9.0 1 +1943 5 9 6.4 5.5 5.5 1 +1943 5 10 9.4 8.5 8.5 1 +1943 5 11 10.1 9.2 9.2 1 +1943 5 12 10.9 10.0 10.0 1 +1943 5 13 13.6 12.6 12.6 1 +1943 5 14 17.1 16.1 16.1 1 +1943 5 15 14.6 13.6 13.6 1 +1943 5 16 10.5 9.5 9.5 1 +1943 5 17 11.4 10.4 10.4 1 +1943 5 18 8.6 7.6 7.6 1 +1943 5 19 7.1 6.1 6.1 1 +1943 5 20 8.7 7.8 7.8 1 +1943 5 21 12.3 11.4 11.4 1 +1943 5 22 12.8 11.9 11.9 1 +1943 5 23 14.7 13.8 13.8 1 +1943 5 24 13.0 12.1 12.1 1 +1943 5 25 12.5 11.6 11.6 1 +1943 5 26 12.9 12.0 12.0 1 +1943 5 27 16.0 15.1 15.1 1 +1943 5 28 13.3 12.4 12.4 1 +1943 5 29 7.1 6.2 6.2 1 +1943 5 30 12.5 11.6 11.6 1 +1943 5 31 14.7 13.8 13.8 1 +1943 6 1 15.0 14.1 14.1 1 +1943 6 2 15.9 15.0 15.0 1 +1943 6 3 16.4 15.6 15.6 1 +1943 6 4 16.0 15.2 15.2 1 +1943 6 5 16.1 15.3 15.3 1 +1943 6 6 13.4 12.6 12.6 1 +1943 6 7 13.8 13.0 13.0 1 +1943 6 8 14.8 14.0 14.0 1 +1943 6 9 17.9 17.1 17.1 1 +1943 6 10 20.9 20.1 20.1 1 +1943 6 11 20.8 20.0 20.0 1 +1943 6 12 20.7 19.9 19.9 1 +1943 6 13 18.1 17.3 17.3 1 +1943 6 14 15.1 14.3 14.3 1 +1943 6 15 14.2 13.4 13.4 1 +1943 6 16 12.5 11.7 11.7 1 +1943 6 17 14.3 13.5 13.5 1 +1943 6 18 15.3 14.5 14.5 1 +1943 6 19 16.9 16.1 16.1 1 +1943 6 20 16.0 15.2 15.2 1 +1943 6 21 18.8 18.0 18.0 1 +1943 6 22 17.3 16.5 16.5 1 +1943 6 23 17.5 16.7 16.7 1 +1943 6 24 13.3 12.5 12.5 1 +1943 6 25 14.9 14.1 14.1 1 +1943 6 26 15.1 14.4 14.4 1 +1943 6 27 11.9 11.2 11.2 1 +1943 6 28 10.6 9.9 9.9 1 +1943 6 29 13.6 12.9 12.9 1 +1943 6 30 17.0 16.3 16.3 1 +1943 7 1 17.3 16.6 16.6 1 +1943 7 2 15.5 14.8 14.8 1 +1943 7 3 10.5 9.8 9.8 1 +1943 7 4 14.0 13.3 13.3 1 +1943 7 5 13.3 12.6 12.6 1 +1943 7 6 13.8 13.1 13.1 1 +1943 7 7 15.0 14.3 14.3 1 +1943 7 8 16.1 15.4 15.4 1 +1943 7 9 16.3 15.6 15.6 1 +1943 7 10 16.7 16.0 16.0 1 +1943 7 11 17.2 16.5 16.5 1 +1943 7 12 18.1 17.4 17.4 1 +1943 7 13 16.1 15.4 15.4 1 +1943 7 14 16.6 15.9 15.9 1 +1943 7 15 15.1 14.4 14.4 1 +1943 7 16 16.0 15.3 15.3 1 +1943 7 17 16.7 16.0 16.0 1 +1943 7 18 15.5 14.8 14.8 1 +1943 7 19 17.7 17.0 17.0 1 +1943 7 20 18.9 18.2 18.2 1 +1943 7 21 19.4 18.7 18.7 1 +1943 7 22 18.9 18.2 18.2 1 +1943 7 23 16.6 15.9 15.9 1 +1943 7 24 18.3 17.6 17.6 1 +1943 7 25 18.2 17.6 17.6 1 +1943 7 26 19.7 19.1 19.1 1 +1943 7 27 20.1 19.5 19.5 1 +1943 7 28 22.4 21.8 21.8 1 +1943 7 29 20.0 19.4 19.4 1 +1943 7 30 19.4 18.8 18.8 1 +1943 7 31 19.3 18.7 18.7 1 +1943 8 1 22.4 21.8 21.8 1 +1943 8 2 22.8 22.2 22.2 1 +1943 8 3 21.0 20.4 20.4 1 +1943 8 4 17.1 16.5 16.5 1 +1943 8 5 16.7 16.1 16.1 1 +1943 8 6 14.4 13.8 13.8 1 +1943 8 7 13.6 13.1 13.1 1 +1943 8 8 16.2 15.7 15.7 1 +1943 8 9 15.4 14.9 14.9 1 +1943 8 10 15.4 14.9 14.9 1 +1943 8 11 15.7 15.2 15.2 1 +1943 8 12 12.8 12.3 12.3 1 +1943 8 13 9.5 9.0 9.0 1 +1943 8 14 11.5 11.0 11.0 1 +1943 8 15 13.4 12.9 12.9 1 +1943 8 16 13.7 13.2 13.2 1 +1943 8 17 13.8 13.3 13.3 1 +1943 8 18 13.6 13.2 13.2 1 +1943 8 19 12.1 11.7 11.7 1 +1943 8 20 15.1 14.7 14.7 1 +1943 8 21 15.2 14.8 14.8 1 +1943 8 22 16.4 16.0 16.0 1 +1943 8 23 18.2 17.8 17.8 1 +1943 8 24 16.9 16.5 16.5 1 +1943 8 25 16.1 15.7 15.7 1 +1943 8 26 16.0 15.6 15.6 1 +1943 8 27 16.3 16.0 16.0 1 +1943 8 28 15.0 14.7 14.7 1 +1943 8 29 13.3 13.0 13.0 1 +1943 8 30 12.1 11.8 11.8 1 +1943 8 31 13.5 13.2 13.2 1 +1943 9 1 14.2 13.9 13.9 1 +1943 9 2 14.3 14.0 14.0 1 +1943 9 3 14.3 14.0 14.0 1 +1943 9 4 12.4 12.2 12.2 1 +1943 9 5 13.5 13.3 13.3 1 +1943 9 6 14.0 13.8 13.8 1 +1943 9 7 15.7 15.5 15.5 1 +1943 9 8 15.2 15.0 15.0 1 +1943 9 9 13.9 13.7 13.7 1 +1943 9 10 12.4 12.2 12.2 1 +1943 9 11 12.0 11.8 11.8 1 +1943 9 12 12.8 12.7 12.7 1 +1943 9 13 12.9 12.8 12.8 1 +1943 9 14 14.2 14.1 14.1 1 +1943 9 15 13.4 13.3 13.3 1 +1943 9 16 14.5 14.4 14.4 1 +1943 9 17 14.1 14.0 14.0 1 +1943 9 18 14.4 14.3 14.3 1 +1943 9 19 12.4 12.3 12.3 1 +1943 9 20 14.2 14.1 14.1 1 +1943 9 21 10.1 10.0 10.0 1 +1943 9 22 8.0 7.9 7.9 1 +1943 9 23 8.0 7.9 7.9 1 +1943 9 24 13.1 13.0 13.0 1 +1943 9 25 11.7 11.6 11.6 1 +1943 9 26 8.1 8.0 8.0 1 +1943 9 27 7.5 7.4 7.4 1 +1943 9 28 6.8 6.7 6.7 1 +1943 9 29 8.3 8.2 8.2 1 +1943 9 30 11.4 11.3 11.3 1 +1943 10 1 12.2 12.1 12.1 1 +1943 10 2 12.3 12.2 12.2 1 +1943 10 3 9.5 9.4 9.4 1 +1943 10 4 10.5 10.4 10.4 1 +1943 10 5 8.5 8.4 8.4 1 +1943 10 6 11.8 11.7 11.7 1 +1943 10 7 11.7 11.6 11.6 1 +1943 10 8 7.4 7.3 7.3 1 +1943 10 9 7.8 7.7 7.7 1 +1943 10 10 8.4 8.3 8.3 1 +1943 10 11 8.2 8.1 8.1 1 +1943 10 12 8.7 8.6 8.6 1 +1943 10 13 8.7 8.6 8.6 1 +1943 10 14 8.4 8.3 8.3 1 +1943 10 15 8.3 8.2 8.2 1 +1943 10 16 9.3 9.2 9.2 1 +1943 10 17 8.3 8.2 8.2 1 +1943 10 18 9.8 9.7 9.7 1 +1943 10 19 9.8 9.7 9.7 1 +1943 10 20 10.2 10.1 10.1 1 +1943 10 21 10.8 10.7 10.7 1 +1943 10 22 9.1 9.0 9.0 1 +1943 10 23 9.4 9.3 9.3 1 +1943 10 24 11.2 11.1 11.1 1 +1943 10 25 5.9 5.7 5.7 1 +1943 10 26 6.7 6.5 6.5 1 +1943 10 27 6.9 6.7 6.7 1 +1943 10 28 9.8 9.6 9.6 1 +1943 10 29 9.7 9.5 9.5 1 +1943 10 30 8.5 8.3 8.3 1 +1943 10 31 7.7 7.5 7.5 1 +1943 11 1 7.1 6.9 6.9 1 +1943 11 2 7.1 6.9 6.9 1 +1943 11 3 4.9 4.7 4.7 1 +1943 11 4 5.6 5.4 5.4 1 +1943 11 5 4.3 4.1 4.1 1 +1943 11 6 3.6 3.4 3.4 1 +1943 11 7 3.6 3.4 3.4 1 +1943 11 8 2.6 2.4 2.4 1 +1943 11 9 0.4 0.1 0.1 1 +1943 11 10 4.8 4.5 4.5 1 +1943 11 11 6.0 5.7 5.7 1 +1943 11 12 1.0 0.7 0.7 1 +1943 11 13 4.8 4.5 4.5 1 +1943 11 14 3.3 3.0 3.0 1 +1943 11 15 1.6 1.3 1.3 1 +1943 11 16 1.5 1.2 1.2 1 +1943 11 17 -1.6 -1.9 -1.9 1 +1943 11 18 -2.0 -2.3 -2.3 1 +1943 11 19 -3.5 -3.8 -3.8 1 +1943 11 20 1.3 1.0 1.0 1 +1943 11 21 0.4 0.1 0.1 1 +1943 11 22 5.1 4.8 4.8 1 +1943 11 23 2.7 2.4 2.4 1 +1943 11 24 3.1 2.8 2.8 1 +1943 11 25 4.0 3.7 3.7 1 +1943 11 26 2.5 2.2 2.2 1 +1943 11 27 1.1 0.8 0.8 1 +1943 11 28 0.1 -0.2 -0.2 1 +1943 11 29 2.4 2.1 2.1 1 +1943 11 30 1.1 0.8 0.8 1 +1943 12 1 1.9 1.6 1.6 1 +1943 12 2 1.8 1.5 1.5 1 +1943 12 3 0.0 -0.3 -0.3 1 +1943 12 4 -1.0 -1.3 -1.3 1 +1943 12 5 0.6 0.3 0.3 1 +1943 12 6 2.5 2.2 2.2 1 +1943 12 7 -0.4 -0.7 -0.7 1 +1943 12 8 -1.7 -2.0 -2.0 1 +1943 12 9 -1.7 -2.0 -2.0 1 +1943 12 10 -5.0 -5.3 -5.3 1 +1943 12 11 -2.4 -2.8 -2.8 1 +1943 12 12 -2.4 -2.8 -2.8 1 +1943 12 13 0.2 -0.2 -0.2 1 +1943 12 14 1.3 0.9 0.9 1 +1943 12 15 1.2 0.8 0.8 1 +1943 12 16 0.9 0.5 0.5 1 +1943 12 17 -1.9 -2.3 -2.3 1 +1943 12 18 1.6 1.2 1.2 1 +1943 12 19 3.0 2.6 2.6 1 +1943 12 20 3.8 3.4 3.4 1 +1943 12 21 4.4 4.0 4.0 1 +1943 12 22 3.8 3.4 3.4 1 +1943 12 23 3.5 3.1 3.1 1 +1943 12 24 2.1 1.7 1.7 1 +1943 12 25 0.7 0.3 0.3 1 +1943 12 26 0.6 0.2 0.2 1 +1943 12 27 3.6 3.1 3.1 1 +1943 12 28 0.9 0.4 0.4 1 +1943 12 29 3.2 2.7 2.7 1 +1943 12 30 -1.2 -1.7 -1.7 1 +1943 12 31 -3.9 -4.4 -4.4 1 +1944 1 1 -1.8 -2.3 -2.3 1 +1944 1 2 -4.2 -4.7 -4.7 1 +1944 1 3 -5.8 -6.3 -6.3 1 +1944 1 4 -8.2 -8.7 -8.7 1 +1944 1 5 -9.1 -9.6 -9.6 1 +1944 1 6 3.8 3.3 3.3 1 +1944 1 7 -0.2 -0.7 -0.7 1 +1944 1 8 -4.5 -5.1 -5.1 1 +1944 1 9 -3.6 -4.2 -4.2 1 +1944 1 10 -11.5 -12.1 -12.1 1 +1944 1 11 -9.3 -9.9 -9.9 1 +1944 1 12 -7.2 -7.8 -7.8 1 +1944 1 13 -8.6 -9.2 -9.2 1 +1944 1 14 0.1 -0.5 -0.5 1 +1944 1 15 -1.4 -2.0 -2.0 1 +1944 1 16 1.1 0.5 0.5 1 +1944 1 17 1.1 0.5 0.5 1 +1944 1 18 2.2 1.6 1.6 1 +1944 1 19 4.1 3.5 3.5 1 +1944 1 20 2.8 2.2 2.2 1 +1944 1 21 1.0 0.4 0.4 1 +1944 1 22 3.0 2.4 2.4 1 +1944 1 23 3.5 2.9 2.9 1 +1944 1 24 1.5 0.9 0.9 1 +1944 1 25 -1.3 -1.9 -1.9 1 +1944 1 26 1.7 1.1 1.1 1 +1944 1 27 0.9 0.3 0.3 1 +1944 1 28 2.2 1.6 1.6 1 +1944 1 29 0.5 -0.1 -0.1 1 +1944 1 30 4.8 4.2 4.2 1 +1944 1 31 0.3 -0.3 -0.3 1 +1944 2 1 3.2 2.6 2.6 1 +1944 2 2 3.4 2.8 2.8 1 +1944 2 3 1.9 1.3 1.3 1 +1944 2 4 1.3 0.7 0.7 1 +1944 2 5 -0.3 -0.9 -0.9 1 +1944 2 6 -3.2 -3.8 -3.8 1 +1944 2 7 0.6 0.0 0.0 1 +1944 2 8 2.7 2.1 2.1 1 +1944 2 9 -1.7 -2.3 -2.3 1 +1944 2 10 0.3 -0.3 -0.3 1 +1944 2 11 -1.2 -1.8 -1.8 1 +1944 2 12 -2.4 -3.0 -3.0 1 +1944 2 13 -1.5 -2.1 -2.1 1 +1944 2 14 2.1 1.5 1.5 1 +1944 2 15 0.9 0.3 0.3 1 +1944 2 16 -0.4 -1.0 -1.0 1 +1944 2 17 -2.2 -2.8 -2.8 1 +1944 2 18 -3.3 -3.9 -3.9 1 +1944 2 19 -5.2 -5.8 -5.8 1 +1944 2 20 -6.1 -6.7 -6.7 1 +1944 2 21 -1.5 -2.1 -2.1 1 +1944 2 22 -1.5 -2.1 -2.1 1 +1944 2 23 1.6 1.0 1.0 1 +1944 2 24 0.7 0.1 0.1 1 +1944 2 25 1.2 0.6 0.6 1 +1944 2 26 -3.7 -4.3 -4.3 1 +1944 2 27 -5.2 -5.8 -5.8 1 +1944 2 28 -4.8 -5.4 -5.4 1 +1944 2 29 -3.1 -3.7 -3.7 1 +1944 3 1 -2.1 -2.7 -2.7 1 +1944 3 2 -1.3 -1.9 -1.9 1 +1944 3 3 -2.5 -3.1 -3.1 1 +1944 3 4 0.9 0.2 0.2 1 +1944 3 5 -2.0 -2.7 -2.7 1 +1944 3 6 0.4 -0.3 -0.3 1 +1944 3 7 2.1 1.4 1.4 1 +1944 3 8 2.5 1.8 1.8 1 +1944 3 9 2.4 1.7 1.7 1 +1944 3 10 2.4 1.7 1.7 1 +1944 3 11 0.9 0.2 0.2 1 +1944 3 12 0.6 -0.1 -0.1 1 +1944 3 13 0.7 0.0 0.0 1 +1944 3 14 -0.4 -1.1 -1.1 1 +1944 3 15 -0.2 -0.9 -0.9 1 +1944 3 16 -0.7 -1.4 -1.4 1 +1944 3 17 -0.6 -1.3 -1.3 1 +1944 3 18 1.7 1.0 1.0 1 +1944 3 19 2.0 1.3 1.3 1 +1944 3 20 0.7 0.0 0.0 1 +1944 3 21 -0.2 -0.9 -0.9 1 +1944 3 22 0.4 -0.3 -0.3 1 +1944 3 23 -0.2 -0.9 -0.9 1 +1944 3 24 -0.5 -1.1 -1.1 1 +1944 3 25 -0.5 -1.1 -1.1 1 +1944 3 26 -1.5 -2.1 -2.1 1 +1944 3 27 -2.7 -3.3 -3.3 1 +1944 3 28 -1.2 -1.8 -1.8 1 +1944 3 29 -4.4 -5.0 -5.0 1 +1944 3 30 -5.3 -5.9 -5.9 1 +1944 3 31 -5.2 -5.8 -5.8 1 +1944 4 1 -3.3 -3.9 -3.9 1 +1944 4 2 -1.5 -2.1 -2.1 1 +1944 4 3 -0.5 -1.1 -1.1 1 +1944 4 4 0.8 0.2 0.2 1 +1944 4 5 0.1 -0.5 -0.5 1 +1944 4 6 0.8 0.2 0.2 1 +1944 4 7 2.6 2.0 2.0 1 +1944 4 8 2.6 2.0 2.0 1 +1944 4 9 3.7 3.1 3.1 1 +1944 4 10 2.2 1.6 1.6 1 +1944 4 11 3.0 2.4 2.4 1 +1944 4 12 0.1 -0.5 -0.5 1 +1944 4 13 0.7 0.2 0.2 1 +1944 4 14 2.4 1.9 1.9 1 +1944 4 15 4.2 3.7 3.7 1 +1944 4 16 4.8 4.2 4.2 1 +1944 4 17 1.3 0.7 0.7 1 +1944 4 18 1.7 1.1 1.1 1 +1944 4 19 3.6 3.0 3.0 1 +1944 4 20 4.5 3.9 3.9 1 +1944 4 21 7.2 6.6 6.6 1 +1944 4 22 6.3 5.7 5.7 1 +1944 4 23 6.5 5.8 5.8 1 +1944 4 24 7.1 6.4 6.4 1 +1944 4 25 2.6 1.9 1.9 1 +1944 4 26 4.4 3.7 3.7 1 +1944 4 27 8.5 7.8 7.8 1 +1944 4 28 4.8 4.1 4.1 1 +1944 4 29 2.8 2.0 2.0 1 +1944 4 30 4.3 3.5 3.5 1 +1944 5 1 5.4 4.6 4.6 1 +1944 5 2 5.6 4.8 4.8 1 +1944 5 3 4.2 3.4 3.4 1 +1944 5 4 1.0 0.2 0.2 1 +1944 5 5 1.7 0.9 0.9 1 +1944 5 6 1.9 1.0 1.0 1 +1944 5 7 4.0 3.1 3.1 1 +1944 5 8 5.5 4.6 4.6 1 +1944 5 9 7.9 7.0 7.0 1 +1944 5 10 9.6 8.7 8.7 1 +1944 5 11 11.7 10.8 10.8 1 +1944 5 12 14.4 13.4 13.4 1 +1944 5 13 14.3 13.3 13.3 1 +1944 5 14 14.4 13.4 13.4 1 +1944 5 15 12.2 11.2 11.2 1 +1944 5 16 9.9 8.9 8.9 1 +1944 5 17 12.2 11.2 11.2 1 +1944 5 18 11.3 10.3 10.3 1 +1944 5 19 12.0 11.0 11.0 1 +1944 5 20 7.1 6.1 6.1 1 +1944 5 21 6.8 5.8 5.8 1 +1944 5 22 5.2 4.3 4.3 1 +1944 5 23 5.9 5.0 5.0 1 +1944 5 24 5.3 4.4 4.4 1 +1944 5 25 6.7 5.8 5.8 1 +1944 5 26 10.4 9.5 9.5 1 +1944 5 27 14.0 13.1 13.1 1 +1944 5 28 15.4 14.5 14.5 1 +1944 5 29 13.7 12.8 12.8 1 +1944 5 30 9.8 8.9 8.9 1 +1944 5 31 11.1 10.2 10.2 1 +1944 6 1 10.0 9.1 9.1 1 +1944 6 2 10.4 9.5 9.5 1 +1944 6 3 10.4 9.5 9.5 1 +1944 6 4 12.0 11.1 11.1 1 +1944 6 5 9.7 8.8 8.8 1 +1944 6 6 11.3 10.5 10.5 1 +1944 6 7 11.8 11.0 11.0 1 +1944 6 8 13.5 12.7 12.7 1 +1944 6 9 10.8 10.0 10.0 1 +1944 6 10 13.2 12.4 12.4 1 +1944 6 11 11.6 10.8 10.8 1 +1944 6 12 12.3 11.5 11.5 1 +1944 6 13 14.9 14.1 14.1 1 +1944 6 14 13.7 12.9 12.9 1 +1944 6 15 13.3 12.5 12.5 1 +1944 6 16 13.6 12.8 12.8 1 +1944 6 17 14.3 13.5 13.5 1 +1944 6 18 15.6 14.8 14.8 1 +1944 6 19 17.8 17.0 17.0 1 +1944 6 20 20.8 20.0 20.0 1 +1944 6 21 13.2 12.4 12.4 1 +1944 6 22 10.8 10.0 10.0 1 +1944 6 23 11.2 10.4 10.4 1 +1944 6 24 11.4 10.6 10.6 1 +1944 6 25 13.3 12.5 12.5 1 +1944 6 26 13.5 12.7 12.7 1 +1944 6 27 18.0 17.2 17.2 1 +1944 6 28 17.1 16.3 16.3 1 +1944 6 29 18.2 17.4 17.4 1 +1944 6 30 18.5 17.7 17.7 1 +1944 7 1 18.7 17.9 17.9 1 +1944 7 2 20.1 19.3 19.3 1 +1944 7 3 21.3 20.5 20.5 1 +1944 7 4 21.8 21.1 21.1 1 +1944 7 5 22.7 22.0 22.0 1 +1944 7 6 25.1 24.4 24.4 1 +1944 7 7 25.8 25.1 25.1 1 +1944 7 8 23.9 23.2 23.2 1 +1944 7 9 25.1 24.4 24.4 1 +1944 7 10 23.8 23.1 23.1 1 +1944 7 11 17.8 17.1 17.1 1 +1944 7 12 19.6 18.9 18.9 1 +1944 7 13 17.8 17.1 17.1 1 +1944 7 14 17.7 17.0 17.0 1 +1944 7 15 18.2 17.5 17.5 1 +1944 7 16 18.3 17.6 17.6 1 +1944 7 17 21.0 20.3 20.3 1 +1944 7 18 19.4 18.7 18.7 1 +1944 7 19 20.3 19.6 19.6 1 +1944 7 20 18.8 18.1 18.1 1 +1944 7 21 17.4 16.7 16.7 1 +1944 7 22 15.4 14.7 14.7 1 +1944 7 23 15.6 14.9 14.9 1 +1944 7 24 15.4 14.7 14.7 1 +1944 7 25 15.1 14.4 14.4 1 +1944 7 26 16.9 16.3 16.3 1 +1944 7 27 16.5 15.9 15.9 1 +1944 7 28 17.1 16.5 16.5 1 +1944 7 29 17.7 17.1 17.1 1 +1944 7 30 18.4 17.8 17.8 1 +1944 7 31 18.8 18.2 18.2 1 +1944 8 1 20.8 20.2 20.2 1 +1944 8 2 20.0 19.4 19.4 1 +1944 8 3 18.3 17.7 17.7 1 +1944 8 4 18.9 18.3 18.3 1 +1944 8 5 22.0 21.4 21.4 1 +1944 8 6 21.8 21.2 21.2 1 +1944 8 7 22.8 22.2 22.2 1 +1944 8 8 21.7 21.2 21.2 1 +1944 8 9 22.2 21.7 21.7 1 +1944 8 10 18.8 18.3 18.3 1 +1944 8 11 19.3 18.8 18.8 1 +1944 8 12 17.9 17.4 17.4 1 +1944 8 13 16.6 16.1 16.1 1 +1944 8 14 14.9 14.4 14.4 1 +1944 8 15 13.3 12.8 12.8 1 +1944 8 16 16.2 15.7 15.7 1 +1944 8 17 17.9 17.4 17.4 1 +1944 8 18 18.6 18.1 18.1 1 +1944 8 19 20.2 19.8 19.8 1 +1944 8 20 21.0 20.6 20.6 1 +1944 8 21 21.6 21.2 21.2 1 +1944 8 22 15.6 15.2 15.2 1 +1944 8 23 18.7 18.3 18.3 1 +1944 8 24 20.2 19.8 19.8 1 +1944 8 25 19.6 19.2 19.2 1 +1944 8 26 19.6 19.2 19.2 1 +1944 8 27 20.4 20.0 20.0 1 +1944 8 28 19.1 18.8 18.8 1 +1944 8 29 17.2 16.9 16.9 1 +1944 8 30 14.3 14.0 14.0 1 +1944 8 31 15.9 15.6 15.6 1 +1944 9 1 14.0 13.7 13.7 1 +1944 9 2 13.3 13.0 13.0 1 +1944 9 3 12.3 12.0 12.0 1 +1944 9 4 10.7 10.4 10.4 1 +1944 9 5 12.7 12.5 12.5 1 +1944 9 6 14.3 14.1 14.1 1 +1944 9 7 14.6 14.4 14.4 1 +1944 9 8 14.9 14.7 14.7 1 +1944 9 9 12.6 12.4 12.4 1 +1944 9 10 9.9 9.7 9.7 1 +1944 9 11 10.8 10.6 10.6 1 +1944 9 12 9.6 9.4 9.4 1 +1944 9 13 11.9 11.8 11.8 1 +1944 9 14 11.1 11.0 11.0 1 +1944 9 15 11.0 10.9 10.9 1 +1944 9 16 12.0 11.9 11.9 1 +1944 9 17 12.1 12.0 12.0 1 +1944 9 18 13.5 13.4 13.4 1 +1944 9 19 11.9 11.8 11.8 1 +1944 9 20 13.2 13.1 13.1 1 +1944 9 21 13.3 13.2 13.2 1 +1944 9 22 12.2 12.1 12.1 1 +1944 9 23 12.4 12.3 12.3 1 +1944 9 24 13.1 13.0 13.0 1 +1944 9 25 11.8 11.7 11.7 1 +1944 9 26 10.2 10.1 10.1 1 +1944 9 27 9.4 9.3 9.3 1 +1944 9 28 9.4 9.3 9.3 1 +1944 9 29 8.5 8.4 8.4 1 +1944 9 30 9.9 9.8 9.8 1 +1944 10 1 9.1 9.0 9.0 1 +1944 10 2 8.7 8.6 8.6 1 +1944 10 3 6.7 6.6 6.6 1 +1944 10 4 7.8 7.7 7.7 1 +1944 10 5 8.9 8.8 8.8 1 +1944 10 6 6.3 6.2 6.2 1 +1944 10 7 11.9 11.8 11.8 1 +1944 10 8 10.0 9.9 9.9 1 +1944 10 9 7.2 7.1 7.1 1 +1944 10 10 7.2 7.1 7.1 1 +1944 10 11 11.3 11.2 11.2 1 +1944 10 12 10.6 10.5 10.5 1 +1944 10 13 8.7 8.6 8.6 1 +1944 10 14 10.8 10.7 10.7 1 +1944 10 15 9.8 9.7 9.7 1 +1944 10 16 9.9 9.8 9.8 1 +1944 10 17 11.4 11.3 11.3 1 +1944 10 18 9.9 9.8 9.8 1 +1944 10 19 8.9 8.8 8.8 1 +1944 10 20 6.7 6.6 6.6 1 +1944 10 21 5.4 5.3 5.3 1 +1944 10 22 3.9 3.8 3.8 1 +1944 10 23 6.6 6.5 6.5 1 +1944 10 24 7.3 7.1 7.1 1 +1944 10 25 5.6 5.4 5.4 1 +1944 10 26 6.4 6.2 6.2 1 +1944 10 27 5.6 5.4 5.4 1 +1944 10 28 5.4 5.2 5.2 1 +1944 10 29 5.5 5.3 5.3 1 +1944 10 30 6.2 6.0 6.0 1 +1944 10 31 5.4 5.2 5.2 1 +1944 11 1 5.5 5.3 5.3 1 +1944 11 2 5.9 5.7 5.7 1 +1944 11 3 6.9 6.7 6.7 1 +1944 11 4 3.8 3.6 3.6 1 +1944 11 5 9.0 8.8 8.8 1 +1944 11 6 6.0 5.8 5.8 1 +1944 11 7 4.7 4.5 4.5 1 +1944 11 8 5.5 5.2 5.2 1 +1944 11 9 3.5 3.2 3.2 1 +1944 11 10 1.9 1.6 1.6 1 +1944 11 11 2.2 1.9 1.9 1 +1944 11 12 7.3 7.0 7.0 1 +1944 11 13 6.4 6.1 6.1 1 +1944 11 14 3.2 2.9 2.9 1 +1944 11 15 3.1 2.8 2.8 1 +1944 11 16 0.4 0.1 0.1 1 +1944 11 17 -0.5 -0.8 -0.8 1 +1944 11 18 0.7 0.4 0.4 1 +1944 11 19 1.6 1.3 1.3 1 +1944 11 20 7.8 7.5 7.5 1 +1944 11 21 -2.0 -2.3 -2.3 1 +1944 11 22 -2.0 -2.3 -2.3 1 +1944 11 23 -0.8 -1.1 -1.1 1 +1944 11 24 3.9 3.6 3.6 1 +1944 11 25 6.0 5.7 5.7 1 +1944 11 26 0.5 0.2 0.2 1 +1944 11 27 -0.9 -1.2 -1.2 1 +1944 11 28 -1.4 -1.7 -1.7 1 +1944 11 29 3.9 3.6 3.6 1 +1944 11 30 3.5 3.2 3.2 1 +1944 12 1 4.5 4.2 4.2 1 +1944 12 2 6.3 6.0 6.0 1 +1944 12 3 2.5 2.2 2.2 1 +1944 12 4 1.8 1.5 1.5 1 +1944 12 5 3.1 2.8 2.8 1 +1944 12 6 2.4 2.1 2.1 1 +1944 12 7 2.7 2.3 2.3 1 +1944 12 8 2.2 1.8 1.8 1 +1944 12 9 2.8 2.4 2.4 1 +1944 12 10 2.0 1.6 1.6 1 +1944 12 11 2.8 2.4 2.4 1 +1944 12 12 0.8 0.4 0.4 1 +1944 12 13 2.4 2.0 2.0 1 +1944 12 14 2.1 1.7 1.7 1 +1944 12 15 -0.5 -0.9 -0.9 1 +1944 12 16 -2.1 -2.5 -2.5 1 +1944 12 17 0.7 0.3 0.3 1 +1944 12 18 4.1 3.7 3.7 1 +1944 12 19 3.7 3.3 3.3 1 +1944 12 20 3.0 2.6 2.6 1 +1944 12 21 1.3 0.9 0.9 1 +1944 12 22 -1.6 -2.0 -2.0 1 +1944 12 23 0.6 0.2 0.2 1 +1944 12 24 2.2 1.8 1.8 1 +1944 12 25 1.9 1.5 1.5 1 +1944 12 26 3.9 3.4 3.4 1 +1944 12 27 3.3 2.8 2.8 1 +1944 12 28 0.0 -0.5 -0.5 1 +1944 12 29 -1.4 -1.9 -1.9 1 +1944 12 30 1.7 1.2 1.2 1 +1944 12 31 -2.7 -3.2 -3.2 1 +1945 1 1 -3.9 -4.4 -4.4 1 +1945 1 2 2.8 2.3 2.3 1 +1945 1 3 1.4 0.9 0.9 1 +1945 1 4 1.2 0.7 0.7 1 +1945 1 5 -4.5 -5.0 -5.0 1 +1945 1 6 -4.6 -5.1 -5.1 1 +1945 1 7 1.6 1.0 1.0 1 +1945 1 8 0.1 -0.5 -0.5 1 +1945 1 9 1.2 0.6 0.6 1 +1945 1 10 -1.0 -1.6 -1.6 1 +1945 1 11 0.9 0.3 0.3 1 +1945 1 12 0.8 0.2 0.2 1 +1945 1 13 -0.5 -1.1 -1.1 1 +1945 1 14 0.8 0.2 0.2 1 +1945 1 15 -5.2 -5.8 -5.8 1 +1945 1 16 -4.1 -4.7 -4.7 1 +1945 1 17 1.3 0.7 0.7 1 +1945 1 18 -3.9 -4.5 -4.5 1 +1945 1 19 1.3 0.7 0.7 1 +1945 1 20 -0.4 -1.0 -1.0 1 +1945 1 21 -0.6 -1.2 -1.2 1 +1945 1 22 -2.8 -3.4 -3.4 1 +1945 1 23 -3.6 -4.2 -4.2 1 +1945 1 24 -3.9 -4.5 -4.5 1 +1945 1 25 -2.7 -3.3 -3.3 1 +1945 1 26 -4.7 -5.3 -5.3 1 +1945 1 27 -5.0 -5.6 -5.6 1 +1945 1 28 -7.5 -8.1 -8.1 1 +1945 1 29 -4.9 -5.5 -5.5 1 +1945 1 30 -7.8 -8.4 -8.4 1 +1945 1 31 -8.4 -9.0 -9.0 1 +1945 2 1 -1.2 -1.8 -1.8 1 +1945 2 2 -3.7 -4.3 -4.3 1 +1945 2 3 -3.2 -3.8 -3.8 1 +1945 2 4 -6.7 -7.3 -7.3 1 +1945 2 5 -5.5 -6.1 -6.1 1 +1945 2 6 -0.7 -1.3 -1.3 1 +1945 2 7 0.9 0.3 0.3 1 +1945 2 8 2.2 1.6 1.6 1 +1945 2 9 2.0 1.4 1.4 1 +1945 2 10 1.2 0.6 0.6 1 +1945 2 11 0.7 0.1 0.1 1 +1945 2 12 0.6 0.0 0.0 1 +1945 2 13 -0.3 -0.9 -0.9 1 +1945 2 14 -0.7 -1.3 -1.3 1 +1945 2 15 -3.0 -3.6 -3.6 1 +1945 2 16 -2.6 -3.2 -3.2 1 +1945 2 17 -3.9 -4.5 -4.5 1 +1945 2 18 -2.9 -3.5 -3.5 1 +1945 2 19 -0.1 -0.7 -0.7 1 +1945 2 20 0.7 0.1 0.1 1 +1945 2 21 0.1 -0.5 -0.5 1 +1945 2 22 2.1 1.5 1.5 1 +1945 2 23 -0.3 -0.9 -0.9 1 +1945 2 24 -1.0 -1.6 -1.6 1 +1945 2 25 2.4 1.8 1.8 1 +1945 2 26 -0.2 -0.8 -0.8 1 +1945 2 27 3.4 2.8 2.8 1 +1945 2 28 4.8 4.2 4.2 1 +1945 3 1 4.3 3.6 3.6 1 +1945 3 2 -4.8 -5.5 -5.5 1 +1945 3 3 -4.2 -4.9 -4.9 1 +1945 3 4 -3.7 -4.4 -4.4 1 +1945 3 5 -3.9 -4.6 -4.6 1 +1945 3 6 -4.8 -5.5 -5.5 1 +1945 3 7 -6.1 -6.8 -6.8 1 +1945 3 8 -5.6 -6.3 -6.3 1 +1945 3 9 -3.1 -3.8 -3.8 1 +1945 3 10 -0.7 -1.4 -1.4 1 +1945 3 11 -1.1 -1.8 -1.8 1 +1945 3 12 5.5 4.8 4.8 1 +1945 3 13 4.7 4.0 4.0 1 +1945 3 14 3.2 2.5 2.5 1 +1945 3 15 3.4 2.7 2.7 1 +1945 3 16 3.8 3.1 3.1 1 +1945 3 17 0.7 0.0 0.0 1 +1945 3 18 -0.6 -1.3 -1.3 1 +1945 3 19 0.3 -0.4 -0.4 1 +1945 3 20 2.4 1.7 1.7 1 +1945 3 21 3.3 2.6 2.6 1 +1945 3 22 2.6 1.9 1.9 1 +1945 3 23 8.1 7.4 7.4 1 +1945 3 24 9.4 8.7 8.7 1 +1945 3 25 9.9 9.2 9.2 1 +1945 3 26 9.0 8.3 8.3 1 +1945 3 27 3.6 3.0 3.0 1 +1945 3 28 4.8 4.2 4.2 1 +1945 3 29 6.7 6.1 6.1 1 +1945 3 30 6.7 6.1 6.1 1 +1945 3 31 6.5 5.9 5.9 1 +1945 4 1 7.4 6.8 6.8 1 +1945 4 2 6.6 6.0 6.0 1 +1945 4 3 5.6 5.0 5.0 1 +1945 4 4 3.3 2.7 2.7 1 +1945 4 5 3.2 2.6 2.6 1 +1945 4 6 3.9 3.3 3.3 1 +1945 4 7 5.3 4.7 4.7 1 +1945 4 8 6.8 6.2 6.2 1 +1945 4 9 10.8 10.2 10.2 1 +1945 4 10 8.6 8.0 8.0 1 +1945 4 11 4.3 3.7 3.7 1 +1945 4 12 3.5 2.9 2.9 1 +1945 4 13 1.8 1.2 1.2 1 +1945 4 14 1.6 1.0 1.0 1 +1945 4 15 4.8 4.3 4.3 1 +1945 4 16 6.6 6.0 6.0 1 +1945 4 17 6.0 5.4 5.4 1 +1945 4 18 4.2 3.6 3.6 1 +1945 4 19 6.5 5.9 5.9 1 +1945 4 20 8.6 8.0 8.0 1 +1945 4 21 7.1 6.5 6.5 1 +1945 4 22 3.3 2.6 2.6 1 +1945 4 23 2.5 1.8 1.8 1 +1945 4 24 5.9 5.2 5.2 1 +1945 4 25 5.8 5.1 5.1 1 +1945 4 26 6.5 5.8 5.8 1 +1945 4 27 6.3 5.6 5.6 1 +1945 4 28 7.0 6.2 6.2 1 +1945 4 29 5.5 4.7 4.7 1 +1945 4 30 5.2 4.4 4.4 1 +1945 5 1 6.5 5.7 5.7 1 +1945 5 2 5.8 5.0 5.0 1 +1945 5 3 8.8 8.0 8.0 1 +1945 5 4 5.6 4.8 4.8 1 +1945 5 5 8.6 7.7 7.7 1 +1945 5 6 10.0 9.1 9.1 1 +1945 5 7 6.1 5.2 5.2 1 +1945 5 8 6.6 5.7 5.7 1 +1945 5 9 5.6 4.7 4.7 1 +1945 5 10 4.0 3.1 3.1 1 +1945 5 11 11.3 10.3 10.3 1 +1945 5 12 10.2 9.2 9.2 1 +1945 5 13 13.4 12.4 12.4 1 +1945 5 14 11.1 10.1 10.1 1 +1945 5 15 11.6 10.6 10.6 1 +1945 5 16 11.3 10.3 10.3 1 +1945 5 17 12.4 11.4 11.4 1 +1945 5 18 9.6 8.6 8.6 1 +1945 5 19 10.6 9.6 9.6 1 +1945 5 20 10.8 9.8 9.8 1 +1945 5 21 11.9 10.9 10.9 1 +1945 5 22 7.2 6.2 6.2 1 +1945 5 23 5.1 4.1 4.1 1 +1945 5 24 4.2 3.2 3.2 1 +1945 5 25 7.3 6.4 6.4 1 +1945 5 26 10.4 9.5 9.5 1 +1945 5 27 11.7 10.8 10.8 1 +1945 5 28 12.8 11.9 11.9 1 +1945 5 29 12.2 11.3 11.3 1 +1945 5 30 14.9 14.0 14.0 1 +1945 5 31 17.0 16.1 16.1 1 +1945 6 1 15.9 15.0 15.0 1 +1945 6 2 11.1 10.2 10.2 1 +1945 6 3 13.9 13.0 13.0 1 +1945 6 4 15.3 14.4 14.4 1 +1945 6 5 11.1 10.2 10.2 1 +1945 6 6 11.4 10.5 10.5 1 +1945 6 7 10.1 9.2 9.2 1 +1945 6 8 15.4 14.6 14.6 1 +1945 6 9 15.3 14.5 14.5 1 +1945 6 10 13.1 12.3 12.3 1 +1945 6 11 14.2 13.4 13.4 1 +1945 6 12 13.5 12.7 12.7 1 +1945 6 13 11.7 10.9 10.9 1 +1945 6 14 12.6 11.8 11.8 1 +1945 6 15 12.3 11.5 11.5 1 +1945 6 16 11.5 10.7 10.7 1 +1945 6 17 10.1 9.3 9.3 1 +1945 6 18 10.9 10.1 10.1 1 +1945 6 19 15.2 14.4 14.4 1 +1945 6 20 17.3 16.5 16.5 1 +1945 6 21 17.9 17.1 17.1 1 +1945 6 22 17.1 16.3 16.3 1 +1945 6 23 15.8 15.0 15.0 1 +1945 6 24 15.0 14.2 14.2 1 +1945 6 25 14.5 13.7 13.7 1 +1945 6 26 13.7 12.9 12.9 1 +1945 6 27 14.5 13.7 13.7 1 +1945 6 28 16.2 15.4 15.4 1 +1945 6 29 17.6 16.8 16.8 1 +1945 6 30 19.0 18.2 18.2 1 +1945 7 1 17.8 17.0 17.0 1 +1945 7 2 16.3 15.5 15.5 1 +1945 7 3 15.9 15.1 15.1 1 +1945 7 4 16.5 15.7 15.7 1 +1945 7 5 15.6 14.8 14.8 1 +1945 7 6 15.0 14.2 14.2 1 +1945 7 7 18.3 17.5 17.5 1 +1945 7 8 19.0 18.2 18.2 1 +1945 7 9 17.0 16.2 16.2 1 +1945 7 10 19.0 18.2 18.2 1 +1945 7 11 20.8 20.0 20.0 1 +1945 7 12 22.2 21.5 21.5 1 +1945 7 13 24.3 23.6 23.6 1 +1945 7 14 24.2 23.5 23.5 1 +1945 7 15 25.5 24.8 24.8 1 +1945 7 16 26.6 25.9 25.9 1 +1945 7 17 26.8 26.1 26.1 1 +1945 7 18 25.3 24.6 24.6 1 +1945 7 19 24.0 23.3 23.3 1 +1945 7 20 24.1 23.4 23.4 1 +1945 7 21 19.7 19.0 19.0 1 +1945 7 22 18.1 17.4 17.4 1 +1945 7 23 16.5 15.8 15.8 1 +1945 7 24 16.8 16.1 16.1 1 +1945 7 25 17.9 17.2 17.2 1 +1945 7 26 16.5 15.8 15.8 1 +1945 7 27 14.4 13.7 13.7 1 +1945 7 28 14.8 14.2 14.2 1 +1945 7 29 15.3 14.7 14.7 1 +1945 7 30 13.1 12.5 12.5 1 +1945 7 31 15.4 14.8 14.8 1 +1945 8 1 16.7 16.1 16.1 1 +1945 8 2 17.2 16.6 16.6 1 +1945 8 3 17.0 16.4 16.4 1 +1945 8 4 19.6 19.0 19.0 1 +1945 8 5 18.9 18.3 18.3 1 +1945 8 6 18.1 17.5 17.5 1 +1945 8 7 18.2 17.6 17.6 1 +1945 8 8 22.0 21.4 21.4 1 +1945 8 9 22.5 21.9 21.9 1 +1945 8 10 21.2 20.7 20.7 1 +1945 8 11 21.3 20.8 20.8 1 +1945 8 12 20.7 20.2 20.2 1 +1945 8 13 21.2 20.7 20.7 1 +1945 8 14 18.3 17.8 17.8 1 +1945 8 15 18.7 18.2 18.2 1 +1945 8 16 19.1 18.6 18.6 1 +1945 8 17 19.3 18.8 18.8 1 +1945 8 18 16.7 16.2 16.2 1 +1945 8 19 17.5 17.0 17.0 1 +1945 8 20 15.1 14.7 14.7 1 +1945 8 21 16.1 15.7 15.7 1 +1945 8 22 16.8 16.4 16.4 1 +1945 8 23 16.2 15.8 15.8 1 +1945 8 24 15.9 15.5 15.5 1 +1945 8 25 16.2 15.8 15.8 1 +1945 8 26 15.3 14.9 14.9 1 +1945 8 27 13.2 12.8 12.8 1 +1945 8 28 16.2 15.9 15.9 1 +1945 8 29 15.3 15.0 15.0 1 +1945 8 30 15.5 15.2 15.2 1 +1945 8 31 12.5 12.2 12.2 1 +1945 9 1 10.2 9.9 9.9 1 +1945 9 2 11.6 11.3 11.3 1 +1945 9 3 11.5 11.2 11.2 1 +1945 9 4 14.4 14.1 14.1 1 +1945 9 5 12.1 11.9 11.9 1 +1945 9 6 10.9 10.7 10.7 1 +1945 9 7 12.0 11.8 11.8 1 +1945 9 8 12.3 12.1 12.1 1 +1945 9 9 11.0 10.8 10.8 1 +1945 9 10 9.8 9.6 9.6 1 +1945 9 11 10.8 10.6 10.6 1 +1945 9 12 11.5 11.3 11.3 1 +1945 9 13 13.1 12.9 12.9 1 +1945 9 14 14.2 14.1 14.1 1 +1945 9 15 13.8 13.7 13.7 1 +1945 9 16 13.9 13.8 13.8 1 +1945 9 17 13.4 13.3 13.3 1 +1945 9 18 10.9 10.8 10.8 1 +1945 9 19 9.7 9.6 9.6 1 +1945 9 20 11.4 11.3 11.3 1 +1945 9 21 14.9 14.8 14.8 1 +1945 9 22 12.2 12.1 12.1 1 +1945 9 23 11.8 11.7 11.7 1 +1945 9 24 10.6 10.5 10.5 1 +1945 9 25 7.8 7.7 7.7 1 +1945 9 26 5.9 5.8 5.8 1 +1945 9 27 6.8 6.7 6.7 1 +1945 9 28 6.8 6.7 6.7 1 +1945 9 29 5.2 5.1 5.1 1 +1945 9 30 5.3 5.2 5.2 1 +1945 10 1 5.6 5.5 5.5 1 +1945 10 2 7.7 7.6 7.6 1 +1945 10 3 9.8 9.7 9.7 1 +1945 10 4 11.1 11.0 11.0 1 +1945 10 5 7.0 6.9 6.9 1 +1945 10 6 6.8 6.7 6.7 1 +1945 10 7 4.9 4.8 4.8 1 +1945 10 8 8.8 8.7 8.7 1 +1945 10 9 8.6 8.5 8.5 1 +1945 10 10 10.0 9.9 9.9 1 +1945 10 11 2.8 2.7 2.7 1 +1945 10 12 3.3 3.2 3.2 1 +1945 10 13 4.8 4.7 4.7 1 +1945 10 14 6.9 6.8 6.8 1 +1945 10 15 5.8 5.7 5.7 1 +1945 10 16 6.0 5.9 5.9 1 +1945 10 17 5.7 5.6 5.6 1 +1945 10 18 6.6 6.5 6.5 1 +1945 10 19 3.8 3.7 3.7 1 +1945 10 20 2.6 2.5 2.5 1 +1945 10 21 0.8 0.7 0.7 1 +1945 10 22 4.4 4.3 4.3 1 +1945 10 23 8.0 7.8 7.8 1 +1945 10 24 9.6 9.4 9.4 1 +1945 10 25 9.2 9.0 9.0 1 +1945 10 26 9.7 9.5 9.5 1 +1945 10 27 8.8 8.6 8.6 1 +1945 10 28 3.7 3.5 3.5 1 +1945 10 29 4.1 3.9 3.9 1 +1945 10 30 6.3 6.1 6.1 1 +1945 10 31 8.0 7.8 7.8 1 +1945 11 1 9.4 9.2 9.2 1 +1945 11 2 5.3 5.1 5.1 1 +1945 11 3 2.2 2.0 2.0 1 +1945 11 4 2.7 2.5 2.5 1 +1945 11 5 2.7 2.5 2.5 1 +1945 11 6 3.3 3.1 3.1 1 +1945 11 7 3.9 3.6 3.6 1 +1945 11 8 7.3 7.0 7.0 1 +1945 11 9 0.3 0.0 0.0 1 +1945 11 10 -0.2 -0.5 -0.5 1 +1945 11 11 0.3 0.0 0.0 1 +1945 11 12 0.0 -0.3 -0.3 1 +1945 11 13 2.7 2.4 2.4 1 +1945 11 14 2.9 2.6 2.6 1 +1945 11 15 4.4 4.1 4.1 1 +1945 11 16 3.2 2.9 2.9 1 +1945 11 17 5.2 4.9 4.9 1 +1945 11 18 2.2 1.9 1.9 1 +1945 11 19 0.6 0.3 0.3 1 +1945 11 20 -0.4 -0.7 -0.7 1 +1945 11 21 -0.1 -0.4 -0.4 1 +1945 11 22 -0.6 -0.9 -0.9 1 +1945 11 23 1.5 1.2 1.2 1 +1945 11 24 1.6 1.3 1.3 1 +1945 11 25 1.2 0.9 0.9 1 +1945 11 26 2.7 2.4 2.4 1 +1945 11 27 0.4 0.1 0.1 1 +1945 11 28 1.4 1.1 1.1 1 +1945 11 29 1.1 0.8 0.8 1 +1945 11 30 -2.5 -2.8 -2.8 1 +1945 12 1 -1.6 -1.9 -1.9 1 +1945 12 2 3.3 3.0 3.0 1 +1945 12 3 3.2 2.8 2.8 1 +1945 12 4 3.3 2.9 2.9 1 +1945 12 5 1.5 1.1 1.1 1 +1945 12 6 -1.0 -1.4 -1.4 1 +1945 12 7 -2.5 -2.9 -2.9 1 +1945 12 8 -3.1 -3.5 -3.5 1 +1945 12 9 -2.6 -3.0 -3.0 1 +1945 12 10 -0.2 -0.6 -0.6 1 +1945 12 11 -4.7 -5.1 -5.1 1 +1945 12 12 -3.7 -4.1 -4.1 1 +1945 12 13 -1.8 -2.2 -2.2 1 +1945 12 14 -5.7 -6.1 -6.1 1 +1945 12 15 -4.5 -4.9 -4.9 1 +1945 12 16 -7.2 -7.6 -7.6 1 +1945 12 17 -0.8 -1.2 -1.2 1 +1945 12 18 2.9 2.5 2.5 1 +1945 12 19 3.2 2.8 2.8 1 +1945 12 20 2.8 2.4 2.4 1 +1945 12 21 2.1 1.7 1.7 1 +1945 12 22 0.0 -0.4 -0.4 1 +1945 12 23 -3.3 -3.7 -3.7 1 +1945 12 24 -4.4 -4.8 -4.8 1 +1945 12 25 -1.6 -2.1 -2.1 1 +1945 12 26 0.7 0.2 0.2 1 +1945 12 27 1.2 0.7 0.7 1 +1945 12 28 1.6 1.1 1.1 1 +1945 12 29 -0.9 -1.4 -1.4 1 +1945 12 30 -3.0 -3.5 -3.5 1 +1945 12 31 -3.8 -4.3 -4.3 1 +1946 1 1 -3.7 -4.2 -4.2 1 +1946 1 2 -4.2 -4.7 -4.7 1 +1946 1 3 -6.6 -7.1 -7.1 1 +1946 1 4 0.6 0.1 0.1 1 +1946 1 5 4.4 3.9 3.9 1 +1946 1 6 2.2 1.6 1.6 1 +1946 1 7 2.9 2.3 2.3 1 +1946 1 8 1.7 1.1 1.1 1 +1946 1 9 1.8 1.2 1.2 1 +1946 1 10 2.7 2.1 2.1 1 +1946 1 11 -3.1 -3.7 -3.7 1 +1946 1 12 -5.2 -5.8 -5.8 1 +1946 1 13 -4.4 -5.0 -5.0 1 +1946 1 14 -4.4 -5.0 -5.0 1 +1946 1 15 -5.1 -5.7 -5.7 1 +1946 1 16 -6.3 -6.9 -6.9 1 +1946 1 17 -3.6 -4.2 -4.2 1 +1946 1 18 -4.0 -4.6 -4.6 1 +1946 1 19 -3.4 -4.0 -4.0 1 +1946 1 20 -3.5 -4.1 -4.1 1 +1946 1 21 -3.5 -4.1 -4.1 1 +1946 1 22 -6.8 -7.4 -7.4 1 +1946 1 23 -3.1 -3.7 -3.7 1 +1946 1 24 -0.9 -1.5 -1.5 1 +1946 1 25 -1.8 -2.4 -2.4 1 +1946 1 26 -1.2 -1.8 -1.8 1 +1946 1 27 -1.6 -2.2 -2.2 1 +1946 1 28 -0.2 -0.8 -0.8 1 +1946 1 29 0.5 -0.1 -0.1 1 +1946 1 30 1.5 0.9 0.9 1 +1946 1 31 -0.6 -1.2 -1.2 1 +1946 2 1 0.1 -0.5 -0.5 1 +1946 2 2 3.0 2.4 2.4 1 +1946 2 3 1.6 1.0 1.0 1 +1946 2 4 1.4 0.8 0.8 1 +1946 2 5 -0.2 -0.8 -0.8 1 +1946 2 6 -1.4 -2.0 -2.0 1 +1946 2 7 -2.8 -3.4 -3.4 1 +1946 2 8 -0.4 -1.0 -1.0 1 +1946 2 9 -10.5 -11.1 -11.1 1 +1946 2 10 -8.6 -9.2 -9.2 1 +1946 2 11 -6.3 -6.9 -6.9 1 +1946 2 12 -11.7 -12.3 -12.3 1 +1946 2 13 -7.2 -7.8 -7.8 1 +1946 2 14 -2.3 -2.9 -2.9 1 +1946 2 15 1.4 0.8 0.8 1 +1946 2 16 2.7 2.1 2.1 1 +1946 2 17 0.2 -0.4 -0.4 1 +1946 2 18 -4.0 -4.6 -4.6 1 +1946 2 19 -6.5 -7.1 -7.1 1 +1946 2 20 -5.6 -6.2 -6.2 1 +1946 2 21 -9.2 -9.8 -9.8 1 +1946 2 22 -10.6 -11.2 -11.2 1 +1946 2 23 -5.3 -5.9 -5.9 1 +1946 2 24 -5.7 -6.3 -6.3 1 +1946 2 25 -7.8 -8.4 -8.4 1 +1946 2 26 -9.5 -10.2 -10.2 1 +1946 2 27 -12.2 -12.9 -12.9 1 +1946 2 28 -8.5 -9.2 -9.2 1 +1946 3 1 -8.9 -9.6 -9.6 1 +1946 3 2 -4.2 -4.9 -4.9 1 +1946 3 3 -1.4 -2.1 -2.1 1 +1946 3 4 -0.5 -1.2 -1.2 1 +1946 3 5 -2.3 -3.0 -3.0 1 +1946 3 6 -3.3 -4.0 -4.0 1 +1946 3 7 -1.6 -2.3 -2.3 1 +1946 3 8 -1.6 -2.3 -2.3 1 +1946 3 9 -1.4 -2.1 -2.1 1 +1946 3 10 -1.5 -2.2 -2.2 1 +1946 3 11 -3.0 -3.7 -3.7 1 +1946 3 12 -5.1 -5.8 -5.8 1 +1946 3 13 -10.0 -10.7 -10.7 1 +1946 3 14 -12.2 -12.9 -12.9 1 +1946 3 15 -12.0 -12.7 -12.7 1 +1946 3 16 -7.4 -8.1 -8.1 1 +1946 3 17 -2.3 -3.0 -3.0 1 +1946 3 18 -1.2 -1.9 -1.9 1 +1946 3 19 2.7 2.0 2.0 1 +1946 3 20 5.3 4.6 4.6 1 +1946 3 21 4.0 3.3 3.3 1 +1946 3 22 4.6 3.9 3.9 1 +1946 3 23 -0.4 -1.1 -1.1 1 +1946 3 24 3.4 2.7 2.7 1 +1946 3 25 2.7 2.0 2.0 1 +1946 3 26 4.2 3.5 3.5 1 +1946 3 27 4.6 3.9 3.9 1 +1946 3 28 7.2 6.5 6.5 1 +1946 3 29 6.4 5.8 5.8 1 +1946 3 30 8.1 7.5 7.5 1 +1946 3 31 4.7 4.1 4.1 1 +1946 4 1 2.8 2.2 2.2 1 +1946 4 2 6.9 6.3 6.3 1 +1946 4 3 11.3 10.7 10.7 1 +1946 4 4 10.6 10.0 10.0 1 +1946 4 5 14.0 13.4 13.4 1 +1946 4 6 5.2 4.6 4.6 1 +1946 4 7 4.3 3.7 3.7 1 +1946 4 8 8.3 7.7 7.7 1 +1946 4 9 4.1 3.5 3.5 1 +1946 4 10 1.3 0.7 0.7 1 +1946 4 11 0.9 0.3 0.3 1 +1946 4 12 -0.4 -1.0 -1.0 1 +1946 4 13 2.5 1.9 1.9 1 +1946 4 14 6.5 5.9 5.9 1 +1946 4 15 4.1 3.5 3.5 1 +1946 4 16 5.1 4.5 4.5 1 +1946 4 17 6.9 6.3 6.3 1 +1946 4 18 7.2 6.6 6.6 1 +1946 4 19 5.0 4.4 4.4 1 +1946 4 20 7.7 7.1 7.1 1 +1946 4 21 8.9 8.2 8.2 1 +1946 4 22 7.4 6.7 6.7 1 +1946 4 23 8.5 7.8 7.8 1 +1946 4 24 6.3 5.6 5.6 1 +1946 4 25 6.9 6.2 6.2 1 +1946 4 26 8.7 8.0 8.0 1 +1946 4 27 8.6 7.9 7.9 1 +1946 4 28 7.0 6.2 6.2 1 +1946 4 29 8.0 7.2 7.2 1 +1946 4 30 7.0 6.2 6.2 1 +1946 5 1 7.8 7.0 7.0 1 +1946 5 2 6.3 5.5 5.5 1 +1946 5 3 5.5 4.7 4.7 1 +1946 5 4 8.1 7.2 7.2 1 +1946 5 5 7.9 7.0 7.0 1 +1946 5 6 7.5 6.6 6.6 1 +1946 5 7 10.7 9.8 9.8 1 +1946 5 8 5.8 4.9 4.9 1 +1946 5 9 6.9 6.0 6.0 1 +1946 5 10 6.7 5.7 5.7 1 +1946 5 11 6.6 5.6 5.6 1 +1946 5 12 7.3 6.3 6.3 1 +1946 5 13 7.9 6.9 6.9 1 +1946 5 14 5.4 4.4 4.4 1 +1946 5 15 3.5 2.5 2.5 1 +1946 5 16 5.5 4.5 4.5 1 +1946 5 17 8.3 7.3 7.3 1 +1946 5 18 9.9 8.9 8.9 1 +1946 5 19 7.3 6.3 6.3 1 +1946 5 20 11.6 10.6 10.6 1 +1946 5 21 11.3 10.3 10.3 1 +1946 5 22 9.5 8.5 8.5 1 +1946 5 23 10.9 9.9 9.9 1 +1946 5 24 12.5 11.5 11.5 1 +1946 5 25 13.5 12.5 12.5 1 +1946 5 26 15.0 14.0 14.0 1 +1946 5 27 16.7 15.8 15.8 1 +1946 5 28 18.7 17.8 17.8 1 +1946 5 29 20.6 19.7 19.7 1 +1946 5 30 17.2 16.3 16.3 1 +1946 5 31 19.3 18.4 18.4 1 +1946 6 1 15.5 14.6 14.6 1 +1946 6 2 12.6 11.7 11.7 1 +1946 6 3 12.8 11.9 11.9 1 +1946 6 4 13.9 13.0 13.0 1 +1946 6 5 15.7 14.8 14.8 1 +1946 6 6 13.5 12.6 12.6 1 +1946 6 7 14.6 13.7 13.7 1 +1946 6 8 15.3 14.4 14.4 1 +1946 6 9 13.2 12.3 12.3 1 +1946 6 10 13.8 13.0 13.0 1 +1946 6 11 15.2 14.4 14.4 1 +1946 6 12 14.3 13.5 13.5 1 +1946 6 13 14.9 14.1 14.1 1 +1946 6 14 11.6 10.8 10.8 1 +1946 6 15 11.5 10.7 10.7 1 +1946 6 16 11.1 10.3 10.3 1 +1946 6 17 15.0 14.2 14.2 1 +1946 6 18 11.5 10.7 10.7 1 +1946 6 19 11.7 10.9 10.9 1 +1946 6 20 13.5 12.7 12.7 1 +1946 6 21 14.6 13.8 13.8 1 +1946 6 22 15.3 14.5 14.5 1 +1946 6 23 18.1 17.3 17.3 1 +1946 6 24 17.2 16.4 16.4 1 +1946 6 25 18.7 17.9 17.9 1 +1946 6 26 16.2 15.4 15.4 1 +1946 6 27 16.4 15.6 15.6 1 +1946 6 28 16.5 15.7 15.7 1 +1946 6 29 16.4 15.6 15.6 1 +1946 6 30 16.4 15.6 15.6 1 +1946 7 1 16.4 15.6 15.6 1 +1946 7 2 18.2 17.4 17.4 1 +1946 7 3 21.0 20.2 20.2 1 +1946 7 4 20.2 19.4 19.4 1 +1946 7 5 21.3 20.5 20.5 1 +1946 7 6 17.2 16.4 16.4 1 +1946 7 7 17.0 16.2 16.2 1 +1946 7 8 17.1 16.3 16.3 1 +1946 7 9 18.3 17.5 17.5 1 +1946 7 10 17.4 16.6 16.6 1 +1946 7 11 17.6 16.8 16.8 1 +1946 7 12 17.9 17.1 17.1 1 +1946 7 13 18.6 17.8 17.8 1 +1946 7 14 18.6 17.8 17.8 1 +1946 7 15 18.9 18.1 18.1 1 +1946 7 16 18.3 17.6 17.6 1 +1946 7 17 18.4 17.7 17.7 1 +1946 7 18 19.8 19.1 19.1 1 +1946 7 19 21.4 20.7 20.7 1 +1946 7 20 21.4 20.7 20.7 1 +1946 7 21 20.9 20.2 20.2 1 +1946 7 22 18.9 18.2 18.2 1 +1946 7 23 18.1 17.4 17.4 1 +1946 7 24 20.2 19.5 19.5 1 +1946 7 25 21.4 20.7 20.7 1 +1946 7 26 20.9 20.2 20.2 1 +1946 7 27 20.5 19.8 19.8 1 +1946 7 28 20.4 19.7 19.7 1 +1946 7 29 17.3 16.6 16.6 1 +1946 7 30 16.4 15.8 15.8 1 +1946 7 31 15.6 15.0 15.0 1 +1946 8 1 15.9 15.3 15.3 1 +1946 8 2 16.5 15.9 15.9 1 +1946 8 3 15.7 15.1 15.1 1 +1946 8 4 16.2 15.6 15.6 1 +1946 8 5 17.4 16.8 16.8 1 +1946 8 6 17.9 17.3 17.3 1 +1946 8 7 17.6 17.0 17.0 1 +1946 8 8 17.5 16.9 16.9 1 +1946 8 9 16.0 15.4 15.4 1 +1946 8 10 17.0 16.4 16.4 1 +1946 8 11 17.9 17.3 17.3 1 +1946 8 12 17.1 16.6 16.6 1 +1946 8 13 17.0 16.5 16.5 1 +1946 8 14 15.0 14.5 14.5 1 +1946 8 15 15.3 14.8 14.8 1 +1946 8 16 14.8 14.3 14.3 1 +1946 8 17 14.8 14.3 14.3 1 +1946 8 18 15.7 15.2 15.2 1 +1946 8 19 16.1 15.6 15.6 1 +1946 8 20 15.9 15.4 15.4 1 +1946 8 21 13.9 13.5 13.5 1 +1946 8 22 17.4 17.0 17.0 1 +1946 8 23 17.9 17.5 17.5 1 +1946 8 24 17.9 17.5 17.5 1 +1946 8 25 16.7 16.3 16.3 1 +1946 8 26 14.8 14.4 14.4 1 +1946 8 27 12.7 12.3 12.3 1 +1946 8 28 13.7 13.3 13.3 1 +1946 8 29 13.6 13.3 13.3 1 +1946 8 30 15.4 15.1 15.1 1 +1946 8 31 14.9 14.6 14.6 1 +1946 9 1 15.9 15.6 15.6 1 +1946 9 2 15.0 14.7 14.7 1 +1946 9 3 12.4 12.1 12.1 1 +1946 9 4 14.1 13.8 13.8 1 +1946 9 5 14.2 13.9 13.9 1 +1946 9 6 13.6 13.4 13.4 1 +1946 9 7 13.4 13.2 13.2 1 +1946 9 8 15.1 14.9 14.9 1 +1946 9 9 14.4 14.2 14.2 1 +1946 9 10 14.4 14.2 14.2 1 +1946 9 11 12.6 12.4 12.4 1 +1946 9 12 13.5 13.3 13.3 1 +1946 9 13 12.9 12.7 12.7 1 +1946 9 14 13.1 13.0 13.0 1 +1946 9 15 12.5 12.4 12.4 1 +1946 9 16 14.1 14.0 14.0 1 +1946 9 17 13.3 13.2 13.2 1 +1946 9 18 12.5 12.4 12.4 1 +1946 9 19 12.1 12.0 12.0 1 +1946 9 20 11.9 11.8 11.8 1 +1946 9 21 9.2 9.1 9.1 1 +1946 9 22 10.7 10.6 10.6 1 +1946 9 23 13.5 13.4 13.4 1 +1946 9 24 11.2 11.1 11.1 1 +1946 9 25 11.3 11.2 11.2 1 +1946 9 26 12.1 12.0 12.0 1 +1946 9 27 13.8 13.7 13.7 1 +1946 9 28 13.6 13.5 13.5 1 +1946 9 29 8.7 8.6 8.6 1 +1946 9 30 8.3 8.2 8.2 1 +1946 10 1 6.8 6.7 6.7 1 +1946 10 2 5.2 5.1 5.1 1 +1946 10 3 5.2 5.1 5.1 1 +1946 10 4 8.0 7.9 7.9 1 +1946 10 5 9.0 8.9 8.9 1 +1946 10 6 8.4 8.3 8.3 1 +1946 10 7 8.0 7.9 7.9 1 +1946 10 8 7.1 7.0 7.0 1 +1946 10 9 7.1 7.0 7.0 1 +1946 10 10 8.0 7.9 7.9 1 +1946 10 11 9.8 9.7 9.7 1 +1946 10 12 7.2 7.1 7.1 1 +1946 10 13 3.4 3.3 3.3 1 +1946 10 14 7.9 7.8 7.8 1 +1946 10 15 3.7 3.6 3.6 1 +1946 10 16 7.4 7.3 7.3 1 +1946 10 17 6.5 6.4 6.4 1 +1946 10 18 7.2 7.1 7.1 1 +1946 10 19 7.5 7.4 7.4 1 +1946 10 20 4.8 4.7 4.7 1 +1946 10 21 5.6 5.5 5.5 1 +1946 10 22 0.2 0.0 0.0 1 +1946 10 23 -0.8 -1.0 -1.0 1 +1946 10 24 0.4 0.2 0.2 1 +1946 10 25 3.4 3.2 3.2 1 +1946 10 26 2.6 2.4 2.4 1 +1946 10 27 4.7 4.5 4.5 1 +1946 10 28 5.7 5.5 5.5 1 +1946 10 29 5.7 5.5 5.5 1 +1946 10 30 3.9 3.7 3.7 1 +1946 10 31 3.2 3.0 3.0 1 +1946 11 1 5.0 4.8 4.8 1 +1946 11 2 5.9 5.7 5.7 1 +1946 11 3 7.2 7.0 7.0 1 +1946 11 4 2.8 2.6 2.6 1 +1946 11 5 1.4 1.2 1.2 1 +1946 11 6 4.5 4.2 4.2 1 +1946 11 7 5.4 5.1 5.1 1 +1946 11 8 4.8 4.5 4.5 1 +1946 11 9 2.4 2.1 2.1 1 +1946 11 10 0.4 0.1 0.1 1 +1946 11 11 -1.1 -1.4 -1.4 1 +1946 11 12 5.7 5.4 5.4 1 +1946 11 13 4.0 3.7 3.7 1 +1946 11 14 -4.7 -5.0 -5.0 1 +1946 11 15 -3.1 -3.4 -3.4 1 +1946 11 16 -4.1 -4.4 -4.4 1 +1946 11 17 -2.1 -2.4 -2.4 1 +1946 11 18 -0.1 -0.4 -0.4 1 +1946 11 19 -1.6 -1.9 -1.9 1 +1946 11 20 -0.2 -0.5 -0.5 1 +1946 11 21 1.9 1.6 1.6 1 +1946 11 22 5.8 5.5 5.5 1 +1946 11 23 4.1 3.8 3.8 1 +1946 11 24 5.0 4.7 4.7 1 +1946 11 25 6.5 6.2 6.2 1 +1946 11 26 5.5 5.2 5.2 1 +1946 11 27 6.0 5.7 5.7 1 +1946 11 28 6.9 6.6 6.6 1 +1946 11 29 5.4 5.0 5.0 1 +1946 11 30 3.0 2.6 2.6 1 +1946 12 1 4.4 4.0 4.0 1 +1946 12 2 4.1 3.7 3.7 1 +1946 12 3 4.4 4.0 4.0 1 +1946 12 4 2.9 2.5 2.5 1 +1946 12 5 3.6 3.2 3.2 1 +1946 12 6 3.7 3.3 3.3 1 +1946 12 7 3.1 2.7 2.7 1 +1946 12 8 3.7 3.3 3.3 1 +1946 12 9 3.2 2.8 2.8 1 +1946 12 10 2.0 1.6 1.6 1 +1946 12 11 1.3 0.9 0.9 1 +1946 12 12 0.5 0.1 0.1 1 +1946 12 13 -0.9 -1.3 -1.3 1 +1946 12 14 -2.5 -2.9 -2.9 1 +1946 12 15 -4.1 -4.5 -4.5 1 +1946 12 16 -6.1 -6.5 -6.5 1 +1946 12 17 -7.7 -8.1 -8.1 1 +1946 12 18 -5.3 -5.7 -5.7 1 +1946 12 19 -3.6 -4.0 -4.0 1 +1946 12 20 -0.9 -1.3 -1.3 1 +1946 12 21 -0.3 -0.7 -0.7 1 +1946 12 22 -5.6 -6.0 -6.0 1 +1946 12 23 -1.5 -1.9 -1.9 1 +1946 12 24 -1.1 -1.6 -1.6 1 +1946 12 25 -1.4 -1.9 -1.9 1 +1946 12 26 1.7 1.2 1.2 1 +1946 12 27 2.0 1.5 1.5 1 +1946 12 28 1.9 1.4 1.4 1 +1946 12 29 1.5 1.0 1.0 1 +1946 12 30 -0.7 -1.2 -1.2 1 +1946 12 31 0.2 -0.3 -0.3 1 +1947 1 1 -0.5 -1.0 -1.0 1 +1947 1 2 -0.9 -1.4 -1.4 1 +1947 1 3 -1.7 -2.2 -2.2 1 +1947 1 4 -3.8 -4.3 -4.3 1 +1947 1 5 -5.0 -5.6 -5.6 1 +1947 1 6 -5.1 -5.7 -5.7 1 +1947 1 7 -5.1 -5.7 -5.7 1 +1947 1 8 -3.6 -4.2 -4.2 1 +1947 1 9 -5.0 -5.6 -5.6 1 +1947 1 10 -5.8 -6.4 -6.4 1 +1947 1 11 -7.9 -8.5 -8.5 1 +1947 1 12 -7.8 -8.4 -8.4 1 +1947 1 13 -9.8 -10.4 -10.4 1 +1947 1 14 -2.3 -2.9 -2.9 1 +1947 1 15 -2.7 -3.3 -3.3 1 +1947 1 16 3.7 3.1 3.1 1 +1947 1 17 4.4 3.8 3.8 1 +1947 1 18 2.2 1.6 1.6 1 +1947 1 19 0.5 -0.1 -0.1 1 +1947 1 20 -1.5 -2.1 -2.1 1 +1947 1 21 -3.0 -3.6 -3.6 1 +1947 1 22 -5.2 -5.8 -5.8 1 +1947 1 23 -6.5 -7.1 -7.1 1 +1947 1 24 -5.8 -6.4 -6.4 1 +1947 1 25 -8.6 -9.2 -9.2 1 +1947 1 26 -7.6 -8.2 -8.2 1 +1947 1 27 -6.0 -6.6 -6.6 1 +1947 1 28 -5.7 -6.3 -6.3 1 +1947 1 29 -4.3 -4.9 -4.9 1 +1947 1 30 -2.9 -3.5 -3.5 1 +1947 1 31 -2.7 -3.3 -3.3 1 +1947 2 1 -2.8 -3.4 -3.4 1 +1947 2 2 -4.4 -5.0 -5.0 1 +1947 2 3 -6.5 -7.1 -7.1 1 +1947 2 4 -8.0 -8.6 -8.6 1 +1947 2 5 -11.7 -12.3 -12.3 1 +1947 2 6 -13.4 -14.0 -14.0 1 +1947 2 7 -12.7 -13.3 -13.3 1 +1947 2 8 -11.7 -12.3 -12.3 1 +1947 2 9 -10.9 -11.5 -11.5 1 +1947 2 10 -10.4 -11.0 -11.0 1 +1947 2 11 -9.4 -10.0 -10.0 1 +1947 2 12 -9.8 -10.4 -10.4 1 +1947 2 13 -10.5 -11.1 -11.1 1 +1947 2 14 -9.1 -9.7 -9.7 1 +1947 2 15 -8.5 -9.1 -9.1 1 +1947 2 16 -9.1 -9.7 -9.7 1 +1947 2 17 -8.1 -8.7 -8.7 1 +1947 2 18 -7.0 -7.6 -7.6 1 +1947 2 19 -6.5 -7.1 -7.1 1 +1947 2 20 -6.4 -7.0 -7.0 1 +1947 2 21 -10.0 -10.6 -10.6 1 +1947 2 22 -11.3 -12.0 -12.0 1 +1947 2 23 -10.9 -11.6 -11.6 1 +1947 2 24 -13.5 -14.2 -14.2 1 +1947 2 25 -12.8 -13.5 -13.5 1 +1947 2 26 -15.5 -16.2 -16.2 1 +1947 2 27 -15.8 -16.5 -16.5 1 +1947 2 28 -15.3 -16.0 -16.0 1 +1947 3 1 -10.1 -10.8 -10.8 1 +1947 3 2 -9.9 -10.6 -10.6 1 +1947 3 3 -11.6 -12.3 -12.3 1 +1947 3 4 -3.6 -4.3 -4.3 1 +1947 3 5 -9.8 -10.5 -10.5 1 +1947 3 6 -11.5 -12.2 -12.2 1 +1947 3 7 -12.9 -13.6 -13.6 1 +1947 3 8 -7.5 -8.2 -8.2 1 +1947 3 9 -8.6 -9.3 -9.3 1 +1947 3 10 -9.4 -10.1 -10.1 1 +1947 3 11 -7.3 -8.0 -8.0 1 +1947 3 12 -6.6 -7.3 -7.3 1 +1947 3 13 -6.1 -6.8 -6.8 1 +1947 3 14 -7.1 -7.8 -7.8 1 +1947 3 15 -8.2 -8.9 -8.9 1 +1947 3 16 -2.7 -3.4 -3.4 1 +1947 3 17 -2.1 -2.8 -2.8 1 +1947 3 18 -2.9 -3.6 -3.6 1 +1947 3 19 -2.6 -3.3 -3.3 1 +1947 3 20 -2.0 -2.7 -2.7 1 +1947 3 21 -1.6 -2.3 -2.3 1 +1947 3 22 -4.2 -4.9 -4.9 1 +1947 3 23 -0.6 -1.3 -1.3 1 +1947 3 24 0.1 -0.6 -0.6 1 +1947 3 25 2.4 1.7 1.7 1 +1947 3 26 2.0 1.3 1.3 1 +1947 3 27 3.5 2.8 2.8 1 +1947 3 28 1.3 0.6 0.6 1 +1947 3 29 3.0 2.3 2.3 1 +1947 3 30 0.8 0.1 0.1 1 +1947 3 31 0.6 0.0 0.0 1 +1947 4 1 0.6 0.0 0.0 1 +1947 4 2 1.3 0.7 0.7 1 +1947 4 3 0.9 0.3 0.3 1 +1947 4 4 2.3 1.7 1.7 1 +1947 4 5 1.3 0.7 0.7 1 +1947 4 6 1.2 0.6 0.6 1 +1947 4 7 5.3 4.7 4.7 1 +1947 4 8 2.6 2.0 2.0 1 +1947 4 9 2.1 1.5 1.5 1 +1947 4 10 2.0 1.4 1.4 1 +1947 4 11 1.9 1.3 1.3 1 +1947 4 12 6.4 5.8 5.8 1 +1947 4 13 5.7 5.1 5.1 1 +1947 4 14 5.1 4.5 4.5 1 +1947 4 15 7.3 6.7 6.7 1 +1947 4 16 10.1 9.5 9.5 1 +1947 4 17 9.0 8.4 8.4 1 +1947 4 18 5.1 4.5 4.5 1 +1947 4 19 5.8 5.2 5.2 1 +1947 4 20 6.2 5.5 5.5 1 +1947 4 21 10.7 10.0 10.0 1 +1947 4 22 10.1 9.4 9.4 1 +1947 4 23 10.2 9.5 9.5 1 +1947 4 24 7.2 6.5 6.5 1 +1947 4 25 9.0 8.3 8.3 1 +1947 4 26 6.4 5.7 5.7 1 +1947 4 27 8.3 7.5 7.5 1 +1947 4 28 5.3 4.5 4.5 1 +1947 4 29 4.1 3.3 3.3 1 +1947 4 30 4.8 4.0 4.0 1 +1947 5 1 3.5 2.7 2.7 1 +1947 5 2 2.7 1.9 1.9 1 +1947 5 3 5.0 4.1 4.1 1 +1947 5 4 7.4 6.5 6.5 1 +1947 5 5 8.6 7.7 7.7 1 +1947 5 6 11.3 10.4 10.4 1 +1947 5 7 12.8 11.9 11.9 1 +1947 5 8 12.6 11.7 11.7 1 +1947 5 9 15.6 14.6 14.6 1 +1947 5 10 14.2 13.2 13.2 1 +1947 5 11 15.6 14.6 14.6 1 +1947 5 12 16.7 15.7 15.7 1 +1947 5 13 16.1 15.1 15.1 1 +1947 5 14 17.4 16.4 16.4 1 +1947 5 15 16.6 15.6 15.6 1 +1947 5 16 15.0 14.0 14.0 1 +1947 5 17 14.2 13.2 13.2 1 +1947 5 18 8.4 7.4 7.4 1 +1947 5 19 12.0 11.0 11.0 1 +1947 5 20 10.0 9.0 9.0 1 +1947 5 21 11.0 10.0 10.0 1 +1947 5 22 14.9 13.9 13.9 1 +1947 5 23 15.3 14.3 14.3 1 +1947 5 24 15.2 14.2 14.2 1 +1947 5 25 14.5 13.5 13.5 1 +1947 5 26 14.1 13.1 13.1 1 +1947 5 27 16.4 15.4 15.4 1 +1947 5 28 12.5 11.5 11.5 1 +1947 5 29 16.2 15.3 15.3 1 +1947 5 30 16.0 15.1 15.1 1 +1947 5 31 16.0 15.1 15.1 1 +1947 6 1 14.5 13.6 13.6 1 +1947 6 2 13.5 12.6 12.6 1 +1947 6 3 11.5 10.6 10.6 1 +1947 6 4 8.7 7.8 7.8 1 +1947 6 5 8.9 8.0 8.0 1 +1947 6 6 15.5 14.6 14.6 1 +1947 6 7 12.4 11.5 11.5 1 +1947 6 8 13.3 12.4 12.4 1 +1947 6 9 14.0 13.1 13.1 1 +1947 6 10 14.6 13.7 13.7 1 +1947 6 11 14.1 13.2 13.2 1 +1947 6 12 14.7 13.9 13.9 1 +1947 6 13 9.8 9.0 9.0 1 +1947 6 14 13.5 12.7 12.7 1 +1947 6 15 15.3 14.5 14.5 1 +1947 6 16 17.5 16.7 16.7 1 +1947 6 17 18.6 17.8 17.8 1 +1947 6 18 18.5 17.7 17.7 1 +1947 6 19 19.8 19.0 19.0 1 +1947 6 20 21.4 20.6 20.6 1 +1947 6 21 20.7 19.9 19.9 1 +1947 6 22 20.8 20.0 20.0 1 +1947 6 23 21.4 20.6 20.6 1 +1947 6 24 19.7 18.9 18.9 1 +1947 6 25 19.4 18.6 18.6 1 +1947 6 26 21.8 21.0 21.0 1 +1947 6 27 23.0 22.2 22.2 1 +1947 6 28 22.8 22.0 22.0 1 +1947 6 29 24.6 23.8 23.8 1 +1947 6 30 26.7 25.9 25.9 1 +1947 7 1 24.2 23.4 23.4 1 +1947 7 2 23.7 22.9 22.9 1 +1947 7 3 19.7 18.9 18.9 1 +1947 7 4 20.3 19.5 19.5 1 +1947 7 5 21.5 20.7 20.7 1 +1947 7 6 16.0 15.2 15.2 1 +1947 7 7 16.0 15.2 15.2 1 +1947 7 8 17.0 16.2 16.2 1 +1947 7 9 16.5 15.7 15.7 1 +1947 7 10 16.3 15.5 15.5 1 +1947 7 11 14.6 13.8 13.8 1 +1947 7 12 16.0 15.2 15.2 1 +1947 7 13 13.7 12.9 12.9 1 +1947 7 14 17.7 16.9 16.9 1 +1947 7 15 19.1 18.3 18.3 1 +1947 7 16 19.2 18.4 18.4 1 +1947 7 17 18.5 17.7 17.7 1 +1947 7 18 18.7 18.0 18.0 1 +1947 7 19 18.7 18.0 18.0 1 +1947 7 20 18.7 18.0 18.0 1 +1947 7 21 19.1 18.4 18.4 1 +1947 7 22 21.4 20.7 20.7 1 +1947 7 23 24.8 24.1 24.1 1 +1947 7 24 23.9 23.2 23.2 1 +1947 7 25 21.9 21.2 21.2 1 +1947 7 26 19.5 18.8 18.8 1 +1947 7 27 17.7 17.0 17.0 1 +1947 7 28 18.4 17.7 17.7 1 +1947 7 29 19.4 18.7 18.7 1 +1947 7 30 19.0 18.3 18.3 1 +1947 7 31 19.9 19.3 19.3 1 +1947 8 1 16.2 15.6 15.6 1 +1947 8 2 16.8 16.2 16.2 1 +1947 8 3 20.9 20.3 20.3 1 +1947 8 4 21.8 21.2 21.2 1 +1947 8 5 20.8 20.2 20.2 1 +1947 8 6 22.7 22.1 22.1 1 +1947 8 7 18.0 17.4 17.4 1 +1947 8 8 16.8 16.2 16.2 1 +1947 8 9 16.8 16.2 16.2 1 +1947 8 10 17.3 16.7 16.7 1 +1947 8 11 18.2 17.6 17.6 1 +1947 8 12 19.4 18.8 18.8 1 +1947 8 13 19.4 18.8 18.8 1 +1947 8 14 21.9 21.4 21.4 1 +1947 8 15 20.5 20.0 20.0 1 +1947 8 16 21.0 20.5 20.5 1 +1947 8 17 21.2 20.7 20.7 1 +1947 8 18 16.7 16.2 16.2 1 +1947 8 19 15.7 15.2 15.2 1 +1947 8 20 14.9 14.4 14.4 1 +1947 8 21 16.1 15.6 15.6 1 +1947 8 22 17.5 17.1 17.1 1 +1947 8 23 17.0 16.6 16.6 1 +1947 8 24 18.1 17.7 17.7 1 +1947 8 25 18.7 18.3 18.3 1 +1947 8 26 19.1 18.7 18.7 1 +1947 8 27 15.9 15.5 15.5 1 +1947 8 28 13.6 13.2 13.2 1 +1947 8 29 13.0 12.6 12.6 1 +1947 8 30 13.3 13.0 13.0 1 +1947 8 31 14.4 14.1 14.1 1 +1947 9 1 16.0 15.7 15.7 1 +1947 9 2 16.4 16.1 16.1 1 +1947 9 3 14.1 13.8 13.8 1 +1947 9 4 14.0 13.7 13.7 1 +1947 9 5 16.4 16.1 16.1 1 +1947 9 6 17.8 17.5 17.5 1 +1947 9 7 16.8 16.6 16.6 1 +1947 9 8 16.2 16.0 16.0 1 +1947 9 9 16.2 16.0 16.0 1 +1947 9 10 14.4 14.2 14.2 1 +1947 9 11 15.6 15.4 15.4 1 +1947 9 12 15.7 15.5 15.5 1 +1947 9 13 17.4 17.2 17.2 1 +1947 9 14 17.7 17.5 17.5 1 +1947 9 15 14.9 14.8 14.8 1 +1947 9 16 19.3 19.2 19.2 1 +1947 9 17 20.3 20.2 20.2 1 +1947 9 18 14.8 14.7 14.7 1 +1947 9 19 12.8 12.7 12.7 1 +1947 9 20 13.1 13.0 13.0 1 +1947 9 21 16.1 16.0 16.0 1 +1947 9 22 15.2 15.1 15.1 1 +1947 9 23 12.9 12.8 12.8 1 +1947 9 24 11.8 11.7 11.7 1 +1947 9 25 13.2 13.1 13.1 1 +1947 9 26 11.9 11.8 11.8 1 +1947 9 27 13.3 13.2 13.2 1 +1947 9 28 13.2 13.1 13.1 1 +1947 9 29 8.4 8.3 8.3 1 +1947 9 30 6.3 6.2 6.2 1 +1947 10 1 5.3 5.2 5.2 1 +1947 10 2 4.6 4.5 4.5 1 +1947 10 3 7.7 7.6 7.6 1 +1947 10 4 11.2 11.1 11.1 1 +1947 10 5 11.2 11.1 11.1 1 +1947 10 6 11.8 11.7 11.7 1 +1947 10 7 8.6 8.5 8.5 1 +1947 10 8 5.1 5.0 5.0 1 +1947 10 9 7.7 7.6 7.6 1 +1947 10 10 10.7 10.6 10.6 1 +1947 10 11 12.5 12.4 12.4 1 +1947 10 12 12.7 12.6 12.6 1 +1947 10 13 14.2 14.1 14.1 1 +1947 10 14 12.0 11.9 11.9 1 +1947 10 15 10.9 10.8 10.8 1 +1947 10 16 8.8 8.7 8.7 1 +1947 10 17 5.1 5.0 5.0 1 +1947 10 18 2.6 2.5 2.5 1 +1947 10 19 2.4 2.3 2.3 1 +1947 10 20 10.6 10.5 10.5 1 +1947 10 21 7.8 7.6 7.6 1 +1947 10 22 1.1 0.9 0.9 1 +1947 10 23 3.6 3.4 3.4 1 +1947 10 24 3.4 3.2 3.2 1 +1947 10 25 2.2 2.0 2.0 1 +1947 10 26 5.5 5.3 5.3 1 +1947 10 27 3.9 3.7 3.7 1 +1947 10 28 4.0 3.8 3.8 1 +1947 10 29 3.1 2.9 2.9 1 +1947 10 30 2.5 2.3 2.3 1 +1947 10 31 0.8 0.6 0.6 1 +1947 11 1 1.1 0.9 0.9 1 +1947 11 2 5.3 5.1 5.1 1 +1947 11 3 7.5 7.3 7.3 1 +1947 11 4 7.2 7.0 7.0 1 +1947 11 5 5.6 5.3 5.3 1 +1947 11 6 3.7 3.4 3.4 1 +1947 11 7 0.8 0.5 0.5 1 +1947 11 8 1.0 0.7 0.7 1 +1947 11 9 0.2 -0.1 -0.1 1 +1947 11 10 1.9 1.6 1.6 1 +1947 11 11 1.0 0.7 0.7 1 +1947 11 12 0.9 0.6 0.6 1 +1947 11 13 1.0 0.7 0.7 1 +1947 11 14 -3.4 -3.7 -3.7 1 +1947 11 15 -4.6 -4.9 -4.9 1 +1947 11 16 -4.7 -5.0 -5.0 1 +1947 11 17 -4.7 -5.0 -5.0 1 +1947 11 18 -2.8 -3.1 -3.1 1 +1947 11 19 -6.3 -6.6 -6.6 1 +1947 11 20 -5.4 -5.7 -5.7 1 +1947 11 21 1.1 0.8 0.8 1 +1947 11 22 2.4 2.1 2.1 1 +1947 11 23 2.7 2.4 2.4 1 +1947 11 24 2.1 1.8 1.8 1 +1947 11 25 0.7 0.4 0.4 1 +1947 11 26 0.0 -0.4 -0.4 1 +1947 11 27 -3.1 -3.5 -3.5 1 +1947 11 28 -3.1 -3.5 -3.5 1 +1947 11 29 -0.8 -1.2 -1.2 1 +1947 11 30 2.1 1.7 1.7 1 +1947 12 1 1.7 1.3 1.3 1 +1947 12 2 0.5 0.1 0.1 1 +1947 12 3 2.7 2.3 2.3 1 +1947 12 4 3.4 3.0 3.0 1 +1947 12 5 2.8 2.4 2.4 1 +1947 12 6 1.9 1.5 1.5 1 +1947 12 7 3.1 2.7 2.7 1 +1947 12 8 2.4 2.0 2.0 1 +1947 12 9 1.6 1.2 1.2 1 +1947 12 10 0.5 0.1 0.1 1 +1947 12 11 -0.9 -1.3 -1.3 1 +1947 12 12 0.8 0.4 0.4 1 +1947 12 13 0.9 0.5 0.5 1 +1947 12 14 0.0 -0.4 -0.4 1 +1947 12 15 -3.3 -3.7 -3.7 1 +1947 12 16 -1.6 -2.0 -2.0 1 +1947 12 17 -2.3 -2.7 -2.7 1 +1947 12 18 -2.4 -2.8 -2.8 1 +1947 12 19 -1.9 -2.3 -2.3 1 +1947 12 20 0.3 -0.1 -0.1 1 +1947 12 21 -2.6 -3.0 -3.0 1 +1947 12 22 -6.2 -6.7 -6.7 1 +1947 12 23 -6.1 -6.6 -6.6 1 +1947 12 24 -6.0 -6.5 -6.5 1 +1947 12 25 2.5 2.0 2.0 1 +1947 12 26 2.7 2.2 2.2 1 +1947 12 27 -5.6 -6.1 -6.1 1 +1947 12 28 -9.0 -9.5 -9.5 1 +1947 12 29 -8.8 -9.3 -9.3 1 +1947 12 30 -9.4 -9.9 -9.9 1 +1947 12 31 -9.7 -10.2 -10.2 1 +1948 1 1 -11.8 -12.3 -12.3 1 +1948 1 2 -5.8 -6.3 -6.3 1 +1948 1 3 -2.0 -2.5 -2.5 1 +1948 1 4 -3.8 -4.4 -4.4 1 +1948 1 5 -0.2 -0.8 -0.8 1 +1948 1 6 -2.9 -3.5 -3.5 1 +1948 1 7 -6.0 -6.6 -6.6 1 +1948 1 8 -7.9 -8.5 -8.5 1 +1948 1 9 -9.7 -10.3 -10.3 1 +1948 1 10 -14.1 -14.7 -14.7 1 +1948 1 11 -13.7 -14.3 -14.3 1 +1948 1 12 -6.2 -6.8 -6.8 1 +1948 1 13 -1.4 -2.0 -2.0 1 +1948 1 14 -6.7 -7.3 -7.3 1 +1948 1 15 -11.3 -11.9 -11.9 1 +1948 1 16 -12.2 -12.8 -12.8 1 +1948 1 17 -10.0 -10.6 -10.6 1 +1948 1 18 -1.3 -1.9 -1.9 1 +1948 1 19 0.9 0.3 0.3 1 +1948 1 20 -0.3 -0.9 -0.9 1 +1948 1 21 -2.5 -3.1 -3.1 1 +1948 1 22 -5.9 -6.5 -6.5 1 +1948 1 23 -6.1 -6.7 -6.7 1 +1948 1 24 -7.9 -8.5 -8.5 1 +1948 1 25 -5.4 -6.0 -6.0 1 +1948 1 26 -0.3 -0.9 -0.9 1 +1948 1 27 0.8 0.2 0.2 1 +1948 1 28 0.9 0.3 0.3 1 +1948 1 29 1.2 0.6 0.6 1 +1948 1 30 1.1 0.5 0.5 1 +1948 1 31 2.4 1.8 1.8 1 +1948 2 1 3.5 2.9 2.9 1 +1948 2 2 1.2 0.6 0.6 1 +1948 2 3 3.3 2.7 2.7 1 +1948 2 4 -0.1 -0.7 -0.7 1 +1948 2 5 -3.2 -3.8 -3.8 1 +1948 2 6 -4.9 -5.5 -5.5 1 +1948 2 7 -4.0 -4.6 -4.6 1 +1948 2 8 -2.5 -3.1 -3.1 1 +1948 2 9 -2.6 -3.2 -3.2 1 +1948 2 10 -3.9 -4.5 -4.5 1 +1948 2 11 -2.5 -3.1 -3.1 1 +1948 2 12 -2.7 -3.3 -3.3 1 +1948 2 13 -3.2 -3.8 -3.8 1 +1948 2 14 -2.5 -3.1 -3.1 1 +1948 2 15 -4.8 -5.4 -5.4 1 +1948 2 16 -4.2 -4.8 -4.8 1 +1948 2 17 -5.5 -6.1 -6.1 1 +1948 2 18 -6.0 -6.6 -6.6 1 +1948 2 19 -6.9 -7.6 -7.6 1 +1948 2 20 -6.9 -7.6 -7.6 1 +1948 2 21 -5.1 -5.8 -5.8 1 +1948 2 22 -3.6 -4.3 -4.3 1 +1948 2 23 -2.5 -3.2 -3.2 1 +1948 2 24 -2.0 -2.7 -2.7 1 +1948 2 25 -1.2 -1.9 -1.9 1 +1948 2 26 -0.2 -0.9 -0.9 1 +1948 2 27 -1.9 -2.6 -2.6 1 +1948 2 28 -1.2 -1.9 -1.9 1 +1948 2 29 -1.2 -1.9 -1.9 1 +1948 3 1 1.2 0.5 0.5 1 +1948 3 2 1.7 1.0 1.0 1 +1948 3 3 -0.8 -1.5 -1.5 1 +1948 3 4 0.0 -0.7 -0.7 1 +1948 3 5 0.4 -0.3 -0.3 1 +1948 3 6 0.9 0.2 0.2 1 +1948 3 7 0.0 -0.7 -0.7 1 +1948 3 8 0.8 0.1 0.1 1 +1948 3 9 2.7 2.0 2.0 1 +1948 3 10 3.0 2.3 2.3 1 +1948 3 11 -2.8 -3.5 -3.5 1 +1948 3 12 0.3 -0.4 -0.4 1 +1948 3 13 4.7 4.0 4.0 1 +1948 3 14 4.9 4.2 4.2 1 +1948 3 15 2.6 1.9 1.9 1 +1948 3 16 -2.4 -3.1 -3.1 1 +1948 3 17 -5.0 -5.7 -5.7 1 +1948 3 18 -2.5 -3.2 -3.2 1 +1948 3 19 0.7 0.0 0.0 1 +1948 3 20 2.8 2.1 2.1 1 +1948 3 21 3.7 3.0 3.0 1 +1948 3 22 3.4 2.7 2.7 1 +1948 3 23 2.6 1.9 1.9 1 +1948 3 24 3.9 3.2 3.2 1 +1948 3 25 4.8 4.1 4.1 1 +1948 3 26 5.4 4.7 4.7 1 +1948 3 27 7.9 7.2 7.2 1 +1948 3 28 7.0 6.3 6.3 1 +1948 3 29 8.6 7.9 7.9 1 +1948 3 30 8.3 7.6 7.6 1 +1948 3 31 6.4 5.7 5.7 1 +1948 4 1 6.9 6.2 6.2 1 +1948 4 2 6.0 5.3 5.3 1 +1948 4 3 6.1 5.5 5.5 1 +1948 4 4 6.4 5.8 5.8 1 +1948 4 5 5.4 4.8 4.8 1 +1948 4 6 4.9 4.3 4.3 1 +1948 4 7 2.0 1.4 1.4 1 +1948 4 8 4.0 3.4 3.4 1 +1948 4 9 6.2 5.6 5.6 1 +1948 4 10 6.7 6.1 6.1 1 +1948 4 11 5.8 5.2 5.2 1 +1948 4 12 4.7 4.1 4.1 1 +1948 4 13 4.7 4.1 4.1 1 +1948 4 14 7.0 6.4 6.4 1 +1948 4 15 6.4 5.8 5.8 1 +1948 4 16 10.3 9.7 9.7 1 +1948 4 17 11.7 11.1 11.1 1 +1948 4 18 11.9 11.3 11.3 1 +1948 4 19 13.2 12.6 12.6 1 +1948 4 20 4.5 3.8 3.8 1 +1948 4 21 6.5 5.8 5.8 1 +1948 4 22 9.4 8.7 8.7 1 +1948 4 23 9.0 8.3 8.3 1 +1948 4 24 5.3 4.6 4.6 1 +1948 4 25 5.6 4.9 4.9 1 +1948 4 26 9.1 8.3 8.3 1 +1948 4 27 6.7 5.9 5.9 1 +1948 4 28 6.1 5.3 5.3 1 +1948 4 29 5.3 4.5 4.5 1 +1948 4 30 4.3 3.5 3.5 1 +1948 5 1 4.4 3.6 3.6 1 +1948 5 2 6.8 5.9 5.9 1 +1948 5 3 6.5 5.6 5.6 1 +1948 5 4 7.0 6.1 6.1 1 +1948 5 5 9.0 8.1 8.1 1 +1948 5 6 9.8 8.9 8.9 1 +1948 5 7 13.4 12.5 12.5 1 +1948 5 8 12.6 11.6 11.6 1 +1948 5 9 12.2 11.2 11.2 1 +1948 5 10 9.9 8.9 8.9 1 +1948 5 11 11.1 10.1 10.1 1 +1948 5 12 13.7 12.7 12.7 1 +1948 5 13 11.5 10.5 10.5 1 +1948 5 14 14.5 13.5 13.5 1 +1948 5 15 13.9 12.8 12.8 1 +1948 5 16 14.2 13.1 13.1 1 +1948 5 17 12.4 11.3 11.3 1 +1948 5 18 10.8 9.8 9.8 1 +1948 5 19 14.0 13.0 13.0 1 +1948 5 20 8.1 7.1 7.1 1 +1948 5 21 9.3 8.3 8.3 1 +1948 5 22 8.8 7.8 7.8 1 +1948 5 23 7.1 6.1 6.1 1 +1948 5 24 10.1 9.1 9.1 1 +1948 5 25 13.2 12.2 12.2 1 +1948 5 26 13.1 12.1 12.1 1 +1948 5 27 12.8 11.8 11.8 1 +1948 5 28 12.2 11.2 11.2 1 +1948 5 29 12.1 11.1 11.1 1 +1948 5 30 8.6 7.6 7.6 1 +1948 5 31 10.0 9.1 9.1 1 +1948 6 1 12.4 11.5 11.5 1 +1948 6 2 14.8 13.9 13.9 1 +1948 6 3 13.3 12.4 12.4 1 +1948 6 4 13.3 12.4 12.4 1 +1948 6 5 14.2 13.3 13.3 1 +1948 6 6 15.6 14.7 14.7 1 +1948 6 7 17.2 16.3 16.3 1 +1948 6 8 17.6 16.7 16.7 1 +1948 6 9 18.4 17.5 17.5 1 +1948 6 10 15.3 14.4 14.4 1 +1948 6 11 15.5 14.6 14.6 1 +1948 6 12 13.6 12.7 12.7 1 +1948 6 13 14.9 14.0 14.0 1 +1948 6 14 16.4 15.6 15.6 1 +1948 6 15 12.9 12.1 12.1 1 +1948 6 16 17.5 16.7 16.7 1 +1948 6 17 16.5 15.7 15.7 1 +1948 6 18 15.0 14.2 14.2 1 +1948 6 19 14.7 13.9 13.9 1 +1948 6 20 12.5 11.7 11.7 1 +1948 6 21 13.2 12.4 12.4 1 +1948 6 22 15.0 14.2 14.2 1 +1948 6 23 16.2 15.4 15.4 1 +1948 6 24 16.3 15.5 15.5 1 +1948 6 25 11.9 11.1 11.1 1 +1948 6 26 12.5 11.7 11.7 1 +1948 6 27 17.4 16.6 16.6 1 +1948 6 28 17.7 16.9 16.9 1 +1948 6 29 17.8 17.0 17.0 1 +1948 6 30 16.4 15.6 15.6 1 +1948 7 1 15.3 14.5 14.5 1 +1948 7 2 17.2 16.4 16.4 1 +1948 7 3 17.5 16.7 16.7 1 +1948 7 4 17.0 16.2 16.2 1 +1948 7 5 17.4 16.6 16.6 1 +1948 7 6 16.4 15.6 15.6 1 +1948 7 7 18.2 17.4 17.4 1 +1948 7 8 17.3 16.5 16.5 1 +1948 7 9 18.4 17.6 17.6 1 +1948 7 10 19.0 18.2 18.2 1 +1948 7 11 19.2 18.4 18.4 1 +1948 7 12 18.7 17.9 17.9 1 +1948 7 13 17.8 17.0 17.0 1 +1948 7 14 15.2 14.4 14.4 1 +1948 7 15 15.5 14.7 14.7 1 +1948 7 16 15.8 15.0 15.0 1 +1948 7 17 17.1 16.3 16.3 1 +1948 7 18 18.2 17.4 17.4 1 +1948 7 19 18.4 17.6 17.6 1 +1948 7 20 17.1 16.4 16.4 1 +1948 7 21 17.8 17.1 17.1 1 +1948 7 22 18.6 17.9 17.9 1 +1948 7 23 16.2 15.5 15.5 1 +1948 7 24 16.6 15.9 15.9 1 +1948 7 25 17.9 17.2 17.2 1 +1948 7 26 18.8 18.1 18.1 1 +1948 7 27 22.6 21.9 21.9 1 +1948 7 28 22.4 21.7 21.7 1 +1948 7 29 21.8 21.1 21.1 1 +1948 7 30 22.6 21.9 21.9 1 +1948 7 31 25.0 24.3 24.3 1 +1948 8 1 24.9 24.2 24.2 1 +1948 8 2 23.6 23.0 23.0 1 +1948 8 3 14.8 14.2 14.2 1 +1948 8 4 16.0 15.4 15.4 1 +1948 8 5 16.3 15.7 15.7 1 +1948 8 6 15.9 15.3 15.3 1 +1948 8 7 17.2 16.6 16.6 1 +1948 8 8 18.6 18.0 18.0 1 +1948 8 9 16.1 15.5 15.5 1 +1948 8 10 17.2 16.6 16.6 1 +1948 8 11 17.0 16.4 16.4 1 +1948 8 12 16.7 16.1 16.1 1 +1948 8 13 16.9 16.3 16.3 1 +1948 8 14 15.6 15.0 15.0 1 +1948 8 15 15.6 15.1 15.1 1 +1948 8 16 16.5 16.0 16.0 1 +1948 8 17 16.5 16.0 16.0 1 +1948 8 18 15.8 15.3 15.3 1 +1948 8 19 15.4 14.9 14.9 1 +1948 8 20 12.9 12.4 12.4 1 +1948 8 21 14.9 14.4 14.4 1 +1948 8 22 15.4 14.9 14.9 1 +1948 8 23 16.0 15.6 15.6 1 +1948 8 24 14.1 13.7 13.7 1 +1948 8 25 13.5 13.1 13.1 1 +1948 8 26 14.0 13.6 13.6 1 +1948 8 27 13.4 13.0 13.0 1 +1948 8 28 9.9 9.5 9.5 1 +1948 8 29 12.3 11.9 11.9 1 +1948 8 30 14.2 13.8 13.8 1 +1948 8 31 15.2 14.9 14.9 1 +1948 9 1 16.6 16.3 16.3 1 +1948 9 2 15.2 14.9 14.9 1 +1948 9 3 15.8 15.5 15.5 1 +1948 9 4 15.4 15.1 15.1 1 +1948 9 5 15.9 15.6 15.6 1 +1948 9 6 15.8 15.5 15.5 1 +1948 9 7 17.1 16.8 16.8 1 +1948 9 8 15.5 15.3 15.3 1 +1948 9 9 16.8 16.6 16.6 1 +1948 9 10 14.0 13.8 13.8 1 +1948 9 11 15.1 14.9 14.9 1 +1948 9 12 17.8 17.6 17.6 1 +1948 9 13 15.8 15.6 15.6 1 +1948 9 14 14.1 13.9 13.9 1 +1948 9 15 12.8 12.6 12.6 1 +1948 9 16 10.4 10.2 10.2 1 +1948 9 17 11.5 11.4 11.4 1 +1948 9 18 12.0 11.9 11.9 1 +1948 9 19 9.1 9.0 9.0 1 +1948 9 20 6.9 6.8 6.8 1 +1948 9 21 6.2 6.1 6.1 1 +1948 9 22 5.5 5.4 5.4 1 +1948 9 23 7.5 7.4 7.4 1 +1948 9 24 7.0 6.9 6.9 1 +1948 9 25 7.4 7.3 7.3 1 +1948 9 26 6.0 5.9 5.9 1 +1948 9 27 10.2 10.1 10.1 1 +1948 9 28 16.1 16.0 16.0 1 +1948 9 29 14.9 14.8 14.8 1 +1948 9 30 7.6 7.5 7.5 1 +1948 10 1 7.0 6.9 6.9 1 +1948 10 2 12.6 12.5 12.5 1 +1948 10 3 10.0 9.9 9.9 1 +1948 10 4 5.2 5.1 5.1 1 +1948 10 5 8.0 7.9 7.9 1 +1948 10 6 7.8 7.7 7.7 1 +1948 10 7 8.8 8.7 8.7 1 +1948 10 8 6.1 6.0 6.0 1 +1948 10 9 3.0 2.9 2.9 1 +1948 10 10 2.9 2.8 2.8 1 +1948 10 11 5.4 5.3 5.3 1 +1948 10 12 7.6 7.5 7.5 1 +1948 10 13 8.7 8.6 8.6 1 +1948 10 14 8.2 8.1 8.1 1 +1948 10 15 9.6 9.5 9.5 1 +1948 10 16 7.7 7.6 7.6 1 +1948 10 17 6.9 6.8 6.8 1 +1948 10 18 10.3 10.2 10.2 1 +1948 10 19 8.1 8.0 8.0 1 +1948 10 20 8.0 7.8 7.8 1 +1948 10 21 9.0 8.8 8.8 1 +1948 10 22 6.8 6.6 6.6 1 +1948 10 23 6.6 6.4 6.4 1 +1948 10 24 3.3 3.1 3.1 1 +1948 10 25 4.6 4.4 4.4 1 +1948 10 26 6.5 6.3 6.3 1 +1948 10 27 2.7 2.5 2.5 1 +1948 10 28 0.0 -0.2 -0.2 1 +1948 10 29 1.0 0.8 0.8 1 +1948 10 30 0.1 -0.1 -0.1 1 +1948 10 31 -0.4 -0.6 -0.6 1 +1948 11 1 1.8 1.6 1.6 1 +1948 11 2 3.2 3.0 3.0 1 +1948 11 3 5.5 5.3 5.3 1 +1948 11 4 7.9 7.6 7.6 1 +1948 11 5 7.1 6.8 6.8 1 +1948 11 6 2.7 2.4 2.4 1 +1948 11 7 0.4 0.1 0.1 1 +1948 11 8 0.0 -0.3 -0.3 1 +1948 11 9 -1.2 -1.5 -1.5 1 +1948 11 10 1.3 1.0 1.0 1 +1948 11 11 -2.1 -2.4 -2.4 1 +1948 11 12 -3.1 -3.4 -3.4 1 +1948 11 13 -1.7 -2.0 -2.0 1 +1948 11 14 1.0 0.7 0.7 1 +1948 11 15 0.7 0.4 0.4 1 +1948 11 16 2.8 2.5 2.5 1 +1948 11 17 5.2 4.9 4.9 1 +1948 11 18 4.5 4.2 4.2 1 +1948 11 19 2.7 2.4 2.4 1 +1948 11 20 5.0 4.7 4.7 1 +1948 11 21 7.0 6.7 6.7 1 +1948 11 22 0.9 0.6 0.6 1 +1948 11 23 -2.7 -3.1 -3.1 1 +1948 11 24 -4.3 -4.7 -4.7 1 +1948 11 25 -1.5 -1.9 -1.9 1 +1948 11 26 -0.5 -0.9 -0.9 1 +1948 11 27 1.9 1.5 1.5 1 +1948 11 28 0.2 -0.2 -0.2 1 +1948 11 29 2.7 2.3 2.3 1 +1948 11 30 3.9 3.5 3.5 1 +1948 12 1 4.9 4.5 4.5 1 +1948 12 2 1.8 1.4 1.4 1 +1948 12 3 5.0 4.6 4.6 1 +1948 12 4 8.8 8.4 8.4 1 +1948 12 5 3.2 2.8 2.8 1 +1948 12 6 1.9 1.5 1.5 1 +1948 12 7 4.9 4.5 4.5 1 +1948 12 8 7.0 6.6 6.6 1 +1948 12 9 4.2 3.8 3.8 1 +1948 12 10 4.0 3.6 3.6 1 +1948 12 11 0.8 0.4 0.4 1 +1948 12 12 0.2 -0.2 -0.2 1 +1948 12 13 1.9 1.5 1.5 1 +1948 12 14 3.4 3.0 3.0 1 +1948 12 15 5.9 5.5 5.5 1 +1948 12 16 4.3 3.9 3.9 1 +1948 12 17 3.5 3.1 3.1 1 +1948 12 18 1.9 1.5 1.5 1 +1948 12 19 3.5 3.1 3.1 1 +1948 12 20 3.5 3.1 3.1 1 +1948 12 21 0.8 0.3 0.3 1 +1948 12 22 -0.7 -1.2 -1.2 1 +1948 12 23 1.6 1.1 1.1 1 +1948 12 24 -0.4 -0.9 -0.9 1 +1948 12 25 1.9 1.4 1.4 1 +1948 12 26 0.3 -0.2 -0.2 1 +1948 12 27 1.0 0.5 0.5 1 +1948 12 28 -1.4 -1.9 -1.9 1 +1948 12 29 1.0 0.5 0.5 1 +1948 12 30 3.6 3.1 3.1 1 +1948 12 31 2.9 2.4 2.4 1 +1949 1 1 2.9 2.4 2.4 1 +1949 1 2 4.0 3.4 3.4 1 +1949 1 3 3.4 2.8 2.8 1 +1949 1 4 1.0 0.4 0.4 1 +1949 1 5 1.7 1.1 1.1 1 +1949 1 6 2.0 1.4 1.4 1 +1949 1 7 3.3 2.7 2.7 1 +1949 1 8 1.5 0.9 0.9 1 +1949 1 9 -3.3 -3.9 -3.9 1 +1949 1 10 -0.5 -1.1 -1.1 1 +1949 1 11 3.2 2.6 2.6 1 +1949 1 12 1.4 0.8 0.8 1 +1949 1 13 -4.1 -4.7 -4.7 1 +1949 1 14 3.3 2.7 2.7 1 +1949 1 15 0.8 0.2 0.2 1 +1949 1 16 -5.8 -6.4 -6.4 1 +1949 1 17 -4.3 -4.9 -4.9 1 +1949 1 18 -0.5 -1.1 -1.1 1 +1949 1 19 -0.8 -1.4 -1.4 1 +1949 1 20 2.5 1.9 1.9 1 +1949 1 21 -4.9 -5.5 -5.5 1 +1949 1 22 -7.5 -8.1 -8.1 1 +1949 1 23 -4.2 -4.8 -4.8 1 +1949 1 24 3.6 3.0 3.0 1 +1949 1 25 2.9 2.3 2.3 1 +1949 1 26 2.7 2.1 2.1 1 +1949 1 27 2.8 2.2 2.2 1 +1949 1 28 4.6 4.0 4.0 1 +1949 1 29 2.5 1.9 1.9 1 +1949 1 30 2.4 1.8 1.8 1 +1949 1 31 -1.6 -2.2 -2.2 1 +1949 2 1 -3.7 -4.3 -4.3 1 +1949 2 2 -4.1 -4.7 -4.7 1 +1949 2 3 2.7 2.1 2.1 1 +1949 2 4 3.5 2.9 2.9 1 +1949 2 5 1.4 0.8 0.8 1 +1949 2 6 -0.6 -1.2 -1.2 1 +1949 2 7 -0.2 -0.8 -0.8 1 +1949 2 8 0.7 0.1 0.1 1 +1949 2 9 1.3 0.7 0.7 1 +1949 2 10 1.3 0.7 0.7 1 +1949 2 11 -1.4 -2.0 -2.0 1 +1949 2 12 -1.0 -1.6 -1.6 1 +1949 2 13 -0.6 -1.2 -1.2 1 +1949 2 14 3.8 3.2 3.2 1 +1949 2 15 2.6 2.0 2.0 1 +1949 2 16 5.8 5.1 5.1 1 +1949 2 17 7.2 6.5 6.5 1 +1949 2 18 2.6 1.9 1.9 1 +1949 2 19 1.6 0.9 0.9 1 +1949 2 20 3.6 2.9 2.9 1 +1949 2 21 4.4 3.7 3.7 1 +1949 2 22 6.4 5.7 5.7 1 +1949 2 23 5.0 4.3 4.3 1 +1949 2 24 2.6 1.9 1.9 1 +1949 2 25 1.4 0.7 0.7 1 +1949 2 26 -0.2 -0.9 -0.9 1 +1949 2 27 -1.6 -2.3 -2.3 1 +1949 2 28 -4.8 -5.5 -5.5 1 +1949 3 1 -5.8 -6.5 -6.5 1 +1949 3 2 -7.9 -8.6 -8.6 1 +1949 3 3 -7.7 -8.4 -8.4 1 +1949 3 4 -7.2 -7.9 -7.9 1 +1949 3 5 -6.7 -7.4 -7.4 1 +1949 3 6 -0.4 -1.1 -1.1 1 +1949 3 7 -0.1 -0.8 -0.8 1 +1949 3 8 -0.7 -1.4 -1.4 1 +1949 3 9 -0.3 -1.0 -1.0 1 +1949 3 10 -1.6 -2.3 -2.3 1 +1949 3 11 -0.2 -0.9 -0.9 1 +1949 3 12 -0.4 -1.1 -1.1 1 +1949 3 13 2.0 1.3 1.3 1 +1949 3 14 1.8 1.0 1.0 1 +1949 3 15 0.5 -0.3 -0.3 1 +1949 3 16 0.1 -0.6 -0.6 1 +1949 3 17 -2.7 -3.4 -3.4 1 +1949 3 18 -1.9 -2.6 -2.6 1 +1949 3 19 -1.1 -1.8 -1.8 1 +1949 3 20 -1.5 -2.2 -2.2 1 +1949 3 21 -0.6 -1.3 -1.3 1 +1949 3 22 2.7 2.0 2.0 1 +1949 3 23 5.5 4.8 4.8 1 +1949 3 24 7.6 6.9 6.9 1 +1949 3 25 6.3 5.6 5.6 1 +1949 3 26 3.3 2.6 2.6 1 +1949 3 27 2.9 2.2 2.2 1 +1949 3 28 4.7 4.0 4.0 1 +1949 3 29 4.1 3.4 3.4 1 +1949 3 30 4.9 4.2 4.2 1 +1949 3 31 5.2 4.5 4.5 1 +1949 4 1 1.8 1.1 1.1 1 +1949 4 2 0.8 0.1 0.1 1 +1949 4 3 2.7 2.0 2.0 1 +1949 4 4 7.4 6.7 6.7 1 +1949 4 5 7.8 7.2 7.2 1 +1949 4 6 4.5 3.9 3.9 1 +1949 4 7 2.9 2.3 2.3 1 +1949 4 8 1.5 0.9 0.9 1 +1949 4 9 -1.0 -1.6 -1.6 1 +1949 4 10 2.0 1.4 1.4 1 +1949 4 11 4.5 3.9 3.9 1 +1949 4 12 2.2 1.6 1.6 1 +1949 4 13 0.5 -0.1 -0.1 1 +1949 4 14 2.9 2.3 2.3 1 +1949 4 15 3.1 2.5 2.5 1 +1949 4 16 8.8 8.2 8.2 1 +1949 4 17 11.6 11.0 11.0 1 +1949 4 18 6.7 6.1 6.1 1 +1949 4 19 7.3 6.6 6.6 1 +1949 4 20 6.0 5.3 5.3 1 +1949 4 21 6.0 5.3 5.3 1 +1949 4 22 6.2 5.5 5.5 1 +1949 4 23 6.4 5.7 5.7 1 +1949 4 24 10.2 9.5 9.5 1 +1949 4 25 10.1 9.3 9.3 1 +1949 4 26 10.4 9.6 9.6 1 +1949 4 27 11.3 10.5 10.5 1 +1949 4 28 10.8 10.0 10.0 1 +1949 4 29 9.6 8.8 8.8 1 +1949 4 30 7.7 6.9 6.9 1 +1949 5 1 7.5 6.6 6.6 1 +1949 5 2 8.1 7.2 7.2 1 +1949 5 3 10.8 9.9 9.9 1 +1949 5 4 13.4 12.5 12.5 1 +1949 5 5 13.2 12.3 12.3 1 +1949 5 6 14.7 13.8 13.8 1 +1949 5 7 9.5 8.5 8.5 1 +1949 5 8 6.1 5.1 5.1 1 +1949 5 9 6.2 5.2 5.2 1 +1949 5 10 8.0 7.0 7.0 1 +1949 5 11 9.2 8.2 8.2 1 +1949 5 12 13.9 12.9 12.9 1 +1949 5 13 14.3 13.3 13.3 1 +1949 5 14 14.5 13.4 13.4 1 +1949 5 15 15.1 14.0 14.0 1 +1949 5 16 15.2 14.1 14.1 1 +1949 5 17 15.4 14.3 14.3 1 +1949 5 18 17.5 16.4 16.4 1 +1949 5 19 17.1 16.0 16.0 1 +1949 5 20 15.3 14.3 14.3 1 +1949 5 21 14.2 13.2 13.2 1 +1949 5 22 13.3 12.3 12.3 1 +1949 5 23 13.4 12.4 12.4 1 +1949 5 24 13.7 12.7 12.7 1 +1949 5 25 14.4 13.4 13.4 1 +1949 5 26 11.9 10.9 10.9 1 +1949 5 27 11.1 10.1 10.1 1 +1949 5 28 12.0 11.0 11.0 1 +1949 5 29 15.7 14.7 14.7 1 +1949 5 30 11.2 10.2 10.2 1 +1949 5 31 12.3 11.3 11.3 1 +1949 6 1 10.9 9.9 9.9 1 +1949 6 2 10.3 9.4 9.4 1 +1949 6 3 15.0 14.1 14.1 1 +1949 6 4 16.1 15.2 15.2 1 +1949 6 5 15.2 14.3 14.3 1 +1949 6 6 14.2 13.3 13.3 1 +1949 6 7 16.0 15.1 15.1 1 +1949 6 8 18.7 17.8 17.8 1 +1949 6 9 15.9 15.0 15.0 1 +1949 6 10 14.9 14.0 14.0 1 +1949 6 11 13.8 12.9 12.9 1 +1949 6 12 12.1 11.2 11.2 1 +1949 6 13 14.3 13.4 13.4 1 +1949 6 14 17.1 16.2 16.2 1 +1949 6 15 12.1 11.2 11.2 1 +1949 6 16 13.6 12.8 12.8 1 +1949 6 17 10.6 9.8 9.8 1 +1949 6 18 9.5 8.7 8.7 1 +1949 6 19 12.3 11.5 11.5 1 +1949 6 20 11.7 10.9 10.9 1 +1949 6 21 10.6 9.8 9.8 1 +1949 6 22 10.1 9.3 9.3 1 +1949 6 23 9.2 8.4 8.4 1 +1949 6 24 13.0 12.2 12.2 1 +1949 6 25 15.7 14.9 14.9 1 +1949 6 26 13.4 12.6 12.6 1 +1949 6 27 11.1 10.3 10.3 1 +1949 6 28 12.9 12.1 12.1 1 +1949 6 29 13.6 12.8 12.8 1 +1949 6 30 17.3 16.5 16.5 1 +1949 7 1 18.5 17.7 17.7 1 +1949 7 2 18.6 17.8 17.8 1 +1949 7 3 19.2 18.4 18.4 1 +1949 7 4 20.7 19.9 19.9 1 +1949 7 5 20.6 19.8 19.8 1 +1949 7 6 21.0 20.2 20.2 1 +1949 7 7 20.9 20.1 20.1 1 +1949 7 8 18.2 17.4 17.4 1 +1949 7 9 19.1 18.3 18.3 1 +1949 7 10 20.1 19.3 19.3 1 +1949 7 11 21.1 20.3 20.3 1 +1949 7 12 19.6 18.8 18.8 1 +1949 7 13 17.0 16.2 16.2 1 +1949 7 14 14.8 14.0 14.0 1 +1949 7 15 15.9 15.1 15.1 1 +1949 7 16 16.6 15.8 15.8 1 +1949 7 17 16.8 16.0 16.0 1 +1949 7 18 17.2 16.4 16.4 1 +1949 7 19 17.5 16.7 16.7 1 +1949 7 20 18.6 17.8 17.8 1 +1949 7 21 15.6 14.9 14.9 1 +1949 7 22 16.9 16.2 16.2 1 +1949 7 23 19.6 18.9 18.9 1 +1949 7 24 21.4 20.7 20.7 1 +1949 7 25 17.4 16.7 16.7 1 +1949 7 26 16.7 16.0 16.0 1 +1949 7 27 15.5 14.8 14.8 1 +1949 7 28 15.2 14.5 14.5 1 +1949 7 29 14.1 13.4 13.4 1 +1949 7 30 14.0 13.3 13.3 1 +1949 7 31 16.7 16.0 16.0 1 +1949 8 1 15.4 14.7 14.7 1 +1949 8 2 16.3 15.6 15.6 1 +1949 8 3 16.9 16.2 16.2 1 +1949 8 4 16.5 15.9 15.9 1 +1949 8 5 15.9 15.3 15.3 1 +1949 8 6 17.6 17.0 17.0 1 +1949 8 7 19.1 18.5 18.5 1 +1949 8 8 16.8 16.2 16.2 1 +1949 8 9 17.7 17.1 17.1 1 +1949 8 10 16.5 15.9 15.9 1 +1949 8 11 15.1 14.5 14.5 1 +1949 8 12 13.2 12.6 12.6 1 +1949 8 13 15.5 14.9 14.9 1 +1949 8 14 16.0 15.4 15.4 1 +1949 8 15 15.4 14.8 14.8 1 +1949 8 16 12.8 12.3 12.3 1 +1949 8 17 11.4 10.9 10.9 1 +1949 8 18 8.9 8.4 8.4 1 +1949 8 19 11.8 11.3 11.3 1 +1949 8 20 12.6 12.1 12.1 1 +1949 8 21 14.5 14.0 14.0 1 +1949 8 22 16.3 15.8 15.8 1 +1949 8 23 14.7 14.2 14.2 1 +1949 8 24 16.0 15.6 15.6 1 +1949 8 25 16.7 16.3 16.3 1 +1949 8 26 16.9 16.5 16.5 1 +1949 8 27 16.8 16.4 16.4 1 +1949 8 28 17.6 17.2 17.2 1 +1949 8 29 17.0 16.6 16.6 1 +1949 8 30 13.9 13.5 13.5 1 +1949 8 31 15.7 15.3 15.3 1 +1949 9 1 17.1 16.8 16.8 1 +1949 9 2 15.8 15.5 15.5 1 +1949 9 3 16.8 16.5 16.5 1 +1949 9 4 17.1 16.8 16.8 1 +1949 9 5 16.1 15.8 15.8 1 +1949 9 6 15.0 14.7 14.7 1 +1949 9 7 17.4 17.1 17.1 1 +1949 9 8 16.9 16.6 16.6 1 +1949 9 9 17.1 16.9 16.9 1 +1949 9 10 17.3 17.1 17.1 1 +1949 9 11 16.4 16.2 16.2 1 +1949 9 12 13.1 12.9 12.9 1 +1949 9 13 13.4 13.2 13.2 1 +1949 9 14 14.9 14.7 14.7 1 +1949 9 15 17.4 17.2 17.2 1 +1949 9 16 17.4 17.2 17.2 1 +1949 9 17 17.0 16.8 16.8 1 +1949 9 18 16.8 16.6 16.6 1 +1949 9 19 15.8 15.6 15.6 1 +1949 9 20 14.8 14.6 14.6 1 +1949 9 21 14.2 14.0 14.0 1 +1949 9 22 11.4 11.2 11.2 1 +1949 9 23 11.2 11.0 11.0 1 +1949 9 24 13.8 13.7 13.7 1 +1949 9 25 14.7 14.6 14.6 1 +1949 9 26 14.4 14.3 14.3 1 +1949 9 27 14.4 14.3 14.3 1 +1949 9 28 14.2 14.1 14.1 1 +1949 9 29 13.6 13.5 13.5 1 +1949 9 30 12.5 12.4 12.4 1 +1949 10 1 11.1 11.0 11.0 1 +1949 10 2 10.5 10.4 10.4 1 +1949 10 3 13.1 13.0 13.0 1 +1949 10 4 7.1 7.0 7.0 1 +1949 10 5 9.7 9.6 9.6 1 +1949 10 6 5.4 5.3 5.3 1 +1949 10 7 4.2 4.1 4.1 1 +1949 10 8 6.6 6.5 6.5 1 +1949 10 9 3.5 3.4 3.4 1 +1949 10 10 4.5 4.4 4.4 1 +1949 10 11 6.8 6.7 6.7 1 +1949 10 12 8.7 8.6 8.6 1 +1949 10 13 11.9 11.8 11.8 1 +1949 10 14 13.1 13.0 13.0 1 +1949 10 15 11.7 11.6 11.6 1 +1949 10 16 13.0 12.9 12.9 1 +1949 10 17 13.0 12.9 12.9 1 +1949 10 18 11.8 11.7 11.7 1 +1949 10 19 12.6 12.4 12.4 1 +1949 10 20 10.9 10.7 10.7 1 +1949 10 21 11.5 11.3 11.3 1 +1949 10 22 9.8 9.6 9.6 1 +1949 10 23 8.7 8.5 8.5 1 +1949 10 24 9.1 8.9 8.9 1 +1949 10 25 6.2 6.0 6.0 1 +1949 10 26 8.2 8.0 8.0 1 +1949 10 27 6.0 5.8 5.8 1 +1949 10 28 0.8 0.6 0.6 1 +1949 10 29 0.8 0.6 0.6 1 +1949 10 30 -0.9 -1.1 -1.1 1 +1949 10 31 3.4 3.2 3.2 1 +1949 11 1 2.9 2.7 2.7 1 +1949 11 2 3.6 3.4 3.4 1 +1949 11 3 8.4 8.1 8.1 1 +1949 11 4 8.0 7.7 7.7 1 +1949 11 5 5.8 5.5 5.5 1 +1949 11 6 5.5 5.2 5.2 1 +1949 11 7 7.5 7.2 7.2 1 +1949 11 8 6.7 6.4 6.4 1 +1949 11 9 8.2 7.9 7.9 1 +1949 11 10 6.7 6.4 6.4 1 +1949 11 11 4.1 3.8 3.8 1 +1949 11 12 5.4 5.1 5.1 1 +1949 11 13 6.1 5.8 5.8 1 +1949 11 14 4.7 4.4 4.4 1 +1949 11 15 2.5 2.2 2.2 1 +1949 11 16 4.6 4.3 4.3 1 +1949 11 17 5.8 5.5 5.5 1 +1949 11 18 5.6 5.3 5.3 1 +1949 11 19 3.7 3.3 3.3 1 +1949 11 20 6.0 5.6 5.6 1 +1949 11 21 7.2 6.8 6.8 1 +1949 11 22 6.3 5.9 5.9 1 +1949 11 23 5.8 5.4 5.4 1 +1949 11 24 3.2 2.8 2.8 1 +1949 11 25 2.7 2.3 2.3 1 +1949 11 26 1.4 1.0 1.0 1 +1949 11 27 0.8 0.4 0.4 1 +1949 11 28 0.1 -0.3 -0.3 1 +1949 11 29 -5.7 -6.1 -6.1 1 +1949 11 30 -0.2 -0.6 -0.6 1 +1949 12 1 5.1 4.7 4.7 1 +1949 12 2 5.2 4.8 4.8 1 +1949 12 3 1.0 0.6 0.6 1 +1949 12 4 1.8 1.4 1.4 1 +1949 12 5 0.2 -0.2 -0.2 1 +1949 12 6 -2.2 -2.6 -2.6 1 +1949 12 7 -2.2 -2.6 -2.6 1 +1949 12 8 5.0 4.6 4.6 1 +1949 12 9 2.6 2.2 2.2 1 +1949 12 10 0.6 0.2 0.2 1 +1949 12 11 1.6 1.2 1.2 1 +1949 12 12 -2.1 -2.5 -2.5 1 +1949 12 13 -0.4 -0.8 -0.8 1 +1949 12 14 4.0 3.6 3.6 1 +1949 12 15 3.4 3.0 3.0 1 +1949 12 16 1.7 1.3 1.3 1 +1949 12 17 3.0 2.6 2.6 1 +1949 12 18 3.3 2.9 2.9 1 +1949 12 19 2.0 1.6 1.6 1 +1949 12 20 4.2 3.7 3.7 1 +1949 12 21 3.4 2.9 2.9 1 +1949 12 22 3.2 2.7 2.7 1 +1949 12 23 0.1 -0.4 -0.4 1 +1949 12 24 0.5 0.0 0.0 1 +1949 12 25 -0.6 -1.1 -1.1 1 +1949 12 26 1.3 0.8 0.8 1 +1949 12 27 1.0 0.5 0.5 1 +1949 12 28 0.8 0.3 0.3 1 +1949 12 29 1.6 1.1 1.1 1 +1949 12 30 -0.8 -1.3 -1.3 1 +1949 12 31 -2.4 -2.9 -2.9 1 +1950 1 1 -2.3 -2.9 -2.9 1 +1950 1 2 0.9 0.3 0.3 1 +1950 1 3 -3.0 -3.6 -3.6 1 +1950 1 4 -10.7 -11.3 -11.3 1 +1950 1 5 -15.2 -15.8 -15.8 1 +1950 1 6 -13.1 -13.7 -13.7 1 +1950 1 7 -7.6 -8.2 -8.2 1 +1950 1 8 -4.1 -4.7 -4.7 1 +1950 1 9 -6.8 -7.4 -7.4 1 +1950 1 10 -12.5 -13.1 -13.1 1 +1950 1 11 -6.5 -7.1 -7.1 1 +1950 1 12 -3.3 -3.9 -3.9 1 +1950 1 13 -1.8 -2.4 -2.4 1 +1950 1 14 1.5 0.9 0.9 1 +1950 1 15 -0.4 -1.1 -1.1 1 +1950 1 16 -2.7 -3.4 -3.4 1 +1950 1 17 -11.6 -12.3 -12.3 1 +1950 1 18 -8.1 -8.8 -8.8 1 +1950 1 19 -7.8 -8.5 -8.5 1 +1950 1 20 -1.1 -1.8 -1.8 1 +1950 1 21 2.5 1.8 1.8 1 +1950 1 22 1.0 0.3 0.3 1 +1950 1 23 1.1 0.4 0.4 1 +1950 1 24 1.1 0.4 0.4 1 +1950 1 25 -4.2 -4.9 -4.9 1 +1950 1 26 -1.4 -2.1 -2.1 1 +1950 1 27 -2.7 -3.4 -3.4 1 +1950 1 28 -2.0 -2.7 -2.7 1 +1950 1 29 -4.5 -5.2 -5.2 1 +1950 1 30 -4.9 -5.6 -5.6 1 +1950 1 31 -5.4 -6.1 -6.1 1 +1950 2 1 -1.7 -2.4 -2.4 1 +1950 2 2 -1.7 -2.4 -2.4 1 +1950 2 3 -1.2 -1.9 -1.9 1 +1950 2 4 0.6 -0.1 -0.1 1 +1950 2 5 1.3 0.6 0.6 1 +1950 2 6 0.8 0.1 0.1 1 +1950 2 7 0.8 0.1 0.1 1 +1950 2 8 -0.4 -1.1 -1.1 1 +1950 2 9 0.9 0.2 0.2 1 +1950 2 10 0.6 -0.1 -0.1 1 +1950 2 11 -0.4 -1.1 -1.1 1 +1950 2 12 -1.8 -2.5 -2.5 1 +1950 2 13 -1.1 -1.8 -1.8 1 +1950 2 14 -3.7 -4.4 -4.4 1 +1950 2 15 -5.6 -6.3 -6.3 1 +1950 2 16 -1.9 -2.6 -2.6 1 +1950 2 17 3.7 3.0 3.0 1 +1950 2 18 3.6 2.9 2.9 1 +1950 2 19 2.3 1.6 1.6 1 +1950 2 20 1.2 0.5 0.5 1 +1950 2 21 -0.3 -1.0 -1.0 1 +1950 2 22 -0.4 -1.1 -1.1 1 +1950 2 23 -2.2 -2.9 -2.9 1 +1950 2 24 -2.6 -3.3 -3.3 1 +1950 2 25 -4.2 -4.9 -4.9 1 +1950 2 26 -4.5 -5.2 -5.2 1 +1950 2 27 -4.6 -5.3 -5.3 1 +1950 2 28 -4.8 -5.5 -5.5 1 +1950 3 1 -4.8 -5.5 -5.5 1 +1950 3 2 -6.0 -6.7 -6.7 1 +1950 3 3 -1.3 -2.0 -2.0 1 +1950 3 4 3.3 2.6 2.6 1 +1950 3 5 6.2 5.5 5.5 1 +1950 3 6 6.6 5.9 5.9 1 +1950 3 7 4.4 3.7 3.7 1 +1950 3 8 0.0 -0.7 -0.7 1 +1950 3 9 -0.8 -1.5 -1.5 1 +1950 3 10 -1.0 -1.7 -1.7 1 +1950 3 11 -0.1 -0.9 -0.9 1 +1950 3 12 -3.0 -3.8 -3.8 1 +1950 3 13 -6.2 -7.0 -7.0 1 +1950 3 14 -4.9 -5.7 -5.7 1 +1950 3 15 -3.0 -3.8 -3.8 1 +1950 3 16 -0.6 -1.4 -1.4 1 +1950 3 17 2.7 1.9 1.9 1 +1950 3 18 6.5 5.7 5.7 1 +1950 3 19 7.9 7.2 7.2 1 +1950 3 20 6.6 5.9 5.9 1 +1950 3 21 4.1 3.4 3.4 1 +1950 3 22 3.6 2.9 2.9 1 +1950 3 23 1.9 1.2 1.2 1 +1950 3 24 2.9 2.2 2.2 1 +1950 3 25 3.3 2.6 2.6 1 +1950 3 26 3.4 2.7 2.7 1 +1950 3 27 6.1 5.4 5.4 1 +1950 3 28 2.2 1.5 1.5 1 +1950 3 29 3.0 2.3 2.3 1 +1950 3 30 2.7 2.0 2.0 1 +1950 3 31 4.9 4.2 4.2 1 +1950 4 1 7.2 6.5 6.5 1 +1950 4 2 5.2 4.5 4.5 1 +1950 4 3 4.7 4.0 4.0 1 +1950 4 4 4.7 4.0 4.0 1 +1950 4 5 2.9 2.2 2.2 1 +1950 4 6 4.5 3.8 3.8 1 +1950 4 7 5.6 5.0 5.0 1 +1950 4 8 4.4 3.8 3.8 1 +1950 4 9 5.0 4.4 4.4 1 +1950 4 10 5.0 4.4 4.4 1 +1950 4 11 4.1 3.5 3.5 1 +1950 4 12 5.1 4.5 4.5 1 +1950 4 13 4.8 4.2 4.2 1 +1950 4 14 3.5 2.9 2.9 1 +1950 4 15 7.2 6.6 6.6 1 +1950 4 16 6.5 5.9 5.9 1 +1950 4 17 5.3 4.7 4.7 1 +1950 4 18 5.5 4.8 4.8 1 +1950 4 19 6.4 5.7 5.7 1 +1950 4 20 8.4 7.7 7.7 1 +1950 4 21 8.7 8.0 8.0 1 +1950 4 22 9.8 9.1 9.1 1 +1950 4 23 9.9 9.2 9.2 1 +1950 4 24 6.5 5.7 5.7 1 +1950 4 25 6.2 5.4 5.4 1 +1950 4 26 5.5 4.7 4.7 1 +1950 4 27 5.9 5.1 5.1 1 +1950 4 28 5.3 4.5 4.5 1 +1950 4 29 5.1 4.3 4.3 1 +1950 4 30 7.4 6.5 6.5 1 +1950 5 1 8.7 7.8 7.8 1 +1950 5 2 10.9 10.0 10.0 1 +1950 5 3 12.4 11.5 11.5 1 +1950 5 4 11.1 10.2 10.2 1 +1950 5 5 11.1 10.2 10.2 1 +1950 5 6 12.2 11.2 11.2 1 +1950 5 7 12.4 11.4 11.4 1 +1950 5 8 10.7 9.7 9.7 1 +1950 5 9 13.8 12.8 12.8 1 +1950 5 10 13.9 12.9 12.9 1 +1950 5 11 14.7 13.7 13.7 1 +1950 5 12 14.7 13.6 13.6 1 +1950 5 13 16.2 15.1 15.1 1 +1950 5 14 10.5 9.4 9.4 1 +1950 5 15 6.8 5.7 5.7 1 +1950 5 16 8.5 7.4 7.4 1 +1950 5 17 7.8 6.7 6.7 1 +1950 5 18 8.6 7.5 7.5 1 +1950 5 19 10.2 9.1 9.1 1 +1950 5 20 12.7 11.6 11.6 1 +1950 5 21 10.3 9.2 9.2 1 +1950 5 22 12.2 11.2 11.2 1 +1950 5 23 10.9 9.9 9.9 1 +1950 5 24 9.7 8.7 8.7 1 +1950 5 25 12.4 11.4 11.4 1 +1950 5 26 13.9 12.9 12.9 1 +1950 5 27 10.5 9.5 9.5 1 +1950 5 28 11.4 10.4 10.4 1 +1950 5 29 13.2 12.2 12.2 1 +1950 5 30 12.2 11.2 11.2 1 +1950 5 31 9.8 8.8 8.8 1 +1950 6 1 9.8 8.8 8.8 1 +1950 6 2 15.0 14.0 14.0 1 +1950 6 3 18.5 17.5 17.5 1 +1950 6 4 19.9 19.0 19.0 1 +1950 6 5 21.4 20.5 20.5 1 +1950 6 6 17.0 16.1 16.1 1 +1950 6 7 19.9 19.0 19.0 1 +1950 6 8 22.3 21.4 21.4 1 +1950 6 9 15.0 14.1 14.1 1 +1950 6 10 10.9 10.0 10.0 1 +1950 6 11 10.1 9.2 9.2 1 +1950 6 12 11.9 11.0 11.0 1 +1950 6 13 12.6 11.7 11.7 1 +1950 6 14 12.7 11.8 11.8 1 +1950 6 15 15.2 14.3 14.3 1 +1950 6 16 15.6 14.7 14.7 1 +1950 6 17 16.2 15.3 15.3 1 +1950 6 18 17.3 16.4 16.4 1 +1950 6 19 16.9 16.0 16.0 1 +1950 6 20 15.9 15.0 15.0 1 +1950 6 21 17.4 16.5 16.5 1 +1950 6 22 16.2 15.3 15.3 1 +1950 6 23 15.9 15.1 15.1 1 +1950 6 24 14.9 14.1 14.1 1 +1950 6 25 14.9 14.1 14.1 1 +1950 6 26 18.3 17.5 17.5 1 +1950 6 27 18.1 17.3 17.3 1 +1950 6 28 15.5 14.7 14.7 1 +1950 6 29 17.1 16.3 16.3 1 +1950 6 30 15.8 15.0 15.0 1 +1950 7 1 14.7 13.9 13.9 1 +1950 7 2 15.5 14.7 14.7 1 +1950 7 3 13.6 12.8 12.8 1 +1950 7 4 13.9 13.1 13.1 1 +1950 7 5 15.1 14.3 14.3 1 +1950 7 6 14.3 13.5 13.5 1 +1950 7 7 14.4 13.6 13.6 1 +1950 7 8 17.7 16.9 16.9 1 +1950 7 9 15.0 14.2 14.2 1 +1950 7 10 17.0 16.2 16.2 1 +1950 7 11 13.1 12.3 12.3 1 +1950 7 12 13.9 13.1 13.1 1 +1950 7 13 14.9 14.1 14.1 1 +1950 7 14 15.2 14.4 14.4 1 +1950 7 15 16.6 15.8 15.8 1 +1950 7 16 18.3 17.5 17.5 1 +1950 7 17 18.7 17.9 17.9 1 +1950 7 18 16.8 16.0 16.0 1 +1950 7 19 17.2 16.4 16.4 1 +1950 7 20 16.9 16.1 16.1 1 +1950 7 21 19.4 18.6 18.6 1 +1950 7 22 18.9 18.1 18.1 1 +1950 7 23 17.8 17.1 17.1 1 +1950 7 24 18.1 17.4 17.4 1 +1950 7 25 17.9 17.2 17.2 1 +1950 7 26 16.6 15.9 15.9 1 +1950 7 27 13.2 12.5 12.5 1 +1950 7 28 14.0 13.3 13.3 1 +1950 7 29 15.0 14.3 14.3 1 +1950 7 30 16.0 15.3 15.3 1 +1950 7 31 16.5 15.8 15.8 1 +1950 8 1 17.8 17.1 17.1 1 +1950 8 2 18.2 17.5 17.5 1 +1950 8 3 17.7 17.0 17.0 1 +1950 8 4 18.2 17.5 17.5 1 +1950 8 5 17.7 17.1 17.1 1 +1950 8 6 17.1 16.5 16.5 1 +1950 8 7 16.9 16.3 16.3 1 +1950 8 8 16.9 16.3 16.3 1 +1950 8 9 18.0 17.4 17.4 1 +1950 8 10 18.5 17.9 17.9 1 +1950 8 11 19.2 18.6 18.6 1 +1950 8 12 18.8 18.2 18.2 1 +1950 8 13 19.0 18.4 18.4 1 +1950 8 14 18.4 17.8 17.8 1 +1950 8 15 17.9 17.3 17.3 1 +1950 8 16 17.9 17.3 17.3 1 +1950 8 17 18.8 18.3 18.3 1 +1950 8 18 20.4 19.9 19.9 1 +1950 8 19 18.8 18.3 18.3 1 +1950 8 20 17.6 17.1 17.1 1 +1950 8 21 17.7 17.2 17.2 1 +1950 8 22 17.3 16.8 16.8 1 +1950 8 23 15.4 14.9 14.9 1 +1950 8 24 13.3 12.8 12.8 1 +1950 8 25 13.5 13.1 13.1 1 +1950 8 26 15.4 15.0 15.0 1 +1950 8 27 16.3 15.9 15.9 1 +1950 8 28 17.5 17.1 17.1 1 +1950 8 29 15.4 15.0 15.0 1 +1950 8 30 14.4 14.0 14.0 1 +1950 8 31 14.2 13.8 13.8 1 +1950 9 1 12.6 12.2 12.2 1 +1950 9 2 13.0 12.7 12.7 1 +1950 9 3 13.4 13.1 13.1 1 +1950 9 4 14.1 13.8 13.8 1 +1950 9 5 14.6 14.3 14.3 1 +1950 9 6 15.2 14.9 14.9 1 +1950 9 7 14.3 14.0 14.0 1 +1950 9 8 13.6 13.3 13.3 1 +1950 9 9 11.4 11.2 11.2 1 +1950 9 10 12.6 12.4 12.4 1 +1950 9 11 12.3 12.1 12.1 1 +1950 9 12 12.9 12.7 12.7 1 +1950 9 13 12.5 12.3 12.3 1 +1950 9 14 13.1 12.9 12.9 1 +1950 9 15 14.5 14.3 14.3 1 +1950 9 16 14.6 14.4 14.4 1 +1950 9 17 13.2 13.0 13.0 1 +1950 9 18 14.3 14.1 14.1 1 +1950 9 19 12.7 12.5 12.5 1 +1950 9 20 12.8 12.6 12.6 1 +1950 9 21 11.5 11.3 11.3 1 +1950 9 22 11.5 11.3 11.3 1 +1950 9 23 10.1 9.9 9.9 1 +1950 9 24 9.6 9.4 9.4 1 +1950 9 25 9.7 9.5 9.5 1 +1950 9 26 11.2 11.0 11.0 1 +1950 9 27 9.7 9.5 9.5 1 +1950 9 28 11.7 11.5 11.5 1 +1950 9 29 10.8 10.6 10.6 1 +1950 9 30 10.0 9.8 9.8 1 +1950 10 1 11.4 11.3 11.3 1 +1950 10 2 11.9 11.8 11.8 1 +1950 10 3 10.9 10.8 10.8 1 +1950 10 4 8.7 8.6 8.6 1 +1950 10 5 8.2 8.1 8.1 1 +1950 10 6 12.0 11.9 11.9 1 +1950 10 7 11.9 11.8 11.8 1 +1950 10 8 11.9 11.8 11.8 1 +1950 10 9 10.7 10.6 10.6 1 +1950 10 10 9.0 8.9 8.9 1 +1950 10 11 8.4 8.3 8.3 1 +1950 10 12 8.5 8.4 8.4 1 +1950 10 13 6.3 6.2 6.2 1 +1950 10 14 7.0 6.9 6.9 1 +1950 10 15 9.6 9.5 9.5 1 +1950 10 16 9.5 9.4 9.4 1 +1950 10 17 8.7 8.6 8.6 1 +1950 10 18 7.7 7.5 7.5 1 +1950 10 19 5.9 5.7 5.7 1 +1950 10 20 9.0 8.8 8.8 1 +1950 10 21 6.8 6.6 6.6 1 +1950 10 22 3.4 3.2 3.2 1 +1950 10 23 3.4 3.2 3.2 1 +1950 10 24 3.4 3.2 3.2 1 +1950 10 25 3.7 3.5 3.5 1 +1950 10 26 3.6 3.4 3.4 1 +1950 10 27 3.5 3.3 3.3 1 +1950 10 28 4.8 4.6 4.6 1 +1950 10 29 3.8 3.6 3.6 1 +1950 10 30 5.1 4.9 4.9 1 +1950 10 31 6.4 6.2 6.2 1 +1950 11 1 6.6 6.4 6.4 1 +1950 11 2 6.8 6.5 6.5 1 +1950 11 3 4.4 4.1 4.1 1 +1950 11 4 4.0 3.7 3.7 1 +1950 11 5 2.9 2.6 2.6 1 +1950 11 6 1.2 0.9 0.9 1 +1950 11 7 0.5 0.2 0.2 1 +1950 11 8 0.3 0.0 0.0 1 +1950 11 9 1.0 0.7 0.7 1 +1950 11 10 3.5 3.2 3.2 1 +1950 11 11 6.2 5.9 5.9 1 +1950 11 12 4.2 3.9 3.9 1 +1950 11 13 5.7 5.4 5.4 1 +1950 11 14 4.1 3.8 3.8 1 +1950 11 15 1.5 1.2 1.2 1 +1950 11 16 1.1 0.8 0.8 1 +1950 11 17 -1.8 -2.2 -2.2 1 +1950 11 18 -1.8 -2.2 -2.2 1 +1950 11 19 -2.9 -3.3 -3.3 1 +1950 11 20 -2.3 -2.7 -2.7 1 +1950 11 21 2.0 1.6 1.6 1 +1950 11 22 4.1 3.7 3.7 1 +1950 11 23 4.9 4.5 4.5 1 +1950 11 24 6.2 5.8 5.8 1 +1950 11 25 2.2 1.8 1.8 1 +1950 11 26 0.0 -0.4 -0.4 1 +1950 11 27 1.6 1.2 1.2 1 +1950 11 28 3.8 3.4 3.4 1 +1950 11 29 1.6 1.2 1.2 1 +1950 11 30 -1.8 -2.2 -2.2 1 +1950 12 1 3.1 2.7 2.7 1 +1950 12 2 0.9 0.5 0.5 1 +1950 12 3 1.6 1.2 1.2 1 +1950 12 4 -1.0 -1.4 -1.4 1 +1950 12 5 -0.2 -0.6 -0.6 1 +1950 12 6 -0.3 -0.7 -0.7 1 +1950 12 7 -6.2 -6.6 -6.6 1 +1950 12 8 -5.1 -5.5 -5.5 1 +1950 12 9 -0.9 -1.3 -1.3 1 +1950 12 10 1.5 1.1 1.1 1 +1950 12 11 3.2 2.8 2.8 1 +1950 12 12 2.6 2.2 2.2 1 +1950 12 13 2.2 1.8 1.8 1 +1950 12 14 0.8 0.4 0.4 1 +1950 12 15 3.5 3.1 3.1 1 +1950 12 16 5.3 4.9 4.9 1 +1950 12 17 5.5 5.1 5.1 1 +1950 12 18 1.4 0.9 0.9 1 +1950 12 19 0.0 -0.5 -0.5 1 +1950 12 20 -2.1 -2.6 -2.6 1 +1950 12 21 0.5 0.0 0.0 1 +1950 12 22 -0.1 -0.6 -0.6 1 +1950 12 23 0.0 -0.5 -0.5 1 +1950 12 24 0.6 0.1 0.1 1 +1950 12 25 0.2 -0.3 -0.3 1 +1950 12 26 -5.2 -5.7 -5.7 1 +1950 12 27 -6.6 -7.1 -7.1 1 +1950 12 28 -4.7 -5.2 -5.2 1 +1950 12 29 -5.7 -6.2 -6.2 1 +1950 12 30 -8.6 -9.1 -9.1 1 +1950 12 31 -5.2 -5.7 -5.7 1 +1951 1 1 -7.2 -7.8 -7.8 1 +1951 1 2 -2.1 -2.7 -2.7 1 +1951 1 3 -1.0 -1.6 -1.6 1 +1951 1 4 -2.2 -2.8 -2.8 1 +1951 1 5 -4.2 -4.8 -4.8 1 +1951 1 6 -3.0 -3.6 -3.6 1 +1951 1 7 -7.5 -8.1 -8.1 1 +1951 1 8 -5.0 -5.6 -5.6 1 +1951 1 9 -7.7 -8.3 -8.3 1 +1951 1 10 -7.9 -8.5 -8.5 1 +1951 1 11 -2.0 -2.6 -2.6 1 +1951 1 12 0.5 -0.1 -0.1 1 +1951 1 13 0.8 0.2 0.2 1 +1951 1 14 1.4 0.7 0.7 1 +1951 1 15 0.5 -0.2 -0.2 1 +1951 1 16 -0.9 -1.6 -1.6 1 +1951 1 17 -4.7 -5.4 -5.4 1 +1951 1 18 1.1 0.4 0.4 1 +1951 1 19 1.8 1.1 1.1 1 +1951 1 20 0.8 0.1 0.1 1 +1951 1 21 -5.8 -6.5 -6.5 1 +1951 1 22 -8.0 -8.7 -8.7 1 +1951 1 23 -6.5 -7.2 -7.2 1 +1951 1 24 -3.2 -3.9 -3.9 1 +1951 1 25 -1.8 -2.5 -2.5 1 +1951 1 26 -4.2 -4.9 -4.9 1 +1951 1 27 -2.5 -3.2 -3.2 1 +1951 1 28 -3.3 -4.0 -4.0 1 +1951 1 29 -1.0 -1.7 -1.7 1 +1951 1 30 -0.7 -1.4 -1.4 1 +1951 1 31 0.1 -0.6 -0.6 1 +1951 2 1 -1.1 -1.8 -1.8 1 +1951 2 2 -2.6 -3.3 -3.3 1 +1951 2 3 -3.0 -3.7 -3.7 1 +1951 2 4 -2.9 -3.6 -3.6 1 +1951 2 5 -1.3 -2.0 -2.0 1 +1951 2 6 -0.1 -0.8 -0.8 1 +1951 2 7 0.9 0.2 0.2 1 +1951 2 8 0.2 -0.5 -0.5 1 +1951 2 9 1.4 0.7 0.7 1 +1951 2 10 1.5 0.8 0.8 1 +1951 2 11 0.9 0.2 0.2 1 +1951 2 12 -0.8 -1.5 -1.5 1 +1951 2 13 -0.7 -1.4 -1.4 1 +1951 2 14 -4.2 -4.9 -4.9 1 +1951 2 15 -8.1 -8.8 -8.8 1 +1951 2 16 -5.2 -5.9 -5.9 1 +1951 2 17 -2.6 -3.3 -3.3 1 +1951 2 18 -0.2 -0.9 -0.9 1 +1951 2 19 1.5 0.8 0.8 1 +1951 2 20 1.3 0.6 0.6 1 +1951 2 21 0.8 0.1 0.1 1 +1951 2 22 0.0 -0.7 -0.7 1 +1951 2 23 0.5 -0.2 -0.2 1 +1951 2 24 -2.5 -3.2 -3.2 1 +1951 2 25 -1.2 -1.9 -1.9 1 +1951 2 26 -1.7 -2.4 -2.4 1 +1951 2 27 -1.4 -2.1 -2.1 1 +1951 2 28 -2.7 -3.4 -3.4 1 +1951 3 1 -2.5 -3.2 -3.2 1 +1951 3 2 -0.3 -1.0 -1.0 1 +1951 3 3 -1.1 -1.8 -1.8 1 +1951 3 4 -0.9 -1.6 -1.6 1 +1951 3 5 -1.2 -1.9 -1.9 1 +1951 3 6 -1.8 -2.5 -2.5 1 +1951 3 7 -0.7 -1.4 -1.4 1 +1951 3 8 -2.4 -3.2 -3.2 1 +1951 3 9 -3.0 -3.8 -3.8 1 +1951 3 10 -5.4 -6.2 -6.2 1 +1951 3 11 -7.4 -8.2 -8.2 1 +1951 3 12 -3.9 -4.7 -4.7 1 +1951 3 13 -0.6 -1.4 -1.4 1 +1951 3 14 -2.3 -3.1 -3.1 1 +1951 3 15 -4.1 -4.9 -4.9 1 +1951 3 16 -6.2 -7.0 -7.0 1 +1951 3 17 -7.5 -8.3 -8.3 1 +1951 3 18 -5.0 -5.8 -5.8 1 +1951 3 19 -6.3 -7.1 -7.1 1 +1951 3 20 -5.3 -6.1 -6.1 1 +1951 3 21 -6.1 -6.8 -6.8 1 +1951 3 22 -4.5 -5.2 -5.2 1 +1951 3 23 0.3 -0.4 -0.4 1 +1951 3 24 -3.3 -4.0 -4.0 1 +1951 3 25 -2.0 -2.7 -2.7 1 +1951 3 26 -0.1 -0.8 -0.8 1 +1951 3 27 -0.4 -1.1 -1.1 1 +1951 3 28 -1.0 -1.7 -1.7 1 +1951 3 29 -1.1 -1.8 -1.8 1 +1951 3 30 -0.5 -1.2 -1.2 1 +1951 3 31 0.5 -0.2 -0.2 1 +1951 4 1 0.6 -0.1 -0.1 1 +1951 4 2 0.5 -0.2 -0.2 1 +1951 4 3 0.9 0.2 0.2 1 +1951 4 4 1.4 0.7 0.7 1 +1951 4 5 3.6 2.9 2.9 1 +1951 4 6 3.2 2.5 2.5 1 +1951 4 7 3.3 2.6 2.6 1 +1951 4 8 5.3 4.6 4.6 1 +1951 4 9 4.7 4.0 4.0 1 +1951 4 10 2.3 1.7 1.7 1 +1951 4 11 3.0 2.4 2.4 1 +1951 4 12 4.7 4.1 4.1 1 +1951 4 13 4.2 3.6 3.6 1 +1951 4 14 4.7 4.1 4.1 1 +1951 4 15 3.1 2.5 2.5 1 +1951 4 16 3.6 3.0 3.0 1 +1951 4 17 4.7 4.0 4.0 1 +1951 4 18 4.7 4.0 4.0 1 +1951 4 19 3.2 2.5 2.5 1 +1951 4 20 1.8 1.1 1.1 1 +1951 4 21 3.9 3.2 3.2 1 +1951 4 22 4.9 4.2 4.2 1 +1951 4 23 6.4 5.6 5.6 1 +1951 4 24 9.0 8.2 8.2 1 +1951 4 25 9.9 9.1 9.1 1 +1951 4 26 9.4 8.6 8.6 1 +1951 4 27 12.1 11.3 11.3 1 +1951 4 28 8.1 7.3 7.3 1 +1951 4 29 7.6 6.7 6.7 1 +1951 4 30 8.7 7.8 7.8 1 +1951 5 1 9.9 9.0 9.0 1 +1951 5 2 6.0 5.1 5.1 1 +1951 5 3 9.3 8.4 8.4 1 +1951 5 4 7.9 7.0 7.0 1 +1951 5 5 5.5 4.5 4.5 1 +1951 5 6 6.2 5.2 5.2 1 +1951 5 7 5.6 4.6 4.6 1 +1951 5 8 5.9 4.9 4.9 1 +1951 5 9 5.1 4.1 4.1 1 +1951 5 10 6.5 5.5 5.5 1 +1951 5 11 5.9 4.8 4.8 1 +1951 5 12 9.1 8.0 8.0 1 +1951 5 13 8.7 7.6 7.6 1 +1951 5 14 7.4 6.3 6.3 1 +1951 5 15 7.7 6.6 6.6 1 +1951 5 16 7.5 6.4 6.4 1 +1951 5 17 9.7 8.6 8.6 1 +1951 5 18 12.6 11.5 11.5 1 +1951 5 19 11.9 10.8 10.8 1 +1951 5 20 13.4 12.3 12.3 1 +1951 5 21 9.9 8.8 8.8 1 +1951 5 22 8.5 7.4 7.4 1 +1951 5 23 8.3 7.2 7.2 1 +1951 5 24 6.9 5.9 5.9 1 +1951 5 25 7.0 6.0 6.0 1 +1951 5 26 9.5 8.5 8.5 1 +1951 5 27 11.0 10.0 10.0 1 +1951 5 28 7.8 6.8 6.8 1 +1951 5 29 6.1 5.1 5.1 1 +1951 5 30 8.8 7.8 7.8 1 +1951 5 31 11.0 10.0 10.0 1 +1951 6 1 16.6 15.6 15.6 1 +1951 6 2 13.2 12.2 12.2 1 +1951 6 3 13.1 12.1 12.1 1 +1951 6 4 14.4 13.4 13.4 1 +1951 6 5 16.1 15.1 15.1 1 +1951 6 6 9.8 8.9 8.9 1 +1951 6 7 8.6 7.7 7.7 1 +1951 6 8 10.1 9.2 9.2 1 +1951 6 9 13.1 12.2 12.2 1 +1951 6 10 14.1 13.2 13.2 1 +1951 6 11 10.4 9.5 9.5 1 +1951 6 12 11.4 10.5 10.5 1 +1951 6 13 12.2 11.3 11.3 1 +1951 6 14 14.3 13.4 13.4 1 +1951 6 15 17.0 16.1 16.1 1 +1951 6 16 15.7 14.8 14.8 1 +1951 6 17 16.8 15.9 15.9 1 +1951 6 18 15.3 14.4 14.4 1 +1951 6 19 14.7 13.8 13.8 1 +1951 6 20 15.3 14.4 14.4 1 +1951 6 21 16.1 15.2 15.2 1 +1951 6 22 17.5 16.6 16.6 1 +1951 6 23 17.0 16.1 16.1 1 +1951 6 24 16.7 15.8 15.8 1 +1951 6 25 19.2 18.3 18.3 1 +1951 6 26 15.2 14.3 14.3 1 +1951 6 27 17.5 16.6 16.6 1 +1951 6 28 15.1 14.2 14.2 1 +1951 6 29 12.7 11.8 11.8 1 +1951 6 30 13.9 13.1 13.1 1 +1951 7 1 16.8 16.0 16.0 1 +1951 7 2 15.4 14.6 14.6 1 +1951 7 3 16.6 15.8 15.8 1 +1951 7 4 13.7 12.9 12.9 1 +1951 7 5 11.2 10.4 10.4 1 +1951 7 6 12.5 11.7 11.7 1 +1951 7 7 14.3 13.5 13.5 1 +1951 7 8 16.2 15.4 15.4 1 +1951 7 9 15.3 14.5 14.5 1 +1951 7 10 16.5 15.7 15.7 1 +1951 7 11 18.3 17.5 17.5 1 +1951 7 12 21.7 20.9 20.9 1 +1951 7 13 19.4 18.6 18.6 1 +1951 7 14 18.7 17.9 17.9 1 +1951 7 15 18.2 17.4 17.4 1 +1951 7 16 18.5 17.7 17.7 1 +1951 7 17 18.4 17.6 17.6 1 +1951 7 18 15.0 14.2 14.2 1 +1951 7 19 12.9 12.1 12.1 1 +1951 7 20 12.6 11.8 11.8 1 +1951 7 21 13.4 12.6 12.6 1 +1951 7 22 15.1 14.3 14.3 1 +1951 7 23 17.0 16.2 16.2 1 +1951 7 24 17.3 16.5 16.5 1 +1951 7 25 18.7 18.0 18.0 1 +1951 7 26 20.5 19.8 19.8 1 +1951 7 27 19.8 19.1 19.1 1 +1951 7 28 19.7 19.0 19.0 1 +1951 7 29 17.3 16.6 16.6 1 +1951 7 30 16.6 15.9 15.9 1 +1951 7 31 15.9 15.2 15.2 1 +1951 8 1 16.7 16.0 16.0 1 +1951 8 2 18.1 17.4 17.4 1 +1951 8 3 18.5 17.8 17.8 1 +1951 8 4 20.2 19.5 19.5 1 +1951 8 5 18.6 17.9 17.9 1 +1951 8 6 20.8 20.1 20.1 1 +1951 8 7 19.7 19.1 19.1 1 +1951 8 8 19.2 18.6 18.6 1 +1951 8 9 20.8 20.2 20.2 1 +1951 8 10 17.1 16.5 16.5 1 +1951 8 11 15.7 15.1 15.1 1 +1951 8 12 15.3 14.7 14.7 1 +1951 8 13 17.0 16.4 16.4 1 +1951 8 14 15.5 14.9 14.9 1 +1951 8 15 15.1 14.5 14.5 1 +1951 8 16 14.6 14.0 14.0 1 +1951 8 17 13.9 13.3 13.3 1 +1951 8 18 15.8 15.3 15.3 1 +1951 8 19 16.0 15.5 15.5 1 +1951 8 20 17.2 16.7 16.7 1 +1951 8 21 16.3 15.8 15.8 1 +1951 8 22 17.8 17.3 17.3 1 +1951 8 23 16.8 16.3 16.3 1 +1951 8 24 17.1 16.6 16.6 1 +1951 8 25 17.1 16.6 16.6 1 +1951 8 26 16.9 16.5 16.5 1 +1951 8 27 18.4 18.0 18.0 1 +1951 8 28 17.6 17.2 17.2 1 +1951 8 29 17.7 17.3 17.3 1 +1951 8 30 18.7 18.3 18.3 1 +1951 8 31 19.7 19.3 19.3 1 +1951 9 1 20.0 19.6 19.6 1 +1951 9 2 15.6 15.3 15.3 1 +1951 9 3 16.5 16.2 16.2 1 +1951 9 4 15.6 15.3 15.3 1 +1951 9 5 18.0 17.7 17.7 1 +1951 9 6 18.8 18.5 18.5 1 +1951 9 7 17.8 17.5 17.5 1 +1951 9 8 13.3 13.0 13.0 1 +1951 9 9 11.4 11.1 11.1 1 +1951 9 10 13.1 12.9 12.9 1 +1951 9 11 14.8 14.6 14.6 1 +1951 9 12 15.7 15.5 15.5 1 +1951 9 13 16.0 15.8 15.8 1 +1951 9 14 17.4 17.2 17.2 1 +1951 9 15 15.0 14.8 14.8 1 +1951 9 16 14.3 14.1 14.1 1 +1951 9 17 10.9 10.7 10.7 1 +1951 9 18 10.6 10.4 10.4 1 +1951 9 19 8.2 8.0 8.0 1 +1951 9 20 6.8 6.6 6.6 1 +1951 9 21 7.0 6.8 6.8 1 +1951 9 22 10.1 9.9 9.9 1 +1951 9 23 12.7 12.5 12.5 1 +1951 9 24 12.6 12.4 12.4 1 +1951 9 25 12.0 11.8 11.8 1 +1951 9 26 12.0 11.8 11.8 1 +1951 9 27 13.0 12.8 12.8 1 +1951 9 28 13.7 13.5 13.5 1 +1951 9 29 13.8 13.6 13.6 1 +1951 9 30 11.3 11.1 11.1 1 +1951 10 1 10.0 9.8 9.8 1 +1951 10 2 10.6 10.4 10.4 1 +1951 10 3 9.6 9.4 9.4 1 +1951 10 4 9.1 8.9 8.9 1 +1951 10 5 9.0 8.8 8.8 1 +1951 10 6 9.6 9.4 9.4 1 +1951 10 7 9.6 9.5 9.5 1 +1951 10 8 9.5 9.4 9.4 1 +1951 10 9 9.6 9.5 9.5 1 +1951 10 10 8.9 8.8 8.8 1 +1951 10 11 8.5 8.4 8.4 1 +1951 10 12 8.1 8.0 8.0 1 +1951 10 13 10.3 10.2 10.2 1 +1951 10 14 10.3 10.2 10.2 1 +1951 10 15 10.1 10.0 10.0 1 +1951 10 16 7.8 7.7 7.7 1 +1951 10 17 8.5 8.3 8.3 1 +1951 10 18 7.7 7.5 7.5 1 +1951 10 19 7.5 7.3 7.3 1 +1951 10 20 9.3 9.1 9.1 1 +1951 10 21 8.9 8.7 8.7 1 +1951 10 22 9.1 8.9 8.9 1 +1951 10 23 7.2 7.0 7.0 1 +1951 10 24 5.1 4.9 4.9 1 +1951 10 25 9.3 9.1 9.1 1 +1951 10 26 7.6 7.4 7.4 1 +1951 10 27 8.3 8.1 8.1 1 +1951 10 28 6.7 6.5 6.5 1 +1951 10 29 6.5 6.3 6.3 1 +1951 10 30 7.5 7.3 7.3 1 +1951 10 31 8.1 7.8 7.8 1 +1951 11 1 6.8 6.5 6.5 1 +1951 11 2 6.6 6.3 6.3 1 +1951 11 3 3.8 3.5 3.5 1 +1951 11 4 1.4 1.1 1.1 1 +1951 11 5 2.9 2.6 2.6 1 +1951 11 6 4.8 4.5 4.5 1 +1951 11 7 6.0 5.7 5.7 1 +1951 11 8 7.1 6.8 6.8 1 +1951 11 9 5.9 5.6 5.6 1 +1951 11 10 3.5 3.2 3.2 1 +1951 11 11 1.8 1.5 1.5 1 +1951 11 12 3.8 3.5 3.5 1 +1951 11 13 2.2 1.9 1.9 1 +1951 11 14 0.8 0.5 0.5 1 +1951 11 15 -1.8 -2.2 -2.2 1 +1951 11 16 2.9 2.5 2.5 1 +1951 11 17 7.0 6.6 6.6 1 +1951 11 18 7.8 7.4 7.4 1 +1951 11 19 7.0 6.6 6.6 1 +1951 11 20 8.2 7.8 7.8 1 +1951 11 21 8.0 7.6 7.6 1 +1951 11 22 7.7 7.3 7.3 1 +1951 11 23 6.2 5.8 5.8 1 +1951 11 24 3.4 3.0 3.0 1 +1951 11 25 4.1 3.7 3.7 1 +1951 11 26 1.4 1.0 1.0 1 +1951 11 27 3.7 3.3 3.3 1 +1951 11 28 4.2 3.8 3.8 1 +1951 11 29 -0.2 -0.6 -0.6 1 +1951 11 30 0.8 0.4 0.4 1 +1951 12 1 4.8 4.4 4.4 1 +1951 12 2 -0.3 -0.7 -0.7 1 +1951 12 3 -3.6 -4.0 -4.0 1 +1951 12 4 0.9 0.5 0.5 1 +1951 12 5 5.2 4.8 4.8 1 +1951 12 6 3.9 3.5 3.5 1 +1951 12 7 0.6 0.2 0.2 1 +1951 12 8 -0.2 -0.6 -0.6 1 +1951 12 9 5.0 4.6 4.6 1 +1951 12 10 -2.9 -3.3 -3.3 1 +1951 12 11 -2.9 -3.3 -3.3 1 +1951 12 12 -1.4 -1.8 -1.8 1 +1951 12 13 1.4 1.0 1.0 1 +1951 12 14 2.6 2.2 2.2 1 +1951 12 15 6.3 5.9 5.9 1 +1951 12 16 1.9 1.5 1.5 1 +1951 12 17 -0.5 -1.0 -1.0 1 +1951 12 18 3.6 3.1 3.1 1 +1951 12 19 5.6 5.1 5.1 1 +1951 12 20 5.0 4.5 4.5 1 +1951 12 21 3.7 3.2 3.2 1 +1951 12 22 3.1 2.6 2.6 1 +1951 12 23 4.2 3.7 3.7 1 +1951 12 24 3.3 2.8 2.8 1 +1951 12 25 5.7 5.2 5.2 1 +1951 12 26 4.2 3.7 3.7 1 +1951 12 27 2.4 1.9 1.9 1 +1951 12 28 3.2 2.7 2.7 1 +1951 12 29 4.1 3.6 3.6 1 +1951 12 30 2.3 1.8 1.8 1 +1951 12 31 3.6 3.0 3.0 1 +1952 1 1 3.7 3.1 3.1 1 +1952 1 2 0.9 0.3 0.3 1 +1952 1 3 -0.6 -1.2 -1.2 1 +1952 1 4 -2.4 -3.0 -3.0 1 +1952 1 5 -4.1 -4.7 -4.7 1 +1952 1 6 -2.1 -2.7 -2.7 1 +1952 1 7 6.1 5.5 5.5 1 +1952 1 8 2.2 1.6 1.6 1 +1952 1 9 4.4 3.8 3.8 1 +1952 1 10 1.4 0.8 0.8 1 +1952 1 11 0.9 0.3 0.3 1 +1952 1 12 -0.6 -1.2 -1.2 1 +1952 1 13 -2.8 -3.5 -3.5 1 +1952 1 14 -1.3 -2.0 -2.0 1 +1952 1 15 1.0 0.3 0.3 1 +1952 1 16 2.5 1.8 1.8 1 +1952 1 17 0.1 -0.6 -0.6 1 +1952 1 18 0.7 0.0 0.0 1 +1952 1 19 0.6 -0.1 -0.1 1 +1952 1 20 -2.3 -3.0 -3.0 1 +1952 1 21 -4.2 -4.9 -4.9 1 +1952 1 22 -6.3 -7.0 -7.0 1 +1952 1 23 -5.3 -6.0 -6.0 1 +1952 1 24 -3.8 -4.5 -4.5 1 +1952 1 25 -1.8 -2.5 -2.5 1 +1952 1 26 -1.9 -2.6 -2.6 1 +1952 1 27 -2.2 -2.9 -2.9 1 +1952 1 28 -2.6 -3.3 -3.3 1 +1952 1 29 -7.7 -8.4 -8.4 1 +1952 1 30 -4.7 -5.4 -5.4 1 +1952 1 31 -2.8 -3.5 -3.5 1 +1952 2 1 -0.4 -1.1 -1.1 1 +1952 2 2 0.9 0.2 0.2 1 +1952 2 3 0.6 -0.1 -0.1 1 +1952 2 4 -0.4 -1.1 -1.1 1 +1952 2 5 -3.0 -3.7 -3.7 1 +1952 2 6 -3.3 -4.0 -4.0 1 +1952 2 7 1.7 1.0 1.0 1 +1952 2 8 -1.2 -1.9 -1.9 1 +1952 2 9 -5.9 -6.6 -6.6 1 +1952 2 10 -3.8 -4.5 -4.5 1 +1952 2 11 -4.3 -5.0 -5.0 1 +1952 2 12 -5.0 -5.7 -5.7 1 +1952 2 13 -7.1 -7.8 -7.8 1 +1952 2 14 -7.2 -7.9 -7.9 1 +1952 2 15 -3.6 -4.3 -4.3 1 +1952 2 16 -1.1 -1.8 -1.8 1 +1952 2 17 -4.7 -5.4 -5.4 1 +1952 2 18 -5.9 -6.6 -6.6 1 +1952 2 19 -3.5 -4.2 -4.2 1 +1952 2 20 -0.6 -1.3 -1.3 1 +1952 2 21 2.6 1.9 1.9 1 +1952 2 22 -0.1 -0.8 -0.8 1 +1952 2 23 -0.3 -1.0 -1.0 1 +1952 2 24 -1.9 -2.6 -2.6 1 +1952 2 25 0.7 0.0 0.0 1 +1952 2 26 3.4 2.7 2.7 1 +1952 2 27 1.8 1.1 1.1 1 +1952 2 28 1.4 0.7 0.7 1 +1952 2 29 1.0 0.3 0.3 1 +1952 3 1 -4.0 -4.7 -4.7 1 +1952 3 2 -5.2 -5.9 -5.9 1 +1952 3 3 -2.7 -3.4 -3.4 1 +1952 3 4 -0.9 -1.6 -1.6 1 +1952 3 5 -1.2 -2.0 -2.0 1 +1952 3 6 -1.7 -2.5 -2.5 1 +1952 3 7 -2.1 -2.9 -2.9 1 +1952 3 8 -1.1 -1.9 -1.9 1 +1952 3 9 -0.4 -1.2 -1.2 1 +1952 3 10 0.7 -0.1 -0.1 1 +1952 3 11 1.8 1.0 1.0 1 +1952 3 12 1.3 0.5 0.5 1 +1952 3 13 -2.7 -3.5 -3.5 1 +1952 3 14 -2.5 -3.3 -3.3 1 +1952 3 15 3.1 2.3 2.3 1 +1952 3 16 2.2 1.4 1.4 1 +1952 3 17 -0.8 -1.6 -1.6 1 +1952 3 18 -0.2 -1.0 -1.0 1 +1952 3 19 -3.7 -4.5 -4.5 1 +1952 3 20 -5.6 -6.4 -6.4 1 +1952 3 21 -6.2 -7.0 -7.0 1 +1952 3 22 -6.6 -7.4 -7.4 1 +1952 3 23 -6.9 -7.6 -7.6 1 +1952 3 24 -6.0 -6.7 -6.7 1 +1952 3 25 -7.7 -8.4 -8.4 1 +1952 3 26 -8.6 -9.3 -9.3 1 +1952 3 27 -7.2 -7.9 -7.9 1 +1952 3 28 -6.1 -6.8 -6.8 1 +1952 3 29 -5.1 -5.8 -5.8 1 +1952 3 30 -3.1 -3.8 -3.8 1 +1952 3 31 -2.0 -2.7 -2.7 1 +1952 4 1 -3.0 -3.7 -3.7 1 +1952 4 2 -2.0 -2.7 -2.7 1 +1952 4 3 -0.1 -0.8 -0.8 1 +1952 4 4 1.8 1.1 1.1 1 +1952 4 5 4.8 4.1 4.1 1 +1952 4 6 4.9 4.2 4.2 1 +1952 4 7 4.5 3.8 3.8 1 +1952 4 8 6.1 5.4 5.4 1 +1952 4 9 5.5 4.8 4.8 1 +1952 4 10 6.4 5.7 5.7 1 +1952 4 11 3.9 3.2 3.2 1 +1952 4 12 7.6 7.0 7.0 1 +1952 4 13 11.0 10.4 10.4 1 +1952 4 14 11.3 10.7 10.7 1 +1952 4 15 12.3 11.7 11.7 1 +1952 4 16 8.0 7.4 7.4 1 +1952 4 17 6.1 5.4 5.4 1 +1952 4 18 5.7 5.0 5.0 1 +1952 4 19 6.6 5.9 5.9 1 +1952 4 20 4.6 3.9 3.9 1 +1952 4 21 8.5 7.8 7.8 1 +1952 4 22 8.1 7.4 7.4 1 +1952 4 23 10.5 9.7 9.7 1 +1952 4 24 10.1 9.3 9.3 1 +1952 4 25 9.9 9.1 9.1 1 +1952 4 26 9.0 8.2 8.2 1 +1952 4 27 7.7 6.9 6.9 1 +1952 4 28 9.8 9.0 9.0 1 +1952 4 29 9.6 8.7 8.7 1 +1952 4 30 9.3 8.4 8.4 1 +1952 5 1 7.2 6.3 6.3 1 +1952 5 2 6.3 5.4 5.4 1 +1952 5 3 6.4 5.5 5.5 1 +1952 5 4 8.8 7.9 7.9 1 +1952 5 5 10.0 9.0 9.0 1 +1952 5 6 8.2 7.2 7.2 1 +1952 5 7 6.0 5.0 5.0 1 +1952 5 8 5.6 4.6 4.6 1 +1952 5 9 7.5 6.5 6.5 1 +1952 5 10 11.6 10.6 10.6 1 +1952 5 11 13.4 12.3 12.3 1 +1952 5 12 15.3 14.2 14.2 1 +1952 5 13 9.4 8.3 8.3 1 +1952 5 14 6.7 5.6 5.6 1 +1952 5 15 5.5 4.4 4.4 1 +1952 5 16 7.2 6.1 6.1 1 +1952 5 17 7.7 6.6 6.6 1 +1952 5 18 6.2 5.1 5.1 1 +1952 5 19 3.2 2.1 2.1 1 +1952 5 20 6.8 5.7 5.7 1 +1952 5 21 8.2 7.1 7.1 1 +1952 5 22 11.3 10.2 10.2 1 +1952 5 23 10.9 9.8 9.8 1 +1952 5 24 10.3 9.2 9.2 1 +1952 5 25 12.1 11.0 11.0 1 +1952 5 26 10.5 9.5 9.5 1 +1952 5 27 9.2 8.2 8.2 1 +1952 5 28 10.7 9.7 9.7 1 +1952 5 29 10.0 9.0 9.0 1 +1952 5 30 8.9 7.9 7.9 1 +1952 5 31 11.1 10.1 10.1 1 +1952 6 1 13.3 12.3 12.3 1 +1952 6 2 13.1 12.1 12.1 1 +1952 6 3 14.4 13.4 13.4 1 +1952 6 4 12.0 11.0 11.0 1 +1952 6 5 14.3 13.3 13.3 1 +1952 6 6 15.4 14.4 14.4 1 +1952 6 7 13.3 12.3 12.3 1 +1952 6 8 12.5 11.6 11.6 1 +1952 6 9 11.7 10.8 10.8 1 +1952 6 10 10.3 9.4 9.4 1 +1952 6 11 13.2 12.3 12.3 1 +1952 6 12 15.0 14.1 14.1 1 +1952 6 13 15.6 14.7 14.7 1 +1952 6 14 13.1 12.2 12.2 1 +1952 6 15 14.9 14.0 14.0 1 +1952 6 16 12.3 11.4 11.4 1 +1952 6 17 13.1 12.2 12.2 1 +1952 6 18 15.1 14.2 14.2 1 +1952 6 19 13.8 12.9 12.9 1 +1952 6 20 13.2 12.3 12.3 1 +1952 6 21 12.8 11.9 11.9 1 +1952 6 22 12.8 11.9 11.9 1 +1952 6 23 13.8 12.9 12.9 1 +1952 6 24 12.8 11.9 11.9 1 +1952 6 25 14.4 13.5 13.5 1 +1952 6 26 14.5 13.6 13.6 1 +1952 6 27 17.6 16.7 16.7 1 +1952 6 28 16.9 16.0 16.0 1 +1952 6 29 18.5 17.6 17.6 1 +1952 6 30 16.6 15.7 15.7 1 +1952 7 1 16.8 15.9 15.9 1 +1952 7 2 19.7 18.8 18.8 1 +1952 7 3 19.9 19.0 19.0 1 +1952 7 4 18.0 17.1 17.1 1 +1952 7 5 15.5 14.6 14.6 1 +1952 7 6 17.5 16.6 16.6 1 +1952 7 7 19.6 18.8 18.8 1 +1952 7 8 19.1 18.3 18.3 1 +1952 7 9 21.0 20.2 20.2 1 +1952 7 10 20.9 20.1 20.1 1 +1952 7 11 21.3 20.5 20.5 1 +1952 7 12 18.6 17.8 17.8 1 +1952 7 13 15.7 14.9 14.9 1 +1952 7 14 15.5 14.7 14.7 1 +1952 7 15 15.3 14.5 14.5 1 +1952 7 16 14.5 13.7 13.7 1 +1952 7 17 13.5 12.7 12.7 1 +1952 7 18 14.9 14.1 14.1 1 +1952 7 19 15.0 14.2 14.2 1 +1952 7 20 14.3 13.5 13.5 1 +1952 7 21 13.5 12.7 12.7 1 +1952 7 22 11.9 11.1 11.1 1 +1952 7 23 12.8 12.0 12.0 1 +1952 7 24 14.2 13.4 13.4 1 +1952 7 25 14.9 14.1 14.1 1 +1952 7 26 16.5 15.8 15.8 1 +1952 7 27 15.0 14.3 14.3 1 +1952 7 28 15.8 15.1 15.1 1 +1952 7 29 15.3 14.6 14.6 1 +1952 7 30 16.2 15.5 15.5 1 +1952 7 31 15.7 15.0 15.0 1 +1952 8 1 17.5 16.8 16.8 1 +1952 8 2 18.2 17.5 17.5 1 +1952 8 3 18.6 17.9 17.9 1 +1952 8 4 18.8 18.1 18.1 1 +1952 8 5 17.4 16.7 16.7 1 +1952 8 6 17.9 17.2 17.2 1 +1952 8 7 16.4 15.7 15.7 1 +1952 8 8 14.2 13.5 13.5 1 +1952 8 9 15.2 14.6 14.6 1 +1952 8 10 16.1 15.5 15.5 1 +1952 8 11 17.4 16.8 16.8 1 +1952 8 12 16.3 15.7 15.7 1 +1952 8 13 18.3 17.7 17.7 1 +1952 8 14 17.5 16.9 16.9 1 +1952 8 15 14.0 13.4 13.4 1 +1952 8 16 14.7 14.1 14.1 1 +1952 8 17 13.9 13.3 13.3 1 +1952 8 18 14.6 14.0 14.0 1 +1952 8 19 13.4 12.9 12.9 1 +1952 8 20 13.2 12.7 12.7 1 +1952 8 21 14.6 14.1 14.1 1 +1952 8 22 13.7 13.2 13.2 1 +1952 8 23 15.8 15.3 15.3 1 +1952 8 24 15.2 14.7 14.7 1 +1952 8 25 13.9 13.4 13.4 1 +1952 8 26 13.0 12.5 12.5 1 +1952 8 27 11.8 11.4 11.4 1 +1952 8 28 13.2 12.8 12.8 1 +1952 8 29 11.6 11.2 11.2 1 +1952 8 30 13.0 12.6 12.6 1 +1952 8 31 13.6 13.2 13.2 1 +1952 9 1 15.9 15.5 15.5 1 +1952 9 2 14.1 13.7 13.7 1 +1952 9 3 13.2 12.9 12.9 1 +1952 9 4 11.1 10.8 10.8 1 +1952 9 5 11.3 11.0 11.0 1 +1952 9 6 10.6 10.3 10.3 1 +1952 9 7 9.4 9.1 9.1 1 +1952 9 8 11.1 10.8 10.8 1 +1952 9 9 11.4 11.1 11.1 1 +1952 9 10 10.1 9.8 9.8 1 +1952 9 11 10.9 10.7 10.7 1 +1952 9 12 10.0 9.8 9.8 1 +1952 9 13 8.8 8.6 8.6 1 +1952 9 14 8.0 7.8 7.8 1 +1952 9 15 7.3 7.1 7.1 1 +1952 9 16 10.6 10.4 10.4 1 +1952 9 17 12.3 12.1 12.1 1 +1952 9 18 10.5 10.3 10.3 1 +1952 9 19 8.2 8.0 8.0 1 +1952 9 20 6.5 6.3 6.3 1 +1952 9 21 6.5 6.3 6.3 1 +1952 9 22 5.8 5.6 5.6 1 +1952 9 23 4.8 4.6 4.6 1 +1952 9 24 6.1 5.9 5.9 1 +1952 9 25 9.0 8.8 8.8 1 +1952 9 26 9.9 9.7 9.7 1 +1952 9 27 10.8 10.6 10.6 1 +1952 9 28 10.1 9.9 9.9 1 +1952 9 29 8.9 8.7 8.7 1 +1952 9 30 7.2 7.0 7.0 1 +1952 10 1 8.5 8.3 8.3 1 +1952 10 2 7.9 7.7 7.7 1 +1952 10 3 6.1 5.9 5.9 1 +1952 10 4 4.8 4.6 4.6 1 +1952 10 5 4.6 4.4 4.4 1 +1952 10 6 4.1 3.9 3.9 1 +1952 10 7 6.1 5.9 5.9 1 +1952 10 8 2.9 2.7 2.7 1 +1952 10 9 6.1 5.9 5.9 1 +1952 10 10 4.5 4.3 4.3 1 +1952 10 11 4.2 4.0 4.0 1 +1952 10 12 3.8 3.7 3.7 1 +1952 10 13 5.1 5.0 5.0 1 +1952 10 14 3.8 3.7 3.7 1 +1952 10 15 6.4 6.3 6.3 1 +1952 10 16 7.2 7.0 7.0 1 +1952 10 17 4.3 4.1 4.1 1 +1952 10 18 2.5 2.3 2.3 1 +1952 10 19 3.0 2.8 2.8 1 +1952 10 20 2.8 2.6 2.6 1 +1952 10 21 2.5 2.3 2.3 1 +1952 10 22 4.5 4.3 4.3 1 +1952 10 23 3.3 3.1 3.1 1 +1952 10 24 4.1 3.9 3.9 1 +1952 10 25 5.9 5.7 5.7 1 +1952 10 26 4.3 4.1 4.1 1 +1952 10 27 3.8 3.6 3.6 1 +1952 10 28 6.9 6.7 6.7 1 +1952 10 29 9.1 8.9 8.9 1 +1952 10 30 7.8 7.5 7.5 1 +1952 10 31 6.1 5.8 5.8 1 +1952 11 1 2.6 2.3 2.3 1 +1952 11 2 -0.3 -0.6 -0.6 1 +1952 11 3 -2.0 -2.3 -2.3 1 +1952 11 4 -2.0 -2.3 -2.3 1 +1952 11 5 3.8 3.5 3.5 1 +1952 11 6 -0.3 -0.6 -0.6 1 +1952 11 7 -2.2 -2.5 -2.5 1 +1952 11 8 -0.8 -1.1 -1.1 1 +1952 11 9 -1.4 -1.7 -1.7 1 +1952 11 10 -2.4 -2.7 -2.7 1 +1952 11 11 0.2 -0.1 -0.1 1 +1952 11 12 3.7 3.4 3.4 1 +1952 11 13 2.6 2.3 2.3 1 +1952 11 14 3.5 3.1 3.1 1 +1952 11 15 2.4 2.0 2.0 1 +1952 11 16 1.5 1.1 1.1 1 +1952 11 17 1.8 1.4 1.4 1 +1952 11 18 -1.4 -1.8 -1.8 1 +1952 11 19 -4.5 -4.9 -4.9 1 +1952 11 20 -1.4 -1.8 -1.8 1 +1952 11 21 2.5 2.1 2.1 1 +1952 11 22 2.6 2.2 2.2 1 +1952 11 23 3.1 2.7 2.7 1 +1952 11 24 3.5 3.1 3.1 1 +1952 11 25 1.6 1.2 1.2 1 +1952 11 26 0.5 0.1 0.1 1 +1952 11 27 -1.8 -2.2 -2.2 1 +1952 11 28 -2.7 -3.1 -3.1 1 +1952 11 29 -4.9 -5.3 -5.3 1 +1952 11 30 -6.4 -6.8 -6.8 1 +1952 12 1 -7.7 -8.1 -8.1 1 +1952 12 2 -0.8 -1.2 -1.2 1 +1952 12 3 -1.5 -1.9 -1.9 1 +1952 12 4 -4.2 -4.6 -4.6 1 +1952 12 5 -5.6 -6.0 -6.0 1 +1952 12 6 1.6 1.2 1.2 1 +1952 12 7 -2.6 -3.0 -3.0 1 +1952 12 8 0.3 -0.1 -0.1 1 +1952 12 9 -2.2 -2.6 -2.6 1 +1952 12 10 3.2 2.8 2.8 1 +1952 12 11 1.3 0.9 0.9 1 +1952 12 12 1.8 1.4 1.4 1 +1952 12 13 2.3 1.9 1.9 1 +1952 12 14 0.1 -0.3 -0.3 1 +1952 12 15 -5.1 -5.5 -5.5 1 +1952 12 16 -7.5 -8.0 -8.0 1 +1952 12 17 -0.5 -1.0 -1.0 1 +1952 12 18 -1.8 -2.3 -2.3 1 +1952 12 19 -3.9 -4.4 -4.4 1 +1952 12 20 -2.2 -2.7 -2.7 1 +1952 12 21 -2.4 -2.9 -2.9 1 +1952 12 22 -2.0 -2.5 -2.5 1 +1952 12 23 -2.5 -3.0 -3.0 1 +1952 12 24 -1.5 -2.0 -2.0 1 +1952 12 25 1.7 1.2 1.2 1 +1952 12 26 2.0 1.5 1.5 1 +1952 12 27 1.8 1.3 1.3 1 +1952 12 28 1.1 0.6 0.6 1 +1952 12 29 -0.2 -0.7 -0.7 1 +1952 12 30 -0.2 -0.8 -0.8 1 +1952 12 31 -1.5 -2.1 -2.1 1 +1953 1 1 -2.6 -3.2 -3.2 1 +1953 1 2 -3.4 -4.0 -4.0 1 +1953 1 3 -3.9 -4.5 -4.5 1 +1953 1 4 -4.3 -4.9 -4.9 1 +1953 1 5 -10.8 -11.4 -11.4 1 +1953 1 6 -4.7 -5.3 -5.3 1 +1953 1 7 -1.6 -2.2 -2.2 1 +1953 1 8 -5.5 -6.1 -6.1 1 +1953 1 9 -1.5 -2.1 -2.1 1 +1953 1 10 -8.2 -8.8 -8.8 1 +1953 1 11 -7.3 -7.9 -7.9 1 +1953 1 12 -4.2 -4.9 -4.9 1 +1953 1 13 2.0 1.3 1.3 1 +1953 1 14 2.9 2.2 2.2 1 +1953 1 15 1.6 0.9 0.9 1 +1953 1 16 1.1 0.4 0.4 1 +1953 1 17 1.6 0.9 0.9 1 +1953 1 18 3.3 2.6 2.6 1 +1953 1 19 -1.9 -2.6 -2.6 1 +1953 1 20 0.2 -0.5 -0.5 1 +1953 1 21 0.3 -0.4 -0.4 1 +1953 1 22 -3.8 -4.5 -4.5 1 +1953 1 23 -5.2 -5.9 -5.9 1 +1953 1 24 -5.5 -6.2 -6.2 1 +1953 1 25 -8.6 -9.3 -9.3 1 +1953 1 26 -5.8 -6.5 -6.5 1 +1953 1 27 0.5 -0.2 -0.2 1 +1953 1 28 -0.1 -0.8 -0.8 1 +1953 1 29 -2.3 -3.0 -3.0 1 +1953 1 30 -2.9 -3.6 -3.6 1 +1953 1 31 0.7 0.0 0.0 1 +1953 2 1 1.3 0.6 0.6 1 +1953 2 2 -2.1 -2.8 -2.8 1 +1953 2 3 -4.3 -5.0 -5.0 1 +1953 2 4 -2.4 -3.1 -3.1 1 +1953 2 5 -7.2 -7.9 -7.9 1 +1953 2 6 -12.9 -13.6 -13.6 1 +1953 2 7 -14.5 -15.2 -15.2 1 +1953 2 8 -11.6 -12.3 -12.3 1 +1953 2 9 -9.8 -10.5 -10.5 1 +1953 2 10 -10.0 -10.7 -10.7 1 +1953 2 11 -6.5 -7.2 -7.2 1 +1953 2 12 -7.6 -8.3 -8.3 1 +1953 2 13 -7.9 -8.6 -8.6 1 +1953 2 14 -6.1 -6.8 -6.8 1 +1953 2 15 -7.1 -7.8 -7.8 1 +1953 2 16 -3.4 -4.1 -4.1 1 +1953 2 17 1.1 0.4 0.4 1 +1953 2 18 1.3 0.6 0.6 1 +1953 2 19 -0.1 -0.8 -0.8 1 +1953 2 20 -3.9 -4.6 -4.6 1 +1953 2 21 2.0 1.3 1.3 1 +1953 2 22 1.7 1.0 1.0 1 +1953 2 23 -1.0 -1.7 -1.7 1 +1953 2 24 -1.5 -2.2 -2.2 1 +1953 2 25 1.0 0.3 0.3 1 +1953 2 26 4.8 4.1 4.1 1 +1953 2 27 3.8 3.1 3.1 1 +1953 2 28 2.8 2.1 2.1 1 +1953 3 1 2.8 2.1 2.1 1 +1953 3 2 3.6 2.8 2.8 1 +1953 3 3 2.0 1.2 1.2 1 +1953 3 4 0.0 -0.8 -0.8 1 +1953 3 5 1.7 0.9 0.9 1 +1953 3 6 2.5 1.7 1.7 1 +1953 3 7 2.1 1.3 1.3 1 +1953 3 8 0.0 -0.8 -0.8 1 +1953 3 9 3.7 2.9 2.9 1 +1953 3 10 0.2 -0.6 -0.6 1 +1953 3 11 1.3 0.5 0.5 1 +1953 3 12 -0.8 -1.6 -1.6 1 +1953 3 13 2.8 2.0 2.0 1 +1953 3 14 4.9 4.1 4.1 1 +1953 3 15 1.9 1.1 1.1 1 +1953 3 16 1.2 0.4 0.4 1 +1953 3 17 1.1 0.3 0.3 1 +1953 3 18 2.9 2.1 2.1 1 +1953 3 19 2.3 1.5 1.5 1 +1953 3 20 2.3 1.5 1.5 1 +1953 3 21 4.9 4.1 4.1 1 +1953 3 22 7.2 6.4 6.4 1 +1953 3 23 4.0 3.2 3.2 1 +1953 3 24 7.8 7.0 7.0 1 +1953 3 25 9.1 8.3 8.3 1 +1953 3 26 10.2 9.5 9.5 1 +1953 3 27 5.4 4.7 4.7 1 +1953 3 28 2.9 2.2 2.2 1 +1953 3 29 6.6 5.9 5.9 1 +1953 3 30 6.3 5.6 5.6 1 +1953 3 31 0.4 -0.3 -0.3 1 +1953 4 1 0.2 -0.5 -0.5 1 +1953 4 2 2.5 1.8 1.8 1 +1953 4 3 7.3 6.6 6.6 1 +1953 4 4 8.9 8.2 8.2 1 +1953 4 5 6.8 6.1 6.1 1 +1953 4 6 4.3 3.6 3.6 1 +1953 4 7 4.0 3.3 3.3 1 +1953 4 8 5.8 5.1 5.1 1 +1953 4 9 3.6 2.9 2.9 1 +1953 4 10 3.1 2.4 2.4 1 +1953 4 11 5.6 4.9 4.9 1 +1953 4 12 6.8 6.1 6.1 1 +1953 4 13 8.5 7.8 7.8 1 +1953 4 14 7.7 7.0 7.0 1 +1953 4 15 5.7 5.1 5.1 1 +1953 4 16 4.5 3.8 3.8 1 +1953 4 17 7.5 6.8 6.8 1 +1953 4 18 6.5 5.8 5.8 1 +1953 4 19 2.3 1.6 1.6 1 +1953 4 20 5.5 4.8 4.8 1 +1953 4 21 8.7 8.0 8.0 1 +1953 4 22 10.3 9.5 9.5 1 +1953 4 23 10.9 10.1 10.1 1 +1953 4 24 9.7 8.9 8.9 1 +1953 4 25 9.4 8.6 8.6 1 +1953 4 26 7.1 6.3 6.3 1 +1953 4 27 7.6 6.8 6.8 1 +1953 4 28 7.7 6.8 6.8 1 +1953 4 29 10.6 9.7 9.7 1 +1953 4 30 10.4 9.5 9.5 1 +1953 5 1 12.9 12.0 12.0 1 +1953 5 2 13.5 12.6 12.6 1 +1953 5 3 11.5 10.6 10.6 1 +1953 5 4 10.0 9.0 9.0 1 +1953 5 5 6.7 5.7 5.7 1 +1953 5 6 5.3 4.3 4.3 1 +1953 5 7 2.6 1.6 1.6 1 +1953 5 8 3.1 2.1 2.1 1 +1953 5 9 4.2 3.2 3.2 1 +1953 5 10 6.7 5.6 5.6 1 +1953 5 11 8.4 7.3 7.3 1 +1953 5 12 8.8 7.7 7.7 1 +1953 5 13 6.9 5.8 5.8 1 +1953 5 14 10.6 9.5 9.5 1 +1953 5 15 12.5 11.4 11.4 1 +1953 5 16 10.6 9.5 9.5 1 +1953 5 17 15.3 14.2 14.2 1 +1953 5 18 15.6 14.5 14.5 1 +1953 5 19 16.1 15.0 15.0 1 +1953 5 20 15.8 14.7 14.7 1 +1953 5 21 17.9 16.8 16.8 1 +1953 5 22 15.2 14.1 14.1 1 +1953 5 23 15.7 14.6 14.6 1 +1953 5 24 10.9 9.8 9.8 1 +1953 5 25 8.8 7.7 7.7 1 +1953 5 26 11.2 10.1 10.1 1 +1953 5 27 10.4 9.3 9.3 1 +1953 5 28 7.1 6.1 6.1 1 +1953 5 29 7.2 6.2 6.2 1 +1953 5 30 8.8 7.8 7.8 1 +1953 5 31 10.3 9.3 9.3 1 +1953 6 1 9.9 8.9 8.9 1 +1953 6 2 10.8 9.8 9.8 1 +1953 6 3 11.1 10.1 10.1 1 +1953 6 4 10.7 9.7 9.7 1 +1953 6 5 13.1 12.1 12.1 1 +1953 6 6 12.5 11.5 11.5 1 +1953 6 7 14.5 13.5 13.5 1 +1953 6 8 16.3 15.3 15.3 1 +1953 6 9 17.4 16.4 16.4 1 +1953 6 10 17.5 16.6 16.6 1 +1953 6 11 16.2 15.3 15.3 1 +1953 6 12 14.8 13.9 13.9 1 +1953 6 13 18.7 17.8 17.8 1 +1953 6 14 18.9 18.0 18.0 1 +1953 6 15 18.0 17.1 17.1 1 +1953 6 16 17.1 16.2 16.2 1 +1953 6 17 19.7 18.8 18.8 1 +1953 6 18 18.1 17.2 17.2 1 +1953 6 19 18.9 18.0 18.0 1 +1953 6 20 16.0 15.1 15.1 1 +1953 6 21 19.0 18.1 18.1 1 +1953 6 22 21.9 21.0 21.0 1 +1953 6 23 21.7 20.8 20.8 1 +1953 6 24 18.9 18.0 18.0 1 +1953 6 25 21.6 20.7 20.7 1 +1953 6 26 22.9 22.0 22.0 1 +1953 6 27 18.9 18.0 18.0 1 +1953 6 28 21.5 20.6 20.6 1 +1953 6 29 22.9 22.0 22.0 1 +1953 6 30 22.3 21.4 21.4 1 +1953 7 1 19.9 19.0 19.0 1 +1953 7 2 22.5 21.6 21.6 1 +1953 7 3 22.2 21.3 21.3 1 +1953 7 4 20.0 19.1 19.1 1 +1953 7 5 15.3 14.4 14.4 1 +1953 7 6 14.4 13.5 13.5 1 +1953 7 7 12.8 11.9 11.9 1 +1953 7 8 15.6 14.7 14.7 1 +1953 7 9 16.8 15.9 15.9 1 +1953 7 10 17.3 16.4 16.4 1 +1953 7 11 16.0 15.1 15.1 1 +1953 7 12 16.6 15.7 15.7 1 +1953 7 13 18.0 17.2 17.2 1 +1953 7 14 17.9 17.1 17.1 1 +1953 7 15 16.8 16.0 16.0 1 +1953 7 16 17.4 16.6 16.6 1 +1953 7 17 18.2 17.4 17.4 1 +1953 7 18 16.6 15.8 15.8 1 +1953 7 19 17.4 16.6 16.6 1 +1953 7 20 17.2 16.4 16.4 1 +1953 7 21 18.8 18.0 18.0 1 +1953 7 22 18.5 17.7 17.7 1 +1953 7 23 19.3 18.5 18.5 1 +1953 7 24 17.1 16.3 16.3 1 +1953 7 25 18.5 17.7 17.7 1 +1953 7 26 20.1 19.3 19.3 1 +1953 7 27 18.7 17.9 17.9 1 +1953 7 28 14.6 13.9 13.9 1 +1953 7 29 15.5 14.8 14.8 1 +1953 7 30 16.5 15.8 15.8 1 +1953 7 31 14.2 13.5 13.5 1 +1953 8 1 14.0 13.3 13.3 1 +1953 8 2 13.8 13.1 13.1 1 +1953 8 3 15.2 14.5 14.5 1 +1953 8 4 16.1 15.4 15.4 1 +1953 8 5 13.9 13.2 13.2 1 +1953 8 6 15.0 14.3 14.3 1 +1953 8 7 15.4 14.7 14.7 1 +1953 8 8 15.0 14.3 14.3 1 +1953 8 9 16.8 16.1 16.1 1 +1953 8 10 17.7 17.0 17.0 1 +1953 8 11 18.6 18.0 18.0 1 +1953 8 12 18.5 17.9 17.9 1 +1953 8 13 19.8 19.2 19.2 1 +1953 8 14 21.5 20.9 20.9 1 +1953 8 15 20.5 19.9 19.9 1 +1953 8 16 17.4 16.8 16.8 1 +1953 8 17 17.8 17.2 17.2 1 +1953 8 18 18.1 17.5 17.5 1 +1953 8 19 15.2 14.6 14.6 1 +1953 8 20 16.1 15.6 15.6 1 +1953 8 21 14.5 14.0 14.0 1 +1953 8 22 16.4 15.9 15.9 1 +1953 8 23 16.3 15.8 15.8 1 +1953 8 24 15.1 14.6 14.6 1 +1953 8 25 16.1 15.6 15.6 1 +1953 8 26 15.1 14.6 14.6 1 +1953 8 27 15.6 15.2 15.2 1 +1953 8 28 15.9 15.5 15.5 1 +1953 8 29 14.1 13.7 13.7 1 +1953 8 30 13.3 12.9 12.9 1 +1953 8 31 12.2 11.8 11.8 1 +1953 9 1 13.9 13.5 13.5 1 +1953 9 2 13.6 13.2 13.2 1 +1953 9 3 15.7 15.3 15.3 1 +1953 9 4 13.5 13.2 13.2 1 +1953 9 5 10.4 10.1 10.1 1 +1953 9 6 10.2 9.9 9.9 1 +1953 9 7 12.2 11.9 11.9 1 +1953 9 8 13.6 13.3 13.3 1 +1953 9 9 9.7 9.4 9.4 1 +1953 9 10 9.2 8.9 8.9 1 +1953 9 11 10.1 9.9 9.9 1 +1953 9 12 10.9 10.7 10.7 1 +1953 9 13 10.1 9.9 9.9 1 +1953 9 14 9.0 8.8 8.8 1 +1953 9 15 11.8 11.6 11.6 1 +1953 9 16 12.7 12.5 12.5 1 +1953 9 17 13.2 13.0 13.0 1 +1953 9 18 12.9 12.7 12.7 1 +1953 9 19 12.9 12.7 12.7 1 +1953 9 20 12.5 12.3 12.3 1 +1953 9 21 11.6 11.4 11.4 1 +1953 9 22 12.2 12.0 12.0 1 +1953 9 23 13.3 13.1 13.1 1 +1953 9 24 12.4 12.2 12.2 1 +1953 9 25 11.8 11.6 11.6 1 +1953 9 26 11.6 11.4 11.4 1 +1953 9 27 10.9 10.7 10.7 1 +1953 9 28 11.8 11.6 11.6 1 +1953 9 29 13.3 13.1 13.1 1 +1953 9 30 12.5 12.3 12.3 1 +1953 10 1 14.4 14.2 14.2 1 +1953 10 2 14.2 14.0 14.0 1 +1953 10 3 12.5 12.3 12.3 1 +1953 10 4 10.8 10.6 10.6 1 +1953 10 5 8.0 7.8 7.8 1 +1953 10 6 5.5 5.3 5.3 1 +1953 10 7 4.2 4.0 4.0 1 +1953 10 8 6.1 5.9 5.9 1 +1953 10 9 8.4 8.2 8.2 1 +1953 10 10 12.4 12.2 12.2 1 +1953 10 11 13.1 12.9 12.9 1 +1953 10 12 9.9 9.7 9.7 1 +1953 10 13 10.8 10.6 10.6 1 +1953 10 14 11.2 11.0 11.0 1 +1953 10 15 8.0 7.8 7.8 1 +1953 10 16 7.5 7.3 7.3 1 +1953 10 17 8.5 8.3 8.3 1 +1953 10 18 9.8 9.6 9.6 1 +1953 10 19 9.5 9.3 9.3 1 +1953 10 20 8.3 8.1 8.1 1 +1953 10 21 9.7 9.5 9.5 1 +1953 10 22 10.0 9.8 9.8 1 +1953 10 23 8.6 8.4 8.4 1 +1953 10 24 9.1 8.9 8.9 1 +1953 10 25 9.3 9.1 9.1 1 +1953 10 26 10.5 10.3 10.3 1 +1953 10 27 11.3 11.1 11.1 1 +1953 10 28 10.8 10.6 10.6 1 +1953 10 29 9.1 8.8 8.8 1 +1953 10 30 7.9 7.6 7.6 1 +1953 10 31 5.7 5.4 5.4 1 +1953 11 1 5.7 5.4 5.4 1 +1953 11 2 5.8 5.5 5.5 1 +1953 11 3 6.2 5.9 5.9 1 +1953 11 4 6.0 5.7 5.7 1 +1953 11 5 6.8 6.5 6.5 1 +1953 11 6 4.7 4.4 4.4 1 +1953 11 7 7.1 6.8 6.8 1 +1953 11 8 8.4 8.1 8.1 1 +1953 11 9 7.4 7.1 7.1 1 +1953 11 10 5.7 5.4 5.4 1 +1953 11 11 7.7 7.4 7.4 1 +1953 11 12 7.2 6.9 6.9 1 +1953 11 13 3.1 2.7 2.7 1 +1953 11 14 1.7 1.3 1.3 1 +1953 11 15 0.9 0.5 0.5 1 +1953 11 16 -0.8 -1.2 -1.2 1 +1953 11 17 4.1 3.7 3.7 1 +1953 11 18 4.5 4.1 4.1 1 +1953 11 19 5.0 4.6 4.6 1 +1953 11 20 1.2 0.8 0.8 1 +1953 11 21 0.3 -0.1 -0.1 1 +1953 11 22 -1.2 -1.6 -1.6 1 +1953 11 23 -1.5 -1.9 -1.9 1 +1953 11 24 -1.3 -1.7 -1.7 1 +1953 11 25 0.4 0.0 0.0 1 +1953 11 26 -1.0 -1.4 -1.4 1 +1953 11 27 0.8 0.4 0.4 1 +1953 11 28 5.7 5.3 5.3 1 +1953 11 29 5.9 5.5 5.5 1 +1953 11 30 6.6 6.2 6.2 1 +1953 12 1 5.2 4.8 4.8 1 +1953 12 2 9.0 8.6 8.6 1 +1953 12 3 10.9 10.5 10.5 1 +1953 12 4 10.1 9.7 9.7 1 +1953 12 5 3.0 2.6 2.6 1 +1953 12 6 0.0 -0.4 -0.4 1 +1953 12 7 2.5 2.1 2.1 1 +1953 12 8 0.6 0.2 0.2 1 +1953 12 9 2.7 2.3 2.3 1 +1953 12 10 2.9 2.5 2.5 1 +1953 12 11 2.5 2.1 2.1 1 +1953 12 12 3.9 3.4 3.4 1 +1953 12 13 3.4 2.9 2.9 1 +1953 12 14 3.9 3.4 3.4 1 +1953 12 15 3.7 3.2 3.2 1 +1953 12 16 2.5 2.0 2.0 1 +1953 12 17 1.3 0.8 0.8 1 +1953 12 18 1.5 1.0 1.0 1 +1953 12 19 0.6 0.1 0.1 1 +1953 12 20 0.3 -0.2 -0.2 1 +1953 12 21 -0.2 -0.7 -0.7 1 +1953 12 22 -1.3 -1.8 -1.8 1 +1953 12 23 0.2 -0.3 -0.3 1 +1953 12 24 2.1 1.6 1.6 1 +1953 12 25 3.7 3.2 3.2 1 +1953 12 26 1.7 1.2 1.2 1 +1953 12 27 1.6 1.1 1.1 1 +1953 12 28 -1.0 -1.6 -1.6 1 +1953 12 29 -0.9 -1.5 -1.5 1 +1953 12 30 -2.4 -3.0 -3.0 1 +1953 12 31 -1.0 -1.6 -1.6 1 +1954 1 1 -3.6 -4.2 -4.2 1 +1954 1 2 2.6 2.0 2.0 1 +1954 1 3 0.4 -0.2 -0.2 1 +1954 1 4 -6.4 -7.0 -7.0 1 +1954 1 5 -5.7 -6.3 -6.3 1 +1954 1 6 -0.5 -1.1 -1.1 1 +1954 1 7 -2.6 -3.2 -3.2 1 +1954 1 8 -6.7 -7.3 -7.3 1 +1954 1 9 -2.3 -2.9 -2.9 1 +1954 1 10 -4.8 -5.5 -5.5 1 +1954 1 11 -7.9 -8.6 -8.6 1 +1954 1 12 -5.6 -6.3 -6.3 1 +1954 1 13 -0.4 -1.1 -1.1 1 +1954 1 14 2.4 1.7 1.7 1 +1954 1 15 2.6 1.9 1.9 1 +1954 1 16 1.3 0.6 0.6 1 +1954 1 17 -1.6 -2.3 -2.3 1 +1954 1 18 -4.1 -4.8 -4.8 1 +1954 1 19 -2.9 -3.6 -3.6 1 +1954 1 20 0.8 0.1 0.1 1 +1954 1 21 -2.3 -3.0 -3.0 1 +1954 1 22 -3.8 -4.5 -4.5 1 +1954 1 23 -7.7 -8.4 -8.4 1 +1954 1 24 -9.2 -9.9 -9.9 1 +1954 1 25 -7.4 -8.1 -8.1 1 +1954 1 26 -7.9 -8.6 -8.6 1 +1954 1 27 -10.0 -10.7 -10.7 1 +1954 1 28 -6.2 -6.9 -6.9 1 +1954 1 29 -9.9 -10.6 -10.6 1 +1954 1 30 -12.4 -13.1 -13.1 1 +1954 1 31 -7.6 -8.3 -8.3 1 +1954 2 1 -1.4 -2.1 -2.1 1 +1954 2 2 -2.4 -3.1 -3.1 1 +1954 2 3 -5.6 -6.3 -6.3 1 +1954 2 4 -4.2 -4.9 -4.9 1 +1954 2 5 -1.5 -2.2 -2.2 1 +1954 2 6 -1.2 -1.9 -1.9 1 +1954 2 7 -2.0 -2.7 -2.7 1 +1954 2 8 -2.1 -2.8 -2.8 1 +1954 2 9 -2.4 -3.1 -3.1 1 +1954 2 10 -2.9 -3.6 -3.6 1 +1954 2 11 -6.0 -6.7 -6.7 1 +1954 2 12 -7.7 -8.4 -8.4 1 +1954 2 13 -9.5 -10.2 -10.2 1 +1954 2 14 -12.9 -13.6 -13.6 1 +1954 2 15 -10.0 -10.7 -10.7 1 +1954 2 16 -8.2 -8.9 -8.9 1 +1954 2 17 -6.8 -7.5 -7.5 1 +1954 2 18 -7.4 -8.1 -8.1 1 +1954 2 19 -6.9 -7.6 -7.6 1 +1954 2 20 -8.1 -8.8 -8.8 1 +1954 2 21 -7.1 -7.8 -7.8 1 +1954 2 22 -7.1 -7.8 -7.8 1 +1954 2 23 -3.7 -4.4 -4.4 1 +1954 2 24 -3.7 -4.4 -4.4 1 +1954 2 25 -4.5 -5.2 -5.2 1 +1954 2 26 -4.2 -4.9 -4.9 1 +1954 2 27 -4.6 -5.4 -5.4 1 +1954 2 28 -3.6 -4.4 -4.4 1 +1954 3 1 0.5 -0.3 -0.3 1 +1954 3 2 0.2 -0.6 -0.6 1 +1954 3 3 -0.3 -1.1 -1.1 1 +1954 3 4 -0.3 -1.1 -1.1 1 +1954 3 5 1.1 0.3 0.3 1 +1954 3 6 1.3 0.5 0.5 1 +1954 3 7 1.1 0.3 0.3 1 +1954 3 8 1.3 0.5 0.5 1 +1954 3 9 1.6 0.8 0.8 1 +1954 3 10 0.3 -0.5 -0.5 1 +1954 3 11 -0.1 -0.9 -0.9 1 +1954 3 12 -0.6 -1.4 -1.4 1 +1954 3 13 -0.7 -1.5 -1.5 1 +1954 3 14 -2.1 -2.9 -2.9 1 +1954 3 15 1.4 0.6 0.6 1 +1954 3 16 2.4 1.6 1.6 1 +1954 3 17 -0.2 -1.0 -1.0 1 +1954 3 18 1.3 0.5 0.5 1 +1954 3 19 -2.3 -3.1 -3.1 1 +1954 3 20 -1.0 -1.8 -1.8 1 +1954 3 21 0.8 0.0 0.0 1 +1954 3 22 4.9 4.1 4.1 1 +1954 3 23 8.1 7.3 7.3 1 +1954 3 24 4.0 3.2 3.2 1 +1954 3 25 -0.5 -1.3 -1.3 1 +1954 3 26 -0.9 -1.7 -1.7 1 +1954 3 27 0.0 -0.8 -0.8 1 +1954 3 28 1.1 0.4 0.4 1 +1954 3 29 0.0 -0.7 -0.7 1 +1954 3 30 0.7 0.0 0.0 1 +1954 3 31 1.8 1.1 1.1 1 +1954 4 1 0.9 0.2 0.2 1 +1954 4 2 1.1 0.4 0.4 1 +1954 4 3 0.4 -0.3 -0.3 1 +1954 4 4 2.5 1.8 1.8 1 +1954 4 5 5.7 5.0 5.0 1 +1954 4 6 5.3 4.6 4.6 1 +1954 4 7 2.0 1.3 1.3 1 +1954 4 8 0.4 -0.3 -0.3 1 +1954 4 9 2.4 1.7 1.7 1 +1954 4 10 5.2 4.5 4.5 1 +1954 4 11 5.1 4.4 4.4 1 +1954 4 12 1.3 0.6 0.6 1 +1954 4 13 3.9 3.2 3.2 1 +1954 4 14 2.3 1.6 1.6 1 +1954 4 15 1.6 0.9 0.9 1 +1954 4 16 1.3 0.6 0.6 1 +1954 4 17 2.8 2.1 2.1 1 +1954 4 18 4.3 3.6 3.6 1 +1954 4 19 4.1 3.4 3.4 1 +1954 4 20 4.3 3.6 3.6 1 +1954 4 21 3.7 2.9 2.9 1 +1954 4 22 3.9 3.1 3.1 1 +1954 4 23 5.0 4.2 4.2 1 +1954 4 24 2.6 1.8 1.8 1 +1954 4 25 2.2 1.4 1.4 1 +1954 4 26 3.2 2.4 2.4 1 +1954 4 27 4.0 3.1 3.1 1 +1954 4 28 4.2 3.3 3.3 1 +1954 4 29 5.9 5.0 5.0 1 +1954 4 30 4.2 3.3 3.3 1 +1954 5 1 5.1 4.2 4.2 1 +1954 5 2 6.1 5.2 5.2 1 +1954 5 3 6.0 5.0 5.0 1 +1954 5 4 8.7 7.7 7.7 1 +1954 5 5 8.0 7.0 7.0 1 +1954 5 6 10.7 9.7 9.7 1 +1954 5 7 12.0 11.0 11.0 1 +1954 5 8 12.1 11.1 11.1 1 +1954 5 9 11.3 10.2 10.2 1 +1954 5 10 12.1 11.0 11.0 1 +1954 5 11 12.7 11.6 11.6 1 +1954 5 12 6.7 5.6 5.6 1 +1954 5 13 6.1 5.0 5.0 1 +1954 5 14 6.7 5.6 5.6 1 +1954 5 15 5.6 4.4 4.4 1 +1954 5 16 8.5 7.3 7.3 1 +1954 5 17 10.2 9.0 9.0 1 +1954 5 18 9.5 8.4 8.4 1 +1954 5 19 11.3 10.2 10.2 1 +1954 5 20 11.5 10.4 10.4 1 +1954 5 21 13.5 12.4 12.4 1 +1954 5 22 10.8 9.7 9.7 1 +1954 5 23 11.3 10.2 10.2 1 +1954 5 24 12.9 11.8 11.8 1 +1954 5 25 15.5 14.4 14.4 1 +1954 5 26 18.7 17.6 17.6 1 +1954 5 27 19.7 18.6 18.6 1 +1954 5 28 18.2 17.1 17.1 1 +1954 5 29 19.3 18.2 18.2 1 +1954 5 30 20.0 19.0 19.0 1 +1954 5 31 15.1 14.1 14.1 1 +1954 6 1 11.8 10.8 10.8 1 +1954 6 2 13.1 12.1 12.1 1 +1954 6 3 11.1 10.1 10.1 1 +1954 6 4 15.0 14.0 14.0 1 +1954 6 5 15.7 14.7 14.7 1 +1954 6 6 11.1 10.1 10.1 1 +1954 6 7 10.7 9.7 9.7 1 +1954 6 8 9.4 8.4 8.4 1 +1954 6 9 12.6 11.6 11.6 1 +1954 6 10 14.0 13.0 13.0 1 +1954 6 11 16.4 15.4 15.4 1 +1954 6 12 16.4 15.5 15.5 1 +1954 6 13 15.0 14.1 14.1 1 +1954 6 14 12.3 11.4 11.4 1 +1954 6 15 13.3 12.4 12.4 1 +1954 6 16 15.0 14.1 14.1 1 +1954 6 17 16.5 15.6 15.6 1 +1954 6 18 16.5 15.6 15.6 1 +1954 6 19 18.7 17.8 17.8 1 +1954 6 20 20.4 19.5 19.5 1 +1954 6 21 22.4 21.5 21.5 1 +1954 6 22 17.9 17.0 17.0 1 +1954 6 23 16.1 15.2 15.2 1 +1954 6 24 14.5 13.6 13.6 1 +1954 6 25 14.6 13.7 13.7 1 +1954 6 26 15.8 14.9 14.9 1 +1954 6 27 14.4 13.5 13.5 1 +1954 6 28 14.1 13.2 13.2 1 +1954 6 29 16.5 15.6 15.6 1 +1954 6 30 17.9 17.0 17.0 1 +1954 7 1 14.9 14.0 14.0 1 +1954 7 2 15.8 14.9 14.9 1 +1954 7 3 16.2 15.3 15.3 1 +1954 7 4 17.5 16.6 16.6 1 +1954 7 5 18.4 17.5 17.5 1 +1954 7 6 15.4 14.5 14.5 1 +1954 7 7 17.3 16.4 16.4 1 +1954 7 8 18.4 17.5 17.5 1 +1954 7 9 18.9 18.0 18.0 1 +1954 7 10 19.6 18.7 18.7 1 +1954 7 11 21.1 20.2 20.2 1 +1954 7 12 18.8 17.9 17.9 1 +1954 7 13 18.2 17.3 17.3 1 +1954 7 14 18.7 17.8 17.8 1 +1954 7 15 15.8 14.9 14.9 1 +1954 7 16 15.5 14.6 14.6 1 +1954 7 17 15.2 14.4 14.4 1 +1954 7 18 14.5 13.7 13.7 1 +1954 7 19 14.2 13.4 13.4 1 +1954 7 20 15.6 14.8 14.8 1 +1954 7 21 15.8 15.0 15.0 1 +1954 7 22 16.0 15.2 15.2 1 +1954 7 23 14.8 14.0 14.0 1 +1954 7 24 15.1 14.3 14.3 1 +1954 7 25 17.1 16.3 16.3 1 +1954 7 26 15.6 14.8 14.8 1 +1954 7 27 17.2 16.4 16.4 1 +1954 7 28 15.3 14.5 14.5 1 +1954 7 29 14.8 14.0 14.0 1 +1954 7 30 15.4 14.7 14.7 1 +1954 7 31 16.4 15.7 15.7 1 +1954 8 1 16.5 15.8 15.8 1 +1954 8 2 16.2 15.5 15.5 1 +1954 8 3 17.0 16.3 16.3 1 +1954 8 4 17.1 16.4 16.4 1 +1954 8 5 16.4 15.7 15.7 1 +1954 8 6 17.9 17.2 17.2 1 +1954 8 7 16.6 15.9 15.9 1 +1954 8 8 16.6 15.9 15.9 1 +1954 8 9 15.5 14.8 14.8 1 +1954 8 10 15.8 15.1 15.1 1 +1954 8 11 14.8 14.1 14.1 1 +1954 8 12 15.3 14.7 14.7 1 +1954 8 13 16.5 15.9 15.9 1 +1954 8 14 16.7 16.1 16.1 1 +1954 8 15 15.2 14.6 14.6 1 +1954 8 16 14.8 14.2 14.2 1 +1954 8 17 15.3 14.7 14.7 1 +1954 8 18 14.9 14.3 14.3 1 +1954 8 19 15.4 14.8 14.8 1 +1954 8 20 14.7 14.1 14.1 1 +1954 8 21 14.8 14.3 14.3 1 +1954 8 22 15.1 14.6 14.6 1 +1954 8 23 15.9 15.4 15.4 1 +1954 8 24 15.6 15.1 15.1 1 +1954 8 25 15.8 15.3 15.3 1 +1954 8 26 15.8 15.3 15.3 1 +1954 8 27 16.4 15.9 15.9 1 +1954 8 28 15.5 15.1 15.1 1 +1954 8 29 15.0 14.6 14.6 1 +1954 8 30 13.0 12.6 12.6 1 +1954 8 31 13.7 13.3 13.3 1 +1954 9 1 12.1 11.7 11.7 1 +1954 9 2 16.8 16.4 16.4 1 +1954 9 3 18.2 17.8 17.8 1 +1954 9 4 17.0 16.6 16.6 1 +1954 9 5 14.2 13.9 13.9 1 +1954 9 6 12.4 12.1 12.1 1 +1954 9 7 13.0 12.7 12.7 1 +1954 9 8 14.6 14.3 14.3 1 +1954 9 9 15.0 14.7 14.7 1 +1954 9 10 16.4 16.1 16.1 1 +1954 9 11 14.5 14.2 14.2 1 +1954 9 12 14.0 13.8 13.8 1 +1954 9 13 13.3 13.1 13.1 1 +1954 9 14 13.0 12.8 12.8 1 +1954 9 15 13.0 12.8 12.8 1 +1954 9 16 12.3 12.1 12.1 1 +1954 9 17 11.3 11.1 11.1 1 +1954 9 18 10.3 10.1 10.1 1 +1954 9 19 11.0 10.8 10.8 1 +1954 9 20 9.7 9.5 9.5 1 +1954 9 21 9.7 9.5 9.5 1 +1954 9 22 9.0 8.8 8.8 1 +1954 9 23 8.8 8.6 8.6 1 +1954 9 24 7.3 7.1 7.1 1 +1954 9 25 10.2 10.0 10.0 1 +1954 9 26 11.4 11.2 11.2 1 +1954 9 27 7.8 7.6 7.6 1 +1954 9 28 3.7 3.5 3.5 1 +1954 9 29 7.7 7.5 7.5 1 +1954 9 30 6.4 6.2 6.2 1 +1954 10 1 7.1 6.9 6.9 1 +1954 10 2 6.1 5.9 5.9 1 +1954 10 3 7.0 6.8 6.8 1 +1954 10 4 8.5 8.3 8.3 1 +1954 10 5 6.5 6.3 6.3 1 +1954 10 6 6.6 6.4 6.4 1 +1954 10 7 6.1 5.9 5.9 1 +1954 10 8 5.1 4.9 4.9 1 +1954 10 9 4.7 4.5 4.5 1 +1954 10 10 8.3 8.1 8.1 1 +1954 10 11 8.3 8.1 8.1 1 +1954 10 12 9.9 9.7 9.7 1 +1954 10 13 9.5 9.3 9.3 1 +1954 10 14 11.5 11.3 11.3 1 +1954 10 15 6.5 6.3 6.3 1 +1954 10 16 3.9 3.7 3.7 1 +1954 10 17 3.6 3.4 3.4 1 +1954 10 18 2.5 2.3 2.3 1 +1954 10 19 2.7 2.5 2.5 1 +1954 10 20 4.3 4.1 4.1 1 +1954 10 21 7.9 7.7 7.7 1 +1954 10 22 8.6 8.4 8.4 1 +1954 10 23 6.8 6.6 6.6 1 +1954 10 24 7.8 7.6 7.6 1 +1954 10 25 9.5 9.3 9.3 1 +1954 10 26 6.3 6.1 6.1 1 +1954 10 27 4.5 4.3 4.3 1 +1954 10 28 5.4 5.1 5.1 1 +1954 10 29 7.8 7.5 7.5 1 +1954 10 30 9.5 9.2 9.2 1 +1954 10 31 8.2 7.9 7.9 1 +1954 11 1 6.4 6.1 6.1 1 +1954 11 2 5.0 4.7 4.7 1 +1954 11 3 3.2 2.9 2.9 1 +1954 11 4 2.0 1.7 1.7 1 +1954 11 5 6.9 6.6 6.6 1 +1954 11 6 6.1 5.8 5.8 1 +1954 11 7 2.1 1.8 1.8 1 +1954 11 8 0.0 -0.3 -0.3 1 +1954 11 9 1.5 1.2 1.2 1 +1954 11 10 1.9 1.6 1.6 1 +1954 11 11 4.3 4.0 4.0 1 +1954 11 12 6.8 6.4 6.4 1 +1954 11 13 1.7 1.3 1.3 1 +1954 11 14 3.4 3.0 3.0 1 +1954 11 15 1.1 0.7 0.7 1 +1954 11 16 -2.6 -3.0 -3.0 1 +1954 11 17 -0.4 -0.8 -0.8 1 +1954 11 18 -0.7 -1.1 -1.1 1 +1954 11 19 -1.5 -1.9 -1.9 1 +1954 11 20 -1.5 -1.9 -1.9 1 +1954 11 21 -2.4 -2.8 -2.8 1 +1954 11 22 -2.6 -3.0 -3.0 1 +1954 11 23 0.1 -0.3 -0.3 1 +1954 11 24 1.5 1.1 1.1 1 +1954 11 25 2.0 1.6 1.6 1 +1954 11 26 2.8 2.4 2.4 1 +1954 11 27 2.5 2.1 2.1 1 +1954 11 28 2.7 2.3 2.3 1 +1954 11 29 4.0 3.6 3.6 1 +1954 11 30 2.2 1.8 1.8 1 +1954 12 1 2.4 2.0 2.0 1 +1954 12 2 4.9 4.5 4.5 1 +1954 12 3 7.2 6.8 6.8 1 +1954 12 4 5.7 5.3 5.3 1 +1954 12 5 4.0 3.6 3.6 1 +1954 12 6 2.1 1.7 1.7 1 +1954 12 7 1.4 1.0 1.0 1 +1954 12 8 0.7 0.3 0.3 1 +1954 12 9 0.0 -0.5 -0.5 1 +1954 12 10 3.5 3.0 3.0 1 +1954 12 11 2.7 2.2 2.2 1 +1954 12 12 3.8 3.3 3.3 1 +1954 12 13 4.1 3.6 3.6 1 +1954 12 14 2.7 2.2 2.2 1 +1954 12 15 3.9 3.4 3.4 1 +1954 12 16 2.4 1.9 1.9 1 +1954 12 17 2.5 2.0 2.0 1 +1954 12 18 4.0 3.5 3.5 1 +1954 12 19 6.1 5.6 5.6 1 +1954 12 20 5.1 4.6 4.6 1 +1954 12 21 0.1 -0.4 -0.4 1 +1954 12 22 1.4 0.9 0.9 1 +1954 12 23 0.9 0.4 0.4 1 +1954 12 24 0.3 -0.2 -0.2 1 +1954 12 25 -3.9 -4.4 -4.4 1 +1954 12 26 -4.9 -5.4 -5.4 1 +1954 12 27 0.5 -0.1 -0.1 1 +1954 12 28 1.3 0.7 0.7 1 +1954 12 29 0.6 0.0 0.0 1 +1954 12 30 -0.3 -0.9 -0.9 1 +1954 12 31 -1.6 -2.2 -2.2 1 +1955 1 1 -2.7 -3.3 -3.3 1 +1955 1 2 -1.2 -1.8 -1.8 1 +1955 1 3 -1.1 -1.7 -1.7 1 +1955 1 4 -2.4 -3.0 -3.0 1 +1955 1 5 -2.7 -3.3 -3.3 1 +1955 1 6 -5.1 -5.7 -5.7 1 +1955 1 7 -0.2 -0.8 -0.8 1 +1955 1 8 -3.6 -4.2 -4.2 1 +1955 1 9 -2.6 -3.3 -3.3 1 +1955 1 10 -1.1 -1.8 -1.8 1 +1955 1 11 -1.3 -2.0 -2.0 1 +1955 1 12 -4.6 -5.3 -5.3 1 +1955 1 13 -5.7 -6.4 -6.4 1 +1955 1 14 -5.6 -6.3 -6.3 1 +1955 1 15 -8.6 -9.3 -9.3 1 +1955 1 16 -3.6 -4.3 -4.3 1 +1955 1 17 -9.3 -10.0 -10.0 1 +1955 1 18 -10.9 -11.6 -11.6 1 +1955 1 19 -7.2 -7.9 -7.9 1 +1955 1 20 -8.8 -9.5 -9.5 1 +1955 1 21 -7.8 -8.5 -8.5 1 +1955 1 22 -1.7 -2.4 -2.4 1 +1955 1 23 -2.0 -2.7 -2.7 1 +1955 1 24 -0.8 -1.5 -1.5 1 +1955 1 25 4.0 3.3 3.3 1 +1955 1 26 2.5 1.8 1.8 1 +1955 1 27 1.8 1.1 1.1 1 +1955 1 28 0.5 -0.2 -0.2 1 +1955 1 29 2.0 1.3 1.3 1 +1955 1 30 2.1 1.4 1.4 1 +1955 1 31 3.6 2.9 2.9 1 +1955 2 1 1.7 1.0 1.0 1 +1955 2 2 2.5 1.8 1.8 1 +1955 2 3 0.7 0.0 0.0 1 +1955 2 4 1.3 0.6 0.6 1 +1955 2 5 1.7 1.0 1.0 1 +1955 2 6 1.9 1.2 1.2 1 +1955 2 7 0.0 -0.7 -0.7 1 +1955 2 8 -3.0 -3.7 -3.7 1 +1955 2 9 -2.7 -3.4 -3.4 1 +1955 2 10 -4.1 -4.8 -4.8 1 +1955 2 11 -5.8 -6.5 -6.5 1 +1955 2 12 -5.9 -6.6 -6.6 1 +1955 2 13 -11.2 -11.9 -11.9 1 +1955 2 14 -7.6 -8.3 -8.3 1 +1955 2 15 -8.3 -9.0 -9.0 1 +1955 2 16 -8.0 -8.7 -8.7 1 +1955 2 17 -5.7 -6.4 -6.4 1 +1955 2 18 -4.4 -5.1 -5.1 1 +1955 2 19 -7.4 -8.1 -8.1 1 +1955 2 20 -10.6 -11.3 -11.3 1 +1955 2 21 -7.2 -7.9 -7.9 1 +1955 2 22 -7.0 -7.7 -7.7 1 +1955 2 23 -5.7 -6.4 -6.4 1 +1955 2 24 -8.1 -8.9 -8.9 1 +1955 2 25 -7.4 -8.2 -8.2 1 +1955 2 26 -4.0 -4.8 -4.8 1 +1955 2 27 -5.3 -6.1 -6.1 1 +1955 2 28 -5.1 -5.9 -5.9 1 +1955 3 1 -3.3 -4.1 -4.1 1 +1955 3 2 -2.0 -2.8 -2.8 1 +1955 3 3 -1.0 -1.8 -1.8 1 +1955 3 4 -0.9 -1.7 -1.7 1 +1955 3 5 -1.7 -2.5 -2.5 1 +1955 3 6 -4.8 -5.6 -5.6 1 +1955 3 7 -3.2 -4.0 -4.0 1 +1955 3 8 -5.4 -6.2 -6.2 1 +1955 3 9 -6.9 -7.7 -7.7 1 +1955 3 10 -4.4 -5.2 -5.2 1 +1955 3 11 -2.9 -3.7 -3.7 1 +1955 3 12 0.8 0.0 0.0 1 +1955 3 13 2.2 1.4 1.4 1 +1955 3 14 1.4 0.6 0.6 1 +1955 3 15 3.3 2.5 2.5 1 +1955 3 16 1.3 0.5 0.5 1 +1955 3 17 -4.9 -5.7 -5.7 1 +1955 3 18 -7.4 -8.2 -8.2 1 +1955 3 19 -5.9 -6.7 -6.7 1 +1955 3 20 -5.2 -6.0 -6.0 1 +1955 3 21 -5.4 -6.2 -6.2 1 +1955 3 22 -4.8 -5.6 -5.6 1 +1955 3 23 -3.4 -4.2 -4.2 1 +1955 3 24 -1.7 -2.5 -2.5 1 +1955 3 25 -0.8 -1.6 -1.6 1 +1955 3 26 -1.4 -2.2 -2.2 1 +1955 3 27 -3.4 -4.2 -4.2 1 +1955 3 28 -4.2 -5.0 -5.0 1 +1955 3 29 -5.5 -6.3 -6.3 1 +1955 3 30 -0.8 -1.6 -1.6 1 +1955 3 31 -0.6 -1.3 -1.3 1 +1955 4 1 -1.5 -2.2 -2.2 1 +1955 4 2 0.4 -0.3 -0.3 1 +1955 4 3 3.0 2.3 2.3 1 +1955 4 4 0.9 0.2 0.2 1 +1955 4 5 -0.5 -1.2 -1.2 1 +1955 4 6 0.5 -0.2 -0.2 1 +1955 4 7 -1.5 -2.2 -2.2 1 +1955 4 8 -2.5 -3.2 -3.2 1 +1955 4 9 -4.6 -5.3 -5.3 1 +1955 4 10 -3.9 -4.6 -4.6 1 +1955 4 11 -1.1 -1.8 -1.8 1 +1955 4 12 0.6 -0.1 -0.1 1 +1955 4 13 3.1 2.4 2.4 1 +1955 4 14 1.3 0.6 0.6 1 +1955 4 15 2.7 2.0 2.0 1 +1955 4 16 5.0 4.3 4.3 1 +1955 4 17 1.3 0.6 0.6 1 +1955 4 18 0.5 -0.2 -0.2 1 +1955 4 19 4.5 3.8 3.8 1 +1955 4 20 5.3 4.5 4.5 1 +1955 4 21 1.2 0.4 0.4 1 +1955 4 22 0.9 0.1 0.1 1 +1955 4 23 1.8 1.0 1.0 1 +1955 4 24 2.2 1.4 1.4 1 +1955 4 25 2.7 1.9 1.9 1 +1955 4 26 1.7 0.8 0.8 1 +1955 4 27 4.2 3.3 3.3 1 +1955 4 28 5.7 4.8 4.8 1 +1955 4 29 10.8 9.9 9.9 1 +1955 4 30 6.7 5.8 5.8 1 +1955 5 1 5.2 4.3 4.3 1 +1955 5 2 5.2 4.2 4.2 1 +1955 5 3 6.9 5.9 5.9 1 +1955 5 4 5.7 4.7 4.7 1 +1955 5 5 8.9 7.9 7.9 1 +1955 5 6 8.9 7.9 7.9 1 +1955 5 7 4.9 3.9 3.9 1 +1955 5 8 5.7 4.6 4.6 1 +1955 5 9 7.0 5.9 5.9 1 +1955 5 10 9.9 8.8 8.8 1 +1955 5 11 7.1 6.0 6.0 1 +1955 5 12 6.8 5.7 5.7 1 +1955 5 13 5.8 4.7 4.7 1 +1955 5 14 8.2 7.0 7.0 1 +1955 5 15 8.2 7.0 7.0 1 +1955 5 16 8.8 7.6 7.6 1 +1955 5 17 6.8 5.6 5.6 1 +1955 5 18 7.4 6.2 6.2 1 +1955 5 19 8.7 7.5 7.5 1 +1955 5 20 8.8 7.7 7.7 1 +1955 5 21 7.9 6.8 6.8 1 +1955 5 22 6.1 5.0 5.0 1 +1955 5 23 5.3 4.2 4.2 1 +1955 5 24 5.9 4.8 4.8 1 +1955 5 25 7.5 6.4 6.4 1 +1955 5 26 6.6 5.5 5.5 1 +1955 5 27 9.3 8.2 8.2 1 +1955 5 28 11.6 10.5 10.5 1 +1955 5 29 9.4 8.3 8.3 1 +1955 5 30 11.7 10.6 10.6 1 +1955 5 31 11.6 10.5 10.5 1 +1955 6 1 12.3 11.3 11.3 1 +1955 6 2 14.3 13.3 13.3 1 +1955 6 3 14.3 13.3 13.3 1 +1955 6 4 17.3 16.3 16.3 1 +1955 6 5 17.4 16.4 16.4 1 +1955 6 6 15.6 14.6 14.6 1 +1955 6 7 7.0 6.0 6.0 1 +1955 6 8 7.5 6.5 6.5 1 +1955 6 9 9.1 8.1 8.1 1 +1955 6 10 10.5 9.5 9.5 1 +1955 6 11 11.2 10.2 10.2 1 +1955 6 12 11.9 10.9 10.9 1 +1955 6 13 10.0 9.0 9.0 1 +1955 6 14 11.6 10.7 10.7 1 +1955 6 15 10.3 9.4 9.4 1 +1955 6 16 9.9 9.0 9.0 1 +1955 6 17 9.5 8.6 8.6 1 +1955 6 18 11.1 10.2 10.2 1 +1955 6 19 12.2 11.3 11.3 1 +1955 6 20 13.3 12.4 12.4 1 +1955 6 21 12.6 11.7 11.7 1 +1955 6 22 16.1 15.2 15.2 1 +1955 6 23 18.1 17.2 17.2 1 +1955 6 24 17.5 16.6 16.6 1 +1955 6 25 18.4 17.5 17.5 1 +1955 6 26 15.9 15.0 15.0 1 +1955 6 27 14.6 13.7 13.7 1 +1955 6 28 16.5 15.6 15.6 1 +1955 6 29 16.8 15.9 15.9 1 +1955 6 30 17.4 16.5 16.5 1 +1955 7 1 17.6 16.7 16.7 1 +1955 7 2 17.5 16.6 16.6 1 +1955 7 3 14.6 13.7 13.7 1 +1955 7 4 18.0 17.1 17.1 1 +1955 7 5 17.3 16.4 16.4 1 +1955 7 6 17.6 16.7 16.7 1 +1955 7 7 21.3 20.4 20.4 1 +1955 7 8 19.3 18.4 18.4 1 +1955 7 9 18.9 18.0 18.0 1 +1955 7 10 21.9 21.0 21.0 1 +1955 7 11 22.3 21.4 21.4 1 +1955 7 12 22.8 21.9 21.9 1 +1955 7 13 24.8 23.9 23.9 1 +1955 7 14 25.1 24.2 24.2 1 +1955 7 15 26.2 25.3 25.3 1 +1955 7 16 21.9 21.0 21.0 1 +1955 7 17 24.4 23.5 23.5 1 +1955 7 18 18.3 17.5 17.5 1 +1955 7 19 17.9 17.1 17.1 1 +1955 7 20 19.6 18.8 18.8 1 +1955 7 21 19.5 18.7 18.7 1 +1955 7 22 18.5 17.7 17.7 1 +1955 7 23 18.2 17.4 17.4 1 +1955 7 24 16.1 15.3 15.3 1 +1955 7 25 16.2 15.4 15.4 1 +1955 7 26 18.3 17.5 17.5 1 +1955 7 27 17.9 17.1 17.1 1 +1955 7 28 19.3 18.5 18.5 1 +1955 7 29 16.5 15.7 15.7 1 +1955 7 30 20.0 19.2 19.2 1 +1955 7 31 23.7 22.9 22.9 1 +1955 8 1 23.5 22.8 22.8 1 +1955 8 2 18.1 17.4 17.4 1 +1955 8 3 15.2 14.5 14.5 1 +1955 8 4 18.5 17.8 17.8 1 +1955 8 5 20.0 19.3 19.3 1 +1955 8 6 18.7 18.0 18.0 1 +1955 8 7 16.9 16.2 16.2 1 +1955 8 8 16.7 16.0 16.0 1 +1955 8 9 17.3 16.6 16.6 1 +1955 8 10 19.2 18.5 18.5 1 +1955 8 11 19.6 18.9 18.9 1 +1955 8 12 18.6 17.9 17.9 1 +1955 8 13 19.9 19.2 19.2 1 +1955 8 14 21.3 20.7 20.7 1 +1955 8 15 20.9 20.3 20.3 1 +1955 8 16 23.0 22.4 22.4 1 +1955 8 17 22.4 21.8 21.8 1 +1955 8 18 21.0 20.4 20.4 1 +1955 8 19 21.5 20.9 20.9 1 +1955 8 20 20.6 20.0 20.0 1 +1955 8 21 21.9 21.3 21.3 1 +1955 8 22 18.4 17.9 17.9 1 +1955 8 23 18.9 18.4 18.4 1 +1955 8 24 18.7 18.2 18.2 1 +1955 8 25 18.0 17.5 17.5 1 +1955 8 26 20.1 19.6 19.6 1 +1955 8 27 20.3 19.8 19.8 1 +1955 8 28 19.6 19.1 19.1 1 +1955 8 29 17.3 16.9 16.9 1 +1955 8 30 19.9 19.5 19.5 1 +1955 8 31 21.0 20.6 20.6 1 +1955 9 1 18.7 18.3 18.3 1 +1955 9 2 17.6 17.2 17.2 1 +1955 9 3 17.1 16.7 16.7 1 +1955 9 4 16.4 16.0 16.0 1 +1955 9 5 16.7 16.4 16.4 1 +1955 9 6 17.9 17.6 17.6 1 +1955 9 7 18.1 17.8 17.8 1 +1955 9 8 20.0 19.7 19.7 1 +1955 9 9 20.7 20.4 20.4 1 +1955 9 10 19.7 19.4 19.4 1 +1955 9 11 16.9 16.6 16.6 1 +1955 9 12 17.7 17.4 17.4 1 +1955 9 13 11.4 11.2 11.2 1 +1955 9 14 11.9 11.7 11.7 1 +1955 9 15 12.0 11.8 11.8 1 +1955 9 16 14.0 13.8 13.8 1 +1955 9 17 13.4 13.2 13.2 1 +1955 9 18 12.5 12.3 12.3 1 +1955 9 19 10.9 10.7 10.7 1 +1955 9 20 11.1 10.9 10.9 1 +1955 9 21 10.9 10.7 10.7 1 +1955 9 22 10.7 10.5 10.5 1 +1955 9 23 10.6 10.4 10.4 1 +1955 9 24 11.0 10.8 10.8 1 +1955 9 25 13.1 12.9 12.9 1 +1955 9 26 13.4 13.2 13.2 1 +1955 9 27 10.3 10.1 10.1 1 +1955 9 28 8.7 8.5 8.5 1 +1955 9 29 10.5 10.3 10.3 1 +1955 9 30 15.1 14.9 14.9 1 +1955 10 1 10.7 10.5 10.5 1 +1955 10 2 9.2 9.0 9.0 1 +1955 10 3 11.3 11.1 11.1 1 +1955 10 4 10.9 10.7 10.7 1 +1955 10 5 9.2 9.0 9.0 1 +1955 10 6 11.0 10.8 10.8 1 +1955 10 7 11.6 11.4 11.4 1 +1955 10 8 10.7 10.5 10.5 1 +1955 10 9 12.2 12.0 12.0 1 +1955 10 10 14.6 14.4 14.4 1 +1955 10 11 13.0 12.8 12.8 1 +1955 10 12 12.2 12.0 12.0 1 +1955 10 13 12.9 12.7 12.7 1 +1955 10 14 13.3 13.1 13.1 1 +1955 10 15 8.9 8.7 8.7 1 +1955 10 16 1.8 1.6 1.6 1 +1955 10 17 2.1 1.9 1.9 1 +1955 10 18 3.7 3.5 3.5 1 +1955 10 19 1.3 1.1 1.1 1 +1955 10 20 6.7 6.5 6.5 1 +1955 10 21 9.5 9.3 9.3 1 +1955 10 22 4.4 4.2 4.2 1 +1955 10 23 1.9 1.7 1.7 1 +1955 10 24 3.4 3.2 3.2 1 +1955 10 25 2.6 2.4 2.4 1 +1955 10 26 3.0 2.8 2.8 1 +1955 10 27 2.9 2.6 2.6 1 +1955 10 28 0.2 -0.1 -0.1 1 +1955 10 29 0.1 -0.2 -0.2 1 +1955 10 30 -0.9 -1.2 -1.2 1 +1955 10 31 -3.2 -3.5 -3.5 1 +1955 11 1 0.9 0.6 0.6 1 +1955 11 2 4.9 4.6 4.6 1 +1955 11 3 3.0 2.7 2.7 1 +1955 11 4 4.0 3.7 3.7 1 +1955 11 5 6.2 5.9 5.9 1 +1955 11 6 4.2 3.9 3.9 1 +1955 11 7 3.7 3.4 3.4 1 +1955 11 8 4.8 4.5 4.5 1 +1955 11 9 7.1 6.8 6.8 1 +1955 11 10 8.3 8.0 8.0 1 +1955 11 11 8.2 7.8 7.8 1 +1955 11 12 6.9 6.5 6.5 1 +1955 11 13 5.6 5.2 5.2 1 +1955 11 14 3.1 2.7 2.7 1 +1955 11 15 0.8 0.4 0.4 1 +1955 11 16 2.4 2.0 2.0 1 +1955 11 17 3.5 3.1 3.1 1 +1955 11 18 4.6 4.2 4.2 1 +1955 11 19 2.9 2.5 2.5 1 +1955 11 20 2.2 1.8 1.8 1 +1955 11 21 1.3 0.9 0.9 1 +1955 11 22 3.6 3.2 3.2 1 +1955 11 23 1.9 1.5 1.5 1 +1955 11 24 -1.8 -2.2 -2.2 1 +1955 11 25 -5.1 -5.5 -5.5 1 +1955 11 26 2.1 1.7 1.7 1 +1955 11 27 2.3 1.9 1.9 1 +1955 11 28 -4.2 -4.6 -4.6 1 +1955 11 29 -9.0 -9.4 -9.4 1 +1955 11 30 1.5 1.1 1.1 1 +1955 12 1 3.3 2.9 2.9 1 +1955 12 2 3.7 3.3 3.3 1 +1955 12 3 3.2 2.8 2.8 1 +1955 12 4 -1.6 -2.0 -2.0 1 +1955 12 5 -1.2 -1.6 -1.6 1 +1955 12 6 4.6 4.1 4.1 1 +1955 12 7 1.8 1.3 1.3 1 +1955 12 8 -1.9 -2.4 -2.4 1 +1955 12 9 -5.1 -5.6 -5.6 1 +1955 12 10 -7.5 -8.0 -8.0 1 +1955 12 11 -7.6 -8.1 -8.1 1 +1955 12 12 -7.3 -7.8 -7.8 1 +1955 12 13 -9.3 -9.8 -9.8 1 +1955 12 14 -14.0 -14.5 -14.5 1 +1955 12 15 -5.0 -5.5 -5.5 1 +1955 12 16 -5.2 -5.7 -5.7 1 +1955 12 17 -3.6 -4.1 -4.1 1 +1955 12 18 -4.7 -5.2 -5.2 1 +1955 12 19 -5.6 -6.1 -6.1 1 +1955 12 20 -12.7 -13.2 -13.2 1 +1955 12 21 -5.2 -5.7 -5.7 1 +1955 12 22 -2.5 -3.0 -3.0 1 +1955 12 23 -8.1 -8.6 -8.6 1 +1955 12 24 -0.8 -1.3 -1.3 1 +1955 12 25 0.3 -0.2 -0.2 1 +1955 12 26 0.4 -0.2 -0.2 1 +1955 12 27 2.7 2.1 2.1 1 +1955 12 28 3.2 2.6 2.6 1 +1955 12 29 3.0 2.4 2.4 1 +1955 12 30 1.5 0.9 0.9 1 +1955 12 31 -0.9 -1.5 -1.5 1 +1956 1 1 -3.0 -3.6 -3.6 1 +1956 1 2 -2.7 -3.3 -3.3 1 +1956 1 3 -1.3 -1.9 -1.9 1 +1956 1 4 2.2 1.6 1.6 1 +1956 1 5 0.8 0.2 0.2 1 +1956 1 6 1.7 1.1 1.1 1 +1956 1 7 2.0 1.4 1.4 1 +1956 1 8 -0.3 -1.0 -1.0 1 +1956 1 9 -2.5 -3.2 -3.2 1 +1956 1 10 -1.0 -1.7 -1.7 1 +1956 1 11 -0.4 -1.1 -1.1 1 +1956 1 12 1.1 0.4 0.4 1 +1956 1 13 0.9 0.2 0.2 1 +1956 1 14 -2.1 -2.8 -2.8 1 +1956 1 15 -2.9 -3.6 -3.6 1 +1956 1 16 -4.5 -5.2 -5.2 1 +1956 1 17 -1.5 -2.2 -2.2 1 +1956 1 18 -0.6 -1.3 -1.3 1 +1956 1 19 -7.6 -8.3 -8.3 1 +1956 1 20 -4.8 -5.5 -5.5 1 +1956 1 21 1.2 0.5 0.5 1 +1956 1 22 -4.2 -4.9 -4.9 1 +1956 1 23 -4.6 -5.3 -5.3 1 +1956 1 24 -7.4 -8.1 -8.1 1 +1956 1 25 -5.8 -6.5 -6.5 1 +1956 1 26 -7.6 -8.3 -8.3 1 +1956 1 27 -9.5 -10.2 -10.2 1 +1956 1 28 -7.6 -8.3 -8.3 1 +1956 1 29 -12.1 -12.8 -12.8 1 +1956 1 30 -17.4 -18.1 -18.1 1 +1956 1 31 -20.7 -21.4 -21.4 1 +1956 2 1 -13.3 -14.0 -14.0 1 +1956 2 2 -2.3 -3.0 -3.0 1 +1956 2 3 -3.4 -4.1 -4.1 1 +1956 2 4 -5.4 -6.1 -6.1 1 +1956 2 5 -5.5 -6.2 -6.2 1 +1956 2 6 -10.2 -10.9 -10.9 1 +1956 2 7 -13.6 -14.3 -14.3 1 +1956 2 8 -16.5 -17.2 -17.2 1 +1956 2 9 -22.0 -22.7 -22.7 1 +1956 2 10 -18.3 -19.0 -19.0 1 +1956 2 11 -11.7 -12.4 -12.4 1 +1956 2 12 -11.5 -12.2 -12.2 1 +1956 2 13 -15.3 -16.0 -16.0 1 +1956 2 14 -13.3 -14.0 -14.0 1 +1956 2 15 -8.0 -8.7 -8.7 1 +1956 2 16 -7.1 -7.8 -7.8 1 +1956 2 17 -5.9 -6.6 -6.6 1 +1956 2 18 -7.5 -8.2 -8.2 1 +1956 2 19 -7.5 -8.2 -8.2 1 +1956 2 20 -3.2 -4.0 -4.0 1 +1956 2 21 -4.8 -5.6 -5.6 1 +1956 2 22 -7.8 -8.6 -8.6 1 +1956 2 23 -12.6 -13.4 -13.4 1 +1956 2 24 -6.2 -7.0 -7.0 1 +1956 2 25 -3.8 -4.6 -4.6 1 +1956 2 26 -2.7 -3.5 -3.5 1 +1956 2 27 -3.5 -4.3 -4.3 1 +1956 2 28 -3.4 -4.2 -4.2 1 +1956 2 29 0.8 0.0 0.0 1 +1956 3 1 2.0 1.2 1.2 1 +1956 3 2 -0.1 -0.9 -0.9 1 +1956 3 3 -3.7 -4.5 -4.5 1 +1956 3 4 -0.6 -1.4 -1.4 1 +1956 3 5 -3.5 -4.3 -4.3 1 +1956 3 6 -6.1 -6.9 -6.9 1 +1956 3 7 -6.3 -7.1 -7.1 1 +1956 3 8 -6.4 -7.2 -7.2 1 +1956 3 9 -3.0 -3.8 -3.8 1 +1956 3 10 -3.3 -4.1 -4.1 1 +1956 3 11 -1.5 -2.3 -2.3 1 +1956 3 12 1.0 0.2 0.2 1 +1956 3 13 1.5 0.7 0.7 1 +1956 3 14 -0.8 -1.6 -1.6 1 +1956 3 15 -4.8 -5.6 -5.6 1 +1956 3 16 -1.6 -2.4 -2.4 1 +1956 3 17 0.3 -0.5 -0.5 1 +1956 3 18 -0.9 -1.7 -1.7 1 +1956 3 19 -2.2 -3.0 -3.0 1 +1956 3 20 -1.4 -2.2 -2.2 1 +1956 3 21 -0.7 -1.5 -1.5 1 +1956 3 22 -1.3 -2.1 -2.1 1 +1956 3 23 -0.4 -1.2 -1.2 1 +1956 3 24 -0.5 -1.3 -1.3 1 +1956 3 25 -0.7 -1.5 -1.5 1 +1956 3 26 -0.5 -1.3 -1.3 1 +1956 3 27 0.9 0.1 0.1 1 +1956 3 28 4.5 3.7 3.7 1 +1956 3 29 5.4 4.6 4.6 1 +1956 3 30 5.8 5.0 5.0 1 +1956 3 31 4.1 3.3 3.3 1 +1956 4 1 3.6 2.8 2.8 1 +1956 4 2 5.5 4.8 4.8 1 +1956 4 3 0.0 -0.7 -0.7 1 +1956 4 4 -1.0 -1.7 -1.7 1 +1956 4 5 -1.5 -2.2 -2.2 1 +1956 4 6 -1.3 -2.0 -2.0 1 +1956 4 7 -2.8 -3.5 -3.5 1 +1956 4 8 -1.5 -2.2 -2.2 1 +1956 4 9 0.4 -0.3 -0.3 1 +1956 4 10 1.3 0.6 0.6 1 +1956 4 11 0.1 -0.6 -0.6 1 +1956 4 12 0.4 -0.3 -0.3 1 +1956 4 13 -1.9 -2.6 -2.6 1 +1956 4 14 -1.3 -2.0 -2.0 1 +1956 4 15 -2.3 -3.0 -3.0 1 +1956 4 16 -0.3 -1.0 -1.0 1 +1956 4 17 -1.2 -1.9 -1.9 1 +1956 4 18 2.0 1.3 1.3 1 +1956 4 19 5.0 4.2 4.2 1 +1956 4 20 3.4 2.6 2.6 1 +1956 4 21 1.3 0.5 0.5 1 +1956 4 22 4.8 4.0 4.0 1 +1956 4 23 5.2 4.4 4.4 1 +1956 4 24 5.5 4.7 4.7 1 +1956 4 25 3.4 2.5 2.5 1 +1956 4 26 4.2 3.3 3.3 1 +1956 4 27 3.8 2.9 2.9 1 +1956 4 28 3.8 2.9 2.9 1 +1956 4 29 3.6 2.7 2.7 1 +1956 4 30 4.1 3.2 3.2 1 +1956 5 1 4.0 3.0 3.0 1 +1956 5 2 5.9 4.9 4.9 1 +1956 5 3 8.2 7.2 7.2 1 +1956 5 4 11.0 10.0 10.0 1 +1956 5 5 10.8 9.8 9.8 1 +1956 5 6 11.7 10.7 10.7 1 +1956 5 7 10.0 8.9 8.9 1 +1956 5 8 10.8 9.7 9.7 1 +1956 5 9 9.7 8.6 8.6 1 +1956 5 10 9.8 8.7 8.7 1 +1956 5 11 9.9 8.8 8.8 1 +1956 5 12 11.9 10.8 10.8 1 +1956 5 13 12.6 11.4 11.4 1 +1956 5 14 12.9 11.7 11.7 1 +1956 5 15 11.6 10.4 10.4 1 +1956 5 16 10.8 9.6 9.6 1 +1956 5 17 10.4 9.2 9.2 1 +1956 5 18 8.6 7.4 7.4 1 +1956 5 19 9.1 7.9 7.9 1 +1956 5 20 10.1 8.9 8.9 1 +1956 5 21 10.4 9.2 9.2 1 +1956 5 22 11.2 10.1 10.1 1 +1956 5 23 14.1 13.0 13.0 1 +1956 5 24 15.8 14.7 14.7 1 +1956 5 25 14.9 13.8 13.8 1 +1956 5 26 13.7 12.6 12.6 1 +1956 5 27 12.4 11.3 11.3 1 +1956 5 28 16.1 15.0 15.0 1 +1956 5 29 17.3 16.2 16.2 1 +1956 5 30 14.6 13.5 13.5 1 +1956 5 31 14.5 13.4 13.4 1 +1956 6 1 16.5 15.4 15.4 1 +1956 6 2 15.8 14.7 14.7 1 +1956 6 3 15.4 14.4 14.4 1 +1956 6 4 13.8 12.8 12.8 1 +1956 6 5 13.7 12.7 12.7 1 +1956 6 6 15.4 14.4 14.4 1 +1956 6 7 12.6 11.6 11.6 1 +1956 6 8 16.8 15.8 15.8 1 +1956 6 9 21.1 20.1 20.1 1 +1956 6 10 16.8 15.8 15.8 1 +1956 6 11 16.2 15.2 15.2 1 +1956 6 12 15.6 14.6 14.6 1 +1956 6 13 14.5 13.5 13.5 1 +1956 6 14 16.0 15.0 15.0 1 +1956 6 15 13.7 12.8 12.8 1 +1956 6 16 9.3 8.4 8.4 1 +1956 6 17 12.0 11.1 11.1 1 +1956 6 18 13.7 12.8 12.8 1 +1956 6 19 15.8 14.9 14.9 1 +1956 6 20 15.1 14.2 14.2 1 +1956 6 21 11.6 10.7 10.7 1 +1956 6 22 13.3 12.4 12.4 1 +1956 6 23 15.8 14.9 14.9 1 +1956 6 24 15.3 14.4 14.4 1 +1956 6 25 14.1 13.2 13.2 1 +1956 6 26 10.8 9.9 9.9 1 +1956 6 27 12.3 11.4 11.4 1 +1956 6 28 11.8 10.9 10.9 1 +1956 6 29 12.3 11.4 11.4 1 +1956 6 30 11.7 10.8 10.8 1 +1956 7 1 16.0 15.1 15.1 1 +1956 7 2 17.8 16.9 16.9 1 +1956 7 3 17.7 16.8 16.8 1 +1956 7 4 18.6 17.7 17.7 1 +1956 7 5 16.8 15.9 15.9 1 +1956 7 6 15.8 14.9 14.9 1 +1956 7 7 16.9 16.0 16.0 1 +1956 7 8 13.8 12.9 12.9 1 +1956 7 9 17.9 17.0 17.0 1 +1956 7 10 19.5 18.6 18.6 1 +1956 7 11 16.1 15.2 15.2 1 +1956 7 12 17.1 16.2 16.2 1 +1956 7 13 14.7 13.8 13.8 1 +1956 7 14 16.6 15.7 15.7 1 +1956 7 15 16.6 15.7 15.7 1 +1956 7 16 17.2 16.3 16.3 1 +1956 7 17 15.9 15.0 15.0 1 +1956 7 18 17.5 16.6 16.6 1 +1956 7 19 17.1 16.2 16.2 1 +1956 7 20 16.4 15.6 15.6 1 +1956 7 21 15.2 14.4 14.4 1 +1956 7 22 15.7 14.9 14.9 1 +1956 7 23 13.3 12.5 12.5 1 +1956 7 24 13.1 12.3 12.3 1 +1956 7 25 13.6 12.8 12.8 1 +1956 7 26 15.4 14.6 14.6 1 +1956 7 27 12.6 11.8 11.8 1 +1956 7 28 16.2 15.4 15.4 1 +1956 7 29 16.4 15.6 15.6 1 +1956 7 30 16.4 15.6 15.6 1 +1956 7 31 15.5 14.7 14.7 1 +1956 8 1 14.7 13.9 13.9 1 +1956 8 2 14.4 13.7 13.7 1 +1956 8 3 14.6 13.9 13.9 1 +1956 8 4 14.1 13.4 13.4 1 +1956 8 5 15.6 14.9 14.9 1 +1956 8 6 17.3 16.6 16.6 1 +1956 8 7 15.4 14.7 14.7 1 +1956 8 8 14.8 14.1 14.1 1 +1956 8 9 13.6 12.9 12.9 1 +1956 8 10 13.3 12.6 12.6 1 +1956 8 11 15.2 14.5 14.5 1 +1956 8 12 14.5 13.8 13.8 1 +1956 8 13 13.9 13.2 13.2 1 +1956 8 14 13.9 13.2 13.2 1 +1956 8 15 13.1 12.4 12.4 1 +1956 8 16 12.9 12.3 12.3 1 +1956 8 17 14.2 13.6 13.6 1 +1956 8 18 15.1 14.5 14.5 1 +1956 8 19 14.6 14.0 14.0 1 +1956 8 20 15.1 14.5 14.5 1 +1956 8 21 13.5 12.9 12.9 1 +1956 8 22 12.6 12.0 12.0 1 +1956 8 23 12.0 11.5 11.5 1 +1956 8 24 13.1 12.6 12.6 1 +1956 8 25 12.3 11.8 11.8 1 +1956 8 26 12.5 12.0 12.0 1 +1956 8 27 13.6 13.1 13.1 1 +1956 8 28 11.9 11.4 11.4 1 +1956 8 29 11.9 11.4 11.4 1 +1956 8 30 12.6 12.2 12.2 1 +1956 8 31 12.3 11.9 11.9 1 +1956 9 1 13.2 12.8 12.8 1 +1956 9 2 14.1 13.7 13.7 1 +1956 9 3 14.3 13.9 13.9 1 +1956 9 4 15.0 14.6 14.6 1 +1956 9 5 12.4 12.0 12.0 1 +1956 9 6 10.8 10.5 10.5 1 +1956 9 7 12.6 12.3 12.3 1 +1956 9 8 12.1 11.8 11.8 1 +1956 9 9 13.0 12.7 12.7 1 +1956 9 10 10.8 10.5 10.5 1 +1956 9 11 12.0 11.7 11.7 1 +1956 9 12 10.7 10.4 10.4 1 +1956 9 13 11.5 11.3 11.3 1 +1956 9 14 11.3 11.1 11.1 1 +1956 9 15 11.1 10.9 10.9 1 +1956 9 16 9.1 8.9 8.9 1 +1956 9 17 7.7 7.5 7.5 1 +1956 9 18 9.1 8.9 8.9 1 +1956 9 19 10.1 9.9 9.9 1 +1956 9 20 11.6 11.4 11.4 1 +1956 9 21 11.0 10.8 10.8 1 +1956 9 22 9.5 9.3 9.3 1 +1956 9 23 9.6 9.4 9.4 1 +1956 9 24 11.0 10.8 10.8 1 +1956 9 25 12.8 12.6 12.6 1 +1956 9 26 12.9 12.7 12.7 1 +1956 9 27 13.1 12.9 12.9 1 +1956 9 28 12.4 12.2 12.2 1 +1956 9 29 13.8 13.6 13.6 1 +1956 9 30 12.9 12.7 12.7 1 +1956 10 1 11.4 11.2 11.2 1 +1956 10 2 10.7 10.5 10.5 1 +1956 10 3 7.6 7.4 7.4 1 +1956 10 4 9.1 8.9 8.9 1 +1956 10 5 6.6 6.4 6.4 1 +1956 10 6 4.9 4.7 4.7 1 +1956 10 7 5.0 4.8 4.8 1 +1956 10 8 4.6 4.4 4.4 1 +1956 10 9 3.8 3.6 3.6 1 +1956 10 10 6.6 6.4 6.4 1 +1956 10 11 9.1 8.9 8.9 1 +1956 10 12 9.3 9.1 9.1 1 +1956 10 13 8.4 8.2 8.2 1 +1956 10 14 7.4 7.2 7.2 1 +1956 10 15 5.1 4.9 4.9 1 +1956 10 16 6.0 5.8 5.8 1 +1956 10 17 7.3 7.1 7.1 1 +1956 10 18 9.2 9.0 9.0 1 +1956 10 19 8.7 8.5 8.5 1 +1956 10 20 6.3 6.1 6.1 1 +1956 10 21 8.5 8.3 8.3 1 +1956 10 22 12.1 11.9 11.9 1 +1956 10 23 7.6 7.4 7.4 1 +1956 10 24 9.4 9.2 9.2 1 +1956 10 25 7.5 7.3 7.3 1 +1956 10 26 3.9 3.6 3.6 1 +1956 10 27 1.1 0.8 0.8 1 +1956 10 28 1.8 1.5 1.5 1 +1956 10 29 0.6 0.3 0.3 1 +1956 10 30 0.7 0.4 0.4 1 +1956 10 31 -0.1 -0.4 -0.4 1 +1956 11 1 2.9 2.6 2.6 1 +1956 11 2 -0.9 -1.2 -1.2 1 +1956 11 3 -0.5 -0.8 -0.8 1 +1956 11 4 3.2 2.9 2.9 1 +1956 11 5 1.6 1.3 1.3 1 +1956 11 6 -2.2 -2.5 -2.5 1 +1956 11 7 -3.6 -3.9 -3.9 1 +1956 11 8 -0.1 -0.4 -0.4 1 +1956 11 9 2.7 2.3 2.3 1 +1956 11 10 -0.1 -0.5 -0.5 1 +1956 11 11 -1.5 -1.9 -1.9 1 +1956 11 12 -3.0 -3.4 -3.4 1 +1956 11 13 -0.1 -0.5 -0.5 1 +1956 11 14 2.8 2.4 2.4 1 +1956 11 15 0.9 0.5 0.5 1 +1956 11 16 2.3 1.9 1.9 1 +1956 11 17 1.5 1.1 1.1 1 +1956 11 18 -2.2 -2.6 -2.6 1 +1956 11 19 -1.9 -2.3 -2.3 1 +1956 11 20 -2.0 -2.4 -2.4 1 +1956 11 21 -3.0 -3.4 -3.4 1 +1956 11 22 -5.8 -6.2 -6.2 1 +1956 11 23 -2.1 -2.5 -2.5 1 +1956 11 24 -4.5 -4.9 -4.9 1 +1956 11 25 0.0 -0.4 -0.4 1 +1956 11 26 -1.1 -1.5 -1.5 1 +1956 11 27 -3.4 -3.8 -3.8 1 +1956 11 28 -6.9 -7.3 -7.3 1 +1956 11 29 -6.8 -7.2 -7.2 1 +1956 11 30 -6.3 -6.7 -6.7 1 +1956 12 1 -0.9 -1.3 -1.3 1 +1956 12 2 3.0 2.6 2.6 1 +1956 12 3 0.9 0.4 0.4 1 +1956 12 4 -1.4 -1.9 -1.9 1 +1956 12 5 -0.8 -1.3 -1.3 1 +1956 12 6 -2.1 -2.6 -2.6 1 +1956 12 7 -2.4 -2.9 -2.9 1 +1956 12 8 -4.3 -4.8 -4.8 1 +1956 12 9 -1.2 -1.7 -1.7 1 +1956 12 10 0.9 0.4 0.4 1 +1956 12 11 3.3 2.8 2.8 1 +1956 12 12 2.5 2.0 2.0 1 +1956 12 13 3.0 2.5 2.5 1 +1956 12 14 1.5 1.0 1.0 1 +1956 12 15 3.3 2.8 2.8 1 +1956 12 16 5.8 5.3 5.3 1 +1956 12 17 6.4 5.9 5.9 1 +1956 12 18 5.4 4.9 4.9 1 +1956 12 19 3.7 3.2 3.2 1 +1956 12 20 0.6 0.1 0.1 1 +1956 12 21 1.4 0.9 0.9 1 +1956 12 22 -1.5 -2.0 -2.0 1 +1956 12 23 -3.7 -4.2 -4.2 1 +1956 12 24 -3.5 -4.1 -4.1 1 +1956 12 25 -3.2 -3.8 -3.8 1 +1956 12 26 -1.5 -2.1 -2.1 1 +1956 12 27 -1.8 -2.4 -2.4 1 +1956 12 28 -1.4 -2.0 -2.0 1 +1956 12 29 -2.2 -2.8 -2.8 1 +1956 12 30 -0.9 -1.5 -1.5 1 +1956 12 31 -0.7 -1.3 -1.3 1 +1957 1 1 -2.9 -3.5 -3.5 1 +1957 1 2 -3.4 -4.0 -4.0 1 +1957 1 3 -3.3 -3.9 -3.9 1 +1957 1 4 0.6 0.0 0.0 1 +1957 1 5 2.7 2.1 2.1 1 +1957 1 6 1.7 1.1 1.1 1 +1957 1 7 0.3 -0.4 -0.4 1 +1957 1 8 4.8 4.1 4.1 1 +1957 1 9 7.4 6.7 6.7 1 +1957 1 10 1.6 0.9 0.9 1 +1957 1 11 -0.1 -0.8 -0.8 1 +1957 1 12 -2.1 -2.8 -2.8 1 +1957 1 13 -4.4 -5.1 -5.1 1 +1957 1 14 -6.0 -6.7 -6.7 1 +1957 1 15 -7.1 -7.8 -7.8 1 +1957 1 16 -0.6 -1.3 -1.3 1 +1957 1 17 0.2 -0.5 -0.5 1 +1957 1 18 -2.1 -2.8 -2.8 1 +1957 1 19 -0.8 -1.5 -1.5 1 +1957 1 20 2.7 2.0 2.0 1 +1957 1 21 6.0 5.3 5.3 1 +1957 1 22 3.4 2.7 2.7 1 +1957 1 23 0.6 -0.1 -0.1 1 +1957 1 24 1.6 0.9 0.9 1 +1957 1 25 1.2 0.5 0.5 1 +1957 1 26 0.7 0.0 0.0 1 +1957 1 27 1.5 0.8 0.8 1 +1957 1 28 -0.5 -1.2 -1.2 1 +1957 1 29 2.2 1.5 1.5 1 +1957 1 30 1.6 0.9 0.9 1 +1957 1 31 -0.7 -1.4 -1.4 1 +1957 2 1 1.3 0.6 0.6 1 +1957 2 2 2.9 2.2 2.2 1 +1957 2 3 2.6 1.9 1.9 1 +1957 2 4 0.6 -0.1 -0.1 1 +1957 2 5 4.7 4.0 4.0 1 +1957 2 6 4.1 3.4 3.4 1 +1957 2 7 2.8 2.1 2.1 1 +1957 2 8 -0.5 -1.2 -1.2 1 +1957 2 9 -0.8 -1.5 -1.5 1 +1957 2 10 -1.0 -1.7 -1.7 1 +1957 2 11 -2.1 -2.8 -2.8 1 +1957 2 12 -4.2 -4.9 -4.9 1 +1957 2 13 -0.6 -1.3 -1.3 1 +1957 2 14 0.7 0.0 0.0 1 +1957 2 15 1.5 0.8 0.8 1 +1957 2 16 1.2 0.5 0.5 1 +1957 2 17 -1.3 -2.1 -2.1 1 +1957 2 18 -0.4 -1.2 -1.2 1 +1957 2 19 0.7 -0.1 -0.1 1 +1957 2 20 -1.0 -1.8 -1.8 1 +1957 2 21 -2.0 -2.8 -2.8 1 +1957 2 22 -4.7 -5.5 -5.5 1 +1957 2 23 -5.2 -6.0 -6.0 1 +1957 2 24 -8.3 -9.1 -9.1 1 +1957 2 25 -5.9 -6.7 -6.7 1 +1957 2 26 -3.0 -3.8 -3.8 1 +1957 2 27 -2.2 -3.0 -3.0 1 +1957 2 28 -4.1 -4.9 -4.9 1 +1957 3 1 -3.5 -4.3 -4.3 1 +1957 3 2 -0.7 -1.5 -1.5 1 +1957 3 3 -0.7 -1.5 -1.5 1 +1957 3 4 1.7 0.9 0.9 1 +1957 3 5 -1.8 -2.6 -2.6 1 +1957 3 6 -5.3 -6.1 -6.1 1 +1957 3 7 -2.3 -3.1 -3.1 1 +1957 3 8 -1.4 -2.2 -2.2 1 +1957 3 9 -1.3 -2.1 -2.1 1 +1957 3 10 -0.3 -1.1 -1.1 1 +1957 3 11 2.3 1.5 1.5 1 +1957 3 12 3.5 2.7 2.7 1 +1957 3 13 4.0 3.2 3.2 1 +1957 3 14 2.7 1.9 1.9 1 +1957 3 15 -4.7 -5.6 -5.6 1 +1957 3 16 -9.9 -10.7 -10.7 1 +1957 3 17 -8.3 -9.1 -9.1 1 +1957 3 18 -5.3 -6.1 -6.1 1 +1957 3 19 -7.5 -8.3 -8.3 1 +1957 3 20 -7.3 -8.1 -8.1 1 +1957 3 21 -0.5 -1.3 -1.3 1 +1957 3 22 -4.7 -5.5 -5.5 1 +1957 3 23 -7.0 -7.8 -7.8 1 +1957 3 24 -5.5 -6.3 -6.3 1 +1957 3 25 -0.7 -1.5 -1.5 1 +1957 3 26 1.5 0.7 0.7 1 +1957 3 27 3.9 3.1 3.1 1 +1957 3 28 4.1 3.3 3.3 1 +1957 3 29 1.5 0.7 0.7 1 +1957 3 30 1.8 1.0 1.0 1 +1957 3 31 4.7 3.9 3.9 1 +1957 4 1 7.7 6.9 6.9 1 +1957 4 2 7.6 6.8 6.8 1 +1957 4 3 9.9 9.1 9.1 1 +1957 4 4 10.1 9.4 9.4 1 +1957 4 5 9.2 8.5 8.5 1 +1957 4 6 6.6 5.9 5.9 1 +1957 4 7 2.8 2.1 2.1 1 +1957 4 8 3.6 2.9 2.9 1 +1957 4 9 -0.9 -1.6 -1.6 1 +1957 4 10 -1.9 -2.6 -2.6 1 +1957 4 11 -2.2 -2.9 -2.9 1 +1957 4 12 -2.9 -3.6 -3.6 1 +1957 4 13 -2.4 -3.1 -3.1 1 +1957 4 14 -3.2 -3.9 -3.9 1 +1957 4 15 -2.6 -3.3 -3.3 1 +1957 4 16 -1.3 -2.0 -2.0 1 +1957 4 17 1.6 0.9 0.9 1 +1957 4 18 2.0 1.3 1.3 1 +1957 4 19 3.6 2.8 2.8 1 +1957 4 20 4.3 3.5 3.5 1 +1957 4 21 5.3 4.5 4.5 1 +1957 4 22 4.2 3.4 3.4 1 +1957 4 23 4.9 4.1 4.1 1 +1957 4 24 3.3 2.4 2.4 1 +1957 4 25 6.1 5.2 5.2 1 +1957 4 26 7.9 7.0 7.0 1 +1957 4 27 6.8 5.9 5.9 1 +1957 4 28 10.2 9.3 9.3 1 +1957 4 29 11.6 10.7 10.7 1 +1957 4 30 5.7 4.7 4.7 1 +1957 5 1 4.5 3.5 3.5 1 +1957 5 2 7.0 6.0 6.0 1 +1957 5 3 7.1 6.1 6.1 1 +1957 5 4 3.9 2.9 2.9 1 +1957 5 5 1.8 0.8 0.8 1 +1957 5 6 3.7 2.6 2.6 1 +1957 5 7 2.2 1.1 1.1 1 +1957 5 8 2.3 1.2 1.2 1 +1957 5 9 6.3 5.2 5.2 1 +1957 5 10 9.9 8.8 8.8 1 +1957 5 11 9.0 7.9 7.9 1 +1957 5 12 8.3 7.1 7.1 1 +1957 5 13 11.5 10.3 10.3 1 +1957 5 14 11.9 10.7 10.7 1 +1957 5 15 13.0 11.8 11.8 1 +1957 5 16 16.2 15.0 15.0 1 +1957 5 17 13.2 12.0 12.0 1 +1957 5 18 13.4 12.2 12.2 1 +1957 5 19 15.4 14.2 14.2 1 +1957 5 20 13.4 12.2 12.2 1 +1957 5 21 11.2 10.0 10.0 1 +1957 5 22 11.7 10.5 10.5 1 +1957 5 23 9.7 8.5 8.5 1 +1957 5 24 8.3 7.2 7.2 1 +1957 5 25 6.6 5.5 5.5 1 +1957 5 26 7.2 6.1 6.1 1 +1957 5 27 7.7 6.6 6.6 1 +1957 5 28 9.5 8.4 8.4 1 +1957 5 29 8.9 7.8 7.8 1 +1957 5 30 13.2 12.1 12.1 1 +1957 5 31 13.2 12.1 12.1 1 +1957 6 1 12.6 11.5 11.5 1 +1957 6 2 12.7 11.6 11.6 1 +1957 6 3 18.4 17.3 17.3 1 +1957 6 4 11.5 10.4 10.4 1 +1957 6 5 8.5 7.5 7.5 1 +1957 6 6 11.6 10.6 10.6 1 +1957 6 7 10.0 9.0 9.0 1 +1957 6 8 12.5 11.5 11.5 1 +1957 6 9 13.0 12.0 12.0 1 +1957 6 10 15.4 14.4 14.4 1 +1957 6 11 13.9 12.9 12.9 1 +1957 6 12 15.3 14.3 14.3 1 +1957 6 13 14.7 13.7 13.7 1 +1957 6 14 15.0 14.0 14.0 1 +1957 6 15 17.1 16.1 16.1 1 +1957 6 16 16.7 15.7 15.7 1 +1957 6 17 19.5 18.5 18.5 1 +1957 6 18 10.9 9.9 9.9 1 +1957 6 19 11.2 10.2 10.2 1 +1957 6 20 11.3 10.3 10.3 1 +1957 6 21 11.1 10.1 10.1 1 +1957 6 22 12.4 11.5 11.5 1 +1957 6 23 12.7 11.8 11.8 1 +1957 6 24 12.4 11.5 11.5 1 +1957 6 25 13.7 12.8 12.8 1 +1957 6 26 14.2 13.3 13.3 1 +1957 6 27 14.4 13.5 13.5 1 +1957 6 28 14.1 13.2 13.2 1 +1957 6 29 13.8 12.9 12.9 1 +1957 6 30 15.7 14.8 14.8 1 +1957 7 1 16.0 15.1 15.1 1 +1957 7 2 16.6 15.7 15.7 1 +1957 7 3 17.1 16.2 16.2 1 +1957 7 4 15.5 14.6 14.6 1 +1957 7 5 15.4 14.5 14.5 1 +1957 7 6 15.3 14.4 14.4 1 +1957 7 7 15.9 15.0 15.0 1 +1957 7 8 13.1 12.2 12.2 1 +1957 7 9 15.2 14.3 14.3 1 +1957 7 10 15.8 14.9 14.9 1 +1957 7 11 17.4 16.5 16.5 1 +1957 7 12 16.8 15.9 15.9 1 +1957 7 13 16.6 15.7 15.7 1 +1957 7 14 18.3 17.4 17.4 1 +1957 7 15 19.4 18.5 18.5 1 +1957 7 16 19.7 18.8 18.8 1 +1957 7 17 18.2 17.3 17.3 1 +1957 7 18 21.1 20.2 20.2 1 +1957 7 19 19.2 18.3 18.3 1 +1957 7 20 19.7 18.8 18.8 1 +1957 7 21 20.6 19.7 19.7 1 +1957 7 22 21.5 20.7 20.7 1 +1957 7 23 21.4 20.6 20.6 1 +1957 7 24 19.0 18.2 18.2 1 +1957 7 25 18.8 18.0 18.0 1 +1957 7 26 18.6 17.8 17.8 1 +1957 7 27 17.4 16.6 16.6 1 +1957 7 28 17.7 16.9 16.9 1 +1957 7 29 16.8 16.0 16.0 1 +1957 7 30 18.3 17.5 17.5 1 +1957 7 31 19.3 18.5 18.5 1 +1957 8 1 16.1 15.3 15.3 1 +1957 8 2 15.1 14.3 14.3 1 +1957 8 3 13.5 12.7 12.7 1 +1957 8 4 16.1 15.4 15.4 1 +1957 8 5 18.1 17.4 17.4 1 +1957 8 6 18.7 18.0 18.0 1 +1957 8 7 13.7 13.0 13.0 1 +1957 8 8 13.6 12.9 12.9 1 +1957 8 9 15.1 14.4 14.4 1 +1957 8 10 16.4 15.7 15.7 1 +1957 8 11 18.6 17.9 17.9 1 +1957 8 12 18.3 17.6 17.6 1 +1957 8 13 16.9 16.2 16.2 1 +1957 8 14 15.8 15.1 15.1 1 +1957 8 15 15.7 15.0 15.0 1 +1957 8 16 16.6 16.0 16.0 1 +1957 8 17 17.9 17.3 17.3 1 +1957 8 18 18.2 17.6 17.6 1 +1957 8 19 18.4 17.8 17.8 1 +1957 8 20 17.5 16.9 16.9 1 +1957 8 21 16.1 15.5 15.5 1 +1957 8 22 13.6 13.0 13.0 1 +1957 8 23 13.1 12.5 12.5 1 +1957 8 24 14.5 14.0 14.0 1 +1957 8 25 13.7 13.2 13.2 1 +1957 8 26 13.9 13.4 13.4 1 +1957 8 27 12.7 12.2 12.2 1 +1957 8 28 14.3 13.8 13.8 1 +1957 8 29 14.5 14.0 14.0 1 +1957 8 30 13.3 12.8 12.8 1 +1957 8 31 12.0 11.6 11.6 1 +1957 9 1 12.9 12.5 12.5 1 +1957 9 2 12.4 12.0 12.0 1 +1957 9 3 13.4 13.0 13.0 1 +1957 9 4 14.1 13.7 13.7 1 +1957 9 5 13.3 12.9 12.9 1 +1957 9 6 11.9 11.5 11.5 1 +1957 9 7 13.6 13.3 13.3 1 +1957 9 8 16.2 15.9 15.9 1 +1957 9 9 13.1 12.8 12.8 1 +1957 9 10 13.2 12.9 12.9 1 +1957 9 11 13.3 13.0 13.0 1 +1957 9 12 14.5 14.2 14.2 1 +1957 9 13 11.4 11.1 11.1 1 +1957 9 14 11.0 10.8 10.8 1 +1957 9 15 11.5 11.3 11.3 1 +1957 9 16 12.0 11.8 11.8 1 +1957 9 17 11.4 11.2 11.2 1 +1957 9 18 10.7 10.5 10.5 1 +1957 9 19 7.6 7.4 7.4 1 +1957 9 20 8.1 7.9 7.9 1 +1957 9 21 7.5 7.3 7.3 1 +1957 9 22 8.4 8.2 8.2 1 +1957 9 23 9.3 9.1 9.1 1 +1957 9 24 6.0 5.8 5.8 1 +1957 9 25 5.2 5.0 5.0 1 +1957 9 26 3.1 2.9 2.9 1 +1957 9 27 5.1 4.9 4.9 1 +1957 9 28 6.5 6.3 6.3 1 +1957 9 29 6.0 5.8 5.8 1 +1957 9 30 4.2 4.0 4.0 1 +1957 10 1 4.7 4.5 4.5 1 +1957 10 2 7.1 6.9 6.9 1 +1957 10 3 8.5 8.3 8.3 1 +1957 10 4 6.0 5.8 5.8 1 +1957 10 5 5.9 5.7 5.7 1 +1957 10 6 5.7 5.5 5.5 1 +1957 10 7 7.9 7.7 7.7 1 +1957 10 8 8.1 7.9 7.9 1 +1957 10 9 9.9 9.7 9.7 1 +1957 10 10 9.7 9.5 9.5 1 +1957 10 11 9.5 9.3 9.3 1 +1957 10 12 10.2 10.0 10.0 1 +1957 10 13 9.9 9.7 9.7 1 +1957 10 14 8.3 8.1 8.1 1 +1957 10 15 5.9 5.7 5.7 1 +1957 10 16 8.8 8.6 8.6 1 +1957 10 17 8.3 8.1 8.1 1 +1957 10 18 7.1 6.9 6.9 1 +1957 10 19 8.6 8.4 8.4 1 +1957 10 20 6.6 6.4 6.4 1 +1957 10 21 5.8 5.6 5.6 1 +1957 10 22 7.9 7.7 7.7 1 +1957 10 23 7.3 7.1 7.1 1 +1957 10 24 7.2 7.0 7.0 1 +1957 10 25 5.2 4.9 4.9 1 +1957 10 26 6.5 6.2 6.2 1 +1957 10 27 9.6 9.3 9.3 1 +1957 10 28 10.0 9.7 9.7 1 +1957 10 29 7.4 7.1 7.1 1 +1957 10 30 7.4 7.1 7.1 1 +1957 10 31 4.3 4.0 4.0 1 +1957 11 1 8.0 7.7 7.7 1 +1957 11 2 7.9 7.6 7.6 1 +1957 11 3 6.4 6.1 6.1 1 +1957 11 4 7.5 7.2 7.2 1 +1957 11 5 8.4 8.1 8.1 1 +1957 11 6 9.1 8.8 8.8 1 +1957 11 7 7.7 7.4 7.4 1 +1957 11 8 6.3 5.9 5.9 1 +1957 11 9 2.4 2.0 2.0 1 +1957 11 10 2.0 1.6 1.6 1 +1957 11 11 2.2 1.8 1.8 1 +1957 11 12 -1.1 -1.5 -1.5 1 +1957 11 13 0.6 0.2 0.2 1 +1957 11 14 1.6 1.2 1.2 1 +1957 11 15 0.9 0.5 0.5 1 +1957 11 16 1.5 1.1 1.1 1 +1957 11 17 -0.8 -1.2 -1.2 1 +1957 11 18 0.6 0.2 0.2 1 +1957 11 19 1.7 1.3 1.3 1 +1957 11 20 3.3 2.9 2.9 1 +1957 11 21 2.9 2.5 2.5 1 +1957 11 22 1.2 0.8 0.8 1 +1957 11 23 0.3 -0.1 -0.1 1 +1957 11 24 2.6 2.2 2.2 1 +1957 11 25 0.8 0.4 0.4 1 +1957 11 26 2.8 2.4 2.4 1 +1957 11 27 1.2 0.8 0.8 1 +1957 11 28 0.6 0.2 0.2 1 +1957 11 29 -5.0 -5.4 -5.4 1 +1957 11 30 -6.1 -6.6 -6.6 1 +1957 12 1 1.0 0.5 0.5 1 +1957 12 2 2.1 1.6 1.6 1 +1957 12 3 0.3 -0.2 -0.2 1 +1957 12 4 3.1 2.6 2.6 1 +1957 12 5 2.4 1.9 1.9 1 +1957 12 6 0.7 0.2 0.2 1 +1957 12 7 3.1 2.6 2.6 1 +1957 12 8 0.1 -0.4 -0.4 1 +1957 12 9 -8.0 -8.5 -8.5 1 +1957 12 10 -9.7 -10.2 -10.2 1 +1957 12 11 -9.1 -9.6 -9.6 1 +1957 12 12 -5.5 -6.0 -6.0 1 +1957 12 13 -4.7 -5.2 -5.2 1 +1957 12 14 -7.9 -8.4 -8.4 1 +1957 12 15 -6.2 -6.7 -6.7 1 +1957 12 16 1.5 1.0 1.0 1 +1957 12 17 1.3 0.8 0.8 1 +1957 12 18 0.1 -0.4 -0.4 1 +1957 12 19 -1.7 -2.2 -2.2 1 +1957 12 20 3.0 2.5 2.5 1 +1957 12 21 5.9 5.4 5.4 1 +1957 12 22 5.0 4.5 4.5 1 +1957 12 23 4.0 3.4 3.4 1 +1957 12 24 1.1 0.5 0.5 1 +1957 12 25 1.4 0.8 0.8 1 +1957 12 26 3.3 2.7 2.7 1 +1957 12 27 6.4 5.8 5.8 1 +1957 12 28 4.9 4.3 4.3 1 +1957 12 29 -0.8 -1.4 -1.4 1 +1957 12 30 -3.7 -4.3 -4.3 1 +1957 12 31 -6.4 -7.0 -7.0 1 +1958 1 1 -8.7 -9.3 -9.3 1 +1958 1 2 -10.9 -11.5 -11.5 1 +1958 1 3 -9.6 -10.2 -10.2 1 +1958 1 4 -8.1 -8.7 -8.7 1 +1958 1 5 -3.8 -4.5 -4.5 1 +1958 1 6 -4.5 -5.2 -5.2 1 +1958 1 7 -9.3 -10.0 -10.0 1 +1958 1 8 -12.4 -13.1 -13.1 1 +1958 1 9 -8.9 -9.6 -9.6 1 +1958 1 10 -4.4 -5.1 -5.1 1 +1958 1 11 -1.9 -2.6 -2.6 1 +1958 1 12 1.1 0.4 0.4 1 +1958 1 13 0.6 -0.1 -0.1 1 +1958 1 14 0.4 -0.3 -0.3 1 +1958 1 15 0.7 0.0 0.0 1 +1958 1 16 1.9 1.2 1.2 1 +1958 1 17 1.3 0.6 0.6 1 +1958 1 18 -3.1 -3.8 -3.8 1 +1958 1 19 -3.0 -3.7 -3.7 1 +1958 1 20 -7.9 -8.6 -8.6 1 +1958 1 21 -8.1 -8.8 -8.8 1 +1958 1 22 -5.4 -6.1 -6.1 1 +1958 1 23 -0.1 -0.8 -0.8 1 +1958 1 24 -1.3 -2.0 -2.0 1 +1958 1 25 -3.4 -4.1 -4.1 1 +1958 1 26 -3.7 -4.4 -4.4 1 +1958 1 27 -0.3 -1.0 -1.0 1 +1958 1 28 2.1 1.4 1.4 1 +1958 1 29 1.6 0.9 0.9 1 +1958 1 30 1.1 0.4 0.4 1 +1958 1 31 1.3 0.6 0.6 1 +1958 2 1 2.1 1.4 1.4 1 +1958 2 2 2.7 2.0 2.0 1 +1958 2 3 1.4 0.7 0.7 1 +1958 2 4 -2.0 -2.7 -2.7 1 +1958 2 5 -5.9 -6.6 -6.6 1 +1958 2 6 -9.3 -10.0 -10.0 1 +1958 2 7 -10.7 -11.4 -11.4 1 +1958 2 8 -12.1 -12.8 -12.8 1 +1958 2 9 -8.2 -8.9 -8.9 1 +1958 2 10 -12.7 -13.4 -13.4 1 +1958 2 11 -5.1 -5.8 -5.8 1 +1958 2 12 0.4 -0.4 -0.4 1 +1958 2 13 2.5 1.7 1.7 1 +1958 2 14 2.1 1.3 1.3 1 +1958 2 15 0.9 0.1 0.1 1 +1958 2 16 -0.5 -1.3 -1.3 1 +1958 2 17 -3.0 -3.8 -3.8 1 +1958 2 18 -4.7 -5.5 -5.5 1 +1958 2 19 -8.6 -9.4 -9.4 1 +1958 2 20 -5.3 -6.1 -6.1 1 +1958 2 21 -8.0 -8.8 -8.8 1 +1958 2 22 -8.0 -8.8 -8.8 1 +1958 2 23 -13.7 -14.5 -14.5 1 +1958 2 24 -13.1 -13.9 -13.9 1 +1958 2 25 -12.8 -13.6 -13.6 1 +1958 2 26 -12.3 -13.1 -13.1 1 +1958 2 27 -13.4 -14.2 -14.2 1 +1958 2 28 -8.2 -9.0 -9.0 1 +1958 3 1 -1.2 -2.0 -2.0 1 +1958 3 2 -4.2 -5.0 -5.0 1 +1958 3 3 -7.9 -8.7 -8.7 1 +1958 3 4 -1.4 -2.2 -2.2 1 +1958 3 5 3.5 2.7 2.7 1 +1958 3 6 -1.7 -2.5 -2.5 1 +1958 3 7 -11.9 -12.7 -12.7 1 +1958 3 8 -11.7 -12.5 -12.5 1 +1958 3 9 -9.0 -9.8 -9.8 1 +1958 3 10 -9.4 -10.2 -10.2 1 +1958 3 11 -7.5 -8.3 -8.3 1 +1958 3 12 -6.4 -7.3 -7.3 1 +1958 3 13 -6.7 -7.6 -7.6 1 +1958 3 14 -3.3 -4.2 -4.2 1 +1958 3 15 -1.5 -2.4 -2.4 1 +1958 3 16 -2.6 -3.5 -3.5 1 +1958 3 17 -1.6 -2.5 -2.5 1 +1958 3 18 -2.6 -3.4 -3.4 1 +1958 3 19 -4.0 -4.8 -4.8 1 +1958 3 20 -7.2 -8.0 -8.0 1 +1958 3 21 -7.7 -8.5 -8.5 1 +1958 3 22 -6.9 -7.7 -7.7 1 +1958 3 23 -4.2 -5.0 -5.0 1 +1958 3 24 -2.1 -2.9 -2.9 1 +1958 3 25 -2.5 -3.3 -3.3 1 +1958 3 26 -4.7 -5.5 -5.5 1 +1958 3 27 -4.4 -5.2 -5.2 1 +1958 3 28 -4.4 -5.2 -5.2 1 +1958 3 29 -5.0 -5.8 -5.8 1 +1958 3 30 -2.9 -3.7 -3.7 1 +1958 3 31 -2.1 -2.9 -2.9 1 +1958 4 1 -3.2 -4.0 -4.0 1 +1958 4 2 0.1 -0.7 -0.7 1 +1958 4 3 -0.2 -1.0 -1.0 1 +1958 4 4 0.5 -0.3 -0.3 1 +1958 4 5 1.0 0.2 0.2 1 +1958 4 6 0.7 -0.1 -0.1 1 +1958 4 7 0.8 0.1 0.1 1 +1958 4 8 -0.8 -1.5 -1.5 1 +1958 4 9 -0.5 -1.2 -1.2 1 +1958 4 10 0.8 0.1 0.1 1 +1958 4 11 -0.6 -1.3 -1.3 1 +1958 4 12 2.7 2.0 2.0 1 +1958 4 13 5.2 4.5 4.5 1 +1958 4 14 7.5 6.8 6.8 1 +1958 4 15 4.8 4.1 4.1 1 +1958 4 16 6.2 5.5 5.5 1 +1958 4 17 5.3 4.6 4.6 1 +1958 4 18 6.1 5.3 5.3 1 +1958 4 19 1.9 1.1 1.1 1 +1958 4 20 3.1 2.3 2.3 1 +1958 4 21 2.8 2.0 2.0 1 +1958 4 22 3.5 2.7 2.7 1 +1958 4 23 2.0 1.2 1.2 1 +1958 4 24 2.2 1.3 1.3 1 +1958 4 25 3.6 2.7 2.7 1 +1958 4 26 3.6 2.7 2.7 1 +1958 4 27 4.0 3.1 3.1 1 +1958 4 28 1.4 0.5 0.5 1 +1958 4 29 3.7 2.7 2.7 1 +1958 4 30 10.3 9.3 9.3 1 +1958 5 1 9.0 8.0 8.0 1 +1958 5 2 8.5 7.5 7.5 1 +1958 5 3 3.5 2.5 2.5 1 +1958 5 4 5.4 4.4 4.4 1 +1958 5 5 6.2 5.1 5.1 1 +1958 5 6 6.3 5.2 5.2 1 +1958 5 7 2.1 1.0 1.0 1 +1958 5 8 5.3 4.2 4.2 1 +1958 5 9 9.0 7.9 7.9 1 +1958 5 10 11.3 10.2 10.2 1 +1958 5 11 10.3 9.1 9.1 1 +1958 5 12 7.6 6.4 6.4 1 +1958 5 13 7.5 6.3 6.3 1 +1958 5 14 9.7 8.5 8.5 1 +1958 5 15 6.7 5.5 5.5 1 +1958 5 16 9.2 8.0 8.0 1 +1958 5 17 8.3 7.1 7.1 1 +1958 5 18 7.3 6.1 6.1 1 +1958 5 19 10.0 8.8 8.8 1 +1958 5 20 10.2 9.0 9.0 1 +1958 5 21 12.2 11.0 11.0 1 +1958 5 22 11.5 10.3 10.3 1 +1958 5 23 12.5 11.3 11.3 1 +1958 5 24 9.8 8.6 8.6 1 +1958 5 25 15.3 14.1 14.1 1 +1958 5 26 18.5 17.4 17.4 1 +1958 5 27 17.7 16.6 16.6 1 +1958 5 28 12.3 11.2 11.2 1 +1958 5 29 11.9 10.8 10.8 1 +1958 5 30 13.5 12.4 12.4 1 +1958 5 31 13.1 12.0 12.0 1 +1958 6 1 13.2 12.1 12.1 1 +1958 6 2 13.8 12.7 12.7 1 +1958 6 3 15.5 14.4 14.4 1 +1958 6 4 18.1 17.0 17.0 1 +1958 6 5 9.8 8.7 8.7 1 +1958 6 6 8.5 7.4 7.4 1 +1958 6 7 16.2 15.2 15.2 1 +1958 6 8 16.0 15.0 15.0 1 +1958 6 9 11.4 10.4 10.4 1 +1958 6 10 7.1 6.1 6.1 1 +1958 6 11 10.4 9.4 9.4 1 +1958 6 12 11.2 10.2 10.2 1 +1958 6 13 10.7 9.7 9.7 1 +1958 6 14 11.0 10.0 10.0 1 +1958 6 15 12.4 11.4 11.4 1 +1958 6 16 12.4 11.4 11.4 1 +1958 6 17 15.0 14.0 14.0 1 +1958 6 18 15.3 14.3 14.3 1 +1958 6 19 13.7 12.7 12.7 1 +1958 6 20 11.5 10.5 10.5 1 +1958 6 21 12.0 11.0 11.0 1 +1958 6 22 13.7 12.7 12.7 1 +1958 6 23 14.6 13.6 13.6 1 +1958 6 24 15.2 14.2 14.2 1 +1958 6 25 17.0 16.0 16.0 1 +1958 6 26 16.7 15.7 15.7 1 +1958 6 27 18.0 17.0 17.0 1 +1958 6 28 17.8 16.9 16.9 1 +1958 6 29 16.7 15.8 15.8 1 +1958 6 30 19.8 18.9 18.9 1 +1958 7 1 21.6 20.7 20.7 1 +1958 7 2 21.0 20.1 20.1 1 +1958 7 3 21.4 20.5 20.5 1 +1958 7 4 21.3 20.4 20.4 1 +1958 7 5 17.5 16.6 16.6 1 +1958 7 6 14.0 13.1 13.1 1 +1958 7 7 14.5 13.6 13.6 1 +1958 7 8 16.2 15.3 15.3 1 +1958 7 9 20.6 19.7 19.7 1 +1958 7 10 19.3 18.4 18.4 1 +1958 7 11 17.0 16.1 16.1 1 +1958 7 12 18.2 17.3 17.3 1 +1958 7 13 18.8 17.9 17.9 1 +1958 7 14 18.7 17.8 17.8 1 +1958 7 15 15.3 14.4 14.4 1 +1958 7 16 15.9 15.0 15.0 1 +1958 7 17 14.3 13.4 13.4 1 +1958 7 18 12.6 11.7 11.7 1 +1958 7 19 14.3 13.4 13.4 1 +1958 7 20 13.6 12.7 12.7 1 +1958 7 21 15.0 14.1 14.1 1 +1958 7 22 14.5 13.6 13.6 1 +1958 7 23 15.4 14.6 14.6 1 +1958 7 24 14.7 13.9 13.9 1 +1958 7 25 13.9 13.1 13.1 1 +1958 7 26 14.5 13.7 13.7 1 +1958 7 27 13.8 13.0 13.0 1 +1958 7 28 16.6 15.8 15.8 1 +1958 7 29 14.9 14.1 14.1 1 +1958 7 30 17.3 16.5 16.5 1 +1958 7 31 15.8 15.0 15.0 1 +1958 8 1 16.8 16.0 16.0 1 +1958 8 2 15.0 14.2 14.2 1 +1958 8 3 14.4 13.6 13.6 1 +1958 8 4 15.1 14.3 14.3 1 +1958 8 5 14.0 13.2 13.2 1 +1958 8 6 16.4 15.7 15.7 1 +1958 8 7 14.9 14.2 14.2 1 +1958 8 8 15.5 14.8 14.8 1 +1958 8 9 13.7 13.0 13.0 1 +1958 8 10 15.1 14.4 14.4 1 +1958 8 11 17.5 16.8 16.8 1 +1958 8 12 17.0 16.3 16.3 1 +1958 8 13 15.6 14.9 14.9 1 +1958 8 14 15.6 14.9 14.9 1 +1958 8 15 15.6 14.9 14.9 1 +1958 8 16 15.5 14.8 14.8 1 +1958 8 17 15.0 14.4 14.4 1 +1958 8 18 15.0 14.4 14.4 1 +1958 8 19 15.4 14.8 14.8 1 +1958 8 20 14.1 13.5 13.5 1 +1958 8 21 13.5 12.9 12.9 1 +1958 8 22 13.6 13.0 13.0 1 +1958 8 23 14.0 13.4 13.4 1 +1958 8 24 14.9 14.4 14.4 1 +1958 8 25 14.4 13.9 13.9 1 +1958 8 26 14.9 14.4 14.4 1 +1958 8 27 15.6 15.1 15.1 1 +1958 8 28 15.5 15.0 15.0 1 +1958 8 29 15.2 14.7 14.7 1 +1958 8 30 15.8 15.3 15.3 1 +1958 8 31 16.8 16.4 16.4 1 +1958 9 1 15.0 14.6 14.6 1 +1958 9 2 14.7 14.3 14.3 1 +1958 9 3 15.5 15.1 15.1 1 +1958 9 4 18.7 18.3 18.3 1 +1958 9 5 18.8 18.4 18.4 1 +1958 9 6 17.0 16.6 16.6 1 +1958 9 7 17.5 17.2 17.2 1 +1958 9 8 17.6 17.3 17.3 1 +1958 9 9 13.2 12.9 12.9 1 +1958 9 10 12.4 12.1 12.1 1 +1958 9 11 13.6 13.3 13.3 1 +1958 9 12 10.6 10.3 10.3 1 +1958 9 13 14.1 13.8 13.8 1 +1958 9 14 14.7 14.5 14.5 1 +1958 9 15 12.7 12.5 12.5 1 +1958 9 16 11.5 11.3 11.3 1 +1958 9 17 11.7 11.5 11.5 1 +1958 9 18 12.8 12.6 12.6 1 +1958 9 19 11.2 11.0 11.0 1 +1958 9 20 11.4 11.2 11.2 1 +1958 9 21 13.4 13.2 13.2 1 +1958 9 22 11.5 11.3 11.3 1 +1958 9 23 11.9 11.7 11.7 1 +1958 9 24 11.2 11.0 11.0 1 +1958 9 25 12.3 12.1 12.1 1 +1958 9 26 9.9 9.7 9.7 1 +1958 9 27 8.1 7.9 7.9 1 +1958 9 28 9.3 9.1 9.1 1 +1958 9 29 11.5 11.3 11.3 1 +1958 9 30 12.3 12.1 12.1 1 +1958 10 1 13.7 13.5 13.5 1 +1958 10 2 13.0 12.8 12.8 1 +1958 10 3 14.2 14.0 14.0 1 +1958 10 4 13.5 13.3 13.3 1 +1958 10 5 13.0 12.8 12.8 1 +1958 10 6 13.3 13.1 13.1 1 +1958 10 7 12.5 12.3 12.3 1 +1958 10 8 9.9 9.7 9.7 1 +1958 10 9 12.3 12.1 12.1 1 +1958 10 10 9.9 9.7 9.7 1 +1958 10 11 12.6 12.4 12.4 1 +1958 10 12 9.7 9.5 9.5 1 +1958 10 13 8.9 8.7 8.7 1 +1958 10 14 8.0 7.8 7.8 1 +1958 10 15 8.1 7.9 7.9 1 +1958 10 16 6.8 6.6 6.6 1 +1958 10 17 3.2 3.0 3.0 1 +1958 10 18 5.1 4.9 4.9 1 +1958 10 19 3.7 3.5 3.5 1 +1958 10 20 3.7 3.5 3.5 1 +1958 10 21 3.0 2.8 2.8 1 +1958 10 22 6.8 6.6 6.6 1 +1958 10 23 7.3 7.1 7.1 1 +1958 10 24 8.1 7.8 7.8 1 +1958 10 25 8.6 8.3 8.3 1 +1958 10 26 5.5 5.2 5.2 1 +1958 10 27 8.8 8.5 8.5 1 +1958 10 28 8.7 8.4 8.4 1 +1958 10 29 9.0 8.7 8.7 1 +1958 10 30 8.1 7.8 7.8 1 +1958 10 31 7.0 6.7 6.7 1 +1958 11 1 6.8 6.5 6.5 1 +1958 11 2 7.4 7.1 7.1 1 +1958 11 3 7.2 6.9 6.9 1 +1958 11 4 7.2 6.9 6.9 1 +1958 11 5 7.5 7.2 7.2 1 +1958 11 6 7.5 7.2 7.2 1 +1958 11 7 7.2 6.8 6.8 1 +1958 11 8 7.3 6.9 6.9 1 +1958 11 9 5.9 5.5 5.5 1 +1958 11 10 3.3 2.9 2.9 1 +1958 11 11 2.8 2.4 2.4 1 +1958 11 12 4.4 4.0 4.0 1 +1958 11 13 5.4 5.0 5.0 1 +1958 11 14 5.9 5.5 5.5 1 +1958 11 15 5.8 5.4 5.4 1 +1958 11 16 4.4 4.0 4.0 1 +1958 11 17 4.9 4.5 4.5 1 +1958 11 18 5.3 4.9 4.9 1 +1958 11 19 1.7 1.3 1.3 1 +1958 11 20 5.0 4.6 4.6 1 +1958 11 21 1.9 1.5 1.5 1 +1958 11 22 4.7 4.3 4.3 1 +1958 11 23 5.0 4.6 4.6 1 +1958 11 24 3.1 2.7 2.7 1 +1958 11 25 5.6 5.2 5.2 1 +1958 11 26 2.4 2.0 2.0 1 +1958 11 27 0.9 0.5 0.5 1 +1958 11 28 3.0 2.5 2.5 1 +1958 11 29 3.3 2.8 2.8 1 +1958 11 30 2.0 1.5 1.5 1 +1958 12 1 -4.0 -4.5 -4.5 1 +1958 12 2 -3.3 -3.8 -3.8 1 +1958 12 3 -1.0 -1.5 -1.5 1 +1958 12 4 3.5 3.0 3.0 1 +1958 12 5 0.0 -0.5 -0.5 1 +1958 12 6 -1.3 -1.8 -1.8 1 +1958 12 7 -5.5 -6.0 -6.0 1 +1958 12 8 -0.3 -0.8 -0.8 1 +1958 12 9 -1.0 -1.5 -1.5 1 +1958 12 10 -8.1 -8.6 -8.6 1 +1958 12 11 -10.1 -10.6 -10.6 1 +1958 12 12 -8.9 -9.4 -9.4 1 +1958 12 13 -4.1 -4.6 -4.6 1 +1958 12 14 -2.0 -2.5 -2.5 1 +1958 12 15 -2.3 -2.8 -2.8 1 +1958 12 16 -3.0 -3.5 -3.5 1 +1958 12 17 1.6 1.1 1.1 1 +1958 12 18 2.1 1.6 1.6 1 +1958 12 19 -2.3 -2.8 -2.8 1 +1958 12 20 3.3 2.8 2.8 1 +1958 12 21 3.0 2.4 2.4 1 +1958 12 22 3.0 2.4 2.4 1 +1958 12 23 3.0 2.4 2.4 1 +1958 12 24 1.4 0.8 0.8 1 +1958 12 25 0.6 0.0 0.0 1 +1958 12 26 -0.9 -1.5 -1.5 1 +1958 12 27 0.7 0.1 0.1 1 +1958 12 28 0.0 -0.6 -0.6 1 +1958 12 29 0.0 -0.6 -0.6 1 +1958 12 30 0.2 -0.4 -0.4 1 +1958 12 31 1.7 1.1 1.1 1 +1959 1 1 1.1 0.5 0.5 1 +1959 1 2 1.4 0.8 0.8 1 +1959 1 3 2.2 1.6 1.6 1 +1959 1 4 -1.1 -1.8 -1.8 1 +1959 1 5 -6.0 -6.7 -6.7 1 +1959 1 6 -5.2 -5.9 -5.9 1 +1959 1 7 -5.8 -6.5 -6.5 1 +1959 1 8 -7.1 -7.8 -7.8 1 +1959 1 9 -3.5 -4.2 -4.2 1 +1959 1 10 -1.0 -1.7 -1.7 1 +1959 1 11 -2.6 -3.3 -3.3 1 +1959 1 12 -2.5 -3.2 -3.2 1 +1959 1 13 -5.3 -6.0 -6.0 1 +1959 1 14 -6.8 -7.5 -7.5 1 +1959 1 15 -10.1 -10.8 -10.8 1 +1959 1 16 -12.0 -12.7 -12.7 1 +1959 1 17 -10.6 -11.3 -11.3 1 +1959 1 18 -4.8 -5.5 -5.5 1 +1959 1 19 -9.0 -9.7 -9.7 1 +1959 1 20 -3.5 -4.2 -4.2 1 +1959 1 21 1.2 0.5 0.5 1 +1959 1 22 -0.1 -0.8 -0.8 1 +1959 1 23 2.3 1.6 1.6 1 +1959 1 24 -6.7 -7.4 -7.4 1 +1959 1 25 -8.7 -9.4 -9.4 1 +1959 1 26 -6.0 -6.7 -6.7 1 +1959 1 27 -0.1 -0.8 -0.8 1 +1959 1 28 -2.4 -3.1 -3.1 1 +1959 1 29 -2.5 -3.2 -3.2 1 +1959 1 30 -0.2 -0.9 -0.9 1 +1959 1 31 -0.4 -1.1 -1.1 1 +1959 2 1 -3.0 -3.7 -3.7 1 +1959 2 2 -2.0 -2.7 -2.7 1 +1959 2 3 0.6 -0.2 -0.2 1 +1959 2 4 -0.7 -1.5 -1.5 1 +1959 2 5 0.9 0.1 0.1 1 +1959 2 6 -2.1 -2.9 -2.9 1 +1959 2 7 -6.8 -7.6 -7.6 1 +1959 2 8 -5.7 -6.5 -6.5 1 +1959 2 9 -3.6 -4.4 -4.4 1 +1959 2 10 -5.5 -6.3 -6.3 1 +1959 2 11 -5.8 -6.6 -6.6 1 +1959 2 12 -6.0 -6.8 -6.8 1 +1959 2 13 -4.5 -5.3 -5.3 1 +1959 2 14 -4.8 -5.6 -5.6 1 +1959 2 15 0.4 -0.4 -0.4 1 +1959 2 16 -0.5 -1.3 -1.3 1 +1959 2 17 3.8 3.0 3.0 1 +1959 2 18 2.6 1.8 1.8 1 +1959 2 19 2.9 2.1 2.1 1 +1959 2 20 2.4 1.6 1.6 1 +1959 2 21 -1.9 -2.7 -2.7 1 +1959 2 22 -2.2 -3.0 -3.0 1 +1959 2 23 -2.7 -3.5 -3.5 1 +1959 2 24 2.9 2.1 2.1 1 +1959 2 25 3.0 2.2 2.2 1 +1959 2 26 5.8 5.0 5.0 1 +1959 2 27 5.9 5.1 5.1 1 +1959 2 28 5.2 4.4 4.4 1 +1959 3 1 5.4 4.6 4.6 1 +1959 3 2 3.4 2.6 2.6 1 +1959 3 3 3.2 2.4 2.4 1 +1959 3 4 1.8 1.0 1.0 1 +1959 3 5 3.4 2.6 2.6 1 +1959 3 6 2.7 1.9 1.9 1 +1959 3 7 5.1 4.3 4.3 1 +1959 3 8 0.5 -0.3 -0.3 1 +1959 3 9 0.0 -0.9 -0.9 1 +1959 3 10 2.3 1.4 1.4 1 +1959 3 11 2.5 1.6 1.6 1 +1959 3 12 2.8 1.9 1.9 1 +1959 3 13 1.8 0.9 0.9 1 +1959 3 14 -0.2 -1.1 -1.1 1 +1959 3 15 0.1 -0.8 -0.8 1 +1959 3 16 1.1 0.2 0.2 1 +1959 3 17 2.5 1.6 1.6 1 +1959 3 18 3.2 2.3 2.3 1 +1959 3 19 3.7 2.8 2.8 1 +1959 3 20 3.9 3.1 3.1 1 +1959 3 21 4.9 4.1 4.1 1 +1959 3 22 4.8 4.0 4.0 1 +1959 3 23 5.8 5.0 5.0 1 +1959 3 24 5.7 4.9 4.9 1 +1959 3 25 6.2 5.4 5.4 1 +1959 3 26 5.4 4.6 4.6 1 +1959 3 27 6.1 5.3 5.3 1 +1959 3 28 1.6 0.8 0.8 1 +1959 3 29 0.6 -0.2 -0.2 1 +1959 3 30 0.9 0.1 0.1 1 +1959 3 31 1.5 0.7 0.7 1 +1959 4 1 2.9 2.1 2.1 1 +1959 4 2 6.8 6.0 6.0 1 +1959 4 3 6.8 6.0 6.0 1 +1959 4 4 5.3 4.5 4.5 1 +1959 4 5 3.4 2.6 2.6 1 +1959 4 6 4.6 3.8 3.8 1 +1959 4 7 2.7 1.9 1.9 1 +1959 4 8 3.5 2.7 2.7 1 +1959 4 9 6.2 5.5 5.5 1 +1959 4 10 2.4 1.7 1.7 1 +1959 4 11 1.7 1.0 1.0 1 +1959 4 12 0.0 -0.7 -0.7 1 +1959 4 13 2.6 1.9 1.9 1 +1959 4 14 10.0 9.3 9.3 1 +1959 4 15 11.3 10.6 10.6 1 +1959 4 16 10.6 9.9 9.9 1 +1959 4 17 11.3 10.5 10.5 1 +1959 4 18 4.0 3.2 3.2 1 +1959 4 19 1.2 0.4 0.4 1 +1959 4 20 2.7 1.9 1.9 1 +1959 4 21 6.4 5.6 5.6 1 +1959 4 22 3.5 2.7 2.7 1 +1959 4 23 3.0 2.1 2.1 1 +1959 4 24 6.0 5.1 5.1 1 +1959 4 25 8.0 7.1 7.1 1 +1959 4 26 8.6 7.7 7.7 1 +1959 4 27 9.6 8.7 8.7 1 +1959 4 28 9.2 8.3 8.3 1 +1959 4 29 11.3 10.3 10.3 1 +1959 4 30 10.9 9.9 9.9 1 +1959 5 1 11.4 10.4 10.4 1 +1959 5 2 12.3 11.3 11.3 1 +1959 5 3 9.5 8.5 8.5 1 +1959 5 4 9.9 8.8 8.8 1 +1959 5 5 8.5 7.4 7.4 1 +1959 5 6 8.6 7.5 7.5 1 +1959 5 7 7.4 6.3 6.3 1 +1959 5 8 8.3 7.2 7.2 1 +1959 5 9 10.2 9.1 9.1 1 +1959 5 10 11.8 10.6 10.6 1 +1959 5 11 13.2 12.0 12.0 1 +1959 5 12 14.6 13.4 13.4 1 +1959 5 13 13.3 12.1 12.1 1 +1959 5 14 14.1 12.9 12.9 1 +1959 5 15 15.3 14.0 14.0 1 +1959 5 16 14.3 13.1 13.1 1 +1959 5 17 9.3 8.1 8.1 1 +1959 5 18 8.4 7.2 7.2 1 +1959 5 19 8.4 7.2 7.2 1 +1959 5 20 11.7 10.5 10.5 1 +1959 5 21 6.9 5.7 5.7 1 +1959 5 22 8.7 7.5 7.5 1 +1959 5 23 10.2 9.0 9.0 1 +1959 5 24 10.6 9.4 9.4 1 +1959 5 25 13.2 12.0 12.0 1 +1959 5 26 9.9 8.7 8.7 1 +1959 5 27 8.9 7.7 7.7 1 +1959 5 28 8.9 7.8 7.8 1 +1959 5 29 8.6 7.5 7.5 1 +1959 5 30 9.8 8.7 8.7 1 +1959 5 31 14.0 12.9 12.9 1 +1959 6 1 14.9 13.8 13.8 1 +1959 6 2 11.5 10.4 10.4 1 +1959 6 3 11.0 9.9 9.9 1 +1959 6 4 15.5 14.4 14.4 1 +1959 6 5 16.3 15.2 15.2 1 +1959 6 6 17.5 16.4 16.4 1 +1959 6 7 20.2 19.1 19.1 1 +1959 6 8 18.1 17.0 17.0 1 +1959 6 9 15.0 14.0 14.0 1 +1959 6 10 14.9 13.9 13.9 1 +1959 6 11 15.7 14.7 14.7 1 +1959 6 12 16.7 15.7 15.7 1 +1959 6 13 17.6 16.6 16.6 1 +1959 6 14 14.4 13.4 13.4 1 +1959 6 15 12.4 11.4 11.4 1 +1959 6 16 8.3 7.3 7.3 1 +1959 6 17 12.9 11.9 11.9 1 +1959 6 18 16.6 15.6 15.6 1 +1959 6 19 13.9 12.9 12.9 1 +1959 6 20 13.0 12.0 12.0 1 +1959 6 21 11.8 10.8 10.8 1 +1959 6 22 13.7 12.7 12.7 1 +1959 6 23 14.5 13.5 13.5 1 +1959 6 24 16.2 15.2 15.2 1 +1959 6 25 19.9 18.9 18.9 1 +1959 6 26 22.6 21.6 21.6 1 +1959 6 27 21.0 20.0 20.0 1 +1959 6 28 19.7 18.7 18.7 1 +1959 6 29 12.2 11.2 11.2 1 +1959 6 30 11.8 10.8 10.8 1 +1959 7 1 17.0 16.0 16.0 1 +1959 7 2 14.6 13.6 13.6 1 +1959 7 3 16.3 15.4 15.4 1 +1959 7 4 17.1 16.2 16.2 1 +1959 7 5 20.5 19.6 19.6 1 +1959 7 6 22.2 21.3 21.3 1 +1959 7 7 21.3 20.4 20.4 1 +1959 7 8 20.6 19.7 19.7 1 +1959 7 9 24.4 23.5 23.5 1 +1959 7 10 21.5 20.6 20.6 1 +1959 7 11 17.9 17.0 17.0 1 +1959 7 12 19.3 18.4 18.4 1 +1959 7 13 20.9 20.0 20.0 1 +1959 7 14 16.9 16.0 16.0 1 +1959 7 15 15.3 14.4 14.4 1 +1959 7 16 17.2 16.3 16.3 1 +1959 7 17 18.3 17.4 17.4 1 +1959 7 18 17.8 16.9 16.9 1 +1959 7 19 18.8 17.9 17.9 1 +1959 7 20 20.7 19.8 19.8 1 +1959 7 21 19.7 18.8 18.8 1 +1959 7 22 19.4 18.5 18.5 1 +1959 7 23 19.9 19.0 19.0 1 +1959 7 24 20.1 19.2 19.2 1 +1959 7 25 22.3 21.5 21.5 1 +1959 7 26 22.4 21.6 21.6 1 +1959 7 27 19.2 18.4 18.4 1 +1959 7 28 21.7 20.9 20.9 1 +1959 7 29 20.2 19.4 19.4 1 +1959 7 30 17.1 16.3 16.3 1 +1959 7 31 17.3 16.5 16.5 1 +1959 8 1 18.1 17.3 17.3 1 +1959 8 2 15.9 15.1 15.1 1 +1959 8 3 18.1 17.3 17.3 1 +1959 8 4 17.5 16.7 16.7 1 +1959 8 5 18.6 17.8 17.8 1 +1959 8 6 20.9 20.1 20.1 1 +1959 8 7 20.4 19.7 19.7 1 +1959 8 8 19.3 18.6 18.6 1 +1959 8 9 19.9 19.2 19.2 1 +1959 8 10 17.6 16.9 16.9 1 +1959 8 11 19.1 18.4 18.4 1 +1959 8 12 19.9 19.2 19.2 1 +1959 8 13 20.7 20.0 20.0 1 +1959 8 14 21.4 20.7 20.7 1 +1959 8 15 21.1 20.4 20.4 1 +1959 8 16 20.4 19.7 19.7 1 +1959 8 17 21.2 20.5 20.5 1 +1959 8 18 21.4 20.8 20.8 1 +1959 8 19 21.0 20.4 20.4 1 +1959 8 20 23.6 23.0 23.0 1 +1959 8 21 23.6 23.0 23.0 1 +1959 8 22 22.6 22.0 22.0 1 +1959 8 23 23.7 23.1 23.1 1 +1959 8 24 20.0 19.4 19.4 1 +1959 8 25 19.4 18.9 18.9 1 +1959 8 26 16.8 16.3 16.3 1 +1959 8 27 13.2 12.7 12.7 1 +1959 8 28 9.9 9.4 9.4 1 +1959 8 29 8.4 7.9 7.9 1 +1959 8 30 9.9 9.4 9.4 1 +1959 8 31 10.9 10.4 10.4 1 +1959 9 1 13.0 12.6 12.6 1 +1959 9 2 14.5 14.1 14.1 1 +1959 9 3 14.1 13.7 13.7 1 +1959 9 4 14.6 14.2 14.2 1 +1959 9 5 14.2 13.8 13.8 1 +1959 9 6 15.3 14.9 14.9 1 +1959 9 7 17.2 16.8 16.8 1 +1959 9 8 14.9 14.6 14.6 1 +1959 9 9 15.0 14.7 14.7 1 +1959 9 10 15.8 15.5 15.5 1 +1959 9 11 16.5 16.2 16.2 1 +1959 9 12 16.9 16.6 16.6 1 +1959 9 13 11.8 11.5 11.5 1 +1959 9 14 11.9 11.6 11.6 1 +1959 9 15 12.8 12.6 12.6 1 +1959 9 16 6.9 6.7 6.7 1 +1959 9 17 9.9 9.7 9.7 1 +1959 9 18 10.4 10.2 10.2 1 +1959 9 19 13.5 13.3 13.3 1 +1959 9 20 12.2 12.0 12.0 1 +1959 9 21 12.9 12.7 12.7 1 +1959 9 22 10.5 10.3 10.3 1 +1959 9 23 8.3 8.1 8.1 1 +1959 9 24 8.4 8.2 8.2 1 +1959 9 25 7.4 7.2 7.2 1 +1959 9 26 7.0 6.8 6.8 1 +1959 9 27 6.7 6.5 6.5 1 +1959 9 28 6.4 6.2 6.2 1 +1959 9 29 7.6 7.4 7.4 1 +1959 9 30 12.3 12.1 12.1 1 +1959 10 1 11.4 11.2 11.2 1 +1959 10 2 10.5 10.3 10.3 1 +1959 10 3 9.0 8.8 8.8 1 +1959 10 4 9.4 9.2 9.2 1 +1959 10 5 10.3 10.1 10.1 1 +1959 10 6 9.8 9.6 9.6 1 +1959 10 7 9.2 9.0 9.0 1 +1959 10 8 8.6 8.4 8.4 1 +1959 10 9 8.5 8.3 8.3 1 +1959 10 10 7.0 6.8 6.8 1 +1959 10 11 7.3 7.1 7.1 1 +1959 10 12 6.9 6.7 6.7 1 +1959 10 13 7.3 7.1 7.1 1 +1959 10 14 5.3 5.1 5.1 1 +1959 10 15 7.1 6.9 6.9 1 +1959 10 16 9.7 9.5 9.5 1 +1959 10 17 6.8 6.6 6.6 1 +1959 10 18 7.6 7.4 7.4 1 +1959 10 19 10.3 10.1 10.1 1 +1959 10 20 9.0 8.8 8.8 1 +1959 10 21 8.6 8.4 8.4 1 +1959 10 22 4.5 4.3 4.3 1 +1959 10 23 0.3 0.0 0.0 1 +1959 10 24 2.3 2.0 2.0 1 +1959 10 25 6.9 6.6 6.6 1 +1959 10 26 5.4 5.1 5.1 1 +1959 10 27 8.9 8.6 8.6 1 +1959 10 28 10.4 10.1 10.1 1 +1959 10 29 9.2 8.9 8.9 1 +1959 10 30 9.1 8.8 8.8 1 +1959 10 31 8.9 8.6 8.6 1 +1959 11 1 6.3 6.0 6.0 1 +1959 11 2 6.1 5.8 5.8 1 +1959 11 3 7.0 6.7 6.7 1 +1959 11 4 7.1 6.8 6.8 1 +1959 11 5 3.8 3.5 3.5 1 +1959 11 6 0.3 -0.1 -0.1 1 +1959 11 7 1.7 1.3 1.3 1 +1959 11 8 1.1 0.7 0.7 1 +1959 11 9 3.9 3.5 3.5 1 +1959 11 10 6.7 6.3 6.3 1 +1959 11 11 6.5 6.1 6.1 1 +1959 11 12 6.7 6.3 6.3 1 +1959 11 13 5.9 5.5 5.5 1 +1959 11 14 5.6 5.2 5.2 1 +1959 11 15 5.4 5.0 5.0 1 +1959 11 16 3.0 2.6 2.6 1 +1959 11 17 -2.7 -3.1 -3.1 1 +1959 11 18 -5.3 -5.7 -5.7 1 +1959 11 19 0.8 0.4 0.4 1 +1959 11 20 5.6 5.2 5.2 1 +1959 11 21 6.2 5.8 5.8 1 +1959 11 22 5.5 5.1 5.1 1 +1959 11 23 4.3 3.9 3.9 1 +1959 11 24 4.7 4.3 4.3 1 +1959 11 25 6.4 5.9 5.9 1 +1959 11 26 6.4 5.9 5.9 1 +1959 11 27 5.3 4.8 4.8 1 +1959 11 28 5.2 4.7 4.7 1 +1959 11 29 5.0 4.5 4.5 1 +1959 11 30 5.6 5.1 5.1 1 +1959 12 1 4.6 4.1 4.1 1 +1959 12 2 3.7 3.2 3.2 1 +1959 12 3 1.9 1.4 1.4 1 +1959 12 4 0.5 0.0 0.0 1 +1959 12 5 -3.8 -4.3 -4.3 1 +1959 12 6 -5.2 -5.7 -5.7 1 +1959 12 7 -4.6 -5.1 -5.1 1 +1959 12 8 -4.0 -4.5 -4.5 1 +1959 12 9 -4.7 -5.2 -5.2 1 +1959 12 10 -3.4 -3.9 -3.9 1 +1959 12 11 -1.8 -2.3 -2.3 1 +1959 12 12 -3.0 -3.5 -3.5 1 +1959 12 13 -4.1 -4.6 -4.6 1 +1959 12 14 -5.0 -5.5 -5.5 1 +1959 12 15 -1.0 -1.5 -1.5 1 +1959 12 16 0.0 -0.5 -0.5 1 +1959 12 17 0.4 -0.1 -0.1 1 +1959 12 18 3.0 2.5 2.5 1 +1959 12 19 3.8 3.3 3.3 1 +1959 12 20 3.4 2.8 2.8 1 +1959 12 21 5.1 4.5 4.5 1 +1959 12 22 2.9 2.3 2.3 1 +1959 12 23 2.3 1.7 1.7 1 +1959 12 24 3.8 3.2 3.2 1 +1959 12 25 2.5 1.9 1.9 1 +1959 12 26 1.5 0.9 0.9 1 +1959 12 27 3.2 2.6 2.6 1 +1959 12 28 3.3 2.7 2.7 1 +1959 12 29 3.0 2.4 2.4 1 +1959 12 30 3.0 2.4 2.4 1 +1959 12 31 1.7 1.1 1.1 1 +1960 1 1 4.2 3.6 3.6 1 +1960 1 2 4.0 3.4 3.4 1 +1960 1 3 2.4 1.7 1.7 1 +1960 1 4 1.2 0.5 0.5 1 +1960 1 5 3.3 2.6 2.6 1 +1960 1 6 1.2 0.5 0.5 1 +1960 1 7 -0.8 -1.5 -1.5 1 +1960 1 8 -6.6 -7.3 -7.3 1 +1960 1 9 -5.9 -6.6 -6.6 1 +1960 1 10 -5.6 -6.3 -6.3 1 +1960 1 11 -9.8 -10.5 -10.5 1 +1960 1 12 -11.1 -11.8 -11.8 1 +1960 1 13 -8.6 -9.3 -9.3 1 +1960 1 14 -8.4 -9.1 -9.1 1 +1960 1 15 -7.3 -8.0 -8.0 1 +1960 1 16 -8.9 -9.6 -9.6 1 +1960 1 17 -8.8 -9.5 -9.5 1 +1960 1 18 -4.7 -5.4 -5.4 1 +1960 1 19 -7.2 -7.9 -7.9 1 +1960 1 20 -7.4 -8.1 -8.1 1 +1960 1 21 -8.2 -8.9 -8.9 1 +1960 1 22 -5.6 -6.3 -6.3 1 +1960 1 23 2.0 1.3 1.3 1 +1960 1 24 2.5 1.8 1.8 1 +1960 1 25 2.3 1.6 1.6 1 +1960 1 26 2.7 2.0 2.0 1 +1960 1 27 -1.1 -1.9 -1.9 1 +1960 1 28 -2.5 -3.3 -3.3 1 +1960 1 29 -5.6 -6.4 -6.4 1 +1960 1 30 -11.6 -12.4 -12.4 1 +1960 1 31 -11.0 -11.8 -11.8 1 +1960 2 1 -8.8 -9.6 -9.6 1 +1960 2 2 -8.4 -9.2 -9.2 1 +1960 2 3 -4.8 -5.6 -5.6 1 +1960 2 4 -1.9 -2.7 -2.7 1 +1960 2 5 -2.0 -2.8 -2.8 1 +1960 2 6 -5.6 -6.4 -6.4 1 +1960 2 7 -2.6 -3.4 -3.4 1 +1960 2 8 -0.2 -1.0 -1.0 1 +1960 2 9 -0.3 -1.1 -1.1 1 +1960 2 10 -0.6 -1.4 -1.4 1 +1960 2 11 -5.5 -6.3 -6.3 1 +1960 2 12 -7.0 -7.8 -7.8 1 +1960 2 13 -8.6 -9.4 -9.4 1 +1960 2 14 -10.2 -11.0 -11.0 1 +1960 2 15 -2.6 -3.4 -3.4 1 +1960 2 16 -0.6 -1.4 -1.4 1 +1960 2 17 -3.0 -3.8 -3.8 1 +1960 2 18 -5.7 -6.5 -6.5 1 +1960 2 19 -5.8 -6.6 -6.6 1 +1960 2 20 -1.1 -1.9 -1.9 1 +1960 2 21 1.4 0.6 0.6 1 +1960 2 22 -3.5 -4.3 -4.3 1 +1960 2 23 -7.6 -8.4 -8.4 1 +1960 2 24 -5.7 -6.5 -6.5 1 +1960 2 25 -4.7 -5.5 -5.5 1 +1960 2 26 -6.5 -7.3 -7.3 1 +1960 2 27 -2.4 -3.2 -3.2 1 +1960 2 28 -3.6 -4.4 -4.4 1 +1960 2 29 -8.7 -9.5 -9.5 1 +1960 3 1 -6.1 -6.9 -6.9 1 +1960 3 2 -0.8 -1.6 -1.6 1 +1960 3 3 0.9 0.1 0.1 1 +1960 3 4 0.3 -0.5 -0.5 1 +1960 3 5 0.0 -0.8 -0.8 1 +1960 3 6 -2.7 -3.6 -3.6 1 +1960 3 7 -2.7 -3.6 -3.6 1 +1960 3 8 -4.2 -5.1 -5.1 1 +1960 3 9 -3.7 -4.6 -4.6 1 +1960 3 10 -6.7 -7.6 -7.6 1 +1960 3 11 -4.5 -5.4 -5.4 1 +1960 3 12 -1.3 -2.2 -2.2 1 +1960 3 13 0.9 0.0 0.0 1 +1960 3 14 -0.2 -1.1 -1.1 1 +1960 3 15 -1.5 -2.4 -2.4 1 +1960 3 16 -2.6 -3.5 -3.5 1 +1960 3 17 -4.6 -5.5 -5.5 1 +1960 3 18 -1.5 -2.4 -2.4 1 +1960 3 19 -0.6 -1.5 -1.5 1 +1960 3 20 1.0 0.1 0.1 1 +1960 3 21 1.4 0.5 0.5 1 +1960 3 22 3.2 2.3 2.3 1 +1960 3 23 3.6 2.8 2.8 1 +1960 3 24 2.8 2.0 2.0 1 +1960 3 25 2.8 2.0 2.0 1 +1960 3 26 2.1 1.3 1.3 1 +1960 3 27 1.6 0.8 0.8 1 +1960 3 28 2.0 1.2 1.2 1 +1960 3 29 0.6 -0.2 -0.2 1 +1960 3 30 1.0 0.2 0.2 1 +1960 3 31 -0.9 -1.7 -1.7 1 +1960 4 1 1.6 0.8 0.8 1 +1960 4 2 2.2 1.4 1.4 1 +1960 4 3 -0.4 -1.2 -1.2 1 +1960 4 4 -0.8 -1.6 -1.6 1 +1960 4 5 0.2 -0.6 -0.6 1 +1960 4 6 2.2 1.4 1.4 1 +1960 4 7 3.8 3.0 3.0 1 +1960 4 8 3.5 2.7 2.7 1 +1960 4 9 3.5 2.7 2.7 1 +1960 4 10 3.0 2.2 2.2 1 +1960 4 11 1.8 1.1 1.1 1 +1960 4 12 3.6 2.9 2.9 1 +1960 4 13 4.7 4.0 4.0 1 +1960 4 14 8.8 8.1 8.1 1 +1960 4 15 6.2 5.5 5.5 1 +1960 4 16 6.8 6.1 6.1 1 +1960 4 17 5.9 5.1 5.1 1 +1960 4 18 5.9 5.1 5.1 1 +1960 4 19 8.2 7.4 7.4 1 +1960 4 20 8.3 7.5 7.5 1 +1960 4 21 6.3 5.5 5.5 1 +1960 4 22 9.8 8.9 8.9 1 +1960 4 23 4.9 4.0 4.0 1 +1960 4 24 3.7 2.8 2.8 1 +1960 4 25 4.7 3.8 3.8 1 +1960 4 26 2.2 1.3 1.3 1 +1960 4 27 1.2 0.3 0.3 1 +1960 4 28 3.0 2.0 2.0 1 +1960 4 29 5.3 4.3 4.3 1 +1960 4 30 7.1 6.1 6.1 1 +1960 5 1 5.5 4.5 4.5 1 +1960 5 2 3.8 2.8 2.8 1 +1960 5 3 3.8 2.7 2.7 1 +1960 5 4 8.3 7.2 7.2 1 +1960 5 5 8.4 7.3 7.3 1 +1960 5 6 8.7 7.6 7.6 1 +1960 5 7 8.2 7.1 7.1 1 +1960 5 8 9.5 8.4 8.4 1 +1960 5 9 9.8 8.6 8.6 1 +1960 5 10 11.7 10.5 10.5 1 +1960 5 11 13.0 11.8 11.8 1 +1960 5 12 14.7 13.5 13.5 1 +1960 5 13 14.3 13.1 13.1 1 +1960 5 14 14.1 12.8 12.8 1 +1960 5 15 16.4 15.1 15.1 1 +1960 5 16 17.8 16.5 16.5 1 +1960 5 17 15.7 14.4 14.4 1 +1960 5 18 16.0 14.8 14.8 1 +1960 5 19 14.9 13.7 13.7 1 +1960 5 20 11.3 10.1 10.1 1 +1960 5 21 7.8 6.6 6.6 1 +1960 5 22 8.3 7.1 7.1 1 +1960 5 23 11.6 10.4 10.4 1 +1960 5 24 13.2 12.0 12.0 1 +1960 5 25 11.4 10.2 10.2 1 +1960 5 26 11.4 10.2 10.2 1 +1960 5 27 12.4 11.2 11.2 1 +1960 5 28 9.5 8.3 8.3 1 +1960 5 29 10.2 9.1 9.1 1 +1960 5 30 12.0 10.9 10.9 1 +1960 5 31 16.6 15.5 15.5 1 +1960 6 1 16.5 15.4 15.4 1 +1960 6 2 16.5 15.4 15.4 1 +1960 6 3 18.4 17.3 17.3 1 +1960 6 4 20.4 19.3 19.3 1 +1960 6 5 19.4 18.3 18.3 1 +1960 6 6 19.9 18.8 18.8 1 +1960 6 7 20.4 19.3 19.3 1 +1960 6 8 17.7 16.6 16.6 1 +1960 6 9 16.6 15.5 15.5 1 +1960 6 10 16.9 15.9 15.9 1 +1960 6 11 16.3 15.3 15.3 1 +1960 6 12 15.5 14.5 14.5 1 +1960 6 13 16.1 15.1 15.1 1 +1960 6 14 16.5 15.5 15.5 1 +1960 6 15 15.9 14.9 14.9 1 +1960 6 16 15.6 14.6 14.6 1 +1960 6 17 16.4 15.4 15.4 1 +1960 6 18 17.9 16.9 16.9 1 +1960 6 19 15.0 14.0 14.0 1 +1960 6 20 13.1 12.1 12.1 1 +1960 6 21 15.3 14.3 14.3 1 +1960 6 22 16.4 15.4 15.4 1 +1960 6 23 18.9 17.9 17.9 1 +1960 6 24 19.9 18.9 18.9 1 +1960 6 25 20.9 19.9 19.9 1 +1960 6 26 17.2 16.2 16.2 1 +1960 6 27 14.5 13.5 13.5 1 +1960 6 28 15.2 14.2 14.2 1 +1960 6 29 14.3 13.3 13.3 1 +1960 6 30 13.0 12.0 12.0 1 +1960 7 1 14.1 13.1 13.1 1 +1960 7 2 15.1 14.1 14.1 1 +1960 7 3 12.9 11.9 11.9 1 +1960 7 4 14.3 13.3 13.3 1 +1960 7 5 15.0 14.0 14.0 1 +1960 7 6 14.8 13.8 13.8 1 +1960 7 7 15.1 14.1 14.1 1 +1960 7 8 16.2 15.2 15.2 1 +1960 7 9 16.4 15.5 15.5 1 +1960 7 10 14.6 13.7 13.7 1 +1960 7 11 15.9 15.0 15.0 1 +1960 7 12 17.6 16.7 16.7 1 +1960 7 13 16.6 15.7 15.7 1 +1960 7 14 16.7 15.8 15.8 1 +1960 7 15 17.4 16.5 16.5 1 +1960 7 16 19.4 18.5 18.5 1 +1960 7 17 18.4 17.5 17.5 1 +1960 7 18 15.6 14.7 14.7 1 +1960 7 19 17.0 16.1 16.1 1 +1960 7 20 16.4 15.5 15.5 1 +1960 7 21 15.4 14.5 14.5 1 +1960 7 22 15.0 14.1 14.1 1 +1960 7 23 14.8 13.9 13.9 1 +1960 7 24 14.2 13.3 13.3 1 +1960 7 25 16.6 15.7 15.7 1 +1960 7 26 17.6 16.7 16.7 1 +1960 7 27 16.1 15.3 15.3 1 +1960 7 28 17.7 16.9 16.9 1 +1960 7 29 18.4 17.6 17.6 1 +1960 7 30 19.1 18.3 18.3 1 +1960 7 31 19.9 19.1 19.1 1 +1960 8 1 19.9 19.1 19.1 1 +1960 8 2 20.5 19.7 19.7 1 +1960 8 3 17.7 16.9 16.9 1 +1960 8 4 14.8 14.0 14.0 1 +1960 8 5 14.6 13.8 13.8 1 +1960 8 6 15.7 14.9 14.9 1 +1960 8 7 16.4 15.6 15.6 1 +1960 8 8 15.7 14.9 14.9 1 +1960 8 9 16.8 16.1 16.1 1 +1960 8 10 17.5 16.8 16.8 1 +1960 8 11 14.4 13.7 13.7 1 +1960 8 12 14.7 14.0 14.0 1 +1960 8 13 17.9 17.2 17.2 1 +1960 8 14 15.3 14.6 14.6 1 +1960 8 15 14.9 14.2 14.2 1 +1960 8 16 15.0 14.3 14.3 1 +1960 8 17 14.5 13.8 13.8 1 +1960 8 18 14.4 13.7 13.7 1 +1960 8 19 12.9 12.3 12.3 1 +1960 8 20 13.4 12.8 12.8 1 +1960 8 21 14.8 14.2 14.2 1 +1960 8 22 15.2 14.6 14.6 1 +1960 8 23 14.8 14.2 14.2 1 +1960 8 24 15.6 15.0 15.0 1 +1960 8 25 15.4 14.8 14.8 1 +1960 8 26 16.0 15.5 15.5 1 +1960 8 27 17.2 16.7 16.7 1 +1960 8 28 16.2 15.7 15.7 1 +1960 8 29 14.6 14.1 14.1 1 +1960 8 30 11.0 10.5 10.5 1 +1960 8 31 9.2 8.7 8.7 1 +1960 9 1 12.0 11.5 11.5 1 +1960 9 2 12.5 12.1 12.1 1 +1960 9 3 12.2 11.8 11.8 1 +1960 9 4 12.7 12.3 12.3 1 +1960 9 5 11.7 11.3 11.3 1 +1960 9 6 9.9 9.5 9.5 1 +1960 9 7 8.9 8.5 8.5 1 +1960 9 8 10.5 10.1 10.1 1 +1960 9 9 11.8 11.5 11.5 1 +1960 9 10 14.2 13.9 13.9 1 +1960 9 11 14.2 13.9 13.9 1 +1960 9 12 14.4 14.1 14.1 1 +1960 9 13 14.9 14.6 14.6 1 +1960 9 14 15.3 15.0 15.0 1 +1960 9 15 13.7 13.4 13.4 1 +1960 9 16 14.1 13.9 13.9 1 +1960 9 17 14.6 14.4 14.4 1 +1960 9 18 13.9 13.7 13.7 1 +1960 9 19 14.3 14.1 14.1 1 +1960 9 20 14.3 14.1 14.1 1 +1960 9 21 14.3 14.1 14.1 1 +1960 9 22 14.5 14.3 14.3 1 +1960 9 23 14.0 13.8 13.8 1 +1960 9 24 13.3 13.1 13.1 1 +1960 9 25 11.9 11.7 11.7 1 +1960 9 26 8.7 8.5 8.5 1 +1960 9 27 7.9 7.7 7.7 1 +1960 9 28 6.2 6.0 6.0 1 +1960 9 29 6.1 5.9 5.9 1 +1960 9 30 5.9 5.7 5.7 1 +1960 10 1 6.5 6.3 6.3 1 +1960 10 2 7.2 7.0 7.0 1 +1960 10 3 7.8 7.6 7.6 1 +1960 10 4 10.5 10.3 10.3 1 +1960 10 5 9.8 9.6 9.6 1 +1960 10 6 11.7 11.5 11.5 1 +1960 10 7 8.4 8.2 8.2 1 +1960 10 8 9.1 8.9 8.9 1 +1960 10 9 11.0 10.8 10.8 1 +1960 10 10 11.5 11.3 11.3 1 +1960 10 11 10.9 10.7 10.7 1 +1960 10 12 9.1 8.9 8.9 1 +1960 10 13 10.1 9.9 9.9 1 +1960 10 14 6.0 5.8 5.8 1 +1960 10 15 5.1 4.9 4.9 1 +1960 10 16 4.4 4.2 4.2 1 +1960 10 17 4.6 4.4 4.4 1 +1960 10 18 6.3 6.1 6.1 1 +1960 10 19 5.3 5.1 5.1 1 +1960 10 20 6.8 6.6 6.6 1 +1960 10 21 4.8 4.6 4.6 1 +1960 10 22 3.4 3.1 3.1 1 +1960 10 23 3.3 3.0 3.0 1 +1960 10 24 4.4 4.1 4.1 1 +1960 10 25 3.8 3.5 3.5 1 +1960 10 26 4.2 3.9 3.9 1 +1960 10 27 2.9 2.6 2.6 1 +1960 10 28 2.6 2.3 2.3 1 +1960 10 29 3.1 2.8 2.8 1 +1960 10 30 2.0 1.7 1.7 1 +1960 10 31 0.4 0.1 0.1 1 +1960 11 1 0.6 0.3 0.3 1 +1960 11 2 4.0 3.7 3.7 1 +1960 11 3 7.0 6.7 6.7 1 +1960 11 4 7.6 7.3 7.3 1 +1960 11 5 8.2 7.8 7.8 1 +1960 11 6 5.7 5.3 5.3 1 +1960 11 7 2.4 2.0 2.0 1 +1960 11 8 3.3 2.9 2.9 1 +1960 11 9 2.7 2.3 2.3 1 +1960 11 10 1.4 1.0 1.0 1 +1960 11 11 3.5 3.1 3.1 1 +1960 11 12 4.9 4.5 4.5 1 +1960 11 13 3.8 3.4 3.4 1 +1960 11 14 4.3 3.9 3.9 1 +1960 11 15 3.5 3.1 3.1 1 +1960 11 16 6.0 5.6 5.6 1 +1960 11 17 5.4 5.0 5.0 1 +1960 11 18 3.8 3.4 3.4 1 +1960 11 19 0.4 0.0 0.0 1 +1960 11 20 -0.7 -1.1 -1.1 1 +1960 11 21 -1.9 -2.3 -2.3 1 +1960 11 22 -1.4 -1.8 -1.8 1 +1960 11 23 2.7 2.2 2.2 1 +1960 11 24 5.4 4.9 4.9 1 +1960 11 25 6.2 5.7 5.7 1 +1960 11 26 6.3 5.8 5.8 1 +1960 11 27 5.0 4.5 4.5 1 +1960 11 28 3.1 2.6 2.6 1 +1960 11 29 1.8 1.3 1.3 1 +1960 11 30 0.6 0.1 0.1 1 +1960 12 1 6.4 5.9 5.9 1 +1960 12 2 6.3 5.8 5.8 1 +1960 12 3 5.9 5.4 5.4 1 +1960 12 4 4.6 4.1 4.1 1 +1960 12 5 3.9 3.4 3.4 1 +1960 12 6 0.6 0.1 0.1 1 +1960 12 7 -1.1 -1.6 -1.6 1 +1960 12 8 -2.1 -2.6 -2.6 1 +1960 12 9 -3.6 -4.1 -4.1 1 +1960 12 10 -4.5 -5.0 -5.0 1 +1960 12 11 -1.2 -1.7 -1.7 1 +1960 12 12 2.3 1.8 1.8 1 +1960 12 13 -3.0 -3.5 -3.5 1 +1960 12 14 -1.3 -1.8 -1.8 1 +1960 12 15 2.2 1.7 1.7 1 +1960 12 16 2.0 1.5 1.5 1 +1960 12 17 3.6 3.1 3.1 1 +1960 12 18 4.4 3.9 3.9 1 +1960 12 19 2.6 2.0 2.0 1 +1960 12 20 3.2 2.6 2.6 1 +1960 12 21 0.9 0.3 0.3 1 +1960 12 22 1.1 0.5 0.5 1 +1960 12 23 0.4 -0.2 -0.2 1 +1960 12 24 0.8 0.2 0.2 1 +1960 12 25 3.6 3.0 3.0 1 +1960 12 26 3.2 2.6 2.6 1 +1960 12 27 4.1 3.5 3.5 1 +1960 12 28 2.8 2.2 2.2 1 +1960 12 29 2.4 1.8 1.8 1 +1960 12 30 1.5 0.9 0.9 1 +1960 12 31 0.6 0.0 0.0 1 +1961 1 1 0.6 0.0 0.0 1 +1961 1 2 1.0 0.3 0.3 1 +1961 1 3 1.5 0.8 0.8 1 +1961 1 4 2.0 1.3 1.3 1 +1961 1 5 0.7 0.0 0.0 1 +1961 1 6 0.8 0.1 0.1 1 +1961 1 7 0.7 0.0 0.0 1 +1961 1 8 -5.0 -5.7 -5.7 1 +1961 1 9 -6.5 -7.2 -7.2 1 +1961 1 10 0.4 -0.3 -0.3 1 +1961 1 11 -2.8 -3.5 -3.5 1 +1961 1 12 -5.7 -6.4 -6.4 1 +1961 1 13 0.2 -0.5 -0.5 1 +1961 1 14 -1.0 -1.7 -1.7 1 +1961 1 15 2.8 2.1 2.1 1 +1961 1 16 -1.2 -1.9 -1.9 1 +1961 1 17 -1.3 -2.0 -2.0 1 +1961 1 18 -1.2 -1.9 -1.9 1 +1961 1 19 -4.6 -5.3 -5.3 1 +1961 1 20 -4.2 -4.9 -4.9 1 +1961 1 21 -7.1 -7.9 -7.9 1 +1961 1 22 -4.5 -5.3 -5.3 1 +1961 1 23 -5.5 -6.3 -6.3 1 +1961 1 24 -6.5 -7.3 -7.3 1 +1961 1 25 -10.5 -11.3 -11.3 1 +1961 1 26 -8.7 -9.5 -9.5 1 +1961 1 27 -4.9 -5.7 -5.7 1 +1961 1 28 0.6 -0.2 -0.2 1 +1961 1 29 1.8 1.0 1.0 1 +1961 1 30 3.7 2.9 2.9 1 +1961 1 31 2.2 1.4 1.4 1 +1961 2 1 2.6 1.8 1.8 1 +1961 2 2 1.0 0.2 0.2 1 +1961 2 3 0.1 -0.7 -0.7 1 +1961 2 4 -4.5 -5.3 -5.3 1 +1961 2 5 -8.1 -8.9 -8.9 1 +1961 2 6 -2.5 -3.3 -3.3 1 +1961 2 7 3.2 2.4 2.4 1 +1961 2 8 0.2 -0.6 -0.6 1 +1961 2 9 -3.0 -3.8 -3.8 1 +1961 2 10 -0.6 -1.4 -1.4 1 +1961 2 11 3.2 2.4 2.4 1 +1961 2 12 0.9 0.1 0.1 1 +1961 2 13 -0.7 -1.5 -1.5 1 +1961 2 14 4.4 3.6 3.6 1 +1961 2 15 4.2 3.4 3.4 1 +1961 2 16 3.1 2.3 2.3 1 +1961 2 17 4.1 3.3 3.3 1 +1961 2 18 3.6 2.8 2.8 1 +1961 2 19 3.0 2.2 2.2 1 +1961 2 20 3.3 2.5 2.5 1 +1961 2 21 4.6 3.8 3.8 1 +1961 2 22 0.7 -0.1 -0.1 1 +1961 2 23 -1.0 -1.8 -1.8 1 +1961 2 24 -0.5 -1.3 -1.3 1 +1961 2 25 1.4 0.6 0.6 1 +1961 2 26 1.7 0.9 0.9 1 +1961 2 27 5.2 4.4 4.4 1 +1961 2 28 4.0 3.2 3.2 1 +1961 3 1 3.9 3.1 3.1 1 +1961 3 2 4.1 3.3 3.3 1 +1961 3 3 4.3 3.4 3.4 1 +1961 3 4 5.4 4.5 4.5 1 +1961 3 5 5.5 4.6 4.6 1 +1961 3 6 6.8 5.9 5.9 1 +1961 3 7 7.2 6.3 6.3 1 +1961 3 8 5.7 4.8 4.8 1 +1961 3 9 8.6 7.7 7.7 1 +1961 3 10 7.5 6.6 6.6 1 +1961 3 11 7.2 6.3 6.3 1 +1961 3 12 5.1 4.2 4.2 1 +1961 3 13 2.6 1.7 1.7 1 +1961 3 14 2.9 2.0 2.0 1 +1961 3 15 4.4 3.5 3.5 1 +1961 3 16 4.7 3.8 3.8 1 +1961 3 17 7.5 6.6 6.6 1 +1961 3 18 2.7 1.8 1.8 1 +1961 3 19 -1.5 -2.4 -2.4 1 +1961 3 20 -0.5 -1.4 -1.4 1 +1961 3 21 -1.5 -2.4 -2.4 1 +1961 3 22 0.2 -0.7 -0.7 1 +1961 3 23 6.3 5.4 5.4 1 +1961 3 24 3.9 3.0 3.0 1 +1961 3 25 4.0 3.2 3.2 1 +1961 3 26 5.2 4.4 4.4 1 +1961 3 27 3.4 2.6 2.6 1 +1961 3 28 3.1 2.3 2.3 1 +1961 3 29 1.6 0.8 0.8 1 +1961 3 30 0.2 -0.6 -0.6 1 +1961 3 31 -0.3 -1.1 -1.1 1 +1961 4 1 1.2 0.4 0.4 1 +1961 4 2 1.1 0.3 0.3 1 +1961 4 3 1.8 1.0 1.0 1 +1961 4 4 1.2 0.4 0.4 1 +1961 4 5 1.9 1.1 1.1 1 +1961 4 6 2.4 1.6 1.6 1 +1961 4 7 3.4 2.6 2.6 1 +1961 4 8 2.9 2.1 2.1 1 +1961 4 9 2.1 1.3 1.3 1 +1961 4 10 3.4 2.6 2.6 1 +1961 4 11 2.9 2.1 2.1 1 +1961 4 12 3.8 3.0 3.0 1 +1961 4 13 4.6 3.8 3.8 1 +1961 4 14 9.9 9.2 9.2 1 +1961 4 15 10.1 9.4 9.4 1 +1961 4 16 8.5 7.7 7.7 1 +1961 4 17 8.2 7.4 7.4 1 +1961 4 18 9.9 9.1 9.1 1 +1961 4 19 6.3 5.5 5.5 1 +1961 4 20 4.0 3.2 3.2 1 +1961 4 21 5.8 5.0 5.0 1 +1961 4 22 6.9 6.0 6.0 1 +1961 4 23 7.9 7.0 7.0 1 +1961 4 24 10.5 9.6 9.6 1 +1961 4 25 13.0 12.1 12.1 1 +1961 4 26 13.2 12.3 12.3 1 +1961 4 27 11.3 10.3 10.3 1 +1961 4 28 5.1 4.1 4.1 1 +1961 4 29 6.4 5.4 5.4 1 +1961 4 30 6.9 5.9 5.9 1 +1961 5 1 5.2 4.2 4.2 1 +1961 5 2 7.3 6.3 6.3 1 +1961 5 3 9.2 8.1 8.1 1 +1961 5 4 10.9 9.8 9.8 1 +1961 5 5 11.0 9.9 9.9 1 +1961 5 6 9.7 8.6 8.6 1 +1961 5 7 11.7 10.6 10.6 1 +1961 5 8 9.5 8.3 8.3 1 +1961 5 9 5.4 4.2 4.2 1 +1961 5 10 5.4 4.2 4.2 1 +1961 5 11 5.5 4.3 4.3 1 +1961 5 12 8.3 7.1 7.1 1 +1961 5 13 10.5 9.3 9.3 1 +1961 5 14 7.1 5.8 5.8 1 +1961 5 15 8.3 7.0 7.0 1 +1961 5 16 8.5 7.2 7.2 1 +1961 5 17 9.8 8.5 8.5 1 +1961 5 18 11.1 9.8 9.8 1 +1961 5 19 10.6 9.3 9.3 1 +1961 5 20 7.0 5.8 5.8 1 +1961 5 21 9.9 8.7 8.7 1 +1961 5 22 10.1 8.9 8.9 1 +1961 5 23 11.5 10.3 10.3 1 +1961 5 24 13.5 12.3 12.3 1 +1961 5 25 12.9 11.7 11.7 1 +1961 5 26 12.6 11.4 11.4 1 +1961 5 27 9.6 8.4 8.4 1 +1961 5 28 10.2 9.0 9.0 1 +1961 5 29 9.6 8.4 8.4 1 +1961 5 30 14.9 13.7 13.7 1 +1961 5 31 15.5 14.4 14.4 1 +1961 6 1 16.1 15.0 15.0 1 +1961 6 2 17.3 16.2 16.2 1 +1961 6 3 18.8 17.7 17.7 1 +1961 6 4 20.1 19.0 19.0 1 +1961 6 5 21.0 19.9 19.9 1 +1961 6 6 21.5 20.4 20.4 1 +1961 6 7 21.4 20.3 20.3 1 +1961 6 8 20.1 19.0 19.0 1 +1961 6 9 20.4 19.3 19.3 1 +1961 6 10 18.4 17.3 17.3 1 +1961 6 11 14.8 13.7 13.7 1 +1961 6 12 18.0 17.0 17.0 1 +1961 6 13 18.1 17.1 17.1 1 +1961 6 14 16.1 15.1 15.1 1 +1961 6 15 13.1 12.1 12.1 1 +1961 6 16 10.7 9.7 9.7 1 +1961 6 17 15.1 14.1 14.1 1 +1961 6 18 16.6 15.6 15.6 1 +1961 6 19 14.8 13.8 13.8 1 +1961 6 20 15.0 14.0 14.0 1 +1961 6 21 14.1 13.1 13.1 1 +1961 6 22 14.2 13.2 13.2 1 +1961 6 23 14.8 13.8 13.8 1 +1961 6 24 14.6 13.6 13.6 1 +1961 6 25 14.6 13.6 13.6 1 +1961 6 26 16.3 15.3 15.3 1 +1961 6 27 14.6 13.6 13.6 1 +1961 6 28 14.4 13.4 13.4 1 +1961 6 29 16.7 15.7 15.7 1 +1961 6 30 17.2 16.2 16.2 1 +1961 7 1 19.3 18.3 18.3 1 +1961 7 2 20.9 19.9 19.9 1 +1961 7 3 18.6 17.6 17.6 1 +1961 7 4 13.8 12.8 12.8 1 +1961 7 5 13.3 12.3 12.3 1 +1961 7 6 12.4 11.4 11.4 1 +1961 7 7 13.6 12.6 12.6 1 +1961 7 8 15.1 14.1 14.1 1 +1961 7 9 14.7 13.7 13.7 1 +1961 7 10 14.6 13.6 13.6 1 +1961 7 11 14.7 13.7 13.7 1 +1961 7 12 15.3 14.3 14.3 1 +1961 7 13 15.5 14.5 14.5 1 +1961 7 14 16.4 15.5 15.5 1 +1961 7 15 17.2 16.3 16.3 1 +1961 7 16 19.1 18.2 18.2 1 +1961 7 17 19.0 18.1 18.1 1 +1961 7 18 17.8 16.9 16.9 1 +1961 7 19 16.4 15.5 15.5 1 +1961 7 20 17.2 16.3 16.3 1 +1961 7 21 16.1 15.2 15.2 1 +1961 7 22 12.2 11.3 11.3 1 +1961 7 23 14.6 13.7 13.7 1 +1961 7 24 16.3 15.4 15.4 1 +1961 7 25 15.4 14.5 14.5 1 +1961 7 26 13.9 13.0 13.0 1 +1961 7 27 14.7 13.8 13.8 1 +1961 7 28 13.6 12.8 12.8 1 +1961 7 29 15.4 14.6 14.6 1 +1961 7 30 16.7 15.9 15.9 1 +1961 7 31 14.7 13.9 13.9 1 +1961 8 1 16.6 15.8 15.8 1 +1961 8 2 16.4 15.6 15.6 1 +1961 8 3 15.9 15.1 15.1 1 +1961 8 4 14.0 13.2 13.2 1 +1961 8 5 15.2 14.4 14.4 1 +1961 8 6 14.9 14.1 14.1 1 +1961 8 7 15.6 14.8 14.8 1 +1961 8 8 16.2 15.4 15.4 1 +1961 8 9 15.7 14.9 14.9 1 +1961 8 10 15.8 15.0 15.0 1 +1961 8 11 16.2 15.5 15.5 1 +1961 8 12 15.7 15.0 15.0 1 +1961 8 13 14.4 13.7 13.7 1 +1961 8 14 14.6 13.9 13.9 1 +1961 8 15 13.9 13.2 13.2 1 +1961 8 16 13.8 13.1 13.1 1 +1961 8 17 13.2 12.5 12.5 1 +1961 8 18 12.1 11.4 11.4 1 +1961 8 19 13.6 12.9 12.9 1 +1961 8 20 13.7 13.1 13.1 1 +1961 8 21 14.4 13.8 13.8 1 +1961 8 22 12.7 12.1 12.1 1 +1961 8 23 12.9 12.3 12.3 1 +1961 8 24 13.9 13.3 13.3 1 +1961 8 25 10.7 10.1 10.1 1 +1961 8 26 12.9 12.3 12.3 1 +1961 8 27 15.6 15.1 15.1 1 +1961 8 28 14.7 14.2 14.2 1 +1961 8 29 15.1 14.6 14.6 1 +1961 8 30 17.4 16.9 16.9 1 +1961 8 31 18.0 17.5 17.5 1 +1961 9 1 19.3 18.8 18.8 1 +1961 9 2 16.2 15.7 15.7 1 +1961 9 3 13.3 12.9 12.9 1 +1961 9 4 10.9 10.5 10.5 1 +1961 9 5 12.2 11.8 11.8 1 +1961 9 6 11.9 11.5 11.5 1 +1961 9 7 11.2 10.8 10.8 1 +1961 9 8 12.0 11.6 11.6 1 +1961 9 9 11.0 10.7 10.7 1 +1961 9 10 12.2 11.9 11.9 1 +1961 9 11 13.2 12.9 12.9 1 +1961 9 12 14.7 14.4 14.4 1 +1961 9 13 12.4 12.1 12.1 1 +1961 9 14 12.6 12.3 12.3 1 +1961 9 15 14.1 13.8 13.8 1 +1961 9 16 16.2 15.9 15.9 1 +1961 9 17 18.7 18.4 18.4 1 +1961 9 18 14.9 14.6 14.6 1 +1961 9 19 11.9 11.6 11.6 1 +1961 9 20 10.9 10.7 10.7 1 +1961 9 21 11.8 11.6 11.6 1 +1961 9 22 12.7 12.5 12.5 1 +1961 9 23 12.0 11.8 11.8 1 +1961 9 24 11.5 11.3 11.3 1 +1961 9 25 12.6 12.4 12.4 1 +1961 9 26 11.8 11.6 11.6 1 +1961 9 27 10.7 10.5 10.5 1 +1961 9 28 11.7 11.5 11.5 1 +1961 9 29 13.4 13.2 13.2 1 +1961 9 30 13.4 13.2 13.2 1 +1961 10 1 12.0 11.8 11.8 1 +1961 10 2 11.5 11.3 11.3 1 +1961 10 3 11.8 11.6 11.6 1 +1961 10 4 11.6 11.4 11.4 1 +1961 10 5 12.1 11.9 11.9 1 +1961 10 6 12.5 12.3 12.3 1 +1961 10 7 12.4 12.2 12.2 1 +1961 10 8 11.3 11.1 11.1 1 +1961 10 9 12.8 12.6 12.6 1 +1961 10 10 14.1 13.9 13.9 1 +1961 10 11 14.9 14.7 14.7 1 +1961 10 12 11.8 11.6 11.6 1 +1961 10 13 10.7 10.5 10.5 1 +1961 10 14 12.2 12.0 12.0 1 +1961 10 15 11.4 11.2 11.2 1 +1961 10 16 10.3 10.1 10.1 1 +1961 10 17 9.7 9.5 9.5 1 +1961 10 18 10.6 10.4 10.4 1 +1961 10 19 12.0 11.8 11.8 1 +1961 10 20 12.4 12.2 12.2 1 +1961 10 21 11.7 11.5 11.5 1 +1961 10 22 11.0 10.7 10.7 1 +1961 10 23 10.0 9.7 9.7 1 +1961 10 24 10.1 9.8 9.8 1 +1961 10 25 10.5 10.2 10.2 1 +1961 10 26 8.6 8.3 8.3 1 +1961 10 27 9.9 9.6 9.6 1 +1961 10 28 9.4 9.1 9.1 1 +1961 10 29 8.7 8.4 8.4 1 +1961 10 30 7.1 6.8 6.8 1 +1961 10 31 6.7 6.4 6.4 1 +1961 11 1 6.2 5.9 5.9 1 +1961 11 2 7.5 7.2 7.2 1 +1961 11 3 8.2 7.9 7.9 1 +1961 11 4 4.9 4.5 4.5 1 +1961 11 5 2.6 2.2 2.2 1 +1961 11 6 2.9 2.5 2.5 1 +1961 11 7 4.2 3.8 3.8 1 +1961 11 8 8.0 7.6 7.6 1 +1961 11 9 7.2 6.8 6.8 1 +1961 11 10 8.1 7.7 7.7 1 +1961 11 11 7.3 6.9 6.9 1 +1961 11 12 4.2 3.8 3.8 1 +1961 11 13 1.6 1.2 1.2 1 +1961 11 14 1.4 1.0 1.0 1 +1961 11 15 4.2 3.8 3.8 1 +1961 11 16 2.4 2.0 2.0 1 +1961 11 17 2.0 1.6 1.6 1 +1961 11 18 2.7 2.3 2.3 1 +1961 11 19 -0.1 -0.5 -0.5 1 +1961 11 20 2.3 1.9 1.9 1 +1961 11 21 5.7 5.2 5.2 1 +1961 11 22 3.2 2.7 2.7 1 +1961 11 23 0.7 0.2 0.2 1 +1961 11 24 3.4 2.9 2.9 1 +1961 11 25 3.4 2.9 2.9 1 +1961 11 26 3.4 2.9 2.9 1 +1961 11 27 0.9 0.4 0.4 1 +1961 11 28 -1.5 -2.0 -2.0 1 +1961 11 29 1.1 0.6 0.6 1 +1961 11 30 2.9 2.4 2.4 1 +1961 12 1 -0.3 -0.8 -0.8 1 +1961 12 2 -3.4 -3.9 -3.9 1 +1961 12 3 -1.1 -1.6 -1.6 1 +1961 12 4 0.1 -0.4 -0.4 1 +1961 12 5 2.9 2.4 2.4 1 +1961 12 6 3.1 2.6 2.6 1 +1961 12 7 0.7 0.2 0.2 1 +1961 12 8 -1.9 -2.4 -2.4 1 +1961 12 9 -4.9 -5.4 -5.4 1 +1961 12 10 -2.6 -3.1 -3.1 1 +1961 12 11 -1.2 -1.7 -1.7 1 +1961 12 12 -3.1 -3.6 -3.6 1 +1961 12 13 -4.7 -5.2 -5.2 1 +1961 12 14 -5.8 -6.3 -6.3 1 +1961 12 15 -8.8 -9.3 -9.3 1 +1961 12 16 -3.7 -4.2 -4.2 1 +1961 12 17 0.2 -0.4 -0.4 1 +1961 12 18 0.8 0.2 0.2 1 +1961 12 19 1.1 0.5 0.5 1 +1961 12 20 1.6 1.0 1.0 1 +1961 12 21 -4.8 -5.4 -5.4 1 +1961 12 22 -7.0 -7.6 -7.6 1 +1961 12 23 -11.0 -11.6 -11.6 1 +1961 12 24 -4.9 -5.5 -5.5 1 +1961 12 25 -3.8 -4.4 -4.4 1 +1961 12 26 -9.1 -9.7 -9.7 1 +1961 12 27 -10.4 -11.0 -11.0 1 +1961 12 28 -4.8 -5.4 -5.4 1 +1961 12 29 -4.7 -5.3 -5.3 1 +1961 12 30 -0.2 -0.8 -0.8 1 +1961 12 31 3.1 2.5 2.5 1 +1962 1 1 0.2 -0.5 -0.5 1 +1962 1 2 -5.1 -5.8 -5.8 1 +1962 1 3 -2.0 -2.7 -2.7 1 +1962 1 4 -1.6 -2.3 -2.3 1 +1962 1 5 2.1 1.4 1.4 1 +1962 1 6 0.8 0.1 0.1 1 +1962 1 7 -3.2 -3.9 -3.9 1 +1962 1 8 2.4 1.7 1.7 1 +1962 1 9 1.8 1.1 1.1 1 +1962 1 10 2.1 1.4 1.4 1 +1962 1 11 2.3 1.6 1.6 1 +1962 1 12 3.9 3.2 3.2 1 +1962 1 13 2.6 1.9 1.9 1 +1962 1 14 -0.5 -1.2 -1.2 1 +1962 1 15 -3.5 -4.2 -4.2 1 +1962 1 16 -1.3 -2.1 -2.1 1 +1962 1 17 2.8 2.0 2.0 1 +1962 1 18 4.3 3.5 3.5 1 +1962 1 19 1.7 0.9 0.9 1 +1962 1 20 -0.6 -1.4 -1.4 1 +1962 1 21 -2.9 -3.7 -3.7 1 +1962 1 22 1.7 0.9 0.9 1 +1962 1 23 0.2 -0.6 -0.6 1 +1962 1 24 -1.9 -2.7 -2.7 1 +1962 1 25 -2.7 -3.5 -3.5 1 +1962 1 26 -7.9 -8.7 -8.7 1 +1962 1 27 -4.6 -5.4 -5.4 1 +1962 1 28 -8.3 -9.1 -9.1 1 +1962 1 29 -8.6 -9.4 -9.4 1 +1962 1 30 -9.5 -10.3 -10.3 1 +1962 1 31 -4.7 -5.5 -5.5 1 +1962 2 1 -1.6 -2.4 -2.4 1 +1962 2 2 -1.8 -2.6 -2.6 1 +1962 2 3 -2.7 -3.5 -3.5 1 +1962 2 4 0.9 0.1 0.1 1 +1962 2 5 0.8 0.0 0.0 1 +1962 2 6 -0.3 -1.1 -1.1 1 +1962 2 7 1.3 0.5 0.5 1 +1962 2 8 2.2 1.4 1.4 1 +1962 2 9 -1.2 -2.0 -2.0 1 +1962 2 10 3.7 2.9 2.9 1 +1962 2 11 2.4 1.6 1.6 1 +1962 2 12 0.4 -0.4 -0.4 1 +1962 2 13 -4.2 -5.0 -5.0 1 +1962 2 14 -4.8 -5.6 -5.6 1 +1962 2 15 -8.0 -8.8 -8.8 1 +1962 2 16 0.0 -0.8 -0.8 1 +1962 2 17 -5.2 -6.0 -6.0 1 +1962 2 18 -5.6 -6.4 -6.4 1 +1962 2 19 -1.5 -2.3 -2.3 1 +1962 2 20 1.4 0.6 0.6 1 +1962 2 21 -3.0 -3.8 -3.8 1 +1962 2 22 -5.9 -6.7 -6.7 1 +1962 2 23 -4.4 -5.2 -5.2 1 +1962 2 24 -2.8 -3.6 -3.6 1 +1962 2 25 -2.0 -2.8 -2.8 1 +1962 2 26 -3.5 -4.3 -4.3 1 +1962 2 27 -4.8 -5.6 -5.6 1 +1962 2 28 -5.3 -6.2 -6.2 1 +1962 3 1 -1.8 -2.7 -2.7 1 +1962 3 2 -1.6 -2.5 -2.5 1 +1962 3 3 -3.1 -4.0 -4.0 1 +1962 3 4 -5.8 -6.7 -6.7 1 +1962 3 5 -8.3 -9.2 -9.2 1 +1962 3 6 -8.4 -9.3 -9.3 1 +1962 3 7 -7.3 -8.2 -8.2 1 +1962 3 8 -3.7 -4.6 -4.6 1 +1962 3 9 -2.2 -3.1 -3.1 1 +1962 3 10 0.0 -0.9 -0.9 1 +1962 3 11 -4.6 -5.5 -5.5 1 +1962 3 12 -8.2 -9.1 -9.1 1 +1962 3 13 -8.0 -8.9 -8.9 1 +1962 3 14 -8.1 -9.0 -9.0 1 +1962 3 15 -5.0 -5.9 -5.9 1 +1962 3 16 -2.3 -3.2 -3.2 1 +1962 3 17 -2.1 -3.0 -3.0 1 +1962 3 18 -4.1 -5.0 -5.0 1 +1962 3 19 -3.6 -4.5 -4.5 1 +1962 3 20 -2.0 -2.9 -2.9 1 +1962 3 21 -2.1 -3.0 -3.0 1 +1962 3 22 -1.9 -2.8 -2.8 1 +1962 3 23 -1.8 -2.7 -2.7 1 +1962 3 24 -2.1 -3.0 -3.0 1 +1962 3 25 -0.8 -1.7 -1.7 1 +1962 3 26 0.5 -0.4 -0.4 1 +1962 3 27 1.1 0.3 0.3 1 +1962 3 28 0.0 -0.8 -0.8 1 +1962 3 29 -1.9 -2.7 -2.7 1 +1962 3 30 -2.9 -3.7 -3.7 1 +1962 3 31 1.2 0.4 0.4 1 +1962 4 1 3.5 2.7 2.7 1 +1962 4 2 3.5 2.7 2.7 1 +1962 4 3 2.7 1.9 1.9 1 +1962 4 4 4.5 3.7 3.7 1 +1962 4 5 2.2 1.4 1.4 1 +1962 4 6 2.1 1.3 1.3 1 +1962 4 7 3.4 2.6 2.6 1 +1962 4 8 3.1 2.3 2.3 1 +1962 4 9 2.5 1.7 1.7 1 +1962 4 10 3.7 2.9 2.9 1 +1962 4 11 3.6 2.8 2.8 1 +1962 4 12 4.6 3.8 3.8 1 +1962 4 13 4.3 3.5 3.5 1 +1962 4 14 2.3 1.5 1.5 1 +1962 4 15 3.4 2.6 2.6 1 +1962 4 16 5.9 5.1 5.1 1 +1962 4 17 7.1 6.3 6.3 1 +1962 4 18 8.7 7.9 7.9 1 +1962 4 19 5.8 5.0 5.0 1 +1962 4 20 6.8 6.0 6.0 1 +1962 4 21 8.2 7.3 7.3 1 +1962 4 22 9.0 8.1 8.1 1 +1962 4 23 9.1 8.2 8.2 1 +1962 4 24 9.8 8.9 8.9 1 +1962 4 25 9.3 8.4 8.4 1 +1962 4 26 6.4 5.4 5.4 1 +1962 4 27 6.6 5.6 5.6 1 +1962 4 28 5.5 4.5 4.5 1 +1962 4 29 1.5 0.5 0.5 1 +1962 4 30 0.8 -0.2 -0.2 1 +1962 5 1 4.0 3.0 3.0 1 +1962 5 2 3.5 2.4 2.4 1 +1962 5 3 4.6 3.5 3.5 1 +1962 5 4 3.0 1.9 1.9 1 +1962 5 5 4.9 3.8 3.8 1 +1962 5 6 8.3 7.2 7.2 1 +1962 5 7 6.9 5.7 5.7 1 +1962 5 8 6.7 5.5 5.5 1 +1962 5 9 7.6 6.4 6.4 1 +1962 5 10 8.6 7.4 7.4 1 +1962 5 11 8.1 6.9 6.9 1 +1962 5 12 7.9 6.7 6.7 1 +1962 5 13 9.9 8.6 8.6 1 +1962 5 14 8.8 7.5 7.5 1 +1962 5 15 10.8 9.5 9.5 1 +1962 5 16 10.5 9.2 9.2 1 +1962 5 17 12.1 10.8 10.8 1 +1962 5 18 10.6 9.3 9.3 1 +1962 5 19 10.6 9.3 9.3 1 +1962 5 20 9.4 8.1 8.1 1 +1962 5 21 11.3 10.0 10.0 1 +1962 5 22 11.2 10.0 10.0 1 +1962 5 23 9.5 8.3 8.3 1 +1962 5 24 8.9 7.7 7.7 1 +1962 5 25 10.5 9.3 9.3 1 +1962 5 26 9.6 8.4 8.4 1 +1962 5 27 8.4 7.2 7.2 1 +1962 5 28 10.6 9.4 9.4 1 +1962 5 29 10.9 9.7 9.7 1 +1962 5 30 9.5 8.3 8.3 1 +1962 5 31 7.4 6.2 6.2 1 +1962 6 1 8.3 7.1 7.1 1 +1962 6 2 7.1 6.0 6.0 1 +1962 6 3 10.0 8.9 8.9 1 +1962 6 4 11.6 10.5 10.5 1 +1962 6 5 10.8 9.7 9.7 1 +1962 6 6 12.4 11.3 11.3 1 +1962 6 7 16.1 15.0 15.0 1 +1962 6 8 17.5 16.4 16.4 1 +1962 6 9 13.2 12.1 12.1 1 +1962 6 10 13.2 12.1 12.1 1 +1962 6 11 9.4 8.3 8.3 1 +1962 6 12 11.4 10.3 10.3 1 +1962 6 13 12.8 11.7 11.7 1 +1962 6 14 14.8 13.8 13.8 1 +1962 6 15 17.7 16.7 16.7 1 +1962 6 16 16.0 15.0 15.0 1 +1962 6 17 16.1 15.1 15.1 1 +1962 6 18 17.8 16.8 16.8 1 +1962 6 19 17.9 16.9 16.9 1 +1962 6 20 15.8 14.8 14.8 1 +1962 6 21 14.9 13.9 13.9 1 +1962 6 22 16.7 15.7 15.7 1 +1962 6 23 16.4 15.4 15.4 1 +1962 6 24 15.2 14.2 14.2 1 +1962 6 25 14.6 13.6 13.6 1 +1962 6 26 14.3 13.3 13.3 1 +1962 6 27 14.1 13.1 13.1 1 +1962 6 28 13.3 12.3 12.3 1 +1962 6 29 12.0 11.0 11.0 1 +1962 6 30 14.4 13.4 13.4 1 +1962 7 1 16.5 15.5 15.5 1 +1962 7 2 16.2 15.2 15.2 1 +1962 7 3 13.2 12.2 12.2 1 +1962 7 4 12.1 11.1 11.1 1 +1962 7 5 12.0 11.0 11.0 1 +1962 7 6 12.0 11.0 11.0 1 +1962 7 7 13.8 12.8 12.8 1 +1962 7 8 15.4 14.4 14.4 1 +1962 7 9 17.0 16.0 16.0 1 +1962 7 10 16.7 15.7 15.7 1 +1962 7 11 12.2 11.2 11.2 1 +1962 7 12 11.9 10.9 10.9 1 +1962 7 13 12.2 11.2 11.2 1 +1962 7 14 13.2 12.2 12.2 1 +1962 7 15 13.1 12.1 12.1 1 +1962 7 16 15.4 14.4 14.4 1 +1962 7 17 16.4 15.5 15.5 1 +1962 7 18 16.4 15.5 15.5 1 +1962 7 19 17.0 16.1 16.1 1 +1962 7 20 18.2 17.3 17.3 1 +1962 7 21 17.5 16.6 16.6 1 +1962 7 22 18.7 17.8 17.8 1 +1962 7 23 16.9 16.0 16.0 1 +1962 7 24 14.5 13.6 13.6 1 +1962 7 25 13.8 12.9 12.9 1 +1962 7 26 14.7 13.8 13.8 1 +1962 7 27 13.6 12.7 12.7 1 +1962 7 28 13.8 12.9 12.9 1 +1962 7 29 15.1 14.2 14.2 1 +1962 7 30 15.4 14.6 14.6 1 +1962 7 31 16.7 15.9 15.9 1 +1962 8 1 15.7 14.9 14.9 1 +1962 8 2 12.8 12.0 12.0 1 +1962 8 3 14.3 13.5 13.5 1 +1962 8 4 15.5 14.7 14.7 1 +1962 8 5 14.2 13.4 13.4 1 +1962 8 6 15.4 14.6 14.6 1 +1962 8 7 14.8 14.0 14.0 1 +1962 8 8 13.4 12.6 12.6 1 +1962 8 9 14.9 14.1 14.1 1 +1962 8 10 14.3 13.5 13.5 1 +1962 8 11 13.4 12.6 12.6 1 +1962 8 12 16.3 15.5 15.5 1 +1962 8 13 15.8 15.1 15.1 1 +1962 8 14 13.7 13.0 13.0 1 +1962 8 15 13.5 12.8 12.8 1 +1962 8 16 12.7 12.0 12.0 1 +1962 8 17 13.4 12.7 12.7 1 +1962 8 18 14.2 13.5 13.5 1 +1962 8 19 12.4 11.7 11.7 1 +1962 8 20 15.5 14.8 14.8 1 +1962 8 21 16.6 16.0 16.0 1 +1962 8 22 13.8 13.2 13.2 1 +1962 8 23 13.8 13.2 13.2 1 +1962 8 24 12.1 11.5 11.5 1 +1962 8 25 13.1 12.5 12.5 1 +1962 8 26 14.3 13.7 13.7 1 +1962 8 27 11.9 11.4 11.4 1 +1962 8 28 12.3 11.8 11.8 1 +1962 8 29 12.6 12.1 12.1 1 +1962 8 30 13.1 12.6 12.6 1 +1962 8 31 11.4 10.9 10.9 1 +1962 9 1 11.4 10.9 10.9 1 +1962 9 2 10.5 10.0 10.0 1 +1962 9 3 11.9 11.5 11.5 1 +1962 9 4 13.3 12.9 12.9 1 +1962 9 5 13.4 13.0 13.0 1 +1962 9 6 12.2 11.8 11.8 1 +1962 9 7 11.2 10.8 10.8 1 +1962 9 8 12.2 11.8 11.8 1 +1962 9 9 12.4 12.0 12.0 1 +1962 9 10 12.1 11.8 11.8 1 +1962 9 11 13.0 12.7 12.7 1 +1962 9 12 8.3 8.0 8.0 1 +1962 9 13 10.6 10.3 10.3 1 +1962 9 14 9.5 9.2 9.2 1 +1962 9 15 9.8 9.5 9.5 1 +1962 9 16 10.8 10.5 10.5 1 +1962 9 17 11.2 10.9 10.9 1 +1962 9 18 11.1 10.8 10.8 1 +1962 9 19 8.6 8.3 8.3 1 +1962 9 20 8.4 8.1 8.1 1 +1962 9 21 9.3 9.0 9.0 1 +1962 9 22 9.3 9.0 9.0 1 +1962 9 23 9.4 9.1 9.1 1 +1962 9 24 9.1 8.8 8.8 1 +1962 9 25 11.6 11.4 11.4 1 +1962 9 26 11.3 11.1 11.1 1 +1962 9 27 11.0 10.8 10.8 1 +1962 9 28 10.9 10.7 10.7 1 +1962 9 29 10.3 10.1 10.1 1 +1962 9 30 9.7 9.5 9.5 1 +1962 10 1 10.7 10.5 10.5 1 +1962 10 2 12.6 12.4 12.4 1 +1962 10 3 13.2 13.0 13.0 1 +1962 10 4 12.9 12.7 12.7 1 +1962 10 5 10.9 10.7 10.7 1 +1962 10 6 9.9 9.7 9.7 1 +1962 10 7 11.4 11.2 11.2 1 +1962 10 8 11.4 11.2 11.2 1 +1962 10 9 10.4 10.2 10.2 1 +1962 10 10 9.5 9.3 9.3 1 +1962 10 11 8.0 7.8 7.8 1 +1962 10 12 4.4 4.2 4.2 1 +1962 10 13 7.1 6.9 6.9 1 +1962 10 14 4.5 4.3 4.3 1 +1962 10 15 2.4 2.2 2.2 1 +1962 10 16 5.9 5.7 5.7 1 +1962 10 17 7.0 6.8 6.8 1 +1962 10 18 9.3 9.1 9.1 1 +1962 10 19 8.0 7.8 7.8 1 +1962 10 20 5.7 5.5 5.5 1 +1962 10 21 9.6 9.3 9.3 1 +1962 10 22 8.0 7.7 7.7 1 +1962 10 23 7.8 7.5 7.5 1 +1962 10 24 8.5 8.2 8.2 1 +1962 10 25 9.1 8.8 8.8 1 +1962 10 26 10.2 9.9 9.9 1 +1962 10 27 2.3 2.0 2.0 1 +1962 10 28 5.6 5.3 5.3 1 +1962 10 29 5.9 5.6 5.6 1 +1962 10 30 5.9 5.6 5.6 1 +1962 10 31 7.0 6.7 6.7 1 +1962 11 1 6.2 5.9 5.9 1 +1962 11 2 4.1 3.8 3.8 1 +1962 11 3 7.1 6.7 6.7 1 +1962 11 4 8.3 7.9 7.9 1 +1962 11 5 9.3 8.9 8.9 1 +1962 11 6 7.1 6.7 6.7 1 +1962 11 7 6.4 6.0 6.0 1 +1962 11 8 6.1 5.7 5.7 1 +1962 11 9 4.1 3.7 3.7 1 +1962 11 10 2.2 1.8 1.8 1 +1962 11 11 1.7 1.3 1.3 1 +1962 11 12 2.0 1.6 1.6 1 +1962 11 13 2.6 2.2 2.2 1 +1962 11 14 3.3 2.9 2.9 1 +1962 11 15 5.3 4.9 4.9 1 +1962 11 16 1.1 0.7 0.7 1 +1962 11 17 -2.3 -2.7 -2.7 1 +1962 11 18 -0.1 -0.6 -0.6 1 +1962 11 19 1.0 0.5 0.5 1 +1962 11 20 0.1 -0.4 -0.4 1 +1962 11 21 0.6 0.1 0.1 1 +1962 11 22 -0.7 -1.2 -1.2 1 +1962 11 23 -3.3 -3.8 -3.8 1 +1962 11 24 -3.3 -3.8 -3.8 1 +1962 11 25 0.3 -0.2 -0.2 1 +1962 11 26 2.3 1.8 1.8 1 +1962 11 27 2.9 2.4 2.4 1 +1962 11 28 1.2 0.7 0.7 1 +1962 11 29 -2.4 -2.9 -2.9 1 +1962 11 30 -3.4 -3.9 -3.9 1 +1962 12 1 -4.2 -4.7 -4.7 1 +1962 12 2 0.3 -0.2 -0.2 1 +1962 12 3 3.1 2.6 2.6 1 +1962 12 4 2.2 1.7 1.7 1 +1962 12 5 2.6 2.1 2.1 1 +1962 12 6 3.4 2.9 2.9 1 +1962 12 7 2.0 1.5 1.5 1 +1962 12 8 1.0 0.5 0.5 1 +1962 12 9 3.4 2.9 2.9 1 +1962 12 10 1.7 1.2 1.2 1 +1962 12 11 -1.8 -2.3 -2.3 1 +1962 12 12 3.5 3.0 3.0 1 +1962 12 13 -0.2 -0.7 -0.7 1 +1962 12 14 -6.0 -6.5 -6.5 1 +1962 12 15 -0.6 -1.2 -1.2 1 +1962 12 16 -1.8 -2.4 -2.4 1 +1962 12 17 -6.6 -7.2 -7.2 1 +1962 12 18 -10.4 -11.0 -11.0 1 +1962 12 19 -7.1 -7.7 -7.7 1 +1962 12 20 -7.3 -7.9 -7.9 1 +1962 12 21 -4.2 -4.8 -4.8 1 +1962 12 22 -7.0 -7.6 -7.6 1 +1962 12 23 -3.7 -4.3 -4.3 1 +1962 12 24 -0.7 -1.3 -1.3 1 +1962 12 25 -2.6 -3.2 -3.2 1 +1962 12 26 -3.1 -3.7 -3.7 1 +1962 12 27 -8.4 -9.0 -9.0 1 +1962 12 28 -7.9 -8.5 -8.5 1 +1962 12 29 -3.3 -3.9 -3.9 1 +1962 12 30 -9.0 -9.6 -9.6 1 +1962 12 31 -9.9 -10.6 -10.6 1 +1963 1 1 -4.4 -5.1 -5.1 1 +1963 1 2 -8.0 -8.7 -8.7 1 +1963 1 3 -8.2 -8.9 -8.9 1 +1963 1 4 -3.9 -4.6 -4.6 1 +1963 1 5 -2.7 -3.4 -3.4 1 +1963 1 6 -6.2 -6.9 -6.9 1 +1963 1 7 -12.8 -13.5 -13.5 1 +1963 1 8 -11.5 -12.2 -12.2 1 +1963 1 9 -12.3 -13.0 -13.0 1 +1963 1 10 -12.7 -13.4 -13.4 1 +1963 1 11 -10.1 -10.8 -10.8 1 +1963 1 12 -11.6 -12.3 -12.3 1 +1963 1 13 -7.3 -8.0 -8.0 1 +1963 1 14 -8.1 -8.9 -8.9 1 +1963 1 15 -8.1 -8.9 -8.9 1 +1963 1 16 -9.0 -9.8 -9.8 1 +1963 1 17 -12.6 -13.4 -13.4 1 +1963 1 18 -9.1 -9.9 -9.9 1 +1963 1 19 -2.7 -3.5 -3.5 1 +1963 1 20 -7.0 -7.8 -7.8 1 +1963 1 21 -7.9 -8.7 -8.7 1 +1963 1 22 -1.2 -2.0 -2.0 1 +1963 1 23 -5.2 -6.0 -6.0 1 +1963 1 24 -4.0 -4.8 -4.8 1 +1963 1 25 -3.9 -4.7 -4.7 1 +1963 1 26 -1.1 -1.9 -1.9 1 +1963 1 27 -5.1 -5.9 -5.9 1 +1963 1 28 -2.5 -3.3 -3.3 1 +1963 1 29 -3.8 -4.6 -4.6 1 +1963 1 30 -5.4 -6.2 -6.2 1 +1963 1 31 -5.7 -6.5 -6.5 1 +1963 2 1 -9.3 -10.1 -10.1 1 +1963 2 2 -7.8 -8.6 -8.6 1 +1963 2 3 -3.5 -4.3 -4.3 1 +1963 2 4 -3.9 -4.7 -4.7 1 +1963 2 5 -8.0 -8.8 -8.8 1 +1963 2 6 -7.2 -8.0 -8.0 1 +1963 2 7 -10.4 -11.2 -11.2 1 +1963 2 8 -8.4 -9.2 -9.2 1 +1963 2 9 -8.5 -9.3 -9.3 1 +1963 2 10 -8.5 -9.3 -9.3 1 +1963 2 11 -3.8 -4.6 -4.6 1 +1963 2 12 -2.8 -3.6 -3.6 1 +1963 2 13 -3.0 -3.8 -3.8 1 +1963 2 14 -6.4 -7.2 -7.2 1 +1963 2 15 -8.4 -9.2 -9.2 1 +1963 2 16 -7.4 -8.2 -8.2 1 +1963 2 17 -9.7 -10.5 -10.5 1 +1963 2 18 -13.7 -14.5 -14.5 1 +1963 2 19 -12.7 -13.5 -13.5 1 +1963 2 20 -11.0 -11.8 -11.8 1 +1963 2 21 -9.2 -10.0 -10.0 1 +1963 2 22 -8.4 -9.2 -9.2 1 +1963 2 23 -5.3 -6.1 -6.1 1 +1963 2 24 -3.7 -4.5 -4.5 1 +1963 2 25 -6.6 -7.5 -7.5 1 +1963 2 26 -4.2 -5.1 -5.1 1 +1963 2 27 -1.0 -1.9 -1.9 1 +1963 2 28 -1.8 -2.7 -2.7 1 +1963 3 1 -1.4 -2.3 -2.3 1 +1963 3 2 -4.8 -5.7 -5.7 1 +1963 3 3 1.3 0.4 0.4 1 +1963 3 4 2.7 1.8 1.8 1 +1963 3 5 -2.0 -2.9 -2.9 1 +1963 3 6 2.5 1.6 1.6 1 +1963 3 7 4.0 3.1 3.1 1 +1963 3 8 -2.2 -3.1 -3.1 1 +1963 3 9 -8.1 -9.0 -9.0 1 +1963 3 10 -4.3 -5.2 -5.2 1 +1963 3 11 -1.3 -2.2 -2.2 1 +1963 3 12 -2.5 -3.4 -3.4 1 +1963 3 13 -8.0 -8.9 -8.9 1 +1963 3 14 -10.0 -10.9 -10.9 1 +1963 3 15 -6.6 -7.5 -7.5 1 +1963 3 16 -2.3 -3.2 -3.2 1 +1963 3 17 -2.2 -3.1 -3.1 1 +1963 3 18 -4.2 -5.1 -5.1 1 +1963 3 19 -6.1 -7.0 -7.0 1 +1963 3 20 -7.4 -8.3 -8.3 1 +1963 3 21 -6.9 -7.8 -7.8 1 +1963 3 22 -3.7 -4.6 -4.6 1 +1963 3 23 -3.3 -4.2 -4.2 1 +1963 3 24 -1.3 -2.2 -2.2 1 +1963 3 25 -1.1 -2.0 -2.0 1 +1963 3 26 -6.3 -7.2 -7.2 1 +1963 3 27 -7.1 -8.0 -8.0 1 +1963 3 28 -4.0 -4.9 -4.9 1 +1963 3 29 -3.8 -4.7 -4.7 1 +1963 3 30 -4.2 -5.0 -5.0 1 +1963 3 31 -3.4 -4.2 -4.2 1 +1963 4 1 -3.0 -3.8 -3.8 1 +1963 4 2 -1.1 -1.9 -1.9 1 +1963 4 3 2.1 1.3 1.3 1 +1963 4 4 1.7 0.9 0.9 1 +1963 4 5 1.0 0.2 0.2 1 +1963 4 6 0.5 -0.3 -0.3 1 +1963 4 7 4.6 3.8 3.8 1 +1963 4 8 6.6 5.8 5.8 1 +1963 4 9 6.0 5.2 5.2 1 +1963 4 10 0.1 -0.7 -0.7 1 +1963 4 11 3.3 2.5 2.5 1 +1963 4 12 3.0 2.2 2.2 1 +1963 4 13 5.0 4.2 4.2 1 +1963 4 14 4.7 3.9 3.9 1 +1963 4 15 4.4 3.6 3.6 1 +1963 4 16 5.0 4.2 4.2 1 +1963 4 17 6.0 5.2 5.2 1 +1963 4 18 3.1 2.3 2.3 1 +1963 4 19 3.7 2.9 2.9 1 +1963 4 20 6.3 5.4 5.4 1 +1963 4 21 4.3 3.4 3.4 1 +1963 4 22 4.4 3.5 3.5 1 +1963 4 23 2.3 1.4 1.4 1 +1963 4 24 2.9 2.0 2.0 1 +1963 4 25 4.5 3.6 3.6 1 +1963 4 26 8.1 7.1 7.1 1 +1963 4 27 11.4 10.4 10.4 1 +1963 4 28 7.5 6.5 6.5 1 +1963 4 29 7.7 6.7 6.7 1 +1963 4 30 7.8 6.8 6.8 1 +1963 5 1 8.7 7.6 7.6 1 +1963 5 2 6.9 5.8 5.8 1 +1963 5 3 7.2 6.1 6.1 1 +1963 5 4 10.0 8.9 8.9 1 +1963 5 5 8.4 7.3 7.3 1 +1963 5 6 9.5 8.3 8.3 1 +1963 5 7 9.4 8.2 8.2 1 +1963 5 8 11.6 10.4 10.4 1 +1963 5 9 11.7 10.5 10.5 1 +1963 5 10 13.6 12.4 12.4 1 +1963 5 11 13.8 12.6 12.6 1 +1963 5 12 13.4 12.1 12.1 1 +1963 5 13 12.7 11.4 11.4 1 +1963 5 14 12.1 10.8 10.8 1 +1963 5 15 14.0 12.7 12.7 1 +1963 5 16 14.6 13.3 13.3 1 +1963 5 17 12.2 10.9 10.9 1 +1963 5 18 12.1 10.8 10.8 1 +1963 5 19 9.3 8.0 8.0 1 +1963 5 20 10.2 8.9 8.9 1 +1963 5 21 10.9 9.6 9.6 1 +1963 5 22 12.8 11.5 11.5 1 +1963 5 23 13.2 12.0 12.0 1 +1963 5 24 14.3 13.1 13.1 1 +1963 5 25 15.5 14.3 14.3 1 +1963 5 26 15.7 14.5 14.5 1 +1963 5 27 16.6 15.4 15.4 1 +1963 5 28 17.6 16.4 16.4 1 +1963 5 29 18.9 17.7 17.7 1 +1963 5 30 16.8 15.6 15.6 1 +1963 5 31 13.3 12.1 12.1 1 +1963 6 1 13.7 12.5 12.5 1 +1963 6 2 16.4 15.2 15.2 1 +1963 6 3 14.3 13.1 13.1 1 +1963 6 4 13.4 12.3 12.3 1 +1963 6 5 16.4 15.3 15.3 1 +1963 6 6 18.3 17.2 17.2 1 +1963 6 7 16.0 14.9 14.9 1 +1963 6 8 18.3 17.2 17.2 1 +1963 6 9 17.8 16.7 16.7 1 +1963 6 10 17.6 16.5 16.5 1 +1963 6 11 17.2 16.1 16.1 1 +1963 6 12 14.1 13.0 13.0 1 +1963 6 13 13.5 12.4 12.4 1 +1963 6 14 11.4 10.3 10.3 1 +1963 6 15 14.2 13.2 13.2 1 +1963 6 16 13.5 12.5 12.5 1 +1963 6 17 16.4 15.4 15.4 1 +1963 6 18 16.6 15.6 15.6 1 +1963 6 19 17.2 16.2 16.2 1 +1963 6 20 16.7 15.7 15.7 1 +1963 6 21 15.1 14.1 14.1 1 +1963 6 22 12.2 11.2 11.2 1 +1963 6 23 14.1 13.1 13.1 1 +1963 6 24 14.5 13.5 13.5 1 +1963 6 25 15.6 14.6 14.6 1 +1963 6 26 14.8 13.8 13.8 1 +1963 6 27 12.9 11.9 11.9 1 +1963 6 28 15.0 14.0 14.0 1 +1963 6 29 15.6 14.6 14.6 1 +1963 6 30 19.1 18.1 18.1 1 +1963 7 1 18.1 17.1 17.1 1 +1963 7 2 19.5 18.5 18.5 1 +1963 7 3 20.0 19.0 19.0 1 +1963 7 4 20.6 19.6 19.6 1 +1963 7 5 20.3 19.3 19.3 1 +1963 7 6 20.6 19.6 19.6 1 +1963 7 7 15.7 14.7 14.7 1 +1963 7 8 14.4 13.4 13.4 1 +1963 7 9 15.5 14.5 14.5 1 +1963 7 10 15.9 14.9 14.9 1 +1963 7 11 16.0 15.0 15.0 1 +1963 7 12 13.9 12.9 12.9 1 +1963 7 13 14.7 13.7 13.7 1 +1963 7 14 15.3 14.3 14.3 1 +1963 7 15 16.8 15.8 15.8 1 +1963 7 16 17.2 16.2 16.2 1 +1963 7 17 16.9 15.9 15.9 1 +1963 7 18 16.9 16.0 16.0 1 +1963 7 19 18.2 17.3 17.3 1 +1963 7 20 16.7 15.8 15.8 1 +1963 7 21 16.6 15.7 15.7 1 +1963 7 22 18.4 17.5 17.5 1 +1963 7 23 19.7 18.8 18.8 1 +1963 7 24 19.3 18.4 18.4 1 +1963 7 25 21.4 20.5 20.5 1 +1963 7 26 17.7 16.8 16.8 1 +1963 7 27 14.5 13.6 13.6 1 +1963 7 28 16.2 15.3 15.3 1 +1963 7 29 13.7 12.8 12.8 1 +1963 7 30 17.3 16.4 16.4 1 +1963 7 31 19.0 18.1 18.1 1 +1963 8 1 21.9 21.1 21.1 1 +1963 8 2 22.0 21.2 21.2 1 +1963 8 3 20.7 19.9 19.9 1 +1963 8 4 19.2 18.4 18.4 1 +1963 8 5 18.1 17.3 17.3 1 +1963 8 6 17.0 16.2 16.2 1 +1963 8 7 18.7 17.9 17.9 1 +1963 8 8 17.6 16.8 16.8 1 +1963 8 9 19.0 18.2 18.2 1 +1963 8 10 16.9 16.1 16.1 1 +1963 8 11 15.6 14.8 14.8 1 +1963 8 12 17.0 16.2 16.2 1 +1963 8 13 16.1 15.3 15.3 1 +1963 8 14 15.5 14.8 14.8 1 +1963 8 15 16.4 15.7 15.7 1 +1963 8 16 16.0 15.3 15.3 1 +1963 8 17 15.4 14.7 14.7 1 +1963 8 18 16.0 15.3 15.3 1 +1963 8 19 15.2 14.5 14.5 1 +1963 8 20 14.6 13.9 13.9 1 +1963 8 21 15.6 14.9 14.9 1 +1963 8 22 15.7 15.1 15.1 1 +1963 8 23 16.3 15.7 15.7 1 +1963 8 24 16.9 16.3 16.3 1 +1963 8 25 15.2 14.6 14.6 1 +1963 8 26 14.3 13.7 13.7 1 +1963 8 27 15.5 14.9 14.9 1 +1963 8 28 15.7 15.2 15.2 1 +1963 8 29 14.4 13.9 13.9 1 +1963 8 30 15.4 14.9 14.9 1 +1963 8 31 13.7 13.2 13.2 1 +1963 9 1 15.7 15.2 15.2 1 +1963 9 2 18.2 17.7 17.7 1 +1963 9 3 17.8 17.3 17.3 1 +1963 9 4 17.3 16.9 16.9 1 +1963 9 5 15.1 14.7 14.7 1 +1963 9 6 13.7 13.3 13.3 1 +1963 9 7 15.0 14.6 14.6 1 +1963 9 8 13.8 13.4 13.4 1 +1963 9 9 14.4 14.0 14.0 1 +1963 9 10 14.7 14.3 14.3 1 +1963 9 11 13.4 13.1 13.1 1 +1963 9 12 12.9 12.6 12.6 1 +1963 9 13 12.4 12.1 12.1 1 +1963 9 14 13.3 13.0 13.0 1 +1963 9 15 13.3 13.0 13.0 1 +1963 9 16 16.3 16.0 16.0 1 +1963 9 17 15.8 15.5 15.5 1 +1963 9 18 12.7 12.4 12.4 1 +1963 9 19 9.4 9.1 9.1 1 +1963 9 20 10.9 10.6 10.6 1 +1963 9 21 11.9 11.6 11.6 1 +1963 9 22 12.8 12.5 12.5 1 +1963 9 23 13.3 13.0 13.0 1 +1963 9 24 12.3 12.0 12.0 1 +1963 9 25 14.2 13.9 13.9 1 +1963 9 26 12.5 12.2 12.2 1 +1963 9 27 10.7 10.4 10.4 1 +1963 9 28 9.9 9.6 9.6 1 +1963 9 29 8.3 8.1 8.1 1 +1963 9 30 7.2 7.0 7.0 1 +1963 10 1 7.9 7.7 7.7 1 +1963 10 2 9.0 8.8 8.8 1 +1963 10 3 9.6 9.4 9.4 1 +1963 10 4 8.4 8.2 8.2 1 +1963 10 5 8.5 8.3 8.3 1 +1963 10 6 7.0 6.8 6.8 1 +1963 10 7 7.3 7.1 7.1 1 +1963 10 8 7.6 7.4 7.4 1 +1963 10 9 9.7 9.5 9.5 1 +1963 10 10 7.4 7.2 7.2 1 +1963 10 11 7.1 6.9 6.9 1 +1963 10 12 8.7 8.5 8.5 1 +1963 10 13 7.0 6.8 6.8 1 +1963 10 14 5.1 4.9 4.9 1 +1963 10 15 3.4 3.2 3.2 1 +1963 10 16 6.2 6.0 6.0 1 +1963 10 17 8.8 8.6 8.6 1 +1963 10 18 6.6 6.4 6.4 1 +1963 10 19 9.9 9.7 9.7 1 +1963 10 20 8.7 8.4 8.4 1 +1963 10 21 8.8 8.5 8.5 1 +1963 10 22 10.6 10.3 10.3 1 +1963 10 23 6.7 6.4 6.4 1 +1963 10 24 8.2 7.9 7.9 1 +1963 10 25 9.0 8.7 8.7 1 +1963 10 26 9.0 8.7 8.7 1 +1963 10 27 8.8 8.5 8.5 1 +1963 10 28 8.6 8.3 8.3 1 +1963 10 29 6.9 6.6 6.6 1 +1963 10 30 4.9 4.6 4.6 1 +1963 10 31 4.3 4.0 4.0 1 +1963 11 1 5.5 5.2 5.2 1 +1963 11 2 6.3 5.9 5.9 1 +1963 11 3 5.2 4.8 4.8 1 +1963 11 4 3.7 3.3 3.3 1 +1963 11 5 5.3 4.9 4.9 1 +1963 11 6 5.3 4.9 4.9 1 +1963 11 7 6.0 5.6 5.6 1 +1963 11 8 7.2 6.8 6.8 1 +1963 11 9 7.1 6.7 6.7 1 +1963 11 10 2.7 2.3 2.3 1 +1963 11 11 0.8 0.4 0.4 1 +1963 11 12 4.0 3.6 3.6 1 +1963 11 13 6.0 5.6 5.6 1 +1963 11 14 5.2 4.8 4.8 1 +1963 11 15 5.7 5.3 5.3 1 +1963 11 16 3.3 2.8 2.8 1 +1963 11 17 1.0 0.5 0.5 1 +1963 11 18 1.9 1.4 1.4 1 +1963 11 19 4.3 3.8 3.8 1 +1963 11 20 -0.1 -0.6 -0.6 1 +1963 11 21 0.9 0.4 0.4 1 +1963 11 22 0.6 0.1 0.1 1 +1963 11 23 -3.7 -4.2 -4.2 1 +1963 11 24 -3.8 -4.3 -4.3 1 +1963 11 25 0.3 -0.2 -0.2 1 +1963 11 26 1.5 1.0 1.0 1 +1963 11 27 2.4 1.9 1.9 1 +1963 11 28 3.0 2.5 2.5 1 +1963 11 29 4.1 3.6 3.6 1 +1963 11 30 4.1 3.6 3.6 1 +1963 12 1 2.7 2.2 2.2 1 +1963 12 2 1.8 1.3 1.3 1 +1963 12 3 0.6 0.1 0.1 1 +1963 12 4 0.7 0.2 0.2 1 +1963 12 5 1.8 1.3 1.3 1 +1963 12 6 0.1 -0.4 -0.4 1 +1963 12 7 -0.7 -1.2 -1.2 1 +1963 12 8 0.7 0.2 0.2 1 +1963 12 9 -0.1 -0.6 -0.6 1 +1963 12 10 0.8 0.3 0.3 1 +1963 12 11 -2.9 -3.4 -3.4 1 +1963 12 12 -1.5 -2.0 -2.0 1 +1963 12 13 -5.2 -5.8 -5.8 1 +1963 12 14 0.4 -0.2 -0.2 1 +1963 12 15 -3.6 -4.2 -4.2 1 +1963 12 16 -1.0 -1.6 -1.6 1 +1963 12 17 -7.1 -7.7 -7.7 1 +1963 12 18 -5.6 -6.2 -6.2 1 +1963 12 19 -3.1 -3.7 -3.7 1 +1963 12 20 -9.6 -10.2 -10.2 1 +1963 12 21 -7.9 -8.5 -8.5 1 +1963 12 22 -10.1 -10.7 -10.7 1 +1963 12 23 -4.5 -5.1 -5.1 1 +1963 12 24 2.0 1.4 1.4 1 +1963 12 25 -2.9 -3.5 -3.5 1 +1963 12 26 0.9 0.3 0.3 1 +1963 12 27 3.1 2.5 2.5 1 +1963 12 28 1.6 1.0 1.0 1 +1963 12 29 3.5 2.9 2.9 1 +1963 12 30 3.6 2.9 2.9 1 +1963 12 31 4.6 3.9 3.9 1 +1964 1 1 3.1 2.4 2.4 1 +1964 1 2 -0.9 -1.6 -1.6 1 +1964 1 3 1.4 0.7 0.7 1 +1964 1 4 2.1 1.4 1.4 1 +1964 1 5 0.3 -0.4 -0.4 1 +1964 1 6 -3.5 -4.2 -4.2 1 +1964 1 7 -2.0 -2.7 -2.7 1 +1964 1 8 -3.5 -4.2 -4.2 1 +1964 1 9 -1.3 -2.0 -2.0 1 +1964 1 10 -1.4 -2.1 -2.1 1 +1964 1 11 -1.4 -2.1 -2.1 1 +1964 1 12 -0.5 -1.2 -1.2 1 +1964 1 13 -3.1 -3.9 -3.9 1 +1964 1 14 -5.8 -6.6 -6.6 1 +1964 1 15 -7.2 -8.0 -8.0 1 +1964 1 16 -4.5 -5.3 -5.3 1 +1964 1 17 -0.8 -1.6 -1.6 1 +1964 1 18 -3.2 -4.0 -4.0 1 +1964 1 19 -4.4 -5.2 -5.2 1 +1964 1 20 -1.6 -2.4 -2.4 1 +1964 1 21 4.3 3.5 3.5 1 +1964 1 22 2.5 1.7 1.7 1 +1964 1 23 1.7 0.9 0.9 1 +1964 1 24 0.8 0.0 0.0 1 +1964 1 25 -0.4 -1.2 -1.2 1 +1964 1 26 -4.3 -5.1 -5.1 1 +1964 1 27 -6.3 -7.1 -7.1 1 +1964 1 28 -4.3 -5.1 -5.1 1 +1964 1 29 0.4 -0.4 -0.4 1 +1964 1 30 2.6 1.8 1.8 1 +1964 1 31 1.5 0.7 0.7 1 +1964 2 1 0.8 0.0 0.0 1 +1964 2 2 0.2 -0.6 -0.6 1 +1964 2 3 -0.8 -1.6 -1.6 1 +1964 2 4 1.4 0.6 0.6 1 +1964 2 5 -2.3 -3.1 -3.1 1 +1964 2 6 -4.9 -5.7 -5.7 1 +1964 2 7 -3.1 -3.9 -3.9 1 +1964 2 8 3.6 2.8 2.8 1 +1964 2 9 -1.1 -1.9 -1.9 1 +1964 2 10 -1.7 -2.5 -2.5 1 +1964 2 11 -6.3 -7.1 -7.1 1 +1964 2 12 -10.0 -10.8 -10.8 1 +1964 2 13 -9.9 -10.7 -10.7 1 +1964 2 14 -8.7 -9.5 -9.5 1 +1964 2 15 -6.3 -7.1 -7.1 1 +1964 2 16 -8.4 -9.2 -9.2 1 +1964 2 17 -8.4 -9.2 -9.2 1 +1964 2 18 -10.8 -11.6 -11.6 1 +1964 2 19 -8.7 -9.5 -9.5 1 +1964 2 20 -4.5 -5.3 -5.3 1 +1964 2 21 0.1 -0.7 -0.7 1 +1964 2 22 -2.9 -3.8 -3.8 1 +1964 2 23 -2.6 -3.5 -3.5 1 +1964 2 24 -1.5 -2.4 -2.4 1 +1964 2 25 -2.1 -3.0 -3.0 1 +1964 2 26 -1.3 -2.2 -2.2 1 +1964 2 27 -0.9 -1.8 -1.8 1 +1964 2 28 -0.6 -1.5 -1.5 1 +1964 2 29 0.0 -0.9 -0.9 1 +1964 3 1 -0.3 -1.2 -1.2 1 +1964 3 2 0.3 -0.6 -0.6 1 +1964 3 3 -1.8 -2.7 -2.7 1 +1964 3 4 -3.0 -3.9 -3.9 1 +1964 3 5 -3.8 -4.7 -4.7 1 +1964 3 6 -3.7 -4.6 -4.6 1 +1964 3 7 -0.4 -1.3 -1.3 1 +1964 3 8 0.0 -0.9 -0.9 1 +1964 3 9 4.9 4.0 4.0 1 +1964 3 10 4.0 3.1 3.1 1 +1964 3 11 2.3 1.4 1.4 1 +1964 3 12 -0.6 -1.5 -1.5 1 +1964 3 13 -3.2 -4.1 -4.1 1 +1964 3 14 -4.6 -5.5 -5.5 1 +1964 3 15 -4.5 -5.4 -5.4 1 +1964 3 16 -2.9 -3.8 -3.8 1 +1964 3 17 -2.0 -2.9 -2.9 1 +1964 3 18 -3.3 -4.2 -4.2 1 +1964 3 19 -3.0 -3.9 -3.9 1 +1964 3 20 -3.4 -4.3 -4.3 1 +1964 3 21 -2.2 -3.1 -3.1 1 +1964 3 22 -1.6 -2.5 -2.5 1 +1964 3 23 -2.2 -3.1 -3.1 1 +1964 3 24 -1.1 -2.0 -2.0 1 +1964 3 25 -0.3 -1.2 -1.2 1 +1964 3 26 -1.3 -2.2 -2.2 1 +1964 3 27 -0.8 -1.7 -1.7 1 +1964 3 28 -3.0 -3.9 -3.9 1 +1964 3 29 -1.5 -2.4 -2.4 1 +1964 3 30 -0.2 -1.1 -1.1 1 +1964 3 31 -0.3 -1.2 -1.2 1 +1964 4 1 0.6 -0.2 -0.2 1 +1964 4 2 2.1 1.3 1.3 1 +1964 4 3 3.6 2.8 2.8 1 +1964 4 4 2.1 1.3 1.3 1 +1964 4 5 0.7 -0.1 -0.1 1 +1964 4 6 1.6 0.8 0.8 1 +1964 4 7 0.9 0.1 0.1 1 +1964 4 8 2.9 2.1 2.1 1 +1964 4 9 -0.7 -1.5 -1.5 1 +1964 4 10 1.9 1.1 1.1 1 +1964 4 11 5.8 5.0 5.0 1 +1964 4 12 5.9 5.1 5.1 1 +1964 4 13 7.1 6.3 6.3 1 +1964 4 14 7.4 6.6 6.6 1 +1964 4 15 7.0 6.2 6.2 1 +1964 4 16 9.3 8.5 8.5 1 +1964 4 17 11.2 10.4 10.4 1 +1964 4 18 12.2 11.4 11.4 1 +1964 4 19 12.0 11.1 11.1 1 +1964 4 20 13.6 12.7 12.7 1 +1964 4 21 11.4 10.5 10.5 1 +1964 4 22 7.4 6.5 6.5 1 +1964 4 23 5.1 4.2 4.2 1 +1964 4 24 5.5 4.6 4.6 1 +1964 4 25 3.5 2.5 2.5 1 +1964 4 26 7.1 6.1 6.1 1 +1964 4 27 8.3 7.3 7.3 1 +1964 4 28 9.7 8.7 8.7 1 +1964 4 29 8.2 7.2 7.2 1 +1964 4 30 8.5 7.4 7.4 1 +1964 5 1 8.4 7.3 7.3 1 +1964 5 2 8.1 7.0 7.0 1 +1964 5 3 8.6 7.5 7.5 1 +1964 5 4 6.7 5.6 5.6 1 +1964 5 5 6.5 5.4 5.4 1 +1964 5 6 8.7 7.5 7.5 1 +1964 5 7 11.8 10.6 10.6 1 +1964 5 8 9.2 8.0 8.0 1 +1964 5 9 12.1 10.9 10.9 1 +1964 5 10 13.3 12.1 12.1 1 +1964 5 11 10.3 9.0 9.0 1 +1964 5 12 11.1 9.8 9.8 1 +1964 5 13 13.7 12.4 12.4 1 +1964 5 14 13.6 12.3 12.3 1 +1964 5 15 10.9 9.6 9.6 1 +1964 5 16 10.4 9.1 9.1 1 +1964 5 17 8.2 6.9 6.9 1 +1964 5 18 8.9 7.6 7.6 1 +1964 5 19 13.1 11.8 11.8 1 +1964 5 20 14.3 13.0 13.0 1 +1964 5 21 14.0 12.7 12.7 1 +1964 5 22 14.5 13.2 13.2 1 +1964 5 23 14.2 12.9 12.9 1 +1964 5 24 15.5 14.2 14.2 1 +1964 5 25 15.2 14.0 14.0 1 +1964 5 26 16.2 15.0 15.0 1 +1964 5 27 17.0 15.8 15.8 1 +1964 5 28 15.0 13.8 13.8 1 +1964 5 29 15.3 14.1 14.1 1 +1964 5 30 15.5 14.3 14.3 1 +1964 5 31 12.7 11.5 11.5 1 +1964 6 1 11.1 9.9 9.9 1 +1964 6 2 10.9 9.7 9.7 1 +1964 6 3 10.0 8.8 8.8 1 +1964 6 4 9.2 8.0 8.0 1 +1964 6 5 11.9 10.7 10.7 1 +1964 6 6 16.2 15.1 15.1 1 +1964 6 7 13.7 12.6 12.6 1 +1964 6 8 10.5 9.4 9.4 1 +1964 6 9 14.2 13.1 13.1 1 +1964 6 10 14.0 12.9 12.9 1 +1964 6 11 15.9 14.8 14.8 1 +1964 6 12 16.9 15.8 15.8 1 +1964 6 13 18.2 17.1 17.1 1 +1964 6 14 18.8 17.7 17.7 1 +1964 6 15 19.0 17.9 17.9 1 +1964 6 16 14.8 13.7 13.7 1 +1964 6 17 13.0 11.9 11.9 1 +1964 6 18 15.1 14.0 14.0 1 +1964 6 19 16.1 15.0 15.0 1 +1964 6 20 17.4 16.4 16.4 1 +1964 6 21 17.3 16.3 16.3 1 +1964 6 22 13.4 12.4 12.4 1 +1964 6 23 14.4 13.4 13.4 1 +1964 6 24 14.7 13.7 13.7 1 +1964 6 25 17.1 16.1 16.1 1 +1964 6 26 18.8 17.8 17.8 1 +1964 6 27 19.7 18.7 18.7 1 +1964 6 28 16.8 15.8 15.8 1 +1964 6 29 15.7 14.7 14.7 1 +1964 6 30 12.9 11.9 11.9 1 +1964 7 1 14.7 13.7 13.7 1 +1964 7 2 15.8 14.8 14.8 1 +1964 7 3 14.7 13.7 13.7 1 +1964 7 4 15.0 14.0 14.0 1 +1964 7 5 14.5 13.5 13.5 1 +1964 7 6 13.4 12.4 12.4 1 +1964 7 7 11.6 10.6 10.6 1 +1964 7 8 13.2 12.2 12.2 1 +1964 7 9 15.6 14.6 14.6 1 +1964 7 10 14.6 13.6 13.6 1 +1964 7 11 15.1 14.1 14.1 1 +1964 7 12 15.4 14.4 14.4 1 +1964 7 13 18.2 17.2 17.2 1 +1964 7 14 20.0 19.0 19.0 1 +1964 7 15 21.2 20.2 20.2 1 +1964 7 16 21.4 20.4 20.4 1 +1964 7 17 22.0 21.0 21.0 1 +1964 7 18 20.7 19.7 19.7 1 +1964 7 19 21.0 20.0 20.0 1 +1964 7 20 19.8 18.9 18.9 1 +1964 7 21 17.6 16.7 16.7 1 +1964 7 22 16.2 15.3 15.3 1 +1964 7 23 17.9 17.0 17.0 1 +1964 7 24 16.8 15.9 15.9 1 +1964 7 25 17.5 16.6 16.6 1 +1964 7 26 18.0 17.1 17.1 1 +1964 7 27 17.9 17.0 17.0 1 +1964 7 28 18.6 17.7 17.7 1 +1964 7 29 16.6 15.7 15.7 1 +1964 7 30 14.5 13.6 13.6 1 +1964 7 31 14.1 13.2 13.2 1 +1964 8 1 14.1 13.2 13.2 1 +1964 8 2 11.2 10.3 10.3 1 +1964 8 3 13.4 12.6 12.6 1 +1964 8 4 14.7 13.9 13.9 1 +1964 8 5 14.6 13.8 13.8 1 +1964 8 6 16.6 15.8 15.8 1 +1964 8 7 15.8 15.0 15.0 1 +1964 8 8 19.4 18.6 18.6 1 +1964 8 9 17.6 16.8 16.8 1 +1964 8 10 16.0 15.2 15.2 1 +1964 8 11 17.4 16.6 16.6 1 +1964 8 12 15.6 14.8 14.8 1 +1964 8 13 13.1 12.3 12.3 1 +1964 8 14 14.7 13.9 13.9 1 +1964 8 15 16.4 15.6 15.6 1 +1964 8 16 15.5 14.8 14.8 1 +1964 8 17 13.9 13.2 13.2 1 +1964 8 18 16.1 15.4 15.4 1 +1964 8 19 17.1 16.4 16.4 1 +1964 8 20 18.4 17.7 17.7 1 +1964 8 21 11.9 11.2 11.2 1 +1964 8 22 12.1 11.5 11.5 1 +1964 8 23 13.8 13.2 13.2 1 +1964 8 24 15.6 15.0 15.0 1 +1964 8 25 15.3 14.7 14.7 1 +1964 8 26 14.6 14.0 14.0 1 +1964 8 27 20.9 20.3 20.3 1 +1964 8 28 15.8 15.2 15.2 1 +1964 8 29 12.5 12.0 12.0 1 +1964 8 30 11.3 10.8 10.8 1 +1964 8 31 11.3 10.8 10.8 1 +1964 9 1 12.0 11.5 11.5 1 +1964 9 2 14.6 14.1 14.1 1 +1964 9 3 14.6 14.1 14.1 1 +1964 9 4 15.9 15.4 15.4 1 +1964 9 5 17.5 17.1 17.1 1 +1964 9 6 13.7 13.3 13.3 1 +1964 9 7 16.3 15.9 15.9 1 +1964 9 8 15.3 14.9 14.9 1 +1964 9 9 10.0 9.6 9.6 1 +1964 9 10 10.1 9.7 9.7 1 +1964 9 11 9.8 9.5 9.5 1 +1964 9 12 8.2 7.9 7.9 1 +1964 9 13 8.5 8.2 8.2 1 +1964 9 14 9.7 9.4 9.4 1 +1964 9 15 14.7 14.4 14.4 1 +1964 9 16 15.8 15.5 15.5 1 +1964 9 17 12.4 12.1 12.1 1 +1964 9 18 9.5 9.2 9.2 1 +1964 9 19 11.1 10.8 10.8 1 +1964 9 20 9.6 9.3 9.3 1 +1964 9 21 9.7 9.4 9.4 1 +1964 9 22 9.3 9.0 9.0 1 +1964 9 23 10.7 10.4 10.4 1 +1964 9 24 12.6 12.3 12.3 1 +1964 9 25 13.9 13.6 13.6 1 +1964 9 26 11.6 11.3 11.3 1 +1964 9 27 11.8 11.5 11.5 1 +1964 9 28 11.6 11.3 11.3 1 +1964 9 29 12.7 12.4 12.4 1 +1964 9 30 8.3 8.0 8.0 1 +1964 10 1 7.5 7.2 7.2 1 +1964 10 2 9.2 8.9 8.9 1 +1964 10 3 6.8 6.6 6.6 1 +1964 10 4 9.5 9.3 9.3 1 +1964 10 5 9.5 9.3 9.3 1 +1964 10 6 8.3 8.1 8.1 1 +1964 10 7 9.9 9.7 9.7 1 +1964 10 8 11.7 11.5 11.5 1 +1964 10 9 10.8 10.6 10.6 1 +1964 10 10 10.5 10.3 10.3 1 +1964 10 11 9.4 9.2 9.2 1 +1964 10 12 7.7 7.5 7.5 1 +1964 10 13 8.3 8.1 8.1 1 +1964 10 14 10.2 10.0 10.0 1 +1964 10 15 8.4 8.2 8.2 1 +1964 10 16 7.2 7.0 7.0 1 +1964 10 17 7.8 7.6 7.6 1 +1964 10 18 7.1 6.9 6.9 1 +1964 10 19 6.7 6.4 6.4 1 +1964 10 20 10.0 9.7 9.7 1 +1964 10 21 8.1 7.8 7.8 1 +1964 10 22 7.5 7.2 7.2 1 +1964 10 23 8.0 7.7 7.7 1 +1964 10 24 8.2 7.9 7.9 1 +1964 10 25 6.1 5.8 5.8 1 +1964 10 26 3.2 2.9 2.9 1 +1964 10 27 4.4 4.1 4.1 1 +1964 10 28 4.6 4.3 4.3 1 +1964 10 29 1.5 1.2 1.2 1 +1964 10 30 3.8 3.5 3.5 1 +1964 10 31 4.5 4.2 4.2 1 +1964 11 1 3.8 3.4 3.4 1 +1964 11 2 5.8 5.4 5.4 1 +1964 11 3 5.6 5.2 5.2 1 +1964 11 4 6.3 5.9 5.9 1 +1964 11 5 0.8 0.4 0.4 1 +1964 11 6 2.1 1.7 1.7 1 +1964 11 7 0.2 -0.2 -0.2 1 +1964 11 8 -1.4 -1.8 -1.8 1 +1964 11 9 3.8 3.4 3.4 1 +1964 11 10 4.8 4.4 4.4 1 +1964 11 11 4.1 3.7 3.7 1 +1964 11 12 3.0 2.6 2.6 1 +1964 11 13 4.2 3.8 3.8 1 +1964 11 14 6.3 5.9 5.9 1 +1964 11 15 6.8 6.3 6.3 1 +1964 11 16 5.8 5.3 5.3 1 +1964 11 17 3.0 2.5 2.5 1 +1964 11 18 0.3 -0.2 -0.2 1 +1964 11 19 0.9 0.4 0.4 1 +1964 11 20 1.0 0.5 0.5 1 +1964 11 21 1.8 1.3 1.3 1 +1964 11 22 -0.4 -0.9 -0.9 1 +1964 11 23 2.0 1.5 1.5 1 +1964 11 24 3.6 3.1 3.1 1 +1964 11 25 2.6 2.1 2.1 1 +1964 11 26 1.1 0.6 0.6 1 +1964 11 27 3.1 2.6 2.6 1 +1964 11 28 -0.2 -0.7 -0.7 1 +1964 11 29 0.7 0.2 0.2 1 +1964 11 30 0.9 0.4 0.4 1 +1964 12 1 0.6 0.1 0.1 1 +1964 12 2 -1.7 -2.2 -2.2 1 +1964 12 3 1.5 1.0 1.0 1 +1964 12 4 -0.3 -0.8 -0.8 1 +1964 12 5 -1.6 -2.1 -2.1 1 +1964 12 6 -3.9 -4.4 -4.4 1 +1964 12 7 2.2 1.7 1.7 1 +1964 12 8 5.2 4.7 4.7 1 +1964 12 9 6.7 6.2 6.2 1 +1964 12 10 8.1 7.5 7.5 1 +1964 12 11 5.1 4.5 4.5 1 +1964 12 12 3.8 3.2 3.2 1 +1964 12 13 5.6 5.0 5.0 1 +1964 12 14 0.7 0.1 0.1 1 +1964 12 15 0.1 -0.5 -0.5 1 +1964 12 16 -0.3 -0.9 -0.9 1 +1964 12 17 1.0 0.4 0.4 1 +1964 12 18 -0.4 -1.0 -1.0 1 +1964 12 19 -1.1 -1.7 -1.7 1 +1964 12 20 -2.6 -3.2 -3.2 1 +1964 12 21 -3.2 -3.8 -3.8 1 +1964 12 22 0.4 -0.2 -0.2 1 +1964 12 23 -1.0 -1.6 -1.6 1 +1964 12 24 1.3 0.7 0.7 1 +1964 12 25 -2.6 -3.2 -3.2 1 +1964 12 26 -6.2 -6.8 -6.8 1 +1964 12 27 -7.6 -8.2 -8.2 1 +1964 12 28 -8.3 -9.0 -9.0 1 +1964 12 29 -10.2 -10.9 -10.9 1 +1964 12 30 -3.2 -3.9 -3.9 1 +1964 12 31 1.6 0.9 0.9 1 +1965 1 1 2.0 1.3 1.3 1 +1965 1 2 0.0 -0.7 -0.7 1 +1965 1 3 -3.2 -3.9 -3.9 1 +1965 1 4 -3.7 -4.4 -4.4 1 +1965 1 5 -3.1 -3.8 -3.8 1 +1965 1 6 -6.6 -7.3 -7.3 1 +1965 1 7 -5.8 -6.5 -6.5 1 +1965 1 8 -1.0 -1.7 -1.7 1 +1965 1 9 -9.2 -9.9 -9.9 1 +1965 1 10 -11.6 -12.3 -12.3 1 +1965 1 11 -3.6 -4.3 -4.3 1 +1965 1 12 3.0 2.2 2.2 1 +1965 1 13 2.6 1.8 1.8 1 +1965 1 14 3.2 2.4 2.4 1 +1965 1 15 2.3 1.5 1.5 1 +1965 1 16 2.4 1.6 1.6 1 +1965 1 17 2.0 1.2 1.2 1 +1965 1 18 3.0 2.2 2.2 1 +1965 1 19 2.3 1.5 1.5 1 +1965 1 20 1.6 0.8 0.8 1 +1965 1 21 -0.8 -1.6 -1.6 1 +1965 1 22 0.9 0.1 0.1 1 +1965 1 23 1.2 0.4 0.4 1 +1965 1 24 0.5 -0.3 -0.3 1 +1965 1 25 -0.9 -1.7 -1.7 1 +1965 1 26 -1.6 -2.4 -2.4 1 +1965 1 27 -2.7 -3.5 -3.5 1 +1965 1 28 -1.3 -2.1 -2.1 1 +1965 1 29 -0.4 -1.2 -1.2 1 +1965 1 30 -4.7 -5.5 -5.5 1 +1965 1 31 -5.6 -6.4 -6.4 1 +1965 2 1 -4.8 -5.6 -5.6 1 +1965 2 2 -4.0 -4.8 -4.8 1 +1965 2 3 -1.5 -2.3 -2.3 1 +1965 2 4 -2.4 -3.2 -3.2 1 +1965 2 5 -0.7 -1.5 -1.5 1 +1965 2 6 1.8 1.0 1.0 1 +1965 2 7 1.2 0.4 0.4 1 +1965 2 8 -3.1 -3.9 -3.9 1 +1965 2 9 -4.5 -5.3 -5.3 1 +1965 2 10 -0.6 -1.4 -1.4 1 +1965 2 11 -1.6 -2.4 -2.4 1 +1965 2 12 0.1 -0.7 -0.7 1 +1965 2 13 0.8 0.0 0.0 1 +1965 2 14 -4.2 -5.0 -5.0 1 +1965 2 15 -6.6 -7.4 -7.4 1 +1965 2 16 -4.0 -4.8 -4.8 1 +1965 2 17 -4.2 -5.0 -5.0 1 +1965 2 18 -3.0 -3.8 -3.8 1 +1965 2 19 -3.2 -4.1 -4.1 1 +1965 2 20 -3.0 -3.9 -3.9 1 +1965 2 21 -0.7 -1.6 -1.6 1 +1965 2 22 -4.4 -5.3 -5.3 1 +1965 2 23 -7.1 -8.0 -8.0 1 +1965 2 24 -6.4 -7.3 -7.3 1 +1965 2 25 -8.0 -8.9 -8.9 1 +1965 2 26 -10.6 -11.5 -11.5 1 +1965 2 27 -10.7 -11.6 -11.6 1 +1965 2 28 -11.6 -12.5 -12.5 1 +1965 3 1 -10.0 -10.9 -10.9 1 +1965 3 2 -6.7 -7.6 -7.6 1 +1965 3 3 -8.3 -9.2 -9.2 1 +1965 3 4 -6.9 -7.8 -7.8 1 +1965 3 5 -5.6 -6.5 -6.5 1 +1965 3 6 -4.3 -5.2 -5.2 1 +1965 3 7 -5.4 -6.3 -6.3 1 +1965 3 8 -3.6 -4.5 -4.5 1 +1965 3 9 -2.2 -3.1 -3.1 1 +1965 3 10 -1.1 -2.0 -2.0 1 +1965 3 11 0.4 -0.5 -0.5 1 +1965 3 12 0.0 -0.9 -0.9 1 +1965 3 13 -0.2 -1.1 -1.1 1 +1965 3 14 3.1 2.2 2.2 1 +1965 3 15 3.1 2.2 2.2 1 +1965 3 16 3.0 2.1 2.1 1 +1965 3 17 4.1 3.2 3.2 1 +1965 3 18 3.3 2.4 2.4 1 +1965 3 19 1.3 0.4 0.4 1 +1965 3 20 -0.1 -1.0 -1.0 1 +1965 3 21 0.0 -0.9 -0.9 1 +1965 3 22 0.8 -0.1 -0.1 1 +1965 3 23 1.0 0.1 0.1 1 +1965 3 24 1.3 0.4 0.4 1 +1965 3 25 -1.2 -2.1 -2.1 1 +1965 3 26 -0.9 -1.8 -1.8 1 +1965 3 27 0.7 -0.2 -0.2 1 +1965 3 28 2.1 1.2 1.2 1 +1965 3 29 7.8 6.9 6.9 1 +1965 3 30 5.7 4.8 4.8 1 +1965 3 31 3.0 2.1 2.1 1 +1965 4 1 4.1 3.2 3.2 1 +1965 4 2 1.6 0.7 0.7 1 +1965 4 3 1.2 0.4 0.4 1 +1965 4 4 5.9 5.1 5.1 1 +1965 4 5 7.9 7.1 7.1 1 +1965 4 6 5.9 5.1 5.1 1 +1965 4 7 1.3 0.5 0.5 1 +1965 4 8 -2.7 -3.5 -3.5 1 +1965 4 9 -0.7 -1.5 -1.5 1 +1965 4 10 0.7 -0.1 -0.1 1 +1965 4 11 2.8 2.0 2.0 1 +1965 4 12 2.3 1.5 1.5 1 +1965 4 13 2.6 1.8 1.8 1 +1965 4 14 2.8 2.0 2.0 1 +1965 4 15 2.2 1.4 1.4 1 +1965 4 16 3.9 3.1 3.1 1 +1965 4 17 3.6 2.8 2.8 1 +1965 4 18 4.1 3.3 3.3 1 +1965 4 19 5.6 4.7 4.7 1 +1965 4 20 6.0 5.1 5.1 1 +1965 4 21 7.3 6.4 6.4 1 +1965 4 22 6.9 6.0 6.0 1 +1965 4 23 7.4 6.5 6.5 1 +1965 4 24 5.1 4.1 4.1 1 +1965 4 25 3.5 2.5 2.5 1 +1965 4 26 3.1 2.1 2.1 1 +1965 4 27 4.0 3.0 3.0 1 +1965 4 28 8.8 7.8 7.8 1 +1965 4 29 6.6 5.5 5.5 1 +1965 4 30 9.6 8.5 8.5 1 +1965 5 1 5.4 4.3 4.3 1 +1965 5 2 5.0 3.9 3.9 1 +1965 5 3 7.4 6.3 6.3 1 +1965 5 4 7.1 6.0 6.0 1 +1965 5 5 7.2 6.0 6.0 1 +1965 5 6 8.2 7.0 7.0 1 +1965 5 7 9.0 7.8 7.8 1 +1965 5 8 9.8 8.6 8.6 1 +1965 5 9 6.1 4.9 4.9 1 +1965 5 10 9.3 8.0 8.0 1 +1965 5 11 10.5 9.2 9.2 1 +1965 5 12 10.3 9.0 9.0 1 +1965 5 13 10.6 9.3 9.3 1 +1965 5 14 7.3 6.0 6.0 1 +1965 5 15 5.4 4.0 4.0 1 +1965 5 16 6.2 4.9 4.9 1 +1965 5 17 6.6 5.3 5.3 1 +1965 5 18 6.0 4.7 4.7 1 +1965 5 19 7.7 6.4 6.4 1 +1965 5 20 7.0 5.7 5.7 1 +1965 5 21 7.2 5.9 5.9 1 +1965 5 22 7.1 5.8 5.8 1 +1965 5 23 8.7 7.4 7.4 1 +1965 5 24 10.4 9.1 9.1 1 +1965 5 25 12.0 10.7 10.7 1 +1965 5 26 15.0 13.7 13.7 1 +1965 5 27 13.5 12.3 12.3 1 +1965 5 28 11.2 10.0 10.0 1 +1965 5 29 9.3 8.1 8.1 1 +1965 5 30 9.4 8.2 8.2 1 +1965 5 31 11.7 10.5 10.5 1 +1965 6 1 13.8 12.6 12.6 1 +1965 6 2 13.7 12.5 12.5 1 +1965 6 3 11.0 9.8 9.8 1 +1965 6 4 13.3 12.1 12.1 1 +1965 6 5 17.4 16.2 16.2 1 +1965 6 6 15.3 14.1 14.1 1 +1965 6 7 14.8 13.7 13.7 1 +1965 6 8 11.2 10.1 10.1 1 +1965 6 9 13.0 11.9 11.9 1 +1965 6 10 17.6 16.5 16.5 1 +1965 6 11 17.6 16.5 16.5 1 +1965 6 12 15.2 14.1 14.1 1 +1965 6 13 13.3 12.2 12.2 1 +1965 6 14 15.6 14.5 14.5 1 +1965 6 15 17.3 16.2 16.2 1 +1965 6 16 17.4 16.3 16.3 1 +1965 6 17 18.2 17.1 17.1 1 +1965 6 18 15.4 14.3 14.3 1 +1965 6 19 14.8 13.7 13.7 1 +1965 6 20 16.3 15.2 15.2 1 +1965 6 21 16.5 15.4 15.4 1 +1965 6 22 16.3 15.2 15.2 1 +1965 6 23 17.3 16.2 16.2 1 +1965 6 24 15.0 13.9 13.9 1 +1965 6 25 16.5 15.5 15.5 1 +1965 6 26 18.0 17.0 17.0 1 +1965 6 27 15.0 14.0 14.0 1 +1965 6 28 14.4 13.4 13.4 1 +1965 6 29 15.2 14.2 14.2 1 +1965 6 30 13.8 12.8 12.8 1 +1965 7 1 13.2 12.2 12.2 1 +1965 7 2 12.2 11.2 11.2 1 +1965 7 3 12.0 11.0 11.0 1 +1965 7 4 13.8 12.8 12.8 1 +1965 7 5 15.1 14.1 14.1 1 +1965 7 6 13.1 12.1 12.1 1 +1965 7 7 13.1 12.1 12.1 1 +1965 7 8 14.6 13.6 13.6 1 +1965 7 9 11.5 10.5 10.5 1 +1965 7 10 13.4 12.4 12.4 1 +1965 7 11 13.1 12.1 12.1 1 +1965 7 12 12.6 11.6 11.6 1 +1965 7 13 14.8 13.8 13.8 1 +1965 7 14 17.6 16.6 16.6 1 +1965 7 15 15.2 14.2 14.2 1 +1965 7 16 14.4 13.4 13.4 1 +1965 7 17 14.8 13.8 13.8 1 +1965 7 18 16.6 15.6 15.6 1 +1965 7 19 18.7 17.7 17.7 1 +1965 7 20 18.5 17.5 17.5 1 +1965 7 21 19.4 18.4 18.4 1 +1965 7 22 19.6 18.7 18.7 1 +1965 7 23 18.1 17.2 17.2 1 +1965 7 24 15.8 14.9 14.9 1 +1965 7 25 15.4 14.5 14.5 1 +1965 7 26 15.8 14.9 14.9 1 +1965 7 27 15.0 14.1 14.1 1 +1965 7 28 13.0 12.1 12.1 1 +1965 7 29 14.2 13.3 13.3 1 +1965 7 30 14.4 13.5 13.5 1 +1965 7 31 14.9 14.0 14.0 1 +1965 8 1 14.2 13.3 13.3 1 +1965 8 2 14.2 13.3 13.3 1 +1965 8 3 12.2 11.3 11.3 1 +1965 8 4 15.2 14.4 14.4 1 +1965 8 5 14.9 14.1 14.1 1 +1965 8 6 14.9 14.1 14.1 1 +1965 8 7 15.4 14.6 14.6 1 +1965 8 8 14.7 13.9 13.9 1 +1965 8 9 15.1 14.3 14.3 1 +1965 8 10 13.7 12.9 12.9 1 +1965 8 11 13.7 12.9 12.9 1 +1965 8 12 12.6 11.8 11.8 1 +1965 8 13 11.8 11.0 11.0 1 +1965 8 14 10.8 10.0 10.0 1 +1965 8 15 12.5 11.7 11.7 1 +1965 8 16 15.8 15.0 15.0 1 +1965 8 17 14.3 13.6 13.6 1 +1965 8 18 16.2 15.5 15.5 1 +1965 8 19 17.3 16.6 16.6 1 +1965 8 20 18.2 17.5 17.5 1 +1965 8 21 16.4 15.7 15.7 1 +1965 8 22 16.1 15.4 15.4 1 +1965 8 23 17.1 16.5 16.5 1 +1965 8 24 18.2 17.6 17.6 1 +1965 8 25 16.0 15.4 15.4 1 +1965 8 26 16.4 15.8 15.8 1 +1965 8 27 13.5 12.9 12.9 1 +1965 8 28 13.2 12.6 12.6 1 +1965 8 29 15.1 14.5 14.5 1 +1965 8 30 13.2 12.7 12.7 1 +1965 8 31 12.5 12.0 12.0 1 +1965 9 1 13.2 12.7 12.7 1 +1965 9 2 14.3 13.8 13.8 1 +1965 9 3 12.6 12.1 12.1 1 +1965 9 4 15.9 15.4 15.4 1 +1965 9 5 15.3 14.9 14.9 1 +1965 9 6 15.6 15.2 15.2 1 +1965 9 7 14.5 14.1 14.1 1 +1965 9 8 13.5 13.1 13.1 1 +1965 9 9 13.4 13.0 13.0 1 +1965 9 10 11.6 11.2 11.2 1 +1965 9 11 11.0 10.6 10.6 1 +1965 9 12 11.3 11.0 11.0 1 +1965 9 13 10.7 10.4 10.4 1 +1965 9 14 11.7 11.4 11.4 1 +1965 9 15 10.6 10.3 10.3 1 +1965 9 16 12.1 11.8 11.8 1 +1965 9 17 14.7 14.4 14.4 1 +1965 9 18 12.4 12.1 12.1 1 +1965 9 19 13.2 12.9 12.9 1 +1965 9 20 9.7 9.4 9.4 1 +1965 9 21 13.6 13.3 13.3 1 +1965 9 22 15.5 15.2 15.2 1 +1965 9 23 13.2 12.9 12.9 1 +1965 9 24 12.4 12.1 12.1 1 +1965 9 25 12.6 12.3 12.3 1 +1965 9 26 12.5 12.2 12.2 1 +1965 9 27 14.3 14.0 14.0 1 +1965 9 28 13.9 13.6 13.6 1 +1965 9 29 13.0 12.7 12.7 1 +1965 9 30 12.1 11.8 11.8 1 +1965 10 1 9.6 9.3 9.3 1 +1965 10 2 8.4 8.1 8.1 1 +1965 10 3 10.9 10.6 10.6 1 +1965 10 4 11.4 11.1 11.1 1 +1965 10 5 9.8 9.5 9.5 1 +1965 10 6 10.6 10.3 10.3 1 +1965 10 7 12.2 12.0 12.0 1 +1965 10 8 8.1 7.9 7.9 1 +1965 10 9 6.2 6.0 6.0 1 +1965 10 10 5.3 5.1 5.1 1 +1965 10 11 2.6 2.4 2.4 1 +1965 10 12 6.0 5.8 5.8 1 +1965 10 13 10.3 10.1 10.1 1 +1965 10 14 8.0 7.8 7.8 1 +1965 10 15 10.3 10.1 10.1 1 +1965 10 16 8.4 8.2 8.2 1 +1965 10 17 7.5 7.3 7.3 1 +1965 10 18 6.3 6.0 6.0 1 +1965 10 19 6.7 6.4 6.4 1 +1965 10 20 7.2 6.9 6.9 1 +1965 10 21 7.2 6.9 6.9 1 +1965 10 22 6.7 6.4 6.4 1 +1965 10 23 7.3 7.0 7.0 1 +1965 10 24 7.5 7.2 7.2 1 +1965 10 25 5.0 4.7 4.7 1 +1965 10 26 4.7 4.4 4.4 1 +1965 10 27 8.0 7.7 7.7 1 +1965 10 28 12.1 11.8 11.8 1 +1965 10 29 9.7 9.4 9.4 1 +1965 10 30 8.8 8.5 8.5 1 +1965 10 31 8.5 8.1 8.1 1 +1965 11 1 7.2 6.8 6.8 1 +1965 11 2 7.3 6.9 6.9 1 +1965 11 3 5.4 5.0 5.0 1 +1965 11 4 5.0 4.6 4.6 1 +1965 11 5 4.3 3.9 3.9 1 +1965 11 6 5.1 4.7 4.7 1 +1965 11 7 4.1 3.7 3.7 1 +1965 11 8 2.8 2.4 2.4 1 +1965 11 9 2.8 2.4 2.4 1 +1965 11 10 0.4 0.0 0.0 1 +1965 11 11 -1.6 -2.0 -2.0 1 +1965 11 12 -2.8 -3.2 -3.2 1 +1965 11 13 -4.3 -4.7 -4.7 1 +1965 11 14 -4.9 -5.4 -5.4 1 +1965 11 15 -4.5 -5.0 -5.0 1 +1965 11 16 -6.5 -7.0 -7.0 1 +1965 11 17 -3.6 -4.1 -4.1 1 +1965 11 18 -3.8 -4.3 -4.3 1 +1965 11 19 -2.1 -2.6 -2.6 1 +1965 11 20 -6.8 -7.3 -7.3 1 +1965 11 21 -8.8 -9.3 -9.3 1 +1965 11 22 -8.4 -8.9 -8.9 1 +1965 11 23 -10.5 -11.0 -11.0 1 +1965 11 24 -6.3 -6.8 -6.8 1 +1965 11 25 -1.1 -1.6 -1.6 1 +1965 11 26 1.2 0.7 0.7 1 +1965 11 27 0.8 0.3 0.3 1 +1965 11 28 -1.7 -2.2 -2.2 1 +1965 11 29 -4.1 -4.6 -4.6 1 +1965 11 30 0.7 0.2 0.2 1 +1965 12 1 1.4 0.9 0.9 1 +1965 12 2 -3.2 -3.7 -3.7 1 +1965 12 3 -1.1 -1.6 -1.6 1 +1965 12 4 2.7 2.2 2.2 1 +1965 12 5 1.4 0.9 0.9 1 +1965 12 6 0.4 -0.1 -0.1 1 +1965 12 7 -4.8 -5.3 -5.3 1 +1965 12 8 -4.8 -5.4 -5.4 1 +1965 12 9 -3.7 -4.3 -4.3 1 +1965 12 10 1.9 1.3 1.3 1 +1965 12 11 -1.6 -2.2 -2.2 1 +1965 12 12 -7.3 -7.9 -7.9 1 +1965 12 13 -11.3 -11.9 -11.9 1 +1965 12 14 -8.9 -9.5 -9.5 1 +1965 12 15 -8.7 -9.3 -9.3 1 +1965 12 16 -8.7 -9.3 -9.3 1 +1965 12 17 -8.4 -9.0 -9.0 1 +1965 12 18 -3.2 -3.8 -3.8 1 +1965 12 19 1.3 0.7 0.7 1 +1965 12 20 1.3 0.7 0.7 1 +1965 12 21 -3.4 -4.0 -4.0 1 +1965 12 22 -6.7 -7.3 -7.3 1 +1965 12 23 -1.6 -2.2 -2.2 1 +1965 12 24 0.2 -0.4 -0.4 1 +1965 12 25 0.7 0.1 0.1 1 +1965 12 26 1.4 0.8 0.8 1 +1965 12 27 0.4 -0.3 -0.3 1 +1965 12 28 -3.6 -4.3 -4.3 1 +1965 12 29 -8.9 -9.6 -9.6 1 +1965 12 30 -10.9 -11.6 -11.6 1 +1965 12 31 -8.8 -9.5 -9.5 1 +1966 1 1 -11.5 -12.2 -12.2 1 +1966 1 2 -4.8 -5.5 -5.5 1 +1966 1 3 -7.6 -8.3 -8.3 1 +1966 1 4 -13.3 -14.0 -14.0 1 +1966 1 5 -13.3 -14.0 -14.0 1 +1966 1 6 -4.7 -5.4 -5.4 1 +1966 1 7 -2.8 -3.5 -3.5 1 +1966 1 8 -3.1 -3.8 -3.8 1 +1966 1 9 -5.5 -6.2 -6.2 1 +1966 1 10 -3.4 -4.1 -4.1 1 +1966 1 11 -4.9 -5.7 -5.7 1 +1966 1 12 -4.3 -5.1 -5.1 1 +1966 1 13 -7.5 -8.3 -8.3 1 +1966 1 14 -9.3 -10.1 -10.1 1 +1966 1 15 -9.3 -10.1 -10.1 1 +1966 1 16 -11.3 -12.1 -12.1 1 +1966 1 17 -9.8 -10.6 -10.6 1 +1966 1 18 -7.0 -7.8 -7.8 1 +1966 1 19 -13.3 -14.1 -14.1 1 +1966 1 20 -10.4 -11.2 -11.2 1 +1966 1 21 -4.8 -5.6 -5.6 1 +1966 1 22 -5.3 -6.1 -6.1 1 +1966 1 23 -6.5 -7.3 -7.3 1 +1966 1 24 -7.2 -8.0 -8.0 1 +1966 1 25 -8.1 -8.9 -8.9 1 +1966 1 26 -4.6 -5.4 -5.4 1 +1966 1 27 -3.0 -3.8 -3.8 1 +1966 1 28 -5.6 -6.4 -6.4 1 +1966 1 29 -4.1 -4.9 -4.9 1 +1966 1 30 1.5 0.7 0.7 1 +1966 1 31 3.2 2.4 2.4 1 +1966 2 1 -9.9 -10.7 -10.7 1 +1966 2 2 -19.8 -20.6 -20.6 1 +1966 2 3 -17.3 -18.1 -18.1 1 +1966 2 4 -15.9 -16.7 -16.7 1 +1966 2 5 -11.5 -12.3 -12.3 1 +1966 2 6 -12.2 -13.0 -13.0 1 +1966 2 7 -15.4 -16.2 -16.2 1 +1966 2 8 -21.2 -22.0 -22.0 1 +1966 2 9 -16.0 -16.8 -16.8 1 +1966 2 10 -11.2 -12.0 -12.0 1 +1966 2 11 -13.8 -14.6 -14.6 1 +1966 2 12 -17.4 -18.2 -18.2 1 +1966 2 13 -17.7 -18.5 -18.5 1 +1966 2 14 -10.7 -11.5 -11.5 1 +1966 2 15 -10.6 -11.5 -11.5 1 +1966 2 16 -10.7 -11.6 -11.6 1 +1966 2 17 -11.6 -12.5 -12.5 1 +1966 2 18 -14.3 -15.2 -15.2 1 +1966 2 19 -12.0 -12.9 -12.9 1 +1966 2 20 -6.3 -7.2 -7.2 1 +1966 2 21 -1.3 -2.2 -2.2 1 +1966 2 22 0.4 -0.5 -0.5 1 +1966 2 23 -2.7 -3.6 -3.6 1 +1966 2 24 0.9 0.0 0.0 1 +1966 2 25 -3.1 -4.0 -4.0 1 +1966 2 26 -1.6 -2.5 -2.5 1 +1966 2 27 -0.7 -1.6 -1.6 1 +1966 2 28 3.6 2.7 2.7 1 +1966 3 1 -2.5 -3.4 -3.4 1 +1966 3 2 -2.8 -3.7 -3.7 1 +1966 3 3 4.2 3.3 3.3 1 +1966 3 4 2.1 1.2 1.2 1 +1966 3 5 1.1 0.2 0.2 1 +1966 3 6 1.8 0.9 0.9 1 +1966 3 7 2.5 1.6 1.6 1 +1966 3 8 4.8 3.9 3.9 1 +1966 3 9 2.6 1.7 1.7 1 +1966 3 10 0.3 -0.6 -0.6 1 +1966 3 11 1.1 0.2 0.2 1 +1966 3 12 -5.7 -6.6 -6.6 1 +1966 3 13 -11.0 -12.0 -12.0 1 +1966 3 14 -11.1 -12.1 -12.1 1 +1966 3 15 -7.7 -8.7 -8.7 1 +1966 3 16 0.5 -0.5 -0.5 1 +1966 3 17 5.7 4.8 4.8 1 +1966 3 18 -1.6 -2.5 -2.5 1 +1966 3 19 0.1 -0.8 -0.8 1 +1966 3 20 3.7 2.8 2.8 1 +1966 3 21 3.1 2.2 2.2 1 +1966 3 22 -0.3 -1.2 -1.2 1 +1966 3 23 0.6 -0.3 -0.3 1 +1966 3 24 0.8 -0.1 -0.1 1 +1966 3 25 -2.8 -3.7 -3.7 1 +1966 3 26 -3.7 -4.6 -4.6 1 +1966 3 27 -0.9 -1.8 -1.8 1 +1966 3 28 0.4 -0.5 -0.5 1 +1966 3 29 1.0 0.1 0.1 1 +1966 3 30 0.5 -0.4 -0.4 1 +1966 3 31 1.7 0.8 0.8 1 +1966 4 1 2.9 2.0 2.0 1 +1966 4 2 3.6 2.7 2.7 1 +1966 4 3 3.5 2.6 2.6 1 +1966 4 4 4.6 3.7 3.7 1 +1966 4 5 2.5 1.6 1.6 1 +1966 4 6 1.1 0.3 0.3 1 +1966 4 7 3.6 2.8 2.8 1 +1966 4 8 1.2 0.4 0.4 1 +1966 4 9 1.0 0.2 0.2 1 +1966 4 10 -3.3 -4.1 -4.1 1 +1966 4 11 -5.5 -6.3 -6.3 1 +1966 4 12 -5.0 -5.8 -5.8 1 +1966 4 13 -5.1 -5.9 -5.9 1 +1966 4 14 -5.2 -6.0 -6.0 1 +1966 4 15 -4.4 -5.2 -5.2 1 +1966 4 16 -4.8 -5.6 -5.6 1 +1966 4 17 -5.4 -6.2 -6.2 1 +1966 4 18 -2.8 -3.7 -3.7 1 +1966 4 19 -1.2 -2.1 -2.1 1 +1966 4 20 0.0 -0.9 -0.9 1 +1966 4 21 2.1 1.2 1.2 1 +1966 4 22 3.2 2.3 2.3 1 +1966 4 23 3.0 2.0 2.0 1 +1966 4 24 6.0 5.0 5.0 1 +1966 4 25 3.7 2.7 2.7 1 +1966 4 26 5.4 4.4 4.4 1 +1966 4 27 10.0 9.0 9.0 1 +1966 4 28 9.3 8.3 8.3 1 +1966 4 29 11.4 10.3 10.3 1 +1966 4 30 12.4 11.3 11.3 1 +1966 5 1 13.2 12.1 12.1 1 +1966 5 2 12.3 11.2 11.2 1 +1966 5 3 12.7 11.6 11.6 1 +1966 5 4 11.4 10.2 10.2 1 +1966 5 5 6.0 4.8 4.8 1 +1966 5 6 2.5 1.3 1.3 1 +1966 5 7 3.6 2.4 2.4 1 +1966 5 8 7.8 6.6 6.6 1 +1966 5 9 7.9 6.6 6.6 1 +1966 5 10 8.4 7.1 7.1 1 +1966 5 11 7.2 5.9 5.9 1 +1966 5 12 7.5 6.2 6.2 1 +1966 5 13 8.5 7.2 7.2 1 +1966 5 14 12.7 11.3 11.3 1 +1966 5 15 15.1 13.7 13.7 1 +1966 5 16 14.8 13.4 13.4 1 +1966 5 17 15.5 14.1 14.1 1 +1966 5 18 16.4 15.1 15.1 1 +1966 5 19 16.9 15.6 15.6 1 +1966 5 20 12.9 11.6 11.6 1 +1966 5 21 10.7 9.4 9.4 1 +1966 5 22 12.4 11.1 11.1 1 +1966 5 23 11.3 10.0 10.0 1 +1966 5 24 10.3 9.0 9.0 1 +1966 5 25 11.0 9.7 9.7 1 +1966 5 26 10.6 9.3 9.3 1 +1966 5 27 10.7 9.4 9.4 1 +1966 5 28 7.3 6.0 6.0 1 +1966 5 29 8.4 7.2 7.2 1 +1966 5 30 12.0 10.8 10.8 1 +1966 5 31 12.0 10.8 10.8 1 +1966 6 1 14.3 13.1 13.1 1 +1966 6 2 12.4 11.2 11.2 1 +1966 6 3 12.9 11.7 11.7 1 +1966 6 4 14.1 12.9 12.9 1 +1966 6 5 15.0 13.8 13.8 1 +1966 6 6 15.1 13.9 13.9 1 +1966 6 7 16.1 14.9 14.9 1 +1966 6 8 14.5 13.3 13.3 1 +1966 6 9 13.8 12.7 12.7 1 +1966 6 10 17.1 16.0 16.0 1 +1966 6 11 18.6 17.5 17.5 1 +1966 6 12 20.4 19.3 19.3 1 +1966 6 13 18.6 17.5 17.5 1 +1966 6 14 18.5 17.4 17.4 1 +1966 6 15 21.1 20.0 20.0 1 +1966 6 16 23.7 22.6 22.6 1 +1966 6 17 22.8 21.7 21.7 1 +1966 6 18 22.5 21.4 21.4 1 +1966 6 19 22.2 21.1 21.1 1 +1966 6 20 21.3 20.2 20.2 1 +1966 6 21 20.1 19.0 19.0 1 +1966 6 22 20.3 19.2 19.2 1 +1966 6 23 20.0 18.9 18.9 1 +1966 6 24 18.2 17.1 17.1 1 +1966 6 25 19.7 18.6 18.6 1 +1966 6 26 18.5 17.4 17.4 1 +1966 6 27 16.7 15.6 15.6 1 +1966 6 28 17.6 16.5 16.5 1 +1966 6 29 16.4 15.3 15.3 1 +1966 6 30 17.7 16.6 16.6 1 +1966 7 1 19.5 18.5 18.5 1 +1966 7 2 19.8 18.8 18.8 1 +1966 7 3 16.8 15.8 15.8 1 +1966 7 4 18.0 17.0 17.0 1 +1966 7 5 18.3 17.3 17.3 1 +1966 7 6 17.4 16.4 16.4 1 +1966 7 7 15.6 14.6 14.6 1 +1966 7 8 17.2 16.2 16.2 1 +1966 7 9 17.6 16.6 16.6 1 +1966 7 10 20.0 19.0 19.0 1 +1966 7 11 18.6 17.6 17.6 1 +1966 7 12 18.1 17.1 17.1 1 +1966 7 13 15.9 14.9 14.9 1 +1966 7 14 16.2 15.2 15.2 1 +1966 7 15 17.6 16.6 16.6 1 +1966 7 16 15.0 14.0 14.0 1 +1966 7 17 15.5 14.5 14.5 1 +1966 7 18 18.1 17.1 17.1 1 +1966 7 19 21.6 20.6 20.6 1 +1966 7 20 21.7 20.7 20.7 1 +1966 7 21 22.6 21.6 21.6 1 +1966 7 22 24.0 23.0 23.0 1 +1966 7 23 23.3 22.3 22.3 1 +1966 7 24 21.7 20.8 20.8 1 +1966 7 25 21.8 20.9 20.9 1 +1966 7 26 18.0 17.1 17.1 1 +1966 7 27 17.3 16.4 16.4 1 +1966 7 28 17.4 16.5 16.5 1 +1966 7 29 17.8 16.9 16.9 1 +1966 7 30 15.0 14.1 14.1 1 +1966 7 31 15.7 14.8 14.8 1 +1966 8 1 15.8 14.9 14.9 1 +1966 8 2 17.8 16.9 16.9 1 +1966 8 3 13.9 13.0 13.0 1 +1966 8 4 16.3 15.4 15.4 1 +1966 8 5 16.6 15.7 15.7 1 +1966 8 6 15.7 14.9 14.9 1 +1966 8 7 15.9 15.1 15.1 1 +1966 8 8 17.4 16.6 16.6 1 +1966 8 9 16.6 15.8 15.8 1 +1966 8 10 16.7 15.9 15.9 1 +1966 8 11 15.1 14.3 14.3 1 +1966 8 12 15.9 15.1 15.1 1 +1966 8 13 15.0 14.2 14.2 1 +1966 8 14 15.0 14.2 14.2 1 +1966 8 15 13.8 13.0 13.0 1 +1966 8 16 15.3 14.5 14.5 1 +1966 8 17 16.9 16.2 16.2 1 +1966 8 18 18.2 17.5 17.5 1 +1966 8 19 17.4 16.7 16.7 1 +1966 8 20 18.5 17.8 17.8 1 +1966 8 21 16.3 15.6 15.6 1 +1966 8 22 13.2 12.5 12.5 1 +1966 8 23 13.4 12.7 12.7 1 +1966 8 24 13.0 12.4 12.4 1 +1966 8 25 13.8 13.2 13.2 1 +1966 8 26 14.0 13.4 13.4 1 +1966 8 27 15.9 15.3 15.3 1 +1966 8 28 14.6 14.0 14.0 1 +1966 8 29 14.7 14.1 14.1 1 +1966 8 30 15.0 14.5 14.5 1 +1966 8 31 14.2 13.7 13.7 1 +1966 9 1 14.2 13.7 13.7 1 +1966 9 2 15.1 14.6 14.6 1 +1966 9 3 14.2 13.7 13.7 1 +1966 9 4 15.1 14.6 14.6 1 +1966 9 5 14.8 14.3 14.3 1 +1966 9 6 13.6 13.2 13.2 1 +1966 9 7 16.4 16.0 16.0 1 +1966 9 8 13.9 13.5 13.5 1 +1966 9 9 8.5 8.1 8.1 1 +1966 9 10 9.1 8.7 8.7 1 +1966 9 11 12.1 11.7 11.7 1 +1966 9 12 14.5 14.2 14.2 1 +1966 9 13 13.4 13.1 13.1 1 +1966 9 14 12.3 12.0 12.0 1 +1966 9 15 12.4 12.1 12.1 1 +1966 9 16 10.8 10.5 10.5 1 +1966 9 17 11.6 11.3 11.3 1 +1966 9 18 8.3 8.0 8.0 1 +1966 9 19 9.7 9.4 9.4 1 +1966 9 20 14.9 14.6 14.6 1 +1966 9 21 10.9 10.6 10.6 1 +1966 9 22 9.8 9.5 9.5 1 +1966 9 23 9.0 8.7 8.7 1 +1966 9 24 11.4 11.1 11.1 1 +1966 9 25 7.4 7.1 7.1 1 +1966 9 26 8.8 8.5 8.5 1 +1966 9 27 5.1 4.8 4.8 1 +1966 9 28 5.2 4.9 4.9 1 +1966 9 29 5.7 5.4 5.4 1 +1966 9 30 10.7 10.4 10.4 1 +1966 10 1 10.1 9.8 9.8 1 +1966 10 2 11.7 11.4 11.4 1 +1966 10 3 11.8 11.5 11.5 1 +1966 10 4 12.9 12.6 12.6 1 +1966 10 5 7.7 7.4 7.4 1 +1966 10 6 6.1 5.8 5.8 1 +1966 10 7 8.8 8.5 8.5 1 +1966 10 8 10.1 9.8 9.8 1 +1966 10 9 7.2 6.9 6.9 1 +1966 10 10 4.5 4.3 4.3 1 +1966 10 11 5.1 4.9 4.9 1 +1966 10 12 6.4 6.2 6.2 1 +1966 10 13 4.3 4.1 4.1 1 +1966 10 14 5.3 5.1 5.1 1 +1966 10 15 7.9 7.7 7.7 1 +1966 10 16 9.5 9.3 9.3 1 +1966 10 17 9.0 8.7 8.7 1 +1966 10 18 11.4 11.1 11.1 1 +1966 10 19 9.4 9.1 9.1 1 +1966 10 20 8.5 8.2 8.2 1 +1966 10 21 10.4 10.1 10.1 1 +1966 10 22 9.1 8.8 8.8 1 +1966 10 23 8.6 8.3 8.3 1 +1966 10 24 7.3 7.0 7.0 1 +1966 10 25 3.6 3.3 3.3 1 +1966 10 26 2.4 2.1 2.1 1 +1966 10 27 1.2 0.9 0.9 1 +1966 10 28 1.2 0.9 0.9 1 +1966 10 29 -0.3 -0.6 -0.6 1 +1966 10 30 0.8 0.4 0.4 1 +1966 10 31 3.1 2.7 2.7 1 +1966 11 1 3.6 3.2 3.2 1 +1966 11 2 1.1 0.7 0.7 1 +1966 11 3 0.3 -0.1 -0.1 1 +1966 11 4 5.1 4.7 4.7 1 +1966 11 5 7.4 7.0 7.0 1 +1966 11 6 6.4 6.0 6.0 1 +1966 11 7 6.3 5.9 5.9 1 +1966 11 8 6.6 6.2 6.2 1 +1966 11 9 7.8 7.4 7.4 1 +1966 11 10 5.6 5.2 5.2 1 +1966 11 11 1.6 1.2 1.2 1 +1966 11 12 0.1 -0.3 -0.3 1 +1966 11 13 1.8 1.3 1.3 1 +1966 11 14 5.0 4.5 4.5 1 +1966 11 15 3.5 3.0 3.0 1 +1966 11 16 0.9 0.4 0.4 1 +1966 11 17 1.3 0.8 0.8 1 +1966 11 18 1.2 0.7 0.7 1 +1966 11 19 0.1 -0.4 -0.4 1 +1966 11 20 3.6 3.1 3.1 1 +1966 11 21 3.9 3.4 3.4 1 +1966 11 22 0.6 0.1 0.1 1 +1966 11 23 1.5 1.0 1.0 1 +1966 11 24 2.5 2.0 2.0 1 +1966 11 25 -0.6 -1.1 -1.1 1 +1966 11 26 1.4 0.9 0.9 1 +1966 11 27 2.5 2.0 2.0 1 +1966 11 28 5.6 5.1 5.1 1 +1966 11 29 3.7 3.2 3.2 1 +1966 11 30 1.0 0.5 0.5 1 +1966 12 1 2.0 1.5 1.5 1 +1966 12 2 4.3 3.8 3.8 1 +1966 12 3 5.9 5.4 5.4 1 +1966 12 4 4.9 4.4 4.4 1 +1966 12 5 4.2 3.6 3.6 1 +1966 12 6 4.0 3.4 3.4 1 +1966 12 7 3.0 2.4 2.4 1 +1966 12 8 1.6 1.0 1.0 1 +1966 12 9 1.0 0.4 0.4 1 +1966 12 10 1.9 1.3 1.3 1 +1966 12 11 1.2 0.6 0.6 1 +1966 12 12 0.5 -0.1 -0.1 1 +1966 12 13 -1.2 -1.8 -1.8 1 +1966 12 14 -3.1 -3.7 -3.7 1 +1966 12 15 -4.8 -5.4 -5.4 1 +1966 12 16 -6.5 -7.1 -7.1 1 +1966 12 17 -2.1 -2.7 -2.7 1 +1966 12 18 4.0 3.4 3.4 1 +1966 12 19 1.5 0.9 0.9 1 +1966 12 20 -1.5 -2.1 -2.1 1 +1966 12 21 -3.6 -4.2 -4.2 1 +1966 12 22 -5.9 -6.5 -6.5 1 +1966 12 23 -1.2 -1.8 -1.8 1 +1966 12 24 1.7 1.1 1.1 1 +1966 12 25 -1.5 -2.2 -2.2 1 +1966 12 26 -2.7 -3.4 -3.4 1 +1966 12 27 -1.2 -1.9 -1.9 1 +1966 12 28 -4.1 -4.8 -4.8 1 +1966 12 29 1.0 0.3 0.3 1 +1966 12 30 1.6 0.9 0.9 1 +1966 12 31 1.2 0.5 0.5 1 +1967 1 1 2.4 1.7 1.7 1 +1967 1 2 2.1 1.4 1.4 1 +1967 1 3 0.6 -0.1 -0.1 1 +1967 1 4 -1.3 -2.0 -2.0 1 +1967 1 5 -2.3 -3.0 -3.0 1 +1967 1 6 -5.7 -6.4 -6.4 1 +1967 1 7 -7.0 -7.7 -7.7 1 +1967 1 8 -9.1 -9.8 -9.8 1 +1967 1 9 -7.0 -7.7 -7.7 1 +1967 1 10 -3.5 -4.2 -4.2 1 +1967 1 11 -2.8 -3.6 -3.6 1 +1967 1 12 -8.3 -9.1 -9.1 1 +1967 1 13 -3.1 -3.9 -3.9 1 +1967 1 14 -2.2 -3.0 -3.0 1 +1967 1 15 -5.2 -6.0 -6.0 1 +1967 1 16 -1.0 -1.8 -1.8 1 +1967 1 17 1.4 0.6 0.6 1 +1967 1 18 1.1 0.3 0.3 1 +1967 1 19 1.7 0.9 0.9 1 +1967 1 20 -2.2 -3.0 -3.0 1 +1967 1 21 -6.1 -6.9 -6.9 1 +1967 1 22 -9.2 -10.0 -10.0 1 +1967 1 23 -7.2 -8.0 -8.0 1 +1967 1 24 -5.7 -6.5 -6.5 1 +1967 1 25 -6.3 -7.1 -7.1 1 +1967 1 26 -6.9 -7.7 -7.7 1 +1967 1 27 -8.7 -9.5 -9.5 1 +1967 1 28 -7.8 -8.6 -8.6 1 +1967 1 29 -11.9 -12.7 -12.7 1 +1967 1 30 -14.0 -14.8 -14.8 1 +1967 1 31 -6.3 -7.1 -7.1 1 +1967 2 1 -4.0 -4.8 -4.8 1 +1967 2 2 -2.3 -3.1 -3.1 1 +1967 2 3 -1.9 -2.7 -2.7 1 +1967 2 4 -1.4 -2.2 -2.2 1 +1967 2 5 -2.5 -3.3 -3.3 1 +1967 2 6 4.4 3.6 3.6 1 +1967 2 7 0.4 -0.4 -0.4 1 +1967 2 8 -2.1 -2.9 -2.9 1 +1967 2 9 -4.4 -5.2 -5.2 1 +1967 2 10 -1.7 -2.5 -2.5 1 +1967 2 11 -0.8 -1.6 -1.6 1 +1967 2 12 -0.7 -1.5 -1.5 1 +1967 2 13 -1.0 -1.8 -1.8 1 +1967 2 14 -2.7 -3.5 -3.5 1 +1967 2 15 -2.3 -3.1 -3.1 1 +1967 2 16 -1.6 -2.5 -2.5 1 +1967 2 17 -2.2 -3.1 -3.1 1 +1967 2 18 -0.4 -1.3 -1.3 1 +1967 2 19 -0.2 -1.1 -1.1 1 +1967 2 20 1.6 0.7 0.7 1 +1967 2 21 1.4 0.5 0.5 1 +1967 2 22 1.7 0.8 0.8 1 +1967 2 23 1.4 0.5 0.5 1 +1967 2 24 1.0 0.1 0.1 1 +1967 2 25 -1.2 -2.1 -2.1 1 +1967 2 26 -0.9 -1.8 -1.8 1 +1967 2 27 0.8 -0.1 -0.1 1 +1967 2 28 1.8 0.9 0.9 1 +1967 3 1 2.7 1.8 1.8 1 +1967 3 2 3.5 2.6 2.6 1 +1967 3 3 2.7 1.8 1.8 1 +1967 3 4 0.5 -0.4 -0.4 1 +1967 3 5 3.9 3.0 3.0 1 +1967 3 6 4.6 3.7 3.7 1 +1967 3 7 6.4 5.5 5.5 1 +1967 3 8 3.1 2.2 2.2 1 +1967 3 9 5.9 5.0 5.0 1 +1967 3 10 4.5 3.6 3.6 1 +1967 3 11 5.9 5.0 5.0 1 +1967 3 12 3.8 2.9 2.9 1 +1967 3 13 4.1 3.1 3.1 1 +1967 3 14 1.6 0.6 0.6 1 +1967 3 15 5.9 4.9 4.9 1 +1967 3 16 3.5 2.5 2.5 1 +1967 3 17 1.6 0.7 0.7 1 +1967 3 18 2.6 1.7 1.7 1 +1967 3 19 1.8 0.9 0.9 1 +1967 3 20 2.2 1.3 1.3 1 +1967 3 21 7.3 6.4 6.4 1 +1967 3 22 5.6 4.7 4.7 1 +1967 3 23 2.4 1.5 1.5 1 +1967 3 24 0.0 -0.9 -0.9 1 +1967 3 25 0.2 -0.7 -0.7 1 +1967 3 26 5.0 4.1 4.1 1 +1967 3 27 5.1 4.2 4.2 1 +1967 3 28 4.1 3.2 3.2 1 +1967 3 29 2.7 1.8 1.8 1 +1967 3 30 3.2 2.3 2.3 1 +1967 3 31 2.7 1.8 1.8 1 +1967 4 1 2.0 1.1 1.1 1 +1967 4 2 2.4 1.5 1.5 1 +1967 4 3 1.3 0.4 0.4 1 +1967 4 4 2.2 1.3 1.3 1 +1967 4 5 2.3 1.4 1.4 1 +1967 4 6 2.8 2.0 2.0 1 +1967 4 7 3.6 2.8 2.8 1 +1967 4 8 4.9 4.1 4.1 1 +1967 4 9 3.3 2.5 2.5 1 +1967 4 10 3.5 2.7 2.7 1 +1967 4 11 4.3 3.5 3.5 1 +1967 4 12 5.8 5.0 5.0 1 +1967 4 13 7.1 6.3 6.3 1 +1967 4 14 9.2 8.4 8.4 1 +1967 4 15 9.4 8.6 8.6 1 +1967 4 16 8.3 7.5 7.5 1 +1967 4 17 8.9 8.1 8.1 1 +1967 4 18 2.6 1.7 1.7 1 +1967 4 19 2.6 1.7 1.7 1 +1967 4 20 4.3 3.4 3.4 1 +1967 4 21 3.0 2.1 2.1 1 +1967 4 22 1.9 1.0 1.0 1 +1967 4 23 3.3 2.3 2.3 1 +1967 4 24 4.3 3.3 3.3 1 +1967 4 25 5.6 4.6 4.6 1 +1967 4 26 7.7 6.7 6.7 1 +1967 4 27 10.4 9.4 9.4 1 +1967 4 28 11.7 10.7 10.7 1 +1967 4 29 7.8 6.7 6.7 1 +1967 4 30 5.1 4.0 4.0 1 +1967 5 1 5.1 4.0 4.0 1 +1967 5 2 1.0 -0.1 -0.1 1 +1967 5 3 1.4 0.3 0.3 1 +1967 5 4 2.5 1.3 1.3 1 +1967 5 5 4.6 3.4 3.4 1 +1967 5 6 3.1 1.9 1.9 1 +1967 5 7 3.8 2.6 2.6 1 +1967 5 8 7.5 6.3 6.3 1 +1967 5 9 7.5 6.2 6.2 1 +1967 5 10 12.0 10.7 10.7 1 +1967 5 11 12.4 11.1 11.1 1 +1967 5 12 12.5 11.2 11.2 1 +1967 5 13 12.9 11.6 11.6 1 +1967 5 14 12.6 11.2 11.2 1 +1967 5 15 9.8 8.4 8.4 1 +1967 5 16 5.3 3.9 3.9 1 +1967 5 17 9.9 8.5 8.5 1 +1967 5 18 8.3 7.0 7.0 1 +1967 5 19 7.6 6.3 6.3 1 +1967 5 20 8.8 7.5 7.5 1 +1967 5 21 12.0 10.7 10.7 1 +1967 5 22 13.4 12.1 12.1 1 +1967 5 23 12.5 11.2 11.2 1 +1967 5 24 9.4 8.1 8.1 1 +1967 5 25 10.9 9.6 9.6 1 +1967 5 26 10.6 9.3 9.3 1 +1967 5 27 9.1 7.8 7.8 1 +1967 5 28 12.6 11.3 11.3 1 +1967 5 29 15.8 14.6 14.6 1 +1967 5 30 16.3 15.1 15.1 1 +1967 5 31 16.9 15.7 15.7 1 +1967 6 1 15.1 13.9 13.9 1 +1967 6 2 17.3 16.1 16.1 1 +1967 6 3 19.1 17.9 17.9 1 +1967 6 4 14.7 13.5 13.5 1 +1967 6 5 12.7 11.5 11.5 1 +1967 6 6 13.9 12.7 12.7 1 +1967 6 7 12.4 11.2 11.2 1 +1967 6 8 12.5 11.3 11.3 1 +1967 6 9 12.0 10.9 10.9 1 +1967 6 10 11.1 10.0 10.0 1 +1967 6 11 11.0 9.9 9.9 1 +1967 6 12 13.1 12.0 12.0 1 +1967 6 13 11.5 10.4 10.4 1 +1967 6 14 12.3 11.2 11.2 1 +1967 6 15 17.4 16.3 16.3 1 +1967 6 16 18.7 17.6 17.6 1 +1967 6 17 15.5 14.4 14.4 1 +1967 6 18 16.7 15.6 15.6 1 +1967 6 19 19.1 18.0 18.0 1 +1967 6 20 18.9 17.8 17.8 1 +1967 6 21 16.0 14.9 14.9 1 +1967 6 22 15.5 14.4 14.4 1 +1967 6 23 11.2 10.1 10.1 1 +1967 6 24 14.7 13.6 13.6 1 +1967 6 25 15.6 14.5 14.5 1 +1967 6 26 18.3 17.2 17.2 1 +1967 6 27 17.1 16.0 16.0 1 +1967 6 28 15.3 14.2 14.2 1 +1967 6 29 14.9 13.8 13.8 1 +1967 6 30 16.6 15.6 15.6 1 +1967 7 1 17.0 16.0 16.0 1 +1967 7 2 17.1 16.1 16.1 1 +1967 7 3 17.8 16.8 16.8 1 +1967 7 4 16.7 15.7 15.7 1 +1967 7 5 16.3 15.3 15.3 1 +1967 7 6 17.7 16.7 16.7 1 +1967 7 7 20.3 19.3 19.3 1 +1967 7 8 18.2 17.2 17.2 1 +1967 7 9 18.0 17.0 17.0 1 +1967 7 10 21.8 20.8 20.8 1 +1967 7 11 18.8 17.8 17.8 1 +1967 7 12 17.8 16.8 16.8 1 +1967 7 13 16.9 15.9 15.9 1 +1967 7 14 14.3 13.3 13.3 1 +1967 7 15 16.6 15.6 15.6 1 +1967 7 16 19.7 18.7 18.7 1 +1967 7 17 19.7 18.7 18.7 1 +1967 7 18 20.1 19.1 19.1 1 +1967 7 19 20.5 19.5 19.5 1 +1967 7 20 18.4 17.4 17.4 1 +1967 7 21 19.1 18.1 18.1 1 +1967 7 22 17.8 16.8 16.8 1 +1967 7 23 18.6 17.6 17.6 1 +1967 7 24 17.2 16.3 16.3 1 +1967 7 25 17.7 16.8 16.8 1 +1967 7 26 16.6 15.7 15.7 1 +1967 7 27 18.6 17.7 17.7 1 +1967 7 28 21.1 20.2 20.2 1 +1967 7 29 18.9 18.0 18.0 1 +1967 7 30 18.9 18.0 18.0 1 +1967 7 31 19.6 18.7 18.7 1 +1967 8 1 21.9 21.0 21.0 1 +1967 8 2 22.3 21.4 21.4 1 +1967 8 3 23.2 22.3 22.3 1 +1967 8 4 20.0 19.1 19.1 1 +1967 8 5 16.9 16.0 16.0 1 +1967 8 6 15.9 15.1 15.1 1 +1967 8 7 15.0 14.2 14.2 1 +1967 8 8 10.7 9.9 9.9 1 +1967 8 9 13.7 12.9 12.9 1 +1967 8 10 17.2 16.4 16.4 1 +1967 8 11 18.9 18.1 18.1 1 +1967 8 12 17.7 16.9 16.9 1 +1967 8 13 18.0 17.2 17.2 1 +1967 8 14 17.1 16.3 16.3 1 +1967 8 15 18.6 17.8 17.8 1 +1967 8 16 17.4 16.6 16.6 1 +1967 8 17 16.6 15.9 15.9 1 +1967 8 18 15.1 14.4 14.4 1 +1967 8 19 14.7 14.0 14.0 1 +1967 8 20 13.2 12.5 12.5 1 +1967 8 21 14.2 13.5 13.5 1 +1967 8 22 14.4 13.7 13.7 1 +1967 8 23 16.0 15.3 15.3 1 +1967 8 24 14.6 14.0 14.0 1 +1967 8 25 14.1 13.5 13.5 1 +1967 8 26 14.5 13.9 13.9 1 +1967 8 27 15.4 14.8 14.8 1 +1967 8 28 16.4 15.8 15.8 1 +1967 8 29 16.4 15.8 15.8 1 +1967 8 30 14.5 14.0 14.0 1 +1967 8 31 14.6 14.1 14.1 1 +1967 9 1 14.0 13.5 13.5 1 +1967 9 2 14.7 14.2 14.2 1 +1967 9 3 14.3 13.8 13.8 1 +1967 9 4 15.2 14.7 14.7 1 +1967 9 5 16.4 15.9 15.9 1 +1967 9 6 16.3 15.9 15.9 1 +1967 9 7 14.3 13.9 13.9 1 +1967 9 8 14.2 13.8 13.8 1 +1967 9 9 13.2 12.8 12.8 1 +1967 9 10 13.0 12.6 12.6 1 +1967 9 11 13.4 13.0 13.0 1 +1967 9 12 13.2 12.9 12.9 1 +1967 9 13 13.8 13.5 13.5 1 +1967 9 14 14.6 14.3 14.3 1 +1967 9 15 14.0 13.7 13.7 1 +1967 9 16 12.9 12.6 12.6 1 +1967 9 17 13.3 13.0 13.0 1 +1967 9 18 13.7 13.4 13.4 1 +1967 9 19 13.3 13.0 13.0 1 +1967 9 20 14.4 14.1 14.1 1 +1967 9 21 13.1 12.8 12.8 1 +1967 9 22 12.5 12.2 12.2 1 +1967 9 23 11.8 11.5 11.5 1 +1967 9 24 10.8 10.5 10.5 1 +1967 9 25 10.5 10.2 10.2 1 +1967 9 26 11.8 11.5 11.5 1 +1967 9 27 11.2 10.9 10.9 1 +1967 9 28 8.7 8.4 8.4 1 +1967 9 29 9.8 9.5 9.5 1 +1967 9 30 9.2 8.9 8.9 1 +1967 10 1 13.1 12.8 12.8 1 +1967 10 2 13.2 12.9 12.9 1 +1967 10 3 10.9 10.6 10.6 1 +1967 10 4 12.4 12.1 12.1 1 +1967 10 5 11.9 11.6 11.6 1 +1967 10 6 10.4 10.1 10.1 1 +1967 10 7 10.4 10.1 10.1 1 +1967 10 8 8.9 8.6 8.6 1 +1967 10 9 7.8 7.5 7.5 1 +1967 10 10 9.2 9.0 9.0 1 +1967 10 11 8.6 8.4 8.4 1 +1967 10 12 12.8 12.6 12.6 1 +1967 10 13 11.4 11.2 11.2 1 +1967 10 14 11.1 10.9 10.9 1 +1967 10 15 11.6 11.4 11.4 1 +1967 10 16 8.4 8.2 8.2 1 +1967 10 17 3.4 3.1 3.1 1 +1967 10 18 1.4 1.1 1.1 1 +1967 10 19 5.0 4.7 4.7 1 +1967 10 20 6.1 5.8 5.8 1 +1967 10 21 10.6 10.3 10.3 1 +1967 10 22 9.0 8.7 8.7 1 +1967 10 23 4.7 4.4 4.4 1 +1967 10 24 7.9 7.6 7.6 1 +1967 10 25 7.4 7.1 7.1 1 +1967 10 26 9.1 8.8 8.8 1 +1967 10 27 10.0 9.7 9.7 1 +1967 10 28 9.2 8.9 8.9 1 +1967 10 29 9.7 9.4 9.4 1 +1967 10 30 9.1 8.7 8.7 1 +1967 10 31 6.6 6.2 6.2 1 +1967 11 1 5.7 5.3 5.3 1 +1967 11 2 8.1 7.7 7.7 1 +1967 11 3 8.5 8.1 8.1 1 +1967 11 4 7.8 7.4 7.4 1 +1967 11 5 8.2 7.8 7.8 1 +1967 11 6 9.2 8.8 8.8 1 +1967 11 7 7.0 6.6 6.6 1 +1967 11 8 5.8 5.4 5.4 1 +1967 11 9 3.6 3.2 3.2 1 +1967 11 10 2.6 2.2 2.2 1 +1967 11 11 4.2 3.8 3.8 1 +1967 11 12 5.2 4.8 4.8 1 +1967 11 13 2.3 1.8 1.8 1 +1967 11 14 3.8 3.3 3.3 1 +1967 11 15 6.2 5.7 5.7 1 +1967 11 16 4.6 4.1 4.1 1 +1967 11 17 1.5 1.0 1.0 1 +1967 11 18 5.3 4.8 4.8 1 +1967 11 19 1.7 1.2 1.2 1 +1967 11 20 4.1 3.6 3.6 1 +1967 11 21 7.1 6.6 6.6 1 +1967 11 22 6.1 5.6 5.6 1 +1967 11 23 4.5 4.0 4.0 1 +1967 11 24 3.3 2.8 2.8 1 +1967 11 25 4.0 3.5 3.5 1 +1967 11 26 3.7 3.2 3.2 1 +1967 11 27 2.2 1.7 1.7 1 +1967 11 28 1.4 0.9 0.9 1 +1967 11 29 2.3 1.8 1.8 1 +1967 11 30 0.8 0.3 0.3 1 +1967 12 1 5.8 5.3 5.3 1 +1967 12 2 5.8 5.3 5.3 1 +1967 12 3 4.9 4.4 4.4 1 +1967 12 4 3.1 2.6 2.6 1 +1967 12 5 2.7 2.1 2.1 1 +1967 12 6 -3.4 -4.0 -4.0 1 +1967 12 7 -3.0 -3.6 -3.6 1 +1967 12 8 -5.6 -6.2 -6.2 1 +1967 12 9 -9.4 -10.0 -10.0 1 +1967 12 10 -7.6 -8.2 -8.2 1 +1967 12 11 -9.7 -10.3 -10.3 1 +1967 12 12 -10.8 -11.4 -11.4 1 +1967 12 13 -2.4 -3.0 -3.0 1 +1967 12 14 1.2 0.6 0.6 1 +1967 12 15 5.7 5.1 5.1 1 +1967 12 16 -0.6 -1.2 -1.2 1 +1967 12 17 -7.9 -8.5 -8.5 1 +1967 12 18 -9.8 -10.4 -10.4 1 +1967 12 19 -9.9 -10.5 -10.5 1 +1967 12 20 -10.9 -11.5 -11.5 1 +1967 12 21 -9.3 -9.9 -9.9 1 +1967 12 22 -4.3 -4.9 -4.9 1 +1967 12 23 -4.7 -5.3 -5.3 1 +1967 12 24 -5.1 -5.7 -5.7 1 +1967 12 25 -3.0 -3.7 -3.7 1 +1967 12 26 -7.6 -8.3 -8.3 1 +1967 12 27 -10.4 -11.1 -11.1 1 +1967 12 28 -0.5 -1.2 -1.2 1 +1967 12 29 -2.5 -3.2 -3.2 1 +1967 12 30 -7.2 -7.9 -7.9 1 +1967 12 31 -7.1 -7.8 -7.8 1 +1968 1 1 -7.9 -8.6 -8.6 1 +1968 1 2 -11.2 -11.9 -11.9 1 +1968 1 3 -12.5 -13.2 -13.2 1 +1968 1 4 -12.1 -12.8 -12.8 1 +1968 1 5 -5.5 -6.2 -6.2 1 +1968 1 6 -9.8 -10.5 -10.5 1 +1968 1 7 -16.0 -16.7 -16.7 1 +1968 1 8 -13.4 -14.1 -14.1 1 +1968 1 9 -15.9 -16.6 -16.6 1 +1968 1 10 -13.5 -14.2 -14.2 1 +1968 1 11 -13.9 -14.7 -14.7 1 +1968 1 12 -14.4 -15.2 -15.2 1 +1968 1 13 -14.1 -14.9 -14.9 1 +1968 1 14 -5.0 -5.8 -5.8 1 +1968 1 15 -2.1 -2.9 -2.9 1 +1968 1 16 -5.5 -6.3 -6.3 1 +1968 1 17 -6.1 -6.9 -6.9 1 +1968 1 18 -3.5 -4.3 -4.3 1 +1968 1 19 -1.8 -2.6 -2.6 1 +1968 1 20 1.7 0.9 0.9 1 +1968 1 21 2.3 1.5 1.5 1 +1968 1 22 0.2 -0.6 -0.6 1 +1968 1 23 0.2 -0.6 -0.6 1 +1968 1 24 0.5 -0.3 -0.3 1 +1968 1 25 -1.3 -2.1 -2.1 1 +1968 1 26 -2.4 -3.2 -3.2 1 +1968 1 27 -7.6 -8.4 -8.4 1 +1968 1 28 -1.7 -2.5 -2.5 1 +1968 1 29 -4.0 -4.8 -4.8 1 +1968 1 30 2.1 1.3 1.3 1 +1968 1 31 1.5 0.7 0.7 1 +1968 2 1 3.2 2.4 2.4 1 +1968 2 2 0.7 -0.1 -0.1 1 +1968 2 3 0.8 0.0 0.0 1 +1968 2 4 0.1 -0.7 -0.7 1 +1968 2 5 0.7 -0.1 -0.1 1 +1968 2 6 0.6 -0.2 -0.2 1 +1968 2 7 -1.8 -2.6 -2.6 1 +1968 2 8 0.0 -0.8 -0.8 1 +1968 2 9 -0.9 -1.7 -1.7 1 +1968 2 10 -2.6 -3.4 -3.4 1 +1968 2 11 -3.5 -4.3 -4.3 1 +1968 2 12 -5.3 -6.1 -6.1 1 +1968 2 13 -1.6 -2.4 -2.4 1 +1968 2 14 -4.7 -5.5 -5.5 1 +1968 2 15 -3.2 -4.0 -4.0 1 +1968 2 16 -10.9 -11.8 -11.8 1 +1968 2 17 -9.0 -9.9 -9.9 1 +1968 2 18 -10.0 -10.9 -10.9 1 +1968 2 19 -7.8 -8.7 -8.7 1 +1968 2 20 -6.2 -7.1 -7.1 1 +1968 2 21 -6.9 -7.8 -7.8 1 +1968 2 22 -7.5 -8.4 -8.4 1 +1968 2 23 -7.9 -8.8 -8.8 1 +1968 2 24 -6.5 -7.4 -7.4 1 +1968 2 25 -7.1 -8.0 -8.0 1 +1968 2 26 -0.4 -1.3 -1.3 1 +1968 2 27 2.6 1.7 1.7 1 +1968 2 28 1.7 0.8 0.8 1 +1968 2 29 1.2 0.3 0.3 1 +1968 3 1 1.9 1.0 1.0 1 +1968 3 2 -2.5 -3.4 -3.4 1 +1968 3 3 -2.2 -3.1 -3.1 1 +1968 3 4 -2.8 -3.7 -3.7 1 +1968 3 5 1.5 0.6 0.6 1 +1968 3 6 0.6 -0.3 -0.3 1 +1968 3 7 -2.5 -3.4 -3.4 1 +1968 3 8 1.3 0.4 0.4 1 +1968 3 9 -0.9 -1.8 -1.8 1 +1968 3 10 -3.9 -4.8 -4.8 1 +1968 3 11 -5.6 -6.5 -6.5 1 +1968 3 12 -4.7 -5.6 -5.6 1 +1968 3 13 2.1 1.1 1.1 1 +1968 3 14 -1.5 -2.5 -2.5 1 +1968 3 15 -4.4 -5.4 -5.4 1 +1968 3 16 -5.0 -6.0 -6.0 1 +1968 3 17 1.6 0.7 0.7 1 +1968 3 18 2.9 2.0 2.0 1 +1968 3 19 -0.3 -1.2 -1.2 1 +1968 3 20 2.6 1.7 1.7 1 +1968 3 21 5.1 4.2 4.2 1 +1968 3 22 4.3 3.4 3.4 1 +1968 3 23 2.7 1.8 1.8 1 +1968 3 24 6.6 5.7 5.7 1 +1968 3 25 8.3 7.4 7.4 1 +1968 3 26 7.2 6.3 6.3 1 +1968 3 27 6.6 5.7 5.7 1 +1968 3 28 9.7 8.8 8.8 1 +1968 3 29 7.3 6.4 6.4 1 +1968 3 30 11.9 11.0 11.0 1 +1968 3 31 4.5 3.6 3.6 1 +1968 4 1 4.7 3.8 3.8 1 +1968 4 2 3.9 3.0 3.0 1 +1968 4 3 6.3 5.4 5.4 1 +1968 4 4 4.4 3.5 3.5 1 +1968 4 5 3.2 2.3 2.3 1 +1968 4 6 1.8 1.0 1.0 1 +1968 4 7 1.4 0.6 0.6 1 +1968 4 8 0.7 -0.1 -0.1 1 +1968 4 9 1.8 1.0 1.0 1 +1968 4 10 1.8 1.0 1.0 1 +1968 4 11 2.2 1.4 1.4 1 +1968 4 12 5.5 4.7 4.7 1 +1968 4 13 6.0 5.2 5.2 1 +1968 4 14 7.0 6.2 6.2 1 +1968 4 15 8.6 7.8 7.8 1 +1968 4 16 7.1 6.3 6.3 1 +1968 4 17 7.9 7.1 7.1 1 +1968 4 18 10.9 10.0 10.0 1 +1968 4 19 10.1 9.2 9.2 1 +1968 4 20 11.4 10.5 10.5 1 +1968 4 21 13.5 12.6 12.6 1 +1968 4 22 12.4 11.5 11.5 1 +1968 4 23 9.5 8.5 8.5 1 +1968 4 24 12.2 11.2 11.2 1 +1968 4 25 12.2 11.2 11.2 1 +1968 4 26 13.6 12.6 12.6 1 +1968 4 27 9.4 8.4 8.4 1 +1968 4 28 8.6 7.6 7.6 1 +1968 4 29 9.2 8.1 8.1 1 +1968 4 30 10.5 9.4 9.4 1 +1968 5 1 10.0 8.9 8.9 1 +1968 5 2 10.3 9.2 9.2 1 +1968 5 3 6.2 5.1 5.1 1 +1968 5 4 8.0 6.8 6.8 1 +1968 5 5 6.6 5.4 5.4 1 +1968 5 6 11.2 10.0 10.0 1 +1968 5 7 7.8 6.6 6.6 1 +1968 5 8 8.2 7.0 7.0 1 +1968 5 9 7.3 6.0 6.0 1 +1968 5 10 8.7 7.4 7.4 1 +1968 5 11 11.2 9.9 9.9 1 +1968 5 12 10.1 8.8 8.8 1 +1968 5 13 10.2 8.9 8.9 1 +1968 5 14 10.5 9.1 9.1 1 +1968 5 15 7.6 6.2 6.2 1 +1968 5 16 6.5 5.1 5.1 1 +1968 5 17 3.5 2.1 2.1 1 +1968 5 18 3.6 2.3 2.3 1 +1968 5 19 2.2 0.9 0.9 1 +1968 5 20 4.3 3.0 3.0 1 +1968 5 21 3.8 2.5 2.5 1 +1968 5 22 6.1 4.8 4.8 1 +1968 5 23 9.5 8.2 8.2 1 +1968 5 24 8.7 7.4 7.4 1 +1968 5 25 8.7 7.4 7.4 1 +1968 5 26 8.6 7.3 7.3 1 +1968 5 27 10.0 8.7 8.7 1 +1968 5 28 12.6 11.3 11.3 1 +1968 5 29 14.0 12.8 12.8 1 +1968 5 30 15.1 13.9 13.9 1 +1968 5 31 15.3 14.1 14.1 1 +1968 6 1 16.6 15.4 15.4 1 +1968 6 2 18.4 17.2 17.2 1 +1968 6 3 17.2 16.0 16.0 1 +1968 6 4 18.0 16.8 16.8 1 +1968 6 5 19.4 18.2 18.2 1 +1968 6 6 18.0 16.8 16.8 1 +1968 6 7 15.2 14.0 14.0 1 +1968 6 8 14.6 13.4 13.4 1 +1968 6 9 12.8 11.7 11.7 1 +1968 6 10 12.8 11.7 11.7 1 +1968 6 11 14.0 12.9 12.9 1 +1968 6 12 17.7 16.6 16.6 1 +1968 6 13 21.1 20.0 20.0 1 +1968 6 14 21.2 20.1 20.1 1 +1968 6 15 22.1 21.0 21.0 1 +1968 6 16 18.9 17.8 17.8 1 +1968 6 17 20.9 19.8 19.8 1 +1968 6 18 23.0 21.9 21.9 1 +1968 6 19 22.6 21.5 21.5 1 +1968 6 20 21.2 20.1 20.1 1 +1968 6 21 17.3 16.2 16.2 1 +1968 6 22 17.0 15.9 15.9 1 +1968 6 23 18.1 17.0 17.0 1 +1968 6 24 18.5 17.4 17.4 1 +1968 6 25 17.2 16.1 16.1 1 +1968 6 26 16.4 15.3 15.3 1 +1968 6 27 16.4 15.3 15.3 1 +1968 6 28 13.0 11.9 11.9 1 +1968 6 29 15.6 14.5 14.5 1 +1968 6 30 15.7 14.7 14.7 1 +1968 7 1 19.8 18.8 18.8 1 +1968 7 2 23.2 22.2 22.2 1 +1968 7 3 21.6 20.6 20.6 1 +1968 7 4 21.5 20.5 20.5 1 +1968 7 5 18.8 17.8 17.8 1 +1968 7 6 19.4 18.4 18.4 1 +1968 7 7 13.3 12.3 12.3 1 +1968 7 8 14.0 13.0 13.0 1 +1968 7 9 15.9 14.9 14.9 1 +1968 7 10 12.5 11.5 11.5 1 +1968 7 11 13.4 12.4 12.4 1 +1968 7 12 12.9 11.9 11.9 1 +1968 7 13 15.0 14.0 14.0 1 +1968 7 14 13.8 12.8 12.8 1 +1968 7 15 16.3 15.3 15.3 1 +1968 7 16 14.4 13.4 13.4 1 +1968 7 17 15.2 14.2 14.2 1 +1968 7 18 14.5 13.5 13.5 1 +1968 7 19 15.6 14.6 14.6 1 +1968 7 20 17.5 16.5 16.5 1 +1968 7 21 14.4 13.4 13.4 1 +1968 7 22 13.3 12.3 12.3 1 +1968 7 23 13.7 12.7 12.7 1 +1968 7 24 15.5 14.6 14.6 1 +1968 7 25 16.4 15.5 15.5 1 +1968 7 26 16.1 15.2 15.2 1 +1968 7 27 18.6 17.7 17.7 1 +1968 7 28 19.4 18.5 18.5 1 +1968 7 29 18.4 17.5 17.5 1 +1968 7 30 18.3 17.4 17.4 1 +1968 7 31 21.3 20.4 20.4 1 +1968 8 1 18.9 18.0 18.0 1 +1968 8 2 16.6 15.7 15.7 1 +1968 8 3 18.3 17.4 17.4 1 +1968 8 4 19.0 18.1 18.1 1 +1968 8 5 18.7 17.8 17.8 1 +1968 8 6 21.1 20.3 20.3 1 +1968 8 7 22.0 21.2 21.2 1 +1968 8 8 20.8 20.0 20.0 1 +1968 8 9 18.8 18.0 18.0 1 +1968 8 10 20.8 20.0 20.0 1 +1968 8 11 20.8 20.0 20.0 1 +1968 8 12 16.7 15.9 15.9 1 +1968 8 13 12.5 11.7 11.7 1 +1968 8 14 15.6 14.8 14.8 1 +1968 8 15 15.7 14.9 14.9 1 +1968 8 16 14.7 13.9 13.9 1 +1968 8 17 13.4 12.7 12.7 1 +1968 8 18 15.6 14.9 14.9 1 +1968 8 19 15.1 14.4 14.4 1 +1968 8 20 13.9 13.2 13.2 1 +1968 8 21 16.2 15.5 15.5 1 +1968 8 22 17.7 17.0 17.0 1 +1968 8 23 19.4 18.7 18.7 1 +1968 8 24 20.5 19.9 19.9 1 +1968 8 25 20.3 19.7 19.7 1 +1968 8 26 18.0 17.4 17.4 1 +1968 8 27 16.1 15.5 15.5 1 +1968 8 28 16.9 16.3 16.3 1 +1968 8 29 16.3 15.7 15.7 1 +1968 8 30 17.9 17.4 17.4 1 +1968 8 31 16.4 15.9 15.9 1 +1968 9 1 20.3 19.8 19.8 1 +1968 9 2 18.8 18.3 18.3 1 +1968 9 3 17.6 17.1 17.1 1 +1968 9 4 19.4 18.9 18.9 1 +1968 9 5 19.9 19.4 19.4 1 +1968 9 6 21.4 21.0 21.0 1 +1968 9 7 21.7 21.3 21.3 1 +1968 9 8 20.2 19.8 19.8 1 +1968 9 9 17.2 16.8 16.8 1 +1968 9 10 15.8 15.4 15.4 1 +1968 9 11 14.3 13.9 13.9 1 +1968 9 12 10.4 10.1 10.1 1 +1968 9 13 8.7 8.4 8.4 1 +1968 9 14 8.6 8.3 8.3 1 +1968 9 15 8.3 8.0 8.0 1 +1968 9 16 10.1 9.8 9.8 1 +1968 9 17 12.4 12.1 12.1 1 +1968 9 18 8.7 8.4 8.4 1 +1968 9 19 9.4 9.1 9.1 1 +1968 9 20 11.3 11.0 11.0 1 +1968 9 21 12.3 12.0 12.0 1 +1968 9 22 12.5 12.2 12.2 1 +1968 9 23 8.8 8.5 8.5 1 +1968 9 24 6.9 6.6 6.6 1 +1968 9 25 5.4 5.1 5.1 1 +1968 9 26 5.0 4.7 4.7 1 +1968 9 27 7.8 7.5 7.5 1 +1968 9 28 9.8 9.5 9.5 1 +1968 9 29 11.1 10.8 10.8 1 +1968 9 30 11.0 10.7 10.7 1 +1968 10 1 11.2 10.9 10.9 1 +1968 10 2 11.2 10.9 10.9 1 +1968 10 3 11.1 10.8 10.8 1 +1968 10 4 8.8 8.5 8.5 1 +1968 10 5 3.3 3.0 3.0 1 +1968 10 6 2.1 1.8 1.8 1 +1968 10 7 1.8 1.5 1.5 1 +1968 10 8 6.3 6.0 6.0 1 +1968 10 9 5.3 5.0 5.0 1 +1968 10 10 2.9 2.6 2.6 1 +1968 10 11 5.5 5.3 5.3 1 +1968 10 12 7.7 7.5 7.5 1 +1968 10 13 11.0 10.8 10.8 1 +1968 10 14 10.3 10.1 10.1 1 +1968 10 15 4.3 4.1 4.1 1 +1968 10 16 4.5 4.3 4.3 1 +1968 10 17 7.3 7.0 7.0 1 +1968 10 18 4.5 4.2 4.2 1 +1968 10 19 2.8 2.5 2.5 1 +1968 10 20 4.5 4.2 4.2 1 +1968 10 21 10.2 9.9 9.9 1 +1968 10 22 10.3 10.0 10.0 1 +1968 10 23 7.2 6.9 6.9 1 +1968 10 24 0.6 0.3 0.3 1 +1968 10 25 -0.1 -0.4 -0.4 1 +1968 10 26 5.1 4.8 4.8 1 +1968 10 27 1.4 1.1 1.1 1 +1968 10 28 5.0 4.7 4.7 1 +1968 10 29 8.5 8.2 8.2 1 +1968 10 30 5.4 5.0 5.0 1 +1968 10 31 1.9 1.5 1.5 1 +1968 11 1 1.1 0.7 0.7 1 +1968 11 2 1.7 1.3 1.3 1 +1968 11 3 1.9 1.5 1.5 1 +1968 11 4 -0.2 -0.6 -0.6 1 +1968 11 5 -2.5 -2.9 -2.9 1 +1968 11 6 -1.7 -2.1 -2.1 1 +1968 11 7 -0.9 -1.3 -1.3 1 +1968 11 8 1.2 0.8 0.8 1 +1968 11 9 1.5 1.1 1.1 1 +1968 11 10 2.5 2.1 2.1 1 +1968 11 11 0.9 0.5 0.5 1 +1968 11 12 -1.0 -1.4 -1.4 1 +1968 11 13 -0.3 -0.8 -0.8 1 +1968 11 14 -1.4 -1.9 -1.9 1 +1968 11 15 -3.5 -4.0 -4.0 1 +1968 11 16 -4.3 -4.8 -4.8 1 +1968 11 17 -3.5 -4.0 -4.0 1 +1968 11 18 -1.8 -2.3 -2.3 1 +1968 11 19 0.1 -0.4 -0.4 1 +1968 11 20 1.5 1.0 1.0 1 +1968 11 21 2.3 1.8 1.8 1 +1968 11 22 3.4 2.9 2.9 1 +1968 11 23 5.1 4.6 4.6 1 +1968 11 24 5.8 5.3 5.3 1 +1968 11 25 2.9 2.4 2.4 1 +1968 11 26 3.8 3.3 3.3 1 +1968 11 27 6.2 5.7 5.7 1 +1968 11 28 5.0 4.5 4.5 1 +1968 11 29 2.0 1.5 1.5 1 +1968 11 30 1.6 1.1 1.1 1 +1968 12 1 -0.8 -1.3 -1.3 1 +1968 12 2 -2.5 -3.0 -3.0 1 +1968 12 3 -2.6 -3.1 -3.1 1 +1968 12 4 -0.3 -0.8 -0.8 1 +1968 12 5 1.9 1.4 1.4 1 +1968 12 6 0.4 -0.2 -0.2 1 +1968 12 7 1.0 0.4 0.4 1 +1968 12 8 -2.2 -2.8 -2.8 1 +1968 12 9 -4.9 -5.5 -5.5 1 +1968 12 10 -5.7 -6.3 -6.3 1 +1968 12 11 -3.5 -4.1 -4.1 1 +1968 12 12 -3.6 -4.2 -4.2 1 +1968 12 13 -1.0 -1.6 -1.6 1 +1968 12 14 -3.0 -3.6 -3.6 1 +1968 12 15 0.7 0.1 0.1 1 +1968 12 16 1.6 1.0 1.0 1 +1968 12 17 1.9 1.3 1.3 1 +1968 12 18 0.5 -0.1 -0.1 1 +1968 12 19 0.9 0.3 0.3 1 +1968 12 20 -2.9 -3.5 -3.5 1 +1968 12 21 1.8 1.2 1.2 1 +1968 12 22 -0.2 -0.8 -0.8 1 +1968 12 23 1.2 0.6 0.6 1 +1968 12 24 1.4 0.8 0.8 1 +1968 12 25 1.6 0.9 0.9 1 +1968 12 26 0.5 -0.2 -0.2 1 +1968 12 27 0.0 -0.7 -0.7 1 +1968 12 28 -0.5 -1.2 -1.2 1 +1968 12 29 -0.7 -1.4 -1.4 1 +1968 12 30 -2.3 -3.0 -3.0 1 +1968 12 31 -6.4 -7.1 -7.1 1 +1969 1 1 -11.9 -12.6 -12.6 1 +1969 1 2 -6.1 -6.8 -6.8 1 +1969 1 3 -2.0 -2.7 -2.7 1 +1969 1 4 -0.2 -0.9 -0.9 1 +1969 1 5 -1.0 -1.7 -1.7 1 +1969 1 6 -2.7 -3.4 -3.4 1 +1969 1 7 -4.8 -5.5 -5.5 1 +1969 1 8 -4.6 -5.3 -5.3 1 +1969 1 9 -3.5 -4.2 -4.2 1 +1969 1 10 -3.8 -4.5 -4.5 1 +1969 1 11 -4.1 -4.9 -4.9 1 +1969 1 12 -4.1 -4.9 -4.9 1 +1969 1 13 -6.9 -7.7 -7.7 1 +1969 1 14 -1.0 -1.8 -1.8 1 +1969 1 15 0.1 -0.7 -0.7 1 +1969 1 16 1.5 0.7 0.7 1 +1969 1 17 2.1 1.3 1.3 1 +1969 1 18 -0.4 -1.2 -1.2 1 +1969 1 19 -3.4 -4.2 -4.2 1 +1969 1 20 -2.3 -3.1 -3.1 1 +1969 1 21 -1.6 -2.4 -2.4 1 +1969 1 22 -1.0 -1.8 -1.8 1 +1969 1 23 -1.3 -2.1 -2.1 1 +1969 1 24 -5.5 -6.3 -6.3 1 +1969 1 25 -5.2 -6.0 -6.0 1 +1969 1 26 -3.0 -3.8 -3.8 1 +1969 1 27 1.5 0.7 0.7 1 +1969 1 28 1.5 0.7 0.7 1 +1969 1 29 1.8 1.0 1.0 1 +1969 1 30 1.6 0.8 0.8 1 +1969 1 31 2.2 1.4 1.4 1 +1969 2 1 -0.1 -0.9 -0.9 1 +1969 2 2 -1.6 -2.4 -2.4 1 +1969 2 3 -2.4 -3.2 -3.2 1 +1969 2 4 -6.1 -6.9 -6.9 1 +1969 2 5 -3.0 -3.8 -3.8 1 +1969 2 6 1.8 1.0 1.0 1 +1969 2 7 -0.1 -0.9 -0.9 1 +1969 2 8 -1.4 -2.2 -2.2 1 +1969 2 9 -1.4 -2.2 -2.2 1 +1969 2 10 -7.3 -8.1 -8.1 1 +1969 2 11 -10.9 -11.7 -11.7 1 +1969 2 12 -10.4 -11.2 -11.2 1 +1969 2 13 -17.1 -17.9 -17.9 1 +1969 2 14 -10.4 -11.2 -11.2 1 +1969 2 15 -11.4 -12.2 -12.2 1 +1969 2 16 -9.0 -9.9 -9.9 1 +1969 2 17 -5.0 -5.9 -5.9 1 +1969 2 18 -4.7 -5.6 -5.6 1 +1969 2 19 -6.0 -6.9 -6.9 1 +1969 2 20 -6.1 -7.0 -7.0 1 +1969 2 21 -6.3 -7.2 -7.2 1 +1969 2 22 -1.1 -2.0 -2.0 1 +1969 2 23 -0.1 -1.0 -1.0 1 +1969 2 24 -2.9 -3.8 -3.8 1 +1969 2 25 -6.2 -7.1 -7.1 1 +1969 2 26 -7.0 -7.9 -7.9 1 +1969 2 27 -4.6 -5.5 -5.5 1 +1969 2 28 -3.6 -4.5 -4.5 1 +1969 3 1 -3.8 -4.7 -4.7 1 +1969 3 2 -6.6 -7.5 -7.5 1 +1969 3 3 -3.8 -4.7 -4.7 1 +1969 3 4 -4.7 -5.6 -5.6 1 +1969 3 5 -3.1 -4.0 -4.0 1 +1969 3 6 2.0 1.1 1.1 1 +1969 3 7 -2.1 -3.0 -3.0 1 +1969 3 8 -4.5 -5.4 -5.4 1 +1969 3 9 -3.4 -4.3 -4.3 1 +1969 3 10 -4.5 -5.4 -5.4 1 +1969 3 11 -3.5 -4.4 -4.4 1 +1969 3 12 -5.4 -6.3 -6.3 1 +1969 3 13 -5.2 -6.2 -6.2 1 +1969 3 14 -6.3 -7.3 -7.3 1 +1969 3 15 -5.7 -6.7 -6.7 1 +1969 3 16 -5.9 -6.9 -6.9 1 +1969 3 17 -5.6 -6.5 -6.5 1 +1969 3 18 -3.4 -4.3 -4.3 1 +1969 3 19 -3.0 -3.9 -3.9 1 +1969 3 20 -5.2 -6.1 -6.1 1 +1969 3 21 -4.6 -5.5 -5.5 1 +1969 3 22 -3.9 -4.8 -4.8 1 +1969 3 23 -1.8 -2.7 -2.7 1 +1969 3 24 -1.3 -2.2 -2.2 1 +1969 3 25 -2.8 -3.7 -3.7 1 +1969 3 26 -1.3 -2.2 -2.2 1 +1969 3 27 -1.1 -2.0 -2.0 1 +1969 3 28 1.1 0.2 0.2 1 +1969 3 29 1.1 0.2 0.2 1 +1969 3 30 2.1 1.2 1.2 1 +1969 3 31 1.4 0.5 0.5 1 +1969 4 1 -0.1 -1.0 -1.0 1 +1969 4 2 -0.3 -1.2 -1.2 1 +1969 4 3 2.5 1.6 1.6 1 +1969 4 4 8.1 7.2 7.2 1 +1969 4 5 6.6 5.7 5.7 1 +1969 4 6 8.3 7.5 7.5 1 +1969 4 7 6.0 5.2 5.2 1 +1969 4 8 4.4 3.6 3.6 1 +1969 4 9 9.4 8.6 8.6 1 +1969 4 10 9.5 8.7 8.7 1 +1969 4 11 5.6 4.8 4.8 1 +1969 4 12 3.0 2.2 2.2 1 +1969 4 13 3.1 2.3 2.3 1 +1969 4 14 3.2 2.4 2.4 1 +1969 4 15 4.0 3.2 3.2 1 +1969 4 16 1.1 0.3 0.3 1 +1969 4 17 0.0 -0.8 -0.8 1 +1969 4 18 -0.2 -1.1 -1.1 1 +1969 4 19 1.7 0.8 0.8 1 +1969 4 20 3.3 2.4 2.4 1 +1969 4 21 4.8 3.9 3.9 1 +1969 4 22 3.6 2.7 2.7 1 +1969 4 23 6.1 5.1 5.1 1 +1969 4 24 5.5 4.5 4.5 1 +1969 4 25 6.7 5.7 5.7 1 +1969 4 26 8.8 7.8 7.8 1 +1969 4 27 6.7 5.7 5.7 1 +1969 4 28 9.7 8.7 8.7 1 +1969 4 29 8.0 6.9 6.9 1 +1969 4 30 5.8 4.7 4.7 1 +1969 5 1 3.3 2.2 2.2 1 +1969 5 2 3.4 2.3 2.3 1 +1969 5 3 3.3 2.2 2.2 1 +1969 5 4 4.2 3.0 3.0 1 +1969 5 5 5.8 4.6 4.6 1 +1969 5 6 9.8 8.6 8.6 1 +1969 5 7 10.4 9.2 9.2 1 +1969 5 8 10.2 9.0 9.0 1 +1969 5 9 10.6 9.3 9.3 1 +1969 5 10 13.0 11.7 11.7 1 +1969 5 11 12.6 11.3 11.3 1 +1969 5 12 10.3 9.0 9.0 1 +1969 5 13 10.0 8.7 8.7 1 +1969 5 14 7.8 6.4 6.4 1 +1969 5 15 9.4 8.0 8.0 1 +1969 5 16 11.3 9.9 9.9 1 +1969 5 17 7.2 5.8 5.8 1 +1969 5 18 9.1 7.8 7.8 1 +1969 5 19 6.5 5.2 5.2 1 +1969 5 20 7.8 6.5 6.5 1 +1969 5 21 6.8 5.5 5.5 1 +1969 5 22 7.8 6.5 6.5 1 +1969 5 23 10.9 9.6 9.6 1 +1969 5 24 10.2 8.9 8.9 1 +1969 5 25 9.9 8.6 8.6 1 +1969 5 26 12.2 10.9 10.9 1 +1969 5 27 13.9 12.6 12.6 1 +1969 5 28 13.4 12.1 12.1 1 +1969 5 29 18.4 17.2 17.2 1 +1969 5 30 12.5 11.3 11.3 1 +1969 5 31 8.5 7.3 7.3 1 +1969 6 1 8.6 7.4 7.4 1 +1969 6 2 9.4 8.2 8.2 1 +1969 6 3 6.6 5.4 5.4 1 +1969 6 4 7.0 5.8 5.8 1 +1969 6 5 9.0 7.8 7.8 1 +1969 6 6 12.3 11.1 11.1 1 +1969 6 7 15.0 13.8 13.8 1 +1969 6 8 15.6 14.4 14.4 1 +1969 6 9 16.0 14.9 14.9 1 +1969 6 10 18.4 17.3 17.3 1 +1969 6 11 17.6 16.5 16.5 1 +1969 6 12 17.6 16.5 16.5 1 +1969 6 13 19.1 18.0 18.0 1 +1969 6 14 21.0 19.9 19.9 1 +1969 6 15 18.3 17.2 17.2 1 +1969 6 16 18.7 17.6 17.6 1 +1969 6 17 20.2 19.1 19.1 1 +1969 6 18 21.0 19.9 19.9 1 +1969 6 19 21.1 20.0 20.0 1 +1969 6 20 21.4 20.3 20.3 1 +1969 6 21 23.0 21.9 21.9 1 +1969 6 22 17.7 16.6 16.6 1 +1969 6 23 20.3 19.2 19.2 1 +1969 6 24 19.7 18.6 18.6 1 +1969 6 25 15.8 14.7 14.7 1 +1969 6 26 17.6 16.5 16.5 1 +1969 6 27 22.8 21.7 21.7 1 +1969 6 28 22.9 21.8 21.8 1 +1969 6 29 21.2 20.1 20.1 1 +1969 6 30 21.8 20.8 20.8 1 +1969 7 1 18.2 17.2 17.2 1 +1969 7 2 15.7 14.7 14.7 1 +1969 7 3 14.0 13.0 13.0 1 +1969 7 4 17.3 16.3 16.3 1 +1969 7 5 18.2 17.2 17.2 1 +1969 7 6 18.2 17.2 17.2 1 +1969 7 7 16.4 15.4 15.4 1 +1969 7 8 16.9 15.9 15.9 1 +1969 7 9 15.7 14.7 14.7 1 +1969 7 10 17.7 16.7 16.7 1 +1969 7 11 17.0 16.0 16.0 1 +1969 7 12 17.2 16.2 16.2 1 +1969 7 13 16.1 15.1 15.1 1 +1969 7 14 15.8 14.8 14.8 1 +1969 7 15 19.7 18.7 18.7 1 +1969 7 16 20.9 19.9 19.9 1 +1969 7 17 20.3 19.3 19.3 1 +1969 7 18 17.9 16.9 16.9 1 +1969 7 19 17.7 16.7 16.7 1 +1969 7 20 17.2 16.2 16.2 1 +1969 7 21 20.2 19.2 19.2 1 +1969 7 22 22.4 21.4 21.4 1 +1969 7 23 23.5 22.5 22.5 1 +1969 7 24 24.0 23.1 23.1 1 +1969 7 25 18.2 17.3 17.3 1 +1969 7 26 18.8 17.9 17.9 1 +1969 7 27 19.4 18.5 18.5 1 +1969 7 28 21.1 20.2 20.2 1 +1969 7 29 22.3 21.4 21.4 1 +1969 7 30 23.3 22.4 22.4 1 +1969 7 31 24.0 23.1 23.1 1 +1969 8 1 24.5 23.6 23.6 1 +1969 8 2 22.2 21.3 21.3 1 +1969 8 3 19.3 18.4 18.4 1 +1969 8 4 19.6 18.7 18.7 1 +1969 8 5 22.0 21.1 21.1 1 +1969 8 6 23.1 22.3 22.3 1 +1969 8 7 24.1 23.3 23.3 1 +1969 8 8 20.8 20.0 20.0 1 +1969 8 9 18.6 17.8 17.8 1 +1969 8 10 19.2 18.4 18.4 1 +1969 8 11 19.6 18.8 18.8 1 +1969 8 12 20.7 19.9 19.9 1 +1969 8 13 20.8 20.0 20.0 1 +1969 8 14 21.7 20.9 20.9 1 +1969 8 15 17.7 16.9 16.9 1 +1969 8 16 17.5 16.7 16.7 1 +1969 8 17 18.3 17.6 17.6 1 +1969 8 18 19.1 18.4 18.4 1 +1969 8 19 20.9 20.2 20.2 1 +1969 8 20 19.0 18.3 18.3 1 +1969 8 21 16.6 15.9 15.9 1 +1969 8 22 16.6 15.9 15.9 1 +1969 8 23 17.4 16.7 16.7 1 +1969 8 24 14.7 14.1 14.1 1 +1969 8 25 16.5 15.9 15.9 1 +1969 8 26 14.9 14.3 14.3 1 +1969 8 27 14.6 14.0 14.0 1 +1969 8 28 15.4 14.8 14.8 1 +1969 8 29 16.9 16.3 16.3 1 +1969 8 30 14.0 13.5 13.5 1 +1969 8 31 15.3 14.8 14.8 1 +1969 9 1 14.3 13.8 13.8 1 +1969 9 2 13.9 13.4 13.4 1 +1969 9 3 13.5 13.0 13.0 1 +1969 9 4 12.1 11.6 11.6 1 +1969 9 5 13.8 13.3 13.3 1 +1969 9 6 15.6 15.2 15.2 1 +1969 9 7 13.9 13.5 13.5 1 +1969 9 8 15.7 15.3 15.3 1 +1969 9 9 16.3 15.9 15.9 1 +1969 9 10 15.9 15.5 15.5 1 +1969 9 11 16.9 16.5 16.5 1 +1969 9 12 18.5 18.2 18.2 1 +1969 9 13 17.5 17.2 17.2 1 +1969 9 14 12.7 12.4 12.4 1 +1969 9 15 13.2 12.9 12.9 1 +1969 9 16 11.7 11.4 11.4 1 +1969 9 17 10.1 9.8 9.8 1 +1969 9 18 8.5 8.2 8.2 1 +1969 9 19 9.6 9.3 9.3 1 +1969 9 20 6.9 6.6 6.6 1 +1969 9 21 7.3 7.0 7.0 1 +1969 9 22 9.4 9.1 9.1 1 +1969 9 23 9.2 8.9 8.9 1 +1969 9 24 11.4 11.1 11.1 1 +1969 9 25 14.3 14.0 14.0 1 +1969 9 26 12.0 11.7 11.7 1 +1969 9 27 10.8 10.5 10.5 1 +1969 9 28 7.4 7.1 7.1 1 +1969 9 29 9.5 9.2 9.2 1 +1969 9 30 8.4 8.1 8.1 1 +1969 10 1 6.6 6.3 6.3 1 +1969 10 2 5.9 5.6 5.6 1 +1969 10 3 4.7 4.4 4.4 1 +1969 10 4 9.6 9.3 9.3 1 +1969 10 5 8.1 7.8 7.8 1 +1969 10 6 6.7 6.4 6.4 1 +1969 10 7 9.0 8.7 8.7 1 +1969 10 8 12.8 12.5 12.5 1 +1969 10 9 14.2 13.9 13.9 1 +1969 10 10 11.0 10.8 10.8 1 +1969 10 11 8.7 8.5 8.5 1 +1969 10 12 8.3 8.1 8.1 1 +1969 10 13 7.7 7.5 7.5 1 +1969 10 14 9.1 8.9 8.9 1 +1969 10 15 9.5 9.3 9.3 1 +1969 10 16 12.4 12.2 12.2 1 +1969 10 17 13.0 12.7 12.7 1 +1969 10 18 10.9 10.6 10.6 1 +1969 10 19 9.1 8.8 8.8 1 +1969 10 20 6.4 6.1 6.1 1 +1969 10 21 7.6 7.3 7.3 1 +1969 10 22 5.8 5.5 5.5 1 +1969 10 23 3.5 3.2 3.2 1 +1969 10 24 6.8 6.5 6.5 1 +1969 10 25 8.3 8.0 8.0 1 +1969 10 26 9.3 9.0 9.0 1 +1969 10 27 6.0 5.7 5.7 1 +1969 10 28 4.5 4.2 4.2 1 +1969 10 29 5.9 5.6 5.6 1 +1969 10 30 3.5 3.1 3.1 1 +1969 10 31 2.5 2.1 2.1 1 +1969 11 1 4.6 4.2 4.2 1 +1969 11 2 2.4 2.0 2.0 1 +1969 11 3 2.9 2.5 2.5 1 +1969 11 4 1.6 1.2 1.2 1 +1969 11 5 -1.4 -1.8 -1.8 1 +1969 11 6 -0.3 -0.7 -0.7 1 +1969 11 7 4.7 4.3 4.3 1 +1969 11 8 4.5 4.1 4.1 1 +1969 11 9 5.4 5.0 5.0 1 +1969 11 10 5.9 5.5 5.5 1 +1969 11 11 4.0 3.6 3.6 1 +1969 11 12 8.2 7.8 7.8 1 +1969 11 13 6.4 5.9 5.9 1 +1969 11 14 4.5 4.0 4.0 1 +1969 11 15 5.1 4.6 4.6 1 +1969 11 16 5.2 4.7 4.7 1 +1969 11 17 5.2 4.7 4.7 1 +1969 11 18 5.2 4.7 4.7 1 +1969 11 19 2.1 1.6 1.6 1 +1969 11 20 1.6 1.1 1.1 1 +1969 11 21 0.0 -0.5 -0.5 1 +1969 11 22 -0.8 -1.3 -1.3 1 +1969 11 23 -0.3 -0.8 -0.8 1 +1969 11 24 -6.6 -7.1 -7.1 1 +1969 11 25 -6.2 -6.7 -6.7 1 +1969 11 26 -7.8 -8.3 -8.3 1 +1969 11 27 -4.4 -4.9 -4.9 1 +1969 11 28 -0.4 -0.9 -0.9 1 +1969 11 29 -1.8 -2.3 -2.3 1 +1969 11 30 -5.6 -6.1 -6.1 1 +1969 12 1 -4.4 -4.9 -4.9 1 +1969 12 2 0.6 0.1 0.1 1 +1969 12 3 -3.0 -3.5 -3.5 1 +1969 12 4 -9.2 -9.7 -9.7 1 +1969 12 5 -7.0 -7.5 -7.5 1 +1969 12 6 -10.3 -10.9 -10.9 1 +1969 12 7 -12.7 -13.3 -13.3 1 +1969 12 8 -4.6 -5.2 -5.2 1 +1969 12 9 -1.9 -2.5 -2.5 1 +1969 12 10 0.9 0.3 0.3 1 +1969 12 11 -1.6 -2.2 -2.2 1 +1969 12 12 0.0 -0.6 -0.6 1 +1969 12 13 0.7 0.1 0.1 1 +1969 12 14 -0.2 -0.8 -0.8 1 +1969 12 15 -0.9 -1.5 -1.5 1 +1969 12 16 -1.4 -2.0 -2.0 1 +1969 12 17 -2.7 -3.3 -3.3 1 +1969 12 18 -3.4 -4.0 -4.0 1 +1969 12 19 -4.9 -5.5 -5.5 1 +1969 12 20 -6.8 -7.4 -7.4 1 +1969 12 21 -9.8 -10.4 -10.4 1 +1969 12 22 -4.4 -5.0 -5.0 1 +1969 12 23 -1.7 -2.3 -2.3 1 +1969 12 24 -1.6 -2.2 -2.2 1 +1969 12 25 -1.5 -2.2 -2.2 1 +1969 12 26 -1.3 -2.0 -2.0 1 +1969 12 27 -0.3 -1.0 -1.0 1 +1969 12 28 1.0 0.3 0.3 1 +1969 12 29 -1.7 -2.4 -2.4 1 +1969 12 30 -4.8 -5.5 -5.5 1 +1969 12 31 -6.4 -7.1 -7.1 1 +1970 1 1 -6.0 -6.7 -6.7 1 +1970 1 2 -5.0 -5.7 -5.7 1 +1970 1 3 -8.5 -9.2 -9.2 1 +1970 1 4 -9.3 -10.0 -10.0 1 +1970 1 5 -15.6 -16.3 -16.3 1 +1970 1 6 -17.7 -18.4 -18.4 1 +1970 1 7 -15.6 -16.3 -16.3 1 +1970 1 8 -8.0 -8.7 -8.7 1 +1970 1 9 -8.2 -8.9 -8.9 1 +1970 1 10 -3.2 -3.9 -3.9 1 +1970 1 11 -1.1 -1.9 -1.9 1 +1970 1 12 -1.2 -2.0 -2.0 1 +1970 1 13 -1.3 -2.1 -2.1 1 +1970 1 14 -4.2 -5.0 -5.0 1 +1970 1 15 -10.3 -11.1 -11.1 1 +1970 1 16 -10.5 -11.3 -11.3 1 +1970 1 17 -8.1 -8.9 -8.9 1 +1970 1 18 -6.5 -7.3 -7.3 1 +1970 1 19 -7.6 -8.4 -8.4 1 +1970 1 20 -9.0 -9.8 -9.8 1 +1970 1 21 -9.8 -10.6 -10.6 1 +1970 1 22 -6.5 -7.3 -7.3 1 +1970 1 23 -3.9 -4.7 -4.7 1 +1970 1 24 -1.9 -2.7 -2.7 1 +1970 1 25 -1.9 -2.7 -2.7 1 +1970 1 26 -1.5 -2.3 -2.3 1 +1970 1 27 -2.3 -3.1 -3.1 1 +1970 1 28 -5.8 -6.6 -6.6 1 +1970 1 29 -8.7 -9.5 -9.5 1 +1970 1 30 -7.5 -8.3 -8.3 1 +1970 1 31 -6.6 -7.4 -7.4 1 +1970 2 1 -5.0 -5.8 -5.8 1 +1970 2 2 -4.6 -5.4 -5.4 1 +1970 2 3 -2.0 -2.8 -2.8 1 +1970 2 4 -7.8 -8.6 -8.6 1 +1970 2 5 -13.2 -14.0 -14.0 1 +1970 2 6 -7.8 -8.6 -8.6 1 +1970 2 7 -7.3 -8.1 -8.1 1 +1970 2 8 -1.2 -2.0 -2.0 1 +1970 2 9 -6.2 -7.0 -7.0 1 +1970 2 10 -12.0 -12.8 -12.8 1 +1970 2 11 -16.1 -16.9 -16.9 1 +1970 2 12 -12.0 -12.8 -12.8 1 +1970 2 13 -7.6 -8.4 -8.4 1 +1970 2 14 -11.1 -11.9 -11.9 1 +1970 2 15 -13.0 -13.8 -13.8 1 +1970 2 16 -15.2 -16.1 -16.1 1 +1970 2 17 -17.4 -18.3 -18.3 1 +1970 2 18 -15.6 -16.5 -16.5 1 +1970 2 19 -12.9 -13.8 -13.8 1 +1970 2 20 -7.8 -8.7 -8.7 1 +1970 2 21 -7.0 -7.9 -7.9 1 +1970 2 22 -9.4 -10.3 -10.3 1 +1970 2 23 -11.7 -12.6 -12.6 1 +1970 2 24 -11.9 -12.8 -12.8 1 +1970 2 25 -11.1 -12.0 -12.0 1 +1970 2 26 -9.6 -10.5 -10.5 1 +1970 2 27 -10.4 -11.3 -11.3 1 +1970 2 28 -8.3 -9.2 -9.2 1 +1970 3 1 -0.7 -1.6 -1.6 1 +1970 3 2 -1.7 -2.6 -2.6 1 +1970 3 3 -5.1 -6.0 -6.0 1 +1970 3 4 -1.3 -2.2 -2.2 1 +1970 3 5 -0.3 -1.2 -1.2 1 +1970 3 6 0.9 0.0 0.0 1 +1970 3 7 0.6 -0.3 -0.3 1 +1970 3 8 -0.7 -1.6 -1.6 1 +1970 3 9 -0.5 -1.4 -1.4 1 +1970 3 10 -0.2 -1.1 -1.1 1 +1970 3 11 -2.1 -3.0 -3.0 1 +1970 3 12 -0.6 -1.5 -1.5 1 +1970 3 13 -2.2 -3.2 -3.2 1 +1970 3 14 -2.3 -3.3 -3.3 1 +1970 3 15 0.2 -0.8 -0.8 1 +1970 3 16 0.1 -0.9 -0.9 1 +1970 3 17 1.3 0.4 0.4 1 +1970 3 18 3.0 2.1 2.1 1 +1970 3 19 1.7 0.8 0.8 1 +1970 3 20 0.3 -0.6 -0.6 1 +1970 3 21 -0.7 -1.6 -1.6 1 +1970 3 22 -0.8 -1.7 -1.7 1 +1970 3 23 -0.7 -1.6 -1.6 1 +1970 3 24 0.6 -0.3 -0.3 1 +1970 3 25 0.5 -0.4 -0.4 1 +1970 3 26 -0.4 -1.3 -1.3 1 +1970 3 27 -0.6 -1.5 -1.5 1 +1970 3 28 -2.5 -3.4 -3.4 1 +1970 3 29 -1.6 -2.5 -2.5 1 +1970 3 30 -2.2 -3.1 -3.1 1 +1970 3 31 -4.5 -5.4 -5.4 1 +1970 4 1 -2.7 -3.6 -3.6 1 +1970 4 2 -2.6 -3.5 -3.5 1 +1970 4 3 -1.6 -2.5 -2.5 1 +1970 4 4 -1.7 -2.6 -2.6 1 +1970 4 5 0.1 -0.8 -0.8 1 +1970 4 6 0.7 -0.1 -0.1 1 +1970 4 7 2.4 1.6 1.6 1 +1970 4 8 1.8 1.0 1.0 1 +1970 4 9 1.7 0.9 0.9 1 +1970 4 10 0.6 -0.2 -0.2 1 +1970 4 11 0.2 -0.6 -0.6 1 +1970 4 12 1.0 0.2 0.2 1 +1970 4 13 3.3 2.5 2.5 1 +1970 4 14 3.3 2.5 2.5 1 +1970 4 15 4.1 3.3 3.3 1 +1970 4 16 3.2 2.4 2.4 1 +1970 4 17 3.3 2.5 2.5 1 +1970 4 18 4.7 3.8 3.8 1 +1970 4 19 3.7 2.8 2.8 1 +1970 4 20 5.3 4.4 4.4 1 +1970 4 21 4.5 3.6 3.6 1 +1970 4 22 3.8 2.9 2.9 1 +1970 4 23 3.0 2.0 2.0 1 +1970 4 24 6.0 5.0 5.0 1 +1970 4 25 6.2 5.2 5.2 1 +1970 4 26 5.4 4.4 4.4 1 +1970 4 27 3.3 2.3 2.3 1 +1970 4 28 4.0 3.0 3.0 1 +1970 4 29 4.3 3.2 3.2 1 +1970 4 30 6.3 5.2 5.2 1 +1970 5 1 5.8 4.7 4.7 1 +1970 5 2 6.0 4.9 4.9 1 +1970 5 3 4.9 3.8 3.8 1 +1970 5 4 5.1 3.9 3.9 1 +1970 5 5 6.6 5.4 5.4 1 +1970 5 6 10.7 9.5 9.5 1 +1970 5 7 6.6 5.4 5.4 1 +1970 5 8 7.6 6.4 6.4 1 +1970 5 9 10.0 8.7 8.7 1 +1970 5 10 12.2 10.9 10.9 1 +1970 5 11 12.9 11.6 11.6 1 +1970 5 12 10.4 9.1 9.1 1 +1970 5 13 12.0 10.7 10.7 1 +1970 5 14 13.6 12.2 12.2 1 +1970 5 15 7.9 6.5 6.5 1 +1970 5 16 7.6 6.2 6.2 1 +1970 5 17 11.6 10.2 10.2 1 +1970 5 18 14.4 13.1 13.1 1 +1970 5 19 12.7 11.4 11.4 1 +1970 5 20 11.6 10.3 10.3 1 +1970 5 21 9.9 8.6 8.6 1 +1970 5 22 9.4 8.1 8.1 1 +1970 5 23 6.6 5.3 5.3 1 +1970 5 24 11.7 10.4 10.4 1 +1970 5 25 13.8 12.5 12.5 1 +1970 5 26 14.8 13.5 13.5 1 +1970 5 27 12.4 11.1 11.1 1 +1970 5 28 11.1 9.8 9.8 1 +1970 5 29 11.6 10.4 10.4 1 +1970 5 30 12.0 10.8 10.8 1 +1970 5 31 11.0 9.8 9.8 1 +1970 6 1 13.0 11.8 11.8 1 +1970 6 2 10.8 9.6 9.6 1 +1970 6 3 13.3 12.1 12.1 1 +1970 6 4 16.0 14.8 14.8 1 +1970 6 5 18.1 16.9 16.9 1 +1970 6 6 19.1 17.9 17.9 1 +1970 6 7 20.2 19.0 19.0 1 +1970 6 8 20.8 19.6 19.6 1 +1970 6 9 19.3 18.2 18.2 1 +1970 6 10 19.5 18.4 18.4 1 +1970 6 11 18.9 17.8 17.8 1 +1970 6 12 9.3 8.2 8.2 1 +1970 6 13 12.8 11.7 11.7 1 +1970 6 14 13.3 12.2 12.2 1 +1970 6 15 17.4 16.3 16.3 1 +1970 6 16 16.9 15.8 15.8 1 +1970 6 17 18.6 17.5 17.5 1 +1970 6 18 20.2 19.1 19.1 1 +1970 6 19 23.3 22.2 22.2 1 +1970 6 20 23.2 22.1 22.1 1 +1970 6 21 21.5 20.4 20.4 1 +1970 6 22 16.4 15.3 15.3 1 +1970 6 23 17.9 16.8 16.8 1 +1970 6 24 17.4 16.3 16.3 1 +1970 6 25 17.6 16.5 16.5 1 +1970 6 26 17.9 16.8 16.8 1 +1970 6 27 19.6 18.5 18.5 1 +1970 6 28 19.2 18.1 18.1 1 +1970 6 29 19.7 18.6 18.6 1 +1970 6 30 19.5 18.5 18.5 1 +1970 7 1 13.9 12.9 12.9 1 +1970 7 2 14.5 13.5 13.5 1 +1970 7 3 16.6 15.6 15.6 1 +1970 7 4 16.5 15.5 15.5 1 +1970 7 5 16.3 15.3 15.3 1 +1970 7 6 17.2 16.2 16.2 1 +1970 7 7 18.9 17.9 17.9 1 +1970 7 8 19.2 18.2 18.2 1 +1970 7 9 19.2 18.2 18.2 1 +1970 7 10 18.1 17.1 17.1 1 +1970 7 11 16.5 15.5 15.5 1 +1970 7 12 14.5 13.5 13.5 1 +1970 7 13 16.3 15.3 15.3 1 +1970 7 14 16.6 15.6 15.6 1 +1970 7 15 14.5 13.5 13.5 1 +1970 7 16 11.2 10.2 10.2 1 +1970 7 17 14.6 13.6 13.6 1 +1970 7 18 17.1 16.1 16.1 1 +1970 7 19 15.7 14.7 14.7 1 +1970 7 20 15.6 14.6 14.6 1 +1970 7 21 13.5 12.5 12.5 1 +1970 7 22 14.3 13.3 13.3 1 +1970 7 23 14.6 13.6 13.6 1 +1970 7 24 14.6 13.7 13.7 1 +1970 7 25 16.1 15.2 15.2 1 +1970 7 26 15.6 14.7 14.7 1 +1970 7 27 16.1 15.2 15.2 1 +1970 7 28 14.9 14.0 14.0 1 +1970 7 29 16.4 15.5 15.5 1 +1970 7 30 17.2 16.3 16.3 1 +1970 7 31 19.3 18.4 18.4 1 +1970 8 1 18.8 17.9 17.9 1 +1970 8 2 18.6 17.7 17.7 1 +1970 8 3 17.9 17.0 17.0 1 +1970 8 4 17.2 16.3 16.3 1 +1970 8 5 16.3 15.4 15.4 1 +1970 8 6 19.5 18.7 18.7 1 +1970 8 7 15.2 14.4 14.4 1 +1970 8 8 16.5 15.7 15.7 1 +1970 8 9 18.5 17.7 17.7 1 +1970 8 10 15.3 14.5 14.5 1 +1970 8 11 16.6 15.8 15.8 1 +1970 8 12 15.5 14.7 14.7 1 +1970 8 13 16.4 15.6 15.6 1 +1970 8 14 15.9 15.1 15.1 1 +1970 8 15 16.7 15.9 15.9 1 +1970 8 16 16.9 16.1 16.1 1 +1970 8 17 15.8 15.1 15.1 1 +1970 8 18 16.3 15.6 15.6 1 +1970 8 19 16.9 16.2 16.2 1 +1970 8 20 17.2 16.5 16.5 1 +1970 8 21 17.7 17.0 17.0 1 +1970 8 22 18.7 18.0 18.0 1 +1970 8 23 17.6 16.9 16.9 1 +1970 8 24 15.0 14.4 14.4 1 +1970 8 25 14.5 13.9 13.9 1 +1970 8 26 14.7 14.1 14.1 1 +1970 8 27 14.9 14.3 14.3 1 +1970 8 28 14.7 14.1 14.1 1 +1970 8 29 18.0 17.4 17.4 1 +1970 8 30 17.6 17.1 17.1 1 +1970 8 31 18.2 17.7 17.7 1 +1970 9 1 18.7 18.2 18.2 1 +1970 9 2 16.0 15.5 15.5 1 +1970 9 3 14.2 13.7 13.7 1 +1970 9 4 13.7 13.2 13.2 1 +1970 9 5 12.8 12.3 12.3 1 +1970 9 6 11.8 11.4 11.4 1 +1970 9 7 8.7 8.3 8.3 1 +1970 9 8 11.0 10.6 10.6 1 +1970 9 9 13.1 12.7 12.7 1 +1970 9 10 16.0 15.6 15.6 1 +1970 9 11 14.7 14.3 14.3 1 +1970 9 12 14.3 14.0 14.0 1 +1970 9 13 13.2 12.9 12.9 1 +1970 9 14 13.1 12.8 12.8 1 +1970 9 15 13.6 13.3 13.3 1 +1970 9 16 14.5 14.2 14.2 1 +1970 9 17 16.0 15.7 15.7 1 +1970 9 18 14.2 13.9 13.9 1 +1970 9 19 15.1 14.8 14.8 1 +1970 9 20 12.4 12.1 12.1 1 +1970 9 21 10.1 9.8 9.8 1 +1970 9 22 7.8 7.5 7.5 1 +1970 9 23 7.6 7.3 7.3 1 +1970 9 24 6.7 6.4 6.4 1 +1970 9 25 5.6 5.3 5.3 1 +1970 9 26 5.9 5.6 5.6 1 +1970 9 27 4.5 4.2 4.2 1 +1970 9 28 7.0 6.7 6.7 1 +1970 9 29 10.0 9.7 9.7 1 +1970 9 30 10.6 10.3 10.3 1 +1970 10 1 10.7 10.4 10.4 1 +1970 10 2 9.3 9.0 9.0 1 +1970 10 3 8.1 7.8 7.8 1 +1970 10 4 6.9 6.6 6.6 1 +1970 10 5 8.2 7.9 7.9 1 +1970 10 6 11.0 10.7 10.7 1 +1970 10 7 12.5 12.2 12.2 1 +1970 10 8 12.5 12.2 12.2 1 +1970 10 9 10.5 10.2 10.2 1 +1970 10 10 11.1 10.9 10.9 1 +1970 10 11 9.9 9.7 9.7 1 +1970 10 12 9.2 9.0 9.0 1 +1970 10 13 6.9 6.7 6.7 1 +1970 10 14 5.0 4.8 4.8 1 +1970 10 15 8.4 8.2 8.2 1 +1970 10 16 10.1 9.9 9.9 1 +1970 10 17 10.1 9.8 9.8 1 +1970 10 18 8.9 8.6 8.6 1 +1970 10 19 9.1 8.8 8.8 1 +1970 10 20 7.6 7.3 7.3 1 +1970 10 21 6.5 6.2 6.2 1 +1970 10 22 3.3 3.0 3.0 1 +1970 10 23 0.8 0.5 0.5 1 +1970 10 24 4.8 4.5 4.5 1 +1970 10 25 6.6 6.3 6.3 1 +1970 10 26 3.6 3.3 3.3 1 +1970 10 27 1.9 1.6 1.6 1 +1970 10 28 2.0 1.7 1.7 1 +1970 10 29 2.6 2.3 2.3 1 +1970 10 30 2.2 1.8 1.8 1 +1970 10 31 1.5 1.1 1.1 1 +1970 11 1 1.6 1.2 1.2 1 +1970 11 2 0.3 -0.1 -0.1 1 +1970 11 3 -1.6 -2.0 -2.0 1 +1970 11 4 1.3 0.9 0.9 1 +1970 11 5 -0.2 -0.6 -0.6 1 +1970 11 6 -4.3 -4.7 -4.7 1 +1970 11 7 -1.9 -2.3 -2.3 1 +1970 11 8 -1.5 -1.9 -1.9 1 +1970 11 9 1.7 1.3 1.3 1 +1970 11 10 -4.3 -4.7 -4.7 1 +1970 11 11 -4.6 -5.0 -5.0 1 +1970 11 12 0.9 0.5 0.5 1 +1970 11 13 2.2 1.7 1.7 1 +1970 11 14 3.8 3.3 3.3 1 +1970 11 15 2.2 1.7 1.7 1 +1970 11 16 0.7 0.2 0.2 1 +1970 11 17 0.3 -0.2 -0.2 1 +1970 11 18 1.2 0.7 0.7 1 +1970 11 19 4.6 4.1 4.1 1 +1970 11 20 5.6 5.1 5.1 1 +1970 11 21 5.0 4.5 4.5 1 +1970 11 22 4.7 4.2 4.2 1 +1970 11 23 3.9 3.4 3.4 1 +1970 11 24 4.0 3.5 3.5 1 +1970 11 25 6.9 6.4 6.4 1 +1970 11 26 1.9 1.4 1.4 1 +1970 11 27 1.5 1.0 1.0 1 +1970 11 28 1.1 0.6 0.6 1 +1970 11 29 -3.1 -3.6 -3.6 1 +1970 11 30 -4.0 -4.5 -4.5 1 +1970 12 1 0.1 -0.4 -0.4 1 +1970 12 2 2.3 1.8 1.8 1 +1970 12 3 -0.2 -0.7 -0.7 1 +1970 12 4 -2.0 -2.5 -2.5 1 +1970 12 5 1.3 0.7 0.7 1 +1970 12 6 4.3 3.7 3.7 1 +1970 12 7 3.2 2.6 2.6 1 +1970 12 8 0.4 -0.2 -0.2 1 +1970 12 9 4.8 4.2 4.2 1 +1970 12 10 6.1 5.5 5.5 1 +1970 12 11 2.2 1.6 1.6 1 +1970 12 12 1.7 1.1 1.1 1 +1970 12 13 4.1 3.5 3.5 1 +1970 12 14 2.0 1.4 1.4 1 +1970 12 15 0.3 -0.3 -0.3 1 +1970 12 16 0.3 -0.3 -0.3 1 +1970 12 17 2.4 1.8 1.8 1 +1970 12 18 2.8 2.2 2.2 1 +1970 12 19 1.4 0.8 0.8 1 +1970 12 20 5.4 4.8 4.8 1 +1970 12 21 0.2 -0.4 -0.4 1 +1970 12 22 -2.6 -3.2 -3.2 1 +1970 12 23 -4.6 -5.2 -5.2 1 +1970 12 24 -4.2 -4.8 -4.8 1 +1970 12 25 -6.4 -7.1 -7.1 1 +1970 12 26 -6.3 -7.0 -7.0 1 +1970 12 27 -3.3 -4.0 -4.0 1 +1970 12 28 -2.1 -2.8 -2.8 1 +1970 12 29 -2.8 -3.5 -3.5 1 +1970 12 30 -6.8 -7.5 -7.5 1 +1970 12 31 -9.7 -10.4 -10.4 1 +1971 1 1 -9.2 -9.9 -9.9 1 +1971 1 2 -6.5 -7.2 -7.2 1 +1971 1 3 -4.7 -5.4 -5.4 1 +1971 1 4 -0.3 -1.0 -1.0 1 +1971 1 5 -6.8 -7.5 -7.5 1 +1971 1 6 -11.6 -12.3 -12.3 1 +1971 1 7 -1.9 -2.6 -2.6 1 +1971 1 8 4.3 3.6 3.6 1 +1971 1 9 4.6 3.9 3.9 1 +1971 1 10 5.9 5.2 5.2 1 +1971 1 11 4.8 4.0 4.0 1 +1971 1 12 1.9 1.1 1.1 1 +1971 1 13 0.8 0.0 0.0 1 +1971 1 14 -0.9 -1.7 -1.7 1 +1971 1 15 -1.5 -2.3 -2.3 1 +1971 1 16 -1.5 -2.3 -2.3 1 +1971 1 17 -3.9 -4.7 -4.7 1 +1971 1 18 2.4 1.6 1.6 1 +1971 1 19 1.3 0.5 0.5 1 +1971 1 20 2.0 1.2 1.2 1 +1971 1 21 2.0 1.2 1.2 1 +1971 1 22 1.8 1.0 1.0 1 +1971 1 23 2.5 1.7 1.7 1 +1971 1 24 3.7 2.9 2.9 1 +1971 1 25 4.9 4.1 4.1 1 +1971 1 26 3.7 2.9 2.9 1 +1971 1 27 1.7 0.9 0.9 1 +1971 1 28 -2.1 -2.9 -2.9 1 +1971 1 29 -5.1 -5.9 -5.9 1 +1971 1 30 -6.3 -7.1 -7.1 1 +1971 1 31 0.2 -0.6 -0.6 1 +1971 2 1 -2.7 -3.5 -3.5 1 +1971 2 2 -4.0 -4.8 -4.8 1 +1971 2 3 -0.6 -1.4 -1.4 1 +1971 2 4 1.6 0.8 0.8 1 +1971 2 5 3.4 2.6 2.6 1 +1971 2 6 2.4 1.6 1.6 1 +1971 2 7 -0.4 -1.2 -1.2 1 +1971 2 8 -1.9 -2.7 -2.7 1 +1971 2 9 -4.8 -5.6 -5.6 1 +1971 2 10 -1.9 -2.7 -2.7 1 +1971 2 11 2.5 1.7 1.7 1 +1971 2 12 2.4 1.6 1.6 1 +1971 2 13 3.1 2.3 2.3 1 +1971 2 14 2.5 1.7 1.7 1 +1971 2 15 1.7 0.9 0.9 1 +1971 2 16 1.5 0.6 0.6 1 +1971 2 17 0.5 -0.4 -0.4 1 +1971 2 18 0.0 -0.9 -0.9 1 +1971 2 19 -0.3 -1.2 -1.2 1 +1971 2 20 0.5 -0.4 -0.4 1 +1971 2 21 1.1 0.2 0.2 1 +1971 2 22 1.1 0.2 0.2 1 +1971 2 23 -2.1 -3.0 -3.0 1 +1971 2 24 0.6 -0.3 -0.3 1 +1971 2 25 -11.9 -12.8 -12.8 1 +1971 2 26 -8.2 -9.1 -9.1 1 +1971 2 27 -8.3 -9.2 -9.2 1 +1971 2 28 -7.9 -8.8 -8.8 1 +1971 3 1 -7.7 -8.6 -8.6 1 +1971 3 2 -8.5 -9.4 -9.4 1 +1971 3 3 -10.8 -11.7 -11.7 1 +1971 3 4 -13.5 -14.4 -14.4 1 +1971 3 5 -8.6 -9.5 -9.5 1 +1971 3 6 -5.4 -6.3 -6.3 1 +1971 3 7 -0.5 -1.4 -1.4 1 +1971 3 8 2.1 1.2 1.2 1 +1971 3 9 0.0 -0.9 -0.9 1 +1971 3 10 -4.6 -5.5 -5.5 1 +1971 3 11 -3.5 -4.4 -4.4 1 +1971 3 12 -3.0 -3.9 -3.9 1 +1971 3 13 -0.8 -1.8 -1.8 1 +1971 3 14 0.4 -0.6 -0.6 1 +1971 3 15 -0.1 -1.1 -1.1 1 +1971 3 16 0.8 -0.2 -0.2 1 +1971 3 17 1.6 0.7 0.7 1 +1971 3 18 1.7 0.8 0.8 1 +1971 3 19 1.8 0.9 0.9 1 +1971 3 20 1.3 0.4 0.4 1 +1971 3 21 0.0 -0.9 -0.9 1 +1971 3 22 -2.2 -3.1 -3.1 1 +1971 3 23 -4.4 -5.3 -5.3 1 +1971 3 24 -0.3 -1.2 -1.2 1 +1971 3 25 3.6 2.7 2.7 1 +1971 3 26 3.3 2.4 2.4 1 +1971 3 27 -0.8 -1.7 -1.7 1 +1971 3 28 -1.4 -2.3 -2.3 1 +1971 3 29 1.0 0.1 0.1 1 +1971 3 30 -0.5 -1.4 -1.4 1 +1971 3 31 0.6 -0.3 -0.3 1 +1971 4 1 4.2 3.3 3.3 1 +1971 4 2 4.0 3.1 3.1 1 +1971 4 3 3.6 2.7 2.7 1 +1971 4 4 -0.7 -1.6 -1.6 1 +1971 4 5 0.1 -0.8 -0.8 1 +1971 4 6 0.9 0.1 0.1 1 +1971 4 7 2.5 1.7 1.7 1 +1971 4 8 5.6 4.8 4.8 1 +1971 4 9 3.7 2.9 2.9 1 +1971 4 10 4.2 3.4 3.4 1 +1971 4 11 6.1 5.3 5.3 1 +1971 4 12 5.8 5.0 5.0 1 +1971 4 13 2.7 1.9 1.9 1 +1971 4 14 2.3 1.5 1.5 1 +1971 4 15 3.0 2.2 2.2 1 +1971 4 16 4.6 3.8 3.8 1 +1971 4 17 5.2 4.4 4.4 1 +1971 4 18 6.5 5.6 5.6 1 +1971 4 19 9.0 8.1 8.1 1 +1971 4 20 9.8 8.9 8.9 1 +1971 4 21 7.6 6.7 6.7 1 +1971 4 22 3.3 2.4 2.4 1 +1971 4 23 2.1 1.1 1.1 1 +1971 4 24 0.5 -0.5 -0.5 1 +1971 4 25 -0.3 -1.3 -1.3 1 +1971 4 26 0.1 -0.9 -0.9 1 +1971 4 27 2.2 1.2 1.2 1 +1971 4 28 3.6 2.6 2.6 1 +1971 4 29 1.2 0.1 0.1 1 +1971 4 30 3.3 2.2 2.2 1 +1971 5 1 6.4 5.3 5.3 1 +1971 5 2 9.9 8.8 8.8 1 +1971 5 3 8.5 7.4 7.4 1 +1971 5 4 7.4 6.2 6.2 1 +1971 5 5 9.4 8.2 8.2 1 +1971 5 6 12.2 11.0 11.0 1 +1971 5 7 14.7 13.5 13.5 1 +1971 5 8 13.2 12.0 12.0 1 +1971 5 9 14.2 12.9 12.9 1 +1971 5 10 15.8 14.5 14.5 1 +1971 5 11 16.2 14.9 14.9 1 +1971 5 12 14.2 12.9 12.9 1 +1971 5 13 14.0 12.7 12.7 1 +1971 5 14 11.9 10.5 10.5 1 +1971 5 15 12.4 11.0 11.0 1 +1971 5 16 12.4 11.0 11.0 1 +1971 5 17 16.2 14.8 14.8 1 +1971 5 18 17.5 16.2 16.2 1 +1971 5 19 14.6 13.3 13.3 1 +1971 5 20 13.5 12.2 12.2 1 +1971 5 21 7.7 6.4 6.4 1 +1971 5 22 5.8 4.5 4.5 1 +1971 5 23 4.0 2.7 2.7 1 +1971 5 24 3.6 2.3 2.3 1 +1971 5 25 4.2 2.9 2.9 1 +1971 5 26 6.1 4.8 4.8 1 +1971 5 27 10.4 9.1 9.1 1 +1971 5 28 12.6 11.3 11.3 1 +1971 5 29 16.6 15.4 15.4 1 +1971 5 30 19.3 18.1 18.1 1 +1971 5 31 18.3 17.1 17.1 1 +1971 6 1 18.6 17.4 17.4 1 +1971 6 2 21.2 20.0 20.0 1 +1971 6 3 18.9 17.7 17.7 1 +1971 6 4 16.4 15.2 15.2 1 +1971 6 5 13.5 12.3 12.3 1 +1971 6 6 13.8 12.6 12.6 1 +1971 6 7 16.2 15.0 15.0 1 +1971 6 8 12.2 11.0 11.0 1 +1971 6 9 10.1 9.0 9.0 1 +1971 6 10 11.7 10.6 10.6 1 +1971 6 11 12.9 11.8 11.8 1 +1971 6 12 12.5 11.4 11.4 1 +1971 6 13 13.4 12.3 12.3 1 +1971 6 14 15.5 14.4 14.4 1 +1971 6 15 14.7 13.6 13.6 1 +1971 6 16 11.2 10.1 10.1 1 +1971 6 17 13.7 12.6 12.6 1 +1971 6 18 13.0 11.9 11.9 1 +1971 6 19 13.1 12.0 12.0 1 +1971 6 20 13.2 12.1 12.1 1 +1971 6 21 16.3 15.2 15.2 1 +1971 6 22 15.6 14.5 14.5 1 +1971 6 23 16.0 14.9 14.9 1 +1971 6 24 15.4 14.3 14.3 1 +1971 6 25 14.0 12.9 12.9 1 +1971 6 26 16.0 14.9 14.9 1 +1971 6 27 17.9 16.8 16.8 1 +1971 6 28 15.4 14.3 14.3 1 +1971 6 29 16.1 15.0 15.0 1 +1971 6 30 18.3 17.3 17.3 1 +1971 7 1 16.2 15.2 15.2 1 +1971 7 2 17.5 16.5 16.5 1 +1971 7 3 20.5 19.5 19.5 1 +1971 7 4 20.1 19.1 19.1 1 +1971 7 5 22.0 21.0 21.0 1 +1971 7 6 19.9 18.9 18.9 1 +1971 7 7 21.1 20.1 20.1 1 +1971 7 8 21.5 20.5 20.5 1 +1971 7 9 20.7 19.7 19.7 1 +1971 7 10 18.9 17.9 17.9 1 +1971 7 11 20.8 19.8 19.8 1 +1971 7 12 20.5 19.5 19.5 1 +1971 7 13 14.2 13.2 13.2 1 +1971 7 14 14.0 13.0 13.0 1 +1971 7 15 13.6 12.6 12.6 1 +1971 7 16 13.5 12.5 12.5 1 +1971 7 17 12.4 11.4 11.4 1 +1971 7 18 14.3 13.3 13.3 1 +1971 7 19 14.7 13.7 13.7 1 +1971 7 20 13.7 12.7 12.7 1 +1971 7 21 14.1 13.1 13.1 1 +1971 7 22 14.8 13.8 13.8 1 +1971 7 23 16.8 15.8 15.8 1 +1971 7 24 17.7 16.8 16.8 1 +1971 7 25 20.2 19.3 19.3 1 +1971 7 26 19.7 18.8 18.8 1 +1971 7 27 19.5 18.6 18.6 1 +1971 7 28 19.0 18.1 18.1 1 +1971 7 29 19.0 18.1 18.1 1 +1971 7 30 18.5 17.6 17.6 1 +1971 7 31 19.0 18.1 18.1 1 +1971 8 1 18.1 17.2 17.2 1 +1971 8 2 20.1 19.2 19.2 1 +1971 8 3 21.0 20.1 20.1 1 +1971 8 4 20.4 19.5 19.5 1 +1971 8 5 20.5 19.6 19.6 1 +1971 8 6 20.2 19.4 19.4 1 +1971 8 7 18.1 17.3 17.3 1 +1971 8 8 15.5 14.7 14.7 1 +1971 8 9 16.1 15.3 15.3 1 +1971 8 10 16.8 16.0 16.0 1 +1971 8 11 15.7 14.9 14.9 1 +1971 8 12 14.1 13.3 13.3 1 +1971 8 13 15.8 15.0 15.0 1 +1971 8 14 15.7 14.9 14.9 1 +1971 8 15 14.7 13.9 13.9 1 +1971 8 16 14.7 13.9 13.9 1 +1971 8 17 15.1 14.4 14.4 1 +1971 8 18 16.0 15.3 15.3 1 +1971 8 19 17.6 16.9 16.9 1 +1971 8 20 19.0 18.3 18.3 1 +1971 8 21 17.7 17.0 17.0 1 +1971 8 22 13.2 12.5 12.5 1 +1971 8 23 12.8 12.1 12.1 1 +1971 8 24 15.4 14.8 14.8 1 +1971 8 25 17.2 16.6 16.6 1 +1971 8 26 16.9 16.3 16.3 1 +1971 8 27 14.7 14.1 14.1 1 +1971 8 28 14.4 13.8 13.8 1 +1971 8 29 13.6 13.0 13.0 1 +1971 8 30 13.1 12.6 12.6 1 +1971 8 31 13.6 13.1 13.1 1 +1971 9 1 13.3 12.8 12.8 1 +1971 9 2 15.1 14.6 14.6 1 +1971 9 3 14.9 14.4 14.4 1 +1971 9 4 13.3 12.8 12.8 1 +1971 9 5 11.4 10.9 10.9 1 +1971 9 6 11.3 10.9 10.9 1 +1971 9 7 13.0 12.6 12.6 1 +1971 9 8 12.1 11.7 11.7 1 +1971 9 9 12.2 11.8 11.8 1 +1971 9 10 12.2 11.8 11.8 1 +1971 9 11 11.8 11.4 11.4 1 +1971 9 12 10.3 10.0 10.0 1 +1971 9 13 7.7 7.4 7.4 1 +1971 9 14 5.5 5.2 5.2 1 +1971 9 15 7.5 7.2 7.2 1 +1971 9 16 7.5 7.2 7.2 1 +1971 9 17 9.8 9.5 9.5 1 +1971 9 18 10.7 10.4 10.4 1 +1971 9 19 11.7 11.4 11.4 1 +1971 9 20 12.3 12.0 12.0 1 +1971 9 21 12.4 12.1 12.1 1 +1971 9 22 14.7 14.4 14.4 1 +1971 9 23 12.1 11.8 11.8 1 +1971 9 24 12.4 12.1 12.1 1 +1971 9 25 10.5 10.2 10.2 1 +1971 9 26 8.5 8.2 8.2 1 +1971 9 27 7.8 7.5 7.5 1 +1971 9 28 9.0 8.7 8.7 1 +1971 9 29 9.6 9.3 9.3 1 +1971 9 30 10.3 10.0 10.0 1 +1971 10 1 12.8 12.5 12.5 1 +1971 10 2 11.3 11.0 11.0 1 +1971 10 3 8.2 7.9 7.9 1 +1971 10 4 5.5 5.2 5.2 1 +1971 10 5 5.1 4.8 4.8 1 +1971 10 6 10.0 9.7 9.7 1 +1971 10 7 13.9 13.6 13.6 1 +1971 10 8 9.3 9.0 9.0 1 +1971 10 9 9.4 9.1 9.1 1 +1971 10 10 8.2 8.0 8.0 1 +1971 10 11 14.6 14.4 14.4 1 +1971 10 12 10.7 10.5 10.5 1 +1971 10 13 3.9 3.7 3.7 1 +1971 10 14 2.9 2.7 2.7 1 +1971 10 15 3.0 2.8 2.8 1 +1971 10 16 4.9 4.7 4.7 1 +1971 10 17 6.5 6.2 6.2 1 +1971 10 18 7.5 7.2 7.2 1 +1971 10 19 9.6 9.3 9.3 1 +1971 10 20 10.6 10.3 10.3 1 +1971 10 21 8.7 8.4 8.4 1 +1971 10 22 6.8 6.5 6.5 1 +1971 10 23 3.4 3.1 3.1 1 +1971 10 24 6.0 5.7 5.7 1 +1971 10 25 6.3 6.0 6.0 1 +1971 10 26 6.4 6.1 6.1 1 +1971 10 27 6.5 6.2 6.2 1 +1971 10 28 9.2 8.9 8.9 1 +1971 10 29 4.9 4.6 4.6 1 +1971 10 30 6.5 6.1 6.1 1 +1971 10 31 5.7 5.3 5.3 1 +1971 11 1 7.0 6.6 6.6 1 +1971 11 2 10.6 10.2 10.2 1 +1971 11 3 10.1 9.7 9.7 1 +1971 11 4 5.5 5.1 5.1 1 +1971 11 5 1.8 1.4 1.4 1 +1971 11 6 0.4 0.0 0.0 1 +1971 11 7 -2.3 -2.7 -2.7 1 +1971 11 8 3.4 3.0 3.0 1 +1971 11 9 -2.2 -2.6 -2.6 1 +1971 11 10 -3.0 -3.4 -3.4 1 +1971 11 11 4.6 4.2 4.2 1 +1971 11 12 0.9 0.5 0.5 1 +1971 11 13 0.1 -0.4 -0.4 1 +1971 11 14 2.1 1.6 1.6 1 +1971 11 15 4.3 3.8 3.8 1 +1971 11 16 5.1 4.6 4.6 1 +1971 11 17 -1.7 -2.2 -2.2 1 +1971 11 18 -5.7 -6.2 -6.2 1 +1971 11 19 -6.9 -7.4 -7.4 1 +1971 11 20 -6.7 -7.2 -7.2 1 +1971 11 21 -0.1 -0.6 -0.6 1 +1971 11 22 -1.1 -1.6 -1.6 1 +1971 11 23 -1.4 -1.9 -1.9 1 +1971 11 24 -5.4 -5.9 -5.9 1 +1971 11 25 -0.8 -1.3 -1.3 1 +1971 11 26 1.7 1.2 1.2 1 +1971 11 27 5.6 5.1 5.1 1 +1971 11 28 5.6 5.1 5.1 1 +1971 11 29 3.8 3.3 3.3 1 +1971 11 30 2.8 2.3 2.3 1 +1971 12 1 3.0 2.5 2.5 1 +1971 12 2 2.0 1.5 1.5 1 +1971 12 3 -1.0 -1.5 -1.5 1 +1971 12 4 3.0 2.5 2.5 1 +1971 12 5 3.1 2.6 2.6 1 +1971 12 6 4.0 3.4 3.4 1 +1971 12 7 4.6 4.0 4.0 1 +1971 12 8 -3.0 -3.6 -3.6 1 +1971 12 9 -1.9 -2.5 -2.5 1 +1971 12 10 -0.9 -1.5 -1.5 1 +1971 12 11 -0.8 -1.4 -1.4 1 +1971 12 12 -1.5 -2.1 -2.1 1 +1971 12 13 -2.1 -2.7 -2.7 1 +1971 12 14 1.5 0.9 0.9 1 +1971 12 15 2.4 1.8 1.8 1 +1971 12 16 5.1 4.5 4.5 1 +1971 12 17 4.5 3.9 3.9 1 +1971 12 18 4.9 4.3 4.3 1 +1971 12 19 1.6 1.0 1.0 1 +1971 12 20 1.9 1.3 1.3 1 +1971 12 21 6.3 5.7 5.7 1 +1971 12 22 3.2 2.6 2.6 1 +1971 12 23 0.6 0.0 0.0 1 +1971 12 24 4.8 4.2 4.2 1 +1971 12 25 4.0 3.3 3.3 1 +1971 12 26 6.6 5.9 5.9 1 +1971 12 27 3.7 3.0 3.0 1 +1971 12 28 0.2 -0.5 -0.5 1 +1971 12 29 -1.3 -2.0 -2.0 1 +1971 12 30 -3.7 -4.4 -4.4 1 +1971 12 31 -3.2 -3.9 -3.9 1 +1972 1 1 -4.0 -4.7 -4.7 1 +1972 1 2 -3.0 -3.7 -3.7 1 +1972 1 3 -0.4 -1.1 -1.1 1 +1972 1 4 -0.8 -1.5 -1.5 1 +1972 1 5 -1.4 -2.1 -2.1 1 +1972 1 6 -3.1 -3.8 -3.8 1 +1972 1 7 -5.6 -6.3 -6.3 1 +1972 1 8 -3.6 -4.3 -4.3 1 +1972 1 9 -2.9 -3.6 -3.6 1 +1972 1 10 -5.4 -6.1 -6.1 1 +1972 1 11 -6.3 -7.1 -7.1 1 +1972 1 12 -3.9 -4.7 -4.7 1 +1972 1 13 -2.2 -3.0 -3.0 1 +1972 1 14 -1.6 -2.4 -2.4 1 +1972 1 15 -3.1 -3.9 -3.9 1 +1972 1 16 -3.7 -4.5 -4.5 1 +1972 1 17 -4.1 -4.9 -4.9 1 +1972 1 18 -4.8 -5.6 -5.6 1 +1972 1 19 -5.4 -6.2 -6.2 1 +1972 1 20 0.5 -0.3 -0.3 1 +1972 1 21 1.1 0.3 0.3 1 +1972 1 22 1.1 0.3 0.3 1 +1972 1 23 2.4 1.6 1.6 1 +1972 1 24 -0.1 -0.9 -0.9 1 +1972 1 25 -1.3 -2.1 -2.1 1 +1972 1 26 -2.2 -3.0 -3.0 1 +1972 1 27 -4.4 -5.2 -5.2 1 +1972 1 28 -7.0 -7.8 -7.8 1 +1972 1 29 -10.0 -10.8 -10.8 1 +1972 1 30 -5.3 -6.1 -6.1 1 +1972 1 31 -3.3 -4.1 -4.1 1 +1972 2 1 -3.1 -3.9 -3.9 1 +1972 2 2 -2.4 -3.2 -3.2 1 +1972 2 3 -1.0 -1.8 -1.8 1 +1972 2 4 -0.4 -1.2 -1.2 1 +1972 2 5 -2.8 -3.6 -3.6 1 +1972 2 6 -1.5 -2.3 -2.3 1 +1972 2 7 0.2 -0.6 -0.6 1 +1972 2 8 1.2 0.4 0.4 1 +1972 2 9 -2.3 -3.1 -3.1 1 +1972 2 10 -0.5 -1.3 -1.3 1 +1972 2 11 0.0 -0.8 -0.8 1 +1972 2 12 0.3 -0.5 -0.5 1 +1972 2 13 1.4 0.6 0.6 1 +1972 2 14 1.4 0.6 0.6 1 +1972 2 15 1.6 0.8 0.8 1 +1972 2 16 1.3 0.4 0.4 1 +1972 2 17 1.3 0.4 0.4 1 +1972 2 18 0.2 -0.7 -0.7 1 +1972 2 19 0.0 -0.9 -0.9 1 +1972 2 20 -0.9 -1.8 -1.8 1 +1972 2 21 0.3 -0.6 -0.6 1 +1972 2 22 1.0 0.1 0.1 1 +1972 2 23 -0.5 -1.4 -1.4 1 +1972 2 24 0.5 -0.4 -0.4 1 +1972 2 25 0.5 -0.4 -0.4 1 +1972 2 26 0.9 0.0 0.0 1 +1972 2 27 -0.4 -1.3 -1.3 1 +1972 2 28 -0.4 -1.3 -1.3 1 +1972 2 29 -1.3 -2.2 -2.2 1 +1972 3 1 -2.4 -3.3 -3.3 1 +1972 3 2 -2.3 -3.2 -3.2 1 +1972 3 3 -1.5 -2.4 -2.4 1 +1972 3 4 0.3 -0.6 -0.6 1 +1972 3 5 0.0 -0.9 -0.9 1 +1972 3 6 -0.4 -1.3 -1.3 1 +1972 3 7 -0.7 -1.6 -1.6 1 +1972 3 8 -1.3 -2.2 -2.2 1 +1972 3 9 -2.8 -3.7 -3.7 1 +1972 3 10 -6.2 -7.1 -7.1 1 +1972 3 11 -5.8 -6.7 -6.7 1 +1972 3 12 -0.5 -1.4 -1.4 1 +1972 3 13 3.7 2.7 2.7 1 +1972 3 14 2.8 1.8 1.8 1 +1972 3 15 1.8 0.8 0.8 1 +1972 3 16 3.3 2.3 2.3 1 +1972 3 17 4.5 3.6 3.6 1 +1972 3 18 2.7 1.8 1.8 1 +1972 3 19 3.1 2.2 2.2 1 +1972 3 20 3.8 2.9 2.9 1 +1972 3 21 5.7 4.8 4.8 1 +1972 3 22 6.6 5.7 5.7 1 +1972 3 23 3.3 2.4 2.4 1 +1972 3 24 3.7 2.8 2.8 1 +1972 3 25 1.7 0.8 0.8 1 +1972 3 26 0.7 -0.2 -0.2 1 +1972 3 27 3.8 2.9 2.9 1 +1972 3 28 1.6 0.7 0.7 1 +1972 3 29 1.6 0.7 0.7 1 +1972 3 30 1.2 0.3 0.3 1 +1972 3 31 2.0 1.1 1.1 1 +1972 4 1 -0.1 -1.0 -1.0 1 +1972 4 2 1.7 0.8 0.8 1 +1972 4 3 1.8 0.9 0.9 1 +1972 4 4 2.0 1.1 1.1 1 +1972 4 5 1.6 0.7 0.7 1 +1972 4 6 6.5 5.7 5.7 1 +1972 4 7 3.1 2.3 2.3 1 +1972 4 8 2.1 1.3 1.3 1 +1972 4 9 3.1 2.3 2.3 1 +1972 4 10 3.3 2.5 2.5 1 +1972 4 11 4.7 3.9 3.9 1 +1972 4 12 6.2 5.4 5.4 1 +1972 4 13 5.4 4.6 4.6 1 +1972 4 14 6.0 5.2 5.2 1 +1972 4 15 6.2 5.4 5.4 1 +1972 4 16 4.3 3.5 3.5 1 +1972 4 17 5.8 5.0 5.0 1 +1972 4 18 2.7 1.8 1.8 1 +1972 4 19 4.2 3.3 3.3 1 +1972 4 20 6.5 5.6 5.6 1 +1972 4 21 6.3 5.4 5.4 1 +1972 4 22 6.6 5.7 5.7 1 +1972 4 23 3.8 2.8 2.8 1 +1972 4 24 -0.2 -1.2 -1.2 1 +1972 4 25 1.9 0.9 0.9 1 +1972 4 26 7.6 6.6 6.6 1 +1972 4 27 2.0 1.0 1.0 1 +1972 4 28 3.1 2.1 2.1 1 +1972 4 29 4.7 3.6 3.6 1 +1972 4 30 7.3 6.2 6.2 1 +1972 5 1 13.2 12.1 12.1 1 +1972 5 2 14.0 12.9 12.9 1 +1972 5 3 13.0 11.9 11.9 1 +1972 5 4 12.6 11.4 11.4 1 +1972 5 5 10.7 9.5 9.5 1 +1972 5 6 8.3 7.1 7.1 1 +1972 5 7 9.6 8.4 8.4 1 +1972 5 8 7.5 6.3 6.3 1 +1972 5 9 6.0 4.7 4.7 1 +1972 5 10 6.3 5.0 5.0 1 +1972 5 11 7.5 6.2 6.2 1 +1972 5 12 10.6 9.3 9.3 1 +1972 5 13 6.2 4.9 4.9 1 +1972 5 14 6.8 5.4 5.4 1 +1972 5 15 6.0 4.6 4.6 1 +1972 5 16 8.8 7.4 7.4 1 +1972 5 17 9.2 7.8 7.8 1 +1972 5 18 8.2 6.9 6.9 1 +1972 5 19 8.4 7.1 7.1 1 +1972 5 20 10.7 9.4 9.4 1 +1972 5 21 11.3 10.0 10.0 1 +1972 5 22 8.4 7.1 7.1 1 +1972 5 23 13.4 12.1 12.1 1 +1972 5 24 15.9 14.6 14.6 1 +1972 5 25 11.2 9.9 9.9 1 +1972 5 26 9.2 7.9 7.9 1 +1972 5 27 10.3 9.0 9.0 1 +1972 5 28 12.2 10.9 10.9 1 +1972 5 29 12.0 10.8 10.8 1 +1972 5 30 11.5 10.3 10.3 1 +1972 5 31 11.6 10.4 10.4 1 +1972 6 1 9.9 8.7 8.7 1 +1972 6 2 10.4 9.2 9.2 1 +1972 6 3 13.3 12.1 12.1 1 +1972 6 4 13.9 12.7 12.7 1 +1972 6 5 17.4 16.2 16.2 1 +1972 6 6 19.3 18.1 18.1 1 +1972 6 7 19.8 18.6 18.6 1 +1972 6 8 17.6 16.4 16.4 1 +1972 6 9 16.0 14.9 14.9 1 +1972 6 10 15.8 14.7 14.7 1 +1972 6 11 14.6 13.5 13.5 1 +1972 6 12 17.2 16.1 16.1 1 +1972 6 13 17.5 16.4 16.4 1 +1972 6 14 17.1 16.0 16.0 1 +1972 6 15 14.8 13.7 13.7 1 +1972 6 16 15.6 14.5 14.5 1 +1972 6 17 18.9 17.8 17.8 1 +1972 6 18 17.1 16.0 16.0 1 +1972 6 19 15.7 14.6 14.6 1 +1972 6 20 14.1 13.0 13.0 1 +1972 6 21 14.1 13.0 13.0 1 +1972 6 22 13.9 12.8 12.8 1 +1972 6 23 12.6 11.5 11.5 1 +1972 6 24 13.7 12.6 12.6 1 +1972 6 25 16.3 15.2 15.2 1 +1972 6 26 18.6 17.5 17.5 1 +1972 6 27 21.7 20.6 20.6 1 +1972 6 28 23.1 22.0 22.0 1 +1972 6 29 23.8 22.7 22.7 1 +1972 6 30 23.1 22.1 22.1 1 +1972 7 1 23.0 22.0 22.0 1 +1972 7 2 22.9 21.9 21.9 1 +1972 7 3 18.1 17.1 17.1 1 +1972 7 4 17.4 16.4 16.4 1 +1972 7 5 19.1 18.1 18.1 1 +1972 7 6 20.4 19.4 19.4 1 +1972 7 7 21.3 20.3 20.3 1 +1972 7 8 18.7 17.7 17.7 1 +1972 7 9 18.7 17.7 17.7 1 +1972 7 10 19.2 18.2 18.2 1 +1972 7 11 20.1 19.1 19.1 1 +1972 7 12 20.7 19.7 19.7 1 +1972 7 13 19.2 18.2 18.2 1 +1972 7 14 19.0 18.0 18.0 1 +1972 7 15 20.6 19.6 19.6 1 +1972 7 16 20.6 19.6 19.6 1 +1972 7 17 23.0 22.0 22.0 1 +1972 7 18 21.6 20.6 20.6 1 +1972 7 19 21.2 20.2 20.2 1 +1972 7 20 23.6 22.6 22.6 1 +1972 7 21 21.6 20.6 20.6 1 +1972 7 22 20.2 19.2 19.2 1 +1972 7 23 21.1 20.1 20.1 1 +1972 7 24 22.0 21.1 21.1 1 +1972 7 25 23.3 22.4 22.4 1 +1972 7 26 17.7 16.8 16.8 1 +1972 7 27 16.5 15.6 15.6 1 +1972 7 28 17.4 16.5 16.5 1 +1972 7 29 18.8 17.9 17.9 1 +1972 7 30 19.7 18.8 18.8 1 +1972 7 31 20.0 19.1 19.1 1 +1972 8 1 19.3 18.4 18.4 1 +1972 8 2 18.0 17.1 17.1 1 +1972 8 3 17.5 16.6 16.6 1 +1972 8 4 17.5 16.6 16.6 1 +1972 8 5 16.7 15.8 15.8 1 +1972 8 6 17.4 16.6 16.6 1 +1972 8 7 18.9 18.1 18.1 1 +1972 8 8 20.5 19.7 19.7 1 +1972 8 9 20.2 19.4 19.4 1 +1972 8 10 18.7 17.9 17.9 1 +1972 8 11 16.5 15.7 15.7 1 +1972 8 12 16.3 15.5 15.5 1 +1972 8 13 18.0 17.2 17.2 1 +1972 8 14 18.0 17.2 17.2 1 +1972 8 15 18.3 17.5 17.5 1 +1972 8 16 17.7 16.9 16.9 1 +1972 8 17 17.6 16.9 16.9 1 +1972 8 18 15.0 14.3 14.3 1 +1972 8 19 14.6 13.9 13.9 1 +1972 8 20 17.1 16.4 16.4 1 +1972 8 21 17.2 16.5 16.5 1 +1972 8 22 13.8 13.1 13.1 1 +1972 8 23 14.4 13.7 13.7 1 +1972 8 24 11.9 11.3 11.3 1 +1972 8 25 11.3 10.7 10.7 1 +1972 8 26 12.4 11.8 11.8 1 +1972 8 27 13.6 13.0 13.0 1 +1972 8 28 13.7 13.1 13.1 1 +1972 8 29 14.5 13.9 13.9 1 +1972 8 30 13.9 13.4 13.4 1 +1972 8 31 12.0 11.5 11.5 1 +1972 9 1 11.7 11.2 11.2 1 +1972 9 2 13.3 12.8 12.8 1 +1972 9 3 14.1 13.6 13.6 1 +1972 9 4 11.5 11.0 11.0 1 +1972 9 5 13.2 12.7 12.7 1 +1972 9 6 15.5 15.1 15.1 1 +1972 9 7 15.2 14.8 14.8 1 +1972 9 8 15.3 14.9 14.9 1 +1972 9 9 12.4 12.0 12.0 1 +1972 9 10 16.9 16.5 16.5 1 +1972 9 11 14.6 14.2 14.2 1 +1972 9 12 12.3 12.0 12.0 1 +1972 9 13 12.2 11.9 11.9 1 +1972 9 14 11.4 11.1 11.1 1 +1972 9 15 10.5 10.2 10.2 1 +1972 9 16 13.3 13.0 13.0 1 +1972 9 17 13.0 12.7 12.7 1 +1972 9 18 10.6 10.3 10.3 1 +1972 9 19 11.7 11.4 11.4 1 +1972 9 20 11.6 11.3 11.3 1 +1972 9 21 12.0 11.7 11.7 1 +1972 9 22 11.9 11.6 11.6 1 +1972 9 23 8.0 7.7 7.7 1 +1972 9 24 8.4 8.1 8.1 1 +1972 9 25 9.7 9.4 9.4 1 +1972 9 26 8.4 8.1 8.1 1 +1972 9 27 4.4 4.1 4.1 1 +1972 9 28 5.7 5.4 5.4 1 +1972 9 29 5.1 4.8 4.8 1 +1972 9 30 6.2 5.9 5.9 1 +1972 10 1 6.6 6.3 6.3 1 +1972 10 2 8.5 8.2 8.2 1 +1972 10 3 9.2 8.9 8.9 1 +1972 10 4 9.8 9.5 9.5 1 +1972 10 5 12.7 12.4 12.4 1 +1972 10 6 9.9 9.6 9.6 1 +1972 10 7 10.9 10.6 10.6 1 +1972 10 8 11.5 11.2 11.2 1 +1972 10 9 10.5 10.2 10.2 1 +1972 10 10 11.0 10.8 10.8 1 +1972 10 11 9.8 9.6 9.6 1 +1972 10 12 5.8 5.6 5.6 1 +1972 10 13 8.6 8.4 8.4 1 +1972 10 14 7.6 7.4 7.4 1 +1972 10 15 8.9 8.7 8.7 1 +1972 10 16 8.7 8.5 8.5 1 +1972 10 17 8.5 8.2 8.2 1 +1972 10 18 2.7 2.4 2.4 1 +1972 10 19 2.6 2.3 2.3 1 +1972 10 20 3.0 2.7 2.7 1 +1972 10 21 1.6 1.3 1.3 1 +1972 10 22 1.9 1.6 1.6 1 +1972 10 23 4.3 4.0 4.0 1 +1972 10 24 4.3 4.0 4.0 1 +1972 10 25 4.4 4.1 4.1 1 +1972 10 26 9.7 9.4 9.4 1 +1972 10 27 6.2 5.9 5.9 1 +1972 10 28 5.6 5.3 5.3 1 +1972 10 29 6.4 6.1 6.1 1 +1972 10 30 8.4 8.0 8.0 1 +1972 10 31 8.6 8.2 8.2 1 +1972 11 1 8.4 8.0 8.0 1 +1972 11 2 6.4 6.0 6.0 1 +1972 11 3 7.5 7.1 7.1 1 +1972 11 4 4.9 4.5 4.5 1 +1972 11 5 5.2 4.8 4.8 1 +1972 11 6 3.9 3.5 3.5 1 +1972 11 7 8.8 8.4 8.4 1 +1972 11 8 5.7 5.3 5.3 1 +1972 11 9 7.1 6.7 6.7 1 +1972 11 10 7.2 6.8 6.8 1 +1972 11 11 5.6 5.2 5.2 1 +1972 11 12 5.6 5.2 5.2 1 +1972 11 13 5.0 4.5 4.5 1 +1972 11 14 3.0 2.5 2.5 1 +1972 11 15 1.3 0.8 0.8 1 +1972 11 16 1.8 1.3 1.3 1 +1972 11 17 -1.0 -1.5 -1.5 1 +1972 11 18 -2.3 -2.8 -2.8 1 +1972 11 19 -2.2 -2.7 -2.7 1 +1972 11 20 0.6 0.1 0.1 1 +1972 11 21 3.7 3.2 3.2 1 +1972 11 22 5.4 4.9 4.9 1 +1972 11 23 3.0 2.5 2.5 1 +1972 11 24 -1.1 -1.6 -1.6 1 +1972 11 25 -1.0 -1.5 -1.5 1 +1972 11 26 2.1 1.6 1.6 1 +1972 11 27 2.2 1.7 1.7 1 +1972 11 28 6.4 5.9 5.9 1 +1972 11 29 4.4 3.9 3.9 1 +1972 11 30 5.4 4.9 4.9 1 +1972 12 1 5.3 4.8 4.8 1 +1972 12 2 6.8 6.3 6.3 1 +1972 12 3 6.2 5.7 5.7 1 +1972 12 4 5.3 4.8 4.8 1 +1972 12 5 5.7 5.1 5.1 1 +1972 12 6 7.0 6.4 6.4 1 +1972 12 7 7.2 6.6 6.6 1 +1972 12 8 5.1 4.5 4.5 1 +1972 12 9 4.1 3.5 3.5 1 +1972 12 10 2.6 2.0 2.0 1 +1972 12 11 3.5 2.9 2.9 1 +1972 12 12 3.2 2.6 2.6 1 +1972 12 13 5.3 4.7 4.7 1 +1972 12 14 7.0 6.4 6.4 1 +1972 12 15 4.9 4.3 4.3 1 +1972 12 16 6.8 6.2 6.2 1 +1972 12 17 4.9 4.3 4.3 1 +1972 12 18 2.5 1.9 1.9 1 +1972 12 19 0.8 0.2 0.2 1 +1972 12 20 5.3 4.7 4.7 1 +1972 12 21 3.5 2.9 2.9 1 +1972 12 22 3.7 3.1 3.1 1 +1972 12 23 1.7 1.1 1.1 1 +1972 12 24 0.5 -0.1 -0.1 1 +1972 12 25 -0.8 -1.5 -1.5 1 +1972 12 26 2.0 1.3 1.3 1 +1972 12 27 2.6 1.9 1.9 1 +1972 12 28 2.8 2.1 2.1 1 +1972 12 29 2.5 1.8 1.8 1 +1972 12 30 0.9 0.2 0.2 1 +1972 12 31 2.5 1.8 1.8 1 +1973 1 1 -1.2 -1.9 -1.9 1 +1973 1 2 -0.5 -1.2 -1.2 1 +1973 1 3 3.6 2.9 2.9 1 +1973 1 4 1.3 0.6 0.6 1 +1973 1 5 5.4 4.7 4.7 1 +1973 1 6 5.1 4.4 4.4 1 +1973 1 7 3.2 2.5 2.5 1 +1973 1 8 2.3 1.6 1.6 1 +1973 1 9 1.9 1.2 1.2 1 +1973 1 10 5.6 4.9 4.9 1 +1973 1 11 3.6 2.8 2.8 1 +1973 1 12 0.6 -0.2 -0.2 1 +1973 1 13 -0.5 -1.3 -1.3 1 +1973 1 14 0.6 -0.2 -0.2 1 +1973 1 15 1.7 0.9 0.9 1 +1973 1 16 0.6 -0.2 -0.2 1 +1973 1 17 1.1 0.3 0.3 1 +1973 1 18 0.2 -0.6 -0.6 1 +1973 1 19 -1.2 -2.0 -2.0 1 +1973 1 20 -1.6 -2.4 -2.4 1 +1973 1 21 1.1 0.3 0.3 1 +1973 1 22 0.4 -0.4 -0.4 1 +1973 1 23 1.9 1.1 1.1 1 +1973 1 24 1.1 0.3 0.3 1 +1973 1 25 2.7 1.9 1.9 1 +1973 1 26 3.6 2.8 2.8 1 +1973 1 27 1.9 1.1 1.1 1 +1973 1 28 0.6 -0.2 -0.2 1 +1973 1 29 -0.3 -1.1 -1.1 1 +1973 1 30 -0.3 -1.1 -1.1 1 +1973 1 31 1.4 0.6 0.6 1 +1973 2 1 2.0 1.2 1.2 1 +1973 2 2 1.4 0.6 0.6 1 +1973 2 3 3.6 2.8 2.8 1 +1973 2 4 1.7 0.9 0.9 1 +1973 2 5 5.3 4.5 4.5 1 +1973 2 6 2.2 1.4 1.4 1 +1973 2 7 3.0 2.2 2.2 1 +1973 2 8 0.2 -0.6 -0.6 1 +1973 2 9 -1.3 -2.1 -2.1 1 +1973 2 10 -2.7 -3.5 -3.5 1 +1973 2 11 0.2 -0.6 -0.6 1 +1973 2 12 0.3 -0.5 -0.5 1 +1973 2 13 1.6 0.8 0.8 1 +1973 2 14 2.3 1.5 1.5 1 +1973 2 15 0.6 -0.2 -0.2 1 +1973 2 16 0.8 -0.1 -0.1 1 +1973 2 17 1.7 0.8 0.8 1 +1973 2 18 0.9 0.0 0.0 1 +1973 2 19 1.9 1.0 1.0 1 +1973 2 20 3.0 2.1 2.1 1 +1973 2 21 2.9 2.0 2.0 1 +1973 2 22 -0.5 -1.4 -1.4 1 +1973 2 23 -4.9 -5.8 -5.8 1 +1973 2 24 -6.4 -7.3 -7.3 1 +1973 2 25 -5.9 -6.8 -6.8 1 +1973 2 26 -5.0 -5.9 -5.9 1 +1973 2 27 -3.7 -4.6 -4.6 1 +1973 2 28 -1.6 -2.5 -2.5 1 +1973 3 1 1.3 0.4 0.4 1 +1973 3 2 1.7 0.8 0.8 1 +1973 3 3 0.4 -0.5 -0.5 1 +1973 3 4 2.4 1.5 1.5 1 +1973 3 5 4.5 3.6 3.6 1 +1973 3 6 2.1 1.2 1.2 1 +1973 3 7 0.7 -0.2 -0.2 1 +1973 3 8 0.6 -0.3 -0.3 1 +1973 3 9 1.0 0.1 0.1 1 +1973 3 10 2.5 1.6 1.6 1 +1973 3 11 2.7 1.8 1.8 1 +1973 3 12 3.9 3.0 3.0 1 +1973 3 13 5.3 4.3 4.3 1 +1973 3 14 1.9 0.9 0.9 1 +1973 3 15 3.1 2.1 2.1 1 +1973 3 16 4.9 3.9 3.9 1 +1973 3 17 2.0 1.1 1.1 1 +1973 3 18 0.0 -0.9 -0.9 1 +1973 3 19 2.1 1.2 1.2 1 +1973 3 20 5.3 4.4 4.4 1 +1973 3 21 4.6 3.7 3.7 1 +1973 3 22 6.3 5.4 5.4 1 +1973 3 23 8.0 7.1 7.1 1 +1973 3 24 7.7 6.8 6.8 1 +1973 3 25 10.0 9.1 9.1 1 +1973 3 26 9.4 8.5 8.5 1 +1973 3 27 3.8 2.9 2.9 1 +1973 3 28 3.0 2.1 2.1 1 +1973 3 29 5.9 5.0 5.0 1 +1973 3 30 5.8 4.9 4.9 1 +1973 3 31 5.4 4.5 4.5 1 +1973 4 1 4.5 3.6 3.6 1 +1973 4 2 4.7 3.8 3.8 1 +1973 4 3 2.0 1.1 1.1 1 +1973 4 4 2.4 1.5 1.5 1 +1973 4 5 3.5 2.6 2.6 1 +1973 4 6 4.3 3.5 3.5 1 +1973 4 7 4.0 3.2 3.2 1 +1973 4 8 2.5 1.7 1.7 1 +1973 4 9 2.6 1.8 1.8 1 +1973 4 10 2.1 1.3 1.3 1 +1973 4 11 1.7 0.9 0.9 1 +1973 4 12 0.8 0.0 0.0 1 +1973 4 13 2.4 1.6 1.6 1 +1973 4 14 6.2 5.4 5.4 1 +1973 4 15 6.3 5.5 5.5 1 +1973 4 16 6.6 5.8 5.8 1 +1973 4 17 4.8 4.0 4.0 1 +1973 4 18 3.9 3.0 3.0 1 +1973 4 19 3.1 2.2 2.2 1 +1973 4 20 2.7 1.8 1.8 1 +1973 4 21 5.2 4.3 4.3 1 +1973 4 22 6.9 6.0 6.0 1 +1973 4 23 4.3 3.3 3.3 1 +1973 4 24 3.1 2.1 2.1 1 +1973 4 25 4.0 3.0 3.0 1 +1973 4 26 2.6 1.6 1.6 1 +1973 4 27 5.0 4.0 4.0 1 +1973 4 28 6.3 5.3 5.3 1 +1973 4 29 4.1 3.0 3.0 1 +1973 4 30 6.0 4.9 4.9 1 +1973 5 1 6.8 5.7 5.7 1 +1973 5 2 10.1 9.0 9.0 1 +1973 5 3 10.4 9.3 9.3 1 +1973 5 4 8.2 7.0 7.0 1 +1973 5 5 10.6 9.4 9.4 1 +1973 5 6 10.8 9.6 9.6 1 +1973 5 7 11.6 10.4 10.4 1 +1973 5 8 8.2 7.0 7.0 1 +1973 5 9 9.7 8.4 8.4 1 +1973 5 10 10.0 8.7 8.7 1 +1973 5 11 9.9 8.6 8.6 1 +1973 5 12 9.8 8.5 8.5 1 +1973 5 13 9.9 8.6 8.6 1 +1973 5 14 10.7 9.3 9.3 1 +1973 5 15 8.7 7.3 7.3 1 +1973 5 16 7.5 6.1 6.1 1 +1973 5 17 4.7 3.3 3.3 1 +1973 5 18 7.1 5.8 5.8 1 +1973 5 19 6.4 5.1 5.1 1 +1973 5 20 10.6 9.3 9.3 1 +1973 5 21 12.1 10.8 10.8 1 +1973 5 22 13.7 12.4 12.4 1 +1973 5 23 13.3 12.0 12.0 1 +1973 5 24 13.9 12.6 12.6 1 +1973 5 25 11.6 10.3 10.3 1 +1973 5 26 12.4 11.1 11.1 1 +1973 5 27 15.1 13.8 13.8 1 +1973 5 28 16.3 15.0 15.0 1 +1973 5 29 15.2 14.0 14.0 1 +1973 5 30 16.3 15.1 15.1 1 +1973 5 31 18.0 16.8 16.8 1 +1973 6 1 15.1 13.9 13.9 1 +1973 6 2 15.5 14.3 14.3 1 +1973 6 3 16.2 15.0 15.0 1 +1973 6 4 16.9 15.7 15.7 1 +1973 6 5 14.8 13.6 13.6 1 +1973 6 6 17.6 16.4 16.4 1 +1973 6 7 18.2 17.0 17.0 1 +1973 6 8 19.3 18.1 18.1 1 +1973 6 9 17.3 16.2 16.2 1 +1973 6 10 14.7 13.6 13.6 1 +1973 6 11 11.5 10.4 10.4 1 +1973 6 12 13.2 12.1 12.1 1 +1973 6 13 18.2 17.1 17.1 1 +1973 6 14 14.5 13.4 13.4 1 +1973 6 15 11.4 10.3 10.3 1 +1973 6 16 12.2 11.1 11.1 1 +1973 6 17 13.6 12.5 12.5 1 +1973 6 18 14.4 13.3 13.3 1 +1973 6 19 15.5 14.4 14.4 1 +1973 6 20 16.9 15.8 15.8 1 +1973 6 21 18.8 17.7 17.7 1 +1973 6 22 21.3 20.2 20.2 1 +1973 6 23 23.5 22.4 22.4 1 +1973 6 24 24.6 23.5 23.5 1 +1973 6 25 24.3 23.2 23.2 1 +1973 6 26 23.1 22.0 22.0 1 +1973 6 27 23.0 21.9 21.9 1 +1973 6 28 22.3 21.2 21.2 1 +1973 6 29 18.6 17.5 17.5 1 +1973 6 30 20.0 19.0 19.0 1 +1973 7 1 22.2 21.2 21.2 1 +1973 7 2 23.7 22.7 22.7 1 +1973 7 3 22.5 21.5 21.5 1 +1973 7 4 23.3 22.3 22.3 1 +1973 7 5 24.5 23.5 23.5 1 +1973 7 6 25.0 24.0 24.0 1 +1973 7 7 25.6 24.6 24.6 1 +1973 7 8 23.1 22.1 22.1 1 +1973 7 9 22.2 21.2 21.2 1 +1973 7 10 17.5 16.5 16.5 1 +1973 7 11 17.3 16.3 16.3 1 +1973 7 12 18.9 17.9 17.9 1 +1973 7 13 19.4 18.4 18.4 1 +1973 7 14 20.3 19.3 19.3 1 +1973 7 15 21.0 20.0 20.0 1 +1973 7 16 21.3 20.3 20.3 1 +1973 7 17 20.7 19.7 19.7 1 +1973 7 18 20.5 19.5 19.5 1 +1973 7 19 15.9 14.9 14.9 1 +1973 7 20 15.5 14.5 14.5 1 +1973 7 21 17.8 16.8 16.8 1 +1973 7 22 17.9 16.9 16.9 1 +1973 7 23 17.3 16.3 16.3 1 +1973 7 24 17.8 16.9 16.9 1 +1973 7 25 18.4 17.5 17.5 1 +1973 7 26 16.0 15.1 15.1 1 +1973 7 27 20.5 19.6 19.6 1 +1973 7 28 18.5 17.6 17.6 1 +1973 7 29 18.7 17.8 17.8 1 +1973 7 30 20.4 19.5 19.5 1 +1973 7 31 20.8 19.9 19.9 1 +1973 8 1 19.3 18.4 18.4 1 +1973 8 2 20.0 19.1 19.1 1 +1973 8 3 21.0 20.1 20.1 1 +1973 8 4 20.4 19.5 19.5 1 +1973 8 5 16.1 15.2 15.2 1 +1973 8 6 16.5 15.7 15.7 1 +1973 8 7 19.5 18.7 18.7 1 +1973 8 8 13.3 12.5 12.5 1 +1973 8 9 14.3 13.5 13.5 1 +1973 8 10 14.8 14.0 14.0 1 +1973 8 11 16.3 15.5 15.5 1 +1973 8 12 16.3 15.5 15.5 1 +1973 8 13 19.2 18.4 18.4 1 +1973 8 14 21.2 20.4 20.4 1 +1973 8 15 21.6 20.8 20.8 1 +1973 8 16 22.3 21.5 21.5 1 +1973 8 17 22.0 21.3 21.3 1 +1973 8 18 18.2 17.5 17.5 1 +1973 8 19 17.1 16.4 16.4 1 +1973 8 20 15.5 14.8 14.8 1 +1973 8 21 12.1 11.4 11.4 1 +1973 8 22 10.4 9.7 9.7 1 +1973 8 23 13.8 13.1 13.1 1 +1973 8 24 12.9 12.3 12.3 1 +1973 8 25 10.5 9.9 9.9 1 +1973 8 26 13.8 13.2 13.2 1 +1973 8 27 12.3 11.7 11.7 1 +1973 8 28 16.7 16.1 16.1 1 +1973 8 29 17.6 17.0 17.0 1 +1973 8 30 16.0 15.5 15.5 1 +1973 8 31 16.1 15.6 15.6 1 +1973 9 1 14.8 14.3 14.3 1 +1973 9 2 15.4 14.9 14.9 1 +1973 9 3 13.9 13.4 13.4 1 +1973 9 4 13.9 13.4 13.4 1 +1973 9 5 16.0 15.5 15.5 1 +1973 9 6 14.6 14.2 14.2 1 +1973 9 7 15.0 14.6 14.6 1 +1973 9 8 14.6 14.2 14.2 1 +1973 9 9 13.2 12.8 12.8 1 +1973 9 10 9.3 8.9 8.9 1 +1973 9 11 8.7 8.3 8.3 1 +1973 9 12 8.1 7.8 7.8 1 +1973 9 13 8.0 7.7 7.7 1 +1973 9 14 8.6 8.3 8.3 1 +1973 9 15 11.7 11.4 11.4 1 +1973 9 16 11.0 10.7 10.7 1 +1973 9 17 8.9 8.6 8.6 1 +1973 9 18 10.4 10.1 10.1 1 +1973 9 19 10.5 10.2 10.2 1 +1973 9 20 11.3 11.0 11.0 1 +1973 9 21 10.6 10.3 10.3 1 +1973 9 22 7.5 7.2 7.2 1 +1973 9 23 7.0 6.7 6.7 1 +1973 9 24 6.8 6.5 6.5 1 +1973 9 25 7.3 7.0 7.0 1 +1973 9 26 4.3 4.0 4.0 1 +1973 9 27 4.7 4.4 4.4 1 +1973 9 28 6.7 6.4 6.4 1 +1973 9 29 10.8 10.5 10.5 1 +1973 9 30 9.8 9.5 9.5 1 +1973 10 1 7.7 7.4 7.4 1 +1973 10 2 12.6 12.3 12.3 1 +1973 10 3 12.0 11.7 11.7 1 +1973 10 4 14.0 13.7 13.7 1 +1973 10 5 12.4 12.1 12.1 1 +1973 10 6 10.7 10.4 10.4 1 +1973 10 7 10.2 9.9 9.9 1 +1973 10 8 8.5 8.2 8.2 1 +1973 10 9 8.3 8.0 8.0 1 +1973 10 10 2.8 2.6 2.6 1 +1973 10 11 -0.4 -0.6 -0.6 1 +1973 10 12 2.6 2.4 2.4 1 +1973 10 13 3.8 3.6 3.6 1 +1973 10 14 5.1 4.9 4.9 1 +1973 10 15 4.5 4.3 4.3 1 +1973 10 16 2.7 2.5 2.5 1 +1973 10 17 0.5 0.2 0.2 1 +1973 10 18 1.1 0.8 0.8 1 +1973 10 19 1.3 1.0 1.0 1 +1973 10 20 0.9 0.6 0.6 1 +1973 10 21 0.2 -0.1 -0.1 1 +1973 10 22 -1.6 -1.9 -1.9 1 +1973 10 23 0.1 -0.2 -0.2 1 +1973 10 24 3.5 3.2 3.2 1 +1973 10 25 9.4 9.1 9.1 1 +1973 10 26 8.0 7.7 7.7 1 +1973 10 27 5.2 4.9 4.9 1 +1973 10 28 7.2 6.9 6.9 1 +1973 10 29 4.5 4.2 4.2 1 +1973 10 30 2.9 2.5 2.5 1 +1973 10 31 0.2 -0.2 -0.2 1 +1973 11 1 1.7 1.3 1.3 1 +1973 11 2 3.6 3.2 3.2 1 +1973 11 3 3.1 2.7 2.7 1 +1973 11 4 6.1 5.7 5.7 1 +1973 11 5 7.0 6.6 6.6 1 +1973 11 6 6.2 5.8 5.8 1 +1973 11 7 2.4 2.0 2.0 1 +1973 11 8 4.3 3.9 3.9 1 +1973 11 9 9.1 8.7 8.7 1 +1973 11 10 2.9 2.5 2.5 1 +1973 11 11 3.5 3.1 3.1 1 +1973 11 12 -0.7 -1.1 -1.1 1 +1973 11 13 -0.1 -0.6 -0.6 1 +1973 11 14 -5.2 -5.7 -5.7 1 +1973 11 15 -2.7 -3.2 -3.2 1 +1973 11 16 1.6 1.1 1.1 1 +1973 11 17 -3.4 -3.9 -3.9 1 +1973 11 18 -3.0 -3.5 -3.5 1 +1973 11 19 1.3 0.8 0.8 1 +1973 11 20 -2.0 -2.5 -2.5 1 +1973 11 21 -3.3 -3.8 -3.8 1 +1973 11 22 4.3 3.8 3.8 1 +1973 11 23 1.5 1.0 1.0 1 +1973 11 24 -2.2 -2.7 -2.7 1 +1973 11 25 -5.9 -6.4 -6.4 1 +1973 11 26 -5.6 -6.1 -6.1 1 +1973 11 27 -5.2 -5.7 -5.7 1 +1973 11 28 -6.5 -7.0 -7.0 1 +1973 11 29 -7.6 -8.1 -8.1 1 +1973 11 30 -8.6 -9.1 -9.1 1 +1973 12 1 -7.8 -8.3 -8.3 1 +1973 12 2 -8.5 -9.0 -9.0 1 +1973 12 3 0.6 0.1 0.1 1 +1973 12 4 -1.0 -1.5 -1.5 1 +1973 12 5 -6.9 -7.4 -7.4 1 +1973 12 6 -2.7 -3.3 -3.3 1 +1973 12 7 -6.3 -6.9 -6.9 1 +1973 12 8 -9.5 -10.1 -10.1 1 +1973 12 9 -12.8 -13.4 -13.4 1 +1973 12 10 1.2 0.6 0.6 1 +1973 12 11 3.2 2.6 2.6 1 +1973 12 12 -0.9 -1.5 -1.5 1 +1973 12 13 -0.6 -1.2 -1.2 1 +1973 12 14 1.1 0.5 0.5 1 +1973 12 15 -5.3 -5.9 -5.9 1 +1973 12 16 -4.6 -5.2 -5.2 1 +1973 12 17 0.4 -0.2 -0.2 1 +1973 12 18 -7.0 -7.6 -7.6 1 +1973 12 19 -5.5 -6.1 -6.1 1 +1973 12 20 -4.0 -4.6 -4.6 1 +1973 12 21 0.2 -0.4 -0.4 1 +1973 12 22 0.4 -0.2 -0.2 1 +1973 12 23 0.1 -0.5 -0.5 1 +1973 12 24 -0.7 -1.3 -1.3 1 +1973 12 25 0.4 -0.3 -0.3 1 +1973 12 26 1.2 0.5 0.5 1 +1973 12 27 2.7 2.0 2.0 1 +1973 12 28 4.2 3.5 3.5 1 +1973 12 29 2.6 1.9 1.9 1 +1973 12 30 5.2 4.5 4.5 1 +1973 12 31 2.0 1.3 1.3 1 +1974 1 1 -0.1 -0.8 -0.8 1 +1974 1 2 1.1 0.4 0.4 1 +1974 1 3 -0.3 -1.0 -1.0 1 +1974 1 4 1.1 0.4 0.4 1 +1974 1 5 1.5 0.8 0.8 1 +1974 1 6 1.9 1.2 1.2 1 +1974 1 7 0.9 0.2 0.2 1 +1974 1 8 0.0 -0.7 -0.7 1 +1974 1 9 -0.1 -0.8 -0.8 1 +1974 1 10 0.5 -0.2 -0.2 1 +1974 1 11 -1.3 -2.1 -2.1 1 +1974 1 12 -2.0 -2.8 -2.8 1 +1974 1 13 0.4 -0.4 -0.4 1 +1974 1 14 1.5 0.7 0.7 1 +1974 1 15 2.4 1.6 1.6 1 +1974 1 16 2.6 1.8 1.8 1 +1974 1 17 0.9 0.1 0.1 1 +1974 1 18 0.0 -0.8 -0.8 1 +1974 1 19 2.7 1.9 1.9 1 +1974 1 20 0.2 -0.6 -0.6 1 +1974 1 21 0.8 0.0 0.0 1 +1974 1 22 0.9 0.1 0.1 1 +1974 1 23 -2.5 -3.3 -3.3 1 +1974 1 24 1.7 0.9 0.9 1 +1974 1 25 1.0 0.2 0.2 1 +1974 1 26 3.3 2.5 2.5 1 +1974 1 27 2.7 1.9 1.9 1 +1974 1 28 2.0 1.2 1.2 1 +1974 1 29 1.8 1.0 1.0 1 +1974 1 30 2.2 1.4 1.4 1 +1974 1 31 1.7 0.9 0.9 1 +1974 2 1 1.9 1.1 1.1 1 +1974 2 2 0.7 -0.1 -0.1 1 +1974 2 3 2.3 1.5 1.5 1 +1974 2 4 3.5 2.7 2.7 1 +1974 2 5 1.9 1.1 1.1 1 +1974 2 6 0.6 -0.2 -0.2 1 +1974 2 7 0.5 -0.3 -0.3 1 +1974 2 8 -3.0 -3.8 -3.8 1 +1974 2 9 -4.4 -5.2 -5.2 1 +1974 2 10 0.4 -0.4 -0.4 1 +1974 2 11 3.9 3.1 3.1 1 +1974 2 12 6.1 5.3 5.3 1 +1974 2 13 3.2 2.4 2.4 1 +1974 2 14 1.8 1.0 1.0 1 +1974 2 15 2.1 1.3 1.3 1 +1974 2 16 2.4 1.5 1.5 1 +1974 2 17 1.9 1.0 1.0 1 +1974 2 18 0.6 -0.3 -0.3 1 +1974 2 19 -1.1 -2.0 -2.0 1 +1974 2 20 -0.9 -1.8 -1.8 1 +1974 2 21 2.3 1.4 1.4 1 +1974 2 22 4.3 3.4 3.4 1 +1974 2 23 3.5 2.6 2.6 1 +1974 2 24 0.4 -0.5 -0.5 1 +1974 2 25 0.8 -0.1 -0.1 1 +1974 2 26 1.5 0.6 0.6 1 +1974 2 27 1.4 0.5 0.5 1 +1974 2 28 0.9 0.0 0.0 1 +1974 3 1 0.9 0.0 0.0 1 +1974 3 2 0.7 -0.2 -0.2 1 +1974 3 3 0.8 -0.1 -0.1 1 +1974 3 4 0.9 0.0 0.0 1 +1974 3 5 0.5 -0.4 -0.4 1 +1974 3 6 1.1 0.2 0.2 1 +1974 3 7 -0.1 -1.0 -1.0 1 +1974 3 8 -1.7 -2.6 -2.6 1 +1974 3 9 -0.4 -1.3 -1.3 1 +1974 3 10 -0.5 -1.4 -1.4 1 +1974 3 11 -0.4 -1.3 -1.3 1 +1974 3 12 -2.4 -3.3 -3.3 1 +1974 3 13 -1.7 -2.7 -2.7 1 +1974 3 14 0.1 -0.9 -0.9 1 +1974 3 15 0.5 -0.5 -0.5 1 +1974 3 16 1.4 0.4 0.4 1 +1974 3 17 1.6 0.7 0.7 1 +1974 3 18 1.4 0.5 0.5 1 +1974 3 19 1.5 0.6 0.6 1 +1974 3 20 2.1 1.2 1.2 1 +1974 3 21 0.8 -0.1 -0.1 1 +1974 3 22 2.0 1.1 1.1 1 +1974 3 23 1.7 0.8 0.8 1 +1974 3 24 2.5 1.6 1.6 1 +1974 3 25 3.9 3.0 3.0 1 +1974 3 26 4.9 4.0 4.0 1 +1974 3 27 5.3 4.4 4.4 1 +1974 3 28 5.9 5.0 5.0 1 +1974 3 29 5.5 4.6 4.6 1 +1974 3 30 5.7 4.8 4.8 1 +1974 3 31 7.1 6.2 6.2 1 +1974 4 1 5.5 4.6 4.6 1 +1974 4 2 5.5 4.6 4.6 1 +1974 4 3 6.5 5.6 5.6 1 +1974 4 4 8.3 7.4 7.4 1 +1974 4 5 8.8 7.9 7.9 1 +1974 4 6 10.4 9.6 9.6 1 +1974 4 7 10.1 9.3 9.3 1 +1974 4 8 12.8 12.0 12.0 1 +1974 4 9 4.3 3.5 3.5 1 +1974 4 10 5.7 4.9 4.9 1 +1974 4 11 0.2 -0.6 -0.6 1 +1974 4 12 1.3 0.5 0.5 1 +1974 4 13 2.2 1.4 1.4 1 +1974 4 14 5.2 4.4 4.4 1 +1974 4 15 2.7 1.9 1.9 1 +1974 4 16 4.1 3.3 3.3 1 +1974 4 17 6.4 5.6 5.6 1 +1974 4 18 6.8 5.9 5.9 1 +1974 4 19 5.0 4.1 4.1 1 +1974 4 20 8.3 7.4 7.4 1 +1974 4 21 6.3 5.4 5.4 1 +1974 4 22 6.6 5.7 5.7 1 +1974 4 23 6.4 5.4 5.4 1 +1974 4 24 4.6 3.6 3.6 1 +1974 4 25 4.3 3.3 3.3 1 +1974 4 26 5.0 4.0 4.0 1 +1974 4 27 6.9 5.9 5.9 1 +1974 4 28 9.2 8.2 8.2 1 +1974 4 29 10.8 9.7 9.7 1 +1974 4 30 9.5 8.4 8.4 1 +1974 5 1 8.2 7.1 7.1 1 +1974 5 2 8.5 7.4 7.4 1 +1974 5 3 7.6 6.5 6.5 1 +1974 5 4 4.2 3.0 3.0 1 +1974 5 5 3.7 2.5 2.5 1 +1974 5 6 5.0 3.8 3.8 1 +1974 5 7 6.9 5.7 5.7 1 +1974 5 8 5.3 4.1 4.1 1 +1974 5 9 6.9 5.6 5.6 1 +1974 5 10 8.2 6.9 6.9 1 +1974 5 11 8.9 7.6 7.6 1 +1974 5 12 8.3 7.0 7.0 1 +1974 5 13 9.2 7.9 7.9 1 +1974 5 14 9.4 8.0 8.0 1 +1974 5 15 9.6 8.2 8.2 1 +1974 5 16 10.5 9.1 9.1 1 +1974 5 17 15.2 13.8 13.8 1 +1974 5 18 19.1 17.8 17.8 1 +1974 5 19 14.2 12.9 12.9 1 +1974 5 20 9.8 8.5 8.5 1 +1974 5 21 11.6 10.3 10.3 1 +1974 5 22 9.6 8.3 8.3 1 +1974 5 23 12.0 10.7 10.7 1 +1974 5 24 11.6 10.3 10.3 1 +1974 5 25 9.7 8.4 8.4 1 +1974 5 26 11.0 9.7 9.7 1 +1974 5 27 10.4 9.1 9.1 1 +1974 5 28 8.6 7.3 7.3 1 +1974 5 29 9.8 8.6 8.6 1 +1974 5 30 9.9 8.7 8.7 1 +1974 5 31 10.1 8.9 8.9 1 +1974 6 1 12.7 11.5 11.5 1 +1974 6 2 13.3 12.1 12.1 1 +1974 6 3 11.6 10.4 10.4 1 +1974 6 4 11.2 10.0 10.0 1 +1974 6 5 14.4 13.2 13.2 1 +1974 6 6 14.0 12.8 12.8 1 +1974 6 7 12.2 11.0 11.0 1 +1974 6 8 11.5 10.3 10.3 1 +1974 6 9 12.9 11.8 11.8 1 +1974 6 10 10.5 9.4 9.4 1 +1974 6 11 13.5 12.4 12.4 1 +1974 6 12 12.2 11.1 11.1 1 +1974 6 13 16.8 15.7 15.7 1 +1974 6 14 17.0 15.9 15.9 1 +1974 6 15 17.9 16.8 16.8 1 +1974 6 16 18.5 17.4 17.4 1 +1974 6 17 18.1 17.0 17.0 1 +1974 6 18 18.1 17.0 17.0 1 +1974 6 19 18.6 17.5 17.5 1 +1974 6 20 19.1 18.0 18.0 1 +1974 6 21 17.6 16.5 16.5 1 +1974 6 22 16.7 15.6 15.6 1 +1974 6 23 16.4 15.3 15.3 1 +1974 6 24 16.0 14.9 14.9 1 +1974 6 25 14.6 13.5 13.5 1 +1974 6 26 14.9 13.8 13.8 1 +1974 6 27 15.5 14.4 14.4 1 +1974 6 28 16.8 15.7 15.7 1 +1974 6 29 16.8 15.7 15.7 1 +1974 6 30 16.3 15.3 15.3 1 +1974 7 1 15.9 14.9 14.9 1 +1974 7 2 19.1 18.1 18.1 1 +1974 7 3 17.6 16.6 16.6 1 +1974 7 4 16.0 15.0 15.0 1 +1974 7 5 14.7 13.7 13.7 1 +1974 7 6 14.1 13.1 13.1 1 +1974 7 7 12.0 11.0 11.0 1 +1974 7 8 14.5 13.5 13.5 1 +1974 7 9 14.3 13.3 13.3 1 +1974 7 10 15.8 14.8 14.8 1 +1974 7 11 15.3 14.3 14.3 1 +1974 7 12 16.9 15.9 15.9 1 +1974 7 13 15.7 14.7 14.7 1 +1974 7 14 14.3 13.3 13.3 1 +1974 7 15 16.0 15.0 15.0 1 +1974 7 16 15.4 14.4 14.4 1 +1974 7 17 16.0 15.0 15.0 1 +1974 7 18 18.1 17.1 17.1 1 +1974 7 19 16.8 15.8 15.8 1 +1974 7 20 16.0 15.0 15.0 1 +1974 7 21 18.8 17.8 17.8 1 +1974 7 22 16.7 15.7 15.7 1 +1974 7 23 17.8 16.8 16.8 1 +1974 7 24 15.8 14.9 14.9 1 +1974 7 25 14.8 13.9 13.9 1 +1974 7 26 12.3 11.4 11.4 1 +1974 7 27 13.5 12.6 12.6 1 +1974 7 28 14.6 13.7 13.7 1 +1974 7 29 14.2 13.3 13.3 1 +1974 7 30 14.3 13.4 13.4 1 +1974 7 31 14.8 13.9 13.9 1 +1974 8 1 15.8 14.9 14.9 1 +1974 8 2 16.2 15.3 15.3 1 +1974 8 3 15.1 14.2 14.2 1 +1974 8 4 16.3 15.4 15.4 1 +1974 8 5 16.9 16.0 16.0 1 +1974 8 6 14.6 13.8 13.8 1 +1974 8 7 13.6 12.8 12.8 1 +1974 8 8 15.0 14.2 14.2 1 +1974 8 9 15.6 14.8 14.8 1 +1974 8 10 16.5 15.7 15.7 1 +1974 8 11 15.8 15.0 15.0 1 +1974 8 12 17.0 16.2 16.2 1 +1974 8 13 15.3 14.5 14.5 1 +1974 8 14 16.0 15.2 15.2 1 +1974 8 15 14.8 14.0 14.0 1 +1974 8 16 18.5 17.7 17.7 1 +1974 8 17 17.6 16.9 16.9 1 +1974 8 18 16.0 15.3 15.3 1 +1974 8 19 15.1 14.4 14.4 1 +1974 8 20 15.0 14.3 14.3 1 +1974 8 21 15.8 15.1 15.1 1 +1974 8 22 16.3 15.6 15.6 1 +1974 8 23 17.8 17.1 17.1 1 +1974 8 24 18.0 17.4 17.4 1 +1974 8 25 18.0 17.4 17.4 1 +1974 8 26 18.6 18.0 18.0 1 +1974 8 27 18.9 18.3 18.3 1 +1974 8 28 17.4 16.8 16.8 1 +1974 8 29 16.9 16.3 16.3 1 +1974 8 30 15.4 14.9 14.9 1 +1974 8 31 17.2 16.7 16.7 1 +1974 9 1 17.1 16.6 16.6 1 +1974 9 2 17.7 17.2 17.2 1 +1974 9 3 18.0 17.5 17.5 1 +1974 9 4 14.1 13.6 13.6 1 +1974 9 5 13.6 13.1 13.1 1 +1974 9 6 15.1 14.7 14.7 1 +1974 9 7 14.2 13.8 13.8 1 +1974 9 8 14.7 14.3 14.3 1 +1974 9 9 14.7 14.3 14.3 1 +1974 9 10 14.4 14.0 14.0 1 +1974 9 11 13.1 12.7 12.7 1 +1974 9 12 14.9 14.6 14.6 1 +1974 9 13 12.9 12.6 12.6 1 +1974 9 14 12.4 12.1 12.1 1 +1974 9 15 13.4 13.1 13.1 1 +1974 9 16 13.3 13.0 13.0 1 +1974 9 17 14.8 14.5 14.5 1 +1974 9 18 15.0 14.7 14.7 1 +1974 9 19 11.2 10.9 10.9 1 +1974 9 20 11.8 11.5 11.5 1 +1974 9 21 10.5 10.2 10.2 1 +1974 9 22 12.7 12.4 12.4 1 +1974 9 23 11.0 10.7 10.7 1 +1974 9 24 11.9 11.6 11.6 1 +1974 9 25 11.6 11.3 11.3 1 +1974 9 26 10.0 9.7 9.7 1 +1974 9 27 9.9 9.6 9.6 1 +1974 9 28 11.7 11.4 11.4 1 +1974 9 29 11.9 11.6 11.6 1 +1974 9 30 9.9 9.6 9.6 1 +1974 10 1 10.1 9.8 9.8 1 +1974 10 2 9.5 9.2 9.2 1 +1974 10 3 10.5 10.2 10.2 1 +1974 10 4 7.5 7.2 7.2 1 +1974 10 5 6.9 6.6 6.6 1 +1974 10 6 8.5 8.2 8.2 1 +1974 10 7 8.7 8.4 8.4 1 +1974 10 8 8.7 8.4 8.4 1 +1974 10 9 7.2 6.9 6.9 1 +1974 10 10 5.8 5.5 5.5 1 +1974 10 11 5.6 5.4 5.4 1 +1974 10 12 5.5 5.3 5.3 1 +1974 10 13 5.9 5.7 5.7 1 +1974 10 14 4.4 4.2 4.2 1 +1974 10 15 0.8 0.6 0.6 1 +1974 10 16 2.1 1.9 1.9 1 +1974 10 17 4.6 4.3 4.3 1 +1974 10 18 4.1 3.8 3.8 1 +1974 10 19 5.1 4.8 4.8 1 +1974 10 20 8.1 7.8 7.8 1 +1974 10 21 7.1 6.8 6.8 1 +1974 10 22 8.4 8.1 8.1 1 +1974 10 23 4.5 4.2 4.2 1 +1974 10 24 3.3 3.0 3.0 1 +1974 10 25 4.9 4.6 4.6 1 +1974 10 26 3.9 3.6 3.6 1 +1974 10 27 3.8 3.5 3.5 1 +1974 10 28 5.4 5.1 5.1 1 +1974 10 29 4.4 4.1 4.1 1 +1974 10 30 5.5 5.1 5.1 1 +1974 10 31 6.1 5.7 5.7 1 +1974 11 1 5.6 5.2 5.2 1 +1974 11 2 4.0 3.6 3.6 1 +1974 11 3 3.0 2.6 2.6 1 +1974 11 4 2.2 1.8 1.8 1 +1974 11 5 1.3 0.9 0.9 1 +1974 11 6 0.5 0.1 0.1 1 +1974 11 7 0.5 0.1 0.1 1 +1974 11 8 0.2 -0.2 -0.2 1 +1974 11 9 4.6 4.2 4.2 1 +1974 11 10 6.8 6.4 6.4 1 +1974 11 11 6.2 5.8 5.8 1 +1974 11 12 6.2 5.8 5.8 1 +1974 11 13 5.9 5.4 5.4 1 +1974 11 14 5.8 5.3 5.3 1 +1974 11 15 8.3 7.8 7.8 1 +1974 11 16 6.9 6.4 6.4 1 +1974 11 17 6.2 5.7 5.7 1 +1974 11 18 5.6 5.1 5.1 1 +1974 11 19 6.7 6.2 6.2 1 +1974 11 20 3.9 3.4 3.4 1 +1974 11 21 1.2 0.7 0.7 1 +1974 11 22 -0.4 -0.9 -0.9 1 +1974 11 23 0.3 -0.2 -0.2 1 +1974 11 24 3.3 2.8 2.8 1 +1974 11 25 5.2 4.7 4.7 1 +1974 11 26 5.6 5.1 5.1 1 +1974 11 27 4.0 3.5 3.5 1 +1974 11 28 3.6 3.1 3.1 1 +1974 11 29 1.1 0.6 0.6 1 +1974 11 30 -0.7 -1.2 -1.2 1 +1974 12 1 -3.6 -4.1 -4.1 1 +1974 12 2 2.0 1.5 1.5 1 +1974 12 3 3.1 2.6 2.6 1 +1974 12 4 3.1 2.6 2.6 1 +1974 12 5 2.5 1.9 1.9 1 +1974 12 6 1.1 0.5 0.5 1 +1974 12 7 0.0 -0.6 -0.6 1 +1974 12 8 3.3 2.7 2.7 1 +1974 12 9 5.2 4.6 4.6 1 +1974 12 10 3.3 2.7 2.7 1 +1974 12 11 2.4 1.8 1.8 1 +1974 12 12 1.5 0.9 0.9 1 +1974 12 13 -1.3 -1.9 -1.9 1 +1974 12 14 0.9 0.3 0.3 1 +1974 12 15 2.7 2.1 2.1 1 +1974 12 16 2.1 1.5 1.5 1 +1974 12 17 2.6 2.0 2.0 1 +1974 12 18 1.0 0.4 0.4 1 +1974 12 19 -0.1 -0.7 -0.7 1 +1974 12 20 2.1 1.5 1.5 1 +1974 12 21 5.9 5.3 5.3 1 +1974 12 22 8.7 8.1 8.1 1 +1974 12 23 6.3 5.7 5.7 1 +1974 12 24 5.5 4.9 4.9 1 +1974 12 25 4.3 3.6 3.6 1 +1974 12 26 4.6 3.9 3.9 1 +1974 12 27 1.1 0.4 0.4 1 +1974 12 28 -1.4 -2.1 -2.1 1 +1974 12 29 -1.7 -2.4 -2.4 1 +1974 12 30 -5.5 -6.2 -6.2 1 +1974 12 31 -5.9 -6.6 -6.6 1 +1975 1 1 -0.1 -0.8 -0.8 1 +1975 1 2 1.6 0.9 0.9 1 +1975 1 3 5.7 5.0 5.0 1 +1975 1 4 2.2 1.5 1.5 1 +1975 1 5 2.1 1.4 1.4 1 +1975 1 6 2.6 1.9 1.9 1 +1975 1 7 -3.7 -4.4 -4.4 1 +1975 1 8 -6.7 -7.4 -7.4 1 +1975 1 9 -3.2 -3.9 -3.9 1 +1975 1 10 2.2 1.5 1.5 1 +1975 1 11 -2.6 -3.4 -3.4 1 +1975 1 12 0.9 0.1 0.1 1 +1975 1 13 4.6 3.8 3.8 1 +1975 1 14 5.2 4.4 4.4 1 +1975 1 15 5.8 5.0 5.0 1 +1975 1 16 6.2 5.4 5.4 1 +1975 1 17 4.5 3.7 3.7 1 +1975 1 18 2.6 1.8 1.8 1 +1975 1 19 1.2 0.4 0.4 1 +1975 1 20 0.8 0.0 0.0 1 +1975 1 21 3.0 2.2 2.2 1 +1975 1 22 3.7 2.9 2.9 1 +1975 1 23 3.5 2.7 2.7 1 +1975 1 24 2.7 1.9 1.9 1 +1975 1 25 0.9 0.1 0.1 1 +1975 1 26 2.8 2.0 2.0 1 +1975 1 27 3.5 2.7 2.7 1 +1975 1 28 3.2 2.4 2.4 1 +1975 1 29 1.4 0.6 0.6 1 +1975 1 30 1.2 0.4 0.4 1 +1975 1 31 1.5 0.7 0.7 1 +1975 2 1 2.0 1.2 1.2 1 +1975 2 2 1.4 0.6 0.6 1 +1975 2 3 2.2 1.4 1.4 1 +1975 2 4 1.3 0.5 0.5 1 +1975 2 5 -0.3 -1.1 -1.1 1 +1975 2 6 1.4 0.6 0.6 1 +1975 2 7 0.4 -0.4 -0.4 1 +1975 2 8 -1.5 -2.3 -2.3 1 +1975 2 9 0.8 0.0 0.0 1 +1975 2 10 -0.9 -1.7 -1.7 1 +1975 2 11 -0.8 -1.6 -1.6 1 +1975 2 12 -0.4 -1.2 -1.2 1 +1975 2 13 -3.3 -4.1 -4.1 1 +1975 2 14 -8.6 -9.4 -9.4 1 +1975 2 15 -10.0 -10.8 -10.8 1 +1975 2 16 -4.7 -5.6 -5.6 1 +1975 2 17 -1.7 -2.6 -2.6 1 +1975 2 18 -0.2 -1.1 -1.1 1 +1975 2 19 0.5 -0.4 -0.4 1 +1975 2 20 1.5 0.6 0.6 1 +1975 2 21 2.7 1.8 1.8 1 +1975 2 22 2.9 2.0 2.0 1 +1975 2 23 0.1 -0.8 -0.8 1 +1975 2 24 2.4 1.5 1.5 1 +1975 2 25 0.5 -0.4 -0.4 1 +1975 2 26 0.2 -0.7 -0.7 1 +1975 2 27 0.1 -0.8 -0.8 1 +1975 2 28 2.8 1.9 1.9 1 +1975 3 1 2.8 1.9 1.9 1 +1975 3 2 1.4 0.5 0.5 1 +1975 3 3 1.2 0.3 0.3 1 +1975 3 4 5.4 4.5 4.5 1 +1975 3 5 6.0 5.1 5.1 1 +1975 3 6 4.0 3.1 3.1 1 +1975 3 7 4.4 3.5 3.5 1 +1975 3 8 3.2 2.3 2.3 1 +1975 3 9 3.9 3.0 3.0 1 +1975 3 10 3.8 2.9 2.9 1 +1975 3 11 0.7 -0.2 -0.2 1 +1975 3 12 1.3 0.4 0.4 1 +1975 3 13 2.8 1.8 1.8 1 +1975 3 14 3.4 2.4 2.4 1 +1975 3 15 2.7 1.7 1.7 1 +1975 3 16 -1.0 -2.0 -2.0 1 +1975 3 17 -2.4 -3.3 -3.3 1 +1975 3 18 -3.2 -4.1 -4.1 1 +1975 3 19 0.4 -0.5 -0.5 1 +1975 3 20 -0.4 -1.3 -1.3 1 +1975 3 21 1.1 0.2 0.2 1 +1975 3 22 2.3 1.4 1.4 1 +1975 3 23 3.3 2.4 2.4 1 +1975 3 24 2.7 1.8 1.8 1 +1975 3 25 2.4 1.5 1.5 1 +1975 3 26 1.5 0.6 0.6 1 +1975 3 27 0.8 -0.1 -0.1 1 +1975 3 28 0.9 0.0 0.0 1 +1975 3 29 0.1 -0.8 -0.8 1 +1975 3 30 0.3 -0.6 -0.6 1 +1975 3 31 1.3 0.4 0.4 1 +1975 4 1 0.8 -0.1 -0.1 1 +1975 4 2 -0.1 -1.0 -1.0 1 +1975 4 3 -0.6 -1.5 -1.5 1 +1975 4 4 -1.3 -2.2 -2.2 1 +1975 4 5 1.5 0.6 0.6 1 +1975 4 6 1.6 0.8 0.8 1 +1975 4 7 1.0 0.2 0.2 1 +1975 4 8 3.6 2.8 2.8 1 +1975 4 9 3.7 2.9 2.9 1 +1975 4 10 3.2 2.4 2.4 1 +1975 4 11 2.7 1.9 1.9 1 +1975 4 12 3.1 2.3 2.3 1 +1975 4 13 2.3 1.5 1.5 1 +1975 4 14 2.7 1.9 1.9 1 +1975 4 15 1.9 1.1 1.1 1 +1975 4 16 3.1 2.3 2.3 1 +1975 4 17 5.6 4.8 4.8 1 +1975 4 18 7.1 6.2 6.2 1 +1975 4 19 7.1 6.2 6.2 1 +1975 4 20 5.7 4.8 4.8 1 +1975 4 21 6.1 5.2 5.2 1 +1975 4 22 8.6 7.7 7.7 1 +1975 4 23 10.3 9.3 9.3 1 +1975 4 24 7.7 6.7 6.7 1 +1975 4 25 5.9 4.9 4.9 1 +1975 4 26 8.7 7.7 7.7 1 +1975 4 27 9.2 8.2 8.2 1 +1975 4 28 8.5 7.5 7.5 1 +1975 4 29 9.3 8.2 8.2 1 +1975 4 30 12.8 11.7 11.7 1 +1975 5 1 9.8 8.7 8.7 1 +1975 5 2 8.2 7.1 7.1 1 +1975 5 3 8.6 7.5 7.5 1 +1975 5 4 7.3 6.1 6.1 1 +1975 5 5 9.5 8.3 8.3 1 +1975 5 6 12.0 10.8 10.8 1 +1975 5 7 11.0 9.8 9.8 1 +1975 5 8 11.8 10.6 10.6 1 +1975 5 9 14.9 13.6 13.6 1 +1975 5 10 15.8 14.5 14.5 1 +1975 5 11 14.5 13.2 13.2 1 +1975 5 12 12.6 11.3 11.3 1 +1975 5 13 9.2 7.9 7.9 1 +1975 5 14 11.9 10.5 10.5 1 +1975 5 15 16.1 14.7 14.7 1 +1975 5 16 15.5 14.1 14.1 1 +1975 5 17 16.6 15.2 15.2 1 +1975 5 18 16.1 14.8 14.8 1 +1975 5 19 15.7 14.4 14.4 1 +1975 5 20 17.0 15.7 15.7 1 +1975 5 21 11.4 10.1 10.1 1 +1975 5 22 9.3 8.0 8.0 1 +1975 5 23 11.0 9.7 9.7 1 +1975 5 24 9.7 8.4 8.4 1 +1975 5 25 10.1 8.8 8.8 1 +1975 5 26 12.4 11.1 11.1 1 +1975 5 27 13.1 11.8 11.8 1 +1975 5 28 9.9 8.6 8.6 1 +1975 5 29 6.4 5.2 5.2 1 +1975 5 30 6.1 4.9 4.9 1 +1975 5 31 6.4 5.2 5.2 1 +1975 6 1 8.3 7.1 7.1 1 +1975 6 2 8.2 7.0 7.0 1 +1975 6 3 10.0 8.8 8.8 1 +1975 6 4 9.4 8.2 8.2 1 +1975 6 5 12.0 10.8 10.8 1 +1975 6 6 15.0 13.8 13.8 1 +1975 6 7 15.5 14.3 14.3 1 +1975 6 8 17.4 16.2 16.2 1 +1975 6 9 18.6 17.5 17.5 1 +1975 6 10 14.9 13.8 13.8 1 +1975 6 11 15.6 14.5 14.5 1 +1975 6 12 20.8 19.7 19.7 1 +1975 6 13 14.6 13.5 13.5 1 +1975 6 14 14.3 13.2 13.2 1 +1975 6 15 14.9 13.8 13.8 1 +1975 6 16 13.9 12.8 12.8 1 +1975 6 17 15.9 14.8 14.8 1 +1975 6 18 17.0 15.9 15.9 1 +1975 6 19 18.5 17.4 17.4 1 +1975 6 20 20.5 19.4 19.4 1 +1975 6 21 21.2 20.1 20.1 1 +1975 6 22 17.0 15.9 15.9 1 +1975 6 23 17.8 16.7 16.7 1 +1975 6 24 19.4 18.3 18.3 1 +1975 6 25 15.1 14.0 14.0 1 +1975 6 26 18.7 17.6 17.6 1 +1975 6 27 11.0 9.9 9.9 1 +1975 6 28 11.3 10.2 10.2 1 +1975 6 29 14.1 13.0 13.0 1 +1975 6 30 14.0 13.0 13.0 1 +1975 7 1 18.6 17.6 17.6 1 +1975 7 2 21.6 20.6 20.6 1 +1975 7 3 19.7 18.7 18.7 1 +1975 7 4 14.9 13.9 13.9 1 +1975 7 5 17.1 16.1 16.1 1 +1975 7 6 22.3 21.3 21.3 1 +1975 7 7 21.1 20.1 20.1 1 +1975 7 8 17.6 16.6 16.6 1 +1975 7 9 18.7 17.7 17.7 1 +1975 7 10 19.1 18.1 18.1 1 +1975 7 11 20.6 19.6 19.6 1 +1975 7 12 20.7 19.7 19.7 1 +1975 7 13 17.3 16.3 16.3 1 +1975 7 14 16.4 15.4 15.4 1 +1975 7 15 16.9 15.9 15.9 1 +1975 7 16 17.5 16.5 16.5 1 +1975 7 17 17.6 16.6 16.6 1 +1975 7 18 20.2 19.2 19.2 1 +1975 7 19 20.9 19.9 19.9 1 +1975 7 20 22.5 21.5 21.5 1 +1975 7 21 23.2 22.2 22.2 1 +1975 7 22 20.9 19.9 19.9 1 +1975 7 23 18.7 17.7 17.7 1 +1975 7 24 18.6 17.7 17.7 1 +1975 7 25 17.7 16.8 16.8 1 +1975 7 26 16.6 15.7 15.7 1 +1975 7 27 19.0 18.1 18.1 1 +1975 7 28 20.7 19.8 19.8 1 +1975 7 29 21.5 20.6 20.6 1 +1975 7 30 22.1 21.2 21.2 1 +1975 7 31 21.5 20.6 20.6 1 +1975 8 1 20.0 19.1 19.1 1 +1975 8 2 20.6 19.7 19.7 1 +1975 8 3 22.0 21.1 21.1 1 +1975 8 4 24.0 23.1 23.1 1 +1975 8 5 25.6 24.7 24.7 1 +1975 8 6 27.1 26.3 26.3 1 +1975 8 7 28.3 27.5 27.5 1 +1975 8 8 27.0 26.2 26.2 1 +1975 8 9 25.6 24.8 24.8 1 +1975 8 10 23.0 22.2 22.2 1 +1975 8 11 23.6 22.8 22.8 1 +1975 8 12 17.3 16.5 16.5 1 +1975 8 13 16.8 16.0 16.0 1 +1975 8 14 19.9 19.1 19.1 1 +1975 8 15 18.6 17.8 17.8 1 +1975 8 16 17.0 16.2 16.2 1 +1975 8 17 16.7 16.0 16.0 1 +1975 8 18 14.0 13.3 13.3 1 +1975 8 19 16.9 16.2 16.2 1 +1975 8 20 18.5 17.8 17.8 1 +1975 8 21 17.8 17.1 17.1 1 +1975 8 22 17.5 16.8 16.8 1 +1975 8 23 17.0 16.3 16.3 1 +1975 8 24 17.4 16.8 16.8 1 +1975 8 25 16.6 16.0 16.0 1 +1975 8 26 15.1 14.5 14.5 1 +1975 8 27 18.7 18.1 18.1 1 +1975 8 28 17.4 16.8 16.8 1 +1975 8 29 16.8 16.2 16.2 1 +1975 8 30 15.8 15.3 15.3 1 +1975 8 31 15.3 14.8 14.8 1 +1975 9 1 19.2 18.7 18.7 1 +1975 9 2 18.1 17.6 17.6 1 +1975 9 3 19.6 19.1 19.1 1 +1975 9 4 16.4 15.9 15.9 1 +1975 9 5 15.4 14.9 14.9 1 +1975 9 6 14.8 14.4 14.4 1 +1975 9 7 9.8 9.4 9.4 1 +1975 9 8 12.5 12.1 12.1 1 +1975 9 9 14.9 14.5 14.5 1 +1975 9 10 16.2 15.8 15.8 1 +1975 9 11 15.6 15.2 15.2 1 +1975 9 12 16.1 15.8 15.8 1 +1975 9 13 14.1 13.8 13.8 1 +1975 9 14 12.9 12.6 12.6 1 +1975 9 15 13.8 13.5 13.5 1 +1975 9 16 13.5 13.2 13.2 1 +1975 9 17 16.3 16.0 16.0 1 +1975 9 18 16.3 16.0 16.0 1 +1975 9 19 14.2 13.9 13.9 1 +1975 9 20 13.6 13.3 13.3 1 +1975 9 21 12.6 12.3 12.3 1 +1975 9 22 11.0 10.7 10.7 1 +1975 9 23 14.2 13.9 13.9 1 +1975 9 24 12.8 12.5 12.5 1 +1975 9 25 12.7 12.4 12.4 1 +1975 9 26 14.3 14.0 14.0 1 +1975 9 27 11.0 10.7 10.7 1 +1975 9 28 12.4 12.1 12.1 1 +1975 9 29 10.5 10.2 10.2 1 +1975 9 30 10.9 10.6 10.6 1 +1975 10 1 13.7 13.4 13.4 1 +1975 10 2 12.3 12.0 12.0 1 +1975 10 3 11.6 11.3 11.3 1 +1975 10 4 11.1 10.8 10.8 1 +1975 10 5 10.8 10.5 10.5 1 +1975 10 6 12.1 11.8 11.8 1 +1975 10 7 8.3 8.0 8.0 1 +1975 10 8 5.5 5.2 5.2 1 +1975 10 9 3.4 3.1 3.1 1 +1975 10 10 3.4 3.2 3.2 1 +1975 10 11 4.3 4.1 4.1 1 +1975 10 12 7.4 7.2 7.2 1 +1975 10 13 6.9 6.7 6.7 1 +1975 10 14 6.7 6.5 6.5 1 +1975 10 15 9.9 9.7 9.7 1 +1975 10 16 9.1 8.9 8.9 1 +1975 10 17 7.6 7.3 7.3 1 +1975 10 18 6.7 6.4 6.4 1 +1975 10 19 3.4 3.1 3.1 1 +1975 10 20 2.9 2.6 2.6 1 +1975 10 21 4.3 4.0 4.0 1 +1975 10 22 5.9 5.6 5.6 1 +1975 10 23 5.6 5.3 5.3 1 +1975 10 24 9.1 8.8 8.8 1 +1975 10 25 9.9 9.6 9.6 1 +1975 10 26 11.5 11.2 11.2 1 +1975 10 27 9.9 9.6 9.6 1 +1975 10 28 8.5 8.2 8.2 1 +1975 10 29 9.3 9.0 9.0 1 +1975 10 30 6.0 5.6 5.6 1 +1975 10 31 5.2 4.8 4.8 1 +1975 11 1 8.5 8.1 8.1 1 +1975 11 2 8.3 7.9 7.9 1 +1975 11 3 8.6 8.2 8.2 1 +1975 11 4 7.8 7.4 7.4 1 +1975 11 5 8.1 7.7 7.7 1 +1975 11 6 8.3 7.9 7.9 1 +1975 11 7 4.5 4.1 4.1 1 +1975 11 8 0.7 0.3 0.3 1 +1975 11 9 2.9 2.5 2.5 1 +1975 11 10 4.2 3.8 3.8 1 +1975 11 11 4.5 4.1 4.1 1 +1975 11 12 6.6 6.2 6.2 1 +1975 11 13 5.7 5.2 5.2 1 +1975 11 14 5.7 5.2 5.2 1 +1975 11 15 5.5 5.0 5.0 1 +1975 11 16 4.2 3.7 3.7 1 +1975 11 17 6.0 5.5 5.5 1 +1975 11 18 4.2 3.7 3.7 1 +1975 11 19 1.5 1.0 1.0 1 +1975 11 20 -0.6 -1.1 -1.1 1 +1975 11 21 -3.1 -3.6 -3.6 1 +1975 11 22 -4.8 -5.3 -5.3 1 +1975 11 23 -2.8 -3.3 -3.3 1 +1975 11 24 1.6 1.1 1.1 1 +1975 11 25 1.2 0.7 0.7 1 +1975 11 26 2.5 2.0 2.0 1 +1975 11 27 4.5 4.0 4.0 1 +1975 11 28 4.4 3.9 3.9 1 +1975 11 29 3.2 2.7 2.7 1 +1975 11 30 2.1 1.6 1.6 1 +1975 12 1 0.6 0.1 0.1 1 +1975 12 2 4.3 3.8 3.8 1 +1975 12 3 5.5 5.0 5.0 1 +1975 12 4 3.3 2.8 2.8 1 +1975 12 5 1.2 0.6 0.6 1 +1975 12 6 -0.3 -0.9 -0.9 1 +1975 12 7 0.3 -0.3 -0.3 1 +1975 12 8 0.8 0.2 0.2 1 +1975 12 9 0.9 0.3 0.3 1 +1975 12 10 -1.2 -1.8 -1.8 1 +1975 12 11 0.3 -0.3 -0.3 1 +1975 12 12 4.1 3.5 3.5 1 +1975 12 13 -2.8 -3.4 -3.4 1 +1975 12 14 -1.1 -1.7 -1.7 1 +1975 12 15 5.0 4.4 4.4 1 +1975 12 16 2.8 2.2 2.2 1 +1975 12 17 -5.5 -6.1 -6.1 1 +1975 12 18 -5.1 -5.7 -5.7 1 +1975 12 19 -2.3 -2.9 -2.9 1 +1975 12 20 -0.9 -1.5 -1.5 1 +1975 12 21 4.3 3.7 3.7 1 +1975 12 22 4.3 3.7 3.7 1 +1975 12 23 5.1 4.5 4.5 1 +1975 12 24 0.5 -0.1 -0.1 1 +1975 12 25 -3.6 -4.3 -4.3 1 +1975 12 26 -3.8 -4.5 -4.5 1 +1975 12 27 3.3 2.6 2.6 1 +1975 12 28 7.5 6.8 6.8 1 +1975 12 29 3.0 2.3 2.3 1 +1975 12 30 4.9 4.2 4.2 1 +1975 12 31 4.2 3.5 3.5 1 +1976 1 1 -0.7 -1.4 -1.4 1 +1976 1 2 -4.2 -4.9 -4.9 1 +1976 1 3 -2.5 -3.2 -3.2 1 +1976 1 4 -5.3 -6.0 -6.0 1 +1976 1 5 -3.6 -4.3 -4.3 1 +1976 1 6 -5.2 -5.9 -5.9 1 +1976 1 7 -4.2 -4.9 -4.9 1 +1976 1 8 4.6 3.9 3.9 1 +1976 1 9 0.6 -0.1 -0.1 1 +1976 1 10 -3.6 -4.3 -4.3 1 +1976 1 11 -0.3 -1.1 -1.1 1 +1976 1 12 -4.2 -5.0 -5.0 1 +1976 1 13 -4.5 -5.3 -5.3 1 +1976 1 14 -8.6 -9.4 -9.4 1 +1976 1 15 -11.8 -12.6 -12.6 1 +1976 1 16 -8.2 -9.0 -9.0 1 +1976 1 17 -5.5 -6.3 -6.3 1 +1976 1 18 -2.8 -3.6 -3.6 1 +1976 1 19 1.4 0.6 0.6 1 +1976 1 20 3.6 2.8 2.8 1 +1976 1 21 0.5 -0.3 -0.3 1 +1976 1 22 -3.7 -4.5 -4.5 1 +1976 1 23 -5.1 -5.9 -5.9 1 +1976 1 24 -6.2 -7.0 -7.0 1 +1976 1 25 -6.9 -7.7 -7.7 1 +1976 1 26 -7.1 -7.9 -7.9 1 +1976 1 27 -8.9 -9.7 -9.7 1 +1976 1 28 -11.3 -12.1 -12.1 1 +1976 1 29 -6.2 -7.0 -7.0 1 +1976 1 30 -5.9 -6.7 -6.7 1 +1976 1 31 -7.5 -8.3 -8.3 1 +1976 2 1 -5.0 -5.8 -5.8 1 +1976 2 2 -3.1 -3.9 -3.9 1 +1976 2 3 -5.4 -6.2 -6.2 1 +1976 2 4 -5.8 -6.6 -6.6 1 +1976 2 5 -4.5 -5.3 -5.3 1 +1976 2 6 -3.2 -4.0 -4.0 1 +1976 2 7 -3.5 -4.3 -4.3 1 +1976 2 8 -3.9 -4.7 -4.7 1 +1976 2 9 -5.1 -5.9 -5.9 1 +1976 2 10 0.4 -0.4 -0.4 1 +1976 2 11 1.0 0.2 0.2 1 +1976 2 12 -0.8 -1.6 -1.6 1 +1976 2 13 -0.5 -1.3 -1.3 1 +1976 2 14 -4.3 -5.1 -5.1 1 +1976 2 15 -6.5 -7.3 -7.3 1 +1976 2 16 -1.5 -2.4 -2.4 1 +1976 2 17 0.1 -0.8 -0.8 1 +1976 2 18 -0.1 -1.0 -1.0 1 +1976 2 19 0.0 -0.9 -0.9 1 +1976 2 20 0.0 -0.9 -0.9 1 +1976 2 21 -1.6 -2.5 -2.5 1 +1976 2 22 -2.2 -3.1 -3.1 1 +1976 2 23 -1.7 -2.6 -2.6 1 +1976 2 24 0.8 -0.1 -0.1 1 +1976 2 25 6.4 5.5 5.5 1 +1976 2 26 7.0 6.1 6.1 1 +1976 2 27 3.5 2.6 2.6 1 +1976 2 28 0.8 -0.1 -0.1 1 +1976 2 29 3.3 2.4 2.4 1 +1976 3 1 3.9 3.0 3.0 1 +1976 3 2 2.6 1.7 1.7 1 +1976 3 3 -1.0 -1.9 -1.9 1 +1976 3 4 -0.8 -1.7 -1.7 1 +1976 3 5 -2.9 -3.8 -3.8 1 +1976 3 6 -2.8 -3.7 -3.7 1 +1976 3 7 -1.5 -2.4 -2.4 1 +1976 3 8 -2.0 -2.9 -2.9 1 +1976 3 9 -2.7 -3.6 -3.6 1 +1976 3 10 -5.1 -6.0 -6.0 1 +1976 3 11 -4.5 -5.4 -5.4 1 +1976 3 12 -6.2 -7.1 -7.1 1 +1976 3 13 -6.6 -7.6 -7.6 1 +1976 3 14 -5.2 -6.2 -6.2 1 +1976 3 15 -6.1 -7.1 -7.1 1 +1976 3 16 -5.8 -6.8 -6.8 1 +1976 3 17 -2.9 -3.8 -3.8 1 +1976 3 18 -2.8 -3.7 -3.7 1 +1976 3 19 -5.1 -6.0 -6.0 1 +1976 3 20 -6.5 -7.4 -7.4 1 +1976 3 21 -6.7 -7.6 -7.6 1 +1976 3 22 -5.2 -6.1 -6.1 1 +1976 3 23 -3.6 -4.5 -4.5 1 +1976 3 24 -4.3 -5.2 -5.2 1 +1976 3 25 -0.5 -1.4 -1.4 1 +1976 3 26 0.7 -0.2 -0.2 1 +1976 3 27 3.2 2.3 2.3 1 +1976 3 28 6.4 5.5 5.5 1 +1976 3 29 4.7 3.8 3.8 1 +1976 3 30 3.3 2.4 2.4 1 +1976 3 31 3.3 2.4 2.4 1 +1976 4 1 3.4 2.5 2.5 1 +1976 4 2 3.7 2.8 2.8 1 +1976 4 3 3.2 2.3 2.3 1 +1976 4 4 0.0 -0.9 -0.9 1 +1976 4 5 3.2 2.3 2.3 1 +1976 4 6 3.1 2.3 2.3 1 +1976 4 7 2.1 1.3 1.3 1 +1976 4 8 1.6 0.8 0.8 1 +1976 4 9 3.6 2.8 2.8 1 +1976 4 10 6.6 5.8 5.8 1 +1976 4 11 8.2 7.4 7.4 1 +1976 4 12 7.9 7.1 7.1 1 +1976 4 13 5.6 4.8 4.8 1 +1976 4 14 3.6 2.8 2.8 1 +1976 4 15 8.0 7.2 7.2 1 +1976 4 16 11.3 10.5 10.5 1 +1976 4 17 11.0 10.2 10.2 1 +1976 4 18 6.9 6.0 6.0 1 +1976 4 19 5.1 4.2 4.2 1 +1976 4 20 5.3 4.4 4.4 1 +1976 4 21 2.9 2.0 2.0 1 +1976 4 22 3.6 2.7 2.7 1 +1976 4 23 3.8 2.8 2.8 1 +1976 4 24 5.3 4.3 4.3 1 +1976 4 25 4.0 3.0 3.0 1 +1976 4 26 0.7 -0.3 -0.3 1 +1976 4 27 0.0 -1.0 -1.0 1 +1976 4 28 0.8 -0.2 -0.2 1 +1976 4 29 2.1 1.0 1.0 1 +1976 4 30 3.8 2.7 2.7 1 +1976 5 1 1.4 0.3 0.3 1 +1976 5 2 3.0 1.9 1.9 1 +1976 5 3 6.4 5.3 5.3 1 +1976 5 4 5.6 4.4 4.4 1 +1976 5 5 4.3 3.1 3.1 1 +1976 5 6 8.3 7.1 7.1 1 +1976 5 7 10.1 8.9 8.9 1 +1976 5 8 11.7 10.5 10.5 1 +1976 5 9 12.9 11.6 11.6 1 +1976 5 10 14.9 13.6 13.6 1 +1976 5 11 14.6 13.3 13.3 1 +1976 5 12 11.4 10.1 10.1 1 +1976 5 13 10.3 9.0 9.0 1 +1976 5 14 11.1 9.7 9.7 1 +1976 5 15 12.6 11.2 11.2 1 +1976 5 16 15.3 13.9 13.9 1 +1976 5 17 16.0 14.6 14.6 1 +1976 5 18 17.4 16.1 16.1 1 +1976 5 19 15.8 14.5 14.5 1 +1976 5 20 15.1 13.8 13.8 1 +1976 5 21 12.6 11.3 11.3 1 +1976 5 22 11.0 9.7 9.7 1 +1976 5 23 13.9 12.6 12.6 1 +1976 5 24 15.6 14.3 14.3 1 +1976 5 25 17.9 16.6 16.6 1 +1976 5 26 12.6 11.3 11.3 1 +1976 5 27 7.5 6.2 6.2 1 +1976 5 28 6.7 5.4 5.4 1 +1976 5 29 6.1 4.9 4.9 1 +1976 5 30 7.4 6.2 6.2 1 +1976 5 31 9.1 7.9 7.9 1 +1976 6 1 11.0 9.8 9.8 1 +1976 6 2 9.8 8.6 8.6 1 +1976 6 3 11.1 9.9 9.9 1 +1976 6 4 14.3 13.1 13.1 1 +1976 6 5 12.8 11.6 11.6 1 +1976 6 6 11.9 10.7 10.7 1 +1976 6 7 13.4 12.2 12.2 1 +1976 6 8 11.0 9.8 9.8 1 +1976 6 9 12.7 11.6 11.6 1 +1976 6 10 13.5 12.4 12.4 1 +1976 6 11 10.7 9.6 9.6 1 +1976 6 12 13.7 12.6 12.6 1 +1976 6 13 16.1 15.0 15.0 1 +1976 6 14 17.7 16.6 16.6 1 +1976 6 15 11.3 10.2 10.2 1 +1976 6 16 13.6 12.5 12.5 1 +1976 6 17 12.6 11.5 11.5 1 +1976 6 18 11.8 10.7 10.7 1 +1976 6 19 14.6 13.5 13.5 1 +1976 6 20 13.4 12.3 12.3 1 +1976 6 21 13.3 12.2 12.2 1 +1976 6 22 14.9 13.8 13.8 1 +1976 6 23 15.8 14.7 14.7 1 +1976 6 24 19.9 18.8 18.8 1 +1976 6 25 21.6 20.5 20.5 1 +1976 6 26 24.3 23.2 23.2 1 +1976 6 27 22.8 21.7 21.7 1 +1976 6 28 19.6 18.5 18.5 1 +1976 6 29 17.1 16.0 16.0 1 +1976 6 30 19.6 18.6 18.6 1 +1976 7 1 15.7 14.7 14.7 1 +1976 7 2 20.4 19.4 19.4 1 +1976 7 3 17.1 16.1 16.1 1 +1976 7 4 15.4 14.4 14.4 1 +1976 7 5 15.1 14.1 14.1 1 +1976 7 6 17.0 16.0 16.0 1 +1976 7 7 17.0 16.0 16.0 1 +1976 7 8 11.7 10.7 10.7 1 +1976 7 9 14.1 13.1 13.1 1 +1976 7 10 17.2 16.2 16.2 1 +1976 7 11 19.2 18.2 18.2 1 +1976 7 12 16.5 15.5 15.5 1 +1976 7 13 17.1 16.1 16.1 1 +1976 7 14 19.0 18.0 18.0 1 +1976 7 15 19.3 18.3 18.3 1 +1976 7 16 21.4 20.4 20.4 1 +1976 7 17 20.7 19.7 19.7 1 +1976 7 18 21.2 20.2 20.2 1 +1976 7 19 18.6 17.6 17.6 1 +1976 7 20 19.6 18.6 18.6 1 +1976 7 21 20.9 19.9 19.9 1 +1976 7 22 18.9 17.9 17.9 1 +1976 7 23 19.0 18.0 18.0 1 +1976 7 24 20.7 19.8 19.8 1 +1976 7 25 17.7 16.8 16.8 1 +1976 7 26 20.6 19.7 19.7 1 +1976 7 27 17.6 16.7 16.7 1 +1976 7 28 15.9 15.0 15.0 1 +1976 7 29 14.5 13.6 13.6 1 +1976 7 30 14.9 14.0 14.0 1 +1976 7 31 11.6 10.7 10.7 1 +1976 8 1 14.4 13.5 13.5 1 +1976 8 2 16.2 15.3 15.3 1 +1976 8 3 15.3 14.4 14.4 1 +1976 8 4 14.6 13.7 13.7 1 +1976 8 5 15.1 14.2 14.2 1 +1976 8 6 15.1 14.3 14.3 1 +1976 8 7 15.5 14.7 14.7 1 +1976 8 8 17.6 16.8 16.8 1 +1976 8 9 18.0 17.2 17.2 1 +1976 8 10 18.3 17.5 17.5 1 +1976 8 11 18.5 17.7 17.7 1 +1976 8 12 18.7 17.9 17.9 1 +1976 8 13 18.5 17.7 17.7 1 +1976 8 14 18.5 17.7 17.7 1 +1976 8 15 18.3 17.5 17.5 1 +1976 8 16 19.7 18.9 18.9 1 +1976 8 17 19.7 19.0 19.0 1 +1976 8 18 18.9 18.2 18.2 1 +1976 8 19 19.0 18.3 18.3 1 +1976 8 20 14.2 13.5 13.5 1 +1976 8 21 13.6 12.9 12.9 1 +1976 8 22 17.0 16.3 16.3 1 +1976 8 23 18.2 17.5 17.5 1 +1976 8 24 20.0 19.4 19.4 1 +1976 8 25 18.0 17.4 17.4 1 +1976 8 26 15.7 15.1 15.1 1 +1976 8 27 15.0 14.4 14.4 1 +1976 8 28 17.4 16.8 16.8 1 +1976 8 29 19.8 19.2 19.2 1 +1976 8 30 20.3 19.8 19.8 1 +1976 8 31 13.9 13.4 13.4 1 +1976 9 1 13.4 12.9 12.9 1 +1976 9 2 13.1 12.6 12.6 1 +1976 9 3 10.2 9.7 9.7 1 +1976 9 4 9.2 8.7 8.7 1 +1976 9 5 10.7 10.2 10.2 1 +1976 9 6 14.0 13.6 13.6 1 +1976 9 7 14.6 14.2 14.2 1 +1976 9 8 9.9 9.5 9.5 1 +1976 9 9 9.9 9.5 9.5 1 +1976 9 10 13.4 13.0 13.0 1 +1976 9 11 12.6 12.2 12.2 1 +1976 9 12 10.7 10.4 10.4 1 +1976 9 13 14.1 13.8 13.8 1 +1976 9 14 15.4 15.1 15.1 1 +1976 9 15 11.2 10.9 10.9 1 +1976 9 16 8.1 7.8 7.8 1 +1976 9 17 9.3 9.0 9.0 1 +1976 9 18 9.9 9.6 9.6 1 +1976 9 19 10.3 10.0 10.0 1 +1976 9 20 9.6 9.3 9.3 1 +1976 9 21 9.8 9.5 9.5 1 +1976 9 22 9.7 9.4 9.4 1 +1976 9 23 11.3 11.0 11.0 1 +1976 9 24 9.9 9.6 9.6 1 +1976 9 25 6.5 6.2 6.2 1 +1976 9 26 8.8 8.5 8.5 1 +1976 9 27 9.0 8.7 8.7 1 +1976 9 28 7.3 7.0 7.0 1 +1976 9 29 5.0 4.7 4.7 1 +1976 9 30 4.5 4.2 4.2 1 +1976 10 1 5.9 5.6 5.6 1 +1976 10 2 6.6 6.3 6.3 1 +1976 10 3 9.0 8.7 8.7 1 +1976 10 4 10.0 9.7 9.7 1 +1976 10 5 9.3 9.0 9.0 1 +1976 10 6 8.6 8.3 8.3 1 +1976 10 7 12.0 11.7 11.7 1 +1976 10 8 11.1 10.8 10.8 1 +1976 10 9 8.9 8.6 8.6 1 +1976 10 10 7.6 7.4 7.4 1 +1976 10 11 8.8 8.6 8.6 1 +1976 10 12 7.9 7.7 7.7 1 +1976 10 13 4.9 4.7 4.7 1 +1976 10 14 3.3 3.1 3.1 1 +1976 10 15 3.9 3.7 3.7 1 +1976 10 16 4.5 4.3 4.3 1 +1976 10 17 4.0 3.7 3.7 1 +1976 10 18 4.0 3.7 3.7 1 +1976 10 19 4.0 3.7 3.7 1 +1976 10 20 5.2 4.9 4.9 1 +1976 10 21 5.6 5.3 5.3 1 +1976 10 22 5.9 5.6 5.6 1 +1976 10 23 7.1 6.8 6.8 1 +1976 10 24 5.7 5.4 5.4 1 +1976 10 25 6.0 5.7 5.7 1 +1976 10 26 5.4 5.1 5.1 1 +1976 10 27 4.1 3.8 3.8 1 +1976 10 28 3.4 3.1 3.1 1 +1976 10 29 3.9 3.6 3.6 1 +1976 10 30 3.1 2.7 2.7 1 +1976 10 31 1.3 0.9 0.9 1 +1976 11 1 -0.3 -0.7 -0.7 1 +1976 11 2 -1.4 -1.8 -1.8 1 +1976 11 3 4.9 4.5 4.5 1 +1976 11 4 3.8 3.4 3.4 1 +1976 11 5 5.9 5.5 5.5 1 +1976 11 6 6.3 5.9 5.9 1 +1976 11 7 6.8 6.4 6.4 1 +1976 11 8 7.9 7.5 7.5 1 +1976 11 9 7.4 7.0 7.0 1 +1976 11 10 6.4 6.0 6.0 1 +1976 11 11 7.0 6.6 6.6 1 +1976 11 12 7.1 6.7 6.7 1 +1976 11 13 4.5 4.0 4.0 1 +1976 11 14 2.1 1.6 1.6 1 +1976 11 15 0.3 -0.2 -0.2 1 +1976 11 16 2.1 1.6 1.6 1 +1976 11 17 1.6 1.1 1.1 1 +1976 11 18 -0.8 -1.3 -1.3 1 +1976 11 19 1.0 0.5 0.5 1 +1976 11 20 1.4 0.9 0.9 1 +1976 11 21 4.4 3.9 3.9 1 +1976 11 22 -0.1 -0.6 -0.6 1 +1976 11 23 -1.2 -1.7 -1.7 1 +1976 11 24 -4.4 -4.9 -4.9 1 +1976 11 25 -4.4 -4.9 -4.9 1 +1976 11 26 1.7 1.2 1.2 1 +1976 11 27 4.9 4.4 4.4 1 +1976 11 28 1.9 1.4 1.4 1 +1976 11 29 5.1 4.6 4.6 1 +1976 11 30 4.5 4.0 4.0 1 +1976 12 1 3.3 2.8 2.8 1 +1976 12 2 0.6 0.1 0.1 1 +1976 12 3 1.5 1.0 1.0 1 +1976 12 4 3.3 2.8 2.8 1 +1976 12 5 3.6 3.0 3.0 1 +1976 12 6 2.4 1.8 1.8 1 +1976 12 7 3.3 2.7 2.7 1 +1976 12 8 3.9 3.3 3.3 1 +1976 12 9 2.1 1.5 1.5 1 +1976 12 10 1.0 0.4 0.4 1 +1976 12 11 -0.1 -0.7 -0.7 1 +1976 12 12 0.6 0.0 0.0 1 +1976 12 13 -2.2 -2.8 -2.8 1 +1976 12 14 -2.0 -2.6 -2.6 1 +1976 12 15 -0.3 -0.9 -0.9 1 +1976 12 16 -0.4 -1.0 -1.0 1 +1976 12 17 -1.2 -1.8 -1.8 1 +1976 12 18 -2.7 -3.3 -3.3 1 +1976 12 19 -4.6 -5.2 -5.2 1 +1976 12 20 -6.8 -7.4 -7.4 1 +1976 12 21 -3.9 -4.5 -4.5 1 +1976 12 22 -0.6 -1.2 -1.2 1 +1976 12 23 -6.1 -6.7 -6.7 1 +1976 12 24 -5.1 -5.7 -5.7 1 +1976 12 25 -9.3 -10.0 -10.0 1 +1976 12 26 -11.8 -12.5 -12.5 1 +1976 12 27 -10.2 -10.9 -10.9 1 +1976 12 28 -8.0 -8.7 -8.7 1 +1976 12 29 -8.4 -9.1 -9.1 1 +1976 12 30 -3.0 -3.7 -3.7 1 +1976 12 31 -1.3 -2.0 -2.0 1 +1977 1 1 0.3 -0.4 -0.4 1 +1977 1 2 0.7 0.0 0.0 1 +1977 1 3 1.2 0.5 0.5 1 +1977 1 4 0.5 -0.2 -0.2 1 +1977 1 5 0.5 -0.2 -0.2 1 +1977 1 6 0.6 -0.1 -0.1 1 +1977 1 7 0.0 -0.7 -0.7 1 +1977 1 8 -3.3 -4.0 -4.0 1 +1977 1 9 -6.4 -7.1 -7.1 1 +1977 1 10 -1.6 -2.3 -2.3 1 +1977 1 11 0.6 -0.2 -0.2 1 +1977 1 12 -0.2 -1.0 -1.0 1 +1977 1 13 1.5 0.7 0.7 1 +1977 1 14 -0.5 -1.3 -1.3 1 +1977 1 15 0.3 -0.5 -0.5 1 +1977 1 16 -1.9 -2.7 -2.7 1 +1977 1 17 -0.8 -1.6 -1.6 1 +1977 1 18 -1.2 -2.0 -2.0 1 +1977 1 19 -2.3 -3.1 -3.1 1 +1977 1 20 -3.6 -4.4 -4.4 1 +1977 1 21 -4.5 -5.3 -5.3 1 +1977 1 22 -3.3 -4.1 -4.1 1 +1977 1 23 -1.6 -2.4 -2.4 1 +1977 1 24 -5.4 -6.2 -6.2 1 +1977 1 25 -4.8 -5.6 -5.6 1 +1977 1 26 -0.2 -1.0 -1.0 1 +1977 1 27 1.8 1.0 1.0 1 +1977 1 28 -5.8 -6.6 -6.6 1 +1977 1 29 -2.0 -2.8 -2.8 1 +1977 1 30 -0.4 -1.2 -1.2 1 +1977 1 31 -3.8 -4.6 -4.6 1 +1977 2 1 -5.8 -6.6 -6.6 1 +1977 2 2 -5.0 -5.8 -5.8 1 +1977 2 3 -2.5 -3.3 -3.3 1 +1977 2 4 -0.1 -0.9 -0.9 1 +1977 2 5 1.3 0.5 0.5 1 +1977 2 6 0.8 0.0 0.0 1 +1977 2 7 0.4 -0.4 -0.4 1 +1977 2 8 -0.9 -1.7 -1.7 1 +1977 2 9 -5.3 -6.1 -6.1 1 +1977 2 10 -6.8 -7.6 -7.6 1 +1977 2 11 -8.5 -9.3 -9.3 1 +1977 2 12 -10.8 -11.6 -11.6 1 +1977 2 13 -6.9 -7.7 -7.7 1 +1977 2 14 -2.9 -3.7 -3.7 1 +1977 2 15 -4.1 -5.0 -5.0 1 +1977 2 16 -5.3 -6.2 -6.2 1 +1977 2 17 -6.9 -7.8 -7.8 1 +1977 2 18 -5.5 -6.4 -6.4 1 +1977 2 19 -1.7 -2.6 -2.6 1 +1977 2 20 -0.5 -1.4 -1.4 1 +1977 2 21 0.3 -0.6 -0.6 1 +1977 2 22 -2.0 -2.9 -2.9 1 +1977 2 23 -4.3 -5.2 -5.2 1 +1977 2 24 -6.0 -6.9 -6.9 1 +1977 2 25 -8.5 -9.4 -9.4 1 +1977 2 26 -7.4 -8.3 -8.3 1 +1977 2 27 -6.7 -7.6 -7.6 1 +1977 2 28 -4.5 -5.4 -5.4 1 +1977 3 1 -1.5 -2.4 -2.4 1 +1977 3 2 -2.0 -2.9 -2.9 1 +1977 3 3 -4.3 -5.2 -5.2 1 +1977 3 4 0.4 -0.5 -0.5 1 +1977 3 5 0.4 -0.5 -0.5 1 +1977 3 6 -1.7 -2.6 -2.6 1 +1977 3 7 0.6 -0.3 -0.3 1 +1977 3 8 3.8 2.9 2.9 1 +1977 3 9 2.8 1.9 1.9 1 +1977 3 10 2.9 2.0 2.0 1 +1977 3 11 4.2 3.3 3.3 1 +1977 3 12 3.8 2.9 2.9 1 +1977 3 13 3.5 2.5 2.5 1 +1977 3 14 1.0 0.0 0.0 1 +1977 3 15 2.3 1.3 1.3 1 +1977 3 16 3.1 2.1 2.1 1 +1977 3 17 4.0 3.1 3.1 1 +1977 3 18 5.0 4.1 4.1 1 +1977 3 19 2.3 1.4 1.4 1 +1977 3 20 1.1 0.2 0.2 1 +1977 3 21 0.8 -0.1 -0.1 1 +1977 3 22 0.3 -0.6 -0.6 1 +1977 3 23 3.7 2.8 2.8 1 +1977 3 24 5.7 4.8 4.8 1 +1977 3 25 5.1 4.2 4.2 1 +1977 3 26 1.5 0.6 0.6 1 +1977 3 27 -0.8 -1.7 -1.7 1 +1977 3 28 -2.0 -2.9 -2.9 1 +1977 3 29 -4.2 -5.1 -5.1 1 +1977 3 30 -2.0 -2.9 -2.9 1 +1977 3 31 0.5 -0.4 -0.4 1 +1977 4 1 -1.2 -2.1 -2.1 1 +1977 4 2 3.8 2.9 2.9 1 +1977 4 3 3.6 2.7 2.7 1 +1977 4 4 1.2 0.3 0.3 1 +1977 4 5 1.3 0.4 0.4 1 +1977 4 6 2.4 1.6 1.6 1 +1977 4 7 -1.9 -2.7 -2.7 1 +1977 4 8 -5.0 -5.8 -5.8 1 +1977 4 9 -2.6 -3.4 -3.4 1 +1977 4 10 -2.0 -2.8 -2.8 1 +1977 4 11 1.7 0.9 0.9 1 +1977 4 12 2.4 1.6 1.6 1 +1977 4 13 1.3 0.5 0.5 1 +1977 4 14 3.9 3.1 3.1 1 +1977 4 15 3.0 2.2 2.2 1 +1977 4 16 1.5 0.7 0.7 1 +1977 4 17 2.7 1.9 1.9 1 +1977 4 18 2.3 1.4 1.4 1 +1977 4 19 3.1 2.2 2.2 1 +1977 4 20 5.3 4.4 4.4 1 +1977 4 21 6.4 5.5 5.5 1 +1977 4 22 7.7 6.8 6.8 1 +1977 4 23 6.5 5.5 5.5 1 +1977 4 24 2.9 1.9 1.9 1 +1977 4 25 5.4 4.4 4.4 1 +1977 4 26 5.4 4.4 4.4 1 +1977 4 27 7.8 6.8 6.8 1 +1977 4 28 9.4 8.4 8.4 1 +1977 4 29 9.2 8.1 8.1 1 +1977 4 30 9.5 8.4 8.4 1 +1977 5 1 11.3 10.2 10.2 1 +1977 5 2 9.0 7.9 7.9 1 +1977 5 3 7.2 6.1 6.1 1 +1977 5 4 10.4 9.2 9.2 1 +1977 5 5 13.7 12.5 12.5 1 +1977 5 6 16.7 15.5 15.5 1 +1977 5 7 10.5 9.3 9.3 1 +1977 5 8 6.6 5.4 5.4 1 +1977 5 9 9.2 7.9 7.9 1 +1977 5 10 9.9 8.6 8.6 1 +1977 5 11 9.6 8.3 8.3 1 +1977 5 12 8.8 7.5 7.5 1 +1977 5 13 11.2 9.9 9.9 1 +1977 5 14 10.2 8.8 8.8 1 +1977 5 15 9.2 7.8 7.8 1 +1977 5 16 9.2 7.8 7.8 1 +1977 5 17 9.1 7.7 7.7 1 +1977 5 18 10.2 8.9 8.9 1 +1977 5 19 9.7 8.4 8.4 1 +1977 5 20 11.7 10.4 10.4 1 +1977 5 21 12.7 11.4 11.4 1 +1977 5 22 13.2 11.9 11.9 1 +1977 5 23 14.5 13.2 13.2 1 +1977 5 24 12.0 10.7 10.7 1 +1977 5 25 6.9 5.6 5.6 1 +1977 5 26 9.5 8.2 8.2 1 +1977 5 27 14.5 13.2 13.2 1 +1977 5 28 11.6 10.3 10.3 1 +1977 5 29 4.9 3.7 3.7 1 +1977 5 30 5.1 3.9 3.9 1 +1977 5 31 7.5 6.3 6.3 1 +1977 6 1 10.7 9.5 9.5 1 +1977 6 2 12.4 11.2 11.2 1 +1977 6 3 12.4 11.2 11.2 1 +1977 6 4 11.8 10.6 10.6 1 +1977 6 5 11.3 10.1 10.1 1 +1977 6 6 11.3 10.1 10.1 1 +1977 6 7 11.2 10.0 10.0 1 +1977 6 8 13.7 12.5 12.5 1 +1977 6 9 15.0 13.9 13.9 1 +1977 6 10 14.2 13.1 13.1 1 +1977 6 11 20.8 19.7 19.7 1 +1977 6 12 21.1 20.0 20.0 1 +1977 6 13 19.5 18.4 18.4 1 +1977 6 14 21.5 20.4 20.4 1 +1977 6 15 22.4 21.3 21.3 1 +1977 6 16 15.6 14.5 14.5 1 +1977 6 17 17.9 16.8 16.8 1 +1977 6 18 16.2 15.1 15.1 1 +1977 6 19 18.9 17.8 17.8 1 +1977 6 20 13.5 12.4 12.4 1 +1977 6 21 14.3 13.2 13.2 1 +1977 6 22 12.7 11.6 11.6 1 +1977 6 23 14.2 13.1 13.1 1 +1977 6 24 15.5 14.4 14.4 1 +1977 6 25 16.2 15.1 15.1 1 +1977 6 26 14.8 13.7 13.7 1 +1977 6 27 13.4 12.3 12.3 1 +1977 6 28 13.5 12.4 12.4 1 +1977 6 29 14.2 13.1 13.1 1 +1977 6 30 14.1 13.1 13.1 1 +1977 7 1 15.0 14.0 14.0 1 +1977 7 2 10.8 9.8 9.8 1 +1977 7 3 12.2 11.2 11.2 1 +1977 7 4 17.5 16.5 16.5 1 +1977 7 5 15.2 14.2 14.2 1 +1977 7 6 14.9 13.9 13.9 1 +1977 7 7 15.0 14.0 14.0 1 +1977 7 8 16.1 15.1 15.1 1 +1977 7 9 17.6 16.6 16.6 1 +1977 7 10 18.1 17.1 17.1 1 +1977 7 11 18.3 17.3 17.3 1 +1977 7 12 17.2 16.2 16.2 1 +1977 7 13 11.0 10.0 10.0 1 +1977 7 14 8.9 7.9 7.9 1 +1977 7 15 8.1 7.1 7.1 1 +1977 7 16 11.4 10.4 10.4 1 +1977 7 17 11.4 10.4 10.4 1 +1977 7 18 11.0 10.0 10.0 1 +1977 7 19 11.3 10.3 10.3 1 +1977 7 20 14.8 13.8 13.8 1 +1977 7 21 15.7 14.7 14.7 1 +1977 7 22 14.5 13.5 13.5 1 +1977 7 23 14.3 13.3 13.3 1 +1977 7 24 13.9 13.0 13.0 1 +1977 7 25 14.8 13.9 13.9 1 +1977 7 26 14.7 13.8 13.8 1 +1977 7 27 15.4 14.5 14.5 1 +1977 7 28 16.4 15.5 15.5 1 +1977 7 29 17.6 16.7 16.7 1 +1977 7 30 17.3 16.4 16.4 1 +1977 7 31 17.5 16.6 16.6 1 +1977 8 1 18.1 17.2 17.2 1 +1977 8 2 19.0 18.1 18.1 1 +1977 8 3 17.1 16.2 16.2 1 +1977 8 4 19.3 18.4 18.4 1 +1977 8 5 17.8 16.9 16.9 1 +1977 8 6 17.6 16.8 16.8 1 +1977 8 7 16.4 15.6 15.6 1 +1977 8 8 16.0 15.2 15.2 1 +1977 8 9 16.7 15.9 15.9 1 +1977 8 10 15.4 14.6 14.6 1 +1977 8 11 15.6 14.8 14.8 1 +1977 8 12 13.7 12.9 12.9 1 +1977 8 13 14.7 13.9 13.9 1 +1977 8 14 15.1 14.3 14.3 1 +1977 8 15 14.4 13.6 13.6 1 +1977 8 16 15.9 15.1 15.1 1 +1977 8 17 16.3 15.6 15.6 1 +1977 8 18 14.4 13.7 13.7 1 +1977 8 19 11.5 10.8 10.8 1 +1977 8 20 11.0 10.3 10.3 1 +1977 8 21 11.4 10.7 10.7 1 +1977 8 22 13.6 12.9 12.9 1 +1977 8 23 13.3 12.6 12.6 1 +1977 8 24 13.8 13.2 13.2 1 +1977 8 25 13.7 13.1 13.1 1 +1977 8 26 16.4 15.8 15.8 1 +1977 8 27 15.1 14.5 14.5 1 +1977 8 28 12.4 11.8 11.8 1 +1977 8 29 14.1 13.5 13.5 1 +1977 8 30 15.6 15.1 15.1 1 +1977 8 31 17.2 16.7 16.7 1 +1977 9 1 16.3 15.8 15.8 1 +1977 9 2 17.3 16.8 16.8 1 +1977 9 3 16.5 16.0 16.0 1 +1977 9 4 16.0 15.5 15.5 1 +1977 9 5 13.2 12.7 12.7 1 +1977 9 6 14.3 13.9 13.9 1 +1977 9 7 12.9 12.5 12.5 1 +1977 9 8 11.4 11.0 11.0 1 +1977 9 9 11.1 10.7 10.7 1 +1977 9 10 9.0 8.6 8.6 1 +1977 9 11 8.2 7.8 7.8 1 +1977 9 12 6.7 6.4 6.4 1 +1977 9 13 7.5 7.2 7.2 1 +1977 9 14 7.7 7.4 7.4 1 +1977 9 15 7.9 7.6 7.6 1 +1977 9 16 6.0 5.7 5.7 1 +1977 9 17 6.6 6.3 6.3 1 +1977 9 18 8.3 8.0 8.0 1 +1977 9 19 10.4 10.1 10.1 1 +1977 9 20 11.3 11.0 11.0 1 +1977 9 21 11.8 11.5 11.5 1 +1977 9 22 9.1 8.8 8.8 1 +1977 9 23 7.0 6.7 6.7 1 +1977 9 24 7.6 7.3 7.3 1 +1977 9 25 8.1 7.8 7.8 1 +1977 9 26 8.2 7.9 7.9 1 +1977 9 27 8.5 8.2 8.2 1 +1977 9 28 8.2 7.9 7.9 1 +1977 9 29 10.7 10.4 10.4 1 +1977 9 30 10.5 10.2 10.2 1 +1977 10 1 8.5 8.2 8.2 1 +1977 10 2 4.9 4.6 4.6 1 +1977 10 3 3.5 3.2 3.2 1 +1977 10 4 3.9 3.6 3.6 1 +1977 10 5 9.1 8.8 8.8 1 +1977 10 6 7.6 7.3 7.3 1 +1977 10 7 5.6 5.3 5.3 1 +1977 10 8 6.5 6.2 6.2 1 +1977 10 9 8.2 7.9 7.9 1 +1977 10 10 11.1 10.9 10.9 1 +1977 10 11 11.4 11.2 11.2 1 +1977 10 12 7.7 7.5 7.5 1 +1977 10 13 10.0 9.8 9.8 1 +1977 10 14 5.7 5.5 5.5 1 +1977 10 15 5.7 5.5 5.5 1 +1977 10 16 8.1 7.9 7.9 1 +1977 10 17 7.9 7.6 7.6 1 +1977 10 18 8.3 8.0 8.0 1 +1977 10 19 8.0 7.7 7.7 1 +1977 10 20 7.7 7.4 7.4 1 +1977 10 21 9.0 8.7 8.7 1 +1977 10 22 10.5 10.2 10.2 1 +1977 10 23 11.2 10.9 10.9 1 +1977 10 24 10.5 10.2 10.2 1 +1977 10 25 11.4 11.1 11.1 1 +1977 10 26 9.3 9.0 9.0 1 +1977 10 27 9.4 9.1 9.1 1 +1977 10 28 10.0 9.7 9.7 1 +1977 10 29 8.0 7.7 7.7 1 +1977 10 30 9.2 8.8 8.8 1 +1977 10 31 9.0 8.6 8.6 1 +1977 11 1 9.2 8.8 8.8 1 +1977 11 2 9.1 8.7 8.7 1 +1977 11 3 6.7 6.3 6.3 1 +1977 11 4 7.6 7.2 7.2 1 +1977 11 5 6.9 6.5 6.5 1 +1977 11 6 6.9 6.5 6.5 1 +1977 11 7 8.2 7.8 7.8 1 +1977 11 8 9.4 9.0 9.0 1 +1977 11 9 7.7 7.3 7.3 1 +1977 11 10 5.3 4.9 4.9 1 +1977 11 11 9.3 8.9 8.9 1 +1977 11 12 8.5 8.1 8.1 1 +1977 11 13 4.8 4.3 4.3 1 +1977 11 14 3.6 3.1 3.1 1 +1977 11 15 4.5 4.0 4.0 1 +1977 11 16 2.6 2.1 2.1 1 +1977 11 17 0.3 -0.2 -0.2 1 +1977 11 18 -1.6 -2.1 -2.1 1 +1977 11 19 -2.5 -3.0 -3.0 1 +1977 11 20 -1.4 -1.9 -1.9 1 +1977 11 21 3.9 3.4 3.4 1 +1977 11 22 2.9 2.4 2.4 1 +1977 11 23 -0.4 -0.9 -0.9 1 +1977 11 24 4.5 4.0 4.0 1 +1977 11 25 2.7 2.2 2.2 1 +1977 11 26 -1.8 -2.3 -2.3 1 +1977 11 27 -3.6 -4.1 -4.1 1 +1977 11 28 0.4 -0.1 -0.1 1 +1977 11 29 1.1 0.6 0.6 1 +1977 11 30 -0.2 -0.7 -0.7 1 +1977 12 1 -0.2 -0.7 -0.7 1 +1977 12 2 1.3 0.8 0.8 1 +1977 12 3 -1.5 -2.0 -2.0 1 +1977 12 4 -3.8 -4.3 -4.3 1 +1977 12 5 0.2 -0.4 -0.4 1 +1977 12 6 -2.1 -2.7 -2.7 1 +1977 12 7 -0.7 -1.3 -1.3 1 +1977 12 8 1.7 1.1 1.1 1 +1977 12 9 1.2 0.6 0.6 1 +1977 12 10 0.0 -0.6 -0.6 1 +1977 12 11 1.0 0.4 0.4 1 +1977 12 12 2.1 1.5 1.5 1 +1977 12 13 2.7 2.1 2.1 1 +1977 12 14 2.5 1.9 1.9 1 +1977 12 15 2.9 2.3 2.3 1 +1977 12 16 3.8 3.2 3.2 1 +1977 12 17 5.7 5.1 5.1 1 +1977 12 18 0.3 -0.3 -0.3 1 +1977 12 19 0.9 0.3 0.3 1 +1977 12 20 0.7 0.1 0.1 1 +1977 12 21 -2.5 -3.1 -3.1 1 +1977 12 22 1.0 0.4 0.4 1 +1977 12 23 2.6 2.0 2.0 1 +1977 12 24 3.3 2.7 2.7 1 +1977 12 25 0.4 -0.3 -0.3 1 +1977 12 26 1.4 0.7 0.7 1 +1977 12 27 -0.3 -1.0 -1.0 1 +1977 12 28 -2.6 -3.3 -3.3 1 +1977 12 29 -3.9 -4.6 -4.6 1 +1977 12 30 -1.1 -1.8 -1.8 1 +1977 12 31 -2.5 -3.2 -3.2 1 +1978 1 1 -2.3 -3.0 -3.0 1 +1978 1 2 2.8 2.1 2.1 1 +1978 1 3 -2.2 -2.9 -2.9 1 +1978 1 4 -5.8 -6.5 -6.5 1 +1978 1 5 -6.6 -7.3 -7.3 1 +1978 1 6 -0.6 -1.3 -1.3 1 +1978 1 7 2.9 2.2 2.2 1 +1978 1 8 3.5 2.8 2.8 1 +1978 1 9 1.4 0.7 0.7 1 +1978 1 10 1.0 0.3 0.3 1 +1978 1 11 0.2 -0.6 -0.6 1 +1978 1 12 -2.9 -3.7 -3.7 1 +1978 1 13 -4.2 -5.0 -5.0 1 +1978 1 14 0.3 -0.5 -0.5 1 +1978 1 15 -0.8 -1.6 -1.6 1 +1978 1 16 0.8 0.0 0.0 1 +1978 1 17 0.8 0.0 0.0 1 +1978 1 18 1.6 0.8 0.8 1 +1978 1 19 0.7 -0.1 -0.1 1 +1978 1 20 0.4 -0.4 -0.4 1 +1978 1 21 0.0 -0.8 -0.8 1 +1978 1 22 -0.7 -1.5 -1.5 1 +1978 1 23 -2.4 -3.2 -3.2 1 +1978 1 24 -1.2 -2.0 -2.0 1 +1978 1 25 -1.2 -2.0 -2.0 1 +1978 1 26 -3.7 -4.5 -4.5 1 +1978 1 27 -7.0 -7.8 -7.8 1 +1978 1 28 -1.6 -2.4 -2.4 1 +1978 1 29 0.9 0.1 0.1 1 +1978 1 30 1.5 0.7 0.7 1 +1978 1 31 0.4 -0.4 -0.4 1 +1978 2 1 -1.8 -2.6 -2.6 1 +1978 2 2 -0.8 -1.6 -1.6 1 +1978 2 3 -2.0 -2.8 -2.8 1 +1978 2 4 -1.8 -2.6 -2.6 1 +1978 2 5 -1.9 -2.7 -2.7 1 +1978 2 6 -3.0 -3.8 -3.8 1 +1978 2 7 -4.5 -5.3 -5.3 1 +1978 2 8 -5.0 -5.8 -5.8 1 +1978 2 9 -6.2 -7.0 -7.0 1 +1978 2 10 -9.7 -10.5 -10.5 1 +1978 2 11 -7.4 -8.2 -8.2 1 +1978 2 12 -5.1 -5.9 -5.9 1 +1978 2 13 -5.0 -5.8 -5.8 1 +1978 2 14 -11.2 -12.0 -12.0 1 +1978 2 15 -14.8 -15.7 -15.7 1 +1978 2 16 -14.9 -15.8 -15.8 1 +1978 2 17 -10.3 -11.2 -11.2 1 +1978 2 18 -10.0 -10.9 -10.9 1 +1978 2 19 -9.2 -10.1 -10.1 1 +1978 2 20 -6.3 -7.2 -7.2 1 +1978 2 21 -6.5 -7.4 -7.4 1 +1978 2 22 -7.0 -7.9 -7.9 1 +1978 2 23 -9.8 -10.7 -10.7 1 +1978 2 24 -2.9 -3.8 -3.8 1 +1978 2 25 1.1 0.2 0.2 1 +1978 2 26 1.0 0.1 0.1 1 +1978 2 27 1.3 0.4 0.4 1 +1978 2 28 1.6 0.7 0.7 1 +1978 3 1 2.0 1.1 1.1 1 +1978 3 2 0.4 -0.5 -0.5 1 +1978 3 3 0.7 -0.2 -0.2 1 +1978 3 4 1.1 0.2 0.2 1 +1978 3 5 0.8 -0.1 -0.1 1 +1978 3 6 0.3 -0.6 -0.6 1 +1978 3 7 0.5 -0.4 -0.4 1 +1978 3 8 0.5 -0.4 -0.4 1 +1978 3 9 0.5 -0.4 -0.4 1 +1978 3 10 1.9 1.0 1.0 1 +1978 3 11 1.7 0.8 0.8 1 +1978 3 12 2.4 1.5 1.5 1 +1978 3 13 1.7 0.7 0.7 1 +1978 3 14 2.6 1.6 1.6 1 +1978 3 15 -5.5 -6.5 -6.5 1 +1978 3 16 -6.5 -7.5 -7.5 1 +1978 3 17 -8.1 -9.0 -9.0 1 +1978 3 18 -9.9 -10.8 -10.8 1 +1978 3 19 -6.3 -7.2 -7.2 1 +1978 3 20 -7.5 -8.4 -8.4 1 +1978 3 21 -8.6 -9.5 -9.5 1 +1978 3 22 -10.4 -11.3 -11.3 1 +1978 3 23 -4.4 -5.3 -5.3 1 +1978 3 24 0.3 -0.6 -0.6 1 +1978 3 25 2.0 1.1 1.1 1 +1978 3 26 1.4 0.5 0.5 1 +1978 3 27 2.9 2.0 2.0 1 +1978 3 28 4.2 3.3 3.3 1 +1978 3 29 6.6 5.7 5.7 1 +1978 3 30 6.7 5.8 5.8 1 +1978 3 31 5.3 4.4 4.4 1 +1978 4 1 5.9 5.0 5.0 1 +1978 4 2 1.9 1.0 1.0 1 +1978 4 3 1.9 1.0 1.0 1 +1978 4 4 2.0 1.1 1.1 1 +1978 4 5 -0.2 -1.1 -1.1 1 +1978 4 6 1.5 0.7 0.7 1 +1978 4 7 4.7 3.9 3.9 1 +1978 4 8 3.9 3.1 3.1 1 +1978 4 9 6.0 5.2 5.2 1 +1978 4 10 6.1 5.3 5.3 1 +1978 4 11 6.1 5.3 5.3 1 +1978 4 12 3.4 2.6 2.6 1 +1978 4 13 2.7 1.9 1.9 1 +1978 4 14 4.0 3.2 3.2 1 +1978 4 15 4.5 3.7 3.7 1 +1978 4 16 4.3 3.5 3.5 1 +1978 4 17 5.2 4.4 4.4 1 +1978 4 18 3.2 2.3 2.3 1 +1978 4 19 1.8 0.9 0.9 1 +1978 4 20 2.0 1.1 1.1 1 +1978 4 21 2.9 2.0 2.0 1 +1978 4 22 8.2 7.3 7.3 1 +1978 4 23 10.8 9.8 9.8 1 +1978 4 24 1.7 0.7 0.7 1 +1978 4 25 0.1 -0.9 -0.9 1 +1978 4 26 0.2 -0.8 -0.8 1 +1978 4 27 1.0 0.0 0.0 1 +1978 4 28 1.9 0.9 0.9 1 +1978 4 29 3.9 2.8 2.8 1 +1978 4 30 3.3 2.2 2.2 1 +1978 5 1 3.9 2.8 2.8 1 +1978 5 2 4.8 3.7 3.7 1 +1978 5 3 6.4 5.3 5.3 1 +1978 5 4 8.9 7.7 7.7 1 +1978 5 5 8.4 7.2 7.2 1 +1978 5 6 8.7 7.5 7.5 1 +1978 5 7 6.0 4.8 4.8 1 +1978 5 8 8.6 7.4 7.4 1 +1978 5 9 5.2 3.9 3.9 1 +1978 5 10 3.5 2.2 2.2 1 +1978 5 11 2.6 1.3 1.3 1 +1978 5 12 2.7 1.4 1.4 1 +1978 5 13 4.1 2.8 2.8 1 +1978 5 14 6.8 5.4 5.4 1 +1978 5 15 4.9 3.5 3.5 1 +1978 5 16 5.8 4.4 4.4 1 +1978 5 17 6.3 4.9 4.9 1 +1978 5 18 8.6 7.3 7.3 1 +1978 5 19 11.7 10.4 10.4 1 +1978 5 20 14.4 13.1 13.1 1 +1978 5 21 16.8 15.5 15.5 1 +1978 5 22 16.0 14.7 14.7 1 +1978 5 23 15.4 14.1 14.1 1 +1978 5 24 13.2 11.9 11.9 1 +1978 5 25 13.4 12.1 12.1 1 +1978 5 26 16.8 15.5 15.5 1 +1978 5 27 18.0 16.7 16.7 1 +1978 5 28 17.2 15.9 15.9 1 +1978 5 29 17.8 16.6 16.6 1 +1978 5 30 19.5 18.3 18.3 1 +1978 5 31 20.0 18.8 18.8 1 +1978 6 1 20.0 18.8 18.8 1 +1978 6 2 17.9 16.7 16.7 1 +1978 6 3 20.1 18.9 18.9 1 +1978 6 4 18.6 17.4 17.4 1 +1978 6 5 18.9 17.7 17.7 1 +1978 6 6 21.3 20.1 20.1 1 +1978 6 7 21.3 20.1 20.1 1 +1978 6 8 17.5 16.3 16.3 1 +1978 6 9 13.8 12.7 12.7 1 +1978 6 10 12.2 11.1 11.1 1 +1978 6 11 12.4 11.3 11.3 1 +1978 6 12 9.9 8.8 8.8 1 +1978 6 13 12.1 11.0 11.0 1 +1978 6 14 12.1 11.0 11.0 1 +1978 6 15 12.4 11.3 11.3 1 +1978 6 16 12.5 11.4 11.4 1 +1978 6 17 8.3 7.2 7.2 1 +1978 6 18 14.2 13.1 13.1 1 +1978 6 19 17.3 16.2 16.2 1 +1978 6 20 18.0 16.9 16.9 1 +1978 6 21 18.5 17.4 17.4 1 +1978 6 22 17.7 16.6 16.6 1 +1978 6 23 18.3 17.2 17.2 1 +1978 6 24 17.4 16.3 16.3 1 +1978 6 25 16.9 15.8 15.8 1 +1978 6 26 15.2 14.1 14.1 1 +1978 6 27 14.6 13.5 13.5 1 +1978 6 28 12.5 11.4 11.4 1 +1978 6 29 13.7 12.6 12.6 1 +1978 6 30 16.8 15.8 15.8 1 +1978 7 1 15.6 14.6 14.6 1 +1978 7 2 15.7 14.7 14.7 1 +1978 7 3 16.5 15.5 15.5 1 +1978 7 4 15.7 14.7 14.7 1 +1978 7 5 14.9 13.9 13.9 1 +1978 7 6 13.0 12.0 12.0 1 +1978 7 7 15.1 14.1 14.1 1 +1978 7 8 15.1 14.1 14.1 1 +1978 7 9 13.8 12.8 12.8 1 +1978 7 10 14.7 13.7 13.7 1 +1978 7 11 11.6 10.6 10.6 1 +1978 7 12 15.0 14.0 14.0 1 +1978 7 13 17.5 16.5 16.5 1 +1978 7 14 14.4 13.4 13.4 1 +1978 7 15 11.8 10.8 10.8 1 +1978 7 16 12.0 11.0 11.0 1 +1978 7 17 11.8 10.8 10.8 1 +1978 7 18 14.4 13.4 13.4 1 +1978 7 19 14.1 13.1 13.1 1 +1978 7 20 14.0 13.0 13.0 1 +1978 7 21 15.1 14.1 14.1 1 +1978 7 22 15.8 14.8 14.8 1 +1978 7 23 15.6 14.6 14.6 1 +1978 7 24 16.8 15.9 15.9 1 +1978 7 25 18.2 17.3 17.3 1 +1978 7 26 17.4 16.5 16.5 1 +1978 7 27 17.3 16.4 16.4 1 +1978 7 28 20.7 19.8 19.8 1 +1978 7 29 22.0 21.1 21.1 1 +1978 7 30 22.6 21.7 21.7 1 +1978 7 31 22.2 21.3 21.3 1 +1978 8 1 23.5 22.6 22.6 1 +1978 8 2 23.5 22.6 22.6 1 +1978 8 3 22.7 21.8 21.8 1 +1978 8 4 20.5 19.6 19.6 1 +1978 8 5 17.3 16.4 16.4 1 +1978 8 6 15.8 15.0 15.0 1 +1978 8 7 15.4 14.6 14.6 1 +1978 8 8 15.2 14.4 14.4 1 +1978 8 9 15.3 14.5 14.5 1 +1978 8 10 14.9 14.1 14.1 1 +1978 8 11 15.9 15.1 15.1 1 +1978 8 12 13.5 12.7 12.7 1 +1978 8 13 13.6 12.8 12.8 1 +1978 8 14 11.0 10.2 10.2 1 +1978 8 15 13.4 12.6 12.6 1 +1978 8 16 17.0 16.2 16.2 1 +1978 8 17 17.7 17.0 17.0 1 +1978 8 18 17.2 16.5 16.5 1 +1978 8 19 16.8 16.1 16.1 1 +1978 8 20 17.8 17.1 17.1 1 +1978 8 21 19.6 18.9 18.9 1 +1978 8 22 18.7 18.0 18.0 1 +1978 8 23 16.8 16.1 16.1 1 +1978 8 24 14.8 14.2 14.2 1 +1978 8 25 11.3 10.7 10.7 1 +1978 8 26 11.8 11.2 11.2 1 +1978 8 27 10.6 10.0 10.0 1 +1978 8 28 11.3 10.7 10.7 1 +1978 8 29 11.2 10.6 10.6 1 +1978 8 30 10.7 10.2 10.2 1 +1978 8 31 10.6 10.1 10.1 1 +1978 9 1 12.1 11.6 11.6 1 +1978 9 2 11.6 11.1 11.1 1 +1978 9 3 11.2 10.7 10.7 1 +1978 9 4 12.3 11.8 11.8 1 +1978 9 5 12.3 11.8 11.8 1 +1978 9 6 12.9 12.5 12.5 1 +1978 9 7 11.9 11.5 11.5 1 +1978 9 8 11.7 11.3 11.3 1 +1978 9 9 12.8 12.4 12.4 1 +1978 9 10 12.4 12.0 12.0 1 +1978 9 11 11.9 11.5 11.5 1 +1978 9 12 11.7 11.4 11.4 1 +1978 9 13 8.7 8.4 8.4 1 +1978 9 14 11.6 11.3 11.3 1 +1978 9 15 11.6 11.3 11.3 1 +1978 9 16 11.9 11.6 11.6 1 +1978 9 17 13.5 13.2 13.2 1 +1978 9 18 11.5 11.2 11.2 1 +1978 9 19 8.4 8.1 8.1 1 +1978 9 20 6.6 6.3 6.3 1 +1978 9 21 8.3 8.0 8.0 1 +1978 9 22 7.8 7.5 7.5 1 +1978 9 23 5.6 5.3 5.3 1 +1978 9 24 5.7 5.4 5.4 1 +1978 9 25 8.7 8.4 8.4 1 +1978 9 26 8.6 8.3 8.3 1 +1978 9 27 7.4 7.1 7.1 1 +1978 9 28 7.8 7.5 7.5 1 +1978 9 29 8.4 8.1 8.1 1 +1978 9 30 5.5 5.2 5.2 1 +1978 10 1 4.3 4.0 4.0 1 +1978 10 2 6.3 6.0 6.0 1 +1978 10 3 8.1 7.8 7.8 1 +1978 10 4 8.6 8.3 8.3 1 +1978 10 5 8.0 7.7 7.7 1 +1978 10 6 5.8 5.5 5.5 1 +1978 10 7 9.7 9.4 9.4 1 +1978 10 8 10.8 10.5 10.5 1 +1978 10 9 10.8 10.5 10.5 1 +1978 10 10 9.5 9.3 9.3 1 +1978 10 11 10.3 10.1 10.1 1 +1978 10 12 9.3 9.1 9.1 1 +1978 10 13 12.5 12.3 12.3 1 +1978 10 14 10.5 10.3 10.3 1 +1978 10 15 6.5 6.3 6.3 1 +1978 10 16 7.5 7.3 7.3 1 +1978 10 17 9.0 8.7 8.7 1 +1978 10 18 6.9 6.6 6.6 1 +1978 10 19 7.3 7.0 7.0 1 +1978 10 20 8.2 7.9 7.9 1 +1978 10 21 2.0 1.7 1.7 1 +1978 10 22 2.3 2.0 2.0 1 +1978 10 23 1.6 1.3 1.3 1 +1978 10 24 8.0 7.7 7.7 1 +1978 10 25 4.8 4.5 4.5 1 +1978 10 26 3.8 3.5 3.5 1 +1978 10 27 4.3 4.0 4.0 1 +1978 10 28 8.5 8.2 8.2 1 +1978 10 29 4.5 4.2 4.2 1 +1978 10 30 2.0 1.6 1.6 1 +1978 10 31 6.7 6.3 6.3 1 +1978 11 1 10.0 9.6 9.6 1 +1978 11 2 9.4 9.0 9.0 1 +1978 11 3 7.1 6.7 6.7 1 +1978 11 4 8.4 8.0 8.0 1 +1978 11 5 6.5 6.1 6.1 1 +1978 11 6 9.9 9.5 9.5 1 +1978 11 7 6.3 5.9 5.9 1 +1978 11 8 7.7 7.3 7.3 1 +1978 11 9 9.2 8.8 8.8 1 +1978 11 10 9.1 8.7 8.7 1 +1978 11 11 6.4 6.0 6.0 1 +1978 11 12 5.7 5.3 5.3 1 +1978 11 13 6.5 6.0 6.0 1 +1978 11 14 7.3 6.8 6.8 1 +1978 11 15 7.7 7.2 7.2 1 +1978 11 16 7.7 7.2 7.2 1 +1978 11 17 3.7 3.2 3.2 1 +1978 11 18 8.0 7.5 7.5 1 +1978 11 19 9.8 9.3 9.3 1 +1978 11 20 3.9 3.4 3.4 1 +1978 11 21 4.3 3.8 3.8 1 +1978 11 22 7.7 7.2 7.2 1 +1978 11 23 4.1 3.6 3.6 1 +1978 11 24 3.1 2.6 2.6 1 +1978 11 25 -0.7 -1.2 -1.2 1 +1978 11 26 -2.8 -3.3 -3.3 1 +1978 11 27 -0.3 -0.8 -0.8 1 +1978 11 28 -0.9 -1.4 -1.4 1 +1978 11 29 -1.5 -2.0 -2.0 1 +1978 11 30 -3.1 -3.6 -3.6 1 +1978 12 1 -0.6 -1.1 -1.1 1 +1978 12 2 0.0 -0.5 -0.5 1 +1978 12 3 -4.5 -5.0 -5.0 1 +1978 12 4 -6.2 -6.7 -6.7 1 +1978 12 5 -3.1 -3.7 -3.7 1 +1978 12 6 -7.6 -8.2 -8.2 1 +1978 12 7 -4.4 -5.0 -5.0 1 +1978 12 8 -1.4 -2.0 -2.0 1 +1978 12 9 0.1 -0.5 -0.5 1 +1978 12 10 -4.3 -4.9 -4.9 1 +1978 12 11 -2.2 -2.8 -2.8 1 +1978 12 12 0.7 0.1 0.1 1 +1978 12 13 -0.5 -1.1 -1.1 1 +1978 12 14 -4.3 -4.9 -4.9 1 +1978 12 15 -7.2 -7.8 -7.8 1 +1978 12 16 -8.5 -9.1 -9.1 1 +1978 12 17 -10.2 -10.8 -10.8 1 +1978 12 18 -3.9 -4.5 -4.5 1 +1978 12 19 0.0 -0.6 -0.6 1 +1978 12 20 -2.1 -2.7 -2.7 1 +1978 12 21 -5.9 -6.5 -6.5 1 +1978 12 22 -3.7 -4.3 -4.3 1 +1978 12 23 -2.9 -3.5 -3.5 1 +1978 12 24 -5.1 -5.7 -5.7 1 +1978 12 25 -4.6 -5.3 -5.3 1 +1978 12 26 -6.6 -7.3 -7.3 1 +1978 12 27 -10.6 -11.3 -11.3 1 +1978 12 28 -10.2 -10.9 -10.9 1 +1978 12 29 -13.9 -14.6 -14.6 1 +1978 12 30 -17.7 -18.4 -18.4 1 +1978 12 31 -14.9 -15.6 -15.6 1 +1979 1 1 -17.6 -18.3 -18.3 1 +1979 1 2 -11.9 -12.6 -12.6 1 +1979 1 3 -9.4 -10.1 -10.1 1 +1979 1 4 -9.2 -9.9 -9.9 1 +1979 1 5 -10.6 -11.3 -11.3 1 +1979 1 6 -11.6 -12.3 -12.3 1 +1979 1 7 -2.0 -2.7 -2.7 1 +1979 1 8 0.3 -0.4 -0.4 1 +1979 1 9 0.2 -0.5 -0.5 1 +1979 1 10 -2.7 -3.4 -3.4 1 +1979 1 11 -4.6 -5.4 -5.4 1 +1979 1 12 -1.8 -2.6 -2.6 1 +1979 1 13 0.4 -0.4 -0.4 1 +1979 1 14 -1.3 -2.1 -2.1 1 +1979 1 15 -2.7 -3.5 -3.5 1 +1979 1 16 -4.7 -5.5 -5.5 1 +1979 1 17 -3.2 -4.0 -4.0 1 +1979 1 18 -3.7 -4.5 -4.5 1 +1979 1 19 -4.8 -5.6 -5.6 1 +1979 1 20 -6.3 -7.1 -7.1 1 +1979 1 21 -3.5 -4.3 -4.3 1 +1979 1 22 -4.6 -5.4 -5.4 1 +1979 1 23 -6.0 -6.8 -6.8 1 +1979 1 24 -6.3 -7.1 -7.1 1 +1979 1 25 -12.9 -13.7 -13.7 1 +1979 1 26 -10.6 -11.4 -11.4 1 +1979 1 27 -15.3 -16.1 -16.1 1 +1979 1 28 -12.7 -13.5 -13.5 1 +1979 1 29 -5.1 -5.9 -5.9 1 +1979 1 30 -6.0 -6.8 -6.8 1 +1979 1 31 -6.2 -7.0 -7.0 1 +1979 2 1 -6.5 -7.3 -7.3 1 +1979 2 2 -2.9 -3.7 -3.7 1 +1979 2 3 -3.1 -3.9 -3.9 1 +1979 2 4 -9.2 -10.0 -10.0 1 +1979 2 5 -7.5 -8.3 -8.3 1 +1979 2 6 -11.5 -12.3 -12.3 1 +1979 2 7 -5.9 -6.7 -6.7 1 +1979 2 8 -2.9 -3.7 -3.7 1 +1979 2 9 -6.6 -7.4 -7.4 1 +1979 2 10 -4.6 -5.4 -5.4 1 +1979 2 11 -4.6 -5.4 -5.4 1 +1979 2 12 -4.7 -5.5 -5.5 1 +1979 2 13 -13.4 -14.2 -14.2 1 +1979 2 14 -18.4 -19.2 -19.2 1 +1979 2 15 -16.2 -17.1 -17.1 1 +1979 2 16 -12.7 -13.6 -13.6 1 +1979 2 17 -9.1 -10.0 -10.0 1 +1979 2 18 -5.3 -6.2 -6.2 1 +1979 2 19 -1.2 -2.1 -2.1 1 +1979 2 20 -0.1 -1.0 -1.0 1 +1979 2 21 -2.2 -3.1 -3.1 1 +1979 2 22 -2.6 -3.5 -3.5 1 +1979 2 23 -2.7 -3.6 -3.6 1 +1979 2 24 -1.1 -2.0 -2.0 1 +1979 2 25 -0.5 -1.4 -1.4 1 +1979 2 26 1.1 0.2 0.2 1 +1979 2 27 2.5 1.6 1.6 1 +1979 2 28 1.4 0.5 0.5 1 +1979 3 1 0.2 -0.7 -0.7 1 +1979 3 2 0.3 -0.6 -0.6 1 +1979 3 3 4.3 3.4 3.4 1 +1979 3 4 3.1 2.2 2.2 1 +1979 3 5 3.5 2.6 2.6 1 +1979 3 6 4.5 3.6 3.6 1 +1979 3 7 0.2 -0.7 -0.7 1 +1979 3 8 1.9 1.0 1.0 1 +1979 3 9 0.5 -0.4 -0.4 1 +1979 3 10 0.3 -0.6 -0.6 1 +1979 3 11 0.5 -0.4 -0.4 1 +1979 3 12 -0.5 -1.4 -1.4 1 +1979 3 13 -1.1 -2.1 -2.1 1 +1979 3 14 -1.4 -2.4 -2.4 1 +1979 3 15 -2.5 -3.5 -3.5 1 +1979 3 16 -5.3 -6.3 -6.3 1 +1979 3 17 -9.5 -10.4 -10.4 1 +1979 3 18 -10.1 -11.0 -11.0 1 +1979 3 19 -6.2 -7.1 -7.1 1 +1979 3 20 -1.2 -2.1 -2.1 1 +1979 3 21 -2.2 -3.1 -3.1 1 +1979 3 22 -0.2 -1.1 -1.1 1 +1979 3 23 1.1 0.2 0.2 1 +1979 3 24 0.6 -0.3 -0.3 1 +1979 3 25 2.4 1.5 1.5 1 +1979 3 26 1.4 0.5 0.5 1 +1979 3 27 2.4 1.5 1.5 1 +1979 3 28 0.7 -0.2 -0.2 1 +1979 3 29 1.2 0.3 0.3 1 +1979 3 30 2.1 1.2 1.2 1 +1979 3 31 2.0 1.1 1.1 1 +1979 4 1 1.2 0.3 0.3 1 +1979 4 2 0.9 0.0 0.0 1 +1979 4 3 1.1 0.2 0.2 1 +1979 4 4 2.5 1.6 1.6 1 +1979 4 5 0.7 -0.2 -0.2 1 +1979 4 6 2.6 1.8 1.8 1 +1979 4 7 1.9 1.1 1.1 1 +1979 4 8 2.2 1.4 1.4 1 +1979 4 9 4.1 3.3 3.3 1 +1979 4 10 1.4 0.6 0.6 1 +1979 4 11 5.4 4.6 4.6 1 +1979 4 12 9.1 8.3 8.3 1 +1979 4 13 7.1 6.3 6.3 1 +1979 4 14 1.2 0.4 0.4 1 +1979 4 15 0.2 -0.6 -0.6 1 +1979 4 16 1.4 0.6 0.6 1 +1979 4 17 1.3 0.5 0.5 1 +1979 4 18 2.2 1.3 1.3 1 +1979 4 19 6.5 5.6 5.6 1 +1979 4 20 2.8 1.9 1.9 1 +1979 4 21 3.9 3.0 3.0 1 +1979 4 22 3.4 2.5 2.5 1 +1979 4 23 3.1 2.1 2.1 1 +1979 4 24 3.0 2.0 2.0 1 +1979 4 25 6.5 5.5 5.5 1 +1979 4 26 8.5 7.5 7.5 1 +1979 4 27 7.1 6.1 6.1 1 +1979 4 28 7.8 6.8 6.8 1 +1979 4 29 5.4 4.3 4.3 1 +1979 4 30 5.3 4.2 4.2 1 +1979 5 1 4.4 3.3 3.3 1 +1979 5 2 4.2 3.1 3.1 1 +1979 5 3 4.1 3.0 3.0 1 +1979 5 4 5.4 4.2 4.2 1 +1979 5 5 4.1 2.9 2.9 1 +1979 5 6 4.7 3.5 3.5 1 +1979 5 7 7.1 5.9 5.9 1 +1979 5 8 5.4 4.2 4.2 1 +1979 5 9 7.3 6.0 6.0 1 +1979 5 10 6.6 5.3 5.3 1 +1979 5 11 6.5 5.2 5.2 1 +1979 5 12 10.7 9.4 9.4 1 +1979 5 13 10.0 8.7 8.7 1 +1979 5 14 15.2 13.8 13.8 1 +1979 5 15 15.1 13.7 13.7 1 +1979 5 16 18.1 16.7 16.7 1 +1979 5 17 16.2 14.8 14.8 1 +1979 5 18 14.2 12.9 12.9 1 +1979 5 19 13.8 12.5 12.5 1 +1979 5 20 11.3 10.0 10.0 1 +1979 5 21 10.1 8.8 8.8 1 +1979 5 22 12.2 10.9 10.9 1 +1979 5 23 15.0 13.7 13.7 1 +1979 5 24 14.3 13.0 13.0 1 +1979 5 25 15.1 13.8 13.8 1 +1979 5 26 11.6 10.3 10.3 1 +1979 5 27 13.6 12.3 12.3 1 +1979 5 28 15.2 13.9 13.9 1 +1979 5 29 15.6 14.4 14.4 1 +1979 5 30 17.3 16.1 16.1 1 +1979 5 31 19.2 18.0 18.0 1 +1979 6 1 19.0 17.8 17.8 1 +1979 6 2 18.9 17.7 17.7 1 +1979 6 3 15.1 13.9 13.9 1 +1979 6 4 16.3 15.1 15.1 1 +1979 6 5 18.8 17.6 17.6 1 +1979 6 6 20.0 18.8 18.8 1 +1979 6 7 23.2 22.0 22.0 1 +1979 6 8 22.8 21.6 21.6 1 +1979 6 9 10.8 9.7 9.7 1 +1979 6 10 12.9 11.8 11.8 1 +1979 6 11 17.1 16.0 16.0 1 +1979 6 12 19.3 18.2 18.2 1 +1979 6 13 16.7 15.6 15.6 1 +1979 6 14 14.3 13.2 13.2 1 +1979 6 15 15.4 14.3 14.3 1 +1979 6 16 17.4 16.3 16.3 1 +1979 6 17 17.6 16.5 16.5 1 +1979 6 18 15.1 14.0 14.0 1 +1979 6 19 16.4 15.3 15.3 1 +1979 6 20 19.0 17.9 17.9 1 +1979 6 21 19.3 18.2 18.2 1 +1979 6 22 19.9 18.8 18.8 1 +1979 6 23 20.9 19.8 19.8 1 +1979 6 24 21.1 20.0 20.0 1 +1979 6 25 20.3 19.2 19.2 1 +1979 6 26 17.0 15.9 15.9 1 +1979 6 27 14.9 13.8 13.8 1 +1979 6 28 16.6 15.5 15.5 1 +1979 6 29 15.4 14.3 14.3 1 +1979 6 30 13.9 12.9 12.9 1 +1979 7 1 14.0 13.0 13.0 1 +1979 7 2 13.4 12.4 12.4 1 +1979 7 3 11.7 10.7 10.7 1 +1979 7 4 13.1 12.1 12.1 1 +1979 7 5 15.7 14.7 14.7 1 +1979 7 6 13.2 12.2 12.2 1 +1979 7 7 13.8 12.8 12.8 1 +1979 7 8 14.2 13.2 13.2 1 +1979 7 9 15.6 14.6 14.6 1 +1979 7 10 15.0 14.0 14.0 1 +1979 7 11 14.4 13.4 13.4 1 +1979 7 12 16.1 15.1 15.1 1 +1979 7 13 15.6 14.6 14.6 1 +1979 7 14 16.7 15.7 15.7 1 +1979 7 15 15.6 14.6 14.6 1 +1979 7 16 15.6 14.6 14.6 1 +1979 7 17 14.8 13.8 13.8 1 +1979 7 18 17.7 16.7 16.7 1 +1979 7 19 14.1 13.1 13.1 1 +1979 7 20 14.8 13.8 13.8 1 +1979 7 21 13.2 12.2 12.2 1 +1979 7 22 14.6 13.6 13.6 1 +1979 7 23 16.2 15.2 15.2 1 +1979 7 24 15.5 14.6 14.6 1 +1979 7 25 15.2 14.3 14.3 1 +1979 7 26 15.0 14.1 14.1 1 +1979 7 27 16.0 15.1 15.1 1 +1979 7 28 16.9 16.0 16.0 1 +1979 7 29 17.2 16.3 16.3 1 +1979 7 30 16.2 15.3 15.3 1 +1979 7 31 16.9 16.0 16.0 1 +1979 8 1 17.6 16.7 16.7 1 +1979 8 2 15.3 14.4 14.4 1 +1979 8 3 15.2 14.3 14.3 1 +1979 8 4 13.9 13.0 13.0 1 +1979 8 5 14.8 13.9 13.9 1 +1979 8 6 15.6 14.8 14.8 1 +1979 8 7 16.8 16.0 16.0 1 +1979 8 8 17.0 16.2 16.2 1 +1979 8 9 16.4 15.6 15.6 1 +1979 8 10 16.3 15.5 15.5 1 +1979 8 11 15.8 15.0 15.0 1 +1979 8 12 16.5 15.7 15.7 1 +1979 8 13 16.3 15.5 15.5 1 +1979 8 14 16.4 15.6 15.6 1 +1979 8 15 17.8 17.0 17.0 1 +1979 8 16 18.4 17.6 17.6 1 +1979 8 17 20.2 19.5 19.5 1 +1979 8 18 20.1 19.4 19.4 1 +1979 8 19 18.7 18.0 18.0 1 +1979 8 20 17.9 17.2 17.2 1 +1979 8 21 18.6 17.9 17.9 1 +1979 8 22 16.5 15.8 15.8 1 +1979 8 23 14.5 13.8 13.8 1 +1979 8 24 15.3 14.7 14.7 1 +1979 8 25 14.2 13.6 13.6 1 +1979 8 26 14.1 13.5 13.5 1 +1979 8 27 13.5 12.9 12.9 1 +1979 8 28 13.1 12.5 12.5 1 +1979 8 29 14.9 14.3 14.3 1 +1979 8 30 15.9 15.4 15.4 1 +1979 8 31 14.0 13.5 13.5 1 +1979 9 1 14.9 14.4 14.4 1 +1979 9 2 13.6 13.1 13.1 1 +1979 9 3 16.3 15.8 15.8 1 +1979 9 4 15.5 15.0 15.0 1 +1979 9 5 12.9 12.4 12.4 1 +1979 9 6 15.2 14.8 14.8 1 +1979 9 7 15.2 14.8 14.8 1 +1979 9 8 14.8 14.4 14.4 1 +1979 9 9 14.2 13.8 13.8 1 +1979 9 10 13.9 13.5 13.5 1 +1979 9 11 13.5 13.1 13.1 1 +1979 9 12 11.9 11.6 11.6 1 +1979 9 13 12.6 12.3 12.3 1 +1979 9 14 10.1 9.8 9.8 1 +1979 9 15 8.1 7.8 7.8 1 +1979 9 16 7.5 7.2 7.2 1 +1979 9 17 11.0 10.7 10.7 1 +1979 9 18 13.4 13.1 13.1 1 +1979 9 19 13.5 13.2 13.2 1 +1979 9 20 10.9 10.6 10.6 1 +1979 9 21 11.5 11.2 11.2 1 +1979 9 22 9.1 8.8 8.8 1 +1979 9 23 8.5 8.2 8.2 1 +1979 9 24 9.8 9.5 9.5 1 +1979 9 25 11.0 10.7 10.7 1 +1979 9 26 11.0 10.7 10.7 1 +1979 9 27 11.0 10.7 10.7 1 +1979 9 28 9.0 8.7 8.7 1 +1979 9 29 8.6 8.3 8.3 1 +1979 9 30 6.7 6.4 6.4 1 +1979 10 1 4.9 4.6 4.6 1 +1979 10 2 4.7 4.4 4.4 1 +1979 10 3 5.5 5.2 5.2 1 +1979 10 4 5.4 5.1 5.1 1 +1979 10 5 3.7 3.4 3.4 1 +1979 10 6 4.9 4.6 4.6 1 +1979 10 7 5.9 5.6 5.6 1 +1979 10 8 6.8 6.5 6.5 1 +1979 10 9 9.1 8.8 8.8 1 +1979 10 10 11.0 10.8 10.8 1 +1979 10 11 13.2 13.0 13.0 1 +1979 10 12 10.6 10.4 10.4 1 +1979 10 13 8.3 8.1 8.1 1 +1979 10 14 8.9 8.7 8.7 1 +1979 10 15 10.3 10.1 10.1 1 +1979 10 16 9.8 9.6 9.6 1 +1979 10 17 5.6 5.3 5.3 1 +1979 10 18 7.2 6.9 6.9 1 +1979 10 19 6.8 6.5 6.5 1 +1979 10 20 9.3 9.0 9.0 1 +1979 10 21 6.7 6.4 6.4 1 +1979 10 22 3.3 3.0 3.0 1 +1979 10 23 3.5 3.2 3.2 1 +1979 10 24 3.8 3.5 3.5 1 +1979 10 25 3.8 3.5 3.5 1 +1979 10 26 0.2 -0.1 -0.1 1 +1979 10 27 1.9 1.6 1.6 1 +1979 10 28 2.0 1.7 1.7 1 +1979 10 29 2.2 1.9 1.9 1 +1979 10 30 0.6 0.2 0.2 1 +1979 10 31 0.4 0.0 0.0 1 +1979 11 1 0.7 0.3 0.3 1 +1979 11 2 0.7 0.3 0.3 1 +1979 11 3 0.4 0.0 0.0 1 +1979 11 4 4.2 3.8 3.8 1 +1979 11 5 5.9 5.5 5.5 1 +1979 11 6 5.4 5.0 5.0 1 +1979 11 7 3.9 3.5 3.5 1 +1979 11 8 2.5 2.1 2.1 1 +1979 11 9 1.9 1.5 1.5 1 +1979 11 10 1.0 0.6 0.6 1 +1979 11 11 1.5 1.1 1.1 1 +1979 11 12 4.2 3.8 3.8 1 +1979 11 13 3.2 2.7 2.7 1 +1979 11 14 1.8 1.3 1.3 1 +1979 11 15 1.0 0.5 0.5 1 +1979 11 16 4.4 3.9 3.9 1 +1979 11 17 5.1 4.6 4.6 1 +1979 11 18 3.4 2.9 2.9 1 +1979 11 19 5.9 5.4 5.4 1 +1979 11 20 3.7 3.2 3.2 1 +1979 11 21 2.3 1.8 1.8 1 +1979 11 22 3.8 3.3 3.3 1 +1979 11 23 8.2 7.7 7.7 1 +1979 11 24 4.9 4.4 4.4 1 +1979 11 25 3.4 2.9 2.9 1 +1979 11 26 5.7 5.2 5.2 1 +1979 11 27 0.9 0.4 0.4 1 +1979 11 28 -0.4 -0.9 -0.9 1 +1979 11 29 4.7 4.2 4.2 1 +1979 11 30 4.1 3.6 3.6 1 +1979 12 1 3.3 2.8 2.8 1 +1979 12 2 7.3 6.8 6.8 1 +1979 12 3 7.2 6.7 6.7 1 +1979 12 4 5.0 4.5 4.5 1 +1979 12 5 6.6 6.0 6.0 1 +1979 12 6 4.2 3.6 3.6 1 +1979 12 7 1.1 0.5 0.5 1 +1979 12 8 -1.9 -2.5 -2.5 1 +1979 12 9 -4.4 -5.0 -5.0 1 +1979 12 10 -3.6 -4.2 -4.2 1 +1979 12 11 -5.3 -5.9 -5.9 1 +1979 12 12 -7.3 -7.9 -7.9 1 +1979 12 13 -8.4 -9.0 -9.0 1 +1979 12 14 -6.8 -7.4 -7.4 1 +1979 12 15 -7.7 -8.3 -8.3 1 +1979 12 16 -6.5 -7.1 -7.1 1 +1979 12 17 -3.3 -3.9 -3.9 1 +1979 12 18 -5.6 -6.2 -6.2 1 +1979 12 19 -10.1 -10.7 -10.7 1 +1979 12 20 -4.4 -5.0 -5.0 1 +1979 12 21 -5.0 -5.6 -5.6 1 +1979 12 22 -4.6 -5.2 -5.2 1 +1979 12 23 2.6 2.0 2.0 1 +1979 12 24 3.7 3.1 3.1 1 +1979 12 25 2.3 1.6 1.6 1 +1979 12 26 1.4 0.7 0.7 1 +1979 12 27 1.0 0.3 0.3 1 +1979 12 28 2.2 1.5 1.5 1 +1979 12 29 1.9 1.2 1.2 1 +1979 12 30 1.2 0.5 0.5 1 +1979 12 31 0.6 -0.1 -0.1 1 +1980 1 1 -0.9 -1.6 -1.6 1 +1980 1 2 -4.1 -4.8 -4.8 1 +1980 1 3 -5.8 -6.5 -6.5 1 +1980 1 4 -6.2 -6.9 -6.9 1 +1980 1 5 -1.3 -2.0 -2.0 1 +1980 1 6 -2.2 -2.9 -2.9 1 +1980 1 7 -1.0 -1.7 -1.7 1 +1980 1 8 -1.0 -1.7 -1.7 1 +1980 1 9 -3.0 -3.7 -3.7 1 +1980 1 10 -1.0 -1.7 -1.7 1 +1980 1 11 -2.4 -3.2 -3.2 1 +1980 1 12 -4.4 -5.2 -5.2 1 +1980 1 13 -1.4 -2.2 -2.2 1 +1980 1 14 1.7 0.9 0.9 1 +1980 1 15 -1.2 -2.0 -2.0 1 +1980 1 16 -2.8 -3.6 -3.6 1 +1980 1 17 -0.4 -1.2 -1.2 1 +1980 1 18 -1.8 -2.6 -2.6 1 +1980 1 19 -2.0 -2.8 -2.8 1 +1980 1 20 0.2 -0.6 -0.6 1 +1980 1 21 -0.8 -1.6 -1.6 1 +1980 1 22 -0.4 -1.2 -1.2 1 +1980 1 23 -0.7 -1.5 -1.5 1 +1980 1 24 -5.2 -6.0 -6.0 1 +1980 1 25 -11.7 -12.5 -12.5 1 +1980 1 26 -16.0 -16.8 -16.8 1 +1980 1 27 -9.2 -10.0 -10.0 1 +1980 1 28 -12.0 -12.8 -12.8 1 +1980 1 29 -7.0 -7.8 -7.8 1 +1980 1 30 -10.2 -11.0 -11.0 1 +1980 1 31 -8.4 -9.2 -9.2 1 +1980 2 1 -10.0 -10.8 -10.8 1 +1980 2 2 -8.6 -9.4 -9.4 1 +1980 2 3 -7.7 -8.5 -8.5 1 +1980 2 4 -9.6 -10.4 -10.4 1 +1980 2 5 -8.2 -9.0 -9.0 1 +1980 2 6 -7.2 -8.0 -8.0 1 +1980 2 7 -10.3 -11.1 -11.1 1 +1980 2 8 -12.5 -13.3 -13.3 1 +1980 2 9 -14.7 -15.5 -15.5 1 +1980 2 10 -11.8 -12.6 -12.6 1 +1980 2 11 -5.4 -6.2 -6.2 1 +1980 2 12 -5.4 -6.2 -6.2 1 +1980 2 13 -5.6 -6.4 -6.4 1 +1980 2 14 -1.0 -1.8 -1.8 1 +1980 2 15 2.2 1.3 1.3 1 +1980 2 16 1.0 0.1 0.1 1 +1980 2 17 -0.7 -1.6 -1.6 1 +1980 2 18 -1.4 -2.3 -2.3 1 +1980 2 19 -2.3 -3.2 -3.2 1 +1980 2 20 -2.2 -3.1 -3.1 1 +1980 2 21 -2.9 -3.8 -3.8 1 +1980 2 22 -5.1 -6.0 -6.0 1 +1980 2 23 -3.7 -4.6 -4.6 1 +1980 2 24 -4.0 -4.9 -4.9 1 +1980 2 25 -4.0 -4.9 -4.9 1 +1980 2 26 -5.8 -6.7 -6.7 1 +1980 2 27 -4.7 -5.6 -5.6 1 +1980 2 28 -4.1 -5.0 -5.0 1 +1980 2 29 0.4 -0.5 -0.5 1 +1980 3 1 1.2 0.3 0.3 1 +1980 3 2 -2.8 -3.7 -3.7 1 +1980 3 3 -6.0 -6.9 -6.9 1 +1980 3 4 -7.1 -8.0 -8.0 1 +1980 3 5 -2.1 -3.0 -3.0 1 +1980 3 6 2.6 1.7 1.7 1 +1980 3 7 0.0 -0.9 -0.9 1 +1980 3 8 -0.5 -1.4 -1.4 1 +1980 3 9 -0.7 -1.6 -1.6 1 +1980 3 10 -1.8 -2.7 -2.7 1 +1980 3 11 -3.4 -4.3 -4.3 1 +1980 3 12 -0.6 -1.5 -1.5 1 +1980 3 13 -1.1 -2.1 -2.1 1 +1980 3 14 -1.1 -2.1 -2.1 1 +1980 3 15 -1.0 -2.0 -2.0 1 +1980 3 16 -0.7 -1.7 -1.7 1 +1980 3 17 -4.9 -5.8 -5.8 1 +1980 3 18 -6.6 -7.5 -7.5 1 +1980 3 19 -7.3 -8.2 -8.2 1 +1980 3 20 -5.1 -6.0 -6.0 1 +1980 3 21 -4.0 -4.9 -4.9 1 +1980 3 22 -4.3 -5.2 -5.2 1 +1980 3 23 -4.2 -5.1 -5.1 1 +1980 3 24 -2.1 -3.0 -3.0 1 +1980 3 25 -2.4 -3.3 -3.3 1 +1980 3 26 -3.0 -3.9 -3.9 1 +1980 3 27 -2.1 -3.0 -3.0 1 +1980 3 28 -1.0 -1.9 -1.9 1 +1980 3 29 1.2 0.3 0.3 1 +1980 3 30 1.4 0.5 0.5 1 +1980 3 31 1.6 0.7 0.7 1 +1980 4 1 1.5 0.6 0.6 1 +1980 4 2 1.2 0.3 0.3 1 +1980 4 3 2.3 1.4 1.4 1 +1980 4 4 3.6 2.7 2.7 1 +1980 4 5 4.5 3.6 3.6 1 +1980 4 6 8.4 7.6 7.6 1 +1980 4 7 6.4 5.6 5.6 1 +1980 4 8 3.7 2.9 2.9 1 +1980 4 9 2.7 1.9 1.9 1 +1980 4 10 5.0 4.2 4.2 1 +1980 4 11 6.7 5.9 5.9 1 +1980 4 12 8.4 7.6 7.6 1 +1980 4 13 9.4 8.6 8.6 1 +1980 4 14 9.0 8.2 8.2 1 +1980 4 15 9.8 9.0 9.0 1 +1980 4 16 8.9 8.1 8.1 1 +1980 4 17 9.4 8.6 8.6 1 +1980 4 18 6.4 5.5 5.5 1 +1980 4 19 3.0 2.1 2.1 1 +1980 4 20 1.3 0.4 0.4 1 +1980 4 21 4.7 3.8 3.8 1 +1980 4 22 6.9 6.0 6.0 1 +1980 4 23 7.4 6.4 6.4 1 +1980 4 24 6.1 5.1 5.1 1 +1980 4 25 5.1 4.1 4.1 1 +1980 4 26 6.8 5.8 5.8 1 +1980 4 27 5.7 4.7 4.7 1 +1980 4 28 5.5 4.5 4.5 1 +1980 4 29 6.0 4.9 4.9 1 +1980 4 30 5.9 4.8 4.8 1 +1980 5 1 6.3 5.2 5.2 1 +1980 5 2 5.3 4.2 4.2 1 +1980 5 3 4.6 3.5 3.5 1 +1980 5 4 6.3 5.1 5.1 1 +1980 5 5 9.2 8.0 8.0 1 +1980 5 6 10.3 9.1 9.1 1 +1980 5 7 8.8 7.6 7.6 1 +1980 5 8 8.9 7.7 7.7 1 +1980 5 9 7.8 6.5 6.5 1 +1980 5 10 8.5 7.2 7.2 1 +1980 5 11 6.5 5.2 5.2 1 +1980 5 12 7.5 6.2 6.2 1 +1980 5 13 6.1 4.8 4.8 1 +1980 5 14 12.0 10.6 10.6 1 +1980 5 15 11.3 9.9 9.9 1 +1980 5 16 14.3 12.9 12.9 1 +1980 5 17 14.5 13.1 13.1 1 +1980 5 18 14.8 13.5 13.5 1 +1980 5 19 8.9 7.6 7.6 1 +1980 5 20 6.0 4.7 4.7 1 +1980 5 21 4.6 3.3 3.3 1 +1980 5 22 6.1 4.8 4.8 1 +1980 5 23 8.8 7.5 7.5 1 +1980 5 24 8.0 6.7 6.7 1 +1980 5 25 5.7 4.4 4.4 1 +1980 5 26 7.9 6.6 6.6 1 +1980 5 27 9.3 8.0 8.0 1 +1980 5 28 12.8 11.5 11.5 1 +1980 5 29 14.4 13.2 13.2 1 +1980 5 30 12.7 11.5 11.5 1 +1980 5 31 11.6 10.4 10.4 1 +1980 6 1 11.8 10.6 10.6 1 +1980 6 2 15.6 14.4 14.4 1 +1980 6 3 17.2 16.0 16.0 1 +1980 6 4 20.3 19.1 19.1 1 +1980 6 5 20.4 19.2 19.2 1 +1980 6 6 19.7 18.5 18.5 1 +1980 6 7 20.4 19.2 19.2 1 +1980 6 8 19.8 18.6 18.6 1 +1980 6 9 20.7 19.6 19.6 1 +1980 6 10 21.5 20.4 20.4 1 +1980 6 11 21.8 20.7 20.7 1 +1980 6 12 12.8 11.7 11.7 1 +1980 6 13 14.5 13.4 13.4 1 +1980 6 14 17.0 15.9 15.9 1 +1980 6 15 16.6 15.5 15.5 1 +1980 6 16 17.9 16.8 16.8 1 +1980 6 17 18.7 17.6 17.6 1 +1980 6 18 16.3 15.2 15.2 1 +1980 6 19 16.5 15.4 15.4 1 +1980 6 20 15.2 14.1 14.1 1 +1980 6 21 14.5 13.4 13.4 1 +1980 6 22 15.5 14.4 14.4 1 +1980 6 23 11.9 10.8 10.8 1 +1980 6 24 15.5 14.4 14.4 1 +1980 6 25 15.7 14.6 14.6 1 +1980 6 26 14.9 13.8 13.8 1 +1980 6 27 14.7 13.6 13.6 1 +1980 6 28 14.5 13.4 13.4 1 +1980 6 29 14.5 13.4 13.4 1 +1980 6 30 15.8 14.8 14.8 1 +1980 7 1 16.6 15.6 15.6 1 +1980 7 2 15.7 14.7 14.7 1 +1980 7 3 16.0 15.0 15.0 1 +1980 7 4 17.4 16.4 16.4 1 +1980 7 5 15.9 14.9 14.9 1 +1980 7 6 15.0 14.0 14.0 1 +1980 7 7 16.5 15.5 15.5 1 +1980 7 8 17.8 16.8 16.8 1 +1980 7 9 17.0 16.0 16.0 1 +1980 7 10 17.8 16.8 16.8 1 +1980 7 11 17.8 16.8 16.8 1 +1980 7 12 16.8 15.8 15.8 1 +1980 7 13 16.3 15.3 15.3 1 +1980 7 14 16.8 15.8 15.8 1 +1980 7 15 17.5 16.5 16.5 1 +1980 7 16 15.8 14.8 14.8 1 +1980 7 17 14.5 13.5 13.5 1 +1980 7 18 16.5 15.5 15.5 1 +1980 7 19 16.7 15.7 15.7 1 +1980 7 20 15.3 14.3 14.3 1 +1980 7 21 16.0 15.0 15.0 1 +1980 7 22 17.5 16.5 16.5 1 +1980 7 23 19.0 18.0 18.0 1 +1980 7 24 20.8 19.9 19.9 1 +1980 7 25 20.5 19.6 19.6 1 +1980 7 26 20.2 19.3 19.3 1 +1980 7 27 20.4 19.5 19.5 1 +1980 7 28 20.9 20.0 20.0 1 +1980 7 29 21.6 20.7 20.7 1 +1980 7 30 21.7 20.8 20.8 1 +1980 7 31 22.4 21.5 21.5 1 +1980 8 1 22.1 21.2 21.2 1 +1980 8 2 21.4 20.5 20.5 1 +1980 8 3 20.4 19.5 19.5 1 +1980 8 4 19.3 18.4 18.4 1 +1980 8 5 20.1 19.2 19.2 1 +1980 8 6 18.2 17.4 17.4 1 +1980 8 7 16.1 15.3 15.3 1 +1980 8 8 13.6 12.8 12.8 1 +1980 8 9 12.1 11.3 11.3 1 +1980 8 10 11.2 10.4 10.4 1 +1980 8 11 13.4 12.6 12.6 1 +1980 8 12 14.1 13.3 13.3 1 +1980 8 13 17.6 16.8 16.8 1 +1980 8 14 17.5 16.7 16.7 1 +1980 8 15 18.4 17.6 17.6 1 +1980 8 16 18.7 17.9 17.9 1 +1980 8 17 16.3 15.6 15.6 1 +1980 8 18 15.2 14.5 14.5 1 +1980 8 19 15.2 14.5 14.5 1 +1980 8 20 14.7 14.0 14.0 1 +1980 8 21 13.3 12.6 12.6 1 +1980 8 22 12.5 11.8 11.8 1 +1980 8 23 14.9 14.2 14.2 1 +1980 8 24 13.0 12.4 12.4 1 +1980 8 25 12.0 11.4 11.4 1 +1980 8 26 12.4 11.8 11.8 1 +1980 8 27 12.6 12.0 12.0 1 +1980 8 28 11.7 11.1 11.1 1 +1980 8 29 13.2 12.6 12.6 1 +1980 8 30 11.5 11.0 11.0 1 +1980 8 31 11.6 11.1 11.1 1 +1980 9 1 12.9 12.4 12.4 1 +1980 9 2 14.2 13.7 13.7 1 +1980 9 3 15.6 15.1 15.1 1 +1980 9 4 15.8 15.3 15.3 1 +1980 9 5 14.2 13.7 13.7 1 +1980 9 6 14.8 14.4 14.4 1 +1980 9 7 15.2 14.8 14.8 1 +1980 9 8 17.6 17.2 17.2 1 +1980 9 9 15.8 15.4 15.4 1 +1980 9 10 12.5 12.1 12.1 1 +1980 9 11 12.5 12.1 12.1 1 +1980 9 12 14.6 14.3 14.3 1 +1980 9 13 13.4 13.1 13.1 1 +1980 9 14 12.1 11.8 11.8 1 +1980 9 15 12.8 12.5 12.5 1 +1980 9 16 12.2 11.9 11.9 1 +1980 9 17 12.2 11.9 11.9 1 +1980 9 18 12.6 12.3 12.3 1 +1980 9 19 13.2 12.9 12.9 1 +1980 9 20 14.2 13.9 13.9 1 +1980 9 21 13.9 13.6 13.6 1 +1980 9 22 12.1 11.8 11.8 1 +1980 9 23 11.0 10.7 10.7 1 +1980 9 24 12.2 11.9 11.9 1 +1980 9 25 12.8 12.5 12.5 1 +1980 9 26 10.4 10.1 10.1 1 +1980 9 27 11.3 11.0 11.0 1 +1980 9 28 10.6 10.3 10.3 1 +1980 9 29 11.0 10.7 10.7 1 +1980 9 30 10.9 10.6 10.6 1 +1980 10 1 9.9 9.6 9.6 1 +1980 10 2 9.1 8.8 8.8 1 +1980 10 3 7.7 7.4 7.4 1 +1980 10 4 8.6 8.3 8.3 1 +1980 10 5 10.0 9.7 9.7 1 +1980 10 6 9.2 8.9 8.9 1 +1980 10 7 10.7 10.4 10.4 1 +1980 10 8 8.8 8.5 8.5 1 +1980 10 9 9.3 9.0 9.0 1 +1980 10 10 8.7 8.4 8.4 1 +1980 10 11 8.3 8.1 8.1 1 +1980 10 12 8.3 8.1 8.1 1 +1980 10 13 7.7 7.5 7.5 1 +1980 10 14 7.0 6.8 6.8 1 +1980 10 15 6.6 6.4 6.4 1 +1980 10 16 3.8 3.6 3.6 1 +1980 10 17 6.9 6.6 6.6 1 +1980 10 18 11.2 10.9 10.9 1 +1980 10 19 8.7 8.4 8.4 1 +1980 10 20 5.9 5.6 5.6 1 +1980 10 21 2.8 2.5 2.5 1 +1980 10 22 1.9 1.6 1.6 1 +1980 10 23 2.1 1.8 1.8 1 +1980 10 24 5.7 5.4 5.4 1 +1980 10 25 1.9 1.6 1.6 1 +1980 10 26 -2.7 -3.0 -3.0 1 +1980 10 27 1.6 1.3 1.3 1 +1980 10 28 4.7 4.4 4.4 1 +1980 10 29 4.1 3.8 3.8 1 +1980 10 30 -0.6 -1.0 -1.0 1 +1980 10 31 -3.0 -3.4 -3.4 1 +1980 11 1 -0.9 -1.3 -1.3 1 +1980 11 2 0.2 -0.2 -0.2 1 +1980 11 3 0.5 0.1 0.1 1 +1980 11 4 1.2 0.8 0.8 1 +1980 11 5 1.8 1.4 1.4 1 +1980 11 6 2.9 2.5 2.5 1 +1980 11 7 1.9 1.5 1.5 1 +1980 11 8 1.0 0.6 0.6 1 +1980 11 9 0.1 -0.3 -0.3 1 +1980 11 10 -4.0 -4.4 -4.4 1 +1980 11 11 -2.9 -3.3 -3.3 1 +1980 11 12 -0.1 -0.5 -0.5 1 +1980 11 13 -2.4 -2.9 -2.9 1 +1980 11 14 0.5 0.0 0.0 1 +1980 11 15 1.2 0.7 0.7 1 +1980 11 16 5.4 4.9 4.9 1 +1980 11 17 4.1 3.6 3.6 1 +1980 11 18 8.0 7.5 7.5 1 +1980 11 19 -0.8 -1.3 -1.3 1 +1980 11 20 -1.0 -1.5 -1.5 1 +1980 11 21 7.2 6.7 6.7 1 +1980 11 22 7.2 6.7 6.7 1 +1980 11 23 9.0 8.5 8.5 1 +1980 11 24 0.9 0.4 0.4 1 +1980 11 25 -3.8 -4.3 -4.3 1 +1980 11 26 -6.5 -7.0 -7.0 1 +1980 11 27 -4.2 -4.7 -4.7 1 +1980 11 28 -0.8 -1.3 -1.3 1 +1980 11 29 -5.6 -6.1 -6.1 1 +1980 11 30 -7.5 -8.0 -8.0 1 +1980 12 1 -0.2 -0.7 -0.7 1 +1980 12 2 2.7 2.2 2.2 1 +1980 12 3 -3.3 -3.8 -3.8 1 +1980 12 4 -6.9 -7.4 -7.4 1 +1980 12 5 -10.5 -11.1 -11.1 1 +1980 12 6 -9.3 -9.9 -9.9 1 +1980 12 7 -7.7 -8.3 -8.3 1 +1980 12 8 -5.6 -6.2 -6.2 1 +1980 12 9 3.3 2.7 2.7 1 +1980 12 10 0.1 -0.5 -0.5 1 +1980 12 11 0.9 0.3 0.3 1 +1980 12 12 0.2 -0.4 -0.4 1 +1980 12 13 5.8 5.2 5.2 1 +1980 12 14 2.7 2.1 2.1 1 +1980 12 15 3.1 2.5 2.5 1 +1980 12 16 -5.0 -5.6 -5.6 1 +1980 12 17 -2.8 -3.4 -3.4 1 +1980 12 18 1.9 1.3 1.3 1 +1980 12 19 1.6 1.0 1.0 1 +1980 12 20 1.4 0.8 0.8 1 +1980 12 21 2.2 1.6 1.6 1 +1980 12 22 0.8 0.2 0.2 1 +1980 12 23 1.9 1.3 1.3 1 +1980 12 24 1.2 0.6 0.6 1 +1980 12 25 1.3 0.6 0.6 1 +1980 12 26 1.4 0.7 0.7 1 +1980 12 27 -1.4 -2.1 -2.1 1 +1980 12 28 0.9 0.2 0.2 1 +1980 12 29 4.4 3.7 3.7 1 +1980 12 30 4.1 3.4 3.4 1 +1980 12 31 4.7 4.0 4.0 1 +1981 1 1 0.3 -0.4 -0.4 1 +1981 1 2 -1.4 -2.1 -2.1 1 +1981 1 3 -5.9 -6.6 -6.6 1 +1981 1 4 -6.0 -6.7 -6.7 1 +1981 1 5 -11.9 -12.6 -12.6 1 +1981 1 6 -13.1 -13.8 -13.8 1 +1981 1 7 -11.1 -11.8 -11.8 1 +1981 1 8 -5.4 -6.1 -6.1 1 +1981 1 9 3.4 2.7 2.7 1 +1981 1 10 -2.6 -3.3 -3.3 1 +1981 1 11 -4.5 -5.3 -5.3 1 +1981 1 12 0.9 0.1 0.1 1 +1981 1 13 -2.9 -3.7 -3.7 1 +1981 1 14 -3.4 -4.2 -4.2 1 +1981 1 15 -0.5 -1.3 -1.3 1 +1981 1 16 -3.9 -4.7 -4.7 1 +1981 1 17 -5.7 -6.5 -6.5 1 +1981 1 18 -6.7 -7.5 -7.5 1 +1981 1 19 -7.9 -8.7 -8.7 1 +1981 1 20 -13.0 -13.8 -13.8 1 +1981 1 21 -7.1 -7.9 -7.9 1 +1981 1 22 -0.8 -1.6 -1.6 1 +1981 1 23 -0.2 -1.0 -1.0 1 +1981 1 24 2.8 2.0 2.0 1 +1981 1 25 0.3 -0.5 -0.5 1 +1981 1 26 -3.9 -4.7 -4.7 1 +1981 1 27 -2.0 -2.8 -2.8 1 +1981 1 28 1.3 0.5 0.5 1 +1981 1 29 1.6 0.8 0.8 1 +1981 1 30 3.9 3.1 3.1 1 +1981 1 31 4.8 4.0 4.0 1 +1981 2 1 5.6 4.8 4.8 1 +1981 2 2 4.6 3.8 3.8 1 +1981 2 3 2.0 1.2 1.2 1 +1981 2 4 0.4 -0.4 -0.4 1 +1981 2 5 -2.0 -2.8 -2.8 1 +1981 2 6 -2.2 -3.0 -3.0 1 +1981 2 7 0.7 -0.1 -0.1 1 +1981 2 8 1.2 0.4 0.4 1 +1981 2 9 -0.9 -1.7 -1.7 1 +1981 2 10 -3.1 -3.9 -3.9 1 +1981 2 11 -1.1 -1.9 -1.9 1 +1981 2 12 -2.2 -3.0 -3.0 1 +1981 2 13 -4.1 -4.9 -4.9 1 +1981 2 14 -4.2 -5.0 -5.0 1 +1981 2 15 -3.1 -3.9 -3.9 1 +1981 2 16 -2.0 -2.9 -2.9 1 +1981 2 17 -0.9 -1.8 -1.8 1 +1981 2 18 -2.3 -3.2 -3.2 1 +1981 2 19 -4.6 -5.5 -5.5 1 +1981 2 20 -6.4 -7.3 -7.3 1 +1981 2 21 -8.4 -9.3 -9.3 1 +1981 2 22 -4.9 -5.8 -5.8 1 +1981 2 23 -4.4 -5.3 -5.3 1 +1981 2 24 -0.8 -1.7 -1.7 1 +1981 2 25 0.3 -0.6 -0.6 1 +1981 2 26 -3.8 -4.7 -4.7 1 +1981 2 27 -3.7 -4.6 -4.6 1 +1981 2 28 -2.0 -2.9 -2.9 1 +1981 3 1 -1.0 -1.9 -1.9 1 +1981 3 2 -2.7 -3.6 -3.6 1 +1981 3 3 -3.7 -4.6 -4.6 1 +1981 3 4 -5.0 -5.9 -5.9 1 +1981 3 5 -7.7 -8.6 -8.6 1 +1981 3 6 -7.0 -7.9 -7.9 1 +1981 3 7 -2.8 -3.7 -3.7 1 +1981 3 8 2.6 1.7 1.7 1 +1981 3 9 4.2 3.3 3.3 1 +1981 3 10 1.0 0.1 0.1 1 +1981 3 11 -4.2 -5.1 -5.1 1 +1981 3 12 -5.9 -6.8 -6.8 1 +1981 3 13 -2.5 -3.5 -3.5 1 +1981 3 14 -10.0 -11.0 -11.0 1 +1981 3 15 -7.7 -8.7 -8.7 1 +1981 3 16 -5.5 -6.5 -6.5 1 +1981 3 17 -2.7 -3.6 -3.6 1 +1981 3 18 -0.9 -1.8 -1.8 1 +1981 3 19 0.1 -0.8 -0.8 1 +1981 3 20 -1.2 -2.1 -2.1 1 +1981 3 21 -2.8 -3.7 -3.7 1 +1981 3 22 5.8 4.9 4.9 1 +1981 3 23 5.6 4.7 4.7 1 +1981 3 24 1.9 1.0 1.0 1 +1981 3 25 2.6 1.7 1.7 1 +1981 3 26 0.9 0.0 0.0 1 +1981 3 27 -0.2 -1.1 -1.1 1 +1981 3 28 -0.7 -1.6 -1.6 1 +1981 3 29 1.7 0.8 0.8 1 +1981 3 30 2.2 1.3 1.3 1 +1981 3 31 4.2 3.3 3.3 1 +1981 4 1 5.2 4.3 4.3 1 +1981 4 2 5.1 4.2 4.2 1 +1981 4 3 6.4 5.5 5.5 1 +1981 4 4 5.6 4.7 4.7 1 +1981 4 5 5.2 4.3 4.3 1 +1981 4 6 8.0 7.2 7.2 1 +1981 4 7 6.8 6.0 6.0 1 +1981 4 8 7.7 6.9 6.9 1 +1981 4 9 8.8 8.0 8.0 1 +1981 4 10 9.0 8.2 8.2 1 +1981 4 11 8.6 7.8 7.8 1 +1981 4 12 9.4 8.6 8.6 1 +1981 4 13 6.0 5.2 5.2 1 +1981 4 14 7.2 6.4 6.4 1 +1981 4 15 5.1 4.3 4.3 1 +1981 4 16 2.1 1.3 1.3 1 +1981 4 17 1.7 0.9 0.9 1 +1981 4 18 3.9 3.0 3.0 1 +1981 4 19 4.6 3.7 3.7 1 +1981 4 20 7.3 6.4 6.4 1 +1981 4 21 2.1 1.2 1.2 1 +1981 4 22 -2.5 -3.4 -3.4 1 +1981 4 23 -1.6 -2.6 -2.6 1 +1981 4 24 1.4 0.4 0.4 1 +1981 4 25 2.9 1.9 1.9 1 +1981 4 26 4.8 3.8 3.8 1 +1981 4 27 5.1 4.1 4.1 1 +1981 4 28 2.7 1.7 1.7 1 +1981 4 29 3.0 1.9 1.9 1 +1981 4 30 1.5 0.4 0.4 1 +1981 5 1 0.0 -1.1 -1.1 1 +1981 5 2 2.4 1.3 1.3 1 +1981 5 3 1.4 0.3 0.3 1 +1981 5 4 3.9 2.7 2.7 1 +1981 5 5 6.3 5.1 5.1 1 +1981 5 6 7.5 6.3 6.3 1 +1981 5 7 10.2 9.0 9.0 1 +1981 5 8 11.0 9.8 9.8 1 +1981 5 9 12.2 10.9 10.9 1 +1981 5 10 16.8 15.5 15.5 1 +1981 5 11 15.1 13.8 13.8 1 +1981 5 12 10.5 9.2 9.2 1 +1981 5 13 9.7 8.4 8.4 1 +1981 5 14 12.2 10.8 10.8 1 +1981 5 15 15.1 13.7 13.7 1 +1981 5 16 14.2 12.8 12.8 1 +1981 5 17 13.3 11.9 11.9 1 +1981 5 18 15.1 13.8 13.8 1 +1981 5 19 16.2 14.9 14.9 1 +1981 5 20 11.6 10.3 10.3 1 +1981 5 21 18.3 17.0 17.0 1 +1981 5 22 18.5 17.2 17.2 1 +1981 5 23 18.2 16.9 16.9 1 +1981 5 24 17.4 16.1 16.1 1 +1981 5 25 11.9 10.6 10.6 1 +1981 5 26 14.1 12.8 12.8 1 +1981 5 27 13.6 12.3 12.3 1 +1981 5 28 13.3 12.0 12.0 1 +1981 5 29 14.5 13.3 13.3 1 +1981 5 30 14.7 13.5 13.5 1 +1981 5 31 16.4 15.2 15.2 1 +1981 6 1 16.9 15.7 15.7 1 +1981 6 2 16.2 15.0 15.0 1 +1981 6 3 14.9 13.7 13.7 1 +1981 6 4 13.9 12.7 12.7 1 +1981 6 5 15.0 13.8 13.8 1 +1981 6 6 15.3 14.1 14.1 1 +1981 6 7 13.4 12.2 12.2 1 +1981 6 8 14.0 12.8 12.8 1 +1981 6 9 15.8 14.7 14.7 1 +1981 6 10 15.7 14.6 14.6 1 +1981 6 11 13.3 12.2 12.2 1 +1981 6 12 11.2 10.1 10.1 1 +1981 6 13 7.8 6.7 6.7 1 +1981 6 14 11.9 10.8 10.8 1 +1981 6 15 13.7 12.6 12.6 1 +1981 6 16 10.8 9.7 9.7 1 +1981 6 17 12.1 11.0 11.0 1 +1981 6 18 11.9 10.8 10.8 1 +1981 6 19 11.9 10.8 10.8 1 +1981 6 20 13.2 12.1 12.1 1 +1981 6 21 13.3 12.2 12.2 1 +1981 6 22 15.1 14.0 14.0 1 +1981 6 23 16.2 15.1 15.1 1 +1981 6 24 14.1 13.0 13.0 1 +1981 6 25 14.1 13.0 13.0 1 +1981 6 26 12.3 11.2 11.2 1 +1981 6 27 14.2 13.1 13.1 1 +1981 6 28 14.4 13.3 13.3 1 +1981 6 29 16.5 15.4 15.4 1 +1981 6 30 13.6 12.5 12.5 1 +1981 7 1 13.2 12.2 12.2 1 +1981 7 2 16.0 15.0 15.0 1 +1981 7 3 15.8 14.8 14.8 1 +1981 7 4 15.3 14.3 14.3 1 +1981 7 5 16.6 15.6 15.6 1 +1981 7 6 18.4 17.4 17.4 1 +1981 7 7 18.2 17.2 17.2 1 +1981 7 8 19.2 18.2 18.2 1 +1981 7 9 20.9 19.9 19.9 1 +1981 7 10 20.3 19.3 19.3 1 +1981 7 11 21.5 20.5 20.5 1 +1981 7 12 21.2 20.2 20.2 1 +1981 7 13 19.7 18.7 18.7 1 +1981 7 14 15.9 14.9 14.9 1 +1981 7 15 14.5 13.5 13.5 1 +1981 7 16 16.1 15.1 15.1 1 +1981 7 17 14.7 13.7 13.7 1 +1981 7 18 15.2 14.2 14.2 1 +1981 7 19 15.1 14.1 14.1 1 +1981 7 20 17.4 16.4 16.4 1 +1981 7 21 15.8 14.8 14.8 1 +1981 7 22 15.6 14.6 14.6 1 +1981 7 23 18.9 17.9 17.9 1 +1981 7 24 18.8 17.9 17.9 1 +1981 7 25 18.0 17.1 17.1 1 +1981 7 26 17.4 16.5 16.5 1 +1981 7 27 16.6 15.7 15.7 1 +1981 7 28 17.9 17.0 17.0 1 +1981 7 29 19.2 18.3 18.3 1 +1981 7 30 15.3 14.4 14.4 1 +1981 7 31 20.3 19.4 19.4 1 +1981 8 1 17.3 16.4 16.4 1 +1981 8 2 16.9 16.0 16.0 1 +1981 8 3 18.2 17.3 17.3 1 +1981 8 4 19.4 18.5 18.5 1 +1981 8 5 20.4 19.5 19.5 1 +1981 8 6 21.6 20.8 20.8 1 +1981 8 7 18.6 17.8 17.8 1 +1981 8 8 14.9 14.1 14.1 1 +1981 8 9 16.6 15.8 15.8 1 +1981 8 10 18.6 17.8 17.8 1 +1981 8 11 19.4 18.6 18.6 1 +1981 8 12 20.3 19.5 19.5 1 +1981 8 13 21.4 20.6 20.6 1 +1981 8 14 18.8 18.0 18.0 1 +1981 8 15 18.7 17.9 17.9 1 +1981 8 16 13.7 12.9 12.9 1 +1981 8 17 11.4 10.7 10.7 1 +1981 8 18 14.2 13.5 13.5 1 +1981 8 19 15.5 14.8 14.8 1 +1981 8 20 14.0 13.3 13.3 1 +1981 8 21 13.1 12.4 12.4 1 +1981 8 22 13.6 12.9 12.9 1 +1981 8 23 12.7 12.0 12.0 1 +1981 8 24 11.7 11.1 11.1 1 +1981 8 25 12.4 11.8 11.8 1 +1981 8 26 11.2 10.6 10.6 1 +1981 8 27 10.3 9.7 9.7 1 +1981 8 28 11.1 10.5 10.5 1 +1981 8 29 10.0 9.4 9.4 1 +1981 8 30 11.1 10.6 10.6 1 +1981 8 31 9.1 8.6 8.6 1 +1981 9 1 11.8 11.3 11.3 1 +1981 9 2 12.1 11.6 11.6 1 +1981 9 3 13.3 12.8 12.8 1 +1981 9 4 12.9 12.4 12.4 1 +1981 9 5 14.3 13.8 13.8 1 +1981 9 6 16.1 15.7 15.7 1 +1981 9 7 12.2 11.8 11.8 1 +1981 9 8 14.9 14.5 14.5 1 +1981 9 9 17.0 16.6 16.6 1 +1981 9 10 15.4 15.0 15.0 1 +1981 9 11 11.5 11.1 11.1 1 +1981 9 12 10.5 10.2 10.2 1 +1981 9 13 10.0 9.7 9.7 1 +1981 9 14 8.5 8.2 8.2 1 +1981 9 15 10.6 10.3 10.3 1 +1981 9 16 7.1 6.8 6.8 1 +1981 9 17 8.1 7.8 7.8 1 +1981 9 18 8.9 8.6 8.6 1 +1981 9 19 9.1 8.8 8.8 1 +1981 9 20 9.7 9.4 9.4 1 +1981 9 21 10.8 10.5 10.5 1 +1981 9 22 12.7 12.4 12.4 1 +1981 9 23 13.5 13.2 13.2 1 +1981 9 24 12.1 11.8 11.8 1 +1981 9 25 13.0 12.7 12.7 1 +1981 9 26 14.1 13.8 13.8 1 +1981 9 27 11.6 11.3 11.3 1 +1981 9 28 13.7 13.4 13.4 1 +1981 9 29 14.2 13.9 13.9 1 +1981 9 30 11.8 11.5 11.5 1 +1981 10 1 12.7 12.4 12.4 1 +1981 10 2 12.2 11.9 11.9 1 +1981 10 3 11.4 11.1 11.1 1 +1981 10 4 11.7 11.4 11.4 1 +1981 10 5 11.6 11.3 11.3 1 +1981 10 6 9.5 9.2 9.2 1 +1981 10 7 10.3 10.0 10.0 1 +1981 10 8 8.6 8.3 8.3 1 +1981 10 9 7.5 7.2 7.2 1 +1981 10 10 10.6 10.4 10.4 1 +1981 10 11 7.9 7.7 7.7 1 +1981 10 12 7.6 7.4 7.4 1 +1981 10 13 5.9 5.7 5.7 1 +1981 10 14 6.1 5.9 5.9 1 +1981 10 15 6.1 5.9 5.9 1 +1981 10 16 5.0 4.8 4.8 1 +1981 10 17 5.5 5.2 5.2 1 +1981 10 18 2.6 2.3 2.3 1 +1981 10 19 4.0 3.7 3.7 1 +1981 10 20 7.4 7.1 7.1 1 +1981 10 21 6.1 5.8 5.8 1 +1981 10 22 5.0 4.7 4.7 1 +1981 10 23 3.5 3.2 3.2 1 +1981 10 24 2.8 2.5 2.5 1 +1981 10 25 2.8 2.5 2.5 1 +1981 10 26 2.2 1.9 1.9 1 +1981 10 27 3.7 3.4 3.4 1 +1981 10 28 6.3 6.0 6.0 1 +1981 10 29 5.2 4.9 4.9 1 +1981 10 30 5.2 4.8 4.8 1 +1981 10 31 4.2 3.8 3.8 1 +1981 11 1 2.1 1.7 1.7 1 +1981 11 2 3.0 2.6 2.6 1 +1981 11 3 -0.5 -0.9 -0.9 1 +1981 11 4 5.5 5.1 5.1 1 +1981 11 5 4.2 3.8 3.8 1 +1981 11 6 1.3 0.9 0.9 1 +1981 11 7 0.5 0.1 0.1 1 +1981 11 8 0.6 0.2 0.2 1 +1981 11 9 -1.2 -1.6 -1.6 1 +1981 11 10 0.3 -0.1 -0.1 1 +1981 11 11 4.1 3.7 3.7 1 +1981 11 12 0.5 0.1 0.1 1 +1981 11 13 1.8 1.3 1.3 1 +1981 11 14 0.2 -0.3 -0.3 1 +1981 11 15 0.7 0.2 0.2 1 +1981 11 16 0.6 0.1 0.1 1 +1981 11 17 2.4 1.9 1.9 1 +1981 11 18 4.6 4.1 4.1 1 +1981 11 19 4.8 4.3 4.3 1 +1981 11 20 3.1 2.6 2.6 1 +1981 11 21 4.4 3.9 3.9 1 +1981 11 22 1.4 0.9 0.9 1 +1981 11 23 2.1 1.6 1.6 1 +1981 11 24 3.5 3.0 3.0 1 +1981 11 25 -0.5 -1.0 -1.0 1 +1981 11 26 -3.8 -4.3 -4.3 1 +1981 11 27 -4.3 -4.8 -4.8 1 +1981 11 28 3.4 2.9 2.9 1 +1981 11 29 2.1 1.6 1.6 1 +1981 11 30 0.8 0.3 0.3 1 +1981 12 1 1.6 1.1 1.1 1 +1981 12 2 -0.9 -1.4 -1.4 1 +1981 12 3 2.8 2.3 2.3 1 +1981 12 4 1.7 1.2 1.2 1 +1981 12 5 -3.3 -3.9 -3.9 1 +1981 12 6 -7.4 -8.0 -8.0 1 +1981 12 7 -5.1 -5.7 -5.7 1 +1981 12 8 -3.1 -3.7 -3.7 1 +1981 12 9 -2.7 -3.3 -3.3 1 +1981 12 10 -5.6 -6.2 -6.2 1 +1981 12 11 -4.4 -5.0 -5.0 1 +1981 12 12 -5.2 -5.8 -5.8 1 +1981 12 13 -12.6 -13.2 -13.2 1 +1981 12 14 -12.1 -12.7 -12.7 1 +1981 12 15 -9.5 -10.1 -10.1 1 +1981 12 16 -11.4 -12.0 -12.0 1 +1981 12 17 -12.8 -13.4 -13.4 1 +1981 12 18 -8.9 -9.5 -9.5 1 +1981 12 19 -7.1 -7.7 -7.7 1 +1981 12 20 -5.4 -6.0 -6.0 1 +1981 12 21 -6.1 -6.7 -6.7 1 +1981 12 22 -1.4 -2.0 -2.0 1 +1981 12 23 -1.9 -2.5 -2.5 1 +1981 12 24 -4.0 -4.6 -4.6 1 +1981 12 25 -6.5 -7.2 -7.2 1 +1981 12 26 -9.9 -10.6 -10.6 1 +1981 12 27 -5.2 -5.9 -5.9 1 +1981 12 28 -7.6 -8.3 -8.3 1 +1981 12 29 -3.6 -4.3 -4.3 1 +1981 12 30 -0.1 -0.8 -0.8 1 +1981 12 31 -0.6 -1.3 -1.3 1 +1982 1 1 -3.9 -4.6 -4.6 1 +1982 1 2 -9.3 -10.0 -10.0 1 +1982 1 3 -2.3 -3.0 -3.0 1 +1982 1 4 -15.1 -15.8 -15.8 1 +1982 1 5 -14.0 -14.7 -14.7 1 +1982 1 6 -12.3 -13.0 -13.0 1 +1982 1 7 -15.0 -15.7 -15.7 1 +1982 1 8 -14.2 -14.9 -14.9 1 +1982 1 9 -14.6 -15.3 -15.3 1 +1982 1 10 -8.5 -9.2 -9.2 1 +1982 1 11 -6.7 -7.5 -7.5 1 +1982 1 12 -9.2 -10.0 -10.0 1 +1982 1 13 -6.5 -7.3 -7.3 1 +1982 1 14 0.3 -0.5 -0.5 1 +1982 1 15 0.2 -0.6 -0.6 1 +1982 1 16 -4.8 -5.6 -5.6 1 +1982 1 17 -1.0 -1.8 -1.8 1 +1982 1 18 -1.3 -2.1 -2.1 1 +1982 1 19 -2.4 -3.2 -3.2 1 +1982 1 20 -3.3 -4.1 -4.1 1 +1982 1 21 -5.6 -6.4 -6.4 1 +1982 1 22 -5.8 -6.6 -6.6 1 +1982 1 23 -2.4 -3.2 -3.2 1 +1982 1 24 -9.1 -9.9 -9.9 1 +1982 1 25 -2.5 -3.3 -3.3 1 +1982 1 26 -0.7 -1.5 -1.5 1 +1982 1 27 -7.6 -8.4 -8.4 1 +1982 1 28 -7.2 -8.0 -8.0 1 +1982 1 29 -1.0 -1.8 -1.8 1 +1982 1 30 -4.6 -5.4 -5.4 1 +1982 1 31 -10.0 -10.8 -10.8 1 +1982 2 1 -9.1 -9.9 -9.9 1 +1982 2 2 -2.6 -3.4 -3.4 1 +1982 2 3 -2.4 -3.2 -3.2 1 +1982 2 4 -6.2 -7.0 -7.0 1 +1982 2 5 -7.6 -8.4 -8.4 1 +1982 2 6 -5.9 -6.7 -6.7 1 +1982 2 7 -2.9 -3.7 -3.7 1 +1982 2 8 -5.0 -5.8 -5.8 1 +1982 2 9 -3.3 -4.1 -4.1 1 +1982 2 10 1.8 1.0 1.0 1 +1982 2 11 1.2 0.4 0.4 1 +1982 2 12 2.0 1.2 1.2 1 +1982 2 13 0.6 -0.2 -0.2 1 +1982 2 14 -0.4 -1.2 -1.2 1 +1982 2 15 -0.9 -1.7 -1.7 1 +1982 2 16 -2.1 -3.0 -3.0 1 +1982 2 17 -3.2 -4.1 -4.1 1 +1982 2 18 -4.4 -5.3 -5.3 1 +1982 2 19 -4.6 -5.5 -5.5 1 +1982 2 20 -4.6 -5.5 -5.5 1 +1982 2 21 -5.8 -6.7 -6.7 1 +1982 2 22 -6.9 -7.8 -7.8 1 +1982 2 23 -5.8 -6.7 -6.7 1 +1982 2 24 -4.0 -4.9 -4.9 1 +1982 2 25 -0.2 -1.1 -1.1 1 +1982 2 26 -2.5 -3.4 -3.4 1 +1982 2 27 -1.5 -2.4 -2.4 1 +1982 2 28 -2.4 -3.3 -3.3 1 +1982 3 1 1.8 0.9 0.9 1 +1982 3 2 2.9 2.0 2.0 1 +1982 3 3 1.6 0.7 0.7 1 +1982 3 4 2.5 1.6 1.6 1 +1982 3 5 -3.4 -4.3 -4.3 1 +1982 3 6 -3.5 -4.4 -4.4 1 +1982 3 7 1.1 0.2 0.2 1 +1982 3 8 0.0 -0.9 -0.9 1 +1982 3 9 0.6 -0.3 -0.3 1 +1982 3 10 0.2 -0.7 -0.7 1 +1982 3 11 0.9 0.0 0.0 1 +1982 3 12 1.3 0.4 0.4 1 +1982 3 13 1.5 0.5 0.5 1 +1982 3 14 1.3 0.3 0.3 1 +1982 3 15 2.4 1.4 1.4 1 +1982 3 16 3.4 2.4 2.4 1 +1982 3 17 2.0 1.1 1.1 1 +1982 3 18 1.7 0.8 0.8 1 +1982 3 19 0.5 -0.4 -0.4 1 +1982 3 20 0.3 -0.6 -0.6 1 +1982 3 21 0.8 -0.1 -0.1 1 +1982 3 22 1.2 0.3 0.3 1 +1982 3 23 2.6 1.7 1.7 1 +1982 3 24 2.9 2.0 2.0 1 +1982 3 25 6.0 5.1 5.1 1 +1982 3 26 7.0 6.1 6.1 1 +1982 3 27 6.7 5.8 5.8 1 +1982 3 28 5.0 4.1 4.1 1 +1982 3 29 2.5 1.6 1.6 1 +1982 3 30 3.2 2.3 2.3 1 +1982 3 31 6.4 5.5 5.5 1 +1982 4 1 8.5 7.6 7.6 1 +1982 4 2 5.3 4.4 4.4 1 +1982 4 3 5.6 4.7 4.7 1 +1982 4 4 7.0 6.1 6.1 1 +1982 4 5 3.4 2.5 2.5 1 +1982 4 6 4.3 3.5 3.5 1 +1982 4 7 4.8 4.0 4.0 1 +1982 4 8 3.7 2.9 2.9 1 +1982 4 9 -0.9 -1.7 -1.7 1 +1982 4 10 1.1 0.3 0.3 1 +1982 4 11 0.5 -0.3 -0.3 1 +1982 4 12 -0.8 -1.6 -1.6 1 +1982 4 13 1.0 0.2 0.2 1 +1982 4 14 3.8 3.0 3.0 1 +1982 4 15 6.3 5.5 5.5 1 +1982 4 16 7.0 6.2 6.2 1 +1982 4 17 5.6 4.8 4.8 1 +1982 4 18 5.9 5.0 5.0 1 +1982 4 19 5.4 4.5 4.5 1 +1982 4 20 4.3 3.4 3.4 1 +1982 4 21 3.6 2.7 2.7 1 +1982 4 22 5.5 4.6 4.6 1 +1982 4 23 7.6 6.6 6.6 1 +1982 4 24 8.5 7.5 7.5 1 +1982 4 25 10.3 9.3 9.3 1 +1982 4 26 7.5 6.5 6.5 1 +1982 4 27 8.0 7.0 7.0 1 +1982 4 28 6.5 5.5 5.5 1 +1982 4 29 4.1 3.0 3.0 1 +1982 4 30 5.5 4.4 4.4 1 +1982 5 1 5.1 4.0 4.0 1 +1982 5 2 6.1 5.0 5.0 1 +1982 5 3 6.1 5.0 5.0 1 +1982 5 4 7.0 5.8 5.8 1 +1982 5 5 8.4 7.2 7.2 1 +1982 5 6 8.4 7.2 7.2 1 +1982 5 7 9.6 8.4 8.4 1 +1982 5 8 7.5 6.3 6.3 1 +1982 5 9 9.5 8.2 8.2 1 +1982 5 10 9.6 8.3 8.3 1 +1982 5 11 9.3 8.0 8.0 1 +1982 5 12 11.3 10.0 10.0 1 +1982 5 13 11.4 10.1 10.1 1 +1982 5 14 8.7 7.3 7.3 1 +1982 5 15 10.0 8.6 8.6 1 +1982 5 16 10.6 9.2 9.2 1 +1982 5 17 14.5 13.1 13.1 1 +1982 5 18 9.9 8.6 8.6 1 +1982 5 19 6.5 5.2 5.2 1 +1982 5 20 7.6 6.3 6.3 1 +1982 5 21 8.6 7.3 7.3 1 +1982 5 22 10.1 8.8 8.8 1 +1982 5 23 9.7 8.4 8.4 1 +1982 5 24 11.2 9.9 9.9 1 +1982 5 25 13.2 11.9 11.9 1 +1982 5 26 15.3 14.0 14.0 1 +1982 5 27 17.1 15.8 15.8 1 +1982 5 28 15.3 14.0 14.0 1 +1982 5 29 14.5 13.3 13.3 1 +1982 5 30 17.5 16.3 16.3 1 +1982 5 31 20.1 18.9 18.9 1 +1982 6 1 20.8 19.6 19.6 1 +1982 6 2 22.1 20.9 20.9 1 +1982 6 3 23.0 21.8 21.8 1 +1982 6 4 22.8 21.6 21.6 1 +1982 6 5 22.7 21.5 21.5 1 +1982 6 6 12.8 11.6 11.6 1 +1982 6 7 11.5 10.3 10.3 1 +1982 6 8 10.7 9.5 9.5 1 +1982 6 9 7.1 6.0 6.0 1 +1982 6 10 8.4 7.3 7.3 1 +1982 6 11 12.2 11.1 11.1 1 +1982 6 12 10.7 9.6 9.6 1 +1982 6 13 7.2 6.1 6.1 1 +1982 6 14 8.3 7.2 7.2 1 +1982 6 15 10.0 8.9 8.9 1 +1982 6 16 11.7 10.6 10.6 1 +1982 6 17 12.2 11.1 11.1 1 +1982 6 18 12.2 11.1 11.1 1 +1982 6 19 16.4 15.3 15.3 1 +1982 6 20 13.2 12.1 12.1 1 +1982 6 21 10.1 9.0 9.0 1 +1982 6 22 11.6 10.5 10.5 1 +1982 6 23 14.9 13.8 13.8 1 +1982 6 24 13.7 12.6 12.6 1 +1982 6 25 15.0 13.9 13.9 1 +1982 6 26 15.7 14.6 14.6 1 +1982 6 27 14.7 13.6 13.6 1 +1982 6 28 14.9 13.8 13.8 1 +1982 6 29 10.3 9.2 9.2 1 +1982 6 30 10.5 9.4 9.4 1 +1982 7 1 11.3 10.3 10.3 1 +1982 7 2 13.2 12.2 12.2 1 +1982 7 3 12.6 11.6 11.6 1 +1982 7 4 14.3 13.3 13.3 1 +1982 7 5 15.8 14.8 14.8 1 +1982 7 6 16.6 15.6 15.6 1 +1982 7 7 15.2 14.2 14.2 1 +1982 7 8 18.0 17.0 17.0 1 +1982 7 9 19.5 18.5 18.5 1 +1982 7 10 20.1 19.1 19.1 1 +1982 7 11 20.5 19.5 19.5 1 +1982 7 12 21.6 20.6 20.6 1 +1982 7 13 18.8 17.8 17.8 1 +1982 7 14 18.7 17.7 17.7 1 +1982 7 15 19.3 18.3 18.3 1 +1982 7 16 22.3 21.3 21.3 1 +1982 7 17 21.3 20.3 20.3 1 +1982 7 18 20.0 19.0 19.0 1 +1982 7 19 21.2 20.2 20.2 1 +1982 7 20 23.1 22.1 22.1 1 +1982 7 21 17.0 16.0 16.0 1 +1982 7 22 16.7 15.7 15.7 1 +1982 7 23 20.1 19.1 19.1 1 +1982 7 24 19.3 18.4 18.4 1 +1982 7 25 22.7 21.8 21.8 1 +1982 7 26 16.1 15.2 15.2 1 +1982 7 27 16.5 15.6 15.6 1 +1982 7 28 17.2 16.3 16.3 1 +1982 7 29 18.2 17.3 17.3 1 +1982 7 30 20.7 19.8 19.8 1 +1982 7 31 22.5 21.6 21.6 1 +1982 8 1 21.8 20.9 20.9 1 +1982 8 2 22.5 21.6 21.6 1 +1982 8 3 24.3 23.4 23.4 1 +1982 8 4 23.7 22.8 22.8 1 +1982 8 5 26.0 25.1 25.1 1 +1982 8 6 22.6 21.8 21.8 1 +1982 8 7 22.6 21.8 21.8 1 +1982 8 8 23.6 22.8 22.8 1 +1982 8 9 21.1 20.3 20.3 1 +1982 8 10 17.6 16.8 16.8 1 +1982 8 11 17.6 16.8 16.8 1 +1982 8 12 19.1 18.3 18.3 1 +1982 8 13 19.4 18.6 18.6 1 +1982 8 14 14.9 14.1 14.1 1 +1982 8 15 13.3 12.5 12.5 1 +1982 8 16 15.0 14.2 14.2 1 +1982 8 17 15.9 15.2 15.2 1 +1982 8 18 16.6 15.9 15.9 1 +1982 8 19 16.3 15.6 15.6 1 +1982 8 20 13.8 13.1 13.1 1 +1982 8 21 13.2 12.5 12.5 1 +1982 8 22 15.5 14.8 14.8 1 +1982 8 23 15.7 15.0 15.0 1 +1982 8 24 15.1 14.5 14.5 1 +1982 8 25 13.9 13.3 13.3 1 +1982 8 26 15.0 14.4 14.4 1 +1982 8 27 14.3 13.7 13.7 1 +1982 8 28 14.9 14.3 14.3 1 +1982 8 29 14.0 13.4 13.4 1 +1982 8 30 14.3 13.8 13.8 1 +1982 8 31 15.9 15.4 15.4 1 +1982 9 1 13.3 12.8 12.8 1 +1982 9 2 12.8 12.3 12.3 1 +1982 9 3 12.2 11.7 11.7 1 +1982 9 4 9.1 8.6 8.6 1 +1982 9 5 10.4 9.9 9.9 1 +1982 9 6 9.8 9.4 9.4 1 +1982 9 7 10.7 10.3 10.3 1 +1982 9 8 12.9 12.5 12.5 1 +1982 9 9 13.7 13.3 13.3 1 +1982 9 10 13.5 13.1 13.1 1 +1982 9 11 14.4 14.0 14.0 1 +1982 9 12 13.2 12.9 12.9 1 +1982 9 13 12.4 12.1 12.1 1 +1982 9 14 11.8 11.5 11.5 1 +1982 9 15 15.2 14.9 14.9 1 +1982 9 16 15.6 15.3 15.3 1 +1982 9 17 14.4 14.1 14.1 1 +1982 9 18 14.7 14.4 14.4 1 +1982 9 19 14.8 14.5 14.5 1 +1982 9 20 13.3 13.0 13.0 1 +1982 9 21 16.6 16.3 16.3 1 +1982 9 22 13.0 12.7 12.7 1 +1982 9 23 10.7 10.4 10.4 1 +1982 9 24 10.3 10.0 10.0 1 +1982 9 25 11.8 11.5 11.5 1 +1982 9 26 12.0 11.7 11.7 1 +1982 9 27 12.5 12.2 12.2 1 +1982 9 28 12.4 12.1 12.1 1 +1982 9 29 10.8 10.5 10.5 1 +1982 9 30 11.4 11.1 11.1 1 +1982 10 1 12.1 11.8 11.8 1 +1982 10 2 11.7 11.4 11.4 1 +1982 10 3 11.9 11.6 11.6 1 +1982 10 4 11.2 10.9 10.9 1 +1982 10 5 11.1 10.8 10.8 1 +1982 10 6 10.9 10.6 10.6 1 +1982 10 7 9.7 9.4 9.4 1 +1982 10 8 8.9 8.6 8.6 1 +1982 10 9 9.0 8.7 8.7 1 +1982 10 10 5.7 5.5 5.5 1 +1982 10 11 5.6 5.4 5.4 1 +1982 10 12 6.0 5.8 5.8 1 +1982 10 13 7.9 7.7 7.7 1 +1982 10 14 9.0 8.8 8.8 1 +1982 10 15 6.6 6.4 6.4 1 +1982 10 16 4.5 4.3 4.3 1 +1982 10 17 2.1 1.8 1.8 1 +1982 10 18 2.4 2.1 2.1 1 +1982 10 19 3.0 2.7 2.7 1 +1982 10 20 8.2 7.9 7.9 1 +1982 10 21 8.5 8.2 8.2 1 +1982 10 22 7.4 7.1 7.1 1 +1982 10 23 9.8 9.5 9.5 1 +1982 10 24 9.3 9.0 9.0 1 +1982 10 25 7.4 7.1 7.1 1 +1982 10 26 6.9 6.6 6.6 1 +1982 10 27 6.4 6.1 6.1 1 +1982 10 28 7.1 6.8 6.8 1 +1982 10 29 6.5 6.2 6.2 1 +1982 10 30 7.2 6.8 6.8 1 +1982 10 31 9.1 8.7 8.7 1 +1982 11 1 8.1 7.7 7.7 1 +1982 11 2 9.3 8.9 8.9 1 +1982 11 3 7.0 6.6 6.6 1 +1982 11 4 2.8 2.4 2.4 1 +1982 11 5 -0.4 -0.8 -0.8 1 +1982 11 6 0.0 -0.4 -0.4 1 +1982 11 7 1.7 1.3 1.3 1 +1982 11 8 4.6 4.2 4.2 1 +1982 11 9 7.7 7.3 7.3 1 +1982 11 10 9.9 9.5 9.5 1 +1982 11 11 9.4 9.0 9.0 1 +1982 11 12 8.1 7.7 7.7 1 +1982 11 13 8.1 7.6 7.6 1 +1982 11 14 4.8 4.3 4.3 1 +1982 11 15 3.3 2.8 2.8 1 +1982 11 16 4.2 3.7 3.7 1 +1982 11 17 3.3 2.8 2.8 1 +1982 11 18 1.8 1.3 1.3 1 +1982 11 19 4.9 4.4 4.4 1 +1982 11 20 4.9 4.4 4.4 1 +1982 11 21 0.9 0.4 0.4 1 +1982 11 22 5.2 4.7 4.7 1 +1982 11 23 6.9 6.4 6.4 1 +1982 11 24 7.3 6.8 6.8 1 +1982 11 25 5.1 4.6 4.6 1 +1982 11 26 6.1 5.6 5.6 1 +1982 11 27 5.8 5.3 5.3 1 +1982 11 28 4.7 4.2 4.2 1 +1982 11 29 2.5 2.0 2.0 1 +1982 11 30 1.1 0.6 0.6 1 +1982 12 1 4.2 3.7 3.7 1 +1982 12 2 2.1 1.6 1.6 1 +1982 12 3 0.9 0.4 0.4 1 +1982 12 4 0.9 0.4 0.4 1 +1982 12 5 1.3 0.7 0.7 1 +1982 12 6 3.6 3.0 3.0 1 +1982 12 7 -0.3 -0.9 -0.9 1 +1982 12 8 -2.3 -2.9 -2.9 1 +1982 12 9 1.8 1.2 1.2 1 +1982 12 10 3.4 2.8 2.8 1 +1982 12 11 4.3 3.7 3.7 1 +1982 12 12 -0.8 -1.4 -1.4 1 +1982 12 13 -4.1 -4.7 -4.7 1 +1982 12 14 -3.8 -4.4 -4.4 1 +1982 12 15 0.6 0.0 0.0 1 +1982 12 16 1.9 1.3 1.3 1 +1982 12 17 -2.1 -2.7 -2.7 1 +1982 12 18 -2.1 -2.7 -2.7 1 +1982 12 19 0.6 0.0 0.0 1 +1982 12 20 1.4 0.8 0.8 1 +1982 12 21 3.0 2.4 2.4 1 +1982 12 22 3.7 3.1 3.1 1 +1982 12 23 1.3 0.7 0.7 1 +1982 12 24 1.5 0.9 0.9 1 +1982 12 25 1.8 1.1 1.1 1 +1982 12 26 4.3 3.6 3.6 1 +1982 12 27 2.2 1.5 1.5 1 +1982 12 28 0.9 0.2 0.2 1 +1982 12 29 -1.0 -1.7 -1.7 1 +1982 12 30 -2.9 -3.6 -3.6 1 +1982 12 31 2.8 2.1 2.1 1 +1983 1 1 3.6 2.9 2.9 1 +1983 1 2 2.7 2.0 2.0 1 +1983 1 3 -0.7 -1.4 -1.4 1 +1983 1 4 2.7 2.0 2.0 1 +1983 1 5 1.5 0.8 0.8 1 +1983 1 6 7.1 6.4 6.4 1 +1983 1 7 4.0 3.3 3.3 1 +1983 1 8 3.0 2.3 2.3 1 +1983 1 9 2.4 1.7 1.7 1 +1983 1 10 3.1 2.4 2.4 1 +1983 1 11 4.0 3.2 3.2 1 +1983 1 12 7.1 6.3 6.3 1 +1983 1 13 6.1 5.3 5.3 1 +1983 1 14 0.3 -0.5 -0.5 1 +1983 1 15 -4.3 -5.1 -5.1 1 +1983 1 16 -2.9 -3.7 -3.7 1 +1983 1 17 -4.3 -5.1 -5.1 1 +1983 1 18 0.1 -0.7 -0.7 1 +1983 1 19 -6.3 -7.1 -7.1 1 +1983 1 20 -4.9 -5.7 -5.7 1 +1983 1 21 3.3 2.5 2.5 1 +1983 1 22 -0.6 -1.4 -1.4 1 +1983 1 23 2.6 1.8 1.8 1 +1983 1 24 1.1 0.3 0.3 1 +1983 1 25 3.1 2.3 2.3 1 +1983 1 26 5.3 4.5 4.5 1 +1983 1 27 6.2 5.4 5.4 1 +1983 1 28 3.1 2.3 2.3 1 +1983 1 29 -0.2 -1.0 -1.0 1 +1983 1 30 -0.2 -1.0 -1.0 1 +1983 1 31 -3.4 -4.2 -4.2 1 +1983 2 1 -1.8 -2.6 -2.6 1 +1983 2 2 -6.4 -7.2 -7.2 1 +1983 2 3 -7.8 -8.6 -8.6 1 +1983 2 4 -4.2 -5.0 -5.0 1 +1983 2 5 -1.7 -2.5 -2.5 1 +1983 2 6 -2.4 -3.2 -3.2 1 +1983 2 7 -4.7 -5.5 -5.5 1 +1983 2 8 -7.8 -8.6 -8.6 1 +1983 2 9 -6.0 -6.8 -6.8 1 +1983 2 10 -4.3 -5.1 -5.1 1 +1983 2 11 -2.7 -3.5 -3.5 1 +1983 2 12 -7.7 -8.5 -8.5 1 +1983 2 13 -3.9 -4.7 -4.7 1 +1983 2 14 -2.8 -3.6 -3.6 1 +1983 2 15 -2.4 -3.2 -3.2 1 +1983 2 16 -0.8 -1.7 -1.7 1 +1983 2 17 -1.4 -2.3 -2.3 1 +1983 2 18 -1.2 -2.1 -2.1 1 +1983 2 19 0.3 -0.6 -0.6 1 +1983 2 20 -1.9 -2.8 -2.8 1 +1983 2 21 -6.5 -7.4 -7.4 1 +1983 2 22 0.6 -0.3 -0.3 1 +1983 2 23 -0.3 -1.2 -1.2 1 +1983 2 24 -0.6 -1.5 -1.5 1 +1983 2 25 -0.6 -1.5 -1.5 1 +1983 2 26 -1.4 -2.3 -2.3 1 +1983 2 27 -1.2 -2.1 -2.1 1 +1983 2 28 -2.3 -3.2 -3.2 1 +1983 3 1 -3.1 -4.0 -4.0 1 +1983 3 2 -3.3 -4.2 -4.2 1 +1983 3 3 -1.2 -2.1 -2.1 1 +1983 3 4 1.3 0.4 0.4 1 +1983 3 5 2.8 1.9 1.9 1 +1983 3 6 -0.1 -1.0 -1.0 1 +1983 3 7 -0.8 -1.7 -1.7 1 +1983 3 8 -0.9 -1.8 -1.8 1 +1983 3 9 1.0 0.1 0.1 1 +1983 3 10 -0.9 -1.8 -1.8 1 +1983 3 11 -3.2 -4.1 -4.1 1 +1983 3 12 -3.2 -4.1 -4.1 1 +1983 3 13 3.1 2.1 2.1 1 +1983 3 14 2.7 1.7 1.7 1 +1983 3 15 5.8 4.8 4.8 1 +1983 3 16 2.5 1.5 1.5 1 +1983 3 17 3.0 2.1 2.1 1 +1983 3 18 3.3 2.4 2.4 1 +1983 3 19 3.1 2.2 2.2 1 +1983 3 20 1.2 0.3 0.3 1 +1983 3 21 0.4 -0.5 -0.5 1 +1983 3 22 0.7 -0.2 -0.2 1 +1983 3 23 -0.1 -1.0 -1.0 1 +1983 3 24 0.6 -0.3 -0.3 1 +1983 3 25 1.9 1.0 1.0 1 +1983 3 26 1.0 0.1 0.1 1 +1983 3 27 1.7 0.8 0.8 1 +1983 3 28 1.9 1.0 1.0 1 +1983 3 29 -0.8 -1.7 -1.7 1 +1983 3 30 1.5 0.6 0.6 1 +1983 3 31 2.5 1.6 1.6 1 +1983 4 1 3.7 2.8 2.8 1 +1983 4 2 1.1 0.2 0.2 1 +1983 4 3 1.9 1.0 1.0 1 +1983 4 4 2.9 2.0 2.0 1 +1983 4 5 1.0 0.1 0.1 1 +1983 4 6 2.4 1.6 1.6 1 +1983 4 7 2.9 2.1 2.1 1 +1983 4 8 3.9 3.1 3.1 1 +1983 4 9 3.0 2.2 2.2 1 +1983 4 10 5.4 4.6 4.6 1 +1983 4 11 3.7 2.9 2.9 1 +1983 4 12 0.6 -0.2 -0.2 1 +1983 4 13 0.5 -0.3 -0.3 1 +1983 4 14 1.9 1.1 1.1 1 +1983 4 15 2.6 1.8 1.8 1 +1983 4 16 7.4 6.6 6.6 1 +1983 4 17 5.6 4.8 4.8 1 +1983 4 18 7.8 6.9 6.9 1 +1983 4 19 6.7 5.8 5.8 1 +1983 4 20 7.2 6.3 6.3 1 +1983 4 21 9.9 9.0 9.0 1 +1983 4 22 5.8 4.9 4.9 1 +1983 4 23 7.9 6.9 6.9 1 +1983 4 24 8.8 7.8 7.8 1 +1983 4 25 9.8 8.8 8.8 1 +1983 4 26 8.0 7.0 7.0 1 +1983 4 27 9.4 8.4 8.4 1 +1983 4 28 4.1 3.1 3.1 1 +1983 4 29 7.3 6.2 6.2 1 +1983 4 30 5.0 3.9 3.9 1 +1983 5 1 4.5 3.4 3.4 1 +1983 5 2 6.4 5.3 5.3 1 +1983 5 3 6.2 5.1 5.1 1 +1983 5 4 6.3 5.1 5.1 1 +1983 5 5 7.7 6.5 6.5 1 +1983 5 6 9.8 8.6 8.6 1 +1983 5 7 11.3 10.1 10.1 1 +1983 5 8 11.1 9.9 9.9 1 +1983 5 9 10.6 9.3 9.3 1 +1983 5 10 10.8 9.5 9.5 1 +1983 5 11 9.1 7.8 7.8 1 +1983 5 12 10.0 8.7 8.7 1 +1983 5 13 11.1 9.8 9.8 1 +1983 5 14 13.2 11.8 11.8 1 +1983 5 15 12.8 11.4 11.4 1 +1983 5 16 12.4 11.0 11.0 1 +1983 5 17 16.1 14.7 14.7 1 +1983 5 18 15.8 14.5 14.5 1 +1983 5 19 14.8 13.5 13.5 1 +1983 5 20 11.5 10.2 10.2 1 +1983 5 21 14.4 13.1 13.1 1 +1983 5 22 13.7 12.4 12.4 1 +1983 5 23 13.5 12.2 12.2 1 +1983 5 24 14.6 13.3 13.3 1 +1983 5 25 13.5 12.2 12.2 1 +1983 5 26 10.1 8.8 8.8 1 +1983 5 27 12.7 11.4 11.4 1 +1983 5 28 13.2 11.9 11.9 1 +1983 5 29 14.3 13.1 13.1 1 +1983 5 30 12.1 10.9 10.9 1 +1983 5 31 11.9 10.7 10.7 1 +1983 6 1 14.5 13.3 13.3 1 +1983 6 2 12.8 11.6 11.6 1 +1983 6 3 14.1 12.9 12.9 1 +1983 6 4 11.9 10.7 10.7 1 +1983 6 5 7.8 6.6 6.6 1 +1983 6 6 10.8 9.6 9.6 1 +1983 6 7 14.4 13.2 13.2 1 +1983 6 8 16.7 15.5 15.5 1 +1983 6 9 15.2 14.1 14.1 1 +1983 6 10 11.7 10.6 10.6 1 +1983 6 11 14.6 13.5 13.5 1 +1983 6 12 17.1 16.0 16.0 1 +1983 6 13 18.5 17.4 17.4 1 +1983 6 14 18.7 17.6 17.6 1 +1983 6 15 16.8 15.7 15.7 1 +1983 6 16 16.8 15.7 15.7 1 +1983 6 17 13.0 11.9 11.9 1 +1983 6 18 17.4 16.3 16.3 1 +1983 6 19 18.8 17.7 17.7 1 +1983 6 20 18.2 17.1 17.1 1 +1983 6 21 13.4 12.3 12.3 1 +1983 6 22 15.3 14.2 14.2 1 +1983 6 23 19.0 17.9 17.9 1 +1983 6 24 17.9 16.8 16.8 1 +1983 6 25 12.9 11.8 11.8 1 +1983 6 26 16.0 14.9 14.9 1 +1983 6 27 15.7 14.6 14.6 1 +1983 6 28 13.6 12.5 12.5 1 +1983 6 29 15.3 14.2 14.2 1 +1983 6 30 14.0 13.0 13.0 1 +1983 7 1 15.2 14.2 14.2 1 +1983 7 2 15.3 14.3 14.3 1 +1983 7 3 16.4 15.4 15.4 1 +1983 7 4 14.7 13.7 13.7 1 +1983 7 5 17.7 16.7 16.7 1 +1983 7 6 19.8 18.8 18.8 1 +1983 7 7 21.3 20.3 20.3 1 +1983 7 8 23.2 22.2 22.2 1 +1983 7 9 25.6 24.6 24.6 1 +1983 7 10 26.2 25.2 25.2 1 +1983 7 11 27.6 26.6 26.6 1 +1983 7 12 25.7 24.7 24.7 1 +1983 7 13 17.7 16.7 16.7 1 +1983 7 14 18.4 17.4 17.4 1 +1983 7 15 19.6 18.6 18.6 1 +1983 7 16 16.8 15.8 15.8 1 +1983 7 17 16.9 15.9 15.9 1 +1983 7 18 17.7 16.7 16.7 1 +1983 7 19 17.8 16.8 16.8 1 +1983 7 20 13.9 12.9 12.9 1 +1983 7 21 13.4 12.4 12.4 1 +1983 7 22 16.6 15.6 15.6 1 +1983 7 23 19.8 18.8 18.8 1 +1983 7 24 18.3 17.4 17.4 1 +1983 7 25 21.1 20.2 20.2 1 +1983 7 26 20.7 19.8 19.8 1 +1983 7 27 21.7 20.8 20.8 1 +1983 7 28 19.3 18.4 18.4 1 +1983 7 29 16.0 15.1 15.1 1 +1983 7 30 16.1 15.2 15.2 1 +1983 7 31 18.8 17.9 17.9 1 +1983 8 1 19.6 18.7 18.7 1 +1983 8 2 19.9 19.0 19.0 1 +1983 8 3 19.0 18.1 18.1 1 +1983 8 4 18.3 17.4 17.4 1 +1983 8 5 17.8 16.9 16.9 1 +1983 8 6 18.8 18.0 18.0 1 +1983 8 7 19.6 18.8 18.8 1 +1983 8 8 23.2 22.4 22.4 1 +1983 8 9 24.5 23.7 23.7 1 +1983 8 10 24.3 23.5 23.5 1 +1983 8 11 23.2 22.4 22.4 1 +1983 8 12 14.8 14.0 14.0 1 +1983 8 13 12.7 11.9 11.9 1 +1983 8 14 13.3 12.5 12.5 1 +1983 8 15 17.9 17.1 17.1 1 +1983 8 16 18.9 18.1 18.1 1 +1983 8 17 16.9 16.2 16.2 1 +1983 8 18 14.8 14.1 14.1 1 +1983 8 19 18.2 17.5 17.5 1 +1983 8 20 19.7 19.0 19.0 1 +1983 8 21 21.0 20.3 20.3 1 +1983 8 22 20.9 20.2 20.2 1 +1983 8 23 20.9 20.2 20.2 1 +1983 8 24 14.2 13.6 13.6 1 +1983 8 25 14.8 14.2 14.2 1 +1983 8 26 19.3 18.7 18.7 1 +1983 8 27 18.3 17.7 17.7 1 +1983 8 28 16.8 16.2 16.2 1 +1983 8 29 16.0 15.4 15.4 1 +1983 8 30 17.4 16.9 16.9 1 +1983 8 31 18.7 18.2 18.2 1 +1983 9 1 18.0 17.5 17.5 1 +1983 9 2 20.1 19.6 19.6 1 +1983 9 3 18.6 18.1 18.1 1 +1983 9 4 17.4 16.9 16.9 1 +1983 9 5 13.7 13.2 13.2 1 +1983 9 6 13.1 12.7 12.7 1 +1983 9 7 9.2 8.8 8.8 1 +1983 9 8 11.1 10.7 10.7 1 +1983 9 9 10.6 10.2 10.2 1 +1983 9 10 12.7 12.3 12.3 1 +1983 9 11 14.2 13.8 13.8 1 +1983 9 12 14.4 14.1 14.1 1 +1983 9 13 13.7 13.4 13.4 1 +1983 9 14 14.0 13.7 13.7 1 +1983 9 15 13.4 13.1 13.1 1 +1983 9 16 15.7 15.4 15.4 1 +1983 9 17 13.4 13.1 13.1 1 +1983 9 18 13.5 13.2 13.2 1 +1983 9 19 14.5 14.2 14.2 1 +1983 9 20 13.3 13.0 13.0 1 +1983 9 21 11.4 11.1 11.1 1 +1983 9 22 10.4 10.1 10.1 1 +1983 9 23 10.5 10.2 10.2 1 +1983 9 24 10.3 10.0 10.0 1 +1983 9 25 6.9 6.6 6.6 1 +1983 9 26 12.4 12.1 12.1 1 +1983 9 27 15.0 14.7 14.7 1 +1983 9 28 9.1 8.8 8.8 1 +1983 9 29 7.1 6.8 6.8 1 +1983 9 30 4.9 4.6 4.6 1 +1983 10 1 5.7 5.4 5.4 1 +1983 10 2 6.9 6.6 6.6 1 +1983 10 3 8.8 8.5 8.5 1 +1983 10 4 12.1 11.8 11.8 1 +1983 10 5 13.8 13.5 13.5 1 +1983 10 6 8.4 8.1 8.1 1 +1983 10 7 6.9 6.6 6.6 1 +1983 10 8 6.9 6.6 6.6 1 +1983 10 9 3.9 3.6 3.6 1 +1983 10 10 6.4 6.2 6.2 1 +1983 10 11 7.9 7.7 7.7 1 +1983 10 12 6.6 6.4 6.4 1 +1983 10 13 8.3 8.1 8.1 1 +1983 10 14 11.3 11.1 11.1 1 +1983 10 15 9.6 9.4 9.4 1 +1983 10 16 10.2 10.0 10.0 1 +1983 10 17 9.1 8.8 8.8 1 +1983 10 18 9.1 8.8 8.8 1 +1983 10 19 9.7 9.4 9.4 1 +1983 10 20 6.5 6.2 6.2 1 +1983 10 21 5.6 5.3 5.3 1 +1983 10 22 6.9 6.6 6.6 1 +1983 10 23 7.9 7.6 7.6 1 +1983 10 24 5.3 5.0 5.0 1 +1983 10 25 2.2 1.9 1.9 1 +1983 10 26 11.7 11.4 11.4 1 +1983 10 27 11.0 10.7 10.7 1 +1983 10 28 5.2 4.9 4.9 1 +1983 10 29 2.5 2.2 2.2 1 +1983 10 30 7.3 6.9 6.9 1 +1983 10 31 8.4 8.0 8.0 1 +1983 11 1 6.9 6.5 6.5 1 +1983 11 2 7.6 7.2 7.2 1 +1983 11 3 4.8 4.4 4.4 1 +1983 11 4 6.3 5.9 5.9 1 +1983 11 5 7.0 6.6 6.6 1 +1983 11 6 8.8 8.4 8.4 1 +1983 11 7 8.8 8.4 8.4 1 +1983 11 8 7.3 6.9 6.9 1 +1983 11 9 5.1 4.7 4.7 1 +1983 11 10 2.3 1.9 1.9 1 +1983 11 11 -0.2 -0.6 -0.6 1 +1983 11 12 -1.6 -2.0 -2.0 1 +1983 11 13 -3.3 -3.8 -3.8 1 +1983 11 14 1.5 1.0 1.0 1 +1983 11 15 2.1 1.6 1.6 1 +1983 11 16 -0.5 -1.0 -1.0 1 +1983 11 17 -2.9 -3.4 -3.4 1 +1983 11 18 2.3 1.8 1.8 1 +1983 11 19 2.2 1.7 1.7 1 +1983 11 20 4.2 3.7 3.7 1 +1983 11 21 -2.0 -2.5 -2.5 1 +1983 11 22 -6.0 -6.5 -6.5 1 +1983 11 23 -4.3 -4.8 -4.8 1 +1983 11 24 -0.3 -0.8 -0.8 1 +1983 11 25 4.4 3.9 3.9 1 +1983 11 26 3.8 3.3 3.3 1 +1983 11 27 -0.8 -1.3 -1.3 1 +1983 11 28 -2.7 -3.2 -3.2 1 +1983 11 29 -5.1 -5.6 -5.6 1 +1983 11 30 -6.0 -6.5 -6.5 1 +1983 12 1 -7.4 -7.9 -7.9 1 +1983 12 2 -2.5 -3.0 -3.0 1 +1983 12 3 2.2 1.7 1.7 1 +1983 12 4 2.7 2.2 2.2 1 +1983 12 5 6.2 5.6 5.6 1 +1983 12 6 1.3 0.7 0.7 1 +1983 12 7 -2.0 -2.6 -2.6 1 +1983 12 8 0.9 0.3 0.3 1 +1983 12 9 0.4 -0.2 -0.2 1 +1983 12 10 -8.7 -9.3 -9.3 1 +1983 12 11 -9.9 -10.5 -10.5 1 +1983 12 12 -6.7 -7.3 -7.3 1 +1983 12 13 -0.5 -1.1 -1.1 1 +1983 12 14 0.2 -0.4 -0.4 1 +1983 12 15 -0.5 -1.1 -1.1 1 +1983 12 16 -0.3 -0.9 -0.9 1 +1983 12 17 -0.4 -1.0 -1.0 1 +1983 12 18 -3.6 -4.2 -4.2 1 +1983 12 19 -0.2 -0.8 -0.8 1 +1983 12 20 1.1 0.5 0.5 1 +1983 12 21 0.8 0.2 0.2 1 +1983 12 22 2.4 1.8 1.8 1 +1983 12 23 2.9 2.3 2.3 1 +1983 12 24 0.0 -0.6 -0.6 1 +1983 12 25 -3.0 -3.7 -3.7 1 +1983 12 26 1.3 0.6 0.6 1 +1983 12 27 -1.0 -1.7 -1.7 1 +1983 12 28 4.0 3.3 3.3 1 +1983 12 29 2.4 1.7 1.7 1 +1983 12 30 2.6 1.9 1.9 1 +1983 12 31 0.2 -0.5 -0.5 1 +1984 1 1 5.6 4.9 4.9 1 +1984 1 2 2.3 1.6 1.6 1 +1984 1 3 1.9 1.2 1.2 1 +1984 1 4 -0.9 -1.6 -1.6 1 +1984 1 5 -3.1 -3.8 -3.8 1 +1984 1 6 0.6 -0.1 -0.1 1 +1984 1 7 1.2 0.5 0.5 1 +1984 1 8 0.0 -0.7 -0.7 1 +1984 1 9 -5.2 -5.9 -5.9 1 +1984 1 10 -8.7 -9.4 -9.4 1 +1984 1 11 0.0 -0.8 -0.8 1 +1984 1 12 3.3 2.5 2.5 1 +1984 1 13 1.6 0.8 0.8 1 +1984 1 14 1.7 0.9 0.9 1 +1984 1 15 -1.8 -2.6 -2.6 1 +1984 1 16 -0.4 -1.2 -1.2 1 +1984 1 17 0.8 0.0 0.0 1 +1984 1 18 -0.8 -1.6 -1.6 1 +1984 1 19 -5.7 -6.5 -6.5 1 +1984 1 20 -8.5 -9.3 -9.3 1 +1984 1 21 -7.8 -8.6 -8.6 1 +1984 1 22 -5.6 -6.4 -6.4 1 +1984 1 23 -7.5 -8.3 -8.3 1 +1984 1 24 -8.9 -9.7 -9.7 1 +1984 1 25 -5.8 -6.6 -6.6 1 +1984 1 26 -8.6 -9.4 -9.4 1 +1984 1 27 -8.7 -9.5 -9.5 1 +1984 1 28 -0.5 -1.3 -1.3 1 +1984 1 29 -0.4 -1.2 -1.2 1 +1984 1 30 0.2 -0.6 -0.6 1 +1984 1 31 0.4 -0.4 -0.4 1 +1984 2 1 0.9 0.1 0.1 1 +1984 2 2 0.7 -0.1 -0.1 1 +1984 2 3 0.9 0.1 0.1 1 +1984 2 4 1.9 1.1 1.1 1 +1984 2 5 1.5 0.7 0.7 1 +1984 2 6 1.1 0.3 0.3 1 +1984 2 7 0.6 -0.2 -0.2 1 +1984 2 8 -1.0 -1.8 -1.8 1 +1984 2 9 -4.5 -5.3 -5.3 1 +1984 2 10 -3.6 -4.4 -4.4 1 +1984 2 11 -0.7 -1.5 -1.5 1 +1984 2 12 -0.3 -1.1 -1.1 1 +1984 2 13 0.5 -0.3 -0.3 1 +1984 2 14 -0.1 -0.9 -0.9 1 +1984 2 15 -0.3 -1.1 -1.1 1 +1984 2 16 -1.3 -2.2 -2.2 1 +1984 2 17 -1.9 -2.8 -2.8 1 +1984 2 18 -3.3 -4.2 -4.2 1 +1984 2 19 -3.5 -4.4 -4.4 1 +1984 2 20 -3.0 -3.9 -3.9 1 +1984 2 21 -1.8 -2.7 -2.7 1 +1984 2 22 -2.8 -3.7 -3.7 1 +1984 2 23 -1.3 -2.2 -2.2 1 +1984 2 24 -1.7 -2.6 -2.6 1 +1984 2 25 -1.1 -2.0 -2.0 1 +1984 2 26 -1.2 -2.1 -2.1 1 +1984 2 27 -0.3 -1.2 -1.2 1 +1984 2 28 -0.8 -1.7 -1.7 1 +1984 2 29 0.7 -0.2 -0.2 1 +1984 3 1 0.9 0.0 0.0 1 +1984 3 2 -2.4 -3.3 -3.3 1 +1984 3 3 0.0 -0.9 -0.9 1 +1984 3 4 0.5 -0.4 -0.4 1 +1984 3 5 3.4 2.5 2.5 1 +1984 3 6 2.7 1.8 1.8 1 +1984 3 7 0.4 -0.5 -0.5 1 +1984 3 8 -0.9 -1.8 -1.8 1 +1984 3 9 -0.8 -1.7 -1.7 1 +1984 3 10 -1.0 -1.9 -1.9 1 +1984 3 11 -0.1 -1.0 -1.0 1 +1984 3 12 0.9 0.0 0.0 1 +1984 3 13 -1.9 -2.9 -2.9 1 +1984 3 14 -1.9 -2.9 -2.9 1 +1984 3 15 -0.6 -1.6 -1.6 1 +1984 3 16 -2.7 -3.7 -3.7 1 +1984 3 17 -4.6 -5.5 -5.5 1 +1984 3 18 -5.5 -6.4 -6.4 1 +1984 3 19 -2.3 -3.2 -3.2 1 +1984 3 20 -1.2 -2.1 -2.1 1 +1984 3 21 -1.9 -2.8 -2.8 1 +1984 3 22 -2.7 -3.6 -3.6 1 +1984 3 23 -5.6 -6.5 -6.5 1 +1984 3 24 -5.9 -6.8 -6.8 1 +1984 3 25 -1.9 -2.8 -2.8 1 +1984 3 26 -1.8 -2.7 -2.7 1 +1984 3 27 -1.0 -1.9 -1.9 1 +1984 3 28 -1.5 -2.4 -2.4 1 +1984 3 29 0.7 -0.2 -0.2 1 +1984 3 30 4.1 3.2 3.2 1 +1984 3 31 0.8 -0.1 -0.1 1 +1984 4 1 -0.8 -1.7 -1.7 1 +1984 4 2 -0.7 -1.6 -1.6 1 +1984 4 3 1.4 0.5 0.5 1 +1984 4 4 1.9 1.0 1.0 1 +1984 4 5 4.4 3.5 3.5 1 +1984 4 6 3.9 3.1 3.1 1 +1984 4 7 5.1 4.3 4.3 1 +1984 4 8 7.1 6.3 6.3 1 +1984 4 9 6.2 5.4 5.4 1 +1984 4 10 5.6 4.8 4.8 1 +1984 4 11 6.2 5.4 5.4 1 +1984 4 12 4.4 3.6 3.6 1 +1984 4 13 6.3 5.5 5.5 1 +1984 4 14 8.7 7.9 7.9 1 +1984 4 15 9.2 8.4 8.4 1 +1984 4 16 8.8 8.0 8.0 1 +1984 4 17 6.5 5.7 5.7 1 +1984 4 18 5.5 4.6 4.6 1 +1984 4 19 5.7 4.8 4.8 1 +1984 4 20 5.6 4.7 4.7 1 +1984 4 21 5.0 4.1 4.1 1 +1984 4 22 9.1 8.2 8.2 1 +1984 4 23 8.7 7.7 7.7 1 +1984 4 24 10.8 9.8 9.8 1 +1984 4 25 11.0 10.0 10.0 1 +1984 4 26 4.5 3.5 3.5 1 +1984 4 27 3.7 2.7 2.7 1 +1984 4 28 6.9 5.9 5.9 1 +1984 4 29 13.1 12.0 12.0 1 +1984 4 30 13.4 12.3 12.3 1 +1984 5 1 11.7 10.6 10.6 1 +1984 5 2 11.1 10.0 10.0 1 +1984 5 3 11.3 10.2 10.2 1 +1984 5 4 11.4 10.2 10.2 1 +1984 5 5 12.5 11.3 11.3 1 +1984 5 6 10.6 9.4 9.4 1 +1984 5 7 7.6 6.4 6.4 1 +1984 5 8 6.1 4.9 4.9 1 +1984 5 9 4.5 3.2 3.2 1 +1984 5 10 3.4 2.1 2.1 1 +1984 5 11 7.2 5.9 5.9 1 +1984 5 12 9.4 8.1 8.1 1 +1984 5 13 11.1 9.8 9.8 1 +1984 5 14 11.4 10.0 10.0 1 +1984 5 15 11.6 10.2 10.2 1 +1984 5 16 12.7 11.3 11.3 1 +1984 5 17 15.2 13.8 13.8 1 +1984 5 18 17.3 16.0 16.0 1 +1984 5 19 15.5 14.2 14.2 1 +1984 5 20 15.8 14.5 14.5 1 +1984 5 21 15.9 14.6 14.6 1 +1984 5 22 17.6 16.3 16.3 1 +1984 5 23 13.1 11.8 11.8 1 +1984 5 24 13.6 12.3 12.3 1 +1984 5 25 14.4 13.1 13.1 1 +1984 5 26 15.0 13.7 13.7 1 +1984 5 27 13.8 12.5 12.5 1 +1984 5 28 11.9 10.6 10.6 1 +1984 5 29 13.5 12.3 12.3 1 +1984 5 30 14.3 13.1 13.1 1 +1984 5 31 15.6 14.4 14.4 1 +1984 6 1 16.9 15.7 15.7 1 +1984 6 2 16.8 15.6 15.6 1 +1984 6 3 18.2 17.0 17.0 1 +1984 6 4 19.7 18.5 18.5 1 +1984 6 5 18.8 17.6 17.6 1 +1984 6 6 16.6 15.4 15.4 1 +1984 6 7 16.8 15.6 15.6 1 +1984 6 8 14.4 13.2 13.2 1 +1984 6 9 9.9 8.8 8.8 1 +1984 6 10 8.6 7.5 7.5 1 +1984 6 11 9.6 8.5 8.5 1 +1984 6 12 14.5 13.4 13.4 1 +1984 6 13 11.9 10.8 10.8 1 +1984 6 14 13.9 12.8 12.8 1 +1984 6 15 12.2 11.1 11.1 1 +1984 6 16 14.0 12.9 12.9 1 +1984 6 17 15.9 14.8 14.8 1 +1984 6 18 17.0 15.9 15.9 1 +1984 6 19 15.7 14.6 14.6 1 +1984 6 20 17.9 16.8 16.8 1 +1984 6 21 17.6 16.5 16.5 1 +1984 6 22 15.4 14.3 14.3 1 +1984 6 23 12.6 11.5 11.5 1 +1984 6 24 11.8 10.7 10.7 1 +1984 6 25 11.2 10.1 10.1 1 +1984 6 26 12.5 11.4 11.4 1 +1984 6 27 14.3 13.2 13.2 1 +1984 6 28 11.8 10.7 10.7 1 +1984 6 29 14.0 12.9 12.9 1 +1984 6 30 12.8 11.8 11.8 1 +1984 7 1 14.1 13.1 13.1 1 +1984 7 2 13.6 12.6 12.6 1 +1984 7 3 13.0 12.0 12.0 1 +1984 7 4 14.9 13.9 13.9 1 +1984 7 5 13.2 12.2 12.2 1 +1984 7 6 13.8 12.8 12.8 1 +1984 7 7 17.1 16.1 16.1 1 +1984 7 8 16.5 15.5 15.5 1 +1984 7 9 20.2 19.2 19.2 1 +1984 7 10 21.0 20.0 20.0 1 +1984 7 11 19.5 18.5 18.5 1 +1984 7 12 19.4 18.4 18.4 1 +1984 7 13 17.8 16.8 16.8 1 +1984 7 14 16.6 15.6 15.6 1 +1984 7 15 17.4 16.4 16.4 1 +1984 7 16 16.9 15.9 15.9 1 +1984 7 17 16.5 15.5 15.5 1 +1984 7 18 15.4 14.4 14.4 1 +1984 7 19 15.0 14.0 14.0 1 +1984 7 20 17.1 16.1 16.1 1 +1984 7 21 16.0 15.0 15.0 1 +1984 7 22 14.7 13.7 13.7 1 +1984 7 23 13.5 12.5 12.5 1 +1984 7 24 15.6 14.7 14.7 1 +1984 7 25 16.4 15.5 15.5 1 +1984 7 26 15.1 14.2 14.2 1 +1984 7 27 11.4 10.5 10.5 1 +1984 7 28 16.2 15.3 15.3 1 +1984 7 29 17.9 17.0 17.0 1 +1984 7 30 18.2 17.3 17.3 1 +1984 7 31 19.8 18.9 18.9 1 +1984 8 1 20.6 19.7 19.7 1 +1984 8 2 20.9 20.0 20.0 1 +1984 8 3 20.2 19.3 19.3 1 +1984 8 4 20.2 19.3 19.3 1 +1984 8 5 19.6 18.7 18.7 1 +1984 8 6 20.7 19.9 19.9 1 +1984 8 7 19.6 18.8 18.8 1 +1984 8 8 18.4 17.6 17.6 1 +1984 8 9 16.9 16.1 16.1 1 +1984 8 10 17.8 17.0 17.0 1 +1984 8 11 15.8 15.0 15.0 1 +1984 8 12 16.6 15.8 15.8 1 +1984 8 13 16.6 15.8 15.8 1 +1984 8 14 16.0 15.2 15.2 1 +1984 8 15 14.5 13.7 13.7 1 +1984 8 16 14.0 13.2 13.2 1 +1984 8 17 14.1 13.4 13.4 1 +1984 8 18 15.2 14.5 14.5 1 +1984 8 19 17.5 16.8 16.8 1 +1984 8 20 18.6 17.9 17.9 1 +1984 8 21 20.0 19.3 19.3 1 +1984 8 22 21.0 20.3 20.3 1 +1984 8 23 19.2 18.5 18.5 1 +1984 8 24 15.9 15.3 15.3 1 +1984 8 25 11.3 10.7 10.7 1 +1984 8 26 11.1 10.5 10.5 1 +1984 8 27 13.5 12.9 12.9 1 +1984 8 28 17.0 16.4 16.4 1 +1984 8 29 16.7 16.1 16.1 1 +1984 8 30 16.4 15.9 15.9 1 +1984 8 31 15.1 14.6 14.6 1 +1984 9 1 13.9 13.4 13.4 1 +1984 9 2 11.4 10.9 10.9 1 +1984 9 3 12.0 11.5 11.5 1 +1984 9 4 9.9 9.4 9.4 1 +1984 9 5 9.8 9.3 9.3 1 +1984 9 6 10.6 10.2 10.2 1 +1984 9 7 15.0 14.6 14.6 1 +1984 9 8 13.9 13.5 13.5 1 +1984 9 9 13.5 13.1 13.1 1 +1984 9 10 11.9 11.5 11.5 1 +1984 9 11 11.6 11.2 11.2 1 +1984 9 12 11.2 10.9 10.9 1 +1984 9 13 9.6 9.3 9.3 1 +1984 9 14 11.1 10.8 10.8 1 +1984 9 15 11.4 11.1 11.1 1 +1984 9 16 11.8 11.5 11.5 1 +1984 9 17 11.0 10.7 10.7 1 +1984 9 18 10.3 10.0 10.0 1 +1984 9 19 9.5 9.2 9.2 1 +1984 9 20 10.0 9.7 9.7 1 +1984 9 21 10.0 9.7 9.7 1 +1984 9 22 12.2 11.9 11.9 1 +1984 9 23 12.1 11.8 11.8 1 +1984 9 24 11.4 11.1 11.1 1 +1984 9 25 10.9 10.6 10.6 1 +1984 9 26 11.4 11.1 11.1 1 +1984 9 27 10.3 10.0 10.0 1 +1984 9 28 7.3 7.0 7.0 1 +1984 9 29 6.1 5.8 5.8 1 +1984 9 30 8.1 7.8 7.8 1 +1984 10 1 11.6 11.3 11.3 1 +1984 10 2 12.3 12.0 12.0 1 +1984 10 3 14.3 14.0 14.0 1 +1984 10 4 13.0 12.7 12.7 1 +1984 10 5 11.5 11.2 11.2 1 +1984 10 6 12.3 12.0 12.0 1 +1984 10 7 11.6 11.3 11.3 1 +1984 10 8 9.1 8.8 8.8 1 +1984 10 9 10.3 10.0 10.0 1 +1984 10 10 9.7 9.5 9.5 1 +1984 10 11 10.1 9.9 9.9 1 +1984 10 12 7.4 7.2 7.2 1 +1984 10 13 5.2 5.0 5.0 1 +1984 10 14 7.0 6.8 6.8 1 +1984 10 15 6.2 6.0 6.0 1 +1984 10 16 5.2 5.0 5.0 1 +1984 10 17 10.9 10.6 10.6 1 +1984 10 18 8.9 8.6 8.6 1 +1984 10 19 10.1 9.8 9.8 1 +1984 10 20 10.5 10.2 10.2 1 +1984 10 21 9.0 8.7 8.7 1 +1984 10 22 5.5 5.2 5.2 1 +1984 10 23 7.6 7.3 7.3 1 +1984 10 24 6.1 5.8 5.8 1 +1984 10 25 7.2 6.9 6.9 1 +1984 10 26 9.3 9.0 9.0 1 +1984 10 27 7.8 7.5 7.5 1 +1984 10 28 6.3 6.0 6.0 1 +1984 10 29 6.3 6.0 6.0 1 +1984 10 30 10.5 10.1 10.1 1 +1984 10 31 11.5 11.1 11.1 1 +1984 11 1 7.9 7.5 7.5 1 +1984 11 2 10.9 10.5 10.5 1 +1984 11 3 7.4 7.0 7.0 1 +1984 11 4 7.0 6.6 6.6 1 +1984 11 5 7.1 6.7 6.7 1 +1984 11 6 6.5 6.1 6.1 1 +1984 11 7 6.8 6.4 6.4 1 +1984 11 8 6.8 6.4 6.4 1 +1984 11 9 5.0 4.6 4.6 1 +1984 11 10 3.5 3.1 3.1 1 +1984 11 11 3.8 3.4 3.4 1 +1984 11 12 5.0 4.6 4.6 1 +1984 11 13 5.2 4.7 4.7 1 +1984 11 14 5.1 4.6 4.6 1 +1984 11 15 3.3 2.8 2.8 1 +1984 11 16 2.3 1.8 1.8 1 +1984 11 17 2.2 1.7 1.7 1 +1984 11 18 2.4 1.9 1.9 1 +1984 11 19 2.8 2.3 2.3 1 +1984 11 20 2.9 2.4 2.4 1 +1984 11 21 2.4 1.9 1.9 1 +1984 11 22 2.9 2.4 2.4 1 +1984 11 23 3.6 3.1 3.1 1 +1984 11 24 4.1 3.6 3.6 1 +1984 11 25 4.8 4.3 4.3 1 +1984 11 26 2.4 1.9 1.9 1 +1984 11 27 0.9 0.4 0.4 1 +1984 11 28 5.0 4.5 4.5 1 +1984 11 29 5.7 5.2 5.2 1 +1984 11 30 5.7 5.2 5.2 1 +1984 12 1 5.0 4.5 4.5 1 +1984 12 2 4.8 4.3 4.3 1 +1984 12 3 4.7 4.2 4.2 1 +1984 12 4 3.6 3.1 3.1 1 +1984 12 5 3.2 2.6 2.6 1 +1984 12 6 3.8 3.2 3.2 1 +1984 12 7 3.8 3.2 3.2 1 +1984 12 8 7.5 6.9 6.9 1 +1984 12 9 4.6 4.0 4.0 1 +1984 12 10 3.0 2.4 2.4 1 +1984 12 11 1.9 1.3 1.3 1 +1984 12 12 -0.3 -0.9 -0.9 1 +1984 12 13 0.5 -0.1 -0.1 1 +1984 12 14 -0.4 -1.0 -1.0 1 +1984 12 15 -1.5 -2.1 -2.1 1 +1984 12 16 -1.2 -1.8 -1.8 1 +1984 12 17 -3.8 -4.4 -4.4 1 +1984 12 18 -2.0 -2.6 -2.6 1 +1984 12 19 1.7 1.1 1.1 1 +1984 12 20 3.1 2.5 2.5 1 +1984 12 21 3.9 3.3 3.3 1 +1984 12 22 -0.1 -0.7 -0.7 1 +1984 12 23 2.3 1.7 1.7 1 +1984 12 24 3.5 2.9 2.9 1 +1984 12 25 2.5 1.8 1.8 1 +1984 12 26 -0.1 -0.8 -0.8 1 +1984 12 27 -0.7 -1.4 -1.4 1 +1984 12 28 -1.5 -2.2 -2.2 1 +1984 12 29 -0.4 -1.1 -1.1 1 +1984 12 30 -3.8 -4.5 -4.5 1 +1984 12 31 -3.0 -3.7 -3.7 1 +1985 1 1 -3.6 -4.3 -4.3 1 +1985 1 2 -5.1 -5.8 -5.8 1 +1985 1 3 -8.0 -8.7 -8.7 1 +1985 1 4 -11.7 -12.4 -12.4 1 +1985 1 5 -15.0 -15.7 -15.7 1 +1985 1 6 -14.2 -14.9 -14.9 1 +1985 1 7 -15.0 -15.7 -15.7 1 +1985 1 8 -14.4 -15.1 -15.1 1 +1985 1 9 -10.9 -11.6 -11.6 1 +1985 1 10 -6.7 -7.4 -7.4 1 +1985 1 11 -7.1 -7.9 -7.9 1 +1985 1 12 -10.1 -10.9 -10.9 1 +1985 1 13 -7.8 -8.6 -8.6 1 +1985 1 14 -6.8 -7.6 -7.6 1 +1985 1 15 -6.5 -7.3 -7.3 1 +1985 1 16 -9.8 -10.6 -10.6 1 +1985 1 17 -7.0 -7.8 -7.8 1 +1985 1 18 -2.2 -3.0 -3.0 1 +1985 1 19 -6.8 -7.6 -7.6 1 +1985 1 20 -6.5 -7.3 -7.3 1 +1985 1 21 -3.2 -4.0 -4.0 1 +1985 1 22 -2.8 -3.6 -3.6 1 +1985 1 23 0.4 -0.4 -0.4 1 +1985 1 24 -9.3 -10.1 -10.1 1 +1985 1 25 -14.8 -15.6 -15.6 1 +1985 1 26 -15.1 -15.9 -15.9 1 +1985 1 27 -14.4 -15.2 -15.2 1 +1985 1 28 -8.8 -9.6 -9.6 1 +1985 1 29 -4.5 -5.3 -5.3 1 +1985 1 30 -3.0 -3.8 -3.8 1 +1985 1 31 -4.4 -5.2 -5.2 1 +1985 2 1 -1.3 -2.1 -2.1 1 +1985 2 2 -13.1 -13.9 -13.9 1 +1985 2 3 -15.5 -16.3 -16.3 1 +1985 2 4 -12.0 -12.8 -12.8 1 +1985 2 5 -7.0 -7.8 -7.8 1 +1985 2 6 -4.6 -5.4 -5.4 1 +1985 2 7 -13.0 -13.8 -13.8 1 +1985 2 8 -16.1 -16.9 -16.9 1 +1985 2 9 -16.7 -17.5 -17.5 1 +1985 2 10 -13.8 -14.6 -14.6 1 +1985 2 11 -12.7 -13.5 -13.5 1 +1985 2 12 -5.1 -5.9 -5.9 1 +1985 2 13 -8.8 -9.6 -9.6 1 +1985 2 14 -13.2 -14.0 -14.0 1 +1985 2 15 -17.5 -18.3 -18.3 1 +1985 2 16 -16.1 -17.0 -17.0 1 +1985 2 17 -17.1 -18.0 -18.0 1 +1985 2 18 -15.8 -16.7 -16.7 1 +1985 2 19 -15.3 -16.2 -16.2 1 +1985 2 20 -13.4 -14.3 -14.3 1 +1985 2 21 -11.7 -12.6 -12.6 1 +1985 2 22 -15.5 -16.4 -16.4 1 +1985 2 23 -12.8 -13.7 -13.7 1 +1985 2 24 -5.0 -5.9 -5.9 1 +1985 2 25 -3.0 -3.9 -3.9 1 +1985 2 26 -3.7 -4.6 -4.6 1 +1985 2 27 -1.4 -2.3 -2.3 1 +1985 2 28 -0.3 -1.2 -1.2 1 +1985 3 1 -1.5 -2.4 -2.4 1 +1985 3 2 -4.3 -5.2 -5.2 1 +1985 3 3 -4.5 -5.4 -5.4 1 +1985 3 4 -5.5 -6.4 -6.4 1 +1985 3 5 -3.1 -4.0 -4.0 1 +1985 3 6 0.5 -0.4 -0.4 1 +1985 3 7 -1.0 -1.9 -1.9 1 +1985 3 8 -3.6 -4.5 -4.5 1 +1985 3 9 -3.6 -4.5 -4.5 1 +1985 3 10 -3.3 -4.2 -4.2 1 +1985 3 11 1.3 0.4 0.4 1 +1985 3 12 2.2 1.3 1.3 1 +1985 3 13 1.9 0.9 0.9 1 +1985 3 14 2.5 1.5 1.5 1 +1985 3 15 0.9 -0.1 -0.1 1 +1985 3 16 -0.7 -1.7 -1.7 1 +1985 3 17 -1.0 -1.9 -1.9 1 +1985 3 18 -3.1 -4.0 -4.0 1 +1985 3 19 -2.1 -3.0 -3.0 1 +1985 3 20 -1.0 -1.9 -1.9 1 +1985 3 21 0.1 -0.8 -0.8 1 +1985 3 22 0.9 0.0 0.0 1 +1985 3 23 1.7 0.8 0.8 1 +1985 3 24 0.4 -0.5 -0.5 1 +1985 3 25 0.8 -0.1 -0.1 1 +1985 3 26 1.0 0.1 0.1 1 +1985 3 27 0.0 -0.9 -0.9 1 +1985 3 28 0.4 -0.5 -0.5 1 +1985 3 29 -2.9 -3.8 -3.8 1 +1985 3 30 0.6 -0.3 -0.3 1 +1985 3 31 1.2 0.3 0.3 1 +1985 4 1 3.0 2.1 2.1 1 +1985 4 2 4.4 3.5 3.5 1 +1985 4 3 3.5 2.6 2.6 1 +1985 4 4 2.3 1.4 1.4 1 +1985 4 5 1.8 0.9 0.9 1 +1985 4 6 -1.2 -2.0 -2.0 1 +1985 4 7 -0.2 -1.0 -1.0 1 +1985 4 8 0.2 -0.6 -0.6 1 +1985 4 9 -1.8 -2.6 -2.6 1 +1985 4 10 -1.9 -2.7 -2.7 1 +1985 4 11 1.4 0.6 0.6 1 +1985 4 12 1.6 0.8 0.8 1 +1985 4 13 2.7 1.9 1.9 1 +1985 4 14 2.3 1.5 1.5 1 +1985 4 15 1.9 1.1 1.1 1 +1985 4 16 4.0 3.2 3.2 1 +1985 4 17 4.8 4.0 4.0 1 +1985 4 18 6.3 5.4 5.4 1 +1985 4 19 7.3 6.4 6.4 1 +1985 4 20 4.1 3.2 3.2 1 +1985 4 21 3.0 2.1 2.1 1 +1985 4 22 6.9 6.0 6.0 1 +1985 4 23 2.3 1.3 1.3 1 +1985 4 24 2.7 1.7 1.7 1 +1985 4 25 0.8 -0.2 -0.2 1 +1985 4 26 1.7 0.7 0.7 1 +1985 4 27 2.2 1.2 1.2 1 +1985 4 28 4.6 3.6 3.6 1 +1985 4 29 3.9 2.8 2.8 1 +1985 4 30 1.6 0.5 0.5 1 +1985 5 1 3.5 2.4 2.4 1 +1985 5 2 4.0 2.9 2.9 1 +1985 5 3 2.5 1.4 1.4 1 +1985 5 4 3.4 2.2 2.2 1 +1985 5 5 3.8 2.6 2.6 1 +1985 5 6 6.7 5.5 5.5 1 +1985 5 7 8.4 7.2 7.2 1 +1985 5 8 9.2 8.0 8.0 1 +1985 5 9 8.1 6.8 6.8 1 +1985 5 10 6.1 4.8 4.8 1 +1985 5 11 10.2 8.9 8.9 1 +1985 5 12 12.2 10.9 10.9 1 +1985 5 13 12.5 11.2 11.2 1 +1985 5 14 14.1 12.7 12.7 1 +1985 5 15 10.8 9.4 9.4 1 +1985 5 16 12.0 10.6 10.6 1 +1985 5 17 8.7 7.3 7.3 1 +1985 5 18 10.4 9.1 9.1 1 +1985 5 19 14.3 13.0 13.0 1 +1985 5 20 11.7 10.4 10.4 1 +1985 5 21 8.9 7.6 7.6 1 +1985 5 22 9.9 8.6 8.6 1 +1985 5 23 6.0 4.7 4.7 1 +1985 5 24 8.5 7.2 7.2 1 +1985 5 25 9.1 7.8 7.8 1 +1985 5 26 16.9 15.6 15.6 1 +1985 5 27 19.0 17.7 17.7 1 +1985 5 28 19.5 18.2 18.2 1 +1985 5 29 19.9 18.7 18.7 1 +1985 5 30 15.6 14.4 14.4 1 +1985 5 31 13.0 11.8 11.8 1 +1985 6 1 15.7 14.5 14.5 1 +1985 6 2 16.7 15.5 15.5 1 +1985 6 3 12.9 11.7 11.7 1 +1985 6 4 15.3 14.1 14.1 1 +1985 6 5 12.6 11.4 11.4 1 +1985 6 6 8.4 7.2 7.2 1 +1985 6 7 10.0 8.8 8.8 1 +1985 6 8 10.1 8.9 8.9 1 +1985 6 9 11.3 10.2 10.2 1 +1985 6 10 12.2 11.1 11.1 1 +1985 6 11 12.3 11.2 11.2 1 +1985 6 12 10.3 9.2 9.2 1 +1985 6 13 9.7 8.6 8.6 1 +1985 6 14 12.7 11.6 11.6 1 +1985 6 15 10.6 9.5 9.5 1 +1985 6 16 13.9 12.8 12.8 1 +1985 6 17 14.9 13.8 13.8 1 +1985 6 18 15.4 14.3 14.3 1 +1985 6 19 18.3 17.2 17.2 1 +1985 6 20 16.3 15.2 15.2 1 +1985 6 21 18.1 17.0 17.0 1 +1985 6 22 19.7 18.6 18.6 1 +1985 6 23 21.1 20.0 20.0 1 +1985 6 24 21.7 20.6 20.6 1 +1985 6 25 21.4 20.3 20.3 1 +1985 6 26 20.7 19.6 19.6 1 +1985 6 27 14.7 13.6 13.6 1 +1985 6 28 15.0 13.9 13.9 1 +1985 6 29 15.0 13.9 13.9 1 +1985 6 30 14.3 13.3 13.3 1 +1985 7 1 13.8 12.8 12.8 1 +1985 7 2 12.7 11.7 11.7 1 +1985 7 3 15.2 14.2 14.2 1 +1985 7 4 18.3 17.3 17.3 1 +1985 7 5 20.4 19.4 19.4 1 +1985 7 6 20.5 19.5 19.5 1 +1985 7 7 18.9 17.9 17.9 1 +1985 7 8 16.8 15.8 15.8 1 +1985 7 9 16.6 15.6 15.6 1 +1985 7 10 18.4 17.4 17.4 1 +1985 7 11 20.0 19.0 19.0 1 +1985 7 12 18.7 17.7 17.7 1 +1985 7 13 19.3 18.3 18.3 1 +1985 7 14 20.0 19.0 19.0 1 +1985 7 15 19.6 18.6 18.6 1 +1985 7 16 17.8 16.8 16.8 1 +1985 7 17 14.7 13.7 13.7 1 +1985 7 18 17.8 16.8 16.8 1 +1985 7 19 16.7 15.7 15.7 1 +1985 7 20 16.3 15.3 15.3 1 +1985 7 21 16.3 15.3 15.3 1 +1985 7 22 15.6 14.6 14.6 1 +1985 7 23 13.1 12.1 12.1 1 +1985 7 24 11.1 10.2 10.2 1 +1985 7 25 15.0 14.1 14.1 1 +1985 7 26 17.7 16.8 16.8 1 +1985 7 27 16.9 16.0 16.0 1 +1985 7 28 16.7 15.8 15.8 1 +1985 7 29 16.4 15.5 15.5 1 +1985 7 30 16.5 15.6 15.6 1 +1985 7 31 16.7 15.8 15.8 1 +1985 8 1 17.4 16.5 16.5 1 +1985 8 2 16.8 15.9 15.9 1 +1985 8 3 14.9 14.0 14.0 1 +1985 8 4 14.5 13.6 13.6 1 +1985 8 5 15.3 14.4 14.4 1 +1985 8 6 15.8 15.0 15.0 1 +1985 8 7 15.7 14.9 14.9 1 +1985 8 8 16.7 15.9 15.9 1 +1985 8 9 17.9 17.1 17.1 1 +1985 8 10 16.2 15.4 15.4 1 +1985 8 11 16.1 15.3 15.3 1 +1985 8 12 16.2 15.4 15.4 1 +1985 8 13 16.7 15.9 15.9 1 +1985 8 14 17.4 16.6 16.6 1 +1985 8 15 18.6 17.8 17.8 1 +1985 8 16 15.5 14.7 14.7 1 +1985 8 17 18.0 17.3 17.3 1 +1985 8 18 17.9 17.2 17.2 1 +1985 8 19 16.6 15.9 15.9 1 +1985 8 20 17.8 17.1 17.1 1 +1985 8 21 16.0 15.3 15.3 1 +1985 8 22 15.3 14.6 14.6 1 +1985 8 23 14.4 13.7 13.7 1 +1985 8 24 13.5 12.9 12.9 1 +1985 8 25 15.9 15.3 15.3 1 +1985 8 26 15.1 14.5 14.5 1 +1985 8 27 15.4 14.8 14.8 1 +1985 8 28 15.8 15.2 15.2 1 +1985 8 29 17.3 16.7 16.7 1 +1985 8 30 15.3 14.8 14.8 1 +1985 8 31 15.7 15.2 15.2 1 +1985 9 1 16.1 15.6 15.6 1 +1985 9 2 12.8 12.3 12.3 1 +1985 9 3 13.4 12.9 12.9 1 +1985 9 4 14.3 13.8 13.8 1 +1985 9 5 12.8 12.3 12.3 1 +1985 9 6 10.7 10.3 10.3 1 +1985 9 7 11.3 10.9 10.9 1 +1985 9 8 10.0 9.6 9.6 1 +1985 9 9 12.1 11.7 11.7 1 +1985 9 10 11.5 11.1 11.1 1 +1985 9 11 10.7 10.3 10.3 1 +1985 9 12 11.2 10.9 10.9 1 +1985 9 13 12.5 12.2 12.2 1 +1985 9 14 12.3 12.0 12.0 1 +1985 9 15 11.0 10.7 10.7 1 +1985 9 16 12.1 11.8 11.8 1 +1985 9 17 11.1 10.8 10.8 1 +1985 9 18 10.7 10.4 10.4 1 +1985 9 19 10.2 9.9 9.9 1 +1985 9 20 13.4 13.1 13.1 1 +1985 9 21 10.3 10.0 10.0 1 +1985 9 22 9.0 8.7 8.7 1 +1985 9 23 8.0 7.7 7.7 1 +1985 9 24 8.0 7.7 7.7 1 +1985 9 25 7.1 6.8 6.8 1 +1985 9 26 7.2 6.9 6.9 1 +1985 9 27 8.3 8.0 8.0 1 +1985 9 28 9.0 8.7 8.7 1 +1985 9 29 5.9 5.6 5.6 1 +1985 9 30 6.5 6.2 6.2 1 +1985 10 1 15.3 15.0 15.0 1 +1985 10 2 14.5 14.2 14.2 1 +1985 10 3 14.1 13.8 13.8 1 +1985 10 4 16.1 15.8 15.8 1 +1985 10 5 13.8 13.5 13.5 1 +1985 10 6 11.8 11.5 11.5 1 +1985 10 7 10.9 10.6 10.6 1 +1985 10 8 11.5 11.2 11.2 1 +1985 10 9 9.0 8.7 8.7 1 +1985 10 10 9.3 9.1 9.1 1 +1985 10 11 9.3 9.1 9.1 1 +1985 10 12 6.6 6.4 6.4 1 +1985 10 13 5.0 4.8 4.8 1 +1985 10 14 7.6 7.4 7.4 1 +1985 10 15 6.9 6.7 6.7 1 +1985 10 16 10.4 10.2 10.2 1 +1985 10 17 3.8 3.5 3.5 1 +1985 10 18 5.7 5.4 5.4 1 +1985 10 19 6.9 6.6 6.6 1 +1985 10 20 8.5 8.2 8.2 1 +1985 10 21 8.3 8.0 8.0 1 +1985 10 22 7.1 6.8 6.8 1 +1985 10 23 6.6 6.3 6.3 1 +1985 10 24 4.8 4.5 4.5 1 +1985 10 25 5.8 5.5 5.5 1 +1985 10 26 5.7 5.4 5.4 1 +1985 10 27 2.5 2.2 2.2 1 +1985 10 28 2.9 2.6 2.6 1 +1985 10 29 3.7 3.4 3.4 1 +1985 10 30 7.4 7.0 7.0 1 +1985 10 31 4.7 4.3 4.3 1 +1985 11 1 0.0 -0.4 -0.4 1 +1985 11 2 3.1 2.7 2.7 1 +1985 11 3 1.8 1.4 1.4 1 +1985 11 4 2.2 1.8 1.8 1 +1985 11 5 5.7 5.3 5.3 1 +1985 11 6 6.6 6.2 6.2 1 +1985 11 7 4.0 3.6 3.6 1 +1985 11 8 1.5 1.1 1.1 1 +1985 11 9 4.7 4.3 4.3 1 +1985 11 10 6.1 5.7 5.7 1 +1985 11 11 0.6 0.2 0.2 1 +1985 11 12 1.4 1.0 1.0 1 +1985 11 13 -0.3 -0.8 -0.8 1 +1985 11 14 -0.2 -0.7 -0.7 1 +1985 11 15 -0.1 -0.6 -0.6 1 +1985 11 16 0.3 -0.2 -0.2 1 +1985 11 17 -0.7 -1.2 -1.2 1 +1985 11 18 0.4 -0.1 -0.1 1 +1985 11 19 -0.6 -1.1 -1.1 1 +1985 11 20 -0.4 -0.9 -0.9 1 +1985 11 21 -0.8 -1.3 -1.3 1 +1985 11 22 -0.2 -0.7 -0.7 1 +1985 11 23 -1.0 -1.5 -1.5 1 +1985 11 24 -2.5 -3.0 -3.0 1 +1985 11 25 -1.6 -2.1 -2.1 1 +1985 11 26 -2.6 -3.1 -3.1 1 +1985 11 27 -0.8 -1.3 -1.3 1 +1985 11 28 -0.6 -1.1 -1.1 1 +1985 11 29 0.0 -0.5 -0.5 1 +1985 11 30 -2.9 -3.4 -3.4 1 +1985 12 1 -6.6 -7.1 -7.1 1 +1985 12 2 -3.6 -4.1 -4.1 1 +1985 12 3 1.6 1.1 1.1 1 +1985 12 4 3.0 2.5 2.5 1 +1985 12 5 -0.3 -0.9 -0.9 1 +1985 12 6 -2.5 -3.1 -3.1 1 +1985 12 7 -8.9 -9.5 -9.5 1 +1985 12 8 -10.7 -11.3 -11.3 1 +1985 12 9 -8.6 -9.2 -9.2 1 +1985 12 10 -9.7 -10.3 -10.3 1 +1985 12 11 -10.0 -10.6 -10.6 1 +1985 12 12 -2.9 -3.5 -3.5 1 +1985 12 13 1.4 0.8 0.8 1 +1985 12 14 0.7 0.1 0.1 1 +1985 12 15 -4.3 -4.9 -4.9 1 +1985 12 16 -4.4 -5.0 -5.0 1 +1985 12 17 -6.2 -6.8 -6.8 1 +1985 12 18 -7.9 -8.5 -8.5 1 +1985 12 19 -1.5 -2.1 -2.1 1 +1985 12 20 -7.2 -7.8 -7.8 1 +1985 12 21 2.0 1.4 1.4 1 +1985 12 22 5.7 5.1 5.1 1 +1985 12 23 4.2 3.6 3.6 1 +1985 12 24 3.0 2.4 2.4 1 +1985 12 25 2.6 1.9 1.9 1 +1985 12 26 -4.0 -4.7 -4.7 1 +1985 12 27 -9.1 -9.8 -9.8 1 +1985 12 28 -6.7 -7.4 -7.4 1 +1985 12 29 -6.8 -7.5 -7.5 1 +1985 12 30 -9.8 -10.5 -10.5 1 +1985 12 31 -7.5 -8.2 -8.2 1 +1986 1 1 -12.0 -12.7 -12.7 1 +1986 1 2 -3.2 -3.9 -3.9 1 +1986 1 3 -2.4 -3.1 -3.1 1 +1986 1 4 -2.8 -3.5 -3.5 1 +1986 1 5 -7.1 -7.8 -7.8 1 +1986 1 6 -5.4 -6.1 -6.1 1 +1986 1 7 -8.7 -9.4 -9.4 1 +1986 1 8 -8.7 -9.4 -9.4 1 +1986 1 9 -7.8 -8.5 -8.5 1 +1986 1 10 -11.6 -12.3 -12.3 1 +1986 1 11 -2.4 -3.2 -3.2 1 +1986 1 12 0.6 -0.2 -0.2 1 +1986 1 13 1.0 0.2 0.2 1 +1986 1 14 0.3 -0.5 -0.5 1 +1986 1 15 -3.0 -3.8 -3.8 1 +1986 1 16 -10.8 -11.6 -11.6 1 +1986 1 17 -13.2 -14.0 -14.0 1 +1986 1 18 -8.3 -9.1 -9.1 1 +1986 1 19 -7.7 -8.5 -8.5 1 +1986 1 20 -8.8 -9.6 -9.6 1 +1986 1 21 0.8 0.0 0.0 1 +1986 1 22 2.4 1.6 1.6 1 +1986 1 23 1.0 0.2 0.2 1 +1986 1 24 0.7 -0.1 -0.1 1 +1986 1 25 -1.4 -2.2 -2.2 1 +1986 1 26 -2.6 -3.4 -3.4 1 +1986 1 27 -2.3 -3.1 -3.1 1 +1986 1 28 -3.5 -4.3 -4.3 1 +1986 1 29 -0.6 -1.4 -1.4 1 +1986 1 30 -1.5 -2.3 -2.3 1 +1986 1 31 -1.0 -1.8 -1.8 1 +1986 2 1 -1.2 -2.0 -2.0 1 +1986 2 2 -2.4 -3.2 -3.2 1 +1986 2 3 -4.8 -5.6 -5.6 1 +1986 2 4 -8.0 -8.8 -8.8 1 +1986 2 5 -8.2 -9.0 -9.0 1 +1986 2 6 -9.7 -10.5 -10.5 1 +1986 2 7 -10.1 -10.9 -10.9 1 +1986 2 8 -9.6 -10.4 -10.4 1 +1986 2 9 -7.9 -8.7 -8.7 1 +1986 2 10 -5.4 -6.2 -6.2 1 +1986 2 11 -6.2 -7.0 -7.0 1 +1986 2 12 -9.0 -9.8 -9.8 1 +1986 2 13 -4.7 -5.5 -5.5 1 +1986 2 14 -4.2 -5.0 -5.0 1 +1986 2 15 -3.8 -4.6 -4.6 1 +1986 2 16 -6.2 -7.1 -7.1 1 +1986 2 17 -8.4 -9.3 -9.3 1 +1986 2 18 -8.4 -9.3 -9.3 1 +1986 2 19 -13.2 -14.1 -14.1 1 +1986 2 20 -7.8 -8.7 -8.7 1 +1986 2 21 -7.8 -8.7 -8.7 1 +1986 2 22 -10.6 -11.5 -11.5 1 +1986 2 23 -12.0 -12.9 -12.9 1 +1986 2 24 -12.2 -13.1 -13.1 1 +1986 2 25 -11.2 -12.1 -12.1 1 +1986 2 26 -5.1 -6.0 -6.0 1 +1986 2 27 -5.8 -6.7 -6.7 1 +1986 2 28 -6.3 -7.2 -7.2 1 +1986 3 1 -4.5 -5.4 -5.4 1 +1986 3 2 -3.1 -4.0 -4.0 1 +1986 3 3 -0.2 -1.1 -1.1 1 +1986 3 4 -0.4 -1.3 -1.3 1 +1986 3 5 -0.4 -1.3 -1.3 1 +1986 3 6 3.8 2.9 2.9 1 +1986 3 7 2.2 1.3 1.3 1 +1986 3 8 4.1 3.2 3.2 1 +1986 3 9 0.0 -0.9 -0.9 1 +1986 3 10 -1.3 -2.2 -2.2 1 +1986 3 11 0.1 -0.8 -0.8 1 +1986 3 12 -0.6 -1.5 -1.5 1 +1986 3 13 -0.1 -1.1 -1.1 1 +1986 3 14 -0.1 -1.1 -1.1 1 +1986 3 15 -0.2 -1.2 -1.2 1 +1986 3 16 -1.1 -2.1 -2.1 1 +1986 3 17 0.8 -0.1 -0.1 1 +1986 3 18 2.3 1.4 1.4 1 +1986 3 19 2.4 1.5 1.5 1 +1986 3 20 2.8 1.9 1.9 1 +1986 3 21 1.9 1.0 1.0 1 +1986 3 22 2.5 1.6 1.6 1 +1986 3 23 1.1 0.2 0.2 1 +1986 3 24 1.4 0.5 0.5 1 +1986 3 25 1.1 0.2 0.2 1 +1986 3 26 2.9 2.0 2.0 1 +1986 3 27 2.7 1.8 1.8 1 +1986 3 28 5.4 4.5 4.5 1 +1986 3 29 3.6 2.7 2.7 1 +1986 3 30 3.7 2.8 2.8 1 +1986 3 31 1.0 0.1 0.1 1 +1986 4 1 1.9 1.0 1.0 1 +1986 4 2 2.0 1.1 1.1 1 +1986 4 3 3.3 2.4 2.4 1 +1986 4 4 2.3 1.4 1.4 1 +1986 4 5 1.7 0.8 0.8 1 +1986 4 6 1.6 0.8 0.8 1 +1986 4 7 0.1 -0.7 -0.7 1 +1986 4 8 3.2 2.4 2.4 1 +1986 4 9 3.4 2.6 2.6 1 +1986 4 10 -2.5 -3.3 -3.3 1 +1986 4 11 -1.7 -2.5 -2.5 1 +1986 4 12 0.8 0.0 0.0 1 +1986 4 13 0.1 -0.7 -0.7 1 +1986 4 14 -0.5 -1.3 -1.3 1 +1986 4 15 -1.2 -2.0 -2.0 1 +1986 4 16 -0.1 -0.9 -0.9 1 +1986 4 17 3.1 2.3 2.3 1 +1986 4 18 3.2 2.3 2.3 1 +1986 4 19 1.7 0.8 0.8 1 +1986 4 20 0.5 -0.4 -0.4 1 +1986 4 21 0.6 -0.3 -0.3 1 +1986 4 22 1.9 1.0 1.0 1 +1986 4 23 7.0 6.0 6.0 1 +1986 4 24 7.4 6.4 6.4 1 +1986 4 25 5.2 4.2 4.2 1 +1986 4 26 6.9 5.9 5.9 1 +1986 4 27 8.8 7.8 7.8 1 +1986 4 28 11.5 10.5 10.5 1 +1986 4 29 9.8 8.7 8.7 1 +1986 4 30 7.6 6.5 6.5 1 +1986 5 1 10.3 9.2 9.2 1 +1986 5 2 13.0 11.9 11.9 1 +1986 5 3 12.1 11.0 11.0 1 +1986 5 4 13.4 12.2 12.2 1 +1986 5 5 14.4 13.2 13.2 1 +1986 5 6 15.6 14.4 14.4 1 +1986 5 7 16.9 15.7 15.7 1 +1986 5 8 15.0 13.8 13.8 1 +1986 5 9 13.6 12.3 12.3 1 +1986 5 10 11.9 10.6 10.6 1 +1986 5 11 8.7 7.4 7.4 1 +1986 5 12 9.9 8.6 8.6 1 +1986 5 13 10.9 9.6 9.6 1 +1986 5 14 12.2 10.8 10.8 1 +1986 5 15 12.4 11.0 11.0 1 +1986 5 16 10.2 8.8 8.8 1 +1986 5 17 12.7 11.3 11.3 1 +1986 5 18 12.8 11.5 11.5 1 +1986 5 19 11.9 10.6 10.6 1 +1986 5 20 15.3 14.0 14.0 1 +1986 5 21 15.3 14.0 14.0 1 +1986 5 22 13.2 11.9 11.9 1 +1986 5 23 12.9 11.6 11.6 1 +1986 5 24 11.3 10.0 10.0 1 +1986 5 25 12.6 11.3 11.3 1 +1986 5 26 14.1 12.8 12.8 1 +1986 5 27 13.5 12.2 12.2 1 +1986 5 28 12.2 10.9 10.9 1 +1986 5 29 11.8 10.6 10.6 1 +1986 5 30 12.7 11.5 11.5 1 +1986 5 31 14.0 12.8 12.8 1 +1986 6 1 14.2 13.0 13.0 1 +1986 6 2 16.9 15.7 15.7 1 +1986 6 3 12.9 11.7 11.7 1 +1986 6 4 11.1 9.9 9.9 1 +1986 6 5 14.2 13.0 13.0 1 +1986 6 6 14.5 13.3 13.3 1 +1986 6 7 11.1 9.9 9.9 1 +1986 6 8 11.1 9.9 9.9 1 +1986 6 9 11.6 10.5 10.5 1 +1986 6 10 15.2 14.1 14.1 1 +1986 6 11 14.5 13.4 13.4 1 +1986 6 12 16.2 15.1 15.1 1 +1986 6 13 16.7 15.6 15.6 1 +1986 6 14 16.8 15.7 15.7 1 +1986 6 15 19.3 18.2 18.2 1 +1986 6 16 20.1 19.0 19.0 1 +1986 6 17 21.3 20.2 20.2 1 +1986 6 18 21.0 19.9 19.9 1 +1986 6 19 19.6 18.5 18.5 1 +1986 6 20 14.8 13.7 13.7 1 +1986 6 21 12.8 11.7 11.7 1 +1986 6 22 13.0 11.9 11.9 1 +1986 6 23 14.4 13.3 13.3 1 +1986 6 24 16.6 15.5 15.5 1 +1986 6 25 18.9 17.8 17.8 1 +1986 6 26 21.8 20.7 20.7 1 +1986 6 27 21.2 20.1 20.1 1 +1986 6 28 17.6 16.5 16.5 1 +1986 6 29 17.1 16.0 16.0 1 +1986 6 30 20.1 19.1 19.1 1 +1986 7 1 21.0 20.0 20.0 1 +1986 7 2 19.1 18.1 18.1 1 +1986 7 3 19.5 18.5 18.5 1 +1986 7 4 19.5 18.5 18.5 1 +1986 7 5 19.2 18.2 18.2 1 +1986 7 6 15.9 14.9 14.9 1 +1986 7 7 19.0 18.0 18.0 1 +1986 7 8 16.3 15.3 15.3 1 +1986 7 9 13.3 12.3 12.3 1 +1986 7 10 13.2 12.2 12.2 1 +1986 7 11 15.5 14.5 14.5 1 +1986 7 12 10.8 9.8 9.8 1 +1986 7 13 11.1 10.1 10.1 1 +1986 7 14 14.5 13.5 13.5 1 +1986 7 15 17.8 16.8 16.8 1 +1986 7 16 19.3 18.3 18.3 1 +1986 7 17 19.3 18.3 18.3 1 +1986 7 18 18.2 17.2 17.2 1 +1986 7 19 18.4 17.4 17.4 1 +1986 7 20 18.0 17.0 17.0 1 +1986 7 21 16.7 15.7 15.7 1 +1986 7 22 18.0 17.0 17.0 1 +1986 7 23 17.5 16.5 16.5 1 +1986 7 24 16.6 15.7 15.7 1 +1986 7 25 16.0 15.1 15.1 1 +1986 7 26 17.8 16.9 16.9 1 +1986 7 27 18.7 17.8 17.8 1 +1986 7 28 20.2 19.3 19.3 1 +1986 7 29 20.1 19.2 19.2 1 +1986 7 30 18.6 17.7 17.7 1 +1986 7 31 17.2 16.3 16.3 1 +1986 8 1 17.8 16.9 16.9 1 +1986 8 2 16.8 15.9 15.9 1 +1986 8 3 19.2 18.3 18.3 1 +1986 8 4 20.9 20.0 20.0 1 +1986 8 5 17.9 17.0 17.0 1 +1986 8 6 17.2 16.4 16.4 1 +1986 8 7 16.8 16.0 16.0 1 +1986 8 8 15.5 14.7 14.7 1 +1986 8 9 17.0 16.2 16.2 1 +1986 8 10 16.6 15.8 15.8 1 +1986 8 11 14.0 13.2 13.2 1 +1986 8 12 14.5 13.7 13.7 1 +1986 8 13 12.8 12.0 12.0 1 +1986 8 14 12.8 12.0 12.0 1 +1986 8 15 13.2 12.4 12.4 1 +1986 8 16 14.0 13.2 13.2 1 +1986 8 17 13.6 12.9 12.9 1 +1986 8 18 13.5 12.8 12.8 1 +1986 8 19 13.2 12.5 12.5 1 +1986 8 20 13.5 12.8 12.8 1 +1986 8 21 14.0 13.3 13.3 1 +1986 8 22 11.7 11.0 11.0 1 +1986 8 23 10.8 10.1 10.1 1 +1986 8 24 10.3 9.7 9.7 1 +1986 8 25 10.0 9.4 9.4 1 +1986 8 26 10.4 9.8 9.8 1 +1986 8 27 9.5 8.9 8.9 1 +1986 8 28 13.2 12.6 12.6 1 +1986 8 29 12.1 11.5 11.5 1 +1986 8 30 8.5 8.0 8.0 1 +1986 8 31 8.9 8.4 8.4 1 +1986 9 1 12.2 11.7 11.7 1 +1986 9 2 11.8 11.3 11.3 1 +1986 9 3 11.8 11.3 11.3 1 +1986 9 4 10.9 10.4 10.4 1 +1986 9 5 11.4 10.9 10.9 1 +1986 9 6 11.0 10.6 10.6 1 +1986 9 7 9.5 9.1 9.1 1 +1986 9 8 8.7 8.3 8.3 1 +1986 9 9 10.0 9.6 9.6 1 +1986 9 10 10.0 9.6 9.6 1 +1986 9 11 9.9 9.5 9.5 1 +1986 9 12 9.4 9.1 9.1 1 +1986 9 13 9.6 9.3 9.3 1 +1986 9 14 9.9 9.6 9.6 1 +1986 9 15 9.3 9.0 9.0 1 +1986 9 16 8.8 8.5 8.5 1 +1986 9 17 8.9 8.6 8.6 1 +1986 9 18 9.0 8.7 8.7 1 +1986 9 19 10.5 10.2 10.2 1 +1986 9 20 12.2 11.9 11.9 1 +1986 9 21 10.2 9.9 9.9 1 +1986 9 22 8.8 8.5 8.5 1 +1986 9 23 7.2 6.9 6.9 1 +1986 9 24 7.2 6.9 6.9 1 +1986 9 25 5.8 5.5 5.5 1 +1986 9 26 4.1 3.8 3.8 1 +1986 9 27 4.0 3.7 3.7 1 +1986 9 28 7.0 6.7 6.7 1 +1986 9 29 12.3 12.0 12.0 1 +1986 9 30 8.4 8.1 8.1 1 +1986 10 1 13.3 13.0 13.0 1 +1986 10 2 12.4 12.1 12.1 1 +1986 10 3 8.0 7.7 7.7 1 +1986 10 4 7.6 7.3 7.3 1 +1986 10 5 4.9 4.6 4.6 1 +1986 10 6 7.0 6.7 6.7 1 +1986 10 7 8.4 8.1 8.1 1 +1986 10 8 5.3 5.0 5.0 1 +1986 10 9 5.1 4.8 4.8 1 +1986 10 10 10.0 9.8 9.8 1 +1986 10 11 9.4 9.2 9.2 1 +1986 10 12 8.7 8.5 8.5 1 +1986 10 13 8.6 8.4 8.4 1 +1986 10 14 7.0 6.8 6.8 1 +1986 10 15 9.6 9.4 9.4 1 +1986 10 16 10.3 10.1 10.1 1 +1986 10 17 8.1 7.8 7.8 1 +1986 10 18 6.7 6.4 6.4 1 +1986 10 19 8.4 8.1 8.1 1 +1986 10 20 7.1 6.8 6.8 1 +1986 10 21 5.4 5.1 5.1 1 +1986 10 22 4.5 4.2 4.2 1 +1986 10 23 4.2 3.9 3.9 1 +1986 10 24 4.4 4.1 4.1 1 +1986 10 25 4.6 4.3 4.3 1 +1986 10 26 7.0 6.7 6.7 1 +1986 10 27 8.0 7.7 7.7 1 +1986 10 28 7.5 7.2 7.2 1 +1986 10 29 8.3 8.0 8.0 1 +1986 10 30 6.8 6.4 6.4 1 +1986 10 31 6.0 5.6 5.6 1 +1986 11 1 5.3 4.9 4.9 1 +1986 11 2 2.4 2.0 2.0 1 +1986 11 3 1.0 0.6 0.6 1 +1986 11 4 3.4 3.0 3.0 1 +1986 11 5 2.2 1.8 1.8 1 +1986 11 6 3.7 3.3 3.3 1 +1986 11 7 1.8 1.4 1.4 1 +1986 11 8 6.8 6.4 6.4 1 +1986 11 9 5.9 5.5 5.5 1 +1986 11 10 7.4 7.0 7.0 1 +1986 11 11 10.0 9.6 9.6 1 +1986 11 12 5.9 5.5 5.5 1 +1986 11 13 1.5 1.0 1.0 1 +1986 11 14 4.4 3.9 3.9 1 +1986 11 15 5.1 4.6 4.6 1 +1986 11 16 6.3 5.8 5.8 1 +1986 11 17 4.5 4.0 4.0 1 +1986 11 18 6.0 5.5 5.5 1 +1986 11 19 6.2 5.7 5.7 1 +1986 11 20 3.4 2.9 2.9 1 +1986 11 21 2.0 1.5 1.5 1 +1986 11 22 4.5 4.0 4.0 1 +1986 11 23 5.9 5.4 5.4 1 +1986 11 24 5.7 5.2 5.2 1 +1986 11 25 7.8 7.3 7.3 1 +1986 11 26 10.3 9.8 9.8 1 +1986 11 27 6.3 5.8 5.8 1 +1986 11 28 8.5 8.0 8.0 1 +1986 11 29 7.9 7.4 7.4 1 +1986 11 30 5.1 4.6 4.6 1 +1986 12 1 7.3 6.8 6.8 1 +1986 12 2 1.5 1.0 1.0 1 +1986 12 3 4.5 4.0 4.0 1 +1986 12 4 8.9 8.4 8.4 1 +1986 12 5 4.3 3.7 3.7 1 +1986 12 6 1.8 1.2 1.2 1 +1986 12 7 -3.5 -4.1 -4.1 1 +1986 12 8 3.3 2.7 2.7 1 +1986 12 9 4.4 3.8 3.8 1 +1986 12 10 5.5 4.9 4.9 1 +1986 12 11 0.9 0.3 0.3 1 +1986 12 12 -0.5 -1.1 -1.1 1 +1986 12 13 1.4 0.8 0.8 1 +1986 12 14 0.8 0.2 0.2 1 +1986 12 15 -2.5 -3.1 -3.1 1 +1986 12 16 -0.6 -1.2 -1.2 1 +1986 12 17 -1.3 -1.9 -1.9 1 +1986 12 18 -1.6 -2.2 -2.2 1 +1986 12 19 -2.2 -2.8 -2.8 1 +1986 12 20 -6.9 -7.5 -7.5 1 +1986 12 21 -5.3 -5.9 -5.9 1 +1986 12 22 -4.1 -4.7 -4.7 1 +1986 12 23 -3.5 -4.1 -4.1 1 +1986 12 24 -5.2 -5.8 -5.8 1 +1986 12 25 -4.8 -5.5 -5.5 1 +1986 12 26 -1.4 -2.1 -2.1 1 +1986 12 27 -3.0 -3.7 -3.7 1 +1986 12 28 -3.9 -4.6 -4.6 1 +1986 12 29 -2.4 -3.1 -3.1 1 +1986 12 30 -8.2 -8.9 -8.9 1 +1986 12 31 -10.0 -10.7 -10.7 1 +1987 1 1 -9.9 -10.6 -10.6 1 +1987 1 2 -11.0 -11.7 -11.7 1 +1987 1 3 -10.6 -11.3 -11.3 1 +1987 1 4 -13.6 -14.3 -14.3 1 +1987 1 5 -7.8 -8.5 -8.5 1 +1987 1 6 -13.3 -14.0 -14.0 1 +1987 1 7 -18.9 -19.6 -19.6 1 +1987 1 8 -16.4 -17.1 -17.1 1 +1987 1 9 -20.5 -21.2 -21.2 1 +1987 1 10 -23.9 -24.6 -24.6 1 +1987 1 11 -21.8 -22.6 -22.6 1 +1987 1 12 -20.4 -21.2 -21.2 1 +1987 1 13 -17.7 -18.5 -18.5 1 +1987 1 14 -10.1 -10.9 -10.9 1 +1987 1 15 -11.0 -11.8 -11.8 1 +1987 1 16 -12.2 -13.0 -13.0 1 +1987 1 17 -10.7 -11.5 -11.5 1 +1987 1 18 -6.9 -7.7 -7.7 1 +1987 1 19 -7.0 -7.8 -7.8 1 +1987 1 20 -4.9 -5.7 -5.7 1 +1987 1 21 -4.5 -5.3 -5.3 1 +1987 1 22 -6.9 -7.7 -7.7 1 +1987 1 23 -6.5 -7.3 -7.3 1 +1987 1 24 -4.2 -5.0 -5.0 1 +1987 1 25 -0.6 -1.4 -1.4 1 +1987 1 26 -8.2 -9.0 -9.0 1 +1987 1 27 -11.5 -12.3 -12.3 1 +1987 1 28 -14.0 -14.8 -14.8 1 +1987 1 29 -16.7 -17.5 -17.5 1 +1987 1 30 -6.6 -7.4 -7.4 1 +1987 1 31 0.9 0.1 0.1 1 +1987 2 1 -2.2 -3.0 -3.0 1 +1987 2 2 -1.4 -2.2 -2.2 1 +1987 2 3 -1.7 -2.5 -2.5 1 +1987 2 4 0.7 -0.1 -0.1 1 +1987 2 5 2.5 1.7 1.7 1 +1987 2 6 2.9 2.1 2.1 1 +1987 2 7 -3.7 -4.5 -4.5 1 +1987 2 8 -7.7 -8.5 -8.5 1 +1987 2 9 -8.0 -8.8 -8.8 1 +1987 2 10 -6.5 -7.3 -7.3 1 +1987 2 11 -0.2 -1.0 -1.0 1 +1987 2 12 0.9 0.1 0.1 1 +1987 2 13 0.3 -0.5 -0.5 1 +1987 2 14 0.8 0.0 0.0 1 +1987 2 15 -3.4 -4.3 -4.3 1 +1987 2 16 -5.4 -6.3 -6.3 1 +1987 2 17 -4.1 -5.0 -5.0 1 +1987 2 18 -8.0 -8.9 -8.9 1 +1987 2 19 -7.1 -8.0 -8.0 1 +1987 2 20 -3.5 -4.4 -4.4 1 +1987 2 21 -0.5 -1.4 -1.4 1 +1987 2 22 -2.3 -3.2 -3.2 1 +1987 2 23 -6.6 -7.5 -7.5 1 +1987 2 24 -5.0 -5.9 -5.9 1 +1987 2 25 -9.3 -10.2 -10.2 1 +1987 2 26 -7.2 -8.1 -8.1 1 +1987 2 27 -3.4 -4.3 -4.3 1 +1987 2 28 -9.5 -10.4 -10.4 1 +1987 3 1 -11.8 -12.7 -12.7 1 +1987 3 2 -14.1 -15.0 -15.0 1 +1987 3 3 -12.7 -13.6 -13.6 1 +1987 3 4 -12.1 -13.0 -13.0 1 +1987 3 5 -11.9 -12.8 -12.8 1 +1987 3 6 -8.1 -9.0 -9.0 1 +1987 3 7 -9.5 -10.4 -10.4 1 +1987 3 8 -5.9 -6.8 -6.8 1 +1987 3 9 -5.7 -6.6 -6.6 1 +1987 3 10 -3.2 -4.1 -4.1 1 +1987 3 11 -1.1 -2.0 -2.0 1 +1987 3 12 -1.1 -2.0 -2.0 1 +1987 3 13 -3.7 -4.7 -4.7 1 +1987 3 14 -5.8 -6.8 -6.8 1 +1987 3 15 -5.0 -6.0 -6.0 1 +1987 3 16 -3.4 -4.4 -4.4 1 +1987 3 17 -1.8 -2.7 -2.7 1 +1987 3 18 -0.7 -1.6 -1.6 1 +1987 3 19 -1.3 -2.2 -2.2 1 +1987 3 20 -0.4 -1.3 -1.3 1 +1987 3 21 0.5 -0.4 -0.4 1 +1987 3 22 -0.5 -1.4 -1.4 1 +1987 3 23 0.0 -0.9 -0.9 1 +1987 3 24 0.3 -0.6 -0.6 1 +1987 3 25 -0.3 -1.2 -1.2 1 +1987 3 26 -1.4 -2.3 -2.3 1 +1987 3 27 2.6 1.7 1.7 1 +1987 3 28 4.1 3.2 3.2 1 +1987 3 29 3.0 2.1 2.1 1 +1987 3 30 4.8 3.9 3.9 1 +1987 3 31 4.8 3.9 3.9 1 +1987 4 1 -0.2 -1.1 -1.1 1 +1987 4 2 1.6 0.7 0.7 1 +1987 4 3 2.8 1.9 1.9 1 +1987 4 4 2.9 2.0 2.0 1 +1987 4 5 3.4 2.5 2.5 1 +1987 4 6 2.8 2.0 2.0 1 +1987 4 7 3.7 2.9 2.9 1 +1987 4 8 0.9 0.1 0.1 1 +1987 4 9 -1.2 -2.0 -2.0 1 +1987 4 10 0.1 -0.7 -0.7 1 +1987 4 11 2.0 1.2 1.2 1 +1987 4 12 3.8 3.0 3.0 1 +1987 4 13 4.0 3.2 3.2 1 +1987 4 14 5.8 5.0 5.0 1 +1987 4 15 4.5 3.7 3.7 1 +1987 4 16 7.7 6.9 6.9 1 +1987 4 17 5.9 5.1 5.1 1 +1987 4 18 3.5 2.6 2.6 1 +1987 4 19 3.7 2.8 2.8 1 +1987 4 20 1.5 0.6 0.6 1 +1987 4 21 2.5 1.6 1.6 1 +1987 4 22 4.7 3.8 3.8 1 +1987 4 23 10.1 9.1 9.1 1 +1987 4 24 9.7 8.7 8.7 1 +1987 4 25 7.6 6.6 6.6 1 +1987 4 26 4.0 3.0 3.0 1 +1987 4 27 7.0 6.0 6.0 1 +1987 4 28 12.4 11.4 11.4 1 +1987 4 29 16.2 15.1 15.1 1 +1987 4 30 16.0 14.9 14.9 1 +1987 5 1 15.8 14.7 14.7 1 +1987 5 2 13.4 12.3 12.3 1 +1987 5 3 10.2 9.1 9.1 1 +1987 5 4 3.9 2.7 2.7 1 +1987 5 5 6.8 5.6 5.6 1 +1987 5 6 9.3 8.1 8.1 1 +1987 5 7 7.2 6.0 6.0 1 +1987 5 8 8.3 7.1 7.1 1 +1987 5 9 8.6 7.3 7.3 1 +1987 5 10 7.0 5.7 5.7 1 +1987 5 11 6.2 4.9 4.9 1 +1987 5 12 5.4 4.1 4.1 1 +1987 5 13 7.7 6.4 6.4 1 +1987 5 14 8.2 6.8 6.8 1 +1987 5 15 7.0 5.6 5.6 1 +1987 5 16 8.9 7.5 7.5 1 +1987 5 17 7.4 6.0 6.0 1 +1987 5 18 9.0 7.7 7.7 1 +1987 5 19 11.0 9.7 9.7 1 +1987 5 20 9.1 7.8 7.8 1 +1987 5 21 8.5 7.2 7.2 1 +1987 5 22 10.5 9.2 9.2 1 +1987 5 23 14.6 13.3 13.3 1 +1987 5 24 9.9 8.6 8.6 1 +1987 5 25 11.0 9.7 9.7 1 +1987 5 26 10.1 8.8 8.8 1 +1987 5 27 6.9 5.6 5.6 1 +1987 5 28 6.8 5.5 5.5 1 +1987 5 29 6.7 5.5 5.5 1 +1987 5 30 6.9 5.7 5.7 1 +1987 5 31 9.3 8.1 8.1 1 +1987 6 1 11.4 10.2 10.2 1 +1987 6 2 8.5 7.3 7.3 1 +1987 6 3 7.8 6.6 6.6 1 +1987 6 4 12.4 11.2 11.2 1 +1987 6 5 14.2 13.0 13.0 1 +1987 6 6 13.4 12.2 12.2 1 +1987 6 7 14.0 12.8 12.8 1 +1987 6 8 13.1 11.9 11.9 1 +1987 6 9 12.4 11.3 11.3 1 +1987 6 10 13.7 12.6 12.6 1 +1987 6 11 13.0 11.9 11.9 1 +1987 6 12 12.0 10.9 10.9 1 +1987 6 13 12.2 11.1 11.1 1 +1987 6 14 9.5 8.4 8.4 1 +1987 6 15 9.5 8.4 8.4 1 +1987 6 16 8.8 7.7 7.7 1 +1987 6 17 9.5 8.4 8.4 1 +1987 6 18 11.2 10.1 10.1 1 +1987 6 19 9.6 8.5 8.5 1 +1987 6 20 11.8 10.7 10.7 1 +1987 6 21 13.6 12.5 12.5 1 +1987 6 22 16.2 15.1 15.1 1 +1987 6 23 15.2 14.1 14.1 1 +1987 6 24 13.2 12.1 12.1 1 +1987 6 25 13.3 12.2 12.2 1 +1987 6 26 12.7 11.6 11.6 1 +1987 6 27 14.4 13.3 13.3 1 +1987 6 28 14.7 13.6 13.6 1 +1987 6 29 15.0 13.9 13.9 1 +1987 6 30 15.3 14.3 14.3 1 +1987 7 1 17.3 16.3 16.3 1 +1987 7 2 16.7 15.7 15.7 1 +1987 7 3 15.2 14.2 14.2 1 +1987 7 4 15.1 14.1 14.1 1 +1987 7 5 16.9 15.9 15.9 1 +1987 7 6 20.1 19.1 19.1 1 +1987 7 7 19.9 18.9 18.9 1 +1987 7 8 18.9 17.9 17.9 1 +1987 7 9 13.7 12.7 12.7 1 +1987 7 10 15.2 14.2 14.2 1 +1987 7 11 14.1 13.1 13.1 1 +1987 7 12 16.3 15.3 15.3 1 +1987 7 13 14.3 13.3 13.3 1 +1987 7 14 15.1 14.1 14.1 1 +1987 7 15 15.8 14.8 14.8 1 +1987 7 16 16.3 15.3 15.3 1 +1987 7 17 15.1 14.1 14.1 1 +1987 7 18 16.7 15.7 15.7 1 +1987 7 19 17.7 16.7 16.7 1 +1987 7 20 17.5 16.5 16.5 1 +1987 7 21 19.2 18.2 18.2 1 +1987 7 22 21.4 20.4 20.4 1 +1987 7 23 22.7 21.7 21.7 1 +1987 7 24 19.3 18.4 18.4 1 +1987 7 25 15.8 14.9 14.9 1 +1987 7 26 14.5 13.6 13.6 1 +1987 7 27 13.4 12.5 12.5 1 +1987 7 28 14.0 13.1 13.1 1 +1987 7 29 12.4 11.5 11.5 1 +1987 7 30 14.6 13.7 13.7 1 +1987 7 31 14.0 13.1 13.1 1 +1987 8 1 13.9 13.0 13.0 1 +1987 8 2 12.6 11.7 11.7 1 +1987 8 3 12.8 11.9 11.9 1 +1987 8 4 14.2 13.3 13.3 1 +1987 8 5 13.8 12.9 12.9 1 +1987 8 6 11.9 11.1 11.1 1 +1987 8 7 13.1 12.3 12.3 1 +1987 8 8 11.6 10.8 10.8 1 +1987 8 9 10.1 9.3 9.3 1 +1987 8 10 11.0 10.2 10.2 1 +1987 8 11 11.3 10.5 10.5 1 +1987 8 12 13.8 13.0 13.0 1 +1987 8 13 15.8 15.0 15.0 1 +1987 8 14 14.8 14.0 14.0 1 +1987 8 15 11.8 11.0 11.0 1 +1987 8 16 11.2 10.4 10.4 1 +1987 8 17 13.3 12.6 12.6 1 +1987 8 18 14.7 14.0 14.0 1 +1987 8 19 15.8 15.1 15.1 1 +1987 8 20 15.8 15.1 15.1 1 +1987 8 21 14.9 14.2 14.2 1 +1987 8 22 16.8 16.1 16.1 1 +1987 8 23 16.3 15.6 15.6 1 +1987 8 24 12.0 11.4 11.4 1 +1987 8 25 11.7 11.1 11.1 1 +1987 8 26 13.9 13.3 13.3 1 +1987 8 27 15.5 14.9 14.9 1 +1987 8 28 12.0 11.4 11.4 1 +1987 8 29 11.4 10.8 10.8 1 +1987 8 30 12.0 11.5 11.5 1 +1987 8 31 11.4 10.9 10.9 1 +1987 9 1 11.3 10.8 10.8 1 +1987 9 2 13.1 12.6 12.6 1 +1987 9 3 13.0 12.5 12.5 1 +1987 9 4 13.3 12.8 12.8 1 +1987 9 5 15.2 14.7 14.7 1 +1987 9 6 15.2 14.8 14.8 1 +1987 9 7 13.1 12.7 12.7 1 +1987 9 8 12.7 12.3 12.3 1 +1987 9 9 13.6 13.2 13.2 1 +1987 9 10 11.7 11.3 11.3 1 +1987 9 11 11.9 11.5 11.5 1 +1987 9 12 11.7 11.4 11.4 1 +1987 9 13 11.3 11.0 11.0 1 +1987 9 14 12.0 11.7 11.7 1 +1987 9 15 11.3 11.0 11.0 1 +1987 9 16 10.0 9.7 9.7 1 +1987 9 17 7.9 7.6 7.6 1 +1987 9 18 8.3 8.0 8.0 1 +1987 9 19 10.0 9.7 9.7 1 +1987 9 20 8.3 8.0 8.0 1 +1987 9 21 8.5 8.2 8.2 1 +1987 9 22 9.6 9.3 9.3 1 +1987 9 23 12.6 12.3 12.3 1 +1987 9 24 11.1 10.8 10.8 1 +1987 9 25 10.7 10.4 10.4 1 +1987 9 26 9.3 9.0 9.0 1 +1987 9 27 8.0 7.7 7.7 1 +1987 9 28 7.2 6.9 6.9 1 +1987 9 29 8.0 7.7 7.7 1 +1987 9 30 7.7 7.4 7.4 1 +1987 10 1 8.8 8.5 8.5 1 +1987 10 2 9.0 8.7 8.7 1 +1987 10 3 8.9 8.6 8.6 1 +1987 10 4 8.9 8.6 8.6 1 +1987 10 5 9.1 8.8 8.8 1 +1987 10 6 10.2 9.9 9.9 1 +1987 10 7 10.9 10.6 10.6 1 +1987 10 8 11.4 11.1 11.1 1 +1987 10 9 10.6 10.3 10.3 1 +1987 10 10 10.7 10.5 10.5 1 +1987 10 11 11.9 11.7 11.7 1 +1987 10 12 11.3 11.1 11.1 1 +1987 10 13 9.3 9.1 9.1 1 +1987 10 14 9.4 9.2 9.2 1 +1987 10 15 9.7 9.5 9.5 1 +1987 10 16 11.3 11.1 11.1 1 +1987 10 17 11.2 10.9 10.9 1 +1987 10 18 9.0 8.7 8.7 1 +1987 10 19 10.2 9.9 9.9 1 +1987 10 20 8.6 8.3 8.3 1 +1987 10 21 7.8 7.5 7.5 1 +1987 10 22 8.2 7.9 7.9 1 +1987 10 23 7.7 7.4 7.4 1 +1987 10 24 8.1 7.8 7.8 1 +1987 10 25 6.5 6.2 6.2 1 +1987 10 26 4.8 4.5 4.5 1 +1987 10 27 6.0 5.7 5.7 1 +1987 10 28 7.1 6.8 6.8 1 +1987 10 29 6.2 5.9 5.9 1 +1987 10 30 6.1 5.7 5.7 1 +1987 10 31 5.8 5.4 5.4 1 +1987 11 1 5.1 4.7 4.7 1 +1987 11 2 4.6 4.2 4.2 1 +1987 11 3 4.8 4.4 4.4 1 +1987 11 4 5.8 5.4 5.4 1 +1987 11 5 7.0 6.6 6.6 1 +1987 11 6 6.8 6.4 6.4 1 +1987 11 7 2.3 1.9 1.9 1 +1987 11 8 -1.4 -1.8 -1.8 1 +1987 11 9 -3.7 -4.1 -4.1 1 +1987 11 10 -1.6 -2.0 -2.0 1 +1987 11 11 0.5 0.1 0.1 1 +1987 11 12 4.0 3.6 3.6 1 +1987 11 13 5.4 4.9 4.9 1 +1987 11 14 5.6 5.1 5.1 1 +1987 11 15 3.8 3.3 3.3 1 +1987 11 16 5.3 4.8 4.8 1 +1987 11 17 5.6 5.1 5.1 1 +1987 11 18 3.6 3.1 3.1 1 +1987 11 19 4.1 3.6 3.6 1 +1987 11 20 3.8 3.3 3.3 1 +1987 11 21 3.8 3.3 3.3 1 +1987 11 22 3.0 2.5 2.5 1 +1987 11 23 4.2 3.7 3.7 1 +1987 11 24 1.8 1.3 1.3 1 +1987 11 25 0.6 0.1 0.1 1 +1987 11 26 0.2 -0.3 -0.3 1 +1987 11 27 1.2 0.7 0.7 1 +1987 11 28 1.4 0.9 0.9 1 +1987 11 29 1.1 0.6 0.6 1 +1987 11 30 -1.4 -1.9 -1.9 1 +1987 12 1 -1.1 -1.6 -1.6 1 +1987 12 2 0.9 0.4 0.4 1 +1987 12 3 0.5 0.0 0.0 1 +1987 12 4 0.5 0.0 0.0 1 +1987 12 5 -1.1 -1.7 -1.7 1 +1987 12 6 -1.6 -2.2 -2.2 1 +1987 12 7 -8.1 -8.7 -8.7 1 +1987 12 8 -5.9 -6.5 -6.5 1 +1987 12 9 0.9 0.3 0.3 1 +1987 12 10 2.4 1.8 1.8 1 +1987 12 11 -2.5 -3.1 -3.1 1 +1987 12 12 -3.2 -3.8 -3.8 1 +1987 12 13 0.9 0.3 0.3 1 +1987 12 14 -1.1 -1.7 -1.7 1 +1987 12 15 -1.8 -2.4 -2.4 1 +1987 12 16 -5.7 -6.3 -6.3 1 +1987 12 17 -6.0 -6.6 -6.6 1 +1987 12 18 -0.7 -1.3 -1.3 1 +1987 12 19 1.6 1.0 1.0 1 +1987 12 20 -0.3 -0.9 -0.9 1 +1987 12 21 0.1 -0.5 -0.5 1 +1987 12 22 -1.0 -1.6 -1.6 1 +1987 12 23 -0.8 -1.4 -1.4 1 +1987 12 24 -1.0 -1.6 -1.6 1 +1987 12 25 0.1 -0.6 -0.6 1 +1987 12 26 4.3 3.6 3.6 1 +1987 12 27 2.2 1.5 1.5 1 +1987 12 28 -1.5 -2.2 -2.2 1 +1987 12 29 1.6 0.9 0.9 1 +1987 12 30 2.0 1.3 1.3 1 +1987 12 31 -1.2 -1.9 -1.9 1 +1988 1 1 3.7 3.0 3.0 1 +1988 1 2 4.3 3.6 3.6 1 +1988 1 3 5.1 4.4 4.4 1 +1988 1 4 4.0 3.3 3.3 1 +1988 1 5 1.7 1.0 1.0 1 +1988 1 6 -0.1 -0.8 -0.8 1 +1988 1 7 -0.2 -0.9 -0.9 1 +1988 1 8 -2.8 -3.5 -3.5 1 +1988 1 9 -4.0 -4.7 -4.7 1 +1988 1 10 2.7 2.0 2.0 1 +1988 1 11 2.1 1.3 1.3 1 +1988 1 12 0.3 -0.5 -0.5 1 +1988 1 13 2.4 1.6 1.6 1 +1988 1 14 1.4 0.6 0.6 1 +1988 1 15 2.0 1.2 1.2 1 +1988 1 16 0.4 -0.4 -0.4 1 +1988 1 17 -0.5 -1.3 -1.3 1 +1988 1 18 1.0 0.2 0.2 1 +1988 1 19 1.7 0.9 0.9 1 +1988 1 20 1.6 0.8 0.8 1 +1988 1 21 2.3 1.5 1.5 1 +1988 1 22 2.6 1.8 1.8 1 +1988 1 23 1.0 0.2 0.2 1 +1988 1 24 0.5 -0.3 -0.3 1 +1988 1 25 0.1 -0.7 -0.7 1 +1988 1 26 -0.7 -1.5 -1.5 1 +1988 1 27 -1.1 -1.9 -1.9 1 +1988 1 28 -2.3 -3.1 -3.1 1 +1988 1 29 -2.5 -3.3 -3.3 1 +1988 1 30 -3.2 -4.0 -4.0 1 +1988 1 31 -2.9 -3.7 -3.7 1 +1988 2 1 0.3 -0.5 -0.5 1 +1988 2 2 0.8 0.0 0.0 1 +1988 2 3 2.9 2.1 2.1 1 +1988 2 4 2.8 2.0 2.0 1 +1988 2 5 3.1 2.3 2.3 1 +1988 2 6 1.7 0.9 0.9 1 +1988 2 7 1.8 1.0 1.0 1 +1988 2 8 0.8 0.0 0.0 1 +1988 2 9 1.2 0.4 0.4 1 +1988 2 10 2.3 1.5 1.5 1 +1988 2 11 3.2 2.4 2.4 1 +1988 2 12 2.9 2.1 2.1 1 +1988 2 13 2.4 1.6 1.6 1 +1988 2 14 1.1 0.3 0.3 1 +1988 2 15 2.6 1.8 1.8 1 +1988 2 16 1.3 0.4 0.4 1 +1988 2 17 0.5 -0.4 -0.4 1 +1988 2 18 -2.3 -3.2 -3.2 1 +1988 2 19 -3.6 -4.5 -4.5 1 +1988 2 20 -5.5 -6.4 -6.4 1 +1988 2 21 -1.4 -2.3 -2.3 1 +1988 2 22 -3.9 -4.8 -4.8 1 +1988 2 23 -2.4 -3.3 -3.3 1 +1988 2 24 -4.6 -5.5 -5.5 1 +1988 2 25 -2.1 -3.0 -3.0 1 +1988 2 26 -2.6 -3.5 -3.5 1 +1988 2 27 -2.9 -3.8 -3.8 1 +1988 2 28 -0.3 -1.2 -1.2 1 +1988 2 29 -2.2 -3.1 -3.1 1 +1988 3 1 -4.9 -5.8 -5.8 1 +1988 3 2 -6.2 -7.1 -7.1 1 +1988 3 3 -4.6 -5.5 -5.5 1 +1988 3 4 0.2 -0.7 -0.7 1 +1988 3 5 1.4 0.5 0.5 1 +1988 3 6 0.8 -0.1 -0.1 1 +1988 3 7 -0.3 -1.2 -1.2 1 +1988 3 8 -2.8 -3.7 -3.7 1 +1988 3 9 -2.7 -3.6 -3.6 1 +1988 3 10 -1.3 -2.2 -2.2 1 +1988 3 11 0.9 0.0 0.0 1 +1988 3 12 -2.9 -3.8 -3.8 1 +1988 3 13 -4.5 -5.5 -5.5 1 +1988 3 14 -4.8 -5.8 -5.8 1 +1988 3 15 -5.1 -6.1 -6.1 1 +1988 3 16 -4.5 -5.5 -5.5 1 +1988 3 17 -4.3 -5.2 -5.2 1 +1988 3 18 -4.1 -5.0 -5.0 1 +1988 3 19 -1.3 -2.2 -2.2 1 +1988 3 20 1.0 0.1 0.1 1 +1988 3 21 1.1 0.2 0.2 1 +1988 3 22 -0.3 -1.2 -1.2 1 +1988 3 23 0.4 -0.5 -0.5 1 +1988 3 24 -0.5 -1.4 -1.4 1 +1988 3 25 0.0 -0.9 -0.9 1 +1988 3 26 1.3 0.4 0.4 1 +1988 3 27 2.1 1.2 1.2 1 +1988 3 28 2.2 1.3 1.3 1 +1988 3 29 2.6 1.7 1.7 1 +1988 3 30 1.6 0.7 0.7 1 +1988 3 31 2.6 1.7 1.7 1 +1988 4 1 5.1 4.2 4.2 1 +1988 4 2 4.6 3.7 3.7 1 +1988 4 3 2.8 1.9 1.9 1 +1988 4 4 5.0 4.1 4.1 1 +1988 4 5 7.4 6.5 6.5 1 +1988 4 6 7.4 6.6 6.6 1 +1988 4 7 7.9 7.1 7.1 1 +1988 4 8 4.8 4.0 4.0 1 +1988 4 9 0.6 -0.2 -0.2 1 +1988 4 10 0.4 -0.4 -0.4 1 +1988 4 11 0.6 -0.2 -0.2 1 +1988 4 12 2.6 1.8 1.8 1 +1988 4 13 2.4 1.6 1.6 1 +1988 4 14 2.1 1.3 1.3 1 +1988 4 15 6.5 5.7 5.7 1 +1988 4 16 10.5 9.7 9.7 1 +1988 4 17 7.9 7.1 7.1 1 +1988 4 18 3.5 2.6 2.6 1 +1988 4 19 3.6 2.7 2.7 1 +1988 4 20 1.8 0.9 0.9 1 +1988 4 21 1.2 0.3 0.3 1 +1988 4 22 0.6 -0.3 -0.3 1 +1988 4 23 0.2 -0.8 -0.8 1 +1988 4 24 0.3 -0.7 -0.7 1 +1988 4 25 -0.7 -1.7 -1.7 1 +1988 4 26 1.7 0.7 0.7 1 +1988 4 27 3.8 2.8 2.8 1 +1988 4 28 7.4 6.4 6.4 1 +1988 4 29 9.6 8.5 8.5 1 +1988 4 30 8.7 7.6 7.6 1 +1988 5 1 9.6 8.5 8.5 1 +1988 5 2 10.8 9.7 9.7 1 +1988 5 3 13.2 12.1 12.1 1 +1988 5 4 12.2 11.0 11.0 1 +1988 5 5 9.7 8.5 8.5 1 +1988 5 6 9.0 7.8 7.8 1 +1988 5 7 11.9 10.7 10.7 1 +1988 5 8 12.0 10.8 10.8 1 +1988 5 9 9.2 7.9 7.9 1 +1988 5 10 8.5 7.2 7.2 1 +1988 5 11 8.8 7.5 7.5 1 +1988 5 12 13.0 11.7 11.7 1 +1988 5 13 14.9 13.6 13.6 1 +1988 5 14 14.8 13.4 13.4 1 +1988 5 15 11.8 10.4 10.4 1 +1988 5 16 12.5 11.1 11.1 1 +1988 5 17 14.1 12.7 12.7 1 +1988 5 18 11.5 10.2 10.2 1 +1988 5 19 11.4 10.1 10.1 1 +1988 5 20 11.1 9.8 9.8 1 +1988 5 21 8.3 7.0 7.0 1 +1988 5 22 6.4 5.1 5.1 1 +1988 5 23 8.9 7.6 7.6 1 +1988 5 24 12.5 11.2 11.2 1 +1988 5 25 14.6 13.3 13.3 1 +1988 5 26 16.3 15.0 15.0 1 +1988 5 27 17.0 15.7 15.7 1 +1988 5 28 18.6 17.3 17.3 1 +1988 5 29 19.4 18.2 18.2 1 +1988 5 30 20.2 19.0 19.0 1 +1988 5 31 15.3 14.1 14.1 1 +1988 6 1 7.3 6.1 6.1 1 +1988 6 2 9.6 8.4 8.4 1 +1988 6 3 11.1 9.9 9.9 1 +1988 6 4 12.0 10.8 10.8 1 +1988 6 5 11.9 10.7 10.7 1 +1988 6 6 13.2 12.0 12.0 1 +1988 6 7 14.8 13.6 13.6 1 +1988 6 8 14.7 13.5 13.5 1 +1988 6 9 17.5 16.4 16.4 1 +1988 6 10 11.8 10.7 10.7 1 +1988 6 11 11.6 10.5 10.5 1 +1988 6 12 16.1 15.0 15.0 1 +1988 6 13 17.3 16.2 16.2 1 +1988 6 14 12.3 11.2 11.2 1 +1988 6 15 13.5 12.4 12.4 1 +1988 6 16 14.9 13.8 13.8 1 +1988 6 17 17.6 16.5 16.5 1 +1988 6 18 18.9 17.8 17.8 1 +1988 6 19 19.4 18.3 18.3 1 +1988 6 20 14.2 13.1 13.1 1 +1988 6 21 17.4 16.3 16.3 1 +1988 6 22 16.6 15.5 15.5 1 +1988 6 23 18.5 17.4 17.4 1 +1988 6 24 18.5 17.4 17.4 1 +1988 6 25 20.3 19.2 19.2 1 +1988 6 26 22.5 21.4 21.4 1 +1988 6 27 22.6 21.5 21.5 1 +1988 6 28 21.2 20.1 20.1 1 +1988 6 29 22.1 21.0 21.0 1 +1988 6 30 21.6 20.6 20.6 1 +1988 7 1 20.0 19.0 19.0 1 +1988 7 2 20.4 19.4 19.4 1 +1988 7 3 19.8 18.8 18.8 1 +1988 7 4 18.6 17.6 17.6 1 +1988 7 5 21.2 20.2 20.2 1 +1988 7 6 19.0 18.0 18.0 1 +1988 7 7 18.9 17.9 17.9 1 +1988 7 8 18.4 17.4 17.4 1 +1988 7 9 16.8 15.8 15.8 1 +1988 7 10 19.0 18.0 18.0 1 +1988 7 11 19.2 18.2 18.2 1 +1988 7 12 16.9 15.9 15.9 1 +1988 7 13 18.7 17.7 17.7 1 +1988 7 14 18.0 17.0 17.0 1 +1988 7 15 20.5 19.5 19.5 1 +1988 7 16 20.2 19.2 19.2 1 +1988 7 17 18.1 17.1 17.1 1 +1988 7 18 16.3 15.3 15.3 1 +1988 7 19 18.4 17.4 17.4 1 +1988 7 20 18.0 17.0 17.0 1 +1988 7 21 18.9 17.9 17.9 1 +1988 7 22 16.6 15.6 15.6 1 +1988 7 23 17.9 16.9 16.9 1 +1988 7 24 19.0 18.1 18.1 1 +1988 7 25 17.9 17.0 17.0 1 +1988 7 26 17.5 16.6 16.6 1 +1988 7 27 16.9 16.0 16.0 1 +1988 7 28 16.1 15.2 15.2 1 +1988 7 29 16.8 15.9 15.9 1 +1988 7 30 15.6 14.7 14.7 1 +1988 7 31 15.0 14.1 14.1 1 +1988 8 1 14.8 13.9 13.9 1 +1988 8 2 14.6 13.7 13.7 1 +1988 8 3 11.6 10.7 10.7 1 +1988 8 4 15.9 15.0 15.0 1 +1988 8 5 14.5 13.6 13.6 1 +1988 8 6 15.9 15.1 15.1 1 +1988 8 7 16.9 16.1 16.1 1 +1988 8 8 17.5 16.7 16.7 1 +1988 8 9 17.4 16.6 16.6 1 +1988 8 10 16.1 15.3 15.3 1 +1988 8 11 16.3 15.5 15.5 1 +1988 8 12 16.9 16.1 16.1 1 +1988 8 13 15.8 15.0 15.0 1 +1988 8 14 16.7 15.9 15.9 1 +1988 8 15 15.4 14.6 14.6 1 +1988 8 16 15.6 14.8 14.8 1 +1988 8 17 15.5 14.8 14.8 1 +1988 8 18 14.4 13.7 13.7 1 +1988 8 19 14.1 13.4 13.4 1 +1988 8 20 17.0 16.3 16.3 1 +1988 8 21 16.7 16.0 16.0 1 +1988 8 22 16.1 15.4 15.4 1 +1988 8 23 16.1 15.4 15.4 1 +1988 8 24 13.7 13.1 13.1 1 +1988 8 25 15.5 14.9 14.9 1 +1988 8 26 15.1 14.5 14.5 1 +1988 8 27 14.5 13.9 13.9 1 +1988 8 28 16.7 16.1 16.1 1 +1988 8 29 15.6 15.0 15.0 1 +1988 8 30 14.9 14.4 14.4 1 +1988 8 31 15.9 15.4 15.4 1 +1988 9 1 16.1 15.6 15.6 1 +1988 9 2 16.1 15.6 15.6 1 +1988 9 3 17.1 16.6 16.6 1 +1988 9 4 15.1 14.6 14.6 1 +1988 9 5 14.8 14.3 14.3 1 +1988 9 6 15.3 14.9 14.9 1 +1988 9 7 15.9 15.5 15.5 1 +1988 9 8 16.5 16.1 16.1 1 +1988 9 9 16.2 15.8 15.8 1 +1988 9 10 16.1 15.7 15.7 1 +1988 9 11 15.1 14.7 14.7 1 +1988 9 12 12.8 12.5 12.5 1 +1988 9 13 12.0 11.7 11.7 1 +1988 9 14 11.3 11.0 11.0 1 +1988 9 15 12.7 12.4 12.4 1 +1988 9 16 14.0 13.7 13.7 1 +1988 9 17 12.3 12.0 12.0 1 +1988 9 18 10.9 10.6 10.6 1 +1988 9 19 14.2 13.9 13.9 1 +1988 9 20 15.8 15.5 15.5 1 +1988 9 21 11.8 11.5 11.5 1 +1988 9 22 11.7 11.4 11.4 1 +1988 9 23 13.8 13.5 13.5 1 +1988 9 24 11.8 11.5 11.5 1 +1988 9 25 12.0 11.7 11.7 1 +1988 9 26 10.4 10.1 10.1 1 +1988 9 27 12.1 11.8 11.8 1 +1988 9 28 12.3 12.0 12.0 1 +1988 9 29 10.8 10.5 10.5 1 +1988 9 30 10.4 10.1 10.1 1 +1988 10 1 9.2 8.9 8.9 1 +1988 10 2 10.9 10.6 10.6 1 +1988 10 3 10.5 10.2 10.2 1 +1988 10 4 10.7 10.4 10.4 1 +1988 10 5 10.4 10.1 10.1 1 +1988 10 6 11.1 10.8 10.8 1 +1988 10 7 9.3 9.0 9.0 1 +1988 10 8 8.4 8.1 8.1 1 +1988 10 9 7.9 7.6 7.6 1 +1988 10 10 9.1 8.9 8.9 1 +1988 10 11 4.9 4.7 4.7 1 +1988 10 12 5.6 5.4 5.4 1 +1988 10 13 9.5 9.3 9.3 1 +1988 10 14 10.5 10.3 10.3 1 +1988 10 15 8.6 8.4 8.4 1 +1988 10 16 8.9 8.7 8.7 1 +1988 10 17 9.6 9.3 9.3 1 +1988 10 18 9.0 8.7 8.7 1 +1988 10 19 8.5 8.2 8.2 1 +1988 10 20 6.9 6.6 6.6 1 +1988 10 21 4.9 4.6 4.6 1 +1988 10 22 5.3 5.0 5.0 1 +1988 10 23 6.1 5.8 5.8 1 +1988 10 24 -0.9 -1.2 -1.2 1 +1988 10 25 -0.9 -1.2 -1.2 1 +1988 10 26 1.5 1.2 1.2 1 +1988 10 27 6.3 6.0 6.0 1 +1988 10 28 8.9 8.6 8.6 1 +1988 10 29 -0.9 -1.2 -1.2 1 +1988 10 30 -2.6 -3.0 -3.0 1 +1988 10 31 -1.2 -1.6 -1.6 1 +1988 11 1 0.6 0.2 0.2 1 +1988 11 2 -2.8 -3.2 -3.2 1 +1988 11 3 0.3 -0.1 -0.1 1 +1988 11 4 3.3 2.9 2.9 1 +1988 11 5 3.1 2.7 2.7 1 +1988 11 6 2.1 1.7 1.7 1 +1988 11 7 0.8 0.4 0.4 1 +1988 11 8 -2.0 -2.4 -2.4 1 +1988 11 9 0.1 -0.3 -0.3 1 +1988 11 10 2.3 1.9 1.9 1 +1988 11 11 5.4 5.0 5.0 1 +1988 11 12 4.8 4.4 4.4 1 +1988 11 13 5.0 4.5 4.5 1 +1988 11 14 1.5 1.0 1.0 1 +1988 11 15 -0.2 -0.7 -0.7 1 +1988 11 16 2.8 2.3 2.3 1 +1988 11 17 3.2 2.7 2.7 1 +1988 11 18 -1.1 -1.6 -1.6 1 +1988 11 19 -5.7 -6.2 -6.2 1 +1988 11 20 -6.7 -7.2 -7.2 1 +1988 11 21 -8.0 -8.5 -8.5 1 +1988 11 22 -1.1 -1.6 -1.6 1 +1988 11 23 0.2 -0.3 -0.3 1 +1988 11 24 1.4 0.9 0.9 1 +1988 11 25 3.5 3.0 3.0 1 +1988 11 26 -1.4 -1.9 -1.9 1 +1988 11 27 -3.8 -4.3 -4.3 1 +1988 11 28 -3.5 -4.0 -4.0 1 +1988 11 29 -3.8 -4.3 -4.3 1 +1988 11 30 -9.6 -10.1 -10.1 1 +1988 12 1 -10.3 -10.8 -10.8 1 +1988 12 2 -9.1 -9.6 -9.6 1 +1988 12 3 -5.4 -5.9 -5.9 1 +1988 12 4 -0.8 -1.3 -1.3 1 +1988 12 5 0.3 -0.2 -0.2 1 +1988 12 6 -1.9 -2.5 -2.5 1 +1988 12 7 -1.1 -1.7 -1.7 1 +1988 12 8 -1.3 -1.9 -1.9 1 +1988 12 9 -0.3 -0.9 -0.9 1 +1988 12 10 -4.1 -4.7 -4.7 1 +1988 12 11 -2.4 -3.0 -3.0 1 +1988 12 12 -4.3 -4.9 -4.9 1 +1988 12 13 -0.5 -1.1 -1.1 1 +1988 12 14 -2.1 -2.7 -2.7 1 +1988 12 15 -5.3 -5.9 -5.9 1 +1988 12 16 0.4 -0.2 -0.2 1 +1988 12 17 1.0 0.4 0.4 1 +1988 12 18 -3.6 -4.2 -4.2 1 +1988 12 19 -2.9 -3.5 -3.5 1 +1988 12 20 -9.7 -10.3 -10.3 1 +1988 12 21 -0.3 -0.9 -0.9 1 +1988 12 22 1.9 1.3 1.3 1 +1988 12 23 2.2 1.6 1.6 1 +1988 12 24 -0.2 -0.8 -0.8 1 +1988 12 25 -7.1 -7.8 -7.8 1 +1988 12 26 -1.5 -2.2 -2.2 1 +1988 12 27 0.7 0.0 0.0 1 +1988 12 28 0.8 0.1 0.1 1 +1988 12 29 6.0 5.3 5.3 1 +1988 12 30 3.7 3.0 3.0 1 +1988 12 31 2.9 2.2 2.2 1 +1989 1 1 -1.6 -2.3 -2.3 1 +1989 1 2 2.4 1.7 1.7 1 +1989 1 3 4.2 3.5 3.5 1 +1989 1 4 3.0 2.3 2.3 1 +1989 1 5 3.7 3.0 3.0 1 +1989 1 6 -0.1 -0.8 -0.8 1 +1989 1 7 0.3 -0.4 -0.4 1 +1989 1 8 -0.5 -1.2 -1.2 1 +1989 1 9 3.9 3.2 3.2 1 +1989 1 10 2.3 1.6 1.6 1 +1989 1 11 0.4 -0.4 -0.4 1 +1989 1 12 2.9 2.1 2.1 1 +1989 1 13 3.4 2.6 2.6 1 +1989 1 14 2.8 2.0 2.0 1 +1989 1 15 6.6 5.8 5.8 1 +1989 1 16 6.6 5.8 5.8 1 +1989 1 17 5.4 4.6 4.6 1 +1989 1 18 1.2 0.4 0.4 1 +1989 1 19 3.6 2.8 2.8 1 +1989 1 20 6.0 5.2 5.2 1 +1989 1 21 3.7 2.9 2.9 1 +1989 1 22 2.3 1.5 1.5 1 +1989 1 23 -0.1 -0.9 -0.9 1 +1989 1 24 4.5 3.7 3.7 1 +1989 1 25 5.5 4.7 4.7 1 +1989 1 26 1.7 0.9 0.9 1 +1989 1 27 3.8 3.0 3.0 1 +1989 1 28 6.2 5.4 5.4 1 +1989 1 29 4.0 3.2 3.2 1 +1989 1 30 6.8 6.0 6.0 1 +1989 1 31 3.5 2.7 2.7 1 +1989 2 1 3.4 2.6 2.6 1 +1989 2 2 4.7 3.9 3.9 1 +1989 2 3 7.4 6.6 6.6 1 +1989 2 4 7.8 7.0 7.0 1 +1989 2 5 5.0 4.2 4.2 1 +1989 2 6 6.2 5.4 5.4 1 +1989 2 7 9.5 8.7 8.7 1 +1989 2 8 5.0 4.2 4.2 1 +1989 2 9 1.2 0.4 0.4 1 +1989 2 10 1.5 0.7 0.7 1 +1989 2 11 3.3 2.5 2.5 1 +1989 2 12 3.9 3.1 3.1 1 +1989 2 13 2.2 1.4 1.4 1 +1989 2 14 2.5 1.7 1.7 1 +1989 2 15 1.3 0.5 0.5 1 +1989 2 16 0.5 -0.4 -0.4 1 +1989 2 17 0.4 -0.5 -0.5 1 +1989 2 18 -0.4 -1.3 -1.3 1 +1989 2 19 3.7 2.8 2.8 1 +1989 2 20 3.1 2.2 2.2 1 +1989 2 21 1.6 0.7 0.7 1 +1989 2 22 1.2 0.3 0.3 1 +1989 2 23 1.7 0.8 0.8 1 +1989 2 24 1.6 0.7 0.7 1 +1989 2 25 1.5 0.6 0.6 1 +1989 2 26 5.0 4.1 4.1 1 +1989 2 27 4.4 3.5 3.5 1 +1989 2 28 2.9 2.0 2.0 1 +1989 3 1 2.8 1.9 1.9 1 +1989 3 2 2.9 2.0 2.0 1 +1989 3 3 1.3 0.4 0.4 1 +1989 3 4 1.6 0.7 0.7 1 +1989 3 5 2.7 1.8 1.8 1 +1989 3 6 4.6 3.7 3.7 1 +1989 3 7 2.1 1.2 1.2 1 +1989 3 8 2.1 1.2 1.2 1 +1989 3 9 1.6 0.7 0.7 1 +1989 3 10 2.5 1.6 1.6 1 +1989 3 11 4.8 3.9 3.9 1 +1989 3 12 3.5 2.6 2.6 1 +1989 3 13 2.3 1.3 1.3 1 +1989 3 14 4.9 3.9 3.9 1 +1989 3 15 3.5 2.5 2.5 1 +1989 3 16 2.3 1.3 1.3 1 +1989 3 17 2.2 1.3 1.3 1 +1989 3 18 1.9 1.0 1.0 1 +1989 3 19 4.5 3.6 3.6 1 +1989 3 20 5.4 4.5 4.5 1 +1989 3 21 6.3 5.4 5.4 1 +1989 3 22 4.8 3.9 3.9 1 +1989 3 23 3.8 2.9 2.9 1 +1989 3 24 1.6 0.7 0.7 1 +1989 3 25 3.5 2.6 2.6 1 +1989 3 26 3.6 2.7 2.7 1 +1989 3 27 3.8 2.9 2.9 1 +1989 3 28 6.8 5.9 5.9 1 +1989 3 29 6.9 6.0 6.0 1 +1989 3 30 4.8 3.9 3.9 1 +1989 3 31 3.5 2.6 2.6 1 +1989 4 1 -0.6 -1.5 -1.5 1 +1989 4 2 -1.1 -2.0 -2.0 1 +1989 4 3 -1.6 -2.5 -2.5 1 +1989 4 4 -0.4 -1.3 -1.3 1 +1989 4 5 0.5 -0.4 -0.4 1 +1989 4 6 2.6 1.8 1.8 1 +1989 4 7 2.2 1.4 1.4 1 +1989 4 8 4.3 3.5 3.5 1 +1989 4 9 5.4 4.6 4.6 1 +1989 4 10 7.3 6.5 6.5 1 +1989 4 11 6.5 5.7 5.7 1 +1989 4 12 9.9 9.1 9.1 1 +1989 4 13 10.8 10.0 10.0 1 +1989 4 14 11.6 10.8 10.8 1 +1989 4 15 7.0 6.2 6.2 1 +1989 4 16 5.6 4.8 4.8 1 +1989 4 17 3.1 2.3 2.3 1 +1989 4 18 4.5 3.6 3.6 1 +1989 4 19 4.0 3.1 3.1 1 +1989 4 20 7.7 6.8 6.8 1 +1989 4 21 7.5 6.6 6.6 1 +1989 4 22 9.2 8.3 8.3 1 +1989 4 23 4.5 3.5 3.5 1 +1989 4 24 4.3 3.3 3.3 1 +1989 4 25 6.6 5.6 5.6 1 +1989 4 26 9.7 8.7 8.7 1 +1989 4 27 10.0 9.0 9.0 1 +1989 4 28 7.8 6.8 6.8 1 +1989 4 29 8.4 7.3 7.3 1 +1989 4 30 8.8 7.7 7.7 1 +1989 5 1 10.8 9.7 9.7 1 +1989 5 2 11.2 10.1 10.1 1 +1989 5 3 14.7 13.6 13.6 1 +1989 5 4 12.3 11.1 11.1 1 +1989 5 5 10.1 8.9 8.9 1 +1989 5 6 10.0 8.8 8.8 1 +1989 5 7 10.9 9.7 9.7 1 +1989 5 8 11.3 10.1 10.1 1 +1989 5 9 10.9 9.6 9.6 1 +1989 5 10 9.8 8.5 8.5 1 +1989 5 11 8.5 7.2 7.2 1 +1989 5 12 8.5 7.2 7.2 1 +1989 5 13 11.1 9.8 9.8 1 +1989 5 14 9.6 8.2 8.2 1 +1989 5 15 12.8 11.4 11.4 1 +1989 5 16 16.0 14.6 14.6 1 +1989 5 17 13.9 12.5 12.5 1 +1989 5 18 14.1 12.8 12.8 1 +1989 5 19 15.7 14.4 14.4 1 +1989 5 20 13.0 11.7 11.7 1 +1989 5 21 11.1 9.8 9.8 1 +1989 5 22 14.1 12.8 12.8 1 +1989 5 23 19.0 17.7 17.7 1 +1989 5 24 20.5 19.2 19.2 1 +1989 5 25 20.8 19.5 19.5 1 +1989 5 26 16.5 15.2 15.2 1 +1989 5 27 11.5 10.2 10.2 1 +1989 5 28 13.3 12.0 12.0 1 +1989 5 29 13.1 11.9 11.9 1 +1989 5 30 11.9 10.7 10.7 1 +1989 5 31 9.0 7.8 7.8 1 +1989 6 1 9.5 8.3 8.3 1 +1989 6 2 12.3 11.1 11.1 1 +1989 6 3 10.3 9.1 9.1 1 +1989 6 4 10.1 8.9 8.9 1 +1989 6 5 12.9 11.7 11.7 1 +1989 6 6 14.0 12.8 12.8 1 +1989 6 7 12.1 10.9 10.9 1 +1989 6 8 13.3 12.1 12.1 1 +1989 6 9 14.0 12.9 12.9 1 +1989 6 10 15.3 14.2 14.2 1 +1989 6 11 16.5 15.4 15.4 1 +1989 6 12 17.7 16.6 16.6 1 +1989 6 13 16.2 15.1 15.1 1 +1989 6 14 16.0 14.9 14.9 1 +1989 6 15 12.1 11.0 11.0 1 +1989 6 16 13.0 11.9 11.9 1 +1989 6 17 18.3 17.2 17.2 1 +1989 6 18 16.2 15.1 15.1 1 +1989 6 19 18.1 17.0 17.0 1 +1989 6 20 20.8 19.7 19.7 1 +1989 6 21 18.7 17.6 17.6 1 +1989 6 22 21.8 20.7 20.7 1 +1989 6 23 22.4 21.3 21.3 1 +1989 6 24 17.9 16.8 16.8 1 +1989 6 25 18.5 17.4 17.4 1 +1989 6 26 21.2 20.1 20.1 1 +1989 6 27 21.5 20.4 20.4 1 +1989 6 28 20.5 19.4 19.4 1 +1989 6 29 17.0 15.9 15.9 1 +1989 6 30 16.2 15.2 15.2 1 +1989 7 1 16.5 15.5 15.5 1 +1989 7 2 16.8 15.8 15.8 1 +1989 7 3 18.3 17.3 17.3 1 +1989 7 4 22.0 21.0 21.0 1 +1989 7 5 23.3 22.3 22.3 1 +1989 7 6 20.9 19.9 19.9 1 +1989 7 7 24.5 23.5 23.5 1 +1989 7 8 25.8 24.8 24.8 1 +1989 7 9 19.8 18.8 18.8 1 +1989 7 10 12.9 11.9 11.9 1 +1989 7 11 17.7 16.7 16.7 1 +1989 7 12 17.4 16.4 16.4 1 +1989 7 13 17.9 16.9 16.9 1 +1989 7 14 14.9 13.9 13.9 1 +1989 7 15 13.8 12.8 12.8 1 +1989 7 16 13.0 12.0 12.0 1 +1989 7 17 12.3 11.3 11.3 1 +1989 7 18 13.1 12.1 12.1 1 +1989 7 19 14.5 13.5 13.5 1 +1989 7 20 16.1 15.1 15.1 1 +1989 7 21 16.7 15.7 15.7 1 +1989 7 22 18.6 17.6 17.6 1 +1989 7 23 20.9 19.9 19.9 1 +1989 7 24 22.4 21.5 21.5 1 +1989 7 25 21.3 20.4 20.4 1 +1989 7 26 21.5 20.6 20.6 1 +1989 7 27 22.0 21.1 21.1 1 +1989 7 28 19.3 18.4 18.4 1 +1989 7 29 18.8 17.9 17.9 1 +1989 7 30 18.6 17.7 17.7 1 +1989 7 31 17.9 17.0 17.0 1 +1989 8 1 14.8 13.9 13.9 1 +1989 8 2 16.9 16.0 16.0 1 +1989 8 3 14.3 13.4 13.4 1 +1989 8 4 15.1 14.2 14.2 1 +1989 8 5 16.7 15.8 15.8 1 +1989 8 6 17.9 17.1 17.1 1 +1989 8 7 18.5 17.7 17.7 1 +1989 8 8 19.1 18.3 18.3 1 +1989 8 9 18.2 17.4 17.4 1 +1989 8 10 18.8 18.0 18.0 1 +1989 8 11 18.3 17.5 17.5 1 +1989 8 12 17.3 16.5 16.5 1 +1989 8 13 16.6 15.8 15.8 1 +1989 8 14 17.1 16.3 16.3 1 +1989 8 15 17.0 16.2 16.2 1 +1989 8 16 20.4 19.6 19.6 1 +1989 8 17 17.9 17.2 17.2 1 +1989 8 18 15.4 14.7 14.7 1 +1989 8 19 16.5 15.8 15.8 1 +1989 8 20 17.2 16.5 16.5 1 +1989 8 21 21.1 20.4 20.4 1 +1989 8 22 17.2 16.5 16.5 1 +1989 8 23 16.6 15.9 15.9 1 +1989 8 24 13.4 12.8 12.8 1 +1989 8 25 10.2 9.6 9.6 1 +1989 8 26 10.8 10.2 10.2 1 +1989 8 27 10.5 9.9 9.9 1 +1989 8 28 10.9 10.3 10.3 1 +1989 8 29 12.3 11.7 11.7 1 +1989 8 30 13.1 12.6 12.6 1 +1989 8 31 15.3 14.8 14.8 1 +1989 9 1 14.7 14.2 14.2 1 +1989 9 2 13.5 13.0 13.0 1 +1989 9 3 14.1 13.6 13.6 1 +1989 9 4 12.7 12.2 12.2 1 +1989 9 5 15.2 14.7 14.7 1 +1989 9 6 15.6 15.2 15.2 1 +1989 9 7 15.5 15.1 15.1 1 +1989 9 8 14.3 13.9 13.9 1 +1989 9 9 11.9 11.5 11.5 1 +1989 9 10 11.5 11.1 11.1 1 +1989 9 11 10.4 10.0 10.0 1 +1989 9 12 13.3 13.0 13.0 1 +1989 9 13 15.1 14.8 14.8 1 +1989 9 14 13.9 13.6 13.6 1 +1989 9 15 13.2 12.9 12.9 1 +1989 9 16 12.0 11.7 11.7 1 +1989 9 17 11.8 11.5 11.5 1 +1989 9 18 12.7 12.4 12.4 1 +1989 9 19 15.7 15.4 15.4 1 +1989 9 20 15.0 14.7 14.7 1 +1989 9 21 16.7 16.4 16.4 1 +1989 9 22 16.0 15.7 15.7 1 +1989 9 23 14.6 14.3 14.3 1 +1989 9 24 14.7 14.4 14.4 1 +1989 9 25 12.0 11.7 11.7 1 +1989 9 26 14.4 14.1 14.1 1 +1989 9 27 14.3 14.0 14.0 1 +1989 9 28 11.2 10.9 10.9 1 +1989 9 29 7.9 7.6 7.6 1 +1989 9 30 7.7 7.4 7.4 1 +1989 10 1 7.2 6.9 6.9 1 +1989 10 2 7.2 6.9 6.9 1 +1989 10 3 7.3 7.0 7.0 1 +1989 10 4 8.2 7.9 7.9 1 +1989 10 5 9.8 9.5 9.5 1 +1989 10 6 9.8 9.5 9.5 1 +1989 10 7 8.1 7.8 7.8 1 +1989 10 8 6.9 6.6 6.6 1 +1989 10 9 8.0 7.7 7.7 1 +1989 10 10 6.3 6.1 6.1 1 +1989 10 11 5.5 5.3 5.3 1 +1989 10 12 4.0 3.8 3.8 1 +1989 10 13 8.0 7.8 7.8 1 +1989 10 14 7.3 7.1 7.1 1 +1989 10 15 5.0 4.8 4.8 1 +1989 10 16 5.0 4.8 4.8 1 +1989 10 17 7.5 7.2 7.2 1 +1989 10 18 6.3 6.0 6.0 1 +1989 10 19 9.4 9.1 9.1 1 +1989 10 20 10.6 10.3 10.3 1 +1989 10 21 10.9 10.6 10.6 1 +1989 10 22 11.3 11.0 11.0 1 +1989 10 23 12.0 11.7 11.7 1 +1989 10 24 10.0 9.7 9.7 1 +1989 10 25 9.7 9.4 9.4 1 +1989 10 26 10.0 9.7 9.7 1 +1989 10 27 6.5 6.2 6.2 1 +1989 10 28 8.3 8.0 8.0 1 +1989 10 29 8.3 8.0 8.0 1 +1989 10 30 8.1 7.7 7.7 1 +1989 10 31 6.2 5.8 5.8 1 +1989 11 1 6.0 5.6 5.6 1 +1989 11 2 6.7 6.3 6.3 1 +1989 11 3 7.7 7.3 7.3 1 +1989 11 4 7.6 7.2 7.2 1 +1989 11 5 5.4 5.0 5.0 1 +1989 11 6 7.0 6.6 6.6 1 +1989 11 7 8.9 8.5 8.5 1 +1989 11 8 5.3 4.9 4.9 1 +1989 11 9 7.1 6.7 6.7 1 +1989 11 10 6.4 6.0 6.0 1 +1989 11 11 8.5 8.1 8.1 1 +1989 11 12 9.8 9.4 9.4 1 +1989 11 13 6.3 5.8 5.8 1 +1989 11 14 4.1 3.6 3.6 1 +1989 11 15 2.7 2.2 2.2 1 +1989 11 16 1.8 1.3 1.3 1 +1989 11 17 3.2 2.7 2.7 1 +1989 11 18 3.6 3.1 3.1 1 +1989 11 19 2.3 1.8 1.8 1 +1989 11 20 1.9 1.4 1.4 1 +1989 11 21 -0.7 -1.2 -1.2 1 +1989 11 22 -1.8 -2.3 -2.3 1 +1989 11 23 -4.5 -5.0 -5.0 1 +1989 11 24 -6.0 -6.5 -6.5 1 +1989 11 25 -5.7 -6.2 -6.2 1 +1989 11 26 -2.3 -2.8 -2.8 1 +1989 11 27 -2.5 -3.0 -3.0 1 +1989 11 28 -4.2 -4.7 -4.7 1 +1989 11 29 -1.1 -1.6 -1.6 1 +1989 11 30 0.7 0.2 0.2 1 +1989 12 1 0.6 0.1 0.1 1 +1989 12 2 1.5 1.0 1.0 1 +1989 12 3 3.8 3.3 3.3 1 +1989 12 4 0.8 0.3 0.3 1 +1989 12 5 -1.7 -2.3 -2.3 1 +1989 12 6 2.7 2.1 2.1 1 +1989 12 7 -2.0 -2.6 -2.6 1 +1989 12 8 -4.8 -5.4 -5.4 1 +1989 12 9 -8.5 -9.1 -9.1 1 +1989 12 10 -3.8 -4.4 -4.4 1 +1989 12 11 -3.7 -4.3 -4.3 1 +1989 12 12 -4.3 -4.9 -4.9 1 +1989 12 13 -8.7 -9.3 -9.3 1 +1989 12 14 -15.3 -15.9 -15.9 1 +1989 12 15 -17.0 -17.6 -17.6 1 +1989 12 16 -7.3 -7.9 -7.9 1 +1989 12 17 -2.2 -2.8 -2.8 1 +1989 12 18 3.6 3.0 3.0 1 +1989 12 19 4.1 3.5 3.5 1 +1989 12 20 -0.4 -1.0 -1.0 1 +1989 12 21 2.5 1.9 1.9 1 +1989 12 22 0.4 -0.2 -0.2 1 +1989 12 23 0.8 0.2 0.2 1 +1989 12 24 0.7 0.1 0.1 1 +1989 12 25 4.1 3.4 3.4 1 +1989 12 26 3.8 3.1 3.1 1 +1989 12 27 3.0 2.3 2.3 1 +1989 12 28 1.1 0.4 0.4 1 +1989 12 29 -2.1 -2.8 -2.8 1 +1989 12 30 -1.5 -2.2 -2.2 1 +1989 12 31 0.0 -0.7 -0.7 1 +1990 1 1 -2.9 -3.6 -3.6 1 +1990 1 2 -4.3 -5.0 -5.0 1 +1990 1 3 -3.6 -4.3 -4.3 1 +1990 1 4 -0.2 -0.9 -0.9 1 +1990 1 5 -0.4 -1.1 -1.1 1 +1990 1 6 -1.8 -2.5 -2.5 1 +1990 1 7 0.3 -0.4 -0.4 1 +1990 1 8 2.6 1.9 1.9 1 +1990 1 9 2.4 1.7 1.7 1 +1990 1 10 2.8 2.1 2.1 1 +1990 1 11 5.0 4.2 4.2 1 +1990 1 12 0.7 -0.1 -0.1 1 +1990 1 13 4.1 3.3 3.3 1 +1990 1 14 -1.3 -2.1 -2.1 1 +1990 1 15 1.8 1.0 1.0 1 +1990 1 16 4.0 3.2 3.2 1 +1990 1 17 4.4 3.6 3.6 1 +1990 1 18 2.1 1.3 1.3 1 +1990 1 19 -0.6 -1.4 -1.4 1 +1990 1 20 2.5 1.7 1.7 1 +1990 1 21 0.7 -0.1 -0.1 1 +1990 1 22 1.6 0.8 0.8 1 +1990 1 23 4.0 3.2 3.2 1 +1990 1 24 3.5 2.7 2.7 1 +1990 1 25 2.3 1.5 1.5 1 +1990 1 26 1.9 1.1 1.1 1 +1990 1 27 -3.4 -4.2 -4.2 1 +1990 1 28 1.2 0.4 0.4 1 +1990 1 29 3.8 3.0 3.0 1 +1990 1 30 3.1 2.3 2.3 1 +1990 1 31 4.2 3.4 3.4 1 +1990 2 1 4.7 3.9 3.9 1 +1990 2 2 4.3 3.5 3.5 1 +1990 2 3 3.7 2.9 2.9 1 +1990 2 4 3.4 2.6 2.6 1 +1990 2 5 7.2 6.4 6.4 1 +1990 2 6 7.6 6.8 6.8 1 +1990 2 7 5.2 4.4 4.4 1 +1990 2 8 4.7 3.9 3.9 1 +1990 2 9 2.5 1.7 1.7 1 +1990 2 10 5.9 5.1 5.1 1 +1990 2 11 3.4 2.6 2.6 1 +1990 2 12 2.7 1.9 1.9 1 +1990 2 13 3.1 2.3 2.3 1 +1990 2 14 1.4 0.6 0.6 1 +1990 2 15 0.2 -0.6 -0.6 1 +1990 2 16 -0.9 -1.8 -1.8 1 +1990 2 17 -1.9 -2.8 -2.8 1 +1990 2 18 2.3 1.4 1.4 1 +1990 2 19 3.8 2.9 2.9 1 +1990 2 20 9.3 8.4 8.4 1 +1990 2 21 9.1 8.2 8.2 1 +1990 2 22 7.5 6.6 6.6 1 +1990 2 23 9.6 8.7 8.7 1 +1990 2 24 8.6 7.7 7.7 1 +1990 2 25 5.7 4.8 4.8 1 +1990 2 26 3.8 2.9 2.9 1 +1990 2 27 1.7 0.8 0.8 1 +1990 2 28 0.9 0.0 0.0 1 +1990 3 1 0.4 -0.5 -0.5 1 +1990 3 2 -0.4 -1.3 -1.3 1 +1990 3 3 -1.4 -2.3 -2.3 1 +1990 3 4 3.3 2.4 2.4 1 +1990 3 5 3.7 2.8 2.8 1 +1990 3 6 3.0 2.1 2.1 1 +1990 3 7 1.5 0.6 0.6 1 +1990 3 8 5.9 5.0 5.0 1 +1990 3 9 2.9 2.0 2.0 1 +1990 3 10 0.8 -0.1 -0.1 1 +1990 3 11 -0.3 -1.2 -1.2 1 +1990 3 12 3.0 2.1 2.1 1 +1990 3 13 -0.9 -1.9 -1.9 1 +1990 3 14 0.9 -0.1 -0.1 1 +1990 3 15 5.9 4.9 4.9 1 +1990 3 16 9.0 8.0 8.0 1 +1990 3 17 10.9 10.0 10.0 1 +1990 3 18 12.0 11.1 11.1 1 +1990 3 19 11.9 11.0 11.0 1 +1990 3 20 7.2 6.3 6.3 1 +1990 3 21 5.4 4.5 4.5 1 +1990 3 22 8.0 7.1 7.1 1 +1990 3 23 6.1 5.2 5.2 1 +1990 3 24 8.3 7.4 7.4 1 +1990 3 25 5.2 4.3 4.3 1 +1990 3 26 3.4 2.5 2.5 1 +1990 3 27 4.0 3.1 3.1 1 +1990 3 28 4.1 3.2 3.2 1 +1990 3 29 6.6 5.7 5.7 1 +1990 3 30 8.8 7.9 7.9 1 +1990 3 31 10.4 9.5 9.5 1 +1990 4 1 9.5 8.6 8.6 1 +1990 4 2 4.6 3.7 3.7 1 +1990 4 3 8.2 7.3 7.3 1 +1990 4 4 3.3 2.4 2.4 1 +1990 4 5 2.6 1.7 1.7 1 +1990 4 6 4.3 3.5 3.5 1 +1990 4 7 -0.1 -0.9 -0.9 1 +1990 4 8 1.8 1.0 1.0 1 +1990 4 9 6.1 5.3 5.3 1 +1990 4 10 4.7 3.9 3.9 1 +1990 4 11 3.8 3.0 3.0 1 +1990 4 12 4.7 3.9 3.9 1 +1990 4 13 7.1 6.3 6.3 1 +1990 4 14 6.9 6.1 6.1 1 +1990 4 15 8.7 7.9 7.9 1 +1990 4 16 8.0 7.2 7.2 1 +1990 4 17 7.0 6.2 6.2 1 +1990 4 18 7.5 6.6 6.6 1 +1990 4 19 7.8 6.9 6.9 1 +1990 4 20 9.1 8.2 8.2 1 +1990 4 21 9.5 8.6 8.6 1 +1990 4 22 9.6 8.7 8.7 1 +1990 4 23 10.9 9.9 9.9 1 +1990 4 24 11.7 10.7 10.7 1 +1990 4 25 12.2 11.2 11.2 1 +1990 4 26 11.4 10.4 10.4 1 +1990 4 27 7.1 6.1 6.1 1 +1990 4 28 7.4 6.4 6.4 1 +1990 4 29 9.8 8.7 8.7 1 +1990 4 30 16.5 15.4 15.4 1 +1990 5 1 15.1 14.0 14.0 1 +1990 5 2 17.0 15.9 15.9 1 +1990 5 3 18.9 17.8 17.8 1 +1990 5 4 17.3 16.1 16.1 1 +1990 5 5 20.4 19.2 19.2 1 +1990 5 6 18.3 17.1 17.1 1 +1990 5 7 15.2 14.0 14.0 1 +1990 5 8 13.5 12.3 12.3 1 +1990 5 9 14.9 13.6 13.6 1 +1990 5 10 16.9 15.6 15.6 1 +1990 5 11 9.1 7.8 7.8 1 +1990 5 12 8.9 7.6 7.6 1 +1990 5 13 11.3 10.0 10.0 1 +1990 5 14 10.8 9.4 9.4 1 +1990 5 15 11.9 10.5 10.5 1 +1990 5 16 8.8 7.4 7.4 1 +1990 5 17 7.3 5.9 5.9 1 +1990 5 18 7.3 6.0 6.0 1 +1990 5 19 7.9 6.6 6.6 1 +1990 5 20 9.9 8.6 8.6 1 +1990 5 21 11.5 10.2 10.2 1 +1990 5 22 8.7 7.4 7.4 1 +1990 5 23 11.3 10.0 10.0 1 +1990 5 24 11.2 9.9 9.9 1 +1990 5 25 7.9 6.6 6.6 1 +1990 5 26 5.7 4.4 4.4 1 +1990 5 27 8.1 6.8 6.8 1 +1990 5 28 9.5 8.2 8.2 1 +1990 5 29 10.9 9.7 9.7 1 +1990 5 30 13.0 11.8 11.8 1 +1990 5 31 15.3 14.1 14.1 1 +1990 6 1 16.3 15.1 15.1 1 +1990 6 2 13.6 12.4 12.4 1 +1990 6 3 17.1 15.9 15.9 1 +1990 6 4 17.4 16.2 16.2 1 +1990 6 5 13.8 12.6 12.6 1 +1990 6 6 11.7 10.5 10.5 1 +1990 6 7 11.9 10.7 10.7 1 +1990 6 8 14.1 12.9 12.9 1 +1990 6 9 14.4 13.3 13.3 1 +1990 6 10 16.5 15.4 15.4 1 +1990 6 11 17.7 16.6 16.6 1 +1990 6 12 15.9 14.8 14.8 1 +1990 6 13 15.2 14.1 14.1 1 +1990 6 14 12.9 11.8 11.8 1 +1990 6 15 13.6 12.5 12.5 1 +1990 6 16 14.6 13.5 13.5 1 +1990 6 17 11.1 10.0 10.0 1 +1990 6 18 12.1 11.0 11.0 1 +1990 6 19 15.3 14.2 14.2 1 +1990 6 20 15.8 14.7 14.7 1 +1990 6 21 17.7 16.6 16.6 1 +1990 6 22 16.6 15.5 15.5 1 +1990 6 23 17.2 16.1 16.1 1 +1990 6 24 15.3 14.2 14.2 1 +1990 6 25 19.2 18.1 18.1 1 +1990 6 26 17.9 16.8 16.8 1 +1990 6 27 18.7 17.6 17.6 1 +1990 6 28 17.1 16.0 16.0 1 +1990 6 29 17.3 16.2 16.2 1 +1990 6 30 16.9 15.9 15.9 1 +1990 7 1 15.6 14.6 14.6 1 +1990 7 2 16.1 15.1 15.1 1 +1990 7 3 15.6 14.6 14.6 1 +1990 7 4 16.8 15.8 15.8 1 +1990 7 5 16.1 15.1 15.1 1 +1990 7 6 16.4 15.4 15.4 1 +1990 7 7 16.3 15.3 15.3 1 +1990 7 8 16.6 15.6 15.6 1 +1990 7 9 15.6 14.6 14.6 1 +1990 7 10 14.7 13.7 13.7 1 +1990 7 11 16.2 15.2 15.2 1 +1990 7 12 17.0 16.0 16.0 1 +1990 7 13 15.6 14.6 14.6 1 +1990 7 14 14.0 13.0 13.0 1 +1990 7 15 14.2 13.2 13.2 1 +1990 7 16 15.1 14.1 14.1 1 +1990 7 17 15.2 14.2 14.2 1 +1990 7 18 13.5 12.5 12.5 1 +1990 7 19 13.5 12.5 12.5 1 +1990 7 20 15.0 14.0 14.0 1 +1990 7 21 17.9 16.9 16.9 1 +1990 7 22 13.7 12.7 12.7 1 +1990 7 23 15.0 14.0 14.0 1 +1990 7 24 15.7 14.8 14.8 1 +1990 7 25 15.6 14.7 14.7 1 +1990 7 26 16.7 15.8 15.8 1 +1990 7 27 19.7 18.8 18.8 1 +1990 7 28 21.9 21.0 21.0 1 +1990 7 29 18.6 17.7 17.7 1 +1990 7 30 17.7 16.8 16.8 1 +1990 7 31 17.7 16.8 16.8 1 +1990 8 1 17.9 17.0 17.0 1 +1990 8 2 20.3 19.4 19.4 1 +1990 8 3 22.8 21.9 21.9 1 +1990 8 4 23.3 22.4 22.4 1 +1990 8 5 20.5 19.6 19.6 1 +1990 8 6 16.7 15.9 15.9 1 +1990 8 7 15.9 15.1 15.1 1 +1990 8 8 15.4 14.6 14.6 1 +1990 8 9 15.3 14.5 14.5 1 +1990 8 10 15.6 14.8 14.8 1 +1990 8 11 17.2 16.4 16.4 1 +1990 8 12 18.4 17.6 17.6 1 +1990 8 13 18.8 18.0 18.0 1 +1990 8 14 19.5 18.7 18.7 1 +1990 8 15 19.6 18.8 18.8 1 +1990 8 16 19.7 18.9 18.9 1 +1990 8 17 18.6 17.9 17.9 1 +1990 8 18 17.5 16.8 16.8 1 +1990 8 19 16.1 15.4 15.4 1 +1990 8 20 16.4 15.7 15.7 1 +1990 8 21 17.4 16.7 16.7 1 +1990 8 22 17.4 16.7 16.7 1 +1990 8 23 16.0 15.3 15.3 1 +1990 8 24 13.3 12.7 12.7 1 +1990 8 25 13.1 12.5 12.5 1 +1990 8 26 12.2 11.6 11.6 1 +1990 8 27 14.5 13.9 13.9 1 +1990 8 28 17.2 16.6 16.6 1 +1990 8 29 19.7 19.1 19.1 1 +1990 8 30 17.3 16.8 16.8 1 +1990 8 31 16.7 16.2 16.2 1 +1990 9 1 16.4 15.9 15.9 1 +1990 9 2 14.3 13.8 13.8 1 +1990 9 3 14.0 13.5 13.5 1 +1990 9 4 12.1 11.6 11.6 1 +1990 9 5 11.2 10.7 10.7 1 +1990 9 6 10.2 9.8 9.8 1 +1990 9 7 11.2 10.8 10.8 1 +1990 9 8 12.1 11.7 11.7 1 +1990 9 9 11.1 10.7 10.7 1 +1990 9 10 12.4 12.0 12.0 1 +1990 9 11 9.9 9.5 9.5 1 +1990 9 12 10.0 9.7 9.7 1 +1990 9 13 11.9 11.6 11.6 1 +1990 9 14 12.5 12.2 12.2 1 +1990 9 15 10.0 9.7 9.7 1 +1990 9 16 10.7 10.4 10.4 1 +1990 9 17 12.0 11.7 11.7 1 +1990 9 18 12.2 11.9 11.9 1 +1990 9 19 11.0 10.7 10.7 1 +1990 9 20 10.3 10.0 10.0 1 +1990 9 21 8.7 8.4 8.4 1 +1990 9 22 9.2 8.9 8.9 1 +1990 9 23 6.5 6.2 6.2 1 +1990 9 24 7.7 7.4 7.4 1 +1990 9 25 8.0 7.7 7.7 1 +1990 9 26 6.2 5.9 5.9 1 +1990 9 27 6.4 6.1 6.1 1 +1990 9 28 8.1 7.8 7.8 1 +1990 9 29 10.6 10.3 10.3 1 +1990 9 30 8.3 8.0 8.0 1 +1990 10 1 7.8 7.5 7.5 1 +1990 10 2 8.0 7.7 7.7 1 +1990 10 3 11.4 11.1 11.1 1 +1990 10 4 11.9 11.6 11.6 1 +1990 10 5 10.1 9.8 9.8 1 +1990 10 6 9.4 9.1 9.1 1 +1990 10 7 8.3 8.0 8.0 1 +1990 10 8 5.4 5.1 5.1 1 +1990 10 9 9.7 9.4 9.4 1 +1990 10 10 10.3 10.1 10.1 1 +1990 10 11 8.4 8.2 8.2 1 +1990 10 12 7.6 7.4 7.4 1 +1990 10 13 10.4 10.2 10.2 1 +1990 10 14 9.8 9.6 9.6 1 +1990 10 15 10.9 10.7 10.7 1 +1990 10 16 11.4 11.2 11.2 1 +1990 10 17 11.7 11.4 11.4 1 +1990 10 18 9.3 9.0 9.0 1 +1990 10 19 7.6 7.3 7.3 1 +1990 10 20 4.0 3.7 3.7 1 +1990 10 21 3.5 3.2 3.2 1 +1990 10 22 4.1 3.8 3.8 1 +1990 10 23 5.1 4.8 4.8 1 +1990 10 24 1.9 1.6 1.6 1 +1990 10 25 1.5 1.2 1.2 1 +1990 10 26 5.1 4.8 4.8 1 +1990 10 27 7.5 7.2 7.2 1 +1990 10 28 7.5 7.2 7.2 1 +1990 10 29 7.2 6.9 6.9 1 +1990 10 30 7.5 7.1 7.1 1 +1990 10 31 4.7 4.3 4.3 1 +1990 11 1 2.6 2.2 2.2 1 +1990 11 2 1.9 1.5 1.5 1 +1990 11 3 1.3 0.9 0.9 1 +1990 11 4 2.9 2.5 2.5 1 +1990 11 5 2.1 1.7 1.7 1 +1990 11 6 5.0 4.6 4.6 1 +1990 11 7 6.3 5.9 5.9 1 +1990 11 8 6.7 6.3 6.3 1 +1990 11 9 4.9 4.5 4.5 1 +1990 11 10 2.6 2.2 2.2 1 +1990 11 11 2.0 1.6 1.6 1 +1990 11 12 1.2 0.8 0.8 1 +1990 11 13 3.3 2.8 2.8 1 +1990 11 14 5.7 5.2 5.2 1 +1990 11 15 4.9 4.4 4.4 1 +1990 11 16 6.1 5.6 5.6 1 +1990 11 17 4.8 4.3 4.3 1 +1990 11 18 1.9 1.4 1.4 1 +1990 11 19 0.2 -0.3 -0.3 1 +1990 11 20 0.0 -0.5 -0.5 1 +1990 11 21 -2.2 -2.7 -2.7 1 +1990 11 22 -5.3 -5.8 -5.8 1 +1990 11 23 0.3 -0.2 -0.2 1 +1990 11 24 2.2 1.7 1.7 1 +1990 11 25 1.3 0.8 0.8 1 +1990 11 26 0.6 0.1 0.1 1 +1990 11 27 -1.4 -1.9 -1.9 1 +1990 11 28 0.3 -0.2 -0.2 1 +1990 11 29 1.3 0.8 0.8 1 +1990 11 30 -3.6 -4.1 -4.1 1 +1990 12 1 2.1 1.6 1.6 1 +1990 12 2 3.2 2.7 2.7 1 +1990 12 3 6.9 6.4 6.4 1 +1990 12 4 2.3 1.8 1.8 1 +1990 12 5 -0.8 -1.3 -1.3 1 +1990 12 6 1.5 0.9 0.9 1 +1990 12 7 6.0 5.4 5.4 1 +1990 12 8 2.6 2.0 2.0 1 +1990 12 9 0.7 0.1 0.1 1 +1990 12 10 1.7 1.1 1.1 1 +1990 12 11 2.1 1.5 1.5 1 +1990 12 12 0.8 0.2 0.2 1 +1990 12 13 -2.6 -3.2 -3.2 1 +1990 12 14 -1.6 -2.2 -2.2 1 +1990 12 15 -0.7 -1.3 -1.3 1 +1990 12 16 0.1 -0.5 -0.5 1 +1990 12 17 1.5 0.9 0.9 1 +1990 12 18 0.8 0.2 0.2 1 +1990 12 19 1.2 0.6 0.6 1 +1990 12 20 -0.5 -1.1 -1.1 1 +1990 12 21 -3.7 -4.3 -4.3 1 +1990 12 22 -4.6 -5.2 -5.2 1 +1990 12 23 2.6 2.0 2.0 1 +1990 12 24 4.6 4.0 4.0 1 +1990 12 25 1.7 1.0 1.0 1 +1990 12 26 2.9 2.2 2.2 1 +1990 12 27 3.7 3.0 3.0 1 +1990 12 28 2.2 1.5 1.5 1 +1990 12 29 2.8 2.1 2.1 1 +1990 12 30 2.5 1.8 1.8 1 +1990 12 31 0.2 -0.5 -0.5 1 +1991 1 1 -3.1 -3.8 -3.8 1 +1991 1 2 1.8 1.1 1.1 1 +1991 1 3 3.5 2.8 2.8 1 +1991 1 4 1.5 0.8 0.8 1 +1991 1 5 3.5 2.8 2.8 1 +1991 1 6 3.2 2.5 2.5 1 +1991 1 7 2.4 1.7 1.7 1 +1991 1 8 2.3 1.6 1.6 1 +1991 1 9 2.8 2.1 2.1 1 +1991 1 10 1.8 1.1 1.1 1 +1991 1 11 -1.4 -2.2 -2.2 1 +1991 1 12 -0.9 -1.7 -1.7 1 +1991 1 13 -6.1 -6.9 -6.9 1 +1991 1 14 -3.4 -4.2 -4.2 1 +1991 1 15 -3.5 -4.3 -4.3 1 +1991 1 16 -1.8 -2.6 -2.6 1 +1991 1 17 -2.3 -3.1 -3.1 1 +1991 1 18 -1.2 -2.0 -2.0 1 +1991 1 19 2.4 1.6 1.6 1 +1991 1 20 1.6 0.8 0.8 1 +1991 1 21 1.7 0.9 0.9 1 +1991 1 22 -1.0 -1.8 -1.8 1 +1991 1 23 1.9 1.1 1.1 1 +1991 1 24 0.4 -0.4 -0.4 1 +1991 1 25 1.9 1.1 1.1 1 +1991 1 26 2.1 1.3 1.3 1 +1991 1 27 -0.2 -1.0 -1.0 1 +1991 1 28 0.9 0.1 0.1 1 +1991 1 29 -1.1 -1.9 -1.9 1 +1991 1 30 -4.1 -4.9 -4.9 1 +1991 1 31 -3.0 -3.8 -3.8 1 +1991 2 1 -3.8 -4.6 -4.6 1 +1991 2 2 -2.6 -3.4 -3.4 1 +1991 2 3 -3.7 -4.5 -4.5 1 +1991 2 4 -1.8 -2.6 -2.6 1 +1991 2 5 -2.9 -3.7 -3.7 1 +1991 2 6 -1.0 -1.8 -1.8 1 +1991 2 7 -3.0 -3.8 -3.8 1 +1991 2 8 -4.6 -5.4 -5.4 1 +1991 2 9 -3.5 -4.3 -4.3 1 +1991 2 10 -4.1 -4.9 -4.9 1 +1991 2 11 -4.4 -5.2 -5.2 1 +1991 2 12 -5.2 -6.0 -6.0 1 +1991 2 13 -3.4 -4.2 -4.2 1 +1991 2 14 -5.5 -6.3 -6.3 1 +1991 2 15 -7.4 -8.2 -8.2 1 +1991 2 16 -7.8 -8.7 -8.7 1 +1991 2 17 -6.2 -7.1 -7.1 1 +1991 2 18 -7.0 -7.9 -7.9 1 +1991 2 19 -2.4 -3.3 -3.3 1 +1991 2 20 1.8 0.9 0.9 1 +1991 2 21 3.3 2.4 2.4 1 +1991 2 22 2.6 1.7 1.7 1 +1991 2 23 1.6 0.7 0.7 1 +1991 2 24 6.3 5.4 5.4 1 +1991 2 25 5.2 4.3 4.3 1 +1991 2 26 0.0 -0.9 -0.9 1 +1991 2 27 -2.9 -3.8 -3.8 1 +1991 2 28 -2.1 -3.0 -3.0 1 +1991 3 1 -0.3 -1.2 -1.2 1 +1991 3 2 0.0 -0.9 -0.9 1 +1991 3 3 0.4 -0.5 -0.5 1 +1991 3 4 0.7 -0.2 -0.2 1 +1991 3 5 0.1 -0.8 -0.8 1 +1991 3 6 1.1 0.2 0.2 1 +1991 3 7 1.7 0.8 0.8 1 +1991 3 8 1.7 0.8 0.8 1 +1991 3 9 1.2 0.3 0.3 1 +1991 3 10 1.4 0.5 0.5 1 +1991 3 11 3.2 2.3 2.3 1 +1991 3 12 3.2 2.3 2.3 1 +1991 3 13 0.4 -0.6 -0.6 1 +1991 3 14 3.1 2.1 2.1 1 +1991 3 15 1.2 0.2 0.2 1 +1991 3 16 -1.3 -2.3 -2.3 1 +1991 3 17 2.5 1.6 1.6 1 +1991 3 18 3.1 2.2 2.2 1 +1991 3 19 3.7 2.8 2.8 1 +1991 3 20 6.3 5.4 5.4 1 +1991 3 21 5.1 4.2 4.2 1 +1991 3 22 4.7 3.8 3.8 1 +1991 3 23 2.9 2.0 2.0 1 +1991 3 24 -1.0 -1.9 -1.9 1 +1991 3 25 3.7 2.8 2.8 1 +1991 3 26 5.1 4.2 4.2 1 +1991 3 27 3.3 2.4 2.4 1 +1991 3 28 3.1 2.2 2.2 1 +1991 3 29 6.1 5.2 5.2 1 +1991 3 30 3.2 2.3 2.3 1 +1991 3 31 2.7 1.8 1.8 1 +1991 4 1 6.7 5.8 5.8 1 +1991 4 2 8.6 7.7 7.7 1 +1991 4 3 9.8 8.9 8.9 1 +1991 4 4 7.7 6.8 6.8 1 +1991 4 5 6.5 5.6 5.6 1 +1991 4 6 7.6 6.8 6.8 1 +1991 4 7 8.5 7.7 7.7 1 +1991 4 8 7.2 6.4 6.4 1 +1991 4 9 7.6 6.8 6.8 1 +1991 4 10 8.8 8.0 8.0 1 +1991 4 11 8.7 7.9 7.9 1 +1991 4 12 9.1 8.3 8.3 1 +1991 4 13 11.9 11.1 11.1 1 +1991 4 14 7.2 6.4 6.4 1 +1991 4 15 8.3 7.5 7.5 1 +1991 4 16 4.4 3.6 3.6 1 +1991 4 17 -0.3 -1.1 -1.1 1 +1991 4 18 -1.1 -2.0 -2.0 1 +1991 4 19 -0.6 -1.5 -1.5 1 +1991 4 20 -0.8 -1.7 -1.7 1 +1991 4 21 0.4 -0.5 -0.5 1 +1991 4 22 2.4 1.5 1.5 1 +1991 4 23 5.5 4.5 4.5 1 +1991 4 24 7.2 6.2 6.2 1 +1991 4 25 4.6 3.6 3.6 1 +1991 4 26 2.8 1.8 1.8 1 +1991 4 27 5.9 4.9 4.9 1 +1991 4 28 6.4 5.4 5.4 1 +1991 4 29 4.3 3.2 3.2 1 +1991 4 30 6.4 5.3 5.3 1 +1991 5 1 4.3 3.2 3.2 1 +1991 5 2 3.6 2.5 2.5 1 +1991 5 3 6.4 5.3 5.3 1 +1991 5 4 4.6 3.4 3.4 1 +1991 5 5 5.9 4.7 4.7 1 +1991 5 6 5.6 4.4 4.4 1 +1991 5 7 5.4 4.2 4.2 1 +1991 5 8 8.0 6.8 6.8 1 +1991 5 9 6.3 5.0 5.0 1 +1991 5 10 10.9 9.6 9.6 1 +1991 5 11 12.6 11.3 11.3 1 +1991 5 12 11.3 10.0 10.0 1 +1991 5 13 12.2 10.9 10.9 1 +1991 5 14 9.8 8.4 8.4 1 +1991 5 15 5.6 4.2 4.2 1 +1991 5 16 5.7 4.3 4.3 1 +1991 5 17 3.9 2.5 2.5 1 +1991 5 18 6.1 4.8 4.8 1 +1991 5 19 10.2 8.9 8.9 1 +1991 5 20 10.2 8.9 8.9 1 +1991 5 21 12.1 10.8 10.8 1 +1991 5 22 10.0 8.7 8.7 1 +1991 5 23 6.9 5.6 5.6 1 +1991 5 24 7.5 6.2 6.2 1 +1991 5 25 8.3 7.0 7.0 1 +1991 5 26 9.3 8.0 8.0 1 +1991 5 27 9.8 8.5 8.5 1 +1991 5 28 12.2 10.9 10.9 1 +1991 5 29 12.7 11.5 11.5 1 +1991 5 30 12.9 11.7 11.7 1 +1991 5 31 10.9 9.7 9.7 1 +1991 6 1 8.6 7.4 7.4 1 +1991 6 2 8.3 7.1 7.1 1 +1991 6 3 9.7 8.5 8.5 1 +1991 6 4 8.1 6.9 6.9 1 +1991 6 5 9.5 8.3 8.3 1 +1991 6 6 11.1 9.9 9.9 1 +1991 6 7 12.4 11.2 11.2 1 +1991 6 8 10.0 8.8 8.8 1 +1991 6 9 10.5 9.4 9.4 1 +1991 6 10 12.0 10.9 10.9 1 +1991 6 11 13.2 12.1 12.1 1 +1991 6 12 12.6 11.5 11.5 1 +1991 6 13 12.0 10.9 10.9 1 +1991 6 14 13.7 12.6 12.6 1 +1991 6 15 12.7 11.6 11.6 1 +1991 6 16 13.1 12.0 12.0 1 +1991 6 17 14.0 12.9 12.9 1 +1991 6 18 10.8 9.7 9.7 1 +1991 6 19 12.2 11.1 11.1 1 +1991 6 20 13.7 12.6 12.6 1 +1991 6 21 13.3 12.2 12.2 1 +1991 6 22 12.8 11.7 11.7 1 +1991 6 23 16.0 14.9 14.9 1 +1991 6 24 15.1 14.0 14.0 1 +1991 6 25 15.8 14.7 14.7 1 +1991 6 26 13.6 12.5 12.5 1 +1991 6 27 14.4 13.3 13.3 1 +1991 6 28 12.5 11.4 11.4 1 +1991 6 29 11.7 10.6 10.6 1 +1991 6 30 13.4 12.4 12.4 1 +1991 7 1 14.3 13.3 13.3 1 +1991 7 2 17.5 16.5 16.5 1 +1991 7 3 20.3 19.3 19.3 1 +1991 7 4 21.2 20.2 20.2 1 +1991 7 5 22.4 21.4 21.4 1 +1991 7 6 23.1 22.1 22.1 1 +1991 7 7 23.5 22.5 22.5 1 +1991 7 8 22.8 21.8 21.8 1 +1991 7 9 22.0 21.0 21.0 1 +1991 7 10 18.3 17.3 17.3 1 +1991 7 11 16.1 15.1 15.1 1 +1991 7 12 18.9 17.9 17.9 1 +1991 7 13 19.1 18.1 18.1 1 +1991 7 14 18.3 17.3 17.3 1 +1991 7 15 17.5 16.5 16.5 1 +1991 7 16 17.6 16.6 16.6 1 +1991 7 17 17.0 16.0 16.0 1 +1991 7 18 16.4 15.4 15.4 1 +1991 7 19 16.8 15.8 15.8 1 +1991 7 20 15.8 14.8 14.8 1 +1991 7 21 15.8 14.8 14.8 1 +1991 7 22 16.1 15.1 15.1 1 +1991 7 23 17.3 16.3 16.3 1 +1991 7 24 17.9 17.0 17.0 1 +1991 7 25 17.7 16.8 16.8 1 +1991 7 26 17.0 16.1 16.1 1 +1991 7 27 19.0 18.1 18.1 1 +1991 7 28 20.4 19.5 19.5 1 +1991 7 29 20.5 19.6 19.6 1 +1991 7 30 22.2 21.3 21.3 1 +1991 7 31 21.6 20.7 20.7 1 +1991 8 1 21.4 20.5 20.5 1 +1991 8 2 21.4 20.5 20.5 1 +1991 8 3 23.2 22.3 22.3 1 +1991 8 4 23.4 22.5 22.5 1 +1991 8 5 22.5 21.6 21.6 1 +1991 8 6 19.9 19.1 19.1 1 +1991 8 7 20.1 19.3 19.3 1 +1991 8 8 19.4 18.6 18.6 1 +1991 8 9 17.7 16.9 16.9 1 +1991 8 10 16.8 16.0 16.0 1 +1991 8 11 17.2 16.4 16.4 1 +1991 8 12 15.2 14.4 14.4 1 +1991 8 13 15.6 14.8 14.8 1 +1991 8 14 16.9 16.1 16.1 1 +1991 8 15 18.1 17.3 17.3 1 +1991 8 16 16.1 15.3 15.3 1 +1991 8 17 16.9 16.2 16.2 1 +1991 8 18 15.2 14.5 14.5 1 +1991 8 19 15.9 15.2 15.2 1 +1991 8 20 17.1 16.4 16.4 1 +1991 8 21 17.3 16.6 16.6 1 +1991 8 22 17.9 17.2 17.2 1 +1991 8 23 19.9 19.2 19.2 1 +1991 8 24 17.7 17.1 17.1 1 +1991 8 25 15.3 14.7 14.7 1 +1991 8 26 16.6 16.0 16.0 1 +1991 8 27 17.0 16.4 16.4 1 +1991 8 28 14.0 13.4 13.4 1 +1991 8 29 14.6 14.0 14.0 1 +1991 8 30 16.4 15.9 15.9 1 +1991 8 31 17.3 16.8 16.8 1 +1991 9 1 19.6 19.1 19.1 1 +1991 9 2 19.3 18.8 18.8 1 +1991 9 3 18.8 18.3 18.3 1 +1991 9 4 15.9 15.4 15.4 1 +1991 9 5 11.2 10.7 10.7 1 +1991 9 6 6.7 6.3 6.3 1 +1991 9 7 7.2 6.8 6.8 1 +1991 9 8 9.7 9.3 9.3 1 +1991 9 9 11.3 10.9 10.9 1 +1991 9 10 13.1 12.7 12.7 1 +1991 9 11 9.9 9.5 9.5 1 +1991 9 12 8.8 8.5 8.5 1 +1991 9 13 11.4 11.1 11.1 1 +1991 9 14 11.9 11.6 11.6 1 +1991 9 15 14.4 14.1 14.1 1 +1991 9 16 13.7 13.4 13.4 1 +1991 9 17 12.7 12.4 12.4 1 +1991 9 18 10.1 9.8 9.8 1 +1991 9 19 13.3 13.0 13.0 1 +1991 9 20 12.6 12.3 12.3 1 +1991 9 21 11.0 10.7 10.7 1 +1991 9 22 12.5 12.2 12.2 1 +1991 9 23 11.5 11.2 11.2 1 +1991 9 24 10.9 10.6 10.6 1 +1991 9 25 13.8 13.5 13.5 1 +1991 9 26 12.4 12.1 12.1 1 +1991 9 27 8.5 8.2 8.2 1 +1991 9 28 9.1 8.8 8.8 1 +1991 9 29 9.4 9.1 9.1 1 +1991 9 30 11.8 11.5 11.5 1 +1991 10 1 11.0 10.7 10.7 1 +1991 10 2 8.8 8.5 8.5 1 +1991 10 3 7.0 6.7 6.7 1 +1991 10 4 11.0 10.7 10.7 1 +1991 10 5 10.2 9.9 9.9 1 +1991 10 6 11.6 11.3 11.3 1 +1991 10 7 9.7 9.4 9.4 1 +1991 10 8 11.3 11.0 11.0 1 +1991 10 9 12.5 12.2 12.2 1 +1991 10 10 10.6 10.4 10.4 1 +1991 10 11 9.2 9.0 9.0 1 +1991 10 12 8.8 8.6 8.6 1 +1991 10 13 10.0 9.8 9.8 1 +1991 10 14 10.6 10.4 10.4 1 +1991 10 15 9.3 9.1 9.1 1 +1991 10 16 9.8 9.6 9.6 1 +1991 10 17 10.6 10.3 10.3 1 +1991 10 18 7.6 7.3 7.3 1 +1991 10 19 5.9 5.6 5.6 1 +1991 10 20 0.2 -0.1 -0.1 1 +1991 10 21 0.0 -0.3 -0.3 1 +1991 10 22 4.1 3.8 3.8 1 +1991 10 23 2.8 2.5 2.5 1 +1991 10 24 3.6 3.3 3.3 1 +1991 10 25 6.1 5.8 5.8 1 +1991 10 26 6.6 6.3 6.3 1 +1991 10 27 6.9 6.6 6.6 1 +1991 10 28 6.3 6.0 6.0 1 +1991 10 29 5.5 5.2 5.2 1 +1991 10 30 5.6 5.2 5.2 1 +1991 10 31 5.0 4.6 4.6 1 +1991 11 1 5.7 5.3 5.3 1 +1991 11 2 6.9 6.5 6.5 1 +1991 11 3 8.3 7.9 7.9 1 +1991 11 4 6.4 6.0 6.0 1 +1991 11 5 5.3 4.9 4.9 1 +1991 11 6 5.1 4.7 4.7 1 +1991 11 7 4.4 4.0 4.0 1 +1991 11 8 4.6 4.2 4.2 1 +1991 11 9 2.5 2.1 2.1 1 +1991 11 10 0.9 0.5 0.5 1 +1991 11 11 2.8 2.4 2.4 1 +1991 11 12 4.3 3.9 3.9 1 +1991 11 13 5.5 5.0 5.0 1 +1991 11 14 4.5 4.0 4.0 1 +1991 11 15 2.3 1.8 1.8 1 +1991 11 16 1.2 0.7 0.7 1 +1991 11 17 -2.0 -2.5 -2.5 1 +1991 11 18 1.9 1.4 1.4 1 +1991 11 19 0.7 0.2 0.2 1 +1991 11 20 -2.1 -2.6 -2.6 1 +1991 11 21 -1.6 -2.1 -2.1 1 +1991 11 22 3.9 3.4 3.4 1 +1991 11 23 6.3 5.8 5.8 1 +1991 11 24 7.0 6.5 6.5 1 +1991 11 25 7.0 6.5 6.5 1 +1991 11 26 4.6 4.1 4.1 1 +1991 11 27 5.7 5.2 5.2 1 +1991 11 28 6.1 5.6 5.6 1 +1991 11 29 6.2 5.7 5.7 1 +1991 11 30 4.8 4.3 4.3 1 +1991 12 1 5.5 5.0 5.0 1 +1991 12 2 1.9 1.4 1.4 1 +1991 12 3 1.9 1.4 1.4 1 +1991 12 4 1.8 1.3 1.3 1 +1991 12 5 -0.4 -1.0 -1.0 1 +1991 12 6 0.3 -0.3 -0.3 1 +1991 12 7 -0.6 -1.2 -1.2 1 +1991 12 8 1.7 1.1 1.1 1 +1991 12 9 0.0 -0.6 -0.6 1 +1991 12 10 0.5 -0.1 -0.1 1 +1991 12 11 3.7 3.1 3.1 1 +1991 12 12 1.4 0.8 0.8 1 +1991 12 13 7.0 6.4 6.4 1 +1991 12 14 2.3 1.7 1.7 1 +1991 12 15 0.7 0.1 0.1 1 +1991 12 16 -0.2 -0.8 -0.8 1 +1991 12 17 2.5 1.9 1.9 1 +1991 12 18 3.1 2.5 2.5 1 +1991 12 19 2.2 1.6 1.6 1 +1991 12 20 2.4 1.8 1.8 1 +1991 12 21 1.0 0.4 0.4 1 +1991 12 22 -2.0 -2.6 -2.6 1 +1991 12 23 3.3 2.7 2.7 1 +1991 12 24 -3.3 -3.9 -3.9 1 +1991 12 25 -3.3 -4.0 -4.0 1 +1991 12 26 0.7 0.0 0.0 1 +1991 12 27 -0.8 -1.5 -1.5 1 +1991 12 28 0.0 -0.7 -0.7 1 +1991 12 29 4.0 3.3 3.3 1 +1991 12 30 2.0 1.3 1.3 1 +1991 12 31 -1.7 -2.4 -2.4 1 +1992 1 1 3.4 2.7 2.7 1 +1992 1 2 4.0 3.3 3.3 1 +1992 1 3 8.3 7.6 7.6 1 +1992 1 4 4.0 3.3 3.3 1 +1992 1 5 -0.1 -0.8 -0.8 1 +1992 1 6 -2.4 -3.1 -3.1 1 +1992 1 7 2.4 1.7 1.7 1 +1992 1 8 5.2 4.5 4.5 1 +1992 1 9 0.0 -0.7 -0.7 1 +1992 1 10 -1.7 -2.4 -2.4 1 +1992 1 11 5.7 4.9 4.9 1 +1992 1 12 2.7 1.9 1.9 1 +1992 1 13 -0.8 -1.6 -1.6 1 +1992 1 14 3.9 3.1 3.1 1 +1992 1 15 6.1 5.3 5.3 1 +1992 1 16 3.2 2.4 2.4 1 +1992 1 17 -1.3 -2.1 -2.1 1 +1992 1 18 -2.6 -3.4 -3.4 1 +1992 1 19 -4.1 -4.9 -4.9 1 +1992 1 20 -5.0 -5.8 -5.8 1 +1992 1 21 -1.5 -2.3 -2.3 1 +1992 1 22 1.4 0.6 0.6 1 +1992 1 23 -0.6 -1.4 -1.4 1 +1992 1 24 -3.2 -4.0 -4.0 1 +1992 1 25 -3.3 -4.1 -4.1 1 +1992 1 26 0.6 -0.2 -0.2 1 +1992 1 27 1.8 1.0 1.0 1 +1992 1 28 4.2 3.4 3.4 1 +1992 1 29 5.2 4.4 4.4 1 +1992 1 30 4.8 4.0 4.0 1 +1992 1 31 1.3 0.5 0.5 1 +1992 2 1 -1.3 -2.1 -2.1 1 +1992 2 2 -1.3 -2.1 -2.1 1 +1992 2 3 2.3 1.5 1.5 1 +1992 2 4 -0.7 -1.5 -1.5 1 +1992 2 5 -2.5 -3.3 -3.3 1 +1992 2 6 -4.2 -5.0 -5.0 1 +1992 2 7 1.1 0.3 0.3 1 +1992 2 8 4.0 3.2 3.2 1 +1992 2 9 0.6 -0.2 -0.2 1 +1992 2 10 2.5 1.7 1.7 1 +1992 2 11 2.8 2.0 2.0 1 +1992 2 12 2.3 1.5 1.5 1 +1992 2 13 3.2 2.4 2.4 1 +1992 2 14 2.2 1.4 1.4 1 +1992 2 15 -2.9 -3.7 -3.7 1 +1992 2 16 -4.4 -5.3 -5.3 1 +1992 2 17 -4.1 -5.0 -5.0 1 +1992 2 18 -2.1 -3.0 -3.0 1 +1992 2 19 -2.0 -2.9 -2.9 1 +1992 2 20 -1.8 -2.7 -2.7 1 +1992 2 21 0.6 -0.3 -0.3 1 +1992 2 22 0.3 -0.6 -0.6 1 +1992 2 23 4.8 3.9 3.9 1 +1992 2 24 2.2 1.3 1.3 1 +1992 2 25 5.5 4.6 4.6 1 +1992 2 26 1.2 0.3 0.3 1 +1992 2 27 4.4 3.5 3.5 1 +1992 2 28 6.1 5.2 5.2 1 +1992 2 29 3.0 2.1 2.1 1 +1992 3 1 4.1 3.2 3.2 1 +1992 3 2 6.5 5.6 5.6 1 +1992 3 3 3.8 2.9 2.9 1 +1992 3 4 3.3 2.4 2.4 1 +1992 3 5 3.6 2.7 2.7 1 +1992 3 6 4.3 3.4 3.4 1 +1992 3 7 4.9 4.0 4.0 1 +1992 3 8 6.5 5.6 5.6 1 +1992 3 9 4.1 3.2 3.2 1 +1992 3 10 5.3 4.4 4.4 1 +1992 3 11 4.4 3.5 3.5 1 +1992 3 12 1.5 0.6 0.6 1 +1992 3 13 2.2 1.2 1.2 1 +1992 3 14 0.1 -0.9 -0.9 1 +1992 3 15 -1.7 -2.7 -2.7 1 +1992 3 16 1.9 0.9 0.9 1 +1992 3 17 1.3 0.4 0.4 1 +1992 3 18 7.0 6.1 6.1 1 +1992 3 19 5.4 4.5 4.5 1 +1992 3 20 4.7 3.8 3.8 1 +1992 3 21 4.7 3.8 3.8 1 +1992 3 22 4.4 3.5 3.5 1 +1992 3 23 3.9 3.0 3.0 1 +1992 3 24 1.4 0.5 0.5 1 +1992 3 25 -0.3 -1.2 -1.2 1 +1992 3 26 0.8 -0.1 -0.1 1 +1992 3 27 3.5 2.6 2.6 1 +1992 3 28 0.5 -0.4 -0.4 1 +1992 3 29 0.0 -0.9 -0.9 1 +1992 3 30 -1.6 -2.5 -2.5 1 +1992 3 31 0.0 -0.9 -0.9 1 +1992 4 1 1.5 0.6 0.6 1 +1992 4 2 3.9 3.0 3.0 1 +1992 4 3 6.2 5.3 5.3 1 +1992 4 4 1.4 0.5 0.5 1 +1992 4 5 0.6 -0.3 -0.3 1 +1992 4 6 -0.2 -1.0 -1.0 1 +1992 4 7 2.5 1.7 1.7 1 +1992 4 8 3.5 2.7 2.7 1 +1992 4 9 3.8 3.0 3.0 1 +1992 4 10 4.7 3.9 3.9 1 +1992 4 11 6.3 5.5 5.5 1 +1992 4 12 5.5 4.7 4.7 1 +1992 4 13 5.6 4.8 4.8 1 +1992 4 14 1.9 1.1 1.1 1 +1992 4 15 0.2 -0.6 -0.6 1 +1992 4 16 -0.6 -1.4 -1.4 1 +1992 4 17 0.9 0.1 0.1 1 +1992 4 18 2.4 1.5 1.5 1 +1992 4 19 2.7 1.8 1.8 1 +1992 4 20 3.1 2.2 2.2 1 +1992 4 21 1.7 0.8 0.8 1 +1992 4 22 -0.4 -1.3 -1.3 1 +1992 4 23 1.1 0.1 0.1 1 +1992 4 24 1.9 0.9 0.9 1 +1992 4 25 4.3 3.3 3.3 1 +1992 4 26 9.4 8.4 8.4 1 +1992 4 27 6.6 5.6 5.6 1 +1992 4 28 9.1 8.1 8.1 1 +1992 4 29 6.8 5.7 5.7 1 +1992 4 30 8.1 7.0 7.0 1 +1992 5 1 8.7 7.6 7.6 1 +1992 5 2 10.7 9.6 9.6 1 +1992 5 3 9.9 8.8 8.8 1 +1992 5 4 10.9 9.7 9.7 1 +1992 5 5 12.2 11.0 11.0 1 +1992 5 6 10.8 9.6 9.6 1 +1992 5 7 11.9 10.7 10.7 1 +1992 5 8 11.0 9.8 9.8 1 +1992 5 9 5.7 4.4 4.4 1 +1992 5 10 7.7 6.4 6.4 1 +1992 5 11 7.5 6.2 6.2 1 +1992 5 12 8.2 6.9 6.9 1 +1992 5 13 10.3 9.0 9.0 1 +1992 5 14 13.4 12.0 12.0 1 +1992 5 15 15.9 14.5 14.5 1 +1992 5 16 15.1 13.7 13.7 1 +1992 5 17 11.0 9.6 9.6 1 +1992 5 18 14.2 12.9 12.9 1 +1992 5 19 18.6 17.3 17.3 1 +1992 5 20 19.3 18.0 18.0 1 +1992 5 21 18.5 17.2 17.2 1 +1992 5 22 16.2 14.9 14.9 1 +1992 5 23 16.7 15.4 15.4 1 +1992 5 24 16.4 15.1 15.1 1 +1992 5 25 15.4 14.1 14.1 1 +1992 5 26 16.6 15.3 15.3 1 +1992 5 27 19.1 17.8 17.8 1 +1992 5 28 18.2 16.9 16.9 1 +1992 5 29 17.7 16.5 16.5 1 +1992 5 30 19.2 18.0 18.0 1 +1992 5 31 21.5 20.3 20.3 1 +1992 6 1 21.9 20.7 20.7 1 +1992 6 2 17.8 16.6 16.6 1 +1992 6 3 17.0 15.8 15.8 1 +1992 6 4 18.8 17.6 17.6 1 +1992 6 5 20.1 18.9 18.9 1 +1992 6 6 20.7 19.5 19.5 1 +1992 6 7 21.7 20.5 20.5 1 +1992 6 8 19.6 18.4 18.4 1 +1992 6 9 15.7 14.6 14.6 1 +1992 6 10 17.4 16.3 16.3 1 +1992 6 11 13.7 12.6 12.6 1 +1992 6 12 16.2 15.1 15.1 1 +1992 6 13 17.8 16.7 16.7 1 +1992 6 14 18.9 17.8 17.8 1 +1992 6 15 19.8 18.7 18.7 1 +1992 6 16 17.1 16.0 16.0 1 +1992 6 17 15.0 13.9 13.9 1 +1992 6 18 17.2 16.1 16.1 1 +1992 6 19 18.8 17.7 17.7 1 +1992 6 20 19.3 18.2 18.2 1 +1992 6 21 14.6 13.5 13.5 1 +1992 6 22 13.1 12.0 12.0 1 +1992 6 23 15.0 13.9 13.9 1 +1992 6 24 16.5 15.4 15.4 1 +1992 6 25 17.0 15.9 15.9 1 +1992 6 26 19.4 18.3 18.3 1 +1992 6 27 21.9 20.8 20.8 1 +1992 6 28 21.2 20.1 20.1 1 +1992 6 29 19.9 18.8 18.8 1 +1992 6 30 20.3 19.3 19.3 1 +1992 7 1 16.6 15.6 15.6 1 +1992 7 2 12.5 11.5 11.5 1 +1992 7 3 14.3 13.3 13.3 1 +1992 7 4 14.1 13.1 13.1 1 +1992 7 5 16.8 15.8 15.8 1 +1992 7 6 17.9 16.9 16.9 1 +1992 7 7 16.2 15.2 15.2 1 +1992 7 8 18.6 17.6 17.6 1 +1992 7 9 19.5 18.5 18.5 1 +1992 7 10 20.7 19.7 19.7 1 +1992 7 11 18.7 17.7 17.7 1 +1992 7 12 17.8 16.8 16.8 1 +1992 7 13 19.0 18.0 18.0 1 +1992 7 14 16.8 15.8 15.8 1 +1992 7 15 15.0 14.0 14.0 1 +1992 7 16 15.6 14.6 14.6 1 +1992 7 17 19.0 18.0 18.0 1 +1992 7 18 15.2 14.2 14.2 1 +1992 7 19 18.2 17.2 17.2 1 +1992 7 20 19.3 18.3 18.3 1 +1992 7 21 21.3 20.3 20.3 1 +1992 7 22 23.0 22.0 22.0 1 +1992 7 23 21.0 20.0 20.0 1 +1992 7 24 21.1 20.2 20.2 1 +1992 7 25 22.1 21.2 21.2 1 +1992 7 26 21.6 20.7 20.7 1 +1992 7 27 18.3 17.4 17.4 1 +1992 7 28 13.1 12.2 12.2 1 +1992 7 29 16.9 16.0 16.0 1 +1992 7 30 17.4 16.5 16.5 1 +1992 7 31 17.7 16.8 16.8 1 +1992 8 1 18.2 17.3 17.3 1 +1992 8 2 19.0 18.1 18.1 1 +1992 8 3 19.4 18.5 18.5 1 +1992 8 4 19.5 18.6 18.6 1 +1992 8 5 17.4 16.5 16.5 1 +1992 8 6 18.5 17.7 17.7 1 +1992 8 7 17.8 17.0 17.0 1 +1992 8 8 17.4 16.6 16.6 1 +1992 8 9 16.8 16.0 16.0 1 +1992 8 10 20.1 19.3 19.3 1 +1992 8 11 18.7 17.9 17.9 1 +1992 8 12 16.6 15.8 15.8 1 +1992 8 13 15.6 14.8 14.8 1 +1992 8 14 14.7 13.9 13.9 1 +1992 8 15 15.0 14.2 14.2 1 +1992 8 16 17.3 16.5 16.5 1 +1992 8 17 16.1 15.4 15.4 1 +1992 8 18 15.1 14.4 14.4 1 +1992 8 19 15.2 14.5 14.5 1 +1992 8 20 16.3 15.6 15.6 1 +1992 8 21 14.9 14.2 14.2 1 +1992 8 22 13.7 13.0 13.0 1 +1992 8 23 16.0 15.3 15.3 1 +1992 8 24 15.4 14.8 14.8 1 +1992 8 25 14.6 14.0 14.0 1 +1992 8 26 14.6 14.0 14.0 1 +1992 8 27 14.4 13.8 13.8 1 +1992 8 28 16.9 16.3 16.3 1 +1992 8 29 17.4 16.8 16.8 1 +1992 8 30 15.5 15.0 15.0 1 +1992 8 31 14.7 14.2 14.2 1 +1992 9 1 12.6 12.1 12.1 1 +1992 9 2 14.5 14.0 14.0 1 +1992 9 3 13.7 13.2 13.2 1 +1992 9 4 13.3 12.8 12.8 1 +1992 9 5 11.1 10.6 10.6 1 +1992 9 6 9.4 9.0 9.0 1 +1992 9 7 10.3 9.9 9.9 1 +1992 9 8 10.7 10.3 10.3 1 +1992 9 9 13.0 12.6 12.6 1 +1992 9 10 14.2 13.8 13.8 1 +1992 9 11 14.7 14.3 14.3 1 +1992 9 12 15.1 14.8 14.8 1 +1992 9 13 12.7 12.4 12.4 1 +1992 9 14 11.3 11.0 11.0 1 +1992 9 15 12.0 11.7 11.7 1 +1992 9 16 12.6 12.3 12.3 1 +1992 9 17 11.2 10.9 10.9 1 +1992 9 18 10.0 9.7 9.7 1 +1992 9 19 13.0 12.7 12.7 1 +1992 9 20 11.3 11.0 11.0 1 +1992 9 21 11.5 11.2 11.2 1 +1992 9 22 13.0 12.7 12.7 1 +1992 9 23 14.1 13.8 13.8 1 +1992 9 24 13.9 13.6 13.6 1 +1992 9 25 13.2 12.9 12.9 1 +1992 9 26 13.2 12.9 12.9 1 +1992 9 27 11.7 11.4 11.4 1 +1992 9 28 9.7 9.4 9.4 1 +1992 9 29 9.3 9.0 9.0 1 +1992 9 30 9.1 8.8 8.8 1 +1992 10 1 9.3 9.0 9.0 1 +1992 10 2 6.8 6.5 6.5 1 +1992 10 3 7.7 7.4 7.4 1 +1992 10 4 8.4 8.1 8.1 1 +1992 10 5 9.2 8.9 8.9 1 +1992 10 6 7.0 6.7 6.7 1 +1992 10 7 8.0 7.7 7.7 1 +1992 10 8 11.9 11.6 11.6 1 +1992 10 9 5.5 5.2 5.2 1 +1992 10 10 4.7 4.5 4.5 1 +1992 10 11 4.2 4.0 4.0 1 +1992 10 12 0.8 0.6 0.6 1 +1992 10 13 0.9 0.7 0.7 1 +1992 10 14 5.6 5.4 5.4 1 +1992 10 15 5.2 5.0 5.0 1 +1992 10 16 5.2 5.0 5.0 1 +1992 10 17 3.3 3.0 3.0 1 +1992 10 18 2.7 2.4 2.4 1 +1992 10 19 5.9 5.6 5.6 1 +1992 10 20 5.7 5.4 5.4 1 +1992 10 21 4.7 4.4 4.4 1 +1992 10 22 6.1 5.8 5.8 1 +1992 10 23 2.2 1.9 1.9 1 +1992 10 24 2.8 2.5 2.5 1 +1992 10 25 2.8 2.5 2.5 1 +1992 10 26 1.5 1.2 1.2 1 +1992 10 27 -0.4 -0.7 -0.7 1 +1992 10 28 0.1 -0.2 -0.2 1 +1992 10 29 -0.7 -1.0 -1.0 1 +1992 10 30 -3.9 -4.3 -4.3 1 +1992 10 31 -1.3 -1.7 -1.7 1 +1992 11 1 3.1 2.7 2.7 1 +1992 11 2 6.3 5.9 5.9 1 +1992 11 3 7.0 6.6 6.6 1 +1992 11 4 4.9 4.5 4.5 1 +1992 11 5 1.1 0.7 0.7 1 +1992 11 6 3.7 3.3 3.3 1 +1992 11 7 3.9 3.5 3.5 1 +1992 11 8 -0.2 -0.6 -0.6 1 +1992 11 9 0.9 0.5 0.5 1 +1992 11 10 4.5 4.1 4.1 1 +1992 11 11 5.5 5.1 5.1 1 +1992 11 12 4.0 3.6 3.6 1 +1992 11 13 3.2 2.7 2.7 1 +1992 11 14 1.4 0.9 0.9 1 +1992 11 15 1.1 0.6 0.6 1 +1992 11 16 0.1 -0.4 -0.4 1 +1992 11 17 0.8 0.3 0.3 1 +1992 11 18 4.4 3.9 3.9 1 +1992 11 19 2.3 1.8 1.8 1 +1992 11 20 2.0 1.5 1.5 1 +1992 11 21 -0.4 -0.9 -0.9 1 +1992 11 22 -2.3 -2.8 -2.8 1 +1992 11 23 -5.5 -6.0 -6.0 1 +1992 11 24 3.7 3.2 3.2 1 +1992 11 25 3.3 2.8 2.8 1 +1992 11 26 4.6 4.1 4.1 1 +1992 11 27 3.5 3.0 3.0 1 +1992 11 28 2.8 2.3 2.3 1 +1992 11 29 2.9 2.4 2.4 1 +1992 11 30 4.1 3.6 3.6 1 +1992 12 1 5.8 5.3 5.3 1 +1992 12 2 6.6 6.1 6.1 1 +1992 12 3 6.1 5.6 5.6 1 +1992 12 4 4.4 3.9 3.9 1 +1992 12 5 2.0 1.4 1.4 1 +1992 12 6 2.1 1.5 1.5 1 +1992 12 7 1.9 1.3 1.3 1 +1992 12 8 1.0 0.4 0.4 1 +1992 12 9 0.5 -0.1 -0.1 1 +1992 12 10 0.5 -0.1 -0.1 1 +1992 12 11 4.2 3.6 3.6 1 +1992 12 12 1.5 0.9 0.9 1 +1992 12 13 -2.3 -2.9 -2.9 1 +1992 12 14 -0.2 -0.8 -0.8 1 +1992 12 15 7.0 6.4 6.4 1 +1992 12 16 6.0 5.4 5.4 1 +1992 12 17 3.9 3.3 3.3 1 +1992 12 18 3.4 2.8 2.8 1 +1992 12 19 4.0 3.4 3.4 1 +1992 12 20 -0.2 -0.8 -0.8 1 +1992 12 21 -3.5 -4.1 -4.1 1 +1992 12 22 -4.4 -5.0 -5.0 1 +1992 12 23 -3.9 -4.5 -4.5 1 +1992 12 24 -2.2 -2.8 -2.8 1 +1992 12 25 1.2 0.5 0.5 1 +1992 12 26 2.4 1.7 1.7 1 +1992 12 27 -1.0 -1.7 -1.7 1 +1992 12 28 -0.5 -1.2 -1.2 1 +1992 12 29 2.3 1.6 1.6 1 +1992 12 30 -0.9 -1.6 -1.6 1 +1992 12 31 1.2 0.5 0.5 1 +1993 1 1 0.6 -0.1 -0.1 1 +1993 1 2 -2.2 -2.9 -2.9 1 +1993 1 3 -4.2 -4.9 -4.9 1 +1993 1 4 -2.6 -3.3 -3.3 1 +1993 1 5 -0.3 -1.0 -1.0 1 +1993 1 6 3.0 2.3 2.3 1 +1993 1 7 1.3 0.6 0.6 1 +1993 1 8 1.5 0.8 0.8 1 +1993 1 9 2.1 1.4 1.4 1 +1993 1 10 3.3 2.6 2.6 1 +1993 1 11 4.3 3.5 3.5 1 +1993 1 12 1.7 0.9 0.9 1 +1993 1 13 3.7 2.9 2.9 1 +1993 1 14 1.6 0.8 0.8 1 +1993 1 15 2.7 1.9 1.9 1 +1993 1 16 5.2 4.4 4.4 1 +1993 1 17 5.8 5.0 5.0 1 +1993 1 18 4.2 3.4 3.4 1 +1993 1 19 1.8 1.0 1.0 1 +1993 1 20 1.9 1.1 1.1 1 +1993 1 21 4.4 3.6 3.6 1 +1993 1 22 5.7 4.9 4.9 1 +1993 1 23 0.5 -0.3 -0.3 1 +1993 1 24 -0.4 -1.2 -1.2 1 +1993 1 25 -3.6 -4.4 -4.4 1 +1993 1 26 -7.0 -7.8 -7.8 1 +1993 1 27 -5.8 -6.6 -6.6 1 +1993 1 28 -4.6 -5.4 -5.4 1 +1993 1 29 -5.7 -6.5 -6.5 1 +1993 1 30 -4.2 -5.0 -5.0 1 +1993 1 31 -0.1 -0.9 -0.9 1 +1993 2 1 2.4 1.6 1.6 1 +1993 2 2 0.8 0.0 0.0 1 +1993 2 3 4.7 3.9 3.9 1 +1993 2 4 7.9 7.1 7.1 1 +1993 2 5 2.4 1.6 1.6 1 +1993 2 6 -0.2 -1.0 -1.0 1 +1993 2 7 -1.2 -2.0 -2.0 1 +1993 2 8 3.5 2.7 2.7 1 +1993 2 9 3.4 2.6 2.6 1 +1993 2 10 1.9 1.1 1.1 1 +1993 2 11 1.7 0.9 0.9 1 +1993 2 12 0.7 -0.1 -0.1 1 +1993 2 13 -1.0 -1.8 -1.8 1 +1993 2 14 -0.4 -1.2 -1.2 1 +1993 2 15 1.8 1.0 1.0 1 +1993 2 16 2.3 1.4 1.4 1 +1993 2 17 -0.3 -1.2 -1.2 1 +1993 2 18 0.1 -0.8 -0.8 1 +1993 2 19 -0.2 -1.1 -1.1 1 +1993 2 20 -6.9 -7.8 -7.8 1 +1993 2 21 -6.6 -7.5 -7.5 1 +1993 2 22 -6.8 -7.7 -7.7 1 +1993 2 23 -3.8 -4.7 -4.7 1 +1993 2 24 -2.7 -3.6 -3.6 1 +1993 2 25 -1.6 -2.5 -2.5 1 +1993 2 26 -0.7 -1.6 -1.6 1 +1993 2 27 -0.5 -1.4 -1.4 1 +1993 2 28 -0.9 -1.8 -1.8 1 +1993 3 1 -1.6 -2.5 -2.5 1 +1993 3 2 -2.1 -3.0 -3.0 1 +1993 3 3 -3.2 -4.1 -4.1 1 +1993 3 4 -0.3 -1.2 -1.2 1 +1993 3 5 -0.5 -1.4 -1.4 1 +1993 3 6 0.5 -0.4 -0.4 1 +1993 3 7 -1.7 -2.6 -2.6 1 +1993 3 8 -0.2 -1.1 -1.1 1 +1993 3 9 1.1 0.2 0.2 1 +1993 3 10 1.4 0.5 0.5 1 +1993 3 11 -1.1 -2.0 -2.0 1 +1993 3 12 0.1 -0.8 -0.8 1 +1993 3 13 0.9 -0.1 -0.1 1 +1993 3 14 4.4 3.4 3.4 1 +1993 3 15 7.1 6.1 6.1 1 +1993 3 16 6.6 5.6 5.6 1 +1993 3 17 5.9 5.0 5.0 1 +1993 3 18 6.2 5.3 5.3 1 +1993 3 19 3.7 2.8 2.8 1 +1993 3 20 5.6 4.7 4.7 1 +1993 3 21 7.3 6.4 6.4 1 +1993 3 22 5.3 4.4 4.4 1 +1993 3 23 6.1 5.2 5.2 1 +1993 3 24 3.1 2.2 2.2 1 +1993 3 25 1.9 1.0 1.0 1 +1993 3 26 0.1 -0.8 -0.8 1 +1993 3 27 0.4 -0.5 -0.5 1 +1993 3 28 -0.3 -1.2 -1.2 1 +1993 3 29 0.1 -0.8 -0.8 1 +1993 3 30 0.4 -0.5 -0.5 1 +1993 3 31 3.2 2.3 2.3 1 +1993 4 1 2.9 2.0 2.0 1 +1993 4 2 3.6 2.7 2.7 1 +1993 4 3 2.7 1.8 1.8 1 +1993 4 4 2.0 1.1 1.1 1 +1993 4 5 2.2 1.3 1.3 1 +1993 4 6 3.4 2.6 2.6 1 +1993 4 7 3.6 2.8 2.8 1 +1993 4 8 0.9 0.1 0.1 1 +1993 4 9 -0.6 -1.4 -1.4 1 +1993 4 10 0.7 -0.1 -0.1 1 +1993 4 11 1.3 0.5 0.5 1 +1993 4 12 1.4 0.6 0.6 1 +1993 4 13 2.8 2.0 2.0 1 +1993 4 14 4.2 3.4 3.4 1 +1993 4 15 3.0 2.2 2.2 1 +1993 4 16 4.3 3.5 3.5 1 +1993 4 17 6.3 5.5 5.5 1 +1993 4 18 5.6 4.7 4.7 1 +1993 4 19 3.3 2.4 2.4 1 +1993 4 20 2.3 1.4 1.4 1 +1993 4 21 4.9 4.0 4.0 1 +1993 4 22 9.7 8.8 8.8 1 +1993 4 23 11.4 10.4 10.4 1 +1993 4 24 12.9 11.9 11.9 1 +1993 4 25 14.7 13.7 13.7 1 +1993 4 26 16.6 15.6 15.6 1 +1993 4 27 19.3 18.3 18.3 1 +1993 4 28 12.8 11.8 11.8 1 +1993 4 29 10.3 9.2 9.2 1 +1993 4 30 12.9 11.8 11.8 1 +1993 5 1 12.9 11.8 11.8 1 +1993 5 2 14.4 13.3 13.3 1 +1993 5 3 14.2 13.1 13.1 1 +1993 5 4 11.4 10.2 10.2 1 +1993 5 5 9.6 8.4 8.4 1 +1993 5 6 11.6 10.4 10.4 1 +1993 5 7 14.7 13.5 13.5 1 +1993 5 8 16.2 15.0 15.0 1 +1993 5 9 12.8 11.5 11.5 1 +1993 5 10 13.6 12.3 12.3 1 +1993 5 11 15.1 13.8 13.8 1 +1993 5 12 16.1 14.8 14.8 1 +1993 5 13 12.3 11.0 11.0 1 +1993 5 14 15.5 14.1 14.1 1 +1993 5 15 18.4 17.0 17.0 1 +1993 5 16 15.1 13.7 13.7 1 +1993 5 17 13.9 12.5 12.5 1 +1993 5 18 15.9 14.6 14.6 1 +1993 5 19 16.2 14.9 14.9 1 +1993 5 20 19.0 17.7 17.7 1 +1993 5 21 18.1 16.8 16.8 1 +1993 5 22 15.8 14.5 14.5 1 +1993 5 23 18.2 16.9 16.9 1 +1993 5 24 18.5 17.2 17.2 1 +1993 5 25 8.1 6.8 6.8 1 +1993 5 26 9.0 7.7 7.7 1 +1993 5 27 11.0 9.7 9.7 1 +1993 5 28 9.5 8.2 8.2 1 +1993 5 29 12.8 11.6 11.6 1 +1993 5 30 9.9 8.7 8.7 1 +1993 5 31 11.3 10.1 10.1 1 +1993 6 1 12.4 11.2 11.2 1 +1993 6 2 12.6 11.4 11.4 1 +1993 6 3 9.9 8.7 8.7 1 +1993 6 4 12.6 11.4 11.4 1 +1993 6 5 16.5 15.3 15.3 1 +1993 6 6 15.0 13.8 13.8 1 +1993 6 7 12.9 11.7 11.7 1 +1993 6 8 12.2 11.0 11.0 1 +1993 6 9 16.9 15.8 15.8 1 +1993 6 10 18.9 17.8 17.8 1 +1993 6 11 12.5 11.4 11.4 1 +1993 6 12 9.4 8.3 8.3 1 +1993 6 13 9.4 8.3 8.3 1 +1993 6 14 11.2 10.1 10.1 1 +1993 6 15 10.8 9.7 9.7 1 +1993 6 16 12.6 11.5 11.5 1 +1993 6 17 12.8 11.7 11.7 1 +1993 6 18 12.5 11.4 11.4 1 +1993 6 19 15.1 14.0 14.0 1 +1993 6 20 15.0 13.9 13.9 1 +1993 6 21 13.2 12.1 12.1 1 +1993 6 22 11.8 10.7 10.7 1 +1993 6 23 13.3 12.2 12.2 1 +1993 6 24 13.5 12.4 12.4 1 +1993 6 25 11.6 10.5 10.5 1 +1993 6 26 14.6 13.5 13.5 1 +1993 6 27 16.2 15.1 15.1 1 +1993 6 28 15.0 13.9 13.9 1 +1993 6 29 14.4 13.3 13.3 1 +1993 6 30 15.6 14.6 14.6 1 +1993 7 1 19.4 18.4 18.4 1 +1993 7 2 19.3 18.3 18.3 1 +1993 7 3 15.6 14.6 14.6 1 +1993 7 4 17.4 16.4 16.4 1 +1993 7 5 16.5 15.5 15.5 1 +1993 7 6 15.6 14.6 14.6 1 +1993 7 7 14.2 13.2 13.2 1 +1993 7 8 15.9 14.9 14.9 1 +1993 7 9 16.2 15.2 15.2 1 +1993 7 10 18.9 17.9 17.9 1 +1993 7 11 15.1 14.1 14.1 1 +1993 7 12 16.2 15.2 15.2 1 +1993 7 13 15.1 14.1 14.1 1 +1993 7 14 16.9 15.9 15.9 1 +1993 7 15 16.4 15.4 15.4 1 +1993 7 16 18.3 17.3 17.3 1 +1993 7 17 19.4 18.4 18.4 1 +1993 7 18 18.8 17.8 17.8 1 +1993 7 19 17.4 16.4 16.4 1 +1993 7 20 18.6 17.6 17.6 1 +1993 7 21 15.8 14.8 14.8 1 +1993 7 22 16.8 15.8 15.8 1 +1993 7 23 16.2 15.2 15.2 1 +1993 7 24 17.0 16.1 16.1 1 +1993 7 25 18.1 17.2 17.2 1 +1993 7 26 14.5 13.6 13.6 1 +1993 7 27 14.9 14.0 14.0 1 +1993 7 28 15.1 14.2 14.2 1 +1993 7 29 15.1 14.2 14.2 1 +1993 7 30 15.9 15.0 15.0 1 +1993 7 31 16.4 15.5 15.5 1 +1993 8 1 15.3 14.4 14.4 1 +1993 8 2 16.3 15.4 15.4 1 +1993 8 3 16.9 16.0 16.0 1 +1993 8 4 17.0 16.1 16.1 1 +1993 8 5 17.2 16.3 16.3 1 +1993 8 6 16.3 15.5 15.5 1 +1993 8 7 14.4 13.6 13.6 1 +1993 8 8 16.4 15.6 15.6 1 +1993 8 9 17.5 16.7 16.7 1 +1993 8 10 15.9 15.1 15.1 1 +1993 8 11 15.7 14.9 14.9 1 +1993 8 12 14.3 13.5 13.5 1 +1993 8 13 15.3 14.5 14.5 1 +1993 8 14 15.2 14.4 14.4 1 +1993 8 15 15.3 14.5 14.5 1 +1993 8 16 17.7 16.9 16.9 1 +1993 8 17 13.7 13.0 13.0 1 +1993 8 18 13.2 12.5 12.5 1 +1993 8 19 13.6 12.9 12.9 1 +1993 8 20 14.8 14.1 14.1 1 +1993 8 21 13.8 13.1 13.1 1 +1993 8 22 13.2 12.5 12.5 1 +1993 8 23 11.7 11.0 11.0 1 +1993 8 24 10.5 9.9 9.9 1 +1993 8 25 11.8 11.2 11.2 1 +1993 8 26 12.2 11.6 11.6 1 +1993 8 27 10.4 9.8 9.8 1 +1993 8 28 12.4 11.8 11.8 1 +1993 8 29 13.1 12.5 12.5 1 +1993 8 30 12.3 11.8 11.8 1 +1993 8 31 11.7 11.2 11.2 1 +1993 9 1 12.3 11.8 11.8 1 +1993 9 2 13.7 13.2 13.2 1 +1993 9 3 10.0 9.5 9.5 1 +1993 9 4 8.9 8.4 8.4 1 +1993 9 5 10.6 10.1 10.1 1 +1993 9 6 10.5 10.1 10.1 1 +1993 9 7 8.8 8.4 8.4 1 +1993 9 8 11.4 11.0 11.0 1 +1993 9 9 12.9 12.5 12.5 1 +1993 9 10 12.0 11.6 11.6 1 +1993 9 11 10.5 10.1 10.1 1 +1993 9 12 9.3 9.0 9.0 1 +1993 9 13 8.4 8.1 8.1 1 +1993 9 14 8.1 7.8 7.8 1 +1993 9 15 7.0 6.7 6.7 1 +1993 9 16 6.5 6.2 6.2 1 +1993 9 17 7.5 7.2 7.2 1 +1993 9 18 7.1 6.8 6.8 1 +1993 9 19 9.3 9.0 9.0 1 +1993 9 20 9.3 9.0 9.0 1 +1993 9 21 11.5 11.2 11.2 1 +1993 9 22 13.6 13.3 13.3 1 +1993 9 23 10.4 10.1 10.1 1 +1993 9 24 8.9 8.6 8.6 1 +1993 9 25 8.8 8.5 8.5 1 +1993 9 26 8.1 7.8 7.8 1 +1993 9 27 8.4 8.1 8.1 1 +1993 9 28 7.3 7.0 7.0 1 +1993 9 29 8.1 7.8 7.8 1 +1993 9 30 7.3 7.0 7.0 1 +1993 10 1 6.3 6.0 6.0 1 +1993 10 2 7.9 7.6 7.6 1 +1993 10 3 7.6 7.3 7.3 1 +1993 10 4 10.9 10.6 10.6 1 +1993 10 5 12.3 12.0 12.0 1 +1993 10 6 11.6 11.3 11.3 1 +1993 10 7 11.3 11.0 11.0 1 +1993 10 8 11.4 11.1 11.1 1 +1993 10 9 9.0 8.7 8.7 1 +1993 10 10 10.7 10.5 10.5 1 +1993 10 11 9.1 8.9 8.9 1 +1993 10 12 8.9 8.7 8.7 1 +1993 10 13 9.2 9.0 9.0 1 +1993 10 14 3.2 3.0 3.0 1 +1993 10 15 1.8 1.6 1.6 1 +1993 10 16 3.3 3.1 3.1 1 +1993 10 17 1.8 1.5 1.5 1 +1993 10 18 3.6 3.3 3.3 1 +1993 10 19 7.7 7.4 7.4 1 +1993 10 20 7.0 6.7 6.7 1 +1993 10 21 4.2 3.9 3.9 1 +1993 10 22 1.1 0.8 0.8 1 +1993 10 23 0.5 0.2 0.2 1 +1993 10 24 3.7 3.4 3.4 1 +1993 10 25 5.3 5.0 5.0 1 +1993 10 26 8.0 7.7 7.7 1 +1993 10 27 8.2 7.9 7.9 1 +1993 10 28 6.7 6.4 6.4 1 +1993 10 29 3.0 2.7 2.7 1 +1993 10 30 2.3 1.9 1.9 1 +1993 10 31 3.2 2.8 2.8 1 +1993 11 1 1.5 1.1 1.1 1 +1993 11 2 3.4 3.0 3.0 1 +1993 11 3 2.5 2.1 2.1 1 +1993 11 4 3.9 3.5 3.5 1 +1993 11 5 2.8 2.4 2.4 1 +1993 11 6 2.5 2.1 2.1 1 +1993 11 7 2.9 2.5 2.5 1 +1993 11 8 4.3 3.9 3.9 1 +1993 11 9 3.8 3.4 3.4 1 +1993 11 10 3.9 3.5 3.5 1 +1993 11 11 2.4 2.0 2.0 1 +1993 11 12 3.3 2.9 2.9 1 +1993 11 13 5.1 4.6 4.6 1 +1993 11 14 3.7 3.2 3.2 1 +1993 11 15 0.7 0.2 0.2 1 +1993 11 16 -0.7 -1.2 -1.2 1 +1993 11 17 1.3 0.8 0.8 1 +1993 11 18 1.8 1.3 1.3 1 +1993 11 19 1.1 0.6 0.6 1 +1993 11 20 -3.2 -3.7 -3.7 1 +1993 11 21 -3.2 -3.7 -3.7 1 +1993 11 22 -0.1 -0.6 -0.6 1 +1993 11 23 1.0 0.5 0.5 1 +1993 11 24 0.8 0.3 0.3 1 +1993 11 25 0.0 -0.5 -0.5 1 +1993 11 26 0.0 -0.5 -0.5 1 +1993 11 27 -0.6 -1.1 -1.1 1 +1993 11 28 -0.3 -0.8 -0.8 1 +1993 11 29 -1.4 -1.9 -1.9 1 +1993 11 30 -1.4 -1.9 -1.9 1 +1993 12 1 -0.4 -0.9 -0.9 1 +1993 12 2 1.1 0.6 0.6 1 +1993 12 3 1.4 0.9 0.9 1 +1993 12 4 3.8 3.3 3.3 1 +1993 12 5 3.2 2.6 2.6 1 +1993 12 6 2.1 1.5 1.5 1 +1993 12 7 4.9 4.3 4.3 1 +1993 12 8 3.4 2.8 2.8 1 +1993 12 9 -1.5 -2.1 -2.1 1 +1993 12 10 -2.7 -3.3 -3.3 1 +1993 12 11 1.1 0.5 0.5 1 +1993 12 12 -0.2 -0.8 -0.8 1 +1993 12 13 -4.0 -4.6 -4.6 1 +1993 12 14 -7.1 -7.7 -7.7 1 +1993 12 15 -2.0 -2.6 -2.6 1 +1993 12 16 2.1 1.5 1.5 1 +1993 12 17 2.0 1.4 1.4 1 +1993 12 18 -0.4 -1.0 -1.0 1 +1993 12 19 5.9 5.3 5.3 1 +1993 12 20 0.6 0.0 0.0 1 +1993 12 21 -0.4 -1.0 -1.0 1 +1993 12 22 0.6 0.0 0.0 1 +1993 12 23 -0.9 -1.5 -1.5 1 +1993 12 24 -1.0 -1.6 -1.6 1 +1993 12 25 -0.4 -1.1 -1.1 1 +1993 12 26 -2.2 -2.9 -2.9 1 +1993 12 27 -2.7 -3.4 -3.4 1 +1993 12 28 -3.4 -4.1 -4.1 1 +1993 12 29 1.0 0.3 0.3 1 +1993 12 30 1.2 0.5 0.5 1 +1993 12 31 0.2 -0.5 -0.5 1 +1994 1 1 -1.2 -1.9 -1.9 1 +1994 1 2 -3.0 -3.7 -3.7 1 +1994 1 3 -3.9 -4.6 -4.6 1 +1994 1 4 -2.8 -3.5 -3.5 1 +1994 1 5 0.3 -0.4 -0.4 1 +1994 1 6 1.2 0.5 0.5 1 +1994 1 7 1.7 1.0 1.0 1 +1994 1 8 2.4 1.7 1.7 1 +1994 1 9 -2.2 -2.9 -2.9 1 +1994 1 10 -1.6 -2.3 -2.3 1 +1994 1 11 -1.5 -2.3 -2.3 1 +1994 1 12 1.2 0.4 0.4 1 +1994 1 13 3.9 3.1 3.1 1 +1994 1 14 3.9 3.1 3.1 1 +1994 1 15 1.4 0.6 0.6 1 +1994 1 16 -6.1 -6.9 -6.9 1 +1994 1 17 -8.9 -9.7 -9.7 1 +1994 1 18 -8.4 -9.2 -9.2 1 +1994 1 19 -2.2 -3.0 -3.0 1 +1994 1 20 1.6 0.8 0.8 1 +1994 1 21 5.4 4.6 4.6 1 +1994 1 22 2.9 2.1 2.1 1 +1994 1 23 0.8 0.0 0.0 1 +1994 1 24 -1.5 -2.3 -2.3 1 +1994 1 25 -3.5 -4.3 -4.3 1 +1994 1 26 -0.4 -1.2 -1.2 1 +1994 1 27 0.6 -0.2 -0.2 1 +1994 1 28 -4.8 -5.6 -5.6 1 +1994 1 29 -10.4 -11.2 -11.2 1 +1994 1 30 -4.7 -5.5 -5.5 1 +1994 1 31 -2.2 -3.0 -3.0 1 +1994 2 1 -7.4 -8.2 -8.2 1 +1994 2 2 -5.4 -6.2 -6.2 1 +1994 2 3 -7.5 -8.3 -8.3 1 +1994 2 4 -8.5 -9.3 -9.3 1 +1994 2 5 -9.2 -10.0 -10.0 1 +1994 2 6 -5.3 -6.1 -6.1 1 +1994 2 7 -7.1 -7.9 -7.9 1 +1994 2 8 -4.5 -5.3 -5.3 1 +1994 2 9 -1.3 -2.1 -2.1 1 +1994 2 10 -2.7 -3.5 -3.5 1 +1994 2 11 -7.3 -8.1 -8.1 1 +1994 2 12 -8.4 -9.2 -9.2 1 +1994 2 13 -7.2 -8.0 -8.0 1 +1994 2 14 -8.5 -9.3 -9.3 1 +1994 2 15 -7.0 -7.9 -7.9 1 +1994 2 16 -6.2 -7.1 -7.1 1 +1994 2 17 -6.5 -7.4 -7.4 1 +1994 2 18 -5.8 -6.7 -6.7 1 +1994 2 19 -4.1 -5.0 -5.0 1 +1994 2 20 -5.6 -6.5 -6.5 1 +1994 2 21 -6.2 -7.1 -7.1 1 +1994 2 22 -3.8 -4.7 -4.7 1 +1994 2 23 -3.2 -4.1 -4.1 1 +1994 2 24 -6.7 -7.6 -7.6 1 +1994 2 25 -5.7 -6.6 -6.6 1 +1994 2 26 -5.6 -6.5 -6.5 1 +1994 2 27 -5.6 -6.5 -6.5 1 +1994 2 28 -7.4 -8.3 -8.3 1 +1994 3 1 -8.8 -9.7 -9.7 1 +1994 3 2 -7.2 -8.1 -8.1 1 +1994 3 3 -4.3 -5.2 -5.2 1 +1994 3 4 -1.8 -2.7 -2.7 1 +1994 3 5 0.7 -0.2 -0.2 1 +1994 3 6 1.6 0.7 0.7 1 +1994 3 7 2.5 1.6 1.6 1 +1994 3 8 2.9 2.0 2.0 1 +1994 3 9 5.6 4.7 4.7 1 +1994 3 10 3.7 2.8 2.8 1 +1994 3 11 3.7 2.8 2.8 1 +1994 3 12 3.4 2.5 2.5 1 +1994 3 13 1.2 0.2 0.2 1 +1994 3 14 0.7 -0.3 -0.3 1 +1994 3 15 1.8 0.8 0.8 1 +1994 3 16 2.1 1.1 1.1 1 +1994 3 17 1.0 0.1 0.1 1 +1994 3 18 -0.1 -1.0 -1.0 1 +1994 3 19 -1.0 -1.9 -1.9 1 +1994 3 20 -1.0 -1.9 -1.9 1 +1994 3 21 -0.7 -1.6 -1.6 1 +1994 3 22 0.3 -0.6 -0.6 1 +1994 3 23 3.0 2.1 2.1 1 +1994 3 24 2.7 1.8 1.8 1 +1994 3 25 0.1 -0.8 -0.8 1 +1994 3 26 -3.0 -3.9 -3.9 1 +1994 3 27 -0.9 -1.8 -1.8 1 +1994 3 28 2.4 1.5 1.5 1 +1994 3 29 2.6 1.7 1.7 1 +1994 3 30 5.6 4.7 4.7 1 +1994 3 31 6.1 5.2 5.2 1 +1994 4 1 4.6 3.7 3.7 1 +1994 4 2 7.1 6.2 6.2 1 +1994 4 3 6.8 5.9 5.9 1 +1994 4 4 4.3 3.4 3.4 1 +1994 4 5 3.1 2.2 2.2 1 +1994 4 6 4.9 4.1 4.1 1 +1994 4 7 2.1 1.3 1.3 1 +1994 4 8 5.0 4.2 4.2 1 +1994 4 9 5.2 4.4 4.4 1 +1994 4 10 4.4 3.6 3.6 1 +1994 4 11 6.6 5.8 5.8 1 +1994 4 12 7.7 6.9 6.9 1 +1994 4 13 6.7 5.9 5.9 1 +1994 4 14 4.2 3.4 3.4 1 +1994 4 15 3.6 2.8 2.8 1 +1994 4 16 7.2 6.4 6.4 1 +1994 4 17 4.1 3.3 3.3 1 +1994 4 18 3.0 2.1 2.1 1 +1994 4 19 3.2 2.3 2.3 1 +1994 4 20 5.6 4.7 4.7 1 +1994 4 21 6.4 5.5 5.5 1 +1994 4 22 8.6 7.7 7.7 1 +1994 4 23 11.4 10.4 10.4 1 +1994 4 24 11.8 10.8 10.8 1 +1994 4 25 10.0 9.0 9.0 1 +1994 4 26 9.9 8.9 8.9 1 +1994 4 27 12.6 11.6 11.6 1 +1994 4 28 13.7 12.7 12.7 1 +1994 4 29 13.6 12.5 12.5 1 +1994 4 30 7.7 6.6 6.6 1 +1994 5 1 5.7 4.6 4.6 1 +1994 5 2 6.0 4.9 4.9 1 +1994 5 3 7.5 6.4 6.4 1 +1994 5 4 8.0 6.8 6.8 1 +1994 5 5 8.2 7.0 7.0 1 +1994 5 6 10.6 9.4 9.4 1 +1994 5 7 12.6 11.4 11.4 1 +1994 5 8 12.8 11.6 11.6 1 +1994 5 9 13.4 12.1 12.1 1 +1994 5 10 14.4 13.1 13.1 1 +1994 5 11 13.8 12.5 12.5 1 +1994 5 12 11.2 9.9 9.9 1 +1994 5 13 7.3 6.0 6.0 1 +1994 5 14 11.1 9.7 9.7 1 +1994 5 15 11.4 10.0 10.0 1 +1994 5 16 8.8 7.4 7.4 1 +1994 5 17 7.8 6.4 6.4 1 +1994 5 18 8.1 6.8 6.8 1 +1994 5 19 8.5 7.2 7.2 1 +1994 5 20 9.4 8.1 8.1 1 +1994 5 21 7.6 6.3 6.3 1 +1994 5 22 10.0 8.7 8.7 1 +1994 5 23 12.2 10.9 10.9 1 +1994 5 24 11.5 10.2 10.2 1 +1994 5 25 13.1 11.8 11.8 1 +1994 5 26 7.3 6.0 6.0 1 +1994 5 27 8.3 7.0 7.0 1 +1994 5 28 10.1 8.8 8.8 1 +1994 5 29 9.2 8.0 8.0 1 +1994 5 30 10.1 8.9 8.9 1 +1994 5 31 10.8 9.6 9.6 1 +1994 6 1 12.0 10.8 10.8 1 +1994 6 2 15.0 13.8 13.8 1 +1994 6 3 12.3 11.1 11.1 1 +1994 6 4 11.9 10.7 10.7 1 +1994 6 5 12.9 11.7 11.7 1 +1994 6 6 13.4 12.2 12.2 1 +1994 6 7 13.1 11.9 11.9 1 +1994 6 8 14.7 13.5 13.5 1 +1994 6 9 10.9 9.8 9.8 1 +1994 6 10 13.7 12.6 12.6 1 +1994 6 11 15.1 14.0 14.0 1 +1994 6 12 16.6 15.5 15.5 1 +1994 6 13 15.7 14.6 14.6 1 +1994 6 14 19.1 18.0 18.0 1 +1994 6 15 12.1 11.0 11.0 1 +1994 6 16 9.0 7.9 7.9 1 +1994 6 17 10.4 9.3 9.3 1 +1994 6 18 12.6 11.5 11.5 1 +1994 6 19 13.2 12.1 12.1 1 +1994 6 20 13.2 12.1 12.1 1 +1994 6 21 16.5 15.4 15.4 1 +1994 6 22 14.4 13.3 13.3 1 +1994 6 23 11.7 10.6 10.6 1 +1994 6 24 11.7 10.6 10.6 1 +1994 6 25 15.9 14.8 14.8 1 +1994 6 26 15.8 14.7 14.7 1 +1994 6 27 18.4 17.3 17.3 1 +1994 6 28 19.6 18.5 18.5 1 +1994 6 29 21.1 20.0 20.0 1 +1994 6 30 18.0 17.0 17.0 1 +1994 7 1 16.4 15.4 15.4 1 +1994 7 2 18.4 17.4 17.4 1 +1994 7 3 21.6 20.6 20.6 1 +1994 7 4 17.5 16.5 16.5 1 +1994 7 5 16.0 15.0 15.0 1 +1994 7 6 17.8 16.8 16.8 1 +1994 7 7 19.8 18.8 18.8 1 +1994 7 8 20.4 19.4 19.4 1 +1994 7 9 22.1 21.1 21.1 1 +1994 7 10 22.7 21.7 21.7 1 +1994 7 11 24.0 23.0 23.0 1 +1994 7 12 25.4 24.4 24.4 1 +1994 7 13 25.8 24.8 24.8 1 +1994 7 14 26.6 25.6 25.6 1 +1994 7 15 25.7 24.7 24.7 1 +1994 7 16 21.1 20.1 20.1 1 +1994 7 17 16.5 15.5 15.5 1 +1994 7 18 17.0 16.0 16.0 1 +1994 7 19 19.1 18.1 18.1 1 +1994 7 20 20.6 19.6 19.6 1 +1994 7 21 19.7 18.7 18.7 1 +1994 7 22 21.9 20.9 20.9 1 +1994 7 23 23.2 22.2 22.2 1 +1994 7 24 20.7 19.8 19.8 1 +1994 7 25 20.9 20.0 20.0 1 +1994 7 26 23.1 22.2 22.2 1 +1994 7 27 26.0 25.1 25.1 1 +1994 7 28 27.2 26.3 26.3 1 +1994 7 29 26.7 25.8 25.8 1 +1994 7 30 21.9 21.0 21.0 1 +1994 7 31 21.7 20.8 20.8 1 +1994 8 1 24.2 23.3 23.3 1 +1994 8 2 21.5 20.6 20.6 1 +1994 8 3 23.5 22.6 22.6 1 +1994 8 4 24.2 23.3 23.3 1 +1994 8 5 25.3 24.4 24.4 1 +1994 8 6 20.2 19.4 19.4 1 +1994 8 7 17.1 16.3 16.3 1 +1994 8 8 17.7 16.9 16.9 1 +1994 8 9 19.3 18.5 18.5 1 +1994 8 10 18.4 17.6 17.6 1 +1994 8 11 18.6 17.8 17.8 1 +1994 8 12 16.8 16.0 16.0 1 +1994 8 13 17.8 17.0 17.0 1 +1994 8 14 17.0 16.2 16.2 1 +1994 8 15 15.7 14.9 14.9 1 +1994 8 16 15.2 14.4 14.4 1 +1994 8 17 15.5 14.8 14.8 1 +1994 8 18 16.0 15.3 15.3 1 +1994 8 19 14.6 13.9 13.9 1 +1994 8 20 14.0 13.3 13.3 1 +1994 8 21 14.3 13.6 13.6 1 +1994 8 22 15.5 14.8 14.8 1 +1994 8 23 14.6 13.9 13.9 1 +1994 8 24 16.1 15.5 15.5 1 +1994 8 25 15.9 15.3 15.3 1 +1994 8 26 16.7 16.1 16.1 1 +1994 8 27 16.9 16.3 16.3 1 +1994 8 28 14.5 13.9 13.9 1 +1994 8 29 13.5 12.9 12.9 1 +1994 8 30 12.5 12.0 12.0 1 +1994 8 31 13.8 13.3 13.3 1 +1994 9 1 15.3 14.8 14.8 1 +1994 9 2 14.7 14.2 14.2 1 +1994 9 3 15.0 14.5 14.5 1 +1994 9 4 12.0 11.5 11.5 1 +1994 9 5 11.3 10.8 10.8 1 +1994 9 6 11.2 10.8 10.8 1 +1994 9 7 13.1 12.7 12.7 1 +1994 9 8 13.6 13.2 13.2 1 +1994 9 9 13.4 13.0 13.0 1 +1994 9 10 14.1 13.7 13.7 1 +1994 9 11 12.8 12.4 12.4 1 +1994 9 12 13.3 13.0 13.0 1 +1994 9 13 13.3 13.0 13.0 1 +1994 9 14 13.6 13.3 13.3 1 +1994 9 15 13.0 12.7 12.7 1 +1994 9 16 13.4 13.1 13.1 1 +1994 9 17 13.2 12.9 12.9 1 +1994 9 18 9.3 9.0 9.0 1 +1994 9 19 9.7 9.4 9.4 1 +1994 9 20 12.6 12.3 12.3 1 +1994 9 21 11.6 11.3 11.3 1 +1994 9 22 11.5 11.2 11.2 1 +1994 9 23 13.3 13.0 13.0 1 +1994 9 24 14.2 13.9 13.9 1 +1994 9 25 10.2 9.9 9.9 1 +1994 9 26 10.8 10.5 10.5 1 +1994 9 27 10.3 10.0 10.0 1 +1994 9 28 8.8 8.5 8.5 1 +1994 9 29 7.7 7.4 7.4 1 +1994 9 30 8.9 8.6 8.6 1 +1994 10 1 6.4 6.1 6.1 1 +1994 10 2 5.8 5.5 5.5 1 +1994 10 3 6.5 6.2 6.2 1 +1994 10 4 2.8 2.5 2.5 1 +1994 10 5 4.3 4.0 4.0 1 +1994 10 6 5.2 4.9 4.9 1 +1994 10 7 10.5 10.2 10.2 1 +1994 10 8 10.0 9.7 9.7 1 +1994 10 9 9.3 9.0 9.0 1 +1994 10 10 7.5 7.3 7.3 1 +1994 10 11 7.9 7.7 7.7 1 +1994 10 12 8.9 8.7 8.7 1 +1994 10 13 9.6 9.4 9.4 1 +1994 10 14 10.1 9.9 9.9 1 +1994 10 15 7.7 7.5 7.5 1 +1994 10 16 1.7 1.5 1.5 1 +1994 10 17 2.0 1.7 1.7 1 +1994 10 18 1.7 1.4 1.4 1 +1994 10 19 1.5 1.2 1.2 1 +1994 10 20 3.5 3.2 3.2 1 +1994 10 21 4.9 4.6 4.6 1 +1994 10 22 6.6 6.3 6.3 1 +1994 10 23 7.3 7.0 7.0 1 +1994 10 24 8.8 8.5 8.5 1 +1994 10 25 9.1 8.8 8.8 1 +1994 10 26 7.8 7.5 7.5 1 +1994 10 27 7.4 7.1 7.1 1 +1994 10 28 7.6 7.3 7.3 1 +1994 10 29 6.5 6.2 6.2 1 +1994 10 30 6.2 5.8 5.8 1 +1994 10 31 5.8 5.4 5.4 1 +1994 11 1 8.3 7.9 7.9 1 +1994 11 2 5.9 5.5 5.5 1 +1994 11 3 3.8 3.4 3.4 1 +1994 11 4 4.9 4.5 4.5 1 +1994 11 5 6.5 6.1 6.1 1 +1994 11 6 5.3 4.9 4.9 1 +1994 11 7 6.2 5.8 5.8 1 +1994 11 8 5.3 4.9 4.9 1 +1994 11 9 2.3 1.9 1.9 1 +1994 11 10 0.4 0.0 0.0 1 +1994 11 11 -2.3 -2.7 -2.7 1 +1994 11 12 -3.2 -3.6 -3.6 1 +1994 11 13 -1.6 -2.1 -2.1 1 +1994 11 14 3.9 3.4 3.4 1 +1994 11 15 7.6 7.1 7.1 1 +1994 11 16 2.3 1.8 1.8 1 +1994 11 17 1.2 0.7 0.7 1 +1994 11 18 -0.6 -1.1 -1.1 1 +1994 11 19 -1.0 -1.5 -1.5 1 +1994 11 20 5.3 4.8 4.8 1 +1994 11 21 4.4 3.9 3.9 1 +1994 11 22 5.0 4.5 4.5 1 +1994 11 23 10.0 9.5 9.5 1 +1994 11 24 7.2 6.7 6.7 1 +1994 11 25 2.7 2.2 2.2 1 +1994 11 26 2.1 1.6 1.6 1 +1994 11 27 3.2 2.7 2.7 1 +1994 11 28 5.2 4.7 4.7 1 +1994 11 29 3.2 2.7 2.7 1 +1994 11 30 0.0 -0.5 -0.5 1 +1994 12 1 2.4 1.9 1.9 1 +1994 12 2 3.5 3.0 3.0 1 +1994 12 3 1.1 0.6 0.6 1 +1994 12 4 3.7 3.2 3.2 1 +1994 12 5 4.9 4.3 4.3 1 +1994 12 6 5.2 4.6 4.6 1 +1994 12 7 4.6 4.0 4.0 1 +1994 12 8 4.3 3.7 3.7 1 +1994 12 9 5.3 4.7 4.7 1 +1994 12 10 4.3 3.7 3.7 1 +1994 12 11 5.3 4.7 4.7 1 +1994 12 12 1.2 0.6 0.6 1 +1994 12 13 -1.3 -1.9 -1.9 1 +1994 12 14 -1.6 -2.2 -2.2 1 +1994 12 15 -2.5 -3.1 -3.1 1 +1994 12 16 -1.3 -1.9 -1.9 1 +1994 12 17 0.2 -0.4 -0.4 1 +1994 12 18 2.4 1.8 1.8 1 +1994 12 19 3.2 2.6 2.6 1 +1994 12 20 3.3 2.7 2.7 1 +1994 12 21 2.0 1.4 1.4 1 +1994 12 22 -1.0 -1.6 -1.6 1 +1994 12 23 0.9 0.3 0.3 1 +1994 12 24 4.5 3.9 3.9 1 +1994 12 25 3.9 3.2 3.2 1 +1994 12 26 2.2 1.5 1.5 1 +1994 12 27 1.1 0.4 0.4 1 +1994 12 28 0.2 -0.5 -0.5 1 +1994 12 29 3.9 3.2 3.2 1 +1994 12 30 4.7 4.0 4.0 1 +1994 12 31 3.4 2.7 2.7 1 +1995 1 1 0.4 -0.3 -0.3 1 +1995 1 2 -0.8 -1.5 -1.5 1 +1995 1 3 -6.4 -7.1 -7.1 1 +1995 1 4 -4.2 -4.9 -4.9 1 +1995 1 5 -3.4 -4.1 -4.1 1 +1995 1 6 -1.2 -1.9 -1.9 1 +1995 1 7 -3.1 -3.8 -3.8 1 +1995 1 8 -1.7 -2.4 -2.4 1 +1995 1 9 -0.1 -0.8 -0.8 1 +1995 1 10 0.9 0.2 0.2 1 +1995 1 11 -0.6 -1.4 -1.4 1 +1995 1 12 -1.6 -2.4 -2.4 1 +1995 1 13 -5.5 -6.3 -6.3 1 +1995 1 14 1.2 0.4 0.4 1 +1995 1 15 1.8 1.0 1.0 1 +1995 1 16 1.5 0.7 0.7 1 +1995 1 17 2.9 2.1 2.1 1 +1995 1 18 2.8 2.0 2.0 1 +1995 1 19 0.2 -0.6 -0.6 1 +1995 1 20 0.7 -0.1 -0.1 1 +1995 1 21 0.4 -0.4 -0.4 1 +1995 1 22 0.6 -0.2 -0.2 1 +1995 1 23 0.5 -0.3 -0.3 1 +1995 1 24 -2.4 -3.2 -3.2 1 +1995 1 25 -2.4 -3.2 -3.2 1 +1995 1 26 -3.0 -3.8 -3.8 1 +1995 1 27 -5.9 -6.7 -6.7 1 +1995 1 28 -6.4 -7.2 -7.2 1 +1995 1 29 -4.6 -5.4 -5.4 1 +1995 1 30 -7.4 -8.2 -8.2 1 +1995 1 31 -7.6 -8.4 -8.4 1 +1995 2 1 1.4 0.6 0.6 1 +1995 2 2 1.7 0.9 0.9 1 +1995 2 3 -1.3 -2.1 -2.1 1 +1995 2 4 4.0 3.2 3.2 1 +1995 2 5 2.0 1.2 1.2 1 +1995 2 6 4.5 3.7 3.7 1 +1995 2 7 -0.5 -1.3 -1.3 1 +1995 2 8 -4.2 -5.0 -5.0 1 +1995 2 9 -4.1 -4.9 -4.9 1 +1995 2 10 -3.0 -3.8 -3.8 1 +1995 2 11 -4.2 -5.0 -5.0 1 +1995 2 12 0.1 -0.7 -0.7 1 +1995 2 13 3.2 2.4 2.4 1 +1995 2 14 3.2 2.4 2.4 1 +1995 2 15 2.6 1.8 1.8 1 +1995 2 16 3.0 2.1 2.1 1 +1995 2 17 2.4 1.5 1.5 1 +1995 2 18 1.3 0.4 0.4 1 +1995 2 19 0.9 0.0 0.0 1 +1995 2 20 3.8 2.9 2.9 1 +1995 2 21 1.5 0.6 0.6 1 +1995 2 22 1.6 0.7 0.7 1 +1995 2 23 3.4 2.5 2.5 1 +1995 2 24 2.4 1.5 1.5 1 +1995 2 25 0.0 -0.9 -0.9 1 +1995 2 26 -0.6 -1.5 -1.5 1 +1995 2 27 -1.7 -2.6 -2.6 1 +1995 2 28 4.3 3.4 3.4 1 +1995 3 1 5.0 4.1 4.1 1 +1995 3 2 2.6 1.7 1.7 1 +1995 3 3 2.1 1.2 1.2 1 +1995 3 4 2.5 1.6 1.6 1 +1995 3 5 2.1 1.2 1.2 1 +1995 3 6 1.2 0.3 0.3 1 +1995 3 7 3.6 2.7 2.7 1 +1995 3 8 1.2 0.3 0.3 1 +1995 3 9 0.8 -0.1 -0.1 1 +1995 3 10 2.4 1.5 1.5 1 +1995 3 11 2.0 1.1 1.1 1 +1995 3 12 3.5 2.6 2.6 1 +1995 3 13 3.0 2.0 2.0 1 +1995 3 14 -0.5 -1.5 -1.5 1 +1995 3 15 -0.9 -1.9 -1.9 1 +1995 3 16 0.7 -0.3 -0.3 1 +1995 3 17 2.1 1.2 1.2 1 +1995 3 18 2.7 1.8 1.8 1 +1995 3 19 2.6 1.7 1.7 1 +1995 3 20 2.1 1.2 1.2 1 +1995 3 21 1.7 0.8 0.8 1 +1995 3 22 2.9 2.0 2.0 1 +1995 3 23 6.6 5.7 5.7 1 +1995 3 24 6.9 6.0 6.0 1 +1995 3 25 4.1 3.2 3.2 1 +1995 3 26 3.3 2.4 2.4 1 +1995 3 27 -0.8 -1.7 -1.7 1 +1995 3 28 -1.8 -2.7 -2.7 1 +1995 3 29 0.9 0.0 0.0 1 +1995 3 30 0.5 -0.4 -0.4 1 +1995 3 31 2.3 1.4 1.4 1 +1995 4 1 5.3 4.4 4.4 1 +1995 4 2 3.8 2.9 2.9 1 +1995 4 3 2.7 1.8 1.8 1 +1995 4 4 2.9 2.0 2.0 1 +1995 4 5 2.5 1.6 1.6 1 +1995 4 6 2.6 1.8 1.8 1 +1995 4 7 0.4 -0.4 -0.4 1 +1995 4 8 1.2 0.4 0.4 1 +1995 4 9 1.4 0.6 0.6 1 +1995 4 10 2.1 1.3 1.3 1 +1995 4 11 4.4 3.6 3.6 1 +1995 4 12 5.1 4.3 4.3 1 +1995 4 13 5.9 5.1 5.1 1 +1995 4 14 7.1 6.3 6.3 1 +1995 4 15 6.9 6.1 6.1 1 +1995 4 16 5.8 5.0 5.0 1 +1995 4 17 2.9 2.1 2.1 1 +1995 4 18 2.5 1.6 1.6 1 +1995 4 19 4.1 3.2 3.2 1 +1995 4 20 1.9 1.0 1.0 1 +1995 4 21 5.1 4.2 4.2 1 +1995 4 22 6.0 5.1 5.1 1 +1995 4 23 11.3 10.3 10.3 1 +1995 4 24 11.4 10.4 10.4 1 +1995 4 25 8.1 7.1 7.1 1 +1995 4 26 5.3 4.3 4.3 1 +1995 4 27 2.8 1.8 1.8 1 +1995 4 28 0.7 -0.3 -0.3 1 +1995 4 29 0.9 -0.2 -0.2 1 +1995 4 30 2.8 1.7 1.7 1 +1995 5 1 4.4 3.3 3.3 1 +1995 5 2 8.2 7.1 7.1 1 +1995 5 3 12.1 11.0 11.0 1 +1995 5 4 12.9 11.7 11.7 1 +1995 5 5 13.1 11.9 11.9 1 +1995 5 6 10.0 8.8 8.8 1 +1995 5 7 5.8 4.6 4.6 1 +1995 5 8 5.7 4.5 4.5 1 +1995 5 9 5.3 4.0 4.0 1 +1995 5 10 5.3 4.0 4.0 1 +1995 5 11 4.2 2.9 2.9 1 +1995 5 12 3.0 1.7 1.7 1 +1995 5 13 5.1 3.8 3.8 1 +1995 5 14 1.8 0.4 0.4 1 +1995 5 15 3.8 2.4 2.4 1 +1995 5 16 5.8 4.4 4.4 1 +1995 5 17 7.7 6.3 6.3 1 +1995 5 18 7.7 6.4 6.4 1 +1995 5 19 8.2 6.9 6.9 1 +1995 5 20 11.0 9.7 9.7 1 +1995 5 21 10.4 9.1 9.1 1 +1995 5 22 7.8 6.5 6.5 1 +1995 5 23 6.9 5.6 5.6 1 +1995 5 24 10.7 9.4 9.4 1 +1995 5 25 12.6 11.3 11.3 1 +1995 5 26 10.4 9.1 9.1 1 +1995 5 27 16.1 14.8 14.8 1 +1995 5 28 16.6 15.3 15.3 1 +1995 5 29 18.6 17.4 17.4 1 +1995 5 30 18.6 17.4 17.4 1 +1995 5 31 20.4 19.2 19.2 1 +1995 6 1 17.7 16.5 16.5 1 +1995 6 2 18.9 17.7 17.7 1 +1995 6 3 17.7 16.5 16.5 1 +1995 6 4 16.3 15.1 15.1 1 +1995 6 5 17.1 15.9 15.9 1 +1995 6 6 18.6 17.4 17.4 1 +1995 6 7 17.3 16.1 16.1 1 +1995 6 8 15.8 14.6 14.6 1 +1995 6 9 15.9 14.8 14.8 1 +1995 6 10 13.9 12.8 12.8 1 +1995 6 11 14.8 13.7 13.7 1 +1995 6 12 11.3 10.2 10.2 1 +1995 6 13 12.4 11.3 11.3 1 +1995 6 14 17.4 16.3 16.3 1 +1995 6 15 16.5 15.4 15.4 1 +1995 6 16 17.6 16.5 16.5 1 +1995 6 17 15.2 14.1 14.1 1 +1995 6 18 13.5 12.4 12.4 1 +1995 6 19 12.5 11.4 11.4 1 +1995 6 20 17.1 16.0 16.0 1 +1995 6 21 17.4 16.3 16.3 1 +1995 6 22 12.3 11.2 11.2 1 +1995 6 23 14.2 13.1 13.1 1 +1995 6 24 18.4 17.3 17.3 1 +1995 6 25 19.2 18.1 18.1 1 +1995 6 26 19.7 18.6 18.6 1 +1995 6 27 16.3 15.2 15.2 1 +1995 6 28 18.2 17.1 17.1 1 +1995 6 29 15.6 14.5 14.5 1 +1995 6 30 13.5 12.5 12.5 1 +1995 7 1 12.6 11.6 11.6 1 +1995 7 2 15.0 14.0 14.0 1 +1995 7 3 15.8 14.8 14.8 1 +1995 7 4 13.8 12.8 12.8 1 +1995 7 5 15.2 14.2 14.2 1 +1995 7 6 14.8 13.8 13.8 1 +1995 7 7 19.4 18.4 18.4 1 +1995 7 8 19.8 18.8 18.8 1 +1995 7 9 15.5 14.5 14.5 1 +1995 7 10 14.9 13.9 13.9 1 +1995 7 11 19.7 18.7 18.7 1 +1995 7 12 20.8 19.8 19.8 1 +1995 7 13 22.3 21.3 21.3 1 +1995 7 14 20.1 19.1 19.1 1 +1995 7 15 18.0 17.0 17.0 1 +1995 7 16 17.6 16.6 16.6 1 +1995 7 17 15.5 14.5 14.5 1 +1995 7 18 17.8 16.8 16.8 1 +1995 7 19 16.9 15.9 15.9 1 +1995 7 20 17.5 16.5 16.5 1 +1995 7 21 19.9 18.9 18.9 1 +1995 7 22 18.1 17.1 17.1 1 +1995 7 23 17.3 16.3 16.3 1 +1995 7 24 16.6 15.7 15.7 1 +1995 7 25 16.1 15.2 15.2 1 +1995 7 26 17.9 17.0 17.0 1 +1995 7 27 20.2 19.3 19.3 1 +1995 7 28 20.4 19.5 19.5 1 +1995 7 29 23.2 22.3 22.3 1 +1995 7 30 22.8 21.9 21.9 1 +1995 7 31 21.8 20.9 20.9 1 +1995 8 1 23.0 22.1 22.1 1 +1995 8 2 21.9 21.0 21.0 1 +1995 8 3 21.3 20.4 20.4 1 +1995 8 4 17.3 16.4 16.4 1 +1995 8 5 19.6 18.7 18.7 1 +1995 8 6 23.4 22.6 22.6 1 +1995 8 7 15.1 14.3 14.3 1 +1995 8 8 13.8 13.0 13.0 1 +1995 8 9 18.2 17.4 17.4 1 +1995 8 10 18.7 17.9 17.9 1 +1995 8 11 18.1 17.3 17.3 1 +1995 8 12 18.7 17.9 17.9 1 +1995 8 13 22.1 21.3 21.3 1 +1995 8 14 19.3 18.5 18.5 1 +1995 8 15 17.8 17.0 17.0 1 +1995 8 16 19.6 18.8 18.8 1 +1995 8 17 23.0 22.3 22.3 1 +1995 8 18 24.1 23.4 23.4 1 +1995 8 19 22.2 21.5 21.5 1 +1995 8 20 17.4 16.7 16.7 1 +1995 8 21 18.9 18.2 18.2 1 +1995 8 22 22.2 21.5 21.5 1 +1995 8 23 22.7 22.0 22.0 1 +1995 8 24 20.0 19.4 19.4 1 +1995 8 25 18.7 18.1 18.1 1 +1995 8 26 14.4 13.8 13.8 1 +1995 8 27 14.3 13.7 13.7 1 +1995 8 28 11.0 10.4 10.4 1 +1995 8 29 10.2 9.6 9.6 1 +1995 8 30 10.3 9.8 9.8 1 +1995 8 31 13.2 12.7 12.7 1 +1995 9 1 13.2 12.7 12.7 1 +1995 9 2 15.6 15.1 15.1 1 +1995 9 3 15.6 15.1 15.1 1 +1995 9 4 14.2 13.7 13.7 1 +1995 9 5 14.1 13.6 13.6 1 +1995 9 6 17.0 16.6 16.6 1 +1995 9 7 14.9 14.5 14.5 1 +1995 9 8 14.6 14.2 14.2 1 +1995 9 9 12.8 12.4 12.4 1 +1995 9 10 11.1 10.7 10.7 1 +1995 9 11 10.9 10.5 10.5 1 +1995 9 12 12.6 12.3 12.3 1 +1995 9 13 12.9 12.6 12.6 1 +1995 9 14 13.7 13.4 13.4 1 +1995 9 15 12.3 12.0 12.0 1 +1995 9 16 11.9 11.6 11.6 1 +1995 9 17 11.6 11.3 11.3 1 +1995 9 18 11.1 10.8 10.8 1 +1995 9 19 10.5 10.2 10.2 1 +1995 9 20 11.8 11.5 11.5 1 +1995 9 21 12.1 11.8 11.8 1 +1995 9 22 13.0 12.7 12.7 1 +1995 9 23 13.7 13.4 13.4 1 +1995 9 24 12.8 12.5 12.5 1 +1995 9 25 13.4 13.1 13.1 1 +1995 9 26 13.6 13.3 13.3 1 +1995 9 27 11.0 10.7 10.7 1 +1995 9 28 8.8 8.5 8.5 1 +1995 9 29 7.6 7.3 7.3 1 +1995 9 30 6.2 5.9 5.9 1 +1995 10 1 5.4 5.1 5.1 1 +1995 10 2 7.8 7.5 7.5 1 +1995 10 3 11.5 11.2 11.2 1 +1995 10 4 12.5 12.2 12.2 1 +1995 10 5 13.7 13.4 13.4 1 +1995 10 6 12.9 12.6 12.6 1 +1995 10 7 12.1 11.8 11.8 1 +1995 10 8 12.1 11.8 11.8 1 +1995 10 9 15.7 15.4 15.4 1 +1995 10 10 14.8 14.6 14.6 1 +1995 10 11 11.9 11.7 11.7 1 +1995 10 12 10.8 10.6 10.6 1 +1995 10 13 12.1 11.9 11.9 1 +1995 10 14 7.1 6.9 6.9 1 +1995 10 15 8.3 8.1 8.1 1 +1995 10 16 11.9 11.7 11.7 1 +1995 10 17 12.8 12.5 12.5 1 +1995 10 18 10.2 9.9 9.9 1 +1995 10 19 12.0 11.7 11.7 1 +1995 10 20 8.2 7.9 7.9 1 +1995 10 21 4.9 4.6 4.6 1 +1995 10 22 4.7 4.4 4.4 1 +1995 10 23 8.2 7.9 7.9 1 +1995 10 24 9.1 8.8 8.8 1 +1995 10 25 9.2 8.9 8.9 1 +1995 10 26 10.1 9.8 9.8 1 +1995 10 27 11.6 11.3 11.3 1 +1995 10 28 8.3 8.0 8.0 1 +1995 10 29 5.2 4.9 4.9 1 +1995 10 30 3.6 3.2 3.2 1 +1995 10 31 2.4 2.0 2.0 1 +1995 11 1 0.7 0.3 0.3 1 +1995 11 2 -0.1 -0.5 -0.5 1 +1995 11 3 -0.6 -1.0 -1.0 1 +1995 11 4 -1.9 -2.3 -2.3 1 +1995 11 5 -3.2 -3.6 -3.6 1 +1995 11 6 2.4 2.0 2.0 1 +1995 11 7 -1.5 -1.9 -1.9 1 +1995 11 8 -0.7 -1.1 -1.1 1 +1995 11 9 3.3 2.9 2.9 1 +1995 11 10 2.5 2.1 2.1 1 +1995 11 11 0.6 0.2 0.2 1 +1995 11 12 -1.1 -1.5 -1.5 1 +1995 11 13 1.6 1.1 1.1 1 +1995 11 14 1.0 0.5 0.5 1 +1995 11 15 3.2 2.7 2.7 1 +1995 11 16 -0.2 -0.7 -0.7 1 +1995 11 17 -2.4 -2.9 -2.9 1 +1995 11 18 -2.6 -3.1 -3.1 1 +1995 11 19 -2.2 -2.7 -2.7 1 +1995 11 20 -5.0 -5.5 -5.5 1 +1995 11 21 0.1 -0.4 -0.4 1 +1995 11 22 0.7 0.2 0.2 1 +1995 11 23 2.8 2.3 2.3 1 +1995 11 24 7.1 6.6 6.6 1 +1995 11 25 7.2 6.7 6.7 1 +1995 11 26 4.6 4.1 4.1 1 +1995 11 27 0.6 0.1 0.1 1 +1995 11 28 -2.8 -3.3 -3.3 1 +1995 11 29 -0.4 -0.9 -0.9 1 +1995 11 30 -2.1 -2.6 -2.6 1 +1995 12 1 -1.5 -2.0 -2.0 1 +1995 12 2 -2.6 -3.1 -3.1 1 +1995 12 3 0.0 -0.5 -0.5 1 +1995 12 4 -2.3 -2.8 -2.8 1 +1995 12 5 -4.9 -5.5 -5.5 1 +1995 12 6 -3.1 -3.7 -3.7 1 +1995 12 7 -0.7 -1.3 -1.3 1 +1995 12 8 1.6 1.0 1.0 1 +1995 12 9 0.1 -0.5 -0.5 1 +1995 12 10 0.1 -0.5 -0.5 1 +1995 12 11 0.2 -0.4 -0.4 1 +1995 12 12 0.6 0.0 0.0 1 +1995 12 13 -0.6 -1.2 -1.2 1 +1995 12 14 -1.9 -2.5 -2.5 1 +1995 12 15 0.9 0.3 0.3 1 +1995 12 16 -1.2 -1.8 -1.8 1 +1995 12 17 -1.2 -1.8 -1.8 1 +1995 12 18 -3.1 -3.7 -3.7 1 +1995 12 19 -5.7 -6.3 -6.3 1 +1995 12 20 -7.9 -8.5 -8.5 1 +1995 12 21 -8.4 -9.0 -9.0 1 +1995 12 22 -9.4 -10.0 -10.0 1 +1995 12 23 -4.2 -4.8 -4.8 1 +1995 12 24 -10.1 -10.7 -10.7 1 +1995 12 25 -12.9 -13.6 -13.6 1 +1995 12 26 -13.3 -14.0 -14.0 1 +1995 12 27 -11.9 -12.6 -12.6 1 +1995 12 28 -8.8 -9.5 -9.5 1 +1995 12 29 -7.0 -7.7 -7.7 1 +1995 12 30 -4.9 -5.6 -5.6 1 +1995 12 31 -7.7 -8.4 -8.4 1 +1996 1 1 -6.7 -7.4 -7.4 1 +1996 1 2 -11.0 -11.7 -11.7 1 +1996 1 3 -9.5 -10.2 -10.2 1 +1996 1 4 -8.5 -9.2 -9.2 1 +1996 1 5 -12.8 -13.5 -13.5 1 +1996 1 6 -5.7 -6.4 -6.4 1 +1996 1 7 -0.2 -0.9 -0.9 1 +1996 1 8 0.2 -0.5 -0.5 1 +1996 1 9 1.1 0.4 0.4 1 +1996 1 10 0.9 0.2 0.2 1 +1996 1 11 0.5 -0.3 -0.3 1 +1996 1 12 0.4 -0.4 -0.4 1 +1996 1 13 1.5 0.7 0.7 1 +1996 1 14 1.5 0.7 0.7 1 +1996 1 15 0.9 0.1 0.1 1 +1996 1 16 -0.7 -1.5 -1.5 1 +1996 1 17 -0.3 -1.1 -1.1 1 +1996 1 18 -0.4 -1.2 -1.2 1 +1996 1 19 -1.2 -2.0 -2.0 1 +1996 1 20 -2.4 -3.2 -3.2 1 +1996 1 21 -4.2 -5.0 -5.0 1 +1996 1 22 -3.0 -3.8 -3.8 1 +1996 1 23 -3.4 -4.2 -4.2 1 +1996 1 24 -4.9 -5.7 -5.7 1 +1996 1 25 -4.4 -5.2 -5.2 1 +1996 1 26 -6.8 -7.6 -7.6 1 +1996 1 27 -7.0 -7.8 -7.8 1 +1996 1 28 -3.2 -4.0 -4.0 1 +1996 1 29 -2.2 -3.0 -3.0 1 +1996 1 30 -3.5 -4.3 -4.3 1 +1996 1 31 -4.3 -5.1 -5.1 1 +1996 2 1 -5.4 -6.2 -6.2 1 +1996 2 2 -3.3 -4.1 -4.1 1 +1996 2 3 -3.4 -4.2 -4.2 1 +1996 2 4 -6.1 -6.9 -6.9 1 +1996 2 5 -11.3 -12.1 -12.1 1 +1996 2 6 -12.2 -13.0 -13.0 1 +1996 2 7 -9.6 -10.4 -10.4 1 +1996 2 8 -10.3 -11.1 -11.1 1 +1996 2 9 -9.1 -9.9 -9.9 1 +1996 2 10 -6.4 -7.2 -7.2 1 +1996 2 11 -6.2 -7.0 -7.0 1 +1996 2 12 -6.3 -7.1 -7.1 1 +1996 2 13 -6.9 -7.7 -7.7 1 +1996 2 14 -8.4 -9.2 -9.2 1 +1996 2 15 -1.4 -2.2 -2.2 1 +1996 2 16 0.4 -0.5 -0.5 1 +1996 2 17 -7.5 -8.4 -8.4 1 +1996 2 18 -11.0 -11.9 -11.9 1 +1996 2 19 -8.7 -9.6 -9.6 1 +1996 2 20 -9.2 -10.1 -10.1 1 +1996 2 21 -9.5 -10.4 -10.4 1 +1996 2 22 -8.1 -9.0 -9.0 1 +1996 2 23 -10.3 -11.2 -11.2 1 +1996 2 24 -5.9 -6.8 -6.8 1 +1996 2 25 -4.3 -5.2 -5.2 1 +1996 2 26 0.6 -0.3 -0.3 1 +1996 2 27 1.3 0.4 0.4 1 +1996 2 28 0.7 -0.2 -0.2 1 +1996 2 29 1.2 0.3 0.3 1 +1996 3 1 -0.2 -1.1 -1.1 1 +1996 3 2 -1.1 -2.0 -2.0 1 +1996 3 3 -3.0 -3.9 -3.9 1 +1996 3 4 -0.7 -1.6 -1.6 1 +1996 3 5 1.0 0.1 0.1 1 +1996 3 6 -0.8 -1.7 -1.7 1 +1996 3 7 -1.1 -2.0 -2.0 1 +1996 3 8 2.2 1.3 1.3 1 +1996 3 9 -0.6 -1.5 -1.5 1 +1996 3 10 -0.2 -1.1 -1.1 1 +1996 3 11 -1.2 -2.1 -2.1 1 +1996 3 12 -2.6 -3.5 -3.5 1 +1996 3 13 -1.7 -2.7 -2.7 1 +1996 3 14 -1.1 -2.1 -2.1 1 +1996 3 15 -2.0 -3.0 -3.0 1 +1996 3 16 0.1 -0.9 -0.9 1 +1996 3 17 -0.5 -1.4 -1.4 1 +1996 3 18 -1.5 -2.4 -2.4 1 +1996 3 19 -0.4 -1.3 -1.3 1 +1996 3 20 1.0 0.1 0.1 1 +1996 3 21 -3.2 -4.1 -4.1 1 +1996 3 22 -4.2 -5.1 -5.1 1 +1996 3 23 -1.0 -1.9 -1.9 1 +1996 3 24 0.3 -0.6 -0.6 1 +1996 3 25 1.2 0.3 0.3 1 +1996 3 26 0.8 -0.1 -0.1 1 +1996 3 27 0.3 -0.6 -0.6 1 +1996 3 28 1.6 0.7 0.7 1 +1996 3 29 0.5 -0.4 -0.4 1 +1996 3 30 -0.3 -1.2 -1.2 1 +1996 3 31 -0.2 -1.1 -1.1 1 +1996 4 1 0.4 -0.5 -0.5 1 +1996 4 2 0.0 -0.9 -0.9 1 +1996 4 3 2.6 1.7 1.7 1 +1996 4 4 4.2 3.3 3.3 1 +1996 4 5 5.4 4.5 4.5 1 +1996 4 6 7.5 6.7 6.7 1 +1996 4 7 8.0 7.2 7.2 1 +1996 4 8 7.9 7.1 7.1 1 +1996 4 9 9.8 9.0 9.0 1 +1996 4 10 2.5 1.7 1.7 1 +1996 4 11 -0.2 -1.0 -1.0 1 +1996 4 12 1.2 0.4 0.4 1 +1996 4 13 2.1 1.3 1.3 1 +1996 4 14 5.6 4.8 4.8 1 +1996 4 15 6.3 5.5 5.5 1 +1996 4 16 8.0 7.2 7.2 1 +1996 4 17 10.6 9.8 9.8 1 +1996 4 18 11.8 10.9 10.9 1 +1996 4 19 11.9 11.0 11.0 1 +1996 4 20 11.9 11.0 11.0 1 +1996 4 21 11.6 10.7 10.7 1 +1996 4 22 14.3 13.4 13.4 1 +1996 4 23 8.0 7.0 7.0 1 +1996 4 24 6.4 5.4 5.4 1 +1996 4 25 3.8 2.8 2.8 1 +1996 4 26 4.3 3.3 3.3 1 +1996 4 27 8.6 7.6 7.6 1 +1996 4 28 9.9 8.9 8.9 1 +1996 4 29 5.2 4.1 4.1 1 +1996 4 30 6.3 5.2 5.2 1 +1996 5 1 7.8 6.7 6.7 1 +1996 5 2 7.6 6.5 6.5 1 +1996 5 3 7.7 6.6 6.6 1 +1996 5 4 8.1 6.9 6.9 1 +1996 5 5 4.2 3.0 3.0 1 +1996 5 6 4.7 3.5 3.5 1 +1996 5 7 7.5 6.3 6.3 1 +1996 5 8 8.1 6.9 6.9 1 +1996 5 9 6.7 5.4 5.4 1 +1996 5 10 5.5 4.2 4.2 1 +1996 5 11 6.5 5.2 5.2 1 +1996 5 12 12.3 11.0 11.0 1 +1996 5 13 15.7 14.4 14.4 1 +1996 5 14 16.3 14.9 14.9 1 +1996 5 15 6.1 4.7 4.7 1 +1996 5 16 5.3 3.9 3.9 1 +1996 5 17 3.4 2.0 2.0 1 +1996 5 18 5.7 4.4 4.4 1 +1996 5 19 6.3 5.0 5.0 1 +1996 5 20 7.2 5.9 5.9 1 +1996 5 21 9.4 8.1 8.1 1 +1996 5 22 10.9 9.6 9.6 1 +1996 5 23 12.9 11.6 11.6 1 +1996 5 24 11.7 10.4 10.4 1 +1996 5 25 10.2 8.9 8.9 1 +1996 5 26 11.3 10.0 10.0 1 +1996 5 27 12.0 10.7 10.7 1 +1996 5 28 9.2 7.9 7.9 1 +1996 5 29 10.0 8.8 8.8 1 +1996 5 30 12.1 10.9 10.9 1 +1996 5 31 12.6 11.4 11.4 1 +1996 6 1 13.9 12.7 12.7 1 +1996 6 2 14.6 13.4 13.4 1 +1996 6 3 14.8 13.6 13.6 1 +1996 6 4 16.0 14.8 14.8 1 +1996 6 5 16.5 15.3 15.3 1 +1996 6 6 17.6 16.4 16.4 1 +1996 6 7 16.8 15.6 15.6 1 +1996 6 8 16.4 15.2 15.2 1 +1996 6 9 16.8 15.7 15.7 1 +1996 6 10 17.3 16.2 16.2 1 +1996 6 11 20.3 19.2 19.2 1 +1996 6 12 18.5 17.4 17.4 1 +1996 6 13 13.6 12.5 12.5 1 +1996 6 14 12.8 11.7 11.7 1 +1996 6 15 13.2 12.1 12.1 1 +1996 6 16 14.8 13.7 13.7 1 +1996 6 17 14.4 13.3 13.3 1 +1996 6 18 14.6 13.5 13.5 1 +1996 6 19 11.6 10.5 10.5 1 +1996 6 20 12.3 11.2 11.2 1 +1996 6 21 13.7 12.6 12.6 1 +1996 6 22 13.5 12.4 12.4 1 +1996 6 23 14.9 13.8 13.8 1 +1996 6 24 14.8 13.7 13.7 1 +1996 6 25 14.7 13.6 13.6 1 +1996 6 26 17.4 16.3 16.3 1 +1996 6 27 14.6 13.5 13.5 1 +1996 6 28 14.7 13.6 13.6 1 +1996 6 29 16.0 14.9 14.9 1 +1996 6 30 16.2 15.2 15.2 1 +1996 7 1 13.5 12.5 12.5 1 +1996 7 2 12.8 11.8 11.8 1 +1996 7 3 12.6 11.6 11.6 1 +1996 7 4 13.5 12.5 12.5 1 +1996 7 5 15.4 14.4 14.4 1 +1996 7 6 13.9 12.9 12.9 1 +1996 7 7 15.9 14.9 14.9 1 +1996 7 8 16.5 15.5 15.5 1 +1996 7 9 12.5 11.5 11.5 1 +1996 7 10 13.3 12.3 12.3 1 +1996 7 11 18.1 17.1 17.1 1 +1996 7 12 16.5 15.5 15.5 1 +1996 7 13 17.2 16.2 16.2 1 +1996 7 14 17.3 16.3 16.3 1 +1996 7 15 16.3 15.3 15.3 1 +1996 7 16 13.8 12.8 12.8 1 +1996 7 17 13.4 12.4 12.4 1 +1996 7 18 13.1 12.1 12.1 1 +1996 7 19 14.1 13.1 13.1 1 +1996 7 20 15.9 14.9 14.9 1 +1996 7 21 16.1 15.1 15.1 1 +1996 7 22 17.4 16.4 16.4 1 +1996 7 23 20.6 19.6 19.6 1 +1996 7 24 21.1 20.2 20.2 1 +1996 7 25 19.2 18.3 18.3 1 +1996 7 26 21.6 20.7 20.7 1 +1996 7 27 18.7 17.8 17.8 1 +1996 7 28 17.0 16.1 16.1 1 +1996 7 29 17.6 16.7 16.7 1 +1996 7 30 17.0 16.1 16.1 1 +1996 7 31 16.7 15.8 15.8 1 +1996 8 1 18.0 17.1 17.1 1 +1996 8 2 16.9 16.0 16.0 1 +1996 8 3 16.2 15.3 15.3 1 +1996 8 4 18.4 17.5 17.5 1 +1996 8 5 19.3 18.4 18.4 1 +1996 8 6 18.6 17.8 17.8 1 +1996 8 7 17.2 16.4 16.4 1 +1996 8 8 18.3 17.5 17.5 1 +1996 8 9 18.1 17.3 17.3 1 +1996 8 10 19.0 18.2 18.2 1 +1996 8 11 20.2 19.4 19.4 1 +1996 8 12 20.1 19.3 19.3 1 +1996 8 13 20.8 20.0 20.0 1 +1996 8 14 20.9 20.1 20.1 1 +1996 8 15 20.7 19.9 19.9 1 +1996 8 16 21.2 20.4 20.4 1 +1996 8 17 21.1 20.4 20.4 1 +1996 8 18 20.1 19.4 19.4 1 +1996 8 19 22.2 21.5 21.5 1 +1996 8 20 22.9 22.2 22.2 1 +1996 8 21 23.7 23.0 23.0 1 +1996 8 22 22.2 21.5 21.5 1 +1996 8 23 21.2 20.5 20.5 1 +1996 8 24 20.0 19.4 19.4 1 +1996 8 25 21.0 20.4 20.4 1 +1996 8 26 19.8 19.2 19.2 1 +1996 8 27 18.9 18.3 18.3 1 +1996 8 28 19.1 18.5 18.5 1 +1996 8 29 19.3 18.7 18.7 1 +1996 8 30 19.7 19.2 19.2 1 +1996 8 31 18.4 17.9 17.9 1 +1996 9 1 17.6 17.1 17.1 1 +1996 9 2 17.9 17.4 17.4 1 +1996 9 3 16.5 16.0 16.0 1 +1996 9 4 13.3 12.8 12.8 1 +1996 9 5 11.4 10.9 10.9 1 +1996 9 6 10.4 10.0 10.0 1 +1996 9 7 11.2 10.8 10.8 1 +1996 9 8 12.1 11.7 11.7 1 +1996 9 9 10.0 9.6 9.6 1 +1996 9 10 8.7 8.3 8.3 1 +1996 9 11 8.1 7.7 7.7 1 +1996 9 12 9.3 9.0 9.0 1 +1996 9 13 11.1 10.8 10.8 1 +1996 9 14 9.2 8.9 8.9 1 +1996 9 15 10.4 10.1 10.1 1 +1996 9 16 10.2 9.9 9.9 1 +1996 9 17 10.8 10.5 10.5 1 +1996 9 18 10.7 10.4 10.4 1 +1996 9 19 12.0 11.7 11.7 1 +1996 9 20 8.0 7.7 7.7 1 +1996 9 21 7.6 7.3 7.3 1 +1996 9 22 11.0 10.7 10.7 1 +1996 9 23 10.0 9.7 9.7 1 +1996 9 24 10.0 9.7 9.7 1 +1996 9 25 9.0 8.7 8.7 1 +1996 9 26 8.8 8.5 8.5 1 +1996 9 27 9.3 9.0 9.0 1 +1996 9 28 10.9 10.6 10.6 1 +1996 9 29 9.9 9.6 9.6 1 +1996 9 30 11.4 11.1 11.1 1 +1996 10 1 11.2 10.9 10.9 1 +1996 10 2 8.9 8.6 8.6 1 +1996 10 3 9.4 9.1 9.1 1 +1996 10 4 11.7 11.4 11.4 1 +1996 10 5 9.3 9.0 9.0 1 +1996 10 6 10.0 9.7 9.7 1 +1996 10 7 12.8 12.5 12.5 1 +1996 10 8 13.2 12.9 12.9 1 +1996 10 9 11.6 11.3 11.3 1 +1996 10 10 9.0 8.8 8.8 1 +1996 10 11 6.9 6.7 6.7 1 +1996 10 12 9.9 9.7 9.7 1 +1996 10 13 8.0 7.8 7.8 1 +1996 10 14 8.2 8.0 8.0 1 +1996 10 15 9.0 8.8 8.8 1 +1996 10 16 8.9 8.7 8.7 1 +1996 10 17 10.3 10.0 10.0 1 +1996 10 18 10.4 10.1 10.1 1 +1996 10 19 8.2 7.9 7.9 1 +1996 10 20 7.0 6.7 6.7 1 +1996 10 21 5.7 5.4 5.4 1 +1996 10 22 5.6 5.3 5.3 1 +1996 10 23 7.6 7.3 7.3 1 +1996 10 24 6.6 6.3 6.3 1 +1996 10 25 6.8 6.5 6.5 1 +1996 10 26 7.5 7.2 7.2 1 +1996 10 27 8.4 8.1 8.1 1 +1996 10 28 8.3 8.0 8.0 1 +1996 10 29 9.8 9.5 9.5 1 +1996 10 30 4.8 4.4 4.4 1 +1996 10 31 1.2 0.8 0.8 1 +1996 11 1 6.7 6.3 6.3 1 +1996 11 2 8.1 7.7 7.7 1 +1996 11 3 10.7 10.3 10.3 1 +1996 11 4 8.0 7.6 7.6 1 +1996 11 5 9.7 9.3 9.3 1 +1996 11 6 7.1 6.7 6.7 1 +1996 11 7 4.1 3.7 3.7 1 +1996 11 8 2.2 1.8 1.8 1 +1996 11 9 3.3 2.9 2.9 1 +1996 11 10 0.3 -0.1 -0.1 1 +1996 11 11 1.8 1.4 1.4 1 +1996 11 12 3.1 2.7 2.7 1 +1996 11 13 2.2 1.7 1.7 1 +1996 11 14 -2.2 -2.7 -2.7 1 +1996 11 15 3.7 3.2 3.2 1 +1996 11 16 6.7 6.2 6.2 1 +1996 11 17 5.5 5.0 5.0 1 +1996 11 18 4.4 3.9 3.9 1 +1996 11 19 6.6 6.1 6.1 1 +1996 11 20 4.4 3.9 3.9 1 +1996 11 21 5.7 5.2 5.2 1 +1996 11 22 2.7 2.2 2.2 1 +1996 11 23 2.7 2.2 2.2 1 +1996 11 24 0.6 0.1 0.1 1 +1996 11 25 0.9 0.4 0.4 1 +1996 11 26 0.4 -0.1 -0.1 1 +1996 11 27 -0.9 -1.4 -1.4 1 +1996 11 28 -0.4 -0.9 -0.9 1 +1996 11 29 0.1 -0.4 -0.4 1 +1996 11 30 1.1 0.6 0.6 1 +1996 12 1 2.0 1.5 1.5 1 +1996 12 2 2.8 2.3 2.3 1 +1996 12 3 3.9 3.4 3.4 1 +1996 12 4 4.8 4.3 4.3 1 +1996 12 5 4.9 4.3 4.3 1 +1996 12 6 4.4 3.8 3.8 1 +1996 12 7 -0.3 -0.9 -0.9 1 +1996 12 8 1.3 0.7 0.7 1 +1996 12 9 4.5 3.9 3.9 1 +1996 12 10 5.0 4.4 4.4 1 +1996 12 11 3.3 2.7 2.7 1 +1996 12 12 0.5 -0.1 -0.1 1 +1996 12 13 -4.5 -5.1 -5.1 1 +1996 12 14 -10.5 -11.1 -11.1 1 +1996 12 15 -10.5 -11.1 -11.1 1 +1996 12 16 -5.0 -5.6 -5.6 1 +1996 12 17 -5.2 -5.8 -5.8 1 +1996 12 18 -5.2 -5.8 -5.8 1 +1996 12 19 -8.8 -9.4 -9.4 1 +1996 12 20 -9.6 -10.2 -10.2 1 +1996 12 21 -5.5 -6.1 -6.1 1 +1996 12 22 -6.7 -7.3 -7.3 1 +1996 12 23 -9.0 -9.6 -9.6 1 +1996 12 24 -4.4 -5.0 -5.0 1 +1996 12 25 -9.3 -10.0 -10.0 1 +1996 12 26 -7.6 -8.3 -8.3 1 +1996 12 27 -0.8 -1.5 -1.5 1 +1996 12 28 -1.1 -1.8 -1.8 1 +1996 12 29 -1.9 -2.6 -2.6 1 +1996 12 30 -5.0 -5.7 -5.7 1 +1996 12 31 -6.0 -6.7 -6.7 1 +1997 1 1 -6.7 -7.4 -7.4 1 +1997 1 2 -7.0 -7.7 -7.7 1 +1997 1 3 -8.7 -9.4 -9.4 1 +1997 1 4 -7.0 -7.7 -7.7 1 +1997 1 5 -2.9 -3.6 -3.6 1 +1997 1 6 -4.7 -5.4 -5.4 1 +1997 1 7 -3.9 -4.6 -4.6 1 +1997 1 8 -4.3 -5.0 -5.0 1 +1997 1 9 -3.2 -3.9 -3.9 1 +1997 1 10 -7.0 -7.7 -7.7 1 +1997 1 11 -5.0 -5.8 -5.8 1 +1997 1 12 -5.4 -6.2 -6.2 1 +1997 1 13 3.6 2.8 2.8 1 +1997 1 14 4.5 3.7 3.7 1 +1997 1 15 4.3 3.5 3.5 1 +1997 1 16 3.7 2.9 2.9 1 +1997 1 17 -0.3 -1.1 -1.1 1 +1997 1 18 0.4 -0.4 -0.4 1 +1997 1 19 1.9 1.1 1.1 1 +1997 1 20 -2.5 -3.3 -3.3 1 +1997 1 21 0.4 -0.4 -0.4 1 +1997 1 22 0.4 -0.4 -0.4 1 +1997 1 23 0.0 -0.8 -0.8 1 +1997 1 24 -1.8 -2.6 -2.6 1 +1997 1 25 -4.2 -5.0 -5.0 1 +1997 1 26 0.2 -0.6 -0.6 1 +1997 1 27 0.4 -0.4 -0.4 1 +1997 1 28 0.7 -0.1 -0.1 1 +1997 1 29 3.8 3.0 3.0 1 +1997 1 30 2.5 1.7 1.7 1 +1997 1 31 0.3 -0.5 -0.5 1 +1997 2 1 -1.4 -2.2 -2.2 1 +1997 2 2 -2.2 -3.0 -3.0 1 +1997 2 3 -1.4 -2.2 -2.2 1 +1997 2 4 1.1 0.3 0.3 1 +1997 2 5 -1.0 -1.8 -1.8 1 +1997 2 6 -0.6 -1.4 -1.4 1 +1997 2 7 4.5 3.7 3.7 1 +1997 2 8 4.2 3.4 3.4 1 +1997 2 9 1.6 0.8 0.8 1 +1997 2 10 3.6 2.8 2.8 1 +1997 2 11 3.3 2.5 2.5 1 +1997 2 12 2.5 1.7 1.7 1 +1997 2 13 -1.2 -2.0 -2.0 1 +1997 2 14 -6.7 -7.5 -7.5 1 +1997 2 15 -10.5 -11.3 -11.3 1 +1997 2 16 -8.8 -9.7 -9.7 1 +1997 2 17 -6.3 -7.2 -7.2 1 +1997 2 18 -1.2 -2.1 -2.1 1 +1997 2 19 0.1 -0.8 -0.8 1 +1997 2 20 0.7 -0.2 -0.2 1 +1997 2 21 2.4 1.5 1.5 1 +1997 2 22 2.1 1.2 1.2 1 +1997 2 23 5.8 4.9 4.9 1 +1997 2 24 6.9 6.0 6.0 1 +1997 2 25 5.1 4.2 4.2 1 +1997 2 26 4.2 3.3 3.3 1 +1997 2 27 3.1 2.2 2.2 1 +1997 2 28 1.1 0.2 0.2 1 +1997 3 1 6.0 5.1 5.1 1 +1997 3 2 6.7 5.8 5.8 1 +1997 3 3 6.2 5.3 5.3 1 +1997 3 4 4.5 3.6 3.6 1 +1997 3 5 5.1 4.2 4.2 1 +1997 3 6 5.4 4.5 4.5 1 +1997 3 7 4.6 3.7 3.7 1 +1997 3 8 7.1 6.2 6.2 1 +1997 3 9 6.2 5.3 5.3 1 +1997 3 10 3.7 2.8 2.8 1 +1997 3 11 6.3 5.4 5.4 1 +1997 3 12 6.6 5.7 5.7 1 +1997 3 13 5.9 4.9 4.9 1 +1997 3 14 0.8 -0.2 -0.2 1 +1997 3 15 -0.4 -1.4 -1.4 1 +1997 3 16 -2.2 -3.2 -3.2 1 +1997 3 17 -2.7 -3.6 -3.6 1 +1997 3 18 -2.6 -3.5 -3.5 1 +1997 3 19 -3.6 -4.5 -4.5 1 +1997 3 20 -2.4 -3.3 -3.3 1 +1997 3 21 -2.6 -3.5 -3.5 1 +1997 3 22 -3.2 -4.1 -4.1 1 +1997 3 23 -2.2 -3.1 -3.1 1 +1997 3 24 -1.6 -2.5 -2.5 1 +1997 3 25 -0.2 -1.1 -1.1 1 +1997 3 26 0.2 -0.7 -0.7 1 +1997 3 27 6.1 5.2 5.2 1 +1997 3 28 3.9 3.0 3.0 1 +1997 3 29 2.8 1.9 1.9 1 +1997 3 30 4.8 3.9 3.9 1 +1997 3 31 9.2 8.3 8.3 1 +1997 4 1 9.6 8.7 8.7 1 +1997 4 2 7.9 7.0 7.0 1 +1997 4 3 6.9 6.0 6.0 1 +1997 4 4 2.9 2.0 2.0 1 +1997 4 5 1.5 0.6 0.6 1 +1997 4 6 -0.1 -0.9 -0.9 1 +1997 4 7 1.1 0.3 0.3 1 +1997 4 8 1.9 1.1 1.1 1 +1997 4 9 3.6 2.8 2.8 1 +1997 4 10 6.3 5.5 5.5 1 +1997 4 11 0.6 -0.2 -0.2 1 +1997 4 12 -1.3 -2.1 -2.1 1 +1997 4 13 5.4 4.6 4.6 1 +1997 4 14 2.7 1.9 1.9 1 +1997 4 15 0.4 -0.4 -0.4 1 +1997 4 16 4.0 3.2 3.2 1 +1997 4 17 5.8 5.0 5.0 1 +1997 4 18 2.7 1.8 1.8 1 +1997 4 19 2.0 1.1 1.1 1 +1997 4 20 1.9 1.0 1.0 1 +1997 4 21 4.3 3.4 3.4 1 +1997 4 22 4.6 3.7 3.7 1 +1997 4 23 3.0 2.0 2.0 1 +1997 4 24 2.7 1.7 1.7 1 +1997 4 25 4.0 3.0 3.0 1 +1997 4 26 5.0 4.0 4.0 1 +1997 4 27 8.3 7.3 7.3 1 +1997 4 28 9.2 8.2 8.2 1 +1997 4 29 5.9 4.8 4.8 1 +1997 4 30 6.5 5.4 5.4 1 +1997 5 1 9.3 8.2 8.2 1 +1997 5 2 12.3 11.2 11.2 1 +1997 5 3 7.7 6.6 6.6 1 +1997 5 4 6.2 5.0 5.0 1 +1997 5 5 3.2 2.0 2.0 1 +1997 5 6 6.5 5.3 5.3 1 +1997 5 7 7.0 5.8 5.8 1 +1997 5 8 8.7 7.5 7.5 1 +1997 5 9 6.5 5.2 5.2 1 +1997 5 10 7.3 6.0 6.0 1 +1997 5 11 10.2 8.9 8.9 1 +1997 5 12 13.3 12.0 12.0 1 +1997 5 13 14.4 13.1 13.1 1 +1997 5 14 14.0 12.6 12.6 1 +1997 5 15 14.1 12.7 12.7 1 +1997 5 16 12.5 11.1 11.1 1 +1997 5 17 12.8 11.4 11.4 1 +1997 5 18 13.6 12.3 12.3 1 +1997 5 19 8.8 7.5 7.5 1 +1997 5 20 6.1 4.8 4.8 1 +1997 5 21 6.8 5.5 5.5 1 +1997 5 22 7.8 6.5 6.5 1 +1997 5 23 7.9 6.6 6.6 1 +1997 5 24 9.9 8.6 8.6 1 +1997 5 25 9.7 8.4 8.4 1 +1997 5 26 10.5 9.2 9.2 1 +1997 5 27 9.8 8.5 8.5 1 +1997 5 28 10.0 8.7 8.7 1 +1997 5 29 8.0 6.8 6.8 1 +1997 5 30 8.3 7.1 7.1 1 +1997 5 31 10.4 9.2 9.2 1 +1997 6 1 13.3 12.1 12.1 1 +1997 6 2 15.8 14.6 14.6 1 +1997 6 3 14.2 13.0 13.0 1 +1997 6 4 12.9 11.7 11.7 1 +1997 6 5 16.1 14.9 14.9 1 +1997 6 6 17.3 16.1 16.1 1 +1997 6 7 18.3 17.1 17.1 1 +1997 6 8 18.9 17.7 17.7 1 +1997 6 9 18.9 17.8 17.8 1 +1997 6 10 20.1 19.0 19.0 1 +1997 6 11 18.6 17.5 17.5 1 +1997 6 12 20.2 19.1 19.1 1 +1997 6 13 20.6 19.5 19.5 1 +1997 6 14 17.8 16.7 16.7 1 +1997 6 15 17.6 16.5 16.5 1 +1997 6 16 13.5 12.4 12.4 1 +1997 6 17 10.0 8.9 8.9 1 +1997 6 18 13.0 11.9 11.9 1 +1997 6 19 14.3 13.2 13.2 1 +1997 6 20 15.8 14.7 14.7 1 +1997 6 21 14.7 13.6 13.6 1 +1997 6 22 14.4 13.3 13.3 1 +1997 6 23 16.2 15.1 15.1 1 +1997 6 24 16.3 15.2 15.2 1 +1997 6 25 13.2 12.1 12.1 1 +1997 6 26 14.2 13.1 13.1 1 +1997 6 27 15.5 14.4 14.4 1 +1997 6 28 17.4 16.3 16.3 1 +1997 6 29 18.2 17.1 17.1 1 +1997 6 30 19.9 18.9 18.9 1 +1997 7 1 22.7 21.7 21.7 1 +1997 7 2 23.3 22.3 22.3 1 +1997 7 3 20.3 19.3 19.3 1 +1997 7 4 21.4 20.4 20.4 1 +1997 7 5 21.6 20.6 20.6 1 +1997 7 6 20.6 19.6 19.6 1 +1997 7 7 23.1 22.1 22.1 1 +1997 7 8 19.2 18.2 18.2 1 +1997 7 9 16.4 15.4 15.4 1 +1997 7 10 15.1 14.1 14.1 1 +1997 7 11 14.3 13.3 13.3 1 +1997 7 12 15.4 14.4 14.4 1 +1997 7 13 16.0 15.0 15.0 1 +1997 7 14 18.5 17.5 17.5 1 +1997 7 15 20.2 19.2 19.2 1 +1997 7 16 19.3 18.3 18.3 1 +1997 7 17 17.7 16.7 16.7 1 +1997 7 18 17.9 16.9 16.9 1 +1997 7 19 18.9 17.9 17.9 1 +1997 7 20 21.2 20.2 20.2 1 +1997 7 21 21.6 20.6 20.6 1 +1997 7 22 22.7 21.7 21.7 1 +1997 7 23 23.9 22.9 22.9 1 +1997 7 24 22.5 21.6 21.6 1 +1997 7 25 20.0 19.1 19.1 1 +1997 7 26 18.7 17.8 17.8 1 +1997 7 27 20.5 19.6 19.6 1 +1997 7 28 17.8 16.9 16.9 1 +1997 7 29 16.5 15.6 15.6 1 +1997 7 30 19.6 18.7 18.7 1 +1997 7 31 20.0 19.1 19.1 1 +1997 8 1 19.7 18.8 18.8 1 +1997 8 2 19.9 19.0 19.0 1 +1997 8 3 21.2 20.3 20.3 1 +1997 8 4 20.6 19.7 19.7 1 +1997 8 5 19.8 18.9 18.9 1 +1997 8 6 20.7 19.9 19.9 1 +1997 8 7 21.6 20.8 20.8 1 +1997 8 8 22.5 21.7 21.7 1 +1997 8 9 23.3 22.5 22.5 1 +1997 8 10 23.6 22.8 22.8 1 +1997 8 11 19.2 18.4 18.4 1 +1997 8 12 21.5 20.7 20.7 1 +1997 8 13 21.0 20.2 20.2 1 +1997 8 14 18.1 17.3 17.3 1 +1997 8 15 16.0 15.2 15.2 1 +1997 8 16 17.4 16.6 16.6 1 +1997 8 17 22.1 21.4 21.4 1 +1997 8 18 21.4 20.7 20.7 1 +1997 8 19 22.8 22.1 22.1 1 +1997 8 20 23.8 23.1 23.1 1 +1997 8 21 23.8 23.1 23.1 1 +1997 8 22 22.5 21.8 21.8 1 +1997 8 23 21.3 20.6 20.6 1 +1997 8 24 20.6 20.0 20.0 1 +1997 8 25 20.3 19.7 19.7 1 +1997 8 26 23.3 22.7 22.7 1 +1997 8 27 23.8 23.2 23.2 1 +1997 8 28 23.3 22.7 22.7 1 +1997 8 29 22.2 21.6 21.6 1 +1997 8 30 21.4 20.9 20.9 1 +1997 8 31 21.8 21.3 21.3 1 +1997 9 1 21.1 20.6 20.6 1 +1997 9 2 20.5 20.0 20.0 1 +1997 9 3 18.9 18.4 18.4 1 +1997 9 4 19.5 19.0 19.0 1 +1997 9 5 17.1 16.6 16.6 1 +1997 9 6 15.9 15.5 15.5 1 +1997 9 7 13.9 13.5 13.5 1 +1997 9 8 15.4 15.0 15.0 1 +1997 9 9 12.3 11.9 11.9 1 +1997 9 10 12.5 12.1 12.1 1 +1997 9 11 11.9 11.5 11.5 1 +1997 9 12 13.3 13.0 13.0 1 +1997 9 13 13.6 13.3 13.3 1 +1997 9 14 11.6 11.3 11.3 1 +1997 9 15 12.2 11.9 11.9 1 +1997 9 16 15.1 14.8 14.8 1 +1997 9 17 14.8 14.5 14.5 1 +1997 9 18 8.9 8.6 8.6 1 +1997 9 19 9.1 8.8 8.8 1 +1997 9 20 8.4 8.1 8.1 1 +1997 9 21 11.0 10.7 10.7 1 +1997 9 22 12.5 12.2 12.2 1 +1997 9 23 9.5 9.2 9.2 1 +1997 9 24 9.9 9.6 9.6 1 +1997 9 25 14.6 14.3 14.3 1 +1997 9 26 12.6 12.3 12.3 1 +1997 9 27 9.5 9.2 9.2 1 +1997 9 28 8.7 8.4 8.4 1 +1997 9 29 9.8 9.5 9.5 1 +1997 9 30 9.1 8.8 8.8 1 +1997 10 1 6.9 6.6 6.6 1 +1997 10 2 7.8 7.5 7.5 1 +1997 10 3 8.7 8.4 8.4 1 +1997 10 4 8.9 8.6 8.6 1 +1997 10 5 6.4 6.1 6.1 1 +1997 10 6 7.4 7.1 7.1 1 +1997 10 7 9.3 9.0 9.0 1 +1997 10 8 11.6 11.3 11.3 1 +1997 10 9 8.5 8.2 8.2 1 +1997 10 10 8.5 8.2 8.2 1 +1997 10 11 7.2 7.0 7.0 1 +1997 10 12 6.2 6.0 6.0 1 +1997 10 13 3.1 2.9 2.9 1 +1997 10 14 3.6 3.4 3.4 1 +1997 10 15 3.1 2.9 2.9 1 +1997 10 16 3.8 3.6 3.6 1 +1997 10 17 4.5 4.2 4.2 1 +1997 10 18 10.1 9.8 9.8 1 +1997 10 19 9.3 9.0 9.0 1 +1997 10 20 2.7 2.4 2.4 1 +1997 10 21 2.4 2.1 2.1 1 +1997 10 22 3.5 3.2 3.2 1 +1997 10 23 -0.2 -0.5 -0.5 1 +1997 10 24 -0.7 -1.0 -1.0 1 +1997 10 25 -1.5 -1.8 -1.8 1 +1997 10 26 -0.8 -1.1 -1.1 1 +1997 10 27 -0.3 -0.6 -0.6 1 +1997 10 28 1.1 0.8 0.8 1 +1997 10 29 4.5 4.2 4.2 1 +1997 10 30 5.2 4.8 4.8 1 +1997 10 31 7.0 6.6 6.6 1 +1997 11 1 9.3 8.9 8.9 1 +1997 11 2 1.0 0.6 0.6 1 +1997 11 3 -1.1 -1.5 -1.5 1 +1997 11 4 -0.6 -1.0 -1.0 1 +1997 11 5 2.3 1.9 1.9 1 +1997 11 6 4.6 4.2 4.2 1 +1997 11 7 3.7 3.3 3.3 1 +1997 11 8 7.8 7.4 7.4 1 +1997 11 9 4.7 4.3 4.3 1 +1997 11 10 6.9 6.5 6.5 1 +1997 11 11 6.6 6.2 6.2 1 +1997 11 12 6.4 6.0 6.0 1 +1997 11 13 6.9 6.4 6.4 1 +1997 11 14 5.6 5.1 5.1 1 +1997 11 15 4.4 3.9 3.9 1 +1997 11 16 1.7 1.2 1.2 1 +1997 11 17 3.6 3.1 3.1 1 +1997 11 18 1.9 1.4 1.4 1 +1997 11 19 2.3 1.8 1.8 1 +1997 11 20 1.9 1.4 1.4 1 +1997 11 21 2.7 2.2 2.2 1 +1997 11 22 1.9 1.4 1.4 1 +1997 11 23 1.5 1.0 1.0 1 +1997 11 24 0.2 -0.3 -0.3 1 +1997 11 25 -0.5 -1.0 -1.0 1 +1997 11 26 -0.4 -0.9 -0.9 1 +1997 11 27 -3.9 -4.4 -4.4 1 +1997 11 28 -4.0 -4.5 -4.5 1 +1997 11 29 -0.5 -1.0 -1.0 1 +1997 11 30 0.7 0.2 0.2 1 +1997 12 1 2.4 1.9 1.9 1 +1997 12 2 0.4 -0.1 -0.1 1 +1997 12 3 -1.8 -2.3 -2.3 1 +1997 12 4 -5.6 -6.1 -6.1 1 +1997 12 5 -4.3 -4.9 -4.9 1 +1997 12 6 0.8 0.2 0.2 1 +1997 12 7 -0.2 -0.8 -0.8 1 +1997 12 8 3.5 2.9 2.9 1 +1997 12 9 4.5 3.9 3.9 1 +1997 12 10 5.3 4.7 4.7 1 +1997 12 11 4.2 3.6 3.6 1 +1997 12 12 2.1 1.5 1.5 1 +1997 12 13 -0.2 -0.8 -0.8 1 +1997 12 14 -0.1 -0.7 -0.7 1 +1997 12 15 -0.9 -1.5 -1.5 1 +1997 12 16 -1.1 -1.7 -1.7 1 +1997 12 17 0.2 -0.4 -0.4 1 +1997 12 18 -2.0 -2.6 -2.6 1 +1997 12 19 -3.0 -3.6 -3.6 1 +1997 12 20 -2.1 -2.7 -2.7 1 +1997 12 21 0.3 -0.3 -0.3 1 +1997 12 22 -0.5 -1.1 -1.1 1 +1997 12 23 -2.4 -3.0 -3.0 1 +1997 12 24 -1.5 -2.1 -2.1 1 +1997 12 25 2.0 1.3 1.3 1 +1997 12 26 3.1 2.4 2.4 1 +1997 12 27 -1.1 -1.8 -1.8 1 +1997 12 28 -3.1 -3.8 -3.8 1 +1997 12 29 1.7 1.0 1.0 1 +1997 12 30 1.7 1.0 1.0 1 +1997 12 31 2.2 1.5 1.5 1 +1998 1 1 2.4 1.7 1.7 1 +1998 1 2 3.6 2.9 2.9 1 +1998 1 3 4.2 3.5 3.5 1 +1998 1 4 3.9 3.2 3.2 1 +1998 1 5 1.8 1.1 1.1 1 +1998 1 6 0.0 -0.7 -0.7 1 +1998 1 7 -0.6 -1.3 -1.3 1 +1998 1 8 -0.3 -1.0 -1.0 1 +1998 1 9 -1.0 -1.7 -1.7 1 +1998 1 10 1.7 1.0 1.0 1 +1998 1 11 6.8 6.0 6.0 1 +1998 1 12 5.9 5.1 5.1 1 +1998 1 13 3.9 3.1 3.1 1 +1998 1 14 3.3 2.5 2.5 1 +1998 1 15 4.3 3.5 3.5 1 +1998 1 16 4.8 4.0 4.0 1 +1998 1 17 3.8 3.0 3.0 1 +1998 1 18 0.8 0.0 0.0 1 +1998 1 19 2.3 1.5 1.5 1 +1998 1 20 -1.2 -2.0 -2.0 1 +1998 1 21 -2.4 -3.2 -3.2 1 +1998 1 22 -0.8 -1.6 -1.6 1 +1998 1 23 0.1 -0.7 -0.7 1 +1998 1 24 -2.2 -3.0 -3.0 1 +1998 1 25 -1.3 -2.1 -2.1 1 +1998 1 26 -1.0 -1.8 -1.8 1 +1998 1 27 0.2 -0.6 -0.6 1 +1998 1 28 -4.5 -5.3 -5.3 1 +1998 1 29 -7.2 -8.0 -8.0 1 +1998 1 30 -7.1 -7.9 -7.9 1 +1998 1 31 -10.7 -11.5 -11.5 1 +1998 2 1 -4.9 -5.7 -5.7 1 +1998 2 2 -2.1 -2.9 -2.9 1 +1998 2 3 -3.8 -4.6 -4.6 1 +1998 2 4 -4.8 -5.6 -5.6 1 +1998 2 5 -3.9 -4.7 -4.7 1 +1998 2 6 -4.8 -5.6 -5.6 1 +1998 2 7 2.0 1.2 1.2 1 +1998 2 8 2.0 1.2 1.2 1 +1998 2 9 3.8 3.0 3.0 1 +1998 2 10 6.1 5.3 5.3 1 +1998 2 11 3.5 2.7 2.7 1 +1998 2 12 3.1 2.3 2.3 1 +1998 2 13 0.3 -0.5 -0.5 1 +1998 2 14 1.3 0.5 0.5 1 +1998 2 15 0.5 -0.3 -0.3 1 +1998 2 16 0.5 -0.4 -0.4 1 +1998 2 17 -2.6 -3.5 -3.5 1 +1998 2 18 4.9 4.0 4.0 1 +1998 2 19 6.5 5.6 5.6 1 +1998 2 20 6.5 5.6 5.6 1 +1998 2 21 6.9 6.0 6.0 1 +1998 2 22 6.4 5.5 5.5 1 +1998 2 23 5.8 4.9 4.9 1 +1998 2 24 1.6 0.7 0.7 1 +1998 2 25 -0.6 -1.5 -1.5 1 +1998 2 26 5.2 4.3 4.3 1 +1998 2 27 5.4 4.5 4.5 1 +1998 2 28 2.1 1.2 1.2 1 +1998 3 1 -0.5 -1.4 -1.4 1 +1998 3 2 -2.3 -3.2 -3.2 1 +1998 3 3 -1.0 -1.9 -1.9 1 +1998 3 4 1.0 0.1 0.1 1 +1998 3 5 -3.1 -4.0 -4.0 1 +1998 3 6 -1.1 -2.0 -2.0 1 +1998 3 7 -2.7 -3.6 -3.6 1 +1998 3 8 -1.8 -2.7 -2.7 1 +1998 3 9 -5.6 -6.5 -6.5 1 +1998 3 10 -4.4 -5.3 -5.3 1 +1998 3 11 -2.0 -2.9 -2.9 1 +1998 3 12 -0.3 -1.2 -1.2 1 +1998 3 13 -2.3 -3.3 -3.3 1 +1998 3 14 -2.9 -3.9 -3.9 1 +1998 3 15 -1.1 -2.1 -2.1 1 +1998 3 16 1.9 0.9 0.9 1 +1998 3 17 1.3 0.4 0.4 1 +1998 3 18 4.5 3.6 3.6 1 +1998 3 19 0.4 -0.5 -0.5 1 +1998 3 20 1.3 0.4 0.4 1 +1998 3 21 1.3 0.4 0.4 1 +1998 3 22 1.5 0.6 0.6 1 +1998 3 23 1.8 0.9 0.9 1 +1998 3 24 1.7 0.8 0.8 1 +1998 3 25 2.5 1.6 1.6 1 +1998 3 26 4.6 3.7 3.7 1 +1998 3 27 2.1 1.2 1.2 1 +1998 3 28 2.6 1.7 1.7 1 +1998 3 29 2.8 1.9 1.9 1 +1998 3 30 6.8 5.9 5.9 1 +1998 3 31 5.5 4.6 4.6 1 +1998 4 1 -2.1 -3.0 -3.0 1 +1998 4 2 -3.1 -4.0 -4.0 1 +1998 4 3 -2.2 -3.1 -3.1 1 +1998 4 4 -0.3 -1.2 -1.2 1 +1998 4 5 0.0 -0.9 -0.9 1 +1998 4 6 1.9 1.1 1.1 1 +1998 4 7 1.7 0.9 0.9 1 +1998 4 8 2.0 1.2 1.2 1 +1998 4 9 0.7 -0.1 -0.1 1 +1998 4 10 1.9 1.1 1.1 1 +1998 4 11 2.9 2.1 2.1 1 +1998 4 12 -0.4 -1.2 -1.2 1 +1998 4 13 0.5 -0.3 -0.3 1 +1998 4 14 2.0 1.2 1.2 1 +1998 4 15 3.4 2.6 2.6 1 +1998 4 16 4.3 3.5 3.5 1 +1998 4 17 4.6 3.8 3.8 1 +1998 4 18 3.7 2.8 2.8 1 +1998 4 19 2.3 1.4 1.4 1 +1998 4 20 3.6 2.7 2.7 1 +1998 4 21 5.9 5.0 5.0 1 +1998 4 22 3.5 2.6 2.6 1 +1998 4 23 5.5 4.5 4.5 1 +1998 4 24 7.7 6.7 6.7 1 +1998 4 25 10.7 9.7 9.7 1 +1998 4 26 9.1 8.1 8.1 1 +1998 4 27 9.3 8.3 8.3 1 +1998 4 28 11.8 10.8 10.8 1 +1998 4 29 15.0 13.9 13.9 1 +1998 4 30 15.2 14.1 14.1 1 +1998 5 1 14.2 13.1 13.1 1 +1998 5 2 11.6 10.5 10.5 1 +1998 5 3 5.9 4.8 4.8 1 +1998 5 4 5.9 4.7 4.7 1 +1998 5 5 5.1 3.9 3.9 1 +1998 5 6 9.0 7.8 7.8 1 +1998 5 7 10.6 9.4 9.4 1 +1998 5 8 14.0 12.8 12.8 1 +1998 5 9 13.0 11.7 11.7 1 +1998 5 10 16.0 14.7 14.7 1 +1998 5 11 12.4 11.1 11.1 1 +1998 5 12 10.9 9.6 9.6 1 +1998 5 13 11.0 9.7 9.7 1 +1998 5 14 12.5 11.1 11.1 1 +1998 5 15 11.7 10.3 10.3 1 +1998 5 16 14.4 13.0 13.0 1 +1998 5 17 15.8 14.4 14.4 1 +1998 5 18 17.4 16.1 16.1 1 +1998 5 19 14.2 12.9 12.9 1 +1998 5 20 7.6 6.3 6.3 1 +1998 5 21 6.8 5.5 5.5 1 +1998 5 22 5.9 4.6 4.6 1 +1998 5 23 7.2 5.9 5.9 1 +1998 5 24 7.9 6.6 6.6 1 +1998 5 25 6.3 5.0 5.0 1 +1998 5 26 7.5 6.2 6.2 1 +1998 5 27 10.9 9.6 9.6 1 +1998 5 28 12.6 11.3 11.3 1 +1998 5 29 14.2 13.0 13.0 1 +1998 5 30 12.8 11.6 11.6 1 +1998 5 31 16.5 15.3 15.3 1 +1998 6 1 10.6 9.4 9.4 1 +1998 6 2 8.6 7.4 7.4 1 +1998 6 3 10.4 9.2 9.2 1 +1998 6 4 14.1 12.9 12.9 1 +1998 6 5 12.4 11.2 11.2 1 +1998 6 6 12.8 11.6 11.6 1 +1998 6 7 12.9 11.7 11.7 1 +1998 6 8 16.3 15.1 15.1 1 +1998 6 9 15.2 14.1 14.1 1 +1998 6 10 17.1 16.0 16.0 1 +1998 6 11 16.8 15.7 15.7 1 +1998 6 12 16.0 14.9 14.9 1 +1998 6 13 16.9 15.8 15.8 1 +1998 6 14 14.7 13.6 13.6 1 +1998 6 15 10.3 9.2 9.2 1 +1998 6 16 12.1 11.0 11.0 1 +1998 6 17 12.0 10.9 10.9 1 +1998 6 18 11.5 10.4 10.4 1 +1998 6 19 13.0 11.9 11.9 1 +1998 6 20 12.7 11.6 11.6 1 +1998 6 21 11.2 10.1 10.1 1 +1998 6 22 10.1 9.0 9.0 1 +1998 6 23 9.7 8.6 8.6 1 +1998 6 24 13.2 12.1 12.1 1 +1998 6 25 14.3 13.2 13.2 1 +1998 6 26 15.1 14.0 14.0 1 +1998 6 27 15.3 14.2 14.2 1 +1998 6 28 15.9 14.8 14.8 1 +1998 6 29 16.8 15.7 15.7 1 +1998 6 30 17.9 16.8 16.8 1 +1998 7 1 16.5 15.5 15.5 1 +1998 7 2 16.3 15.3 15.3 1 +1998 7 3 15.5 14.5 14.5 1 +1998 7 4 15.8 14.8 14.8 1 +1998 7 5 15.0 14.0 14.0 1 +1998 7 6 14.5 13.5 13.5 1 +1998 7 7 15.6 14.6 14.6 1 +1998 7 8 17.4 16.4 16.4 1 +1998 7 9 18.7 17.7 17.7 1 +1998 7 10 17.2 16.2 16.2 1 +1998 7 11 18.1 17.1 17.1 1 +1998 7 12 16.4 15.4 15.4 1 +1998 7 13 18.5 17.5 17.5 1 +1998 7 14 15.7 14.7 14.7 1 +1998 7 15 13.9 12.9 12.9 1 +1998 7 16 14.1 13.1 13.1 1 +1998 7 17 16.1 15.1 15.1 1 +1998 7 18 15.7 14.7 14.7 1 +1998 7 19 15.4 14.4 14.4 1 +1998 7 20 17.7 16.7 16.7 1 +1998 7 21 19.5 18.5 18.5 1 +1998 7 22 18.6 17.6 17.6 1 +1998 7 23 19.0 18.0 18.0 1 +1998 7 24 16.1 15.2 15.2 1 +1998 7 25 16.2 15.3 15.3 1 +1998 7 26 15.4 14.5 14.5 1 +1998 7 27 17.6 16.7 16.7 1 +1998 7 28 17.0 16.1 16.1 1 +1998 7 29 14.6 13.7 13.7 1 +1998 7 30 16.5 15.6 15.6 1 +1998 7 31 15.6 14.7 14.7 1 +1998 8 1 17.3 16.4 16.4 1 +1998 8 2 17.0 16.1 16.1 1 +1998 8 3 17.9 17.0 17.0 1 +1998 8 4 15.7 14.8 14.8 1 +1998 8 5 16.0 15.1 15.1 1 +1998 8 6 17.1 16.3 16.3 1 +1998 8 7 15.8 15.0 15.0 1 +1998 8 8 15.6 14.8 14.8 1 +1998 8 9 16.0 15.2 15.2 1 +1998 8 10 15.3 14.5 14.5 1 +1998 8 11 17.3 16.5 16.5 1 +1998 8 12 17.7 16.9 16.9 1 +1998 8 13 14.3 13.5 13.5 1 +1998 8 14 15.9 15.1 15.1 1 +1998 8 15 14.9 14.1 14.1 1 +1998 8 16 16.4 15.6 15.6 1 +1998 8 17 16.5 15.8 15.8 1 +1998 8 18 17.2 16.5 16.5 1 +1998 8 19 13.9 13.2 13.2 1 +1998 8 20 14.0 13.3 13.3 1 +1998 8 21 13.9 13.2 13.2 1 +1998 8 22 13.6 12.9 12.9 1 +1998 8 23 13.7 13.0 13.0 1 +1998 8 24 13.3 12.7 12.7 1 +1998 8 25 12.2 11.6 11.6 1 +1998 8 26 12.5 11.9 11.9 1 +1998 8 27 10.2 9.6 9.6 1 +1998 8 28 13.0 12.4 12.4 1 +1998 8 29 12.6 12.0 12.0 1 +1998 8 30 12.6 12.1 12.1 1 +1998 8 31 11.7 11.2 11.2 1 +1998 9 1 10.3 9.8 9.8 1 +1998 9 2 11.6 11.1 11.1 1 +1998 9 3 12.9 12.4 12.4 1 +1998 9 4 12.7 12.2 12.2 1 +1998 9 5 14.3 13.8 13.8 1 +1998 9 6 13.8 13.4 13.4 1 +1998 9 7 15.5 15.1 15.1 1 +1998 9 8 16.5 16.1 16.1 1 +1998 9 9 15.5 15.1 15.1 1 +1998 9 10 17.2 16.8 16.8 1 +1998 9 11 15.5 15.1 15.1 1 +1998 9 12 15.9 15.6 15.6 1 +1998 9 13 16.0 15.7 15.7 1 +1998 9 14 16.2 15.9 15.9 1 +1998 9 15 12.4 12.1 12.1 1 +1998 9 16 12.7 12.4 12.4 1 +1998 9 17 12.6 12.3 12.3 1 +1998 9 18 12.0 11.7 11.7 1 +1998 9 19 12.1 11.8 11.8 1 +1998 9 20 11.8 11.5 11.5 1 +1998 9 21 12.2 11.9 11.9 1 +1998 9 22 14.6 14.3 14.3 1 +1998 9 23 11.9 11.6 11.6 1 +1998 9 24 14.0 13.7 13.7 1 +1998 9 25 8.8 8.5 8.5 1 +1998 9 26 9.2 8.9 8.9 1 +1998 9 27 12.7 12.4 12.4 1 +1998 9 28 12.0 11.7 11.7 1 +1998 9 29 10.8 10.5 10.5 1 +1998 9 30 7.2 6.9 6.9 1 +1998 10 1 5.8 5.5 5.5 1 +1998 10 2 6.8 6.5 6.5 1 +1998 10 3 7.4 7.1 7.1 1 +1998 10 4 6.7 6.4 6.4 1 +1998 10 5 7.3 7.0 7.0 1 +1998 10 6 6.9 6.6 6.6 1 +1998 10 7 6.4 6.1 6.1 1 +1998 10 8 6.2 5.9 5.9 1 +1998 10 9 6.9 6.6 6.6 1 +1998 10 10 9.5 9.3 9.3 1 +1998 10 11 9.0 8.8 8.8 1 +1998 10 12 8.1 7.9 7.9 1 +1998 10 13 6.8 6.6 6.6 1 +1998 10 14 8.4 8.2 8.2 1 +1998 10 15 8.0 7.8 7.8 1 +1998 10 16 5.6 5.4 5.4 1 +1998 10 17 6.0 5.7 5.7 1 +1998 10 18 6.2 5.9 5.9 1 +1998 10 19 5.5 5.2 5.2 1 +1998 10 20 5.6 5.3 5.3 1 +1998 10 21 3.9 3.6 3.6 1 +1998 10 22 10.0 9.7 9.7 1 +1998 10 23 12.6 12.3 12.3 1 +1998 10 24 7.7 7.4 7.4 1 +1998 10 25 9.3 9.0 9.0 1 +1998 10 26 8.6 8.3 8.3 1 +1998 10 27 5.8 5.5 5.5 1 +1998 10 28 5.0 4.7 4.7 1 +1998 10 29 5.9 5.6 5.6 1 +1998 10 30 3.5 3.1 3.1 1 +1998 10 31 1.6 1.2 1.2 1 +1998 11 1 2.6 2.2 2.2 1 +1998 11 2 1.9 1.5 1.5 1 +1998 11 3 1.4 1.0 1.0 1 +1998 11 4 1.7 1.3 1.3 1 +1998 11 5 1.1 0.7 0.7 1 +1998 11 6 0.6 0.2 0.2 1 +1998 11 7 -0.4 -0.8 -0.8 1 +1998 11 8 -2.1 -2.5 -2.5 1 +1998 11 9 -1.3 -1.7 -1.7 1 +1998 11 10 1.1 0.7 0.7 1 +1998 11 11 1.9 1.5 1.5 1 +1998 11 12 2.1 1.7 1.7 1 +1998 11 13 1.7 1.2 1.2 1 +1998 11 14 0.3 -0.2 -0.2 1 +1998 11 15 -0.8 -1.3 -1.3 1 +1998 11 16 -1.3 -1.8 -1.8 1 +1998 11 17 -1.9 -2.4 -2.4 1 +1998 11 18 -1.3 -1.8 -1.8 1 +1998 11 19 -3.6 -4.1 -4.1 1 +1998 11 20 -4.9 -5.4 -5.4 1 +1998 11 21 -1.9 -2.4 -2.4 1 +1998 11 22 0.2 -0.3 -0.3 1 +1998 11 23 -3.8 -4.3 -4.3 1 +1998 11 24 0.7 0.2 0.2 1 +1998 11 25 1.8 1.3 1.3 1 +1998 11 26 1.9 1.4 1.4 1 +1998 11 27 1.3 0.8 0.8 1 +1998 11 28 1.5 1.0 1.0 1 +1998 11 29 2.1 1.6 1.6 1 +1998 11 30 2.4 1.9 1.9 1 +1998 12 1 -0.1 -0.6 -0.6 1 +1998 12 2 1.7 1.2 1.2 1 +1998 12 3 0.5 0.0 0.0 1 +1998 12 4 -0.9 -1.4 -1.4 1 +1998 12 5 0.1 -0.5 -0.5 1 +1998 12 6 -2.6 -3.2 -3.2 1 +1998 12 7 -3.0 -3.6 -3.6 1 +1998 12 8 -2.8 -3.4 -3.4 1 +1998 12 9 -2.0 -2.6 -2.6 1 +1998 12 10 -1.6 -2.2 -2.2 1 +1998 12 11 -1.3 -1.9 -1.9 1 +1998 12 12 -1.8 -2.4 -2.4 1 +1998 12 13 -1.2 -1.8 -1.8 1 +1998 12 14 -1.2 -1.8 -1.8 1 +1998 12 15 3.1 2.5 2.5 1 +1998 12 16 3.1 2.5 2.5 1 +1998 12 17 4.7 4.1 4.1 1 +1998 12 18 5.7 5.1 5.1 1 +1998 12 19 3.0 2.4 2.4 1 +1998 12 20 -1.2 -1.8 -1.8 1 +1998 12 21 -4.4 -5.0 -5.0 1 +1998 12 22 -7.3 -7.9 -7.9 1 +1998 12 23 -2.3 -2.9 -2.9 1 +1998 12 24 0.8 0.2 0.2 1 +1998 12 25 3.0 2.3 2.3 1 +1998 12 26 2.5 1.8 1.8 1 +1998 12 27 3.0 2.3 2.3 1 +1998 12 28 4.4 3.7 3.7 1 +1998 12 29 2.6 1.9 1.9 1 +1998 12 30 -0.2 -0.9 -0.9 1 +1998 12 31 1.9 1.2 1.2 1 +1999 1 1 0.5 -0.2 -0.2 1 +1999 1 2 1.1 0.4 0.4 1 +1999 1 3 2.3 1.6 1.6 1 +1999 1 4 2.1 1.4 1.4 1 +1999 1 5 2.7 2.0 2.0 1 +1999 1 6 0.1 -0.6 -0.6 1 +1999 1 7 -1.1 -1.8 -1.8 1 +1999 1 8 -4.5 -5.2 -5.2 1 +1999 1 9 -4.1 -4.8 -4.8 1 +1999 1 10 -5.6 -6.3 -6.3 1 +1999 1 11 -5.0 -5.8 -5.8 1 +1999 1 12 -3.1 -3.9 -3.9 1 +1999 1 13 -6.5 -7.3 -7.3 1 +1999 1 14 -6.5 -7.3 -7.3 1 +1999 1 15 -1.8 -2.6 -2.6 1 +1999 1 16 2.4 1.6 1.6 1 +1999 1 17 1.7 0.9 0.9 1 +1999 1 18 3.3 2.5 2.5 1 +1999 1 19 2.9 2.1 2.1 1 +1999 1 20 6.2 5.4 5.4 1 +1999 1 21 6.4 5.6 5.6 1 +1999 1 22 3.3 2.5 2.5 1 +1999 1 23 3.1 2.3 2.3 1 +1999 1 24 2.0 1.2 1.2 1 +1999 1 25 2.4 1.6 1.6 1 +1999 1 26 -6.4 -7.2 -7.2 1 +1999 1 27 -11.1 -11.9 -11.9 1 +1999 1 28 -15.4 -16.2 -16.2 1 +1999 1 29 -11.8 -12.6 -12.6 1 +1999 1 30 -7.5 -8.3 -8.3 1 +1999 1 31 -0.9 -1.7 -1.7 1 +1999 2 1 3.6 2.8 2.8 1 +1999 2 2 4.8 4.0 4.0 1 +1999 2 3 2.6 1.8 1.8 1 +1999 2 4 2.9 2.1 2.1 1 +1999 2 5 -3.1 -3.9 -3.9 1 +1999 2 6 -8.9 -9.7 -9.7 1 +1999 2 7 -9.1 -9.9 -9.9 1 +1999 2 8 -10.4 -11.2 -11.2 1 +1999 2 9 -5.8 -6.6 -6.6 1 +1999 2 10 -7.0 -7.8 -7.8 1 +1999 2 11 -7.6 -8.4 -8.4 1 +1999 2 12 -1.9 -2.7 -2.7 1 +1999 2 13 1.8 1.0 1.0 1 +1999 2 14 1.9 1.1 1.1 1 +1999 2 15 1.5 0.7 0.7 1 +1999 2 16 2.3 1.4 1.4 1 +1999 2 17 -2.3 -3.2 -3.2 1 +1999 2 18 -1.4 -2.3 -2.3 1 +1999 2 19 -1.2 -2.1 -2.1 1 +1999 2 20 1.0 0.1 0.1 1 +1999 2 21 0.3 -0.6 -0.6 1 +1999 2 22 -0.1 -1.0 -1.0 1 +1999 2 23 -0.6 -1.5 -1.5 1 +1999 2 24 -2.3 -3.2 -3.2 1 +1999 2 25 -4.3 -5.2 -5.2 1 +1999 2 26 -2.2 -3.1 -3.1 1 +1999 2 27 -0.5 -1.4 -1.4 1 +1999 2 28 2.3 1.4 1.4 1 +1999 3 1 3.4 2.5 2.5 1 +1999 3 2 1.2 0.3 0.3 1 +1999 3 3 -1.1 -2.0 -2.0 1 +1999 3 4 0.2 -0.7 -0.7 1 +1999 3 5 0.9 0.0 0.0 1 +1999 3 6 1.2 0.3 0.3 1 +1999 3 7 2.5 1.6 1.6 1 +1999 3 8 0.4 -0.5 -0.5 1 +1999 3 9 -2.4 -3.3 -3.3 1 +1999 3 10 -3.6 -4.5 -4.5 1 +1999 3 11 -4.0 -4.9 -4.9 1 +1999 3 12 -3.5 -4.4 -4.4 1 +1999 3 13 -3.2 -4.2 -4.2 1 +1999 3 14 -0.1 -1.1 -1.1 1 +1999 3 15 0.7 -0.3 -0.3 1 +1999 3 16 0.8 -0.2 -0.2 1 +1999 3 17 0.6 -0.3 -0.3 1 +1999 3 18 1.9 1.0 1.0 1 +1999 3 19 3.0 2.1 2.1 1 +1999 3 20 2.5 1.6 1.6 1 +1999 3 21 1.2 0.3 0.3 1 +1999 3 22 2.3 1.4 1.4 1 +1999 3 23 1.3 0.4 0.4 1 +1999 3 24 1.0 0.1 0.1 1 +1999 3 25 5.1 4.2 4.2 1 +1999 3 26 3.7 2.8 2.8 1 +1999 3 27 7.8 6.9 6.9 1 +1999 3 28 5.5 4.6 4.6 1 +1999 3 29 6.3 5.4 5.4 1 +1999 3 30 7.3 6.4 6.4 1 +1999 3 31 7.7 6.8 6.8 1 +1999 4 1 8.9 8.0 8.0 1 +1999 4 2 9.2 8.3 8.3 1 +1999 4 3 7.6 6.7 6.7 1 +1999 4 4 3.5 2.6 2.6 1 +1999 4 5 7.3 6.4 6.4 1 +1999 4 6 8.4 7.6 7.6 1 +1999 4 7 9.0 8.2 8.2 1 +1999 4 8 6.7 5.9 5.9 1 +1999 4 9 10.7 9.9 9.9 1 +1999 4 10 10.6 9.8 9.8 1 +1999 4 11 8.4 7.6 7.6 1 +1999 4 12 3.1 2.3 2.3 1 +1999 4 13 4.8 4.0 4.0 1 +1999 4 14 7.0 6.2 6.2 1 +1999 4 15 5.6 4.8 4.8 1 +1999 4 16 6.2 5.4 5.4 1 +1999 4 17 2.5 1.7 1.7 1 +1999 4 18 5.4 4.5 4.5 1 +1999 4 19 5.0 4.1 4.1 1 +1999 4 20 8.0 7.1 7.1 1 +1999 4 21 5.7 4.8 4.8 1 +1999 4 22 6.8 5.9 5.9 1 +1999 4 23 8.9 7.9 7.9 1 +1999 4 24 7.8 6.8 6.8 1 +1999 4 25 8.7 7.7 7.7 1 +1999 4 26 10.8 9.8 9.8 1 +1999 4 27 11.0 10.0 10.0 1 +1999 4 28 12.6 11.6 11.6 1 +1999 4 29 7.4 6.3 6.3 1 +1999 4 30 7.6 6.5 6.5 1 +1999 5 1 5.8 4.7 4.7 1 +1999 5 2 4.5 3.4 3.4 1 +1999 5 3 5.3 4.2 4.2 1 +1999 5 4 6.3 5.1 5.1 1 +1999 5 5 7.9 6.7 6.7 1 +1999 5 6 8.7 7.5 7.5 1 +1999 5 7 10.1 8.9 8.9 1 +1999 5 8 4.6 3.4 3.4 1 +1999 5 9 3.8 2.5 2.5 1 +1999 5 10 2.6 1.3 1.3 1 +1999 5 11 4.0 2.7 2.7 1 +1999 5 12 4.0 2.7 2.7 1 +1999 5 13 6.4 5.1 5.1 1 +1999 5 14 7.4 6.0 6.0 1 +1999 5 15 8.4 7.0 7.0 1 +1999 5 16 10.5 9.1 9.1 1 +1999 5 17 9.5 8.1 8.1 1 +1999 5 18 14.9 13.6 13.6 1 +1999 5 19 16.7 15.4 15.4 1 +1999 5 20 15.2 13.9 13.9 1 +1999 5 21 15.4 14.1 14.1 1 +1999 5 22 13.9 12.6 12.6 1 +1999 5 23 11.8 10.5 10.5 1 +1999 5 24 14.7 13.4 13.4 1 +1999 5 25 15.1 13.8 13.8 1 +1999 5 26 13.6 12.3 12.3 1 +1999 5 27 14.9 13.6 13.6 1 +1999 5 28 17.2 15.9 15.9 1 +1999 5 29 16.0 14.8 14.8 1 +1999 5 30 12.2 11.0 11.0 1 +1999 5 31 12.8 11.6 11.6 1 +1999 6 1 17.1 15.9 15.9 1 +1999 6 2 17.2 16.0 16.0 1 +1999 6 3 16.7 15.5 15.5 1 +1999 6 4 16.9 15.7 15.7 1 +1999 6 5 16.0 14.8 14.8 1 +1999 6 6 14.3 13.1 13.1 1 +1999 6 7 14.2 13.0 13.0 1 +1999 6 8 15.4 14.2 14.2 1 +1999 6 9 14.1 13.0 13.0 1 +1999 6 10 16.0 14.9 14.9 1 +1999 6 11 16.9 15.8 15.8 1 +1999 6 12 16.7 15.6 15.6 1 +1999 6 13 19.2 18.1 18.1 1 +1999 6 14 20.5 19.4 19.4 1 +1999 6 15 19.4 18.3 18.3 1 +1999 6 16 20.8 19.7 19.7 1 +1999 6 17 21.0 19.9 19.9 1 +1999 6 18 16.6 15.5 15.5 1 +1999 6 19 19.2 18.1 18.1 1 +1999 6 20 19.6 18.5 18.5 1 +1999 6 21 16.4 15.3 15.3 1 +1999 6 22 16.8 15.7 15.7 1 +1999 6 23 10.5 9.4 9.4 1 +1999 6 24 15.6 14.5 14.5 1 +1999 6 25 16.4 15.3 15.3 1 +1999 6 26 14.1 13.0 13.0 1 +1999 6 27 17.2 16.1 16.1 1 +1999 6 28 20.8 19.7 19.7 1 +1999 6 29 18.9 17.8 17.8 1 +1999 6 30 20.6 19.6 19.6 1 +1999 7 1 19.7 18.7 18.7 1 +1999 7 2 17.4 16.4 16.4 1 +1999 7 3 17.0 16.0 16.0 1 +1999 7 4 18.5 17.5 17.5 1 +1999 7 5 19.6 18.6 18.6 1 +1999 7 6 20.1 19.1 19.1 1 +1999 7 7 17.2 16.2 16.2 1 +1999 7 8 17.4 16.4 16.4 1 +1999 7 9 21.4 20.4 20.4 1 +1999 7 10 24.2 23.2 23.2 1 +1999 7 11 24.7 23.7 23.7 1 +1999 7 12 25.4 24.4 24.4 1 +1999 7 13 24.8 23.8 23.8 1 +1999 7 14 24.8 23.8 23.8 1 +1999 7 15 20.7 19.7 19.7 1 +1999 7 16 18.9 17.9 17.9 1 +1999 7 17 18.8 17.8 17.8 1 +1999 7 18 19.2 18.2 18.2 1 +1999 7 19 22.0 21.0 21.0 1 +1999 7 20 22.3 21.3 21.3 1 +1999 7 21 20.6 19.6 19.6 1 +1999 7 22 18.2 17.2 17.2 1 +1999 7 23 15.6 14.6 14.6 1 +1999 7 24 19.1 18.2 18.2 1 +1999 7 25 19.2 18.3 18.3 1 +1999 7 26 18.3 17.4 17.4 1 +1999 7 27 18.7 17.8 17.8 1 +1999 7 28 19.4 18.5 18.5 1 +1999 7 29 21.7 20.8 20.8 1 +1999 7 30 20.2 19.3 19.3 1 +1999 7 31 21.4 20.5 20.5 1 +1999 8 1 24.3 23.4 23.4 1 +1999 8 2 24.9 24.0 24.0 1 +1999 8 3 25.3 24.4 24.4 1 +1999 8 4 24.6 23.7 23.7 1 +1999 8 5 21.8 20.9 20.9 1 +1999 8 6 16.2 15.4 15.4 1 +1999 8 7 16.4 15.6 15.6 1 +1999 8 8 17.1 16.3 16.3 1 +1999 8 9 16.5 15.7 15.7 1 +1999 8 10 15.0 14.2 14.2 1 +1999 8 11 15.8 15.0 15.0 1 +1999 8 12 15.2 14.4 14.4 1 +1999 8 13 14.9 14.1 14.1 1 +1999 8 14 16.0 15.2 15.2 1 +1999 8 15 15.1 14.3 14.3 1 +1999 8 16 14.7 13.9 13.9 1 +1999 8 17 16.1 15.4 15.4 1 +1999 8 18 17.8 17.1 17.1 1 +1999 8 19 16.3 15.6 15.6 1 +1999 8 20 15.5 14.8 14.8 1 +1999 8 21 14.4 13.7 13.7 1 +1999 8 22 13.1 12.4 12.4 1 +1999 8 23 14.6 13.9 13.9 1 +1999 8 24 14.0 13.4 13.4 1 +1999 8 25 17.1 16.5 16.5 1 +1999 8 26 16.6 16.0 16.0 1 +1999 8 27 16.5 15.9 15.9 1 +1999 8 28 16.5 15.9 15.9 1 +1999 8 29 16.8 16.2 16.2 1 +1999 8 30 17.9 17.4 17.4 1 +1999 8 31 14.6 14.1 14.1 1 +1999 9 1 13.5 13.0 13.0 1 +1999 9 2 16.3 15.8 15.8 1 +1999 9 3 21.3 20.8 20.8 1 +1999 9 4 20.8 20.3 20.3 1 +1999 9 5 20.3 19.8 19.8 1 +1999 9 6 19.7 19.3 19.3 1 +1999 9 7 19.7 19.3 19.3 1 +1999 9 8 19.7 19.3 19.3 1 +1999 9 9 19.2 18.8 18.8 1 +1999 9 10 17.8 17.4 17.4 1 +1999 9 11 17.4 17.0 17.0 1 +1999 9 12 16.5 16.2 16.2 1 +1999 9 13 15.0 14.7 14.7 1 +1999 9 14 14.7 14.4 14.4 1 +1999 9 15 14.7 14.4 14.4 1 +1999 9 16 15.0 14.7 14.7 1 +1999 9 17 14.9 14.6 14.6 1 +1999 9 18 15.9 15.6 15.6 1 +1999 9 19 15.4 15.1 15.1 1 +1999 9 20 15.6 15.3 15.3 1 +1999 9 21 16.2 15.9 15.9 1 +1999 9 22 14.9 14.6 14.6 1 +1999 9 23 14.3 14.0 14.0 1 +1999 9 24 14.2 13.9 13.9 1 +1999 9 25 12.1 11.8 11.8 1 +1999 9 26 12.5 12.2 12.2 1 +1999 9 27 13.4 13.1 13.1 1 +1999 9 28 13.2 12.9 12.9 1 +1999 9 29 13.9 13.6 13.6 1 +1999 9 30 13.7 13.4 13.4 1 +1999 10 1 13.7 13.4 13.4 1 +1999 10 2 12.2 11.9 11.9 1 +1999 10 3 11.4 11.1 11.1 1 +1999 10 4 11.5 11.2 11.2 1 +1999 10 5 11.9 11.6 11.6 1 +1999 10 6 10.3 10.0 10.0 1 +1999 10 7 7.7 7.4 7.4 1 +1999 10 8 9.6 9.3 9.3 1 +1999 10 9 7.0 6.7 6.7 1 +1999 10 10 7.2 6.9 6.9 1 +1999 10 11 9.1 8.9 8.9 1 +1999 10 12 9.6 9.4 9.4 1 +1999 10 13 9.5 9.3 9.3 1 +1999 10 14 7.6 7.4 7.4 1 +1999 10 15 6.7 6.5 6.5 1 +1999 10 16 6.0 5.8 5.8 1 +1999 10 17 4.9 4.6 4.6 1 +1999 10 18 5.0 4.7 4.7 1 +1999 10 19 4.6 4.3 4.3 1 +1999 10 20 4.1 3.8 3.8 1 +1999 10 21 4.4 4.1 4.1 1 +1999 10 22 5.8 5.5 5.5 1 +1999 10 23 6.6 6.3 6.3 1 +1999 10 24 8.1 7.8 7.8 1 +1999 10 25 9.5 9.2 9.2 1 +1999 10 26 9.4 9.1 9.1 1 +1999 10 27 6.7 6.4 6.4 1 +1999 10 28 7.3 7.0 7.0 1 +1999 10 29 8.2 7.9 7.9 1 +1999 10 30 8.7 8.3 8.3 1 +1999 10 31 7.9 7.5 7.5 1 +1999 11 1 9.8 9.4 9.4 1 +1999 11 2 10.3 9.9 9.9 1 +1999 11 3 8.0 7.6 7.6 1 +1999 11 4 9.0 8.6 8.6 1 +1999 11 5 7.7 7.3 7.3 1 +1999 11 6 6.8 6.4 6.4 1 +1999 11 7 6.7 6.3 6.3 1 +1999 11 8 6.5 6.1 6.1 1 +1999 11 9 7.5 7.1 7.1 1 +1999 11 10 3.7 3.3 3.3 1 +1999 11 11 6.9 6.5 6.5 1 +1999 11 12 9.9 9.5 9.5 1 +1999 11 13 7.9 7.4 7.4 1 +1999 11 14 1.4 0.9 0.9 1 +1999 11 15 -0.7 -1.2 -1.2 1 +1999 11 16 3.1 2.6 2.6 1 +1999 11 17 2.3 1.8 1.8 1 +1999 11 18 3.0 2.5 2.5 1 +1999 11 19 1.1 0.6 0.6 1 +1999 11 20 -1.4 -1.9 -1.9 1 +1999 11 21 -1.7 -2.2 -2.2 1 +1999 11 22 0.5 0.0 0.0 1 +1999 11 23 -0.6 -1.1 -1.1 1 +1999 11 24 2.5 2.0 2.0 1 +1999 11 25 4.1 3.6 3.6 1 +1999 11 26 5.5 5.0 5.0 1 +1999 11 27 6.9 6.4 6.4 1 +1999 11 28 5.4 4.9 4.9 1 +1999 11 29 7.2 6.7 6.7 1 +1999 11 30 3.1 2.6 2.6 1 +1999 12 1 5.2 4.7 4.7 1 +1999 12 2 0.9 0.4 0.4 1 +1999 12 3 -0.5 -1.0 -1.0 1 +1999 12 4 -0.2 -0.7 -0.7 1 +1999 12 5 -4.9 -5.5 -5.5 1 +1999 12 6 0.0 -0.6 -0.6 1 +1999 12 7 4.8 4.2 4.2 1 +1999 12 8 -2.8 -3.4 -3.4 1 +1999 12 9 2.5 1.9 1.9 1 +1999 12 10 4.5 3.9 3.9 1 +1999 12 11 -2.3 -2.9 -2.9 1 +1999 12 12 1.8 1.2 1.2 1 +1999 12 13 -2.0 -2.6 -2.6 1 +1999 12 14 -6.0 -6.6 -6.6 1 +1999 12 15 -2.4 -3.0 -3.0 1 +1999 12 16 -7.6 -8.2 -8.2 1 +1999 12 17 0.7 0.1 0.1 1 +1999 12 18 -1.4 -2.0 -2.0 1 +1999 12 19 -2.0 -2.6 -2.6 1 +1999 12 20 -4.3 -4.9 -4.9 1 +1999 12 21 -5.7 -6.3 -6.3 1 +1999 12 22 -1.2 -1.8 -1.8 1 +1999 12 23 1.5 0.9 0.9 1 +1999 12 24 2.7 2.1 2.1 1 +1999 12 25 3.1 2.4 2.4 1 +1999 12 26 2.2 1.5 1.5 1 +1999 12 27 1.0 0.3 0.3 1 +1999 12 28 -0.4 -1.1 -1.1 1 +1999 12 29 -2.1 -2.8 -2.8 1 +1999 12 30 -6.6 -7.3 -7.3 1 +1999 12 31 -8.6 -9.3 -9.3 1 +2000 1 1 -2.3 -3.0 -3.0 1 +2000 1 2 1.3 0.6 0.6 1 +2000 1 3 0.8 0.1 0.1 1 +2000 1 4 3.5 2.8 2.8 1 +2000 1 5 -0.6 -1.3 -1.3 1 +2000 1 6 2.5 1.8 1.8 1 +2000 1 7 2.9 2.2 2.2 1 +2000 1 8 5.1 4.4 4.4 1 +2000 1 9 3.9 3.2 3.2 1 +2000 1 10 1.2 0.5 0.5 1 +2000 1 11 3.9 3.1 3.1 1 +2000 1 12 4.4 3.6 3.6 1 +2000 1 13 3.5 2.7 2.7 1 +2000 1 14 -0.2 -1.0 -1.0 1 +2000 1 15 -1.7 -2.5 -2.5 1 +2000 1 16 1.2 0.4 0.4 1 +2000 1 17 3.7 2.9 2.9 1 +2000 1 18 -0.2 -1.0 -1.0 1 +2000 1 19 -1.4 -2.2 -2.2 1 +2000 1 20 -0.3 -1.1 -1.1 1 +2000 1 21 -6.8 -7.6 -7.6 1 +2000 1 22 -10.1 -10.9 -10.9 1 +2000 1 23 -9.9 -10.7 -10.7 1 +2000 1 24 -7.9 -8.7 -8.7 1 +2000 1 25 -3.8 -4.6 -4.6 1 +2000 1 26 0.1 -0.7 -0.7 1 +2000 1 27 1.0 0.2 0.2 1 +2000 1 28 -1.4 -2.2 -2.2 1 +2000 1 29 1.5 0.7 0.7 1 +2000 1 30 1.2 0.4 0.4 1 +2000 1 31 -3.4 -4.2 -4.2 1 +2000 2 1 -2.8 -3.6 -3.6 1 +2000 2 2 -0.8 -1.6 -1.6 1 +2000 2 3 -3.9 -4.7 -4.7 1 +2000 2 4 2.9 2.1 2.1 1 +2000 2 5 2.0 1.2 1.2 1 +2000 2 6 5.7 4.9 4.9 1 +2000 2 7 4.0 3.2 3.2 1 +2000 2 8 2.7 1.9 1.9 1 +2000 2 9 -0.7 -1.5 -1.5 1 +2000 2 10 0.7 -0.1 -0.1 1 +2000 2 11 4.3 3.5 3.5 1 +2000 2 12 4.6 3.8 3.8 1 +2000 2 13 2.7 1.9 1.9 1 +2000 2 14 -0.1 -0.9 -0.9 1 +2000 2 15 0.2 -0.6 -0.6 1 +2000 2 16 -0.3 -1.2 -1.2 1 +2000 2 17 -1.0 -1.9 -1.9 1 +2000 2 18 -2.6 -3.5 -3.5 1 +2000 2 19 -2.9 -3.8 -3.8 1 +2000 2 20 -2.8 -3.7 -3.7 1 +2000 2 21 -3.6 -4.5 -4.5 1 +2000 2 22 -2.5 -3.4 -3.4 1 +2000 2 23 -2.1 -3.0 -3.0 1 +2000 2 24 -0.4 -1.3 -1.3 1 +2000 2 25 -0.7 -1.6 -1.6 1 +2000 2 26 -1.1 -2.0 -2.0 1 +2000 2 27 3.4 2.5 2.5 1 +2000 2 28 4.5 3.6 3.6 1 +2000 2 29 4.7 3.8 3.8 1 +2000 3 1 2.6 1.7 1.7 1 +2000 3 2 1.0 0.1 0.1 1 +2000 3 3 1.7 0.8 0.8 1 +2000 3 4 -2.6 -3.5 -3.5 1 +2000 3 5 -3.5 -4.4 -4.4 1 +2000 3 6 1.4 0.5 0.5 1 +2000 3 7 4.6 3.7 3.7 1 +2000 3 8 0.5 -0.4 -0.4 1 +2000 3 9 -0.2 -1.1 -1.1 1 +2000 3 10 1.7 0.8 0.8 1 +2000 3 11 -1.1 -2.0 -2.0 1 +2000 3 12 -0.4 -1.3 -1.3 1 +2000 3 13 4.0 3.0 3.0 1 +2000 3 14 4.8 3.8 3.8 1 +2000 3 15 1.0 0.0 0.0 1 +2000 3 16 0.2 -0.8 -0.8 1 +2000 3 17 0.1 -0.8 -0.8 1 +2000 3 18 1.0 0.1 0.1 1 +2000 3 19 1.9 1.0 1.0 1 +2000 3 20 8.3 7.4 7.4 1 +2000 3 21 7.1 6.2 6.2 1 +2000 3 22 5.0 4.1 4.1 1 +2000 3 23 2.4 1.5 1.5 1 +2000 3 24 3.3 2.4 2.4 1 +2000 3 25 3.7 2.8 2.8 1 +2000 3 26 1.5 0.6 0.6 1 +2000 3 27 0.6 -0.3 -0.3 1 +2000 3 28 0.3 -0.6 -0.6 1 +2000 3 29 2.1 1.2 1.2 1 +2000 3 30 5.9 5.0 5.0 1 +2000 3 31 7.9 7.0 7.0 1 +2000 4 1 2.3 1.4 1.4 1 +2000 4 2 -1.1 -2.0 -2.0 1 +2000 4 3 0.8 -0.1 -0.1 1 +2000 4 4 5.0 4.1 4.1 1 +2000 4 5 1.1 0.2 0.2 1 +2000 4 6 3.7 2.9 2.9 1 +2000 4 7 2.6 1.8 1.8 1 +2000 4 8 2.2 1.4 1.4 1 +2000 4 9 2.4 1.6 1.6 1 +2000 4 10 4.3 3.5 3.5 1 +2000 4 11 3.1 2.3 2.3 1 +2000 4 12 3.4 2.6 2.6 1 +2000 4 13 4.3 3.5 3.5 1 +2000 4 14 3.5 2.7 2.7 1 +2000 4 15 5.8 5.0 5.0 1 +2000 4 16 6.0 5.2 5.2 1 +2000 4 17 8.3 7.5 7.5 1 +2000 4 18 9.3 8.4 8.4 1 +2000 4 19 10.5 9.6 9.6 1 +2000 4 20 10.3 9.4 9.4 1 +2000 4 21 11.3 10.4 10.4 1 +2000 4 22 12.6 11.7 11.7 1 +2000 4 23 11.9 10.9 10.9 1 +2000 4 24 11.5 10.5 10.5 1 +2000 4 25 9.2 8.2 8.2 1 +2000 4 26 11.5 10.5 10.5 1 +2000 4 27 10.2 9.2 9.2 1 +2000 4 28 13.1 12.1 12.1 1 +2000 4 29 15.7 14.6 14.6 1 +2000 4 30 11.1 10.0 10.0 1 +2000 5 1 7.8 6.7 6.7 1 +2000 5 2 7.3 6.2 6.2 1 +2000 5 3 8.7 7.6 7.6 1 +2000 5 4 8.1 6.9 6.9 1 +2000 5 5 12.2 11.0 11.0 1 +2000 5 6 10.3 9.1 9.1 1 +2000 5 7 11.3 10.1 10.1 1 +2000 5 8 13.5 12.3 12.3 1 +2000 5 9 15.9 14.6 14.6 1 +2000 5 10 17.3 16.0 16.0 1 +2000 5 11 10.4 9.1 9.1 1 +2000 5 12 7.3 6.0 6.0 1 +2000 5 13 13.9 12.6 12.6 1 +2000 5 14 15.9 14.5 14.5 1 +2000 5 15 16.3 14.9 14.9 1 +2000 5 16 12.9 11.5 11.5 1 +2000 5 17 16.8 15.4 15.4 1 +2000 5 18 15.4 14.1 14.1 1 +2000 5 19 12.8 11.5 11.5 1 +2000 5 20 12.6 11.3 11.3 1 +2000 5 21 13.2 11.9 11.9 1 +2000 5 22 12.8 11.5 11.5 1 +2000 5 23 14.3 13.0 13.0 1 +2000 5 24 13.2 11.9 11.9 1 +2000 5 25 11.8 10.5 10.5 1 +2000 5 26 10.5 9.2 9.2 1 +2000 5 27 12.9 11.6 11.6 1 +2000 5 28 13.0 11.7 11.7 1 +2000 5 29 12.3 11.1 11.1 1 +2000 5 30 12.0 10.8 10.8 1 +2000 5 31 10.3 9.1 9.1 1 +2000 6 1 12.4 11.2 11.2 1 +2000 6 2 12.8 11.6 11.6 1 +2000 6 3 13.6 12.4 12.4 1 +2000 6 4 11.9 10.7 10.7 1 +2000 6 5 11.0 9.8 9.8 1 +2000 6 6 12.8 11.6 11.6 1 +2000 6 7 9.4 8.2 8.2 1 +2000 6 8 12.1 10.9 10.9 1 +2000 6 9 15.9 14.8 14.8 1 +2000 6 10 17.3 16.2 16.2 1 +2000 6 11 19.2 18.1 18.1 1 +2000 6 12 13.9 12.8 12.8 1 +2000 6 13 16.1 15.0 15.0 1 +2000 6 14 15.8 14.7 14.7 1 +2000 6 15 14.6 13.5 13.5 1 +2000 6 16 10.6 9.5 9.5 1 +2000 6 17 11.7 10.6 10.6 1 +2000 6 18 13.9 12.8 12.8 1 +2000 6 19 17.4 16.3 16.3 1 +2000 6 20 20.4 19.3 19.3 1 +2000 6 21 18.5 17.4 17.4 1 +2000 6 22 19.6 18.5 18.5 1 +2000 6 23 17.5 16.4 16.4 1 +2000 6 24 17.7 16.6 16.6 1 +2000 6 25 15.6 14.5 14.5 1 +2000 6 26 15.6 14.5 14.5 1 +2000 6 27 12.9 11.8 11.8 1 +2000 6 28 14.5 13.4 13.4 1 +2000 6 29 12.3 11.2 11.2 1 +2000 6 30 14.4 13.4 13.4 1 +2000 7 1 14.8 13.8 13.8 1 +2000 7 2 13.8 12.8 12.8 1 +2000 7 3 19.0 18.0 18.0 1 +2000 7 4 21.7 20.7 20.7 1 +2000 7 5 20.2 19.2 19.2 1 +2000 7 6 17.4 16.4 16.4 1 +2000 7 7 16.5 15.5 15.5 1 +2000 7 8 15.4 14.4 14.4 1 +2000 7 9 15.2 14.2 14.2 1 +2000 7 10 15.7 14.7 14.7 1 +2000 7 11 16.8 15.8 15.8 1 +2000 7 12 15.5 14.5 14.5 1 +2000 7 13 15.1 14.1 14.1 1 +2000 7 14 14.2 13.2 13.2 1 +2000 7 15 14.2 13.2 13.2 1 +2000 7 16 13.9 12.9 12.9 1 +2000 7 17 17.8 16.8 16.8 1 +2000 7 18 16.4 15.4 15.4 1 +2000 7 19 16.8 15.8 15.8 1 +2000 7 20 15.5 14.5 14.5 1 +2000 7 21 16.9 15.9 15.9 1 +2000 7 22 18.5 17.5 17.5 1 +2000 7 23 15.3 14.3 14.3 1 +2000 7 24 16.0 15.1 15.1 1 +2000 7 25 15.0 14.1 14.1 1 +2000 7 26 13.5 12.6 12.6 1 +2000 7 27 14.5 13.6 13.6 1 +2000 7 28 15.8 14.9 14.9 1 +2000 7 29 15.2 14.3 14.3 1 +2000 7 30 17.6 16.7 16.7 1 +2000 7 31 19.2 18.3 18.3 1 +2000 8 1 19.1 18.2 18.2 1 +2000 8 2 17.4 16.5 16.5 1 +2000 8 3 15.9 15.0 15.0 1 +2000 8 4 17.4 16.5 16.5 1 +2000 8 5 17.8 16.9 16.9 1 +2000 8 6 17.3 16.5 16.5 1 +2000 8 7 16.1 15.3 15.3 1 +2000 8 8 14.7 13.9 13.9 1 +2000 8 9 16.1 15.3 15.3 1 +2000 8 10 17.2 16.4 16.4 1 +2000 8 11 17.4 16.6 16.6 1 +2000 8 12 18.1 17.3 17.3 1 +2000 8 13 15.9 15.1 15.1 1 +2000 8 14 17.9 17.1 17.1 1 +2000 8 15 18.1 17.3 17.3 1 +2000 8 16 17.7 16.9 16.9 1 +2000 8 17 17.0 16.3 16.3 1 +2000 8 18 17.5 16.8 16.8 1 +2000 8 19 17.1 16.4 16.4 1 +2000 8 20 15.7 15.0 15.0 1 +2000 8 21 15.9 15.2 15.2 1 +2000 8 22 15.0 14.3 14.3 1 +2000 8 23 14.1 13.4 13.4 1 +2000 8 24 13.3 12.7 12.7 1 +2000 8 25 13.5 12.9 12.9 1 +2000 8 26 16.0 15.4 15.4 1 +2000 8 27 16.6 16.0 16.0 1 +2000 8 28 17.0 16.4 16.4 1 +2000 8 29 17.1 16.5 16.5 1 +2000 8 30 16.3 15.8 15.8 1 +2000 8 31 14.1 13.6 13.6 1 +2000 9 1 13.7 13.2 13.2 1 +2000 9 2 15.2 14.7 14.7 1 +2000 9 3 11.3 10.8 10.8 1 +2000 9 4 10.6 10.1 10.1 1 +2000 9 5 11.0 10.5 10.5 1 +2000 9 6 11.9 11.5 11.5 1 +2000 9 7 13.8 13.4 13.4 1 +2000 9 8 14.5 14.1 14.1 1 +2000 9 9 14.7 14.3 14.3 1 +2000 9 10 14.2 13.8 13.8 1 +2000 9 11 12.3 11.9 11.9 1 +2000 9 12 11.3 11.0 11.0 1 +2000 9 13 10.7 10.4 10.4 1 +2000 9 14 9.1 8.8 8.8 1 +2000 9 15 10.2 9.9 9.9 1 +2000 9 16 11.3 11.0 11.0 1 +2000 9 17 12.2 11.9 11.9 1 +2000 9 18 11.7 11.4 11.4 1 +2000 9 19 11.0 10.7 10.7 1 +2000 9 20 10.4 10.1 10.1 1 +2000 9 21 9.8 9.5 9.5 1 +2000 9 22 10.9 10.6 10.6 1 +2000 9 23 11.4 11.1 11.1 1 +2000 9 24 11.4 11.1 11.1 1 +2000 9 25 11.6 11.3 11.3 1 +2000 9 26 11.1 10.8 10.8 1 +2000 9 27 11.9 11.6 11.6 1 +2000 9 28 13.0 12.7 12.7 1 +2000 9 29 15.5 15.2 15.2 1 +2000 9 30 14.5 14.2 14.2 1 +2000 10 1 12.8 12.5 12.5 1 +2000 10 2 14.2 13.9 13.9 1 +2000 10 3 14.2 13.9 13.9 1 +2000 10 4 12.8 12.5 12.5 1 +2000 10 5 12.7 12.4 12.4 1 +2000 10 6 14.1 13.8 13.8 1 +2000 10 7 13.1 12.8 12.8 1 +2000 10 8 13.3 13.0 13.0 1 +2000 10 9 12.8 12.5 12.5 1 +2000 10 10 9.9 9.7 9.7 1 +2000 10 11 9.6 9.4 9.4 1 +2000 10 12 11.0 10.8 10.8 1 +2000 10 13 10.9 10.7 10.7 1 +2000 10 14 10.2 10.0 10.0 1 +2000 10 15 9.0 8.8 8.8 1 +2000 10 16 11.0 10.8 10.8 1 +2000 10 17 12.4 12.1 12.1 1 +2000 10 18 12.0 11.7 11.7 1 +2000 10 19 11.3 11.0 11.0 1 +2000 10 20 11.9 11.6 11.6 1 +2000 10 21 11.3 11.0 11.0 1 +2000 10 22 11.2 10.9 10.9 1 +2000 10 23 8.6 8.3 8.3 1 +2000 10 24 11.4 11.1 11.1 1 +2000 10 25 10.3 10.0 10.0 1 +2000 10 26 7.2 6.9 6.9 1 +2000 10 27 3.0 2.7 2.7 1 +2000 10 28 2.4 2.1 2.1 1 +2000 10 29 7.9 7.6 7.6 1 +2000 10 30 8.1 7.7 7.7 1 +2000 10 31 8.9 8.5 8.5 1 +2000 11 1 9.6 9.2 9.2 1 +2000 11 2 7.7 7.3 7.3 1 +2000 11 3 8.7 8.3 8.3 1 +2000 11 4 9.3 8.9 8.9 1 +2000 11 5 5.9 5.5 5.5 1 +2000 11 6 5.9 5.5 5.5 1 +2000 11 7 8.5 8.1 8.1 1 +2000 11 8 8.8 8.4 8.4 1 +2000 11 9 8.7 8.3 8.3 1 +2000 11 10 8.3 7.9 7.9 1 +2000 11 11 7.8 7.4 7.4 1 +2000 11 12 7.2 6.8 6.8 1 +2000 11 13 8.0 7.5 7.5 1 +2000 11 14 7.0 6.5 6.5 1 +2000 11 15 5.6 5.1 5.1 1 +2000 11 16 2.3 1.8 1.8 1 +2000 11 17 4.7 4.2 4.2 1 +2000 11 18 6.3 5.8 5.8 1 +2000 11 19 6.0 5.5 5.5 1 +2000 11 20 7.5 7.0 7.0 1 +2000 11 21 6.3 5.8 5.8 1 +2000 11 22 7.2 6.7 6.7 1 +2000 11 23 7.3 6.8 6.8 1 +2000 11 24 7.3 6.8 6.8 1 +2000 11 25 7.5 7.0 7.0 1 +2000 11 26 6.2 5.7 5.7 1 +2000 11 27 5.2 4.7 4.7 1 +2000 11 28 5.5 5.0 5.0 1 +2000 11 29 6.4 5.9 5.9 1 +2000 11 30 8.2 7.7 7.7 1 +2000 12 1 5.9 5.4 5.4 1 +2000 12 2 7.9 7.4 7.4 1 +2000 12 3 6.2 5.7 5.7 1 +2000 12 4 7.2 6.7 6.7 1 +2000 12 5 6.4 5.8 5.8 1 +2000 12 6 8.0 7.4 7.4 1 +2000 12 7 6.7 6.1 6.1 1 +2000 12 8 7.1 6.5 6.5 1 +2000 12 9 7.0 6.4 6.4 1 +2000 12 10 6.4 5.8 5.8 1 +2000 12 11 6.9 6.3 6.3 1 +2000 12 12 5.5 4.9 4.9 1 +2000 12 13 8.2 7.6 7.6 1 +2000 12 14 5.2 4.6 4.6 1 +2000 12 15 5.9 5.3 5.3 1 +2000 12 16 4.5 3.9 3.9 1 +2000 12 17 2.0 1.4 1.4 1 +2000 12 18 -0.6 -1.2 -1.2 1 +2000 12 19 -0.3 -0.9 -0.9 1 +2000 12 20 -2.1 -2.7 -2.7 1 +2000 12 21 -1.9 -2.5 -2.5 1 +2000 12 22 0.9 0.3 0.3 1 +2000 12 23 -1.5 -2.1 -2.1 1 +2000 12 24 -1.8 -2.4 -2.4 1 +2000 12 25 -5.0 -5.7 -5.7 1 +2000 12 26 -4.8 -5.5 -5.5 1 +2000 12 27 -0.3 -1.0 -1.0 1 +2000 12 28 0.7 0.0 0.0 1 +2000 12 29 0.3 -0.4 -0.4 1 +2000 12 30 1.2 0.5 0.5 1 +2000 12 31 -0.8 -1.5 -1.5 1 +2001 1 1 -1.3 -2.0 -2.0 1 +2001 1 2 1.6 0.9 0.9 1 +2001 1 3 3.5 2.8 2.8 1 +2001 1 4 3.0 2.3 2.3 1 +2001 1 5 3.2 2.5 2.5 1 +2001 1 6 3.5 2.8 2.8 1 +2001 1 7 3.4 2.7 2.7 1 +2001 1 8 4.3 3.6 3.6 1 +2001 1 9 2.2 1.5 1.5 1 +2001 1 10 -3.2 -3.9 -3.9 1 +2001 1 11 -1.5 -2.3 -2.3 1 +2001 1 12 -3.0 -3.8 -3.8 1 +2001 1 13 0.3 -0.5 -0.5 1 +2001 1 14 -0.5 -1.3 -1.3 1 +2001 1 15 -3.8 -4.6 -4.6 1 +2001 1 16 -5.0 -5.8 -5.8 1 +2001 1 17 -4.4 -5.2 -5.2 1 +2001 1 18 -1.6 -2.4 -2.4 1 +2001 1 19 0.4 -0.4 -0.4 1 +2001 1 20 -1.7 -2.5 -2.5 1 +2001 1 21 -1.1 -1.9 -1.9 1 +2001 1 22 -1.1 -1.9 -1.9 1 +2001 1 23 -0.7 -1.5 -1.5 1 +2001 1 24 1.6 0.8 0.8 1 +2001 1 25 3.2 2.4 2.4 1 +2001 1 26 2.8 2.0 2.0 1 +2001 1 27 1.8 1.0 1.0 1 +2001 1 28 0.5 -0.3 -0.3 1 +2001 1 29 0.0 -0.8 -0.8 1 +2001 1 30 -3.0 -3.8 -3.8 1 +2001 1 31 -1.5 -2.3 -2.3 1 +2001 2 1 -6.2 -7.0 -7.0 1 +2001 2 2 -9.4 -10.2 -10.2 1 +2001 2 3 -14.2 -15.0 -15.0 1 +2001 2 4 -14.8 -15.6 -15.6 1 +2001 2 5 -14.4 -15.2 -15.2 1 +2001 2 6 -3.9 -4.7 -4.7 1 +2001 2 7 3.3 2.5 2.5 1 +2001 2 8 4.2 3.4 3.4 1 +2001 2 9 -0.5 -1.3 -1.3 1 +2001 2 10 -3.2 -4.0 -4.0 1 +2001 2 11 0.1 -0.7 -0.7 1 +2001 2 12 4.7 3.9 3.9 1 +2001 2 13 3.3 2.5 2.5 1 +2001 2 14 3.5 2.7 2.7 1 +2001 2 15 4.0 3.2 3.2 1 +2001 2 16 1.7 0.8 0.8 1 +2001 2 17 1.1 0.2 0.2 1 +2001 2 18 1.8 0.9 0.9 1 +2001 2 19 3.1 2.2 2.2 1 +2001 2 20 1.9 1.0 1.0 1 +2001 2 21 2.1 1.2 1.2 1 +2001 2 22 -5.0 -5.9 -5.9 1 +2001 2 23 -10.6 -11.5 -11.5 1 +2001 2 24 -9.3 -10.2 -10.2 1 +2001 2 25 -8.5 -9.4 -9.4 1 +2001 2 26 -10.5 -11.4 -11.4 1 +2001 2 27 -10.4 -11.3 -11.3 1 +2001 2 28 -8.0 -8.9 -8.9 1 +2001 3 1 -6.4 -7.3 -7.3 1 +2001 3 2 -5.1 -6.0 -6.0 1 +2001 3 3 -9.2 -10.1 -10.1 1 +2001 3 4 -2.2 -3.1 -3.1 1 +2001 3 5 -2.8 -3.7 -3.7 1 +2001 3 6 2.6 1.7 1.7 1 +2001 3 7 0.5 -0.4 -0.4 1 +2001 3 8 1.0 0.1 0.1 1 +2001 3 9 1.9 1.0 1.0 1 +2001 3 10 3.1 2.2 2.2 1 +2001 3 11 5.0 4.1 4.1 1 +2001 3 12 5.8 4.9 4.9 1 +2001 3 13 4.5 3.5 3.5 1 +2001 3 14 3.0 2.0 2.0 1 +2001 3 15 1.9 0.9 0.9 1 +2001 3 16 0.9 -0.1 -0.1 1 +2001 3 17 -2.2 -3.1 -3.1 1 +2001 3 18 -4.9 -5.8 -5.8 1 +2001 3 19 -5.1 -6.0 -6.0 1 +2001 3 20 -3.6 -4.5 -4.5 1 +2001 3 21 -1.8 -2.7 -2.7 1 +2001 3 22 -2.5 -3.4 -3.4 1 +2001 3 23 -2.5 -3.4 -3.4 1 +2001 3 24 -1.2 -2.1 -2.1 1 +2001 3 25 -1.6 -2.5 -2.5 1 +2001 3 26 -1.6 -2.5 -2.5 1 +2001 3 27 0.4 -0.5 -0.5 1 +2001 3 28 1.0 0.1 0.1 1 +2001 3 29 2.7 1.8 1.8 1 +2001 3 30 2.0 1.1 1.1 1 +2001 3 31 3.5 2.6 2.6 1 +2001 4 1 7.7 6.8 6.8 1 +2001 4 2 7.1 6.2 6.2 1 +2001 4 3 7.4 6.5 6.5 1 +2001 4 4 5.9 5.0 5.0 1 +2001 4 5 6.6 5.7 5.7 1 +2001 4 6 6.2 5.4 5.4 1 +2001 4 7 5.5 4.7 4.7 1 +2001 4 8 5.9 5.1 5.1 1 +2001 4 9 8.0 7.2 7.2 1 +2001 4 10 6.2 5.4 5.4 1 +2001 4 11 3.8 3.0 3.0 1 +2001 4 12 2.2 1.4 1.4 1 +2001 4 13 1.0 0.2 0.2 1 +2001 4 14 0.9 0.1 0.1 1 +2001 4 15 2.2 1.4 1.4 1 +2001 4 16 4.5 3.7 3.7 1 +2001 4 17 5.4 4.6 4.6 1 +2001 4 18 3.6 2.7 2.7 1 +2001 4 19 3.4 2.5 2.5 1 +2001 4 20 2.2 1.3 1.3 1 +2001 4 21 4.4 3.5 3.5 1 +2001 4 22 4.8 3.9 3.9 1 +2001 4 23 5.8 4.8 4.8 1 +2001 4 24 7.0 6.0 6.0 1 +2001 4 25 9.5 8.5 8.5 1 +2001 4 26 8.6 7.6 7.6 1 +2001 4 27 9.9 8.9 8.9 1 +2001 4 28 10.6 9.6 9.6 1 +2001 4 29 9.2 8.1 8.1 1 +2001 4 30 11.0 9.9 9.9 1 +2001 5 1 10.6 9.5 9.5 1 +2001 5 2 11.3 10.2 10.2 1 +2001 5 3 13.7 12.6 12.6 1 +2001 5 4 7.9 6.7 6.7 1 +2001 5 5 9.0 7.8 7.8 1 +2001 5 6 7.9 6.7 6.7 1 +2001 5 7 10.8 9.6 9.6 1 +2001 5 8 15.2 14.0 14.0 1 +2001 5 9 16.2 14.9 14.9 1 +2001 5 10 13.2 11.9 11.9 1 +2001 5 11 11.7 10.4 10.4 1 +2001 5 12 13.6 12.3 12.3 1 +2001 5 13 13.5 12.2 12.2 1 +2001 5 14 11.1 9.7 9.7 1 +2001 5 15 9.7 8.3 8.3 1 +2001 5 16 9.8 8.4 8.4 1 +2001 5 17 9.8 8.4 8.4 1 +2001 5 18 12.0 10.7 10.7 1 +2001 5 19 10.7 9.4 9.4 1 +2001 5 20 11.0 9.7 9.7 1 +2001 5 21 8.6 7.3 7.3 1 +2001 5 22 11.6 10.3 10.3 1 +2001 5 23 14.9 13.6 13.6 1 +2001 5 24 11.0 9.7 9.7 1 +2001 5 25 9.3 8.0 8.0 1 +2001 5 26 13.1 11.8 11.8 1 +2001 5 27 15.1 13.8 13.8 1 +2001 5 28 9.2 7.9 7.9 1 +2001 5 29 7.0 5.8 5.8 1 +2001 5 30 7.5 6.3 6.3 1 +2001 5 31 11.2 10.0 10.0 1 +2001 6 1 12.7 11.5 11.5 1 +2001 6 2 12.5 11.3 11.3 1 +2001 6 3 11.6 10.4 10.4 1 +2001 6 4 11.6 10.4 10.4 1 +2001 6 5 14.7 13.5 13.5 1 +2001 6 6 14.7 13.5 13.5 1 +2001 6 7 14.7 13.5 13.5 1 +2001 6 8 12.9 11.7 11.7 1 +2001 6 9 12.5 11.4 11.4 1 +2001 6 10 12.8 11.7 11.7 1 +2001 6 11 13.3 12.2 12.2 1 +2001 6 12 12.6 11.5 11.5 1 +2001 6 13 13.9 12.8 12.8 1 +2001 6 14 15.9 14.8 14.8 1 +2001 6 15 16.8 15.7 15.7 1 +2001 6 16 16.7 15.6 15.6 1 +2001 6 17 13.0 11.9 11.9 1 +2001 6 18 15.0 13.9 13.9 1 +2001 6 19 13.7 12.6 12.6 1 +2001 6 20 16.9 15.8 15.8 1 +2001 6 21 14.9 13.8 13.8 1 +2001 6 22 14.5 13.4 13.4 1 +2001 6 23 17.7 16.6 16.6 1 +2001 6 24 18.6 17.5 17.5 1 +2001 6 25 19.3 18.2 18.2 1 +2001 6 26 19.4 18.3 18.3 1 +2001 6 27 20.5 19.4 19.4 1 +2001 6 28 19.8 18.7 18.7 1 +2001 6 29 19.4 18.3 18.3 1 +2001 6 30 20.3 19.3 19.3 1 +2001 7 1 18.3 17.3 17.3 1 +2001 7 2 19.3 18.3 18.3 1 +2001 7 3 22.2 21.2 21.2 1 +2001 7 4 24.3 23.3 23.3 1 +2001 7 5 23.2 22.2 22.2 1 +2001 7 6 24.8 23.8 23.8 1 +2001 7 7 24.1 23.1 23.1 1 +2001 7 8 23.3 22.3 22.3 1 +2001 7 9 23.6 22.6 22.6 1 +2001 7 10 20.8 19.8 19.8 1 +2001 7 11 19.1 18.1 18.1 1 +2001 7 12 18.2 17.2 17.2 1 +2001 7 13 15.0 14.0 14.0 1 +2001 7 14 16.3 15.3 15.3 1 +2001 7 15 18.0 17.0 17.0 1 +2001 7 16 17.8 16.8 16.8 1 +2001 7 17 14.1 13.1 13.1 1 +2001 7 18 14.8 13.8 13.8 1 +2001 7 19 16.8 15.8 15.8 1 +2001 7 20 18.6 17.6 17.6 1 +2001 7 21 18.1 17.1 17.1 1 +2001 7 22 18.8 17.8 17.8 1 +2001 7 23 20.6 19.6 19.6 1 +2001 7 24 21.5 20.6 20.6 1 +2001 7 25 22.7 21.8 21.8 1 +2001 7 26 22.9 22.0 22.0 1 +2001 7 27 20.4 19.5 19.5 1 +2001 7 28 20.1 19.2 19.2 1 +2001 7 29 22.9 22.0 22.0 1 +2001 7 30 20.8 19.9 19.9 1 +2001 7 31 18.2 17.3 17.3 1 +2001 8 1 18.8 17.9 17.9 1 +2001 8 2 16.3 15.4 15.4 1 +2001 8 3 17.9 17.0 17.0 1 +2001 8 4 17.6 16.7 16.7 1 +2001 8 5 18.2 17.3 17.3 1 +2001 8 6 15.1 14.3 14.3 1 +2001 8 7 14.4 13.6 13.6 1 +2001 8 8 16.9 16.1 16.1 1 +2001 8 9 17.8 17.0 17.0 1 +2001 8 10 17.0 16.2 16.2 1 +2001 8 11 15.5 14.7 14.7 1 +2001 8 12 13.7 12.9 12.9 1 +2001 8 13 16.8 16.0 16.0 1 +2001 8 14 17.8 17.0 17.0 1 +2001 8 15 20.0 19.2 19.2 1 +2001 8 16 20.1 19.3 19.3 1 +2001 8 17 20.3 19.6 19.6 1 +2001 8 18 18.5 17.8 17.8 1 +2001 8 19 18.4 17.7 17.7 1 +2001 8 20 17.2 16.5 16.5 1 +2001 8 21 19.3 18.6 18.6 1 +2001 8 22 18.5 17.8 17.8 1 +2001 8 23 17.8 17.1 17.1 1 +2001 8 24 17.9 17.3 17.3 1 +2001 8 25 18.4 17.8 17.8 1 +2001 8 26 19.5 18.9 18.9 1 +2001 8 27 16.4 15.8 15.8 1 +2001 8 28 14.7 14.1 14.1 1 +2001 8 29 15.7 15.1 15.1 1 +2001 8 30 15.7 15.2 15.2 1 +2001 8 31 16.5 16.0 16.0 1 +2001 9 1 16.9 16.4 16.4 1 +2001 9 2 15.2 14.7 14.7 1 +2001 9 3 15.1 14.6 14.6 1 +2001 9 4 14.2 13.7 13.7 1 +2001 9 5 14.3 13.8 13.8 1 +2001 9 6 15.4 15.0 15.0 1 +2001 9 7 14.3 13.9 13.9 1 +2001 9 8 13.5 13.1 13.1 1 +2001 9 9 13.2 12.8 12.8 1 +2001 9 10 11.2 10.8 10.8 1 +2001 9 11 12.1 11.7 11.7 1 +2001 9 12 13.7 13.4 13.4 1 +2001 9 13 12.5 12.2 12.2 1 +2001 9 14 13.2 12.9 12.9 1 +2001 9 15 14.1 13.8 13.8 1 +2001 9 16 13.8 13.5 13.5 1 +2001 9 17 15.5 15.2 15.2 1 +2001 9 18 15.7 15.4 15.4 1 +2001 9 19 16.1 15.8 15.8 1 +2001 9 20 12.2 11.9 11.9 1 +2001 9 21 13.3 13.0 13.0 1 +2001 9 22 13.7 13.4 13.4 1 +2001 9 23 13.1 12.8 12.8 1 +2001 9 24 8.9 8.6 8.6 1 +2001 9 25 7.1 6.8 6.8 1 +2001 9 26 10.3 10.0 10.0 1 +2001 9 27 9.5 9.2 9.2 1 +2001 9 28 9.4 9.1 9.1 1 +2001 9 29 5.7 5.4 5.4 1 +2001 9 30 6.7 6.4 6.4 1 +2001 10 1 10.8 10.5 10.5 1 +2001 10 2 13.4 13.1 13.1 1 +2001 10 3 13.8 13.5 13.5 1 +2001 10 4 12.3 12.0 12.0 1 +2001 10 5 11.7 11.4 11.4 1 +2001 10 6 10.7 10.4 10.4 1 +2001 10 7 11.7 11.4 11.4 1 +2001 10 8 13.2 12.9 12.9 1 +2001 10 9 12.4 12.1 12.1 1 +2001 10 10 12.2 11.9 11.9 1 +2001 10 11 9.3 9.1 9.1 1 +2001 10 12 11.5 11.3 11.3 1 +2001 10 13 13.6 13.4 13.4 1 +2001 10 14 10.7 10.5 10.5 1 +2001 10 15 9.8 9.6 9.6 1 +2001 10 16 11.7 11.5 11.5 1 +2001 10 17 12.5 12.2 12.2 1 +2001 10 18 9.2 8.9 8.9 1 +2001 10 19 8.8 8.5 8.5 1 +2001 10 20 6.9 6.6 6.6 1 +2001 10 21 8.9 8.6 8.6 1 +2001 10 22 5.9 5.6 5.6 1 +2001 10 23 4.1 3.8 3.8 1 +2001 10 24 6.0 5.7 5.7 1 +2001 10 25 5.6 5.3 5.3 1 +2001 10 26 9.9 9.6 9.6 1 +2001 10 27 10.9 10.6 10.6 1 +2001 10 28 9.0 8.7 8.7 1 +2001 10 29 6.2 5.9 5.9 1 +2001 10 30 9.1 8.7 8.7 1 +2001 10 31 8.7 8.3 8.3 1 +2001 11 1 4.3 3.9 3.9 1 +2001 11 2 3.4 3.0 3.0 1 +2001 11 3 9.8 9.4 9.4 1 +2001 11 4 6.2 5.8 5.8 1 +2001 11 5 2.4 2.0 2.0 1 +2001 11 6 2.6 2.2 2.2 1 +2001 11 7 0.9 0.5 0.5 1 +2001 11 8 1.6 1.2 1.2 1 +2001 11 9 -1.0 -1.4 -1.4 1 +2001 11 10 1.9 1.5 1.5 1 +2001 11 11 7.8 7.4 7.4 1 +2001 11 12 2.6 2.2 2.2 1 +2001 11 13 1.2 0.7 0.7 1 +2001 11 14 -0.7 -1.2 -1.2 1 +2001 11 15 5.3 4.8 4.8 1 +2001 11 16 2.3 1.8 1.8 1 +2001 11 17 4.7 4.2 4.2 1 +2001 11 18 5.2 4.7 4.7 1 +2001 11 19 2.4 1.9 1.9 1 +2001 11 20 4.5 4.0 4.0 1 +2001 11 21 5.6 5.1 5.1 1 +2001 11 22 2.9 2.4 2.4 1 +2001 11 23 0.4 -0.1 -0.1 1 +2001 11 24 -0.2 -0.7 -0.7 1 +2001 11 25 1.1 0.6 0.6 1 +2001 11 26 2.8 2.3 2.3 1 +2001 11 27 3.6 3.1 3.1 1 +2001 11 28 2.8 2.3 2.3 1 +2001 11 29 3.2 2.7 2.7 1 +2001 11 30 3.0 2.5 2.5 1 +2001 12 1 3.2 2.7 2.7 1 +2001 12 2 4.1 3.6 3.6 1 +2001 12 3 3.6 3.1 3.1 1 +2001 12 4 2.4 1.9 1.9 1 +2001 12 5 1.5 0.9 0.9 1 +2001 12 6 3.6 3.0 3.0 1 +2001 12 7 3.7 3.1 3.1 1 +2001 12 8 2.5 1.9 1.9 1 +2001 12 9 2.9 2.3 2.3 1 +2001 12 10 3.1 2.5 2.5 1 +2001 12 11 4.6 4.0 4.0 1 +2001 12 12 3.1 2.5 2.5 1 +2001 12 13 1.8 1.2 1.2 1 +2001 12 14 1.8 1.2 1.2 1 +2001 12 15 -0.8 -1.4 -1.4 1 +2001 12 16 -0.4 -1.0 -1.0 1 +2001 12 17 1.9 1.3 1.3 1 +2001 12 18 2.4 1.8 1.8 1 +2001 12 19 -0.5 -1.1 -1.1 1 +2001 12 20 -7.5 -8.1 -8.1 1 +2001 12 21 -2.4 -3.0 -3.0 1 +2001 12 22 -10.1 -10.7 -10.7 1 +2001 12 23 -13.9 -14.5 -14.5 1 +2001 12 24 -5.6 -6.2 -6.2 1 +2001 12 25 -0.2 -0.9 -0.9 1 +2001 12 26 -6.1 -6.8 -6.8 1 +2001 12 27 -10.3 -11.0 -11.0 1 +2001 12 28 -5.1 -5.8 -5.8 1 +2001 12 29 -3.8 -4.5 -4.5 1 +2001 12 30 -8.1 -8.8 -8.8 1 +2001 12 31 -13.7 -14.4 -14.4 1 +2002 1 1 -9.0 -9.7 -9.7 1 +2002 1 2 -8.4 -9.1 -9.1 1 +2002 1 3 -5.7 -6.4 -6.4 1 +2002 1 4 -2.0 -2.7 -2.7 1 +2002 1 5 -3.9 -4.6 -4.6 1 +2002 1 6 -2.5 -3.2 -3.2 1 +2002 1 7 0.2 -0.5 -0.5 1 +2002 1 8 0.3 -0.4 -0.4 1 +2002 1 9 -1.2 -1.9 -1.9 1 +2002 1 10 2.3 1.6 1.6 1 +2002 1 11 2.8 2.0 2.0 1 +2002 1 12 2.1 1.3 1.3 1 +2002 1 13 3.7 2.9 2.9 1 +2002 1 14 3.4 2.6 2.6 1 +2002 1 15 3.8 3.0 3.0 1 +2002 1 16 1.5 0.7 0.7 1 +2002 1 17 3.2 2.4 2.4 1 +2002 1 18 2.9 2.1 2.1 1 +2002 1 19 2.4 1.6 1.6 1 +2002 1 20 1.0 0.2 0.2 1 +2002 1 21 2.3 1.5 1.5 1 +2002 1 22 1.5 0.7 0.7 1 +2002 1 23 -0.1 -0.9 -0.9 1 +2002 1 24 0.4 -0.4 -0.4 1 +2002 1 25 -4.0 -4.8 -4.8 1 +2002 1 26 -5.0 -5.8 -5.8 1 +2002 1 27 -2.1 -2.9 -2.9 1 +2002 1 28 -0.3 -1.1 -1.1 1 +2002 1 29 1.8 1.0 1.0 1 +2002 1 30 -1.8 -2.6 -2.6 1 +2002 1 31 0.1 -0.7 -0.7 1 +2002 2 1 1.0 0.2 0.2 1 +2002 2 2 6.3 5.5 5.5 1 +2002 2 3 8.1 7.3 7.3 1 +2002 2 4 4.3 3.5 3.5 1 +2002 2 5 3.8 3.0 3.0 1 +2002 2 6 5.7 4.9 4.9 1 +2002 2 7 4.1 3.3 3.3 1 +2002 2 8 3.4 2.6 2.6 1 +2002 2 9 3.3 2.5 2.5 1 +2002 2 10 4.1 3.3 3.3 1 +2002 2 11 2.0 1.2 1.2 1 +2002 2 12 0.8 0.0 0.0 1 +2002 2 13 -0.7 -1.5 -1.5 1 +2002 2 14 -0.6 -1.4 -1.4 1 +2002 2 15 2.4 1.6 1.6 1 +2002 2 16 4.5 3.6 3.6 1 +2002 2 17 5.7 4.8 4.8 1 +2002 2 18 4.2 3.3 3.3 1 +2002 2 19 1.0 0.1 0.1 1 +2002 2 20 -4.1 -5.0 -5.0 1 +2002 2 21 -4.1 -5.0 -5.0 1 +2002 2 22 -0.5 -1.4 -1.4 1 +2002 2 23 1.0 0.1 0.1 1 +2002 2 24 -1.8 -2.7 -2.7 1 +2002 2 25 -2.6 -3.5 -3.5 1 +2002 2 26 -1.1 -2.0 -2.0 1 +2002 2 27 0.3 -0.6 -0.6 1 +2002 2 28 -1.6 -2.5 -2.5 1 +2002 3 1 -3.0 -3.9 -3.9 1 +2002 3 2 -1.6 -2.5 -2.5 1 +2002 3 3 -4.3 -5.2 -5.2 1 +2002 3 4 1.1 0.2 0.2 1 +2002 3 5 4.8 3.9 3.9 1 +2002 3 6 3.7 2.8 2.8 1 +2002 3 7 -0.3 -1.2 -1.2 1 +2002 3 8 1.0 0.1 0.1 1 +2002 3 9 4.7 3.8 3.8 1 +2002 3 10 3.3 2.4 2.4 1 +2002 3 11 4.7 3.8 3.8 1 +2002 3 12 5.0 4.1 4.1 1 +2002 3 13 1.0 0.0 0.0 1 +2002 3 14 -1.2 -2.2 -2.2 1 +2002 3 15 2.0 1.0 1.0 1 +2002 3 16 2.3 1.3 1.3 1 +2002 3 17 3.1 2.2 2.2 1 +2002 3 18 2.8 1.9 1.9 1 +2002 3 19 5.2 4.3 4.3 1 +2002 3 20 3.2 2.3 2.3 1 +2002 3 21 1.0 0.1 0.1 1 +2002 3 22 1.4 0.5 0.5 1 +2002 3 23 0.5 -0.4 -0.4 1 +2002 3 24 0.8 -0.1 -0.1 1 +2002 3 25 1.9 1.0 1.0 1 +2002 3 26 3.5 2.6 2.6 1 +2002 3 27 5.2 4.3 4.3 1 +2002 3 28 6.2 5.3 5.3 1 +2002 3 29 8.4 7.5 7.5 1 +2002 3 30 7.0 6.1 6.1 1 +2002 3 31 5.6 4.7 4.7 1 +2002 4 1 6.6 5.7 5.7 1 +2002 4 2 5.6 4.7 4.7 1 +2002 4 3 7.2 6.3 6.3 1 +2002 4 4 4.0 3.1 3.1 1 +2002 4 5 1.8 0.9 0.9 1 +2002 4 6 2.4 1.6 1.6 1 +2002 4 7 3.6 2.8 2.8 1 +2002 4 8 3.4 2.6 2.6 1 +2002 4 9 4.6 3.8 3.8 1 +2002 4 10 6.8 6.0 6.0 1 +2002 4 11 7.5 6.7 6.7 1 +2002 4 12 8.8 8.0 8.0 1 +2002 4 13 10.1 9.3 9.3 1 +2002 4 14 6.1 5.3 5.3 1 +2002 4 15 4.8 4.0 4.0 1 +2002 4 16 3.2 2.4 2.4 1 +2002 4 17 2.6 1.8 1.8 1 +2002 4 18 5.4 4.5 4.5 1 +2002 4 19 7.5 6.6 6.6 1 +2002 4 20 10.9 10.0 10.0 1 +2002 4 21 12.4 11.5 11.5 1 +2002 4 22 13.1 12.2 12.2 1 +2002 4 23 11.9 10.9 10.9 1 +2002 4 24 13.2 12.2 12.2 1 +2002 4 25 14.9 13.9 13.9 1 +2002 4 26 10.2 9.2 9.2 1 +2002 4 27 9.2 8.2 8.2 1 +2002 4 28 7.0 6.0 6.0 1 +2002 4 29 6.6 5.5 5.5 1 +2002 4 30 9.4 8.3 8.3 1 +2002 5 1 8.4 7.3 7.3 1 +2002 5 2 10.7 9.6 9.6 1 +2002 5 3 10.3 9.2 9.2 1 +2002 5 4 9.3 8.1 8.1 1 +2002 5 5 9.7 8.5 8.5 1 +2002 5 6 10.0 8.8 8.8 1 +2002 5 7 11.4 10.2 10.2 1 +2002 5 8 13.5 12.3 12.3 1 +2002 5 9 12.2 10.9 10.9 1 +2002 5 10 10.9 9.6 9.6 1 +2002 5 11 12.5 11.2 11.2 1 +2002 5 12 15.7 14.4 14.4 1 +2002 5 13 14.8 13.5 13.5 1 +2002 5 14 16.4 15.0 15.0 1 +2002 5 15 14.1 12.7 12.7 1 +2002 5 16 12.6 11.2 11.2 1 +2002 5 17 10.5 9.1 9.1 1 +2002 5 18 9.8 8.5 8.5 1 +2002 5 19 9.8 8.5 8.5 1 +2002 5 20 12.7 11.4 11.4 1 +2002 5 21 14.8 13.5 13.5 1 +2002 5 22 14.6 13.3 13.3 1 +2002 5 23 16.3 15.0 15.0 1 +2002 5 24 15.3 14.0 14.0 1 +2002 5 25 10.0 8.7 8.7 1 +2002 5 26 13.4 12.1 12.1 1 +2002 5 27 11.8 10.5 10.5 1 +2002 5 28 13.9 12.6 12.6 1 +2002 5 29 14.8 13.6 13.6 1 +2002 5 30 16.2 15.0 15.0 1 +2002 5 31 15.2 14.0 14.0 1 +2002 6 1 16.8 15.6 15.6 1 +2002 6 2 18.3 17.1 17.1 1 +2002 6 3 20.0 18.8 18.8 1 +2002 6 4 20.1 18.9 18.9 1 +2002 6 5 19.9 18.7 18.7 1 +2002 6 6 19.5 18.3 18.3 1 +2002 6 7 19.0 17.8 17.8 1 +2002 6 8 20.5 19.3 19.3 1 +2002 6 9 20.8 19.7 19.7 1 +2002 6 10 20.0 18.9 18.9 1 +2002 6 11 19.3 18.2 18.2 1 +2002 6 12 17.0 15.9 15.9 1 +2002 6 13 16.4 15.3 15.3 1 +2002 6 14 13.4 12.3 12.3 1 +2002 6 15 17.1 16.0 16.0 1 +2002 6 16 15.7 14.6 14.6 1 +2002 6 17 18.6 17.5 17.5 1 +2002 6 18 22.7 21.6 21.6 1 +2002 6 19 21.4 20.3 20.3 1 +2002 6 20 19.2 18.1 18.1 1 +2002 6 21 13.9 12.8 12.8 1 +2002 6 22 15.6 14.5 14.5 1 +2002 6 23 13.9 12.8 12.8 1 +2002 6 24 16.0 14.9 14.9 1 +2002 6 25 16.1 15.0 15.0 1 +2002 6 26 15.9 14.8 14.8 1 +2002 6 27 14.2 13.1 13.1 1 +2002 6 28 14.0 12.9 12.9 1 +2002 6 29 14.4 13.3 13.3 1 +2002 6 30 16.3 15.3 15.3 1 +2002 7 1 14.6 13.6 13.6 1 +2002 7 2 15.1 14.1 14.1 1 +2002 7 3 16.0 15.0 15.0 1 +2002 7 4 14.7 13.7 13.7 1 +2002 7 5 17.4 16.4 16.4 1 +2002 7 6 15.9 14.9 14.9 1 +2002 7 7 17.2 16.2 16.2 1 +2002 7 8 17.8 16.8 16.8 1 +2002 7 9 19.4 18.4 18.4 1 +2002 7 10 21.8 20.8 20.8 1 +2002 7 11 20.7 19.7 19.7 1 +2002 7 12 18.9 17.9 17.9 1 +2002 7 13 20.4 19.4 19.4 1 +2002 7 14 21.6 20.6 20.6 1 +2002 7 15 22.4 21.4 21.4 1 +2002 7 16 23.6 22.6 22.6 1 +2002 7 17 24.0 23.0 23.0 1 +2002 7 18 22.3 21.3 21.3 1 +2002 7 19 19.9 18.9 18.9 1 +2002 7 20 20.7 19.7 19.7 1 +2002 7 21 19.2 18.2 18.2 1 +2002 7 22 19.6 18.6 18.6 1 +2002 7 23 17.2 16.2 16.2 1 +2002 7 24 16.9 16.0 16.0 1 +2002 7 25 16.8 15.9 15.9 1 +2002 7 26 17.1 16.2 16.2 1 +2002 7 27 18.9 18.0 18.0 1 +2002 7 28 21.0 20.1 20.1 1 +2002 7 29 22.3 21.4 21.4 1 +2002 7 30 21.3 20.4 20.4 1 +2002 7 31 20.8 19.9 19.9 1 +2002 8 1 21.5 20.6 20.6 1 +2002 8 2 20.0 19.1 19.1 1 +2002 8 3 19.7 18.8 18.8 1 +2002 8 4 20.1 19.2 19.2 1 +2002 8 5 18.8 17.9 17.9 1 +2002 8 6 17.4 16.6 16.6 1 +2002 8 7 19.2 18.4 18.4 1 +2002 8 8 21.1 20.3 20.3 1 +2002 8 9 20.8 20.0 20.0 1 +2002 8 10 20.9 20.1 20.1 1 +2002 8 11 22.1 21.3 21.3 1 +2002 8 12 22.7 21.9 21.9 1 +2002 8 13 23.0 22.2 22.2 1 +2002 8 14 23.6 22.8 22.8 1 +2002 8 15 24.5 23.7 23.7 1 +2002 8 16 23.2 22.4 22.4 1 +2002 8 17 21.2 20.5 20.5 1 +2002 8 18 20.6 19.9 19.9 1 +2002 8 19 21.2 20.5 20.5 1 +2002 8 20 22.3 21.6 21.6 1 +2002 8 21 22.7 22.0 22.0 1 +2002 8 22 23.2 22.5 22.5 1 +2002 8 23 23.1 22.4 22.4 1 +2002 8 24 21.7 21.1 21.1 1 +2002 8 25 21.1 20.5 20.5 1 +2002 8 26 21.7 21.1 21.1 1 +2002 8 27 20.9 20.3 20.3 1 +2002 8 28 20.8 20.2 20.2 1 +2002 8 29 21.4 20.8 20.8 1 +2002 8 30 19.8 19.3 19.3 1 +2002 8 31 20.0 19.5 19.5 1 +2002 9 1 16.9 16.4 16.4 1 +2002 9 2 18.2 17.7 17.7 1 +2002 9 3 19.1 18.6 18.6 1 +2002 9 4 20.0 19.5 19.5 1 +2002 9 5 21.0 20.5 20.5 1 +2002 9 6 18.2 17.8 17.8 1 +2002 9 7 19.5 19.1 19.1 1 +2002 9 8 19.4 19.0 19.0 1 +2002 9 9 20.8 20.4 20.4 1 +2002 9 10 16.2 15.8 15.8 1 +2002 9 11 16.0 15.6 15.6 1 +2002 9 12 17.9 17.6 17.6 1 +2002 9 13 17.9 17.6 17.6 1 +2002 9 14 13.1 12.8 12.8 1 +2002 9 15 9.4 9.1 9.1 1 +2002 9 16 11.2 10.9 10.9 1 +2002 9 17 13.1 12.8 12.8 1 +2002 9 18 10.9 10.6 10.6 1 +2002 9 19 10.5 10.2 10.2 1 +2002 9 20 8.7 8.4 8.4 1 +2002 9 21 7.3 7.0 7.0 1 +2002 9 22 7.3 7.0 7.0 1 +2002 9 23 6.9 6.6 6.6 1 +2002 9 24 10.5 10.2 10.2 1 +2002 9 25 8.8 8.5 8.5 1 +2002 9 26 6.2 5.9 5.9 1 +2002 9 27 6.8 6.5 6.5 1 +2002 9 28 9.3 9.0 9.0 1 +2002 9 29 12.3 12.0 12.0 1 +2002 9 30 13.3 13.0 13.0 1 +2002 10 1 8.8 8.5 8.5 1 +2002 10 2 8.6 8.3 8.3 1 +2002 10 3 7.9 7.6 7.6 1 +2002 10 4 7.6 7.3 7.3 1 +2002 10 5 5.5 5.2 5.2 1 +2002 10 6 3.7 3.4 3.4 1 +2002 10 7 3.2 2.9 2.9 1 +2002 10 8 4.3 4.0 4.0 1 +2002 10 9 3.7 3.4 3.4 1 +2002 10 10 2.0 1.7 1.7 1 +2002 10 11 2.8 2.6 2.6 1 +2002 10 12 3.2 3.0 3.0 1 +2002 10 13 4.1 3.9 3.9 1 +2002 10 14 3.5 3.3 3.3 1 +2002 10 15 3.7 3.5 3.5 1 +2002 10 16 2.5 2.3 2.3 1 +2002 10 17 2.2 1.9 1.9 1 +2002 10 18 -0.2 -0.5 -0.5 1 +2002 10 19 -1.6 -1.9 -1.9 1 +2002 10 20 0.8 0.5 0.5 1 +2002 10 21 1.7 1.4 1.4 1 +2002 10 22 3.3 3.0 3.0 1 +2002 10 23 4.4 4.1 4.1 1 +2002 10 24 6.6 6.3 6.3 1 +2002 10 25 6.4 6.1 6.1 1 +2002 10 26 7.6 7.3 7.3 1 +2002 10 27 6.2 5.9 5.9 1 +2002 10 28 3.8 3.5 3.5 1 +2002 10 29 2.8 2.5 2.5 1 +2002 10 30 2.7 2.3 2.3 1 +2002 10 31 2.8 2.4 2.4 1 +2002 11 1 2.0 1.6 1.6 1 +2002 11 2 -0.2 -0.6 -0.6 1 +2002 11 3 -0.7 -1.1 -1.1 1 +2002 11 4 0.9 0.5 0.5 1 +2002 11 5 -1.0 -1.4 -1.4 1 +2002 11 6 3.0 2.6 2.6 1 +2002 11 7 3.0 2.6 2.6 1 +2002 11 8 2.6 2.2 2.2 1 +2002 11 9 1.1 0.7 0.7 1 +2002 11 10 -1.6 -2.0 -2.0 1 +2002 11 11 -5.2 -5.6 -5.6 1 +2002 11 12 -6.2 -6.6 -6.6 1 +2002 11 13 0.3 -0.2 -0.2 1 +2002 11 14 2.7 2.2 2.2 1 +2002 11 15 4.7 4.2 4.2 1 +2002 11 16 3.8 3.3 3.3 1 +2002 11 17 2.6 2.1 2.1 1 +2002 11 18 3.6 3.1 3.1 1 +2002 11 19 -0.4 -0.9 -0.9 1 +2002 11 20 0.3 -0.2 -0.2 1 +2002 11 21 0.0 -0.5 -0.5 1 +2002 11 22 -0.5 -1.0 -1.0 1 +2002 11 23 0.5 0.0 0.0 1 +2002 11 24 2.2 1.7 1.7 1 +2002 11 25 5.4 4.9 4.9 1 +2002 11 26 5.3 4.8 4.8 1 +2002 11 27 2.3 1.8 1.8 1 +2002 11 28 1.4 0.9 0.9 1 +2002 11 29 -0.6 -1.1 -1.1 1 +2002 11 30 -1.2 -1.7 -1.7 1 +2002 12 1 -1.2 -1.7 -1.7 1 +2002 12 2 0.7 0.2 0.2 1 +2002 12 3 1.1 0.6 0.6 1 +2002 12 4 -0.5 -1.0 -1.0 1 +2002 12 5 -0.7 -1.3 -1.3 1 +2002 12 6 -1.2 -1.8 -1.8 1 +2002 12 7 -2.5 -3.1 -3.1 1 +2002 12 8 -5.0 -5.6 -5.6 1 +2002 12 9 -5.8 -6.4 -6.4 1 +2002 12 10 -2.5 -3.1 -3.1 1 +2002 12 11 -2.8 -3.4 -3.4 1 +2002 12 12 -2.6 -3.2 -3.2 1 +2002 12 13 0.5 -0.1 -0.1 1 +2002 12 14 -0.5 -1.1 -1.1 1 +2002 12 15 0.2 -0.4 -0.4 1 +2002 12 16 -1.4 -2.0 -2.0 1 +2002 12 17 -2.8 -3.4 -3.4 1 +2002 12 18 -3.4 -4.0 -4.0 1 +2002 12 19 -1.9 -2.5 -2.5 1 +2002 12 20 1.6 1.0 1.0 1 +2002 12 21 -4.0 -4.6 -4.6 1 +2002 12 22 -8.5 -9.1 -9.1 1 +2002 12 23 -9.2 -9.8 -9.8 1 +2002 12 24 -10.2 -10.8 -10.8 1 +2002 12 25 -3.8 -4.5 -4.5 1 +2002 12 26 -3.3 -4.0 -4.0 1 +2002 12 27 -2.4 -3.1 -3.1 1 +2002 12 28 -2.7 -3.4 -3.4 1 +2002 12 29 -6.4 -7.1 -7.1 1 +2002 12 30 -10.3 -11.0 -11.0 1 +2002 12 31 -14.6 -15.3 -15.3 1 +2003 1 1 -6.7 -7.4 -7.4 1 +2003 1 2 -9.2 -9.9 -9.9 1 +2003 1 3 -14.6 -15.3 -15.3 1 +2003 1 4 -14.7 -15.4 -15.4 1 +2003 1 5 -17.0 -17.7 -17.7 1 +2003 1 6 -14.8 -15.5 -15.5 1 +2003 1 7 -8.1 -8.8 -8.8 1 +2003 1 8 -4.8 -5.5 -5.5 1 +2003 1 9 -2.2 -2.9 -2.9 1 +2003 1 10 -9.3 -10.0 -10.0 1 +2003 1 11 -5.7 -6.5 -6.5 1 +2003 1 12 -0.1 -0.9 -0.9 1 +2003 1 13 0.1 -0.7 -0.7 1 +2003 1 14 2.4 1.6 1.6 1 +2003 1 15 5.0 4.2 4.2 1 +2003 1 16 3.7 2.9 2.9 1 +2003 1 17 5.0 4.2 4.2 1 +2003 1 18 4.0 3.2 3.2 1 +2003 1 19 3.0 2.2 2.2 1 +2003 1 20 1.8 1.0 1.0 1 +2003 1 21 2.6 1.8 1.8 1 +2003 1 22 2.1 1.3 1.3 1 +2003 1 23 1.2 0.4 0.4 1 +2003 1 24 -3.1 -3.9 -3.9 1 +2003 1 25 3.5 2.7 2.7 1 +2003 1 26 3.6 2.8 2.8 1 +2003 1 27 0.8 0.0 0.0 1 +2003 1 28 0.1 -0.7 -0.7 1 +2003 1 29 -5.1 -5.9 -5.9 1 +2003 1 30 -7.7 -8.5 -8.5 1 +2003 1 31 -11.6 -12.4 -12.4 1 +2003 2 1 -8.1 -8.9 -8.9 1 +2003 2 2 -2.6 -3.4 -3.4 1 +2003 2 3 -1.6 -2.4 -2.4 1 +2003 2 4 -1.5 -2.3 -2.3 1 +2003 2 5 -7.0 -7.8 -7.8 1 +2003 2 6 -10.0 -10.8 -10.8 1 +2003 2 7 -10.9 -11.7 -11.7 1 +2003 2 8 -3.0 -3.8 -3.8 1 +2003 2 9 -1.4 -2.2 -2.2 1 +2003 2 10 -3.2 -4.0 -4.0 1 +2003 2 11 -3.2 -4.0 -4.0 1 +2003 2 12 -0.5 -1.3 -1.3 1 +2003 2 13 -0.2 -1.0 -1.0 1 +2003 2 14 -0.8 -1.6 -1.6 1 +2003 2 15 -3.0 -3.8 -3.8 1 +2003 2 16 -5.4 -6.3 -6.3 1 +2003 2 17 -3.2 -4.1 -4.1 1 +2003 2 18 -1.0 -1.9 -1.9 1 +2003 2 19 1.6 0.7 0.7 1 +2003 2 20 -0.1 -1.0 -1.0 1 +2003 2 21 -0.3 -1.2 -1.2 1 +2003 2 22 -1.5 -2.4 -2.4 1 +2003 2 23 -1.4 -2.3 -2.3 1 +2003 2 24 -2.1 -3.0 -3.0 1 +2003 2 25 -4.1 -5.0 -5.0 1 +2003 2 26 -4.8 -5.7 -5.7 1 +2003 2 27 -4.0 -4.9 -4.9 1 +2003 2 28 -5.2 -6.1 -6.1 1 +2003 3 1 -4.9 -5.8 -5.8 1 +2003 3 2 -4.1 -5.0 -5.0 1 +2003 3 3 -3.1 -4.0 -4.0 1 +2003 3 4 -2.9 -3.8 -3.8 1 +2003 3 5 -0.6 -1.5 -1.5 1 +2003 3 6 -0.2 -1.1 -1.1 1 +2003 3 7 0.5 -0.4 -0.4 1 +2003 3 8 0.8 -0.1 -0.1 1 +2003 3 9 2.3 1.4 1.4 1 +2003 3 10 5.0 4.1 4.1 1 +2003 3 11 5.9 5.0 5.0 1 +2003 3 12 2.6 1.7 1.7 1 +2003 3 13 3.4 2.4 2.4 1 +2003 3 14 7.1 6.1 6.1 1 +2003 3 15 6.1 5.1 5.1 1 +2003 3 16 5.4 4.4 4.4 1 +2003 3 17 6.3 5.4 5.4 1 +2003 3 18 6.3 5.4 5.4 1 +2003 3 19 6.2 5.3 5.3 1 +2003 3 20 -1.8 -2.7 -2.7 1 +2003 3 21 -0.6 -1.5 -1.5 1 +2003 3 22 4.0 3.1 3.1 1 +2003 3 23 6.0 5.1 5.1 1 +2003 3 24 6.8 5.9 5.9 1 +2003 3 25 6.3 5.4 5.4 1 +2003 3 26 6.4 5.5 5.5 1 +2003 3 27 8.8 7.9 7.9 1 +2003 3 28 6.5 5.6 5.6 1 +2003 3 29 8.0 7.1 7.1 1 +2003 3 30 6.6 5.7 5.7 1 +2003 3 31 1.0 0.1 0.1 1 +2003 4 1 1.2 0.3 0.3 1 +2003 4 2 1.5 0.6 0.6 1 +2003 4 3 0.8 -0.1 -0.1 1 +2003 4 4 3.3 2.4 2.4 1 +2003 4 5 0.8 -0.1 -0.1 1 +2003 4 6 -1.4 -2.2 -2.2 1 +2003 4 7 -1.1 -1.9 -1.9 1 +2003 4 8 -1.6 -2.4 -2.4 1 +2003 4 9 0.8 0.0 0.0 1 +2003 4 10 0.6 -0.2 -0.2 1 +2003 4 11 0.9 0.1 0.1 1 +2003 4 12 2.2 1.4 1.4 1 +2003 4 13 5.3 4.5 4.5 1 +2003 4 14 6.6 5.8 5.8 1 +2003 4 15 8.0 7.2 7.2 1 +2003 4 16 11.3 10.5 10.5 1 +2003 4 17 7.9 7.1 7.1 1 +2003 4 18 5.6 4.7 4.7 1 +2003 4 19 6.2 5.3 5.3 1 +2003 4 20 9.4 8.5 8.5 1 +2003 4 21 12.4 11.5 11.5 1 +2003 4 22 13.6 12.7 12.7 1 +2003 4 23 7.6 6.6 6.6 1 +2003 4 24 4.5 3.5 3.5 1 +2003 4 25 3.8 2.8 2.8 1 +2003 4 26 4.8 3.8 3.8 1 +2003 4 27 3.7 2.7 2.7 1 +2003 4 28 3.6 2.6 2.6 1 +2003 4 29 3.6 2.5 2.5 1 +2003 4 30 11.8 10.7 10.7 1 +2003 5 1 6.2 5.1 5.1 1 +2003 5 2 6.4 5.3 5.3 1 +2003 5 3 4.6 3.5 3.5 1 +2003 5 4 3.6 2.4 2.4 1 +2003 5 5 7.5 6.3 6.3 1 +2003 5 6 9.4 8.2 8.2 1 +2003 5 7 11.6 10.4 10.4 1 +2003 5 8 11.0 9.8 9.8 1 +2003 5 9 12.9 11.6 11.6 1 +2003 5 10 11.7 10.4 10.4 1 +2003 5 11 12.3 11.0 11.0 1 +2003 5 12 10.4 9.1 9.1 1 +2003 5 13 11.8 10.5 10.5 1 +2003 5 14 10.9 9.5 9.5 1 +2003 5 15 10.3 8.9 8.9 1 +2003 5 16 10.4 9.0 9.0 1 +2003 5 17 11.6 10.2 10.2 1 +2003 5 18 13.1 11.8 11.8 1 +2003 5 19 13.6 12.3 12.3 1 +2003 5 20 12.4 11.1 11.1 1 +2003 5 21 12.4 11.1 11.1 1 +2003 5 22 12.6 11.3 11.3 1 +2003 5 23 11.7 10.4 10.4 1 +2003 5 24 13.7 12.4 12.4 1 +2003 5 25 16.1 14.8 14.8 1 +2003 5 26 17.7 16.4 16.4 1 +2003 5 27 14.8 13.5 13.5 1 +2003 5 28 14.3 13.0 13.0 1 +2003 5 29 15.5 14.3 14.3 1 +2003 5 30 16.8 15.6 15.6 1 +2003 5 31 12.4 11.2 11.2 1 +2003 6 1 12.5 11.3 11.3 1 +2003 6 2 16.7 15.5 15.5 1 +2003 6 3 17.9 16.7 16.7 1 +2003 6 4 19.9 18.7 18.7 1 +2003 6 5 21.3 20.1 20.1 1 +2003 6 6 19.3 18.1 18.1 1 +2003 6 7 18.1 16.9 16.9 1 +2003 6 8 18.6 17.4 17.4 1 +2003 6 9 15.7 14.6 14.6 1 +2003 6 10 15.7 14.6 14.6 1 +2003 6 11 12.8 11.7 11.7 1 +2003 6 12 16.9 15.8 15.8 1 +2003 6 13 14.3 13.2 13.2 1 +2003 6 14 13.3 12.2 12.2 1 +2003 6 15 14.0 12.9 12.9 1 +2003 6 16 12.9 11.8 11.8 1 +2003 6 17 15.3 14.2 14.2 1 +2003 6 18 17.0 15.9 15.9 1 +2003 6 19 13.7 12.6 12.6 1 +2003 6 20 12.8 11.7 11.7 1 +2003 6 21 14.2 13.1 13.1 1 +2003 6 22 15.3 14.2 14.2 1 +2003 6 23 17.3 16.2 16.2 1 +2003 6 24 13.8 12.7 12.7 1 +2003 6 25 17.8 16.7 16.7 1 +2003 6 26 20.0 18.9 18.9 1 +2003 6 27 18.9 17.8 17.8 1 +2003 6 28 17.8 16.7 16.7 1 +2003 6 29 14.0 12.9 12.9 1 +2003 6 30 15.6 14.6 14.6 1 +2003 7 1 14.4 13.4 13.4 1 +2003 7 2 16.0 15.0 15.0 1 +2003 7 3 15.0 14.0 14.0 1 +2003 7 4 17.6 16.6 16.6 1 +2003 7 5 17.2 16.2 16.2 1 +2003 7 6 18.9 17.9 17.9 1 +2003 7 7 19.4 18.4 18.4 1 +2003 7 8 19.8 18.8 18.8 1 +2003 7 9 19.3 18.3 18.3 1 +2003 7 10 17.3 16.3 16.3 1 +2003 7 11 20.4 19.4 19.4 1 +2003 7 12 17.6 16.6 16.6 1 +2003 7 13 19.8 18.8 18.8 1 +2003 7 14 22.2 21.2 21.2 1 +2003 7 15 22.6 21.6 21.6 1 +2003 7 16 24.6 23.6 23.6 1 +2003 7 17 24.0 23.0 23.0 1 +2003 7 18 24.5 23.5 23.5 1 +2003 7 19 24.0 23.0 23.0 1 +2003 7 20 23.9 22.9 22.9 1 +2003 7 21 23.7 22.7 22.7 1 +2003 7 22 20.5 19.5 19.5 1 +2003 7 23 21.4 20.4 20.4 1 +2003 7 24 21.5 20.6 20.6 1 +2003 7 25 20.9 20.0 20.0 1 +2003 7 26 22.1 21.2 21.2 1 +2003 7 27 21.8 20.9 20.9 1 +2003 7 28 22.3 21.4 21.4 1 +2003 7 29 19.9 19.0 19.0 1 +2003 7 30 22.9 22.0 22.0 1 +2003 7 31 24.6 23.7 23.7 1 +2003 8 1 25.3 24.4 24.4 1 +2003 8 2 23.0 22.1 22.1 1 +2003 8 3 22.0 21.1 21.1 1 +2003 8 4 20.8 19.9 19.9 1 +2003 8 5 19.3 18.4 18.4 1 +2003 8 6 19.9 19.1 19.1 1 +2003 8 7 21.2 20.4 20.4 1 +2003 8 8 20.0 19.2 19.2 1 +2003 8 9 18.0 17.2 17.2 1 +2003 8 10 17.9 17.1 17.1 1 +2003 8 11 19.2 18.4 18.4 1 +2003 8 12 21.6 20.8 20.8 1 +2003 8 13 18.8 18.0 18.0 1 +2003 8 14 17.7 16.9 16.9 1 +2003 8 15 14.4 13.6 13.6 1 +2003 8 16 15.8 15.0 15.0 1 +2003 8 17 17.3 16.6 16.6 1 +2003 8 18 20.0 19.3 19.3 1 +2003 8 19 17.3 16.6 16.6 1 +2003 8 20 18.4 17.7 17.7 1 +2003 8 21 17.8 17.1 17.1 1 +2003 8 22 16.8 16.1 16.1 1 +2003 8 23 17.2 16.5 16.5 1 +2003 8 24 17.1 16.5 16.5 1 +2003 8 25 15.4 14.8 14.8 1 +2003 8 26 13.8 13.2 13.2 1 +2003 8 27 11.6 11.0 11.0 1 +2003 8 28 12.4 11.8 11.8 1 +2003 8 29 13.4 12.8 12.8 1 +2003 8 30 12.7 12.2 12.2 1 +2003 8 31 11.5 11.0 11.0 1 +2003 9 1 9.7 9.2 9.2 1 +2003 9 2 9.7 9.2 9.2 1 +2003 9 3 13.7 13.2 13.2 1 +2003 9 4 15.6 15.1 15.1 1 +2003 9 5 16.6 16.1 16.1 1 +2003 9 6 17.4 17.0 17.0 1 +2003 9 7 16.6 16.2 16.2 1 +2003 9 8 16.3 15.9 15.9 1 +2003 9 9 16.5 16.1 16.1 1 +2003 9 10 14.8 14.4 14.4 1 +2003 9 11 13.8 13.4 13.4 1 +2003 9 12 13.5 13.2 13.2 1 +2003 9 13 16.1 15.8 15.8 1 +2003 9 14 16.3 16.0 16.0 1 +2003 9 15 16.3 16.0 16.0 1 +2003 9 16 17.0 16.7 16.7 1 +2003 9 17 13.3 13.0 13.0 1 +2003 9 18 17.9 17.6 17.6 1 +2003 9 19 15.6 15.3 15.3 1 +2003 9 20 9.8 9.5 9.5 1 +2003 9 21 13.9 13.6 13.6 1 +2003 9 22 15.6 15.3 15.3 1 +2003 9 23 13.6 13.3 13.3 1 +2003 9 24 8.6 8.3 8.3 1 +2003 9 25 12.8 12.5 12.5 1 +2003 9 26 14.0 13.7 13.7 1 +2003 9 27 11.5 11.2 11.2 1 +2003 9 28 6.1 5.8 5.8 1 +2003 9 29 8.2 7.9 7.9 1 +2003 9 30 7.3 7.0 7.0 1 +2003 10 1 9.3 9.0 9.0 1 +2003 10 2 10.3 10.0 10.0 1 +2003 10 3 10.3 10.0 10.0 1 +2003 10 4 10.7 10.4 10.4 1 +2003 10 5 9.5 9.2 9.2 1 +2003 10 6 8.1 7.8 7.8 1 +2003 10 7 6.9 6.6 6.6 1 +2003 10 8 6.2 5.9 5.9 1 +2003 10 9 8.1 7.8 7.8 1 +2003 10 10 8.7 8.4 8.4 1 +2003 10 11 7.7 7.5 7.5 1 +2003 10 12 6.9 6.7 6.7 1 +2003 10 13 5.3 5.1 5.1 1 +2003 10 14 6.0 5.8 5.8 1 +2003 10 15 5.1 4.9 4.9 1 +2003 10 16 4.9 4.7 4.7 1 +2003 10 17 5.1 4.8 4.8 1 +2003 10 18 3.9 3.6 3.6 1 +2003 10 19 1.0 0.7 0.7 1 +2003 10 20 1.0 0.7 0.7 1 +2003 10 21 1.2 0.9 0.9 1 +2003 10 22 -1.5 -1.8 -1.8 1 +2003 10 23 -2.3 -2.6 -2.6 1 +2003 10 24 0.0 -0.3 -0.3 1 +2003 10 25 0.6 0.3 0.3 1 +2003 10 26 -0.9 -1.2 -1.2 1 +2003 10 27 1.0 0.7 0.7 1 +2003 10 28 8.5 8.2 8.2 1 +2003 10 29 7.1 6.8 6.8 1 +2003 10 30 6.2 5.8 5.8 1 +2003 10 31 5.5 5.1 5.1 1 +2003 11 1 6.8 6.4 6.4 1 +2003 11 2 7.8 7.4 7.4 1 +2003 11 3 7.9 7.5 7.5 1 +2003 11 4 8.3 7.9 7.9 1 +2003 11 5 6.3 5.9 5.9 1 +2003 11 6 8.0 7.6 7.6 1 +2003 11 7 4.8 4.4 4.4 1 +2003 11 8 2.5 2.1 2.1 1 +2003 11 9 3.1 2.7 2.7 1 +2003 11 10 5.5 5.1 5.1 1 +2003 11 11 4.6 4.2 4.2 1 +2003 11 12 3.3 2.9 2.9 1 +2003 11 13 3.3 2.8 2.8 1 +2003 11 14 4.0 3.5 3.5 1 +2003 11 15 5.1 4.6 4.6 1 +2003 11 16 6.8 6.3 6.3 1 +2003 11 17 4.5 4.0 4.0 1 +2003 11 18 0.8 0.3 0.3 1 +2003 11 19 4.4 3.9 3.9 1 +2003 11 20 1.9 1.4 1.4 1 +2003 11 21 2.4 1.9 1.9 1 +2003 11 22 3.4 2.9 2.9 1 +2003 11 23 2.4 1.9 1.9 1 +2003 11 24 -0.5 -1.0 -1.0 1 +2003 11 25 1.1 0.6 0.6 1 +2003 11 26 5.1 4.6 4.6 1 +2003 11 27 7.0 6.5 6.5 1 +2003 11 28 6.8 6.3 6.3 1 +2003 11 29 3.9 3.4 3.4 1 +2003 11 30 5.9 5.4 5.4 1 +2003 12 1 6.9 6.4 6.4 1 +2003 12 2 6.3 5.8 5.8 1 +2003 12 3 5.5 5.0 5.0 1 +2003 12 4 5.3 4.8 4.8 1 +2003 12 5 3.3 2.7 2.7 1 +2003 12 6 -1.1 -1.7 -1.7 1 +2003 12 7 -0.2 -0.8 -0.8 1 +2003 12 8 3.9 3.3 3.3 1 +2003 12 9 1.9 1.3 1.3 1 +2003 12 10 2.7 2.1 2.1 1 +2003 12 11 2.9 2.3 2.3 1 +2003 12 12 -0.4 -1.0 -1.0 1 +2003 12 13 0.2 -0.4 -0.4 1 +2003 12 14 2.4 1.8 1.8 1 +2003 12 15 -0.7 -1.3 -1.3 1 +2003 12 16 -2.5 -3.1 -3.1 1 +2003 12 17 1.8 1.2 1.2 1 +2003 12 18 5.3 4.7 4.7 1 +2003 12 19 5.5 4.9 4.9 1 +2003 12 20 1.2 0.6 0.6 1 +2003 12 21 0.3 -0.3 -0.3 1 +2003 12 22 -5.4 -6.0 -6.0 1 +2003 12 23 -7.9 -8.5 -8.5 1 +2003 12 24 -0.5 -1.1 -1.1 1 +2003 12 25 5.6 4.9 4.9 1 +2003 12 26 4.7 4.0 4.0 1 +2003 12 27 5.2 4.5 4.5 1 +2003 12 28 3.9 3.2 3.2 1 +2003 12 29 0.1 -0.6 -0.6 1 +2003 12 30 -3.4 -4.1 -4.1 1 +2003 12 31 -4.9 -5.6 -5.6 1 +2004 1 1 -3.4 -4.1 -4.1 1 +2004 1 2 -7.7 -8.4 -8.4 1 +2004 1 3 -7.2 -7.9 -7.9 1 +2004 1 4 -3.5 -4.2 -4.2 1 +2004 1 5 -4.2 -4.9 -4.9 1 +2004 1 6 -2.7 -3.4 -3.4 1 +2004 1 7 0.7 0.0 0.0 1 +2004 1 8 1.2 0.5 0.5 1 +2004 1 9 0.5 -0.2 -0.2 1 +2004 1 10 -1.7 -2.4 -2.4 1 +2004 1 11 -1.6 -2.4 -2.4 1 +2004 1 12 0.3 -0.5 -0.5 1 +2004 1 13 2.6 1.8 1.8 1 +2004 1 14 0.9 0.1 0.1 1 +2004 1 15 0.3 -0.5 -0.5 1 +2004 1 16 -1.9 -2.7 -2.7 1 +2004 1 17 -4.4 -5.2 -5.2 1 +2004 1 18 -3.4 -4.2 -4.2 1 +2004 1 19 -0.1 -0.9 -0.9 1 +2004 1 20 -4.8 -5.6 -5.6 1 +2004 1 21 -11.1 -11.9 -11.9 1 +2004 1 22 -10.7 -11.5 -11.5 1 +2004 1 23 -4.4 -5.2 -5.2 1 +2004 1 24 -1.2 -2.0 -2.0 1 +2004 1 25 -1.9 -2.7 -2.7 1 +2004 1 26 -5.0 -5.8 -5.8 1 +2004 1 27 -4.6 -5.4 -5.4 1 +2004 1 28 -2.3 -3.1 -3.1 1 +2004 1 29 -2.0 -2.8 -2.8 1 +2004 1 30 -2.7 -3.5 -3.5 1 +2004 1 31 0.3 -0.5 -0.5 1 +2004 2 1 -2.2 -3.0 -3.0 1 +2004 2 2 -1.7 -2.5 -2.5 1 +2004 2 3 2.0 1.2 1.2 1 +2004 2 4 6.1 5.3 5.3 1 +2004 2 5 4.1 3.3 3.3 1 +2004 2 6 3.7 2.9 2.9 1 +2004 2 7 -1.4 -2.2 -2.2 1 +2004 2 8 -1.4 -2.2 -2.2 1 +2004 2 9 -5.4 -6.2 -6.2 1 +2004 2 10 -5.4 -6.2 -6.2 1 +2004 2 11 -8.7 -9.5 -9.5 1 +2004 2 12 -7.0 -7.8 -7.8 1 +2004 2 13 1.2 0.4 0.4 1 +2004 2 14 2.3 1.5 1.5 1 +2004 2 15 2.1 1.3 1.3 1 +2004 2 16 0.9 0.0 0.0 1 +2004 2 17 0.9 0.0 0.0 1 +2004 2 18 -1.5 -2.4 -2.4 1 +2004 2 19 -1.8 -2.7 -2.7 1 +2004 2 20 1.1 0.2 0.2 1 +2004 2 21 1.3 0.4 0.4 1 +2004 2 22 -0.6 -1.5 -1.5 1 +2004 2 23 -2.1 -3.0 -3.0 1 +2004 2 24 -2.5 -3.4 -3.4 1 +2004 2 25 -0.1 -1.0 -1.0 1 +2004 2 26 -0.5 -1.4 -1.4 1 +2004 2 27 -0.7 -1.6 -1.6 1 +2004 2 28 -0.6 -1.5 -1.5 1 +2004 2 29 -2.6 -3.5 -3.5 1 +2004 3 1 1.6 0.7 0.7 1 +2004 3 2 0.7 -0.2 -0.2 1 +2004 3 3 -2.6 -3.5 -3.5 1 +2004 3 4 -3.3 -4.2 -4.2 1 +2004 3 5 -4.0 -4.9 -4.9 1 +2004 3 6 -1.4 -2.3 -2.3 1 +2004 3 7 0.7 -0.2 -0.2 1 +2004 3 8 0.0 -0.9 -0.9 1 +2004 3 9 0.2 -0.7 -0.7 1 +2004 3 10 -0.1 -1.0 -1.0 1 +2004 3 11 0.0 -0.9 -0.9 1 +2004 3 12 0.2 -0.7 -0.7 1 +2004 3 13 0.4 -0.6 -0.6 1 +2004 3 14 2.4 1.4 1.4 1 +2004 3 15 4.5 3.5 3.5 1 +2004 3 16 6.2 5.2 5.2 1 +2004 3 17 7.3 6.4 6.4 1 +2004 3 18 7.0 6.1 6.1 1 +2004 3 19 4.4 3.5 3.5 1 +2004 3 20 3.4 2.5 2.5 1 +2004 3 21 2.0 1.1 1.1 1 +2004 3 22 2.1 1.2 1.2 1 +2004 3 23 -0.2 -1.1 -1.1 1 +2004 3 24 -0.6 -1.5 -1.5 1 +2004 3 25 -0.1 -1.0 -1.0 1 +2004 3 26 0.5 -0.4 -0.4 1 +2004 3 27 2.0 1.1 1.1 1 +2004 3 28 4.2 3.3 3.3 1 +2004 3 29 5.3 4.4 4.4 1 +2004 3 30 8.3 7.4 7.4 1 +2004 3 31 6.4 5.5 5.5 1 +2004 4 1 0.9 0.0 0.0 1 +2004 4 2 0.9 0.0 0.0 1 +2004 4 3 2.7 1.8 1.8 1 +2004 4 4 3.7 2.8 2.8 1 +2004 4 5 6.1 5.2 5.2 1 +2004 4 6 5.7 4.9 4.9 1 +2004 4 7 3.7 2.9 2.9 1 +2004 4 8 5.4 4.6 4.6 1 +2004 4 9 8.7 7.9 7.9 1 +2004 4 10 6.5 5.7 5.7 1 +2004 4 11 6.4 5.6 5.6 1 +2004 4 12 3.8 3.0 3.0 1 +2004 4 13 6.0 5.2 5.2 1 +2004 4 14 9.4 8.6 8.6 1 +2004 4 15 10.9 10.1 10.1 1 +2004 4 16 11.6 10.8 10.8 1 +2004 4 17 10.9 10.1 10.1 1 +2004 4 18 10.3 9.4 9.4 1 +2004 4 19 9.5 8.6 8.6 1 +2004 4 20 8.5 7.6 7.6 1 +2004 4 21 8.1 7.2 7.2 1 +2004 4 22 5.6 4.7 4.7 1 +2004 4 23 4.5 3.5 3.5 1 +2004 4 24 7.1 6.1 6.1 1 +2004 4 25 6.6 5.6 5.6 1 +2004 4 26 7.4 6.4 6.4 1 +2004 4 27 7.6 6.6 6.6 1 +2004 4 28 8.1 7.1 7.1 1 +2004 4 29 9.3 8.2 8.2 1 +2004 4 30 10.6 9.5 9.5 1 +2004 5 1 9.9 8.8 8.8 1 +2004 5 2 11.9 10.8 10.8 1 +2004 5 3 11.8 10.7 10.7 1 +2004 5 4 10.1 8.9 8.9 1 +2004 5 5 14.0 12.8 12.8 1 +2004 5 6 16.2 15.0 15.0 1 +2004 5 7 15.9 14.7 14.7 1 +2004 5 8 16.2 15.0 15.0 1 +2004 5 9 16.7 15.4 15.4 1 +2004 5 10 9.7 8.4 8.4 1 +2004 5 11 8.3 7.0 7.0 1 +2004 5 12 6.7 5.4 5.4 1 +2004 5 13 7.1 5.8 5.8 1 +2004 5 14 9.9 8.5 8.5 1 +2004 5 15 10.1 8.7 8.7 1 +2004 5 16 10.4 9.0 9.0 1 +2004 5 17 12.7 11.3 11.3 1 +2004 5 18 15.3 14.0 14.0 1 +2004 5 19 10.3 9.0 9.0 1 +2004 5 20 9.4 8.1 8.1 1 +2004 5 21 9.4 8.1 8.1 1 +2004 5 22 7.1 5.8 5.8 1 +2004 5 23 5.1 3.8 3.8 1 +2004 5 24 7.0 5.7 5.7 1 +2004 5 25 7.6 6.3 6.3 1 +2004 5 26 9.2 7.9 7.9 1 +2004 5 27 10.3 9.0 9.0 1 +2004 5 28 13.7 12.4 12.4 1 +2004 5 29 11.2 10.0 10.0 1 +2004 5 30 10.4 9.2 9.2 1 +2004 5 31 12.8 11.6 11.6 1 +2004 6 1 14.1 12.9 12.9 1 +2004 6 2 15.9 14.7 14.7 1 +2004 6 3 18.1 16.9 16.9 1 +2004 6 4 18.9 17.7 17.7 1 +2004 6 5 16.5 15.3 15.3 1 +2004 6 6 16.6 15.4 15.4 1 +2004 6 7 14.5 13.3 13.3 1 +2004 6 8 10.4 9.2 9.2 1 +2004 6 9 14.7 13.6 13.6 1 +2004 6 10 11.6 10.5 10.5 1 +2004 6 11 15.6 14.5 14.5 1 +2004 6 12 12.0 10.9 10.9 1 +2004 6 13 15.5 14.4 14.4 1 +2004 6 14 15.0 13.9 13.9 1 +2004 6 15 13.4 12.3 12.3 1 +2004 6 16 12.0 10.9 10.9 1 +2004 6 17 11.3 10.2 10.2 1 +2004 6 18 12.5 11.4 11.4 1 +2004 6 19 13.1 12.0 12.0 1 +2004 6 20 11.8 10.7 10.7 1 +2004 6 21 14.5 13.4 13.4 1 +2004 6 22 14.3 13.2 13.2 1 +2004 6 23 14.9 13.8 13.8 1 +2004 6 24 14.2 13.1 13.1 1 +2004 6 25 15.1 14.0 14.0 1 +2004 6 26 14.2 13.1 13.1 1 +2004 6 27 15.7 14.6 14.6 1 +2004 6 28 15.9 14.8 14.8 1 +2004 6 29 16.7 15.6 15.6 1 +2004 6 30 17.6 16.6 16.6 1 +2004 7 1 16.6 15.6 15.6 1 +2004 7 2 16.1 15.1 15.1 1 +2004 7 3 16.3 15.3 15.3 1 +2004 7 4 16.6 15.6 15.6 1 +2004 7 5 15.2 14.2 14.2 1 +2004 7 6 15.6 14.6 14.6 1 +2004 7 7 17.1 16.1 16.1 1 +2004 7 8 17.3 16.3 16.3 1 +2004 7 9 16.8 15.8 15.8 1 +2004 7 10 16.6 15.6 15.6 1 +2004 7 11 14.7 13.7 13.7 1 +2004 7 12 15.0 14.0 14.0 1 +2004 7 13 15.3 14.3 14.3 1 +2004 7 14 14.7 13.7 13.7 1 +2004 7 15 15.8 14.8 14.8 1 +2004 7 16 16.8 15.8 15.8 1 +2004 7 17 18.2 17.2 17.2 1 +2004 7 18 17.3 16.3 16.3 1 +2004 7 19 17.8 16.8 16.8 1 +2004 7 20 18.1 17.1 17.1 1 +2004 7 21 17.3 16.3 16.3 1 +2004 7 22 19.5 18.5 18.5 1 +2004 7 23 18.4 17.4 17.4 1 +2004 7 24 19.2 18.3 18.3 1 +2004 7 25 17.2 16.3 16.3 1 +2004 7 26 15.1 14.2 14.2 1 +2004 7 27 17.3 16.4 16.4 1 +2004 7 28 19.4 18.5 18.5 1 +2004 7 29 20.3 19.4 19.4 1 +2004 7 30 17.6 16.7 16.7 1 +2004 7 31 19.8 18.9 18.9 1 +2004 8 1 19.0 18.1 18.1 1 +2004 8 2 19.2 18.3 18.3 1 +2004 8 3 18.3 17.4 17.4 1 +2004 8 4 21.6 20.7 20.7 1 +2004 8 5 22.9 22.0 22.0 1 +2004 8 6 23.1 22.3 22.3 1 +2004 8 7 24.2 23.4 23.4 1 +2004 8 8 24.6 23.8 23.8 1 +2004 8 9 23.7 22.9 22.9 1 +2004 8 10 21.6 20.8 20.8 1 +2004 8 11 23.8 23.0 23.0 1 +2004 8 12 19.8 19.0 19.0 1 +2004 8 13 15.9 15.1 15.1 1 +2004 8 14 15.3 14.5 14.5 1 +2004 8 15 17.7 16.9 16.9 1 +2004 8 16 16.8 16.0 16.0 1 +2004 8 17 18.8 18.1 18.1 1 +2004 8 18 17.5 16.8 16.8 1 +2004 8 19 17.9 17.2 17.2 1 +2004 8 20 19.6 18.9 18.9 1 +2004 8 21 19.2 18.5 18.5 1 +2004 8 22 15.1 14.4 14.4 1 +2004 8 23 13.5 12.8 12.8 1 +2004 8 24 14.4 13.8 13.8 1 +2004 8 25 15.2 14.6 14.6 1 +2004 8 26 14.3 13.7 13.7 1 +2004 8 27 15.0 14.4 14.4 1 +2004 8 28 16.7 16.1 16.1 1 +2004 8 29 15.7 15.1 15.1 1 +2004 8 30 16.9 16.4 16.4 1 +2004 8 31 17.0 16.5 16.5 1 +2004 9 1 16.2 15.7 15.7 1 +2004 9 2 16.3 15.8 15.8 1 +2004 9 3 16.8 16.3 16.3 1 +2004 9 4 16.2 15.7 15.7 1 +2004 9 5 18.7 18.2 18.2 1 +2004 9 6 16.6 16.2 16.2 1 +2004 9 7 13.9 13.5 13.5 1 +2004 9 8 11.5 11.1 11.1 1 +2004 9 9 13.9 13.5 13.5 1 +2004 9 10 15.6 15.2 15.2 1 +2004 9 11 16.7 16.3 16.3 1 +2004 9 12 17.0 16.7 16.7 1 +2004 9 13 15.9 15.6 15.6 1 +2004 9 14 13.6 13.3 13.3 1 +2004 9 15 13.9 13.6 13.6 1 +2004 9 16 8.9 8.6 8.6 1 +2004 9 17 12.5 12.2 12.2 1 +2004 9 18 12.8 12.5 12.5 1 +2004 9 19 13.2 12.9 12.9 1 +2004 9 20 11.9 11.6 11.6 1 +2004 9 21 12.4 12.1 12.1 1 +2004 9 22 10.9 10.6 10.6 1 +2004 9 23 11.0 10.7 10.7 1 +2004 9 24 11.2 10.9 10.9 1 +2004 9 25 12.4 12.1 12.1 1 +2004 9 26 11.5 11.2 11.2 1 +2004 9 27 12.8 12.5 12.5 1 +2004 9 28 11.3 11.0 11.0 1 +2004 9 29 10.3 10.0 10.0 1 +2004 9 30 10.0 9.7 9.7 1 +2004 10 1 9.0 8.7 8.7 1 +2004 10 2 9.4 9.1 9.1 1 +2004 10 3 10.5 10.2 10.2 1 +2004 10 4 10.6 10.3 10.3 1 +2004 10 5 10.6 10.3 10.3 1 +2004 10 6 10.3 10.0 10.0 1 +2004 10 7 10.6 10.3 10.3 1 +2004 10 8 8.9 8.6 8.6 1 +2004 10 9 6.2 5.9 5.9 1 +2004 10 10 3.8 3.6 3.6 1 +2004 10 11 3.1 2.9 2.9 1 +2004 10 12 4.5 4.3 4.3 1 +2004 10 13 6.5 6.3 6.3 1 +2004 10 14 7.7 7.5 7.5 1 +2004 10 15 8.2 8.0 8.0 1 +2004 10 16 8.8 8.6 8.6 1 +2004 10 17 8.8 8.5 8.5 1 +2004 10 18 8.8 8.5 8.5 1 +2004 10 19 7.5 7.2 7.2 1 +2004 10 20 5.8 5.5 5.5 1 +2004 10 21 8.2 7.9 7.9 1 +2004 10 22 8.3 8.0 8.0 1 +2004 10 23 9.4 9.1 9.1 1 +2004 10 24 7.9 7.6 7.6 1 +2004 10 25 8.4 8.1 8.1 1 +2004 10 26 10.3 10.0 10.0 1 +2004 10 27 6.5 6.2 6.2 1 +2004 10 28 4.7 4.4 4.4 1 +2004 10 29 6.9 6.6 6.6 1 +2004 10 30 6.5 6.1 6.1 1 +2004 10 31 5.1 4.7 4.7 1 +2004 11 1 5.2 4.8 4.8 1 +2004 11 2 4.2 3.8 3.8 1 +2004 11 3 6.1 5.7 5.7 1 +2004 11 4 7.5 7.1 7.1 1 +2004 11 5 7.2 6.8 6.8 1 +2004 11 6 4.7 4.3 4.3 1 +2004 11 7 4.3 3.9 3.9 1 +2004 11 8 5.5 5.1 5.1 1 +2004 11 9 3.9 3.5 3.5 1 +2004 11 10 7.1 6.7 6.7 1 +2004 11 11 5.1 4.7 4.7 1 +2004 11 12 7.7 7.3 7.3 1 +2004 11 13 3.5 3.0 3.0 1 +2004 11 14 2.9 2.4 2.4 1 +2004 11 15 8.6 8.1 8.1 1 +2004 11 16 3.0 2.5 2.5 1 +2004 11 17 -1.0 -1.5 -1.5 1 +2004 11 18 0.3 -0.2 -0.2 1 +2004 11 19 -4.0 -4.5 -4.5 1 +2004 11 20 -5.5 -6.0 -6.0 1 +2004 11 21 -6.3 -6.8 -6.8 1 +2004 11 22 -2.6 -3.1 -3.1 1 +2004 11 23 -1.0 -1.5 -1.5 1 +2004 11 24 -4.2 -4.7 -4.7 1 +2004 11 25 1.4 0.9 0.9 1 +2004 11 26 -2.7 -3.2 -3.2 1 +2004 11 27 -2.5 -3.0 -3.0 1 +2004 11 28 0.0 -0.5 -0.5 1 +2004 11 29 -2.1 -2.6 -2.6 1 +2004 11 30 1.0 0.5 0.5 1 +2004 12 1 3.3 2.8 2.8 1 +2004 12 2 1.8 1.3 1.3 1 +2004 12 3 1.2 0.7 0.7 1 +2004 12 4 2.4 1.9 1.9 1 +2004 12 5 6.3 5.7 5.7 1 +2004 12 6 2.6 2.0 2.0 1 +2004 12 7 6.5 5.9 5.9 1 +2004 12 8 4.9 4.3 4.3 1 +2004 12 9 1.5 0.9 0.9 1 +2004 12 10 5.4 4.8 4.8 1 +2004 12 11 1.9 1.3 1.3 1 +2004 12 12 1.9 1.3 1.3 1 +2004 12 13 0.5 -0.1 -0.1 1 +2004 12 14 2.5 1.9 1.9 1 +2004 12 15 4.5 3.9 3.9 1 +2004 12 16 3.8 3.2 3.2 1 +2004 12 17 4.7 4.1 4.1 1 +2004 12 18 3.0 2.4 2.4 1 +2004 12 19 -1.4 -2.0 -2.0 1 +2004 12 20 -3.4 -4.0 -4.0 1 +2004 12 21 -3.4 -4.0 -4.0 1 +2004 12 22 0.9 0.3 0.3 1 +2004 12 23 1.6 1.0 1.0 1 +2004 12 24 -1.0 -1.6 -1.6 1 +2004 12 25 -0.3 -1.0 -1.0 1 +2004 12 26 -1.1 -1.8 -1.8 1 +2004 12 27 -3.4 -4.1 -4.1 1 +2004 12 28 -1.9 -2.6 -2.6 1 +2004 12 29 -0.8 -1.5 -1.5 1 +2004 12 30 3.6 2.9 2.9 1 +2004 12 31 1.6 0.9 0.9 1 +2005 1 1 0.0 -0.7 -0.7 1 +2005 1 2 3.6 2.9 2.9 1 +2005 1 3 1.9 1.2 1.2 1 +2005 1 4 -0.2 -0.9 -0.9 1 +2005 1 5 2.7 2.0 2.0 1 +2005 1 6 3.4 2.7 2.7 1 +2005 1 7 7.7 7.0 7.0 1 +2005 1 8 6.8 6.1 6.1 1 +2005 1 9 4.4 3.7 3.7 1 +2005 1 10 6.2 5.5 5.5 1 +2005 1 11 6.4 5.6 5.6 1 +2005 1 12 5.9 5.1 5.1 1 +2005 1 13 5.3 4.5 4.5 1 +2005 1 14 1.9 1.1 1.1 1 +2005 1 15 -1.6 -2.4 -2.4 1 +2005 1 16 2.4 1.6 1.6 1 +2005 1 17 3.2 2.4 2.4 1 +2005 1 18 3.8 3.0 3.0 1 +2005 1 19 1.5 0.7 0.7 1 +2005 1 20 1.4 0.6 0.6 1 +2005 1 21 0.3 -0.5 -0.5 1 +2005 1 22 -2.1 -2.9 -2.9 1 +2005 1 23 -1.7 -2.5 -2.5 1 +2005 1 24 -2.1 -2.9 -2.9 1 +2005 1 25 -2.1 -2.9 -2.9 1 +2005 1 26 -3.6 -4.4 -4.4 1 +2005 1 27 -3.1 -3.9 -3.9 1 +2005 1 28 -5.2 -6.0 -6.0 1 +2005 1 29 -5.9 -6.7 -6.7 1 +2005 1 30 -0.8 -1.6 -1.6 1 +2005 1 31 1.4 0.6 0.6 1 +2005 2 1 1.6 0.8 0.8 1 +2005 2 2 1.1 0.3 0.3 1 +2005 2 3 -0.1 -0.9 -0.9 1 +2005 2 4 1.5 0.7 0.7 1 +2005 2 5 3.7 2.9 2.9 1 +2005 2 6 1.0 0.2 0.2 1 +2005 2 7 -0.4 -1.2 -1.2 1 +2005 2 8 -0.1 -0.9 -0.9 1 +2005 2 9 0.0 -0.8 -0.8 1 +2005 2 10 2.0 1.2 1.2 1 +2005 2 11 1.0 0.2 0.2 1 +2005 2 12 0.0 -0.8 -0.8 1 +2005 2 13 -0.9 -1.7 -1.7 1 +2005 2 14 -1.9 -2.7 -2.7 1 +2005 2 15 -3.8 -4.6 -4.6 1 +2005 2 16 -4.6 -5.5 -5.5 1 +2005 2 17 -4.6 -5.5 -5.5 1 +2005 2 18 -0.6 -1.5 -1.5 1 +2005 2 19 1.3 0.4 0.4 1 +2005 2 20 1.3 0.4 0.4 1 +2005 2 21 -1.2 -2.1 -2.1 1 +2005 2 22 -6.5 -7.4 -7.4 1 +2005 2 23 -5.3 -6.2 -6.2 1 +2005 2 24 -4.1 -5.0 -5.0 1 +2005 2 25 -6.2 -7.1 -7.1 1 +2005 2 26 -5.2 -6.1 -6.1 1 +2005 2 27 -6.7 -7.6 -7.6 1 +2005 2 28 -8.9 -9.8 -9.8 1 +2005 3 1 -10.5 -11.4 -11.4 1 +2005 3 2 -9.5 -10.4 -10.4 1 +2005 3 3 -6.7 -7.6 -7.6 1 +2005 3 4 -5.0 -5.9 -5.9 1 +2005 3 5 -3.0 -3.9 -3.9 1 +2005 3 6 -5.1 -6.0 -6.0 1 +2005 3 7 0.4 -0.5 -0.5 1 +2005 3 8 -1.3 -2.2 -2.2 1 +2005 3 9 -4.8 -5.7 -5.7 1 +2005 3 10 -0.3 -1.2 -1.2 1 +2005 3 11 0.2 -0.7 -0.7 1 +2005 3 12 -6.3 -7.2 -7.2 1 +2005 3 13 -7.3 -8.3 -8.3 1 +2005 3 14 -5.6 -6.6 -6.6 1 +2005 3 15 -6.3 -7.3 -7.3 1 +2005 3 16 -1.1 -2.1 -2.1 1 +2005 3 17 1.0 0.1 0.1 1 +2005 3 18 -4.5 -5.4 -5.4 1 +2005 3 19 -5.4 -6.3 -6.3 1 +2005 3 20 -4.4 -5.3 -5.3 1 +2005 3 21 -1.4 -2.3 -2.3 1 +2005 3 22 3.2 2.3 2.3 1 +2005 3 23 5.0 4.1 4.1 1 +2005 3 24 6.3 5.4 5.4 1 +2005 3 25 7.4 6.5 6.5 1 +2005 3 26 5.4 4.5 4.5 1 +2005 3 27 3.0 2.1 2.1 1 +2005 3 28 3.7 2.8 2.8 1 +2005 3 29 2.9 2.0 2.0 1 +2005 3 30 2.7 1.8 1.8 1 +2005 3 31 4.6 3.7 3.7 1 +2005 4 1 8.0 7.1 7.1 1 +2005 4 2 8.2 7.3 7.3 1 +2005 4 3 9.1 8.2 8.2 1 +2005 4 4 10.2 9.3 9.3 1 +2005 4 5 8.4 7.5 7.5 1 +2005 4 6 7.0 6.2 6.2 1 +2005 4 7 5.3 4.5 4.5 1 +2005 4 8 5.7 4.9 4.9 1 +2005 4 9 5.0 4.2 4.2 1 +2005 4 10 5.7 4.9 4.9 1 +2005 4 11 9.9 9.1 9.1 1 +2005 4 12 10.1 9.3 9.3 1 +2005 4 13 7.9 7.1 7.1 1 +2005 4 14 6.3 5.5 5.5 1 +2005 4 15 7.4 6.6 6.6 1 +2005 4 16 7.4 6.6 6.6 1 +2005 4 17 7.2 6.4 6.4 1 +2005 4 18 4.7 3.8 3.8 1 +2005 4 19 2.6 1.7 1.7 1 +2005 4 20 1.3 0.4 0.4 1 +2005 4 21 3.5 2.6 2.6 1 +2005 4 22 2.6 1.7 1.7 1 +2005 4 23 4.5 3.5 3.5 1 +2005 4 24 5.3 4.3 4.3 1 +2005 4 25 7.1 6.1 6.1 1 +2005 4 26 7.4 6.4 6.4 1 +2005 4 27 8.4 7.4 7.4 1 +2005 4 28 9.2 8.2 8.2 1 +2005 4 29 11.0 9.9 9.9 1 +2005 4 30 9.7 8.6 8.6 1 +2005 5 1 9.4 8.3 8.3 1 +2005 5 2 9.1 8.0 8.0 1 +2005 5 3 7.7 6.6 6.6 1 +2005 5 4 8.2 7.0 7.0 1 +2005 5 5 8.8 7.6 7.6 1 +2005 5 6 10.5 9.3 9.3 1 +2005 5 7 9.0 7.8 7.8 1 +2005 5 8 9.1 7.9 7.9 1 +2005 5 9 7.9 6.6 6.6 1 +2005 5 10 8.3 7.0 7.0 1 +2005 5 11 10.2 8.9 8.9 1 +2005 5 12 12.8 11.5 11.5 1 +2005 5 13 11.5 10.2 10.2 1 +2005 5 14 11.3 9.9 9.9 1 +2005 5 15 13.4 12.0 12.0 1 +2005 5 16 9.7 8.3 8.3 1 +2005 5 17 8.8 7.4 7.4 1 +2005 5 18 8.8 7.5 7.5 1 +2005 5 19 9.1 7.8 7.8 1 +2005 5 20 11.6 10.3 10.3 1 +2005 5 21 12.5 11.2 11.2 1 +2005 5 22 14.2 12.9 12.9 1 +2005 5 23 14.3 13.0 13.0 1 +2005 5 24 14.3 13.0 13.0 1 +2005 5 25 13.4 12.1 12.1 1 +2005 5 26 15.5 14.2 14.2 1 +2005 5 27 17.2 15.9 15.9 1 +2005 5 28 10.8 9.5 9.5 1 +2005 5 29 12.7 11.5 11.5 1 +2005 5 30 11.9 10.7 10.7 1 +2005 5 31 7.9 6.7 6.7 1 +2005 6 1 10.5 9.3 9.3 1 +2005 6 2 11.2 10.0 10.0 1 +2005 6 3 11.1 9.9 9.9 1 +2005 6 4 12.3 11.1 11.1 1 +2005 6 5 12.5 11.3 11.3 1 +2005 6 6 11.0 9.8 9.8 1 +2005 6 7 11.2 10.0 10.0 1 +2005 6 8 12.1 10.9 10.9 1 +2005 6 9 15.6 14.5 14.5 1 +2005 6 10 12.4 11.3 11.3 1 +2005 6 11 11.6 10.5 10.5 1 +2005 6 12 12.6 11.5 11.5 1 +2005 6 13 13.0 11.9 11.9 1 +2005 6 14 15.6 14.5 14.5 1 +2005 6 15 17.7 16.6 16.6 1 +2005 6 16 20.3 19.2 19.2 1 +2005 6 17 19.9 18.8 18.8 1 +2005 6 18 18.0 16.9 16.9 1 +2005 6 19 17.1 16.0 16.0 1 +2005 6 20 19.2 18.1 18.1 1 +2005 6 21 21.1 20.0 20.0 1 +2005 6 22 17.7 16.6 16.6 1 +2005 6 23 20.7 19.6 19.6 1 +2005 6 24 21.7 20.6 20.6 1 +2005 6 25 14.3 13.2 13.2 1 +2005 6 26 15.9 14.8 14.8 1 +2005 6 27 17.2 16.1 16.1 1 +2005 6 28 14.3 13.2 13.2 1 +2005 6 29 11.4 10.3 10.3 1 +2005 6 30 13.7 12.7 12.7 1 +2005 7 1 17.0 16.0 16.0 1 +2005 7 2 18.0 17.0 17.0 1 +2005 7 3 19.2 18.2 18.2 1 +2005 7 4 19.6 18.6 18.6 1 +2005 7 5 20.6 19.6 19.6 1 +2005 7 6 22.0 21.0 21.0 1 +2005 7 7 23.1 22.1 22.1 1 +2005 7 8 23.6 22.6 22.6 1 +2005 7 9 23.0 22.0 22.0 1 +2005 7 10 23.4 22.4 22.4 1 +2005 7 11 24.4 23.4 23.4 1 +2005 7 12 26.2 25.2 25.2 1 +2005 7 13 22.8 21.8 21.8 1 +2005 7 14 19.7 18.7 18.7 1 +2005 7 15 19.8 18.8 18.8 1 +2005 7 16 19.0 18.0 18.0 1 +2005 7 17 19.3 18.3 18.3 1 +2005 7 18 19.1 18.1 18.1 1 +2005 7 19 18.9 17.9 17.9 1 +2005 7 20 17.0 16.0 16.0 1 +2005 7 21 17.0 16.0 16.0 1 +2005 7 22 15.3 14.3 14.3 1 +2005 7 23 15.6 14.6 14.6 1 +2005 7 24 17.1 16.2 16.2 1 +2005 7 25 16.8 15.9 15.9 1 +2005 7 26 17.0 16.1 16.1 1 +2005 7 27 17.5 16.6 16.6 1 +2005 7 28 18.1 17.2 17.2 1 +2005 7 29 18.7 17.8 17.8 1 +2005 7 30 17.5 16.6 16.6 1 +2005 7 31 16.0 15.1 15.1 1 +2005 8 1 15.8 14.9 14.9 1 +2005 8 2 17.5 16.6 16.6 1 +2005 8 3 17.5 16.6 16.6 1 +2005 8 4 17.1 16.2 16.2 1 +2005 8 5 16.3 15.4 15.4 1 +2005 8 6 16.6 15.8 15.8 1 +2005 8 7 15.2 14.4 14.4 1 +2005 8 8 15.6 14.8 14.8 1 +2005 8 9 18.3 17.5 17.5 1 +2005 8 10 16.8 16.0 16.0 1 +2005 8 11 16.4 15.6 15.6 1 +2005 8 12 18.7 17.9 17.9 1 +2005 8 13 16.9 16.1 16.1 1 +2005 8 14 16.9 16.1 16.1 1 +2005 8 15 17.8 17.0 17.0 1 +2005 8 16 17.6 16.8 16.8 1 +2005 8 17 17.0 16.3 16.3 1 +2005 8 18 18.4 17.7 17.7 1 +2005 8 19 19.2 18.5 18.5 1 +2005 8 20 19.7 19.0 19.0 1 +2005 8 21 17.5 16.8 16.8 1 +2005 8 22 16.9 16.2 16.2 1 +2005 8 23 17.2 16.5 16.5 1 +2005 8 24 18.6 18.0 18.0 1 +2005 8 25 17.6 17.0 17.0 1 +2005 8 26 15.2 14.6 14.6 1 +2005 8 27 14.4 13.8 13.8 1 +2005 8 28 15.1 14.5 14.5 1 +2005 8 29 17.4 16.8 16.8 1 +2005 8 30 16.3 15.8 15.8 1 +2005 8 31 16.6 16.1 16.1 1 +2005 9 1 17.0 16.5 16.5 1 +2005 9 2 17.2 16.7 16.7 1 +2005 9 3 16.8 16.3 16.3 1 +2005 9 4 14.2 13.7 13.7 1 +2005 9 5 16.3 15.8 15.8 1 +2005 9 6 17.6 17.2 17.2 1 +2005 9 7 18.0 17.6 17.6 1 +2005 9 8 18.3 17.9 17.9 1 +2005 9 9 14.4 14.0 14.0 1 +2005 9 10 12.2 11.8 11.8 1 +2005 9 11 11.2 10.8 10.8 1 +2005 9 12 11.6 11.3 11.3 1 +2005 9 13 11.1 10.8 10.8 1 +2005 9 14 15.0 14.7 14.7 1 +2005 9 15 9.7 9.4 9.4 1 +2005 9 16 8.1 7.8 7.8 1 +2005 9 17 8.4 8.1 8.1 1 +2005 9 18 11.1 10.8 10.8 1 +2005 9 19 14.7 14.4 14.4 1 +2005 9 20 15.5 15.2 15.2 1 +2005 9 21 13.5 13.2 13.2 1 +2005 9 22 13.2 12.9 12.9 1 +2005 9 23 14.5 14.2 14.2 1 +2005 9 24 15.5 15.2 15.2 1 +2005 9 25 14.8 14.5 14.5 1 +2005 9 26 15.9 15.6 15.6 1 +2005 9 27 14.5 14.2 14.2 1 +2005 9 28 13.3 13.0 13.0 1 +2005 9 29 11.3 11.0 11.0 1 +2005 9 30 11.7 11.4 11.4 1 +2005 10 1 12.5 12.2 12.2 1 +2005 10 2 12.8 12.5 12.5 1 +2005 10 3 11.6 11.3 11.3 1 +2005 10 4 12.2 11.9 11.9 1 +2005 10 5 11.7 11.4 11.4 1 +2005 10 6 11.8 11.5 11.5 1 +2005 10 7 11.5 11.2 11.2 1 +2005 10 8 12.8 12.5 12.5 1 +2005 10 9 13.8 13.5 13.5 1 +2005 10 10 10.7 10.4 10.4 1 +2005 10 11 12.9 12.7 12.7 1 +2005 10 12 12.4 12.2 12.2 1 +2005 10 13 12.4 12.2 12.2 1 +2005 10 14 10.0 9.8 9.8 1 +2005 10 15 7.3 7.1 7.1 1 +2005 10 16 6.0 5.8 5.8 1 +2005 10 17 5.3 5.0 5.0 1 +2005 10 18 6.3 6.0 6.0 1 +2005 10 19 5.0 4.7 4.7 1 +2005 10 20 7.6 7.3 7.3 1 +2005 10 21 10.2 9.9 9.9 1 +2005 10 22 9.2 8.9 8.9 1 +2005 10 23 3.9 3.6 3.6 1 +2005 10 24 1.0 0.7 0.7 1 +2005 10 25 3.4 3.1 3.1 1 +2005 10 26 6.2 5.9 5.9 1 +2005 10 27 3.2 2.9 2.9 1 +2005 10 28 8.0 7.7 7.7 1 +2005 10 29 8.5 8.2 8.2 1 +2005 10 30 8.4 8.0 8.0 1 +2005 10 31 8.8 8.4 8.4 1 +2005 11 1 7.8 7.4 7.4 1 +2005 11 2 8.8 8.4 8.4 1 +2005 11 3 8.0 7.6 7.6 1 +2005 11 4 10.4 10.0 10.0 1 +2005 11 5 9.7 9.3 9.3 1 +2005 11 6 9.4 9.0 9.0 1 +2005 11 7 9.3 8.9 8.9 1 +2005 11 8 8.2 7.8 7.8 1 +2005 11 9 8.5 8.1 8.1 1 +2005 11 10 8.3 7.9 7.9 1 +2005 11 11 7.6 7.2 7.2 1 +2005 11 12 9.9 9.5 9.5 1 +2005 11 13 8.3 7.8 7.8 1 +2005 11 14 7.9 7.4 7.4 1 +2005 11 15 6.2 5.7 5.7 1 +2005 11 16 0.7 0.2 0.2 1 +2005 11 17 -1.6 -2.1 -2.1 1 +2005 11 18 -2.3 -2.8 -2.8 1 +2005 11 19 -0.6 -1.1 -1.1 1 +2005 11 20 -0.4 -0.9 -0.9 1 +2005 11 21 -0.7 -1.2 -1.2 1 +2005 11 22 1.7 1.2 1.2 1 +2005 11 23 4.0 3.5 3.5 1 +2005 11 24 4.5 4.0 4.0 1 +2005 11 25 2.9 2.4 2.4 1 +2005 11 26 1.0 0.5 0.5 1 +2005 11 27 -0.3 -0.8 -0.8 1 +2005 11 28 -0.9 -1.4 -1.4 1 +2005 11 29 -2.3 -2.8 -2.8 1 +2005 11 30 -1.3 -1.8 -1.8 1 +2005 12 1 -2.2 -2.7 -2.7 1 +2005 12 2 1.4 0.9 0.9 1 +2005 12 3 1.8 1.3 1.3 1 +2005 12 4 1.5 1.0 1.0 1 +2005 12 5 2.4 1.8 1.8 1 +2005 12 6 3.7 3.1 3.1 1 +2005 12 7 3.5 2.9 2.9 1 +2005 12 8 0.4 -0.2 -0.2 1 +2005 12 9 -0.8 -1.4 -1.4 1 +2005 12 10 -0.1 -0.7 -0.7 1 +2005 12 11 5.4 4.8 4.8 1 +2005 12 12 4.5 3.9 3.9 1 +2005 12 13 3.1 2.5 2.5 1 +2005 12 14 0.8 0.2 0.2 1 +2005 12 15 0.7 0.1 0.1 1 +2005 12 16 -2.2 -2.8 -2.8 1 +2005 12 17 -4.6 -5.2 -5.2 1 +2005 12 18 -5.6 -6.2 -6.2 1 +2005 12 19 -5.2 -5.8 -5.8 1 +2005 12 20 -0.1 -0.7 -0.7 1 +2005 12 21 -1.2 -1.8 -1.8 1 +2005 12 22 1.7 1.1 1.1 1 +2005 12 23 1.4 0.8 0.8 1 +2005 12 24 1.4 0.8 0.8 1 +2005 12 25 -0.5 -1.2 -1.2 1 +2005 12 26 -1.8 -2.5 -2.5 1 +2005 12 27 -2.7 -3.4 -3.4 1 +2005 12 28 -2.1 -2.8 -2.8 1 +2005 12 29 -1.4 -2.1 -2.1 1 +2005 12 30 0.0 -0.7 -0.7 1 +2005 12 31 -0.9 -1.6 -1.6 1 +2006 1 1 -2.3 -3.0 -3.0 1 +2006 1 2 -4.9 -5.6 -5.6 1 +2006 1 3 -8.1 -8.8 -8.8 1 +2006 1 4 -7.2 -7.9 -7.9 1 +2006 1 5 -1.1 -1.8 -1.8 1 +2006 1 6 -0.3 -1.0 -1.0 1 +2006 1 7 -1.0 -1.7 -1.7 1 +2006 1 8 -2.2 -2.9 -2.9 1 +2006 1 9 -4.8 -5.5 -5.5 1 +2006 1 10 -1.5 -2.2 -2.2 1 +2006 1 11 2.3 1.5 1.5 1 +2006 1 12 3.3 2.5 2.5 1 +2006 1 13 0.9 0.1 0.1 1 +2006 1 14 -2.1 -2.9 -2.9 1 +2006 1 15 -0.6 -1.4 -1.4 1 +2006 1 16 -0.6 -1.4 -1.4 1 +2006 1 17 0.2 -0.6 -0.6 1 +2006 1 18 -3.9 -4.7 -4.7 1 +2006 1 19 -8.4 -9.2 -9.2 1 +2006 1 20 -8.3 -9.1 -9.1 1 +2006 1 21 -8.0 -8.8 -8.8 1 +2006 1 22 -8.8 -9.6 -9.6 1 +2006 1 23 -4.7 -5.5 -5.5 1 +2006 1 24 -2.8 -3.6 -3.6 1 +2006 1 25 -0.6 -1.4 -1.4 1 +2006 1 26 -2.2 -3.0 -3.0 1 +2006 1 27 -2.0 -2.8 -2.8 1 +2006 1 28 -1.5 -2.3 -2.3 1 +2006 1 29 1.0 0.2 0.2 1 +2006 1 30 3.9 3.1 3.1 1 +2006 1 31 4.3 3.5 3.5 1 +2006 2 1 5.3 4.5 4.5 1 +2006 2 2 1.9 1.1 1.1 1 +2006 2 3 -1.9 -2.7 -2.7 1 +2006 2 4 -9.0 -9.8 -9.8 1 +2006 2 5 -10.0 -10.8 -10.8 1 +2006 2 6 -5.8 -6.6 -6.6 1 +2006 2 7 -1.5 -2.3 -2.3 1 +2006 2 8 -2.7 -3.5 -3.5 1 +2006 2 9 -1.4 -2.2 -2.2 1 +2006 2 10 -3.1 -3.9 -3.9 1 +2006 2 11 -5.5 -6.3 -6.3 1 +2006 2 12 -2.7 -3.5 -3.5 1 +2006 2 13 -5.8 -6.6 -6.6 1 +2006 2 14 -3.8 -4.6 -4.6 1 +2006 2 15 -0.7 -1.5 -1.5 1 +2006 2 16 -1.4 -2.3 -2.3 1 +2006 2 17 -3.9 -4.8 -4.8 1 +2006 2 18 -2.1 -3.0 -3.0 1 +2006 2 19 0.2 -0.7 -0.7 1 +2006 2 20 -0.8 -1.7 -1.7 1 +2006 2 21 -2.2 -3.1 -3.1 1 +2006 2 22 -2.6 -3.5 -3.5 1 +2006 2 23 -0.6 -1.5 -1.5 1 +2006 2 24 -2.0 -2.9 -2.9 1 +2006 2 25 0.0 -0.9 -0.9 1 +2006 2 26 -4.8 -5.7 -5.7 1 +2006 2 27 -5.1 -6.0 -6.0 1 +2006 2 28 -2.7 -3.6 -3.6 1 +2006 3 1 -1.9 -2.8 -2.8 1 +2006 3 2 -4.3 -5.2 -5.2 1 +2006 3 3 -5.8 -6.7 -6.7 1 +2006 3 4 -5.1 -6.0 -6.0 1 +2006 3 5 -5.9 -6.8 -6.8 1 +2006 3 6 -5.8 -6.7 -6.7 1 +2006 3 7 -9.3 -10.2 -10.2 1 +2006 3 8 -6.0 -6.9 -6.9 1 +2006 3 9 -9.7 -10.6 -10.6 1 +2006 3 10 -10.1 -11.0 -11.0 1 +2006 3 11 -8.1 -9.0 -9.0 1 +2006 3 12 -4.9 -5.8 -5.8 1 +2006 3 13 -5.8 -6.8 -6.8 1 +2006 3 14 -2.6 -3.6 -3.6 1 +2006 3 15 -1.8 -2.8 -2.8 1 +2006 3 16 -2.5 -3.5 -3.5 1 +2006 3 17 -1.5 -2.4 -2.4 1 +2006 3 18 1.5 0.6 0.6 1 +2006 3 19 0.4 -0.5 -0.5 1 +2006 3 20 -3.6 -4.5 -4.5 1 +2006 3 21 -3.3 -4.2 -4.2 1 +2006 3 22 -2.2 -3.1 -3.1 1 +2006 3 23 -3.3 -4.2 -4.2 1 +2006 3 24 -1.0 -1.9 -1.9 1 +2006 3 25 -2.2 -3.1 -3.1 1 +2006 3 26 0.8 -0.1 -0.1 1 +2006 3 27 0.5 -0.4 -0.4 1 +2006 3 28 4.1 3.2 3.2 1 +2006 3 29 4.7 3.8 3.8 1 +2006 3 30 4.6 3.7 3.7 1 +2006 3 31 0.3 -0.6 -0.6 1 +2006 4 1 0.2 -0.7 -0.7 1 +2006 4 2 1.5 0.6 0.6 1 +2006 4 3 3.2 2.3 2.3 1 +2006 4 4 2.4 1.5 1.5 1 +2006 4 5 1.0 0.1 0.1 1 +2006 4 6 2.8 2.0 2.0 1 +2006 4 7 5.2 4.4 4.4 1 +2006 4 8 4.1 3.3 3.3 1 +2006 4 9 3.0 2.2 2.2 1 +2006 4 10 2.4 1.6 1.6 1 +2006 4 11 4.3 3.5 3.5 1 +2006 4 12 4.4 3.6 3.6 1 +2006 4 13 3.5 2.7 2.7 1 +2006 4 14 4.5 3.7 3.7 1 +2006 4 15 7.7 6.9 6.9 1 +2006 4 16 7.0 6.2 6.2 1 +2006 4 17 6.9 6.1 6.1 1 +2006 4 18 6.7 5.8 5.8 1 +2006 4 19 7.9 7.0 7.0 1 +2006 4 20 3.4 2.5 2.5 1 +2006 4 21 6.8 5.9 5.9 1 +2006 4 22 7.1 6.2 6.2 1 +2006 4 23 7.6 6.6 6.6 1 +2006 4 24 8.4 7.4 7.4 1 +2006 4 25 9.0 8.0 8.0 1 +2006 4 26 8.4 7.4 7.4 1 +2006 4 27 9.8 8.8 8.8 1 +2006 4 28 7.0 6.0 6.0 1 +2006 4 29 7.0 5.9 5.9 1 +2006 4 30 8.7 7.6 7.6 1 +2006 5 1 8.5 7.4 7.4 1 +2006 5 2 8.5 7.4 7.4 1 +2006 5 3 9.4 8.3 8.3 1 +2006 5 4 12.3 11.1 11.1 1 +2006 5 5 13.8 12.6 12.6 1 +2006 5 6 13.9 12.7 12.7 1 +2006 5 7 15.7 14.5 14.5 1 +2006 5 8 16.9 15.7 15.7 1 +2006 5 9 16.8 15.5 15.5 1 +2006 5 10 12.9 11.6 11.6 1 +2006 5 11 15.6 14.3 14.3 1 +2006 5 12 15.4 14.1 14.1 1 +2006 5 13 12.5 11.2 11.2 1 +2006 5 14 11.1 9.7 9.7 1 +2006 5 15 9.9 8.5 8.5 1 +2006 5 16 8.3 6.9 6.9 1 +2006 5 17 8.6 7.2 7.2 1 +2006 5 18 8.2 6.9 6.9 1 +2006 5 19 8.8 7.5 7.5 1 +2006 5 20 9.1 7.8 7.8 1 +2006 5 21 12.0 10.7 10.7 1 +2006 5 22 12.8 11.5 11.5 1 +2006 5 23 11.9 10.6 10.6 1 +2006 5 24 11.6 10.3 10.3 1 +2006 5 25 9.8 8.5 8.5 1 +2006 5 26 8.6 7.3 7.3 1 +2006 5 27 10.2 8.9 8.9 1 +2006 5 28 11.4 10.1 10.1 1 +2006 5 29 11.5 10.3 10.3 1 +2006 5 30 9.1 7.9 7.9 1 +2006 5 31 8.7 7.5 7.5 1 +2006 6 1 10.8 9.6 9.6 1 +2006 6 2 15.3 14.1 14.1 1 +2006 6 3 16.2 15.0 15.0 1 +2006 6 4 12.6 11.4 11.4 1 +2006 6 5 12.6 11.4 11.4 1 +2006 6 6 10.5 9.3 9.3 1 +2006 6 7 11.0 9.8 9.8 1 +2006 6 8 14.6 13.4 13.4 1 +2006 6 9 17.5 16.4 16.4 1 +2006 6 10 17.4 16.3 16.3 1 +2006 6 11 20.5 19.4 19.4 1 +2006 6 12 23.7 22.6 22.6 1 +2006 6 13 24.4 23.3 23.3 1 +2006 6 14 17.9 16.8 16.8 1 +2006 6 15 15.0 13.9 13.9 1 +2006 6 16 19.5 18.4 18.4 1 +2006 6 17 21.2 20.1 20.1 1 +2006 6 18 20.3 19.2 19.2 1 +2006 6 19 20.3 19.2 19.2 1 +2006 6 20 18.7 17.6 17.6 1 +2006 6 21 18.1 17.0 17.0 1 +2006 6 22 18.3 17.2 17.2 1 +2006 6 23 15.7 14.6 14.6 1 +2006 6 24 16.7 15.6 15.6 1 +2006 6 25 18.2 17.1 17.1 1 +2006 6 26 16.2 15.1 15.1 1 +2006 6 27 13.8 12.7 12.7 1 +2006 6 28 15.1 14.0 14.0 1 +2006 6 29 18.0 16.9 16.9 1 +2006 6 30 20.5 19.5 19.5 1 +2006 7 1 21.2 20.2 20.2 1 +2006 7 2 21.6 20.6 20.6 1 +2006 7 3 22.8 21.8 21.8 1 +2006 7 4 23.4 22.4 22.4 1 +2006 7 5 21.3 20.3 20.3 1 +2006 7 6 24.8 23.8 23.8 1 +2006 7 7 25.3 24.3 24.3 1 +2006 7 8 23.8 22.8 22.8 1 +2006 7 9 22.0 21.0 21.0 1 +2006 7 10 21.4 20.4 20.4 1 +2006 7 11 20.1 19.1 19.1 1 +2006 7 12 19.7 18.7 18.7 1 +2006 7 13 20.2 19.2 19.2 1 +2006 7 14 18.2 17.2 17.2 1 +2006 7 15 15.8 14.8 14.8 1 +2006 7 16 19.2 18.2 18.2 1 +2006 7 17 21.7 20.7 20.7 1 +2006 7 18 18.0 17.0 17.0 1 +2006 7 19 15.6 14.6 14.6 1 +2006 7 20 17.1 16.1 16.1 1 +2006 7 21 20.4 19.4 19.4 1 +2006 7 22 20.7 19.7 19.7 1 +2006 7 23 20.5 19.5 19.5 1 +2006 7 24 22.0 21.1 21.1 1 +2006 7 25 23.6 22.7 22.7 1 +2006 7 26 21.3 20.4 20.4 1 +2006 7 27 21.6 20.7 20.7 1 +2006 7 28 21.7 20.8 20.8 1 +2006 7 29 19.2 18.3 18.3 1 +2006 7 30 20.1 19.2 19.2 1 +2006 7 31 20.3 19.4 19.4 1 +2006 8 1 21.1 20.2 20.2 1 +2006 8 2 18.9 18.0 18.0 1 +2006 8 3 18.1 17.2 17.2 1 +2006 8 4 19.7 18.8 18.8 1 +2006 8 5 21.0 20.1 20.1 1 +2006 8 6 23.0 22.2 22.2 1 +2006 8 7 22.9 22.1 22.1 1 +2006 8 8 21.1 20.3 20.3 1 +2006 8 9 20.6 19.8 19.8 1 +2006 8 10 20.8 20.0 20.0 1 +2006 8 11 19.9 19.1 19.1 1 +2006 8 12 20.1 19.3 19.3 1 +2006 8 13 18.1 17.3 17.3 1 +2006 8 14 19.1 18.3 18.3 1 +2006 8 15 17.4 16.6 16.6 1 +2006 8 16 17.4 16.6 16.6 1 +2006 8 17 18.9 18.2 18.2 1 +2006 8 18 20.8 20.1 20.1 1 +2006 8 19 20.1 19.4 19.4 1 +2006 8 20 19.5 18.8 18.8 1 +2006 8 21 17.3 16.6 16.6 1 +2006 8 22 18.6 17.9 17.9 1 +2006 8 23 16.7 16.0 16.0 1 +2006 8 24 19.4 18.8 18.8 1 +2006 8 25 17.6 17.0 17.0 1 +2006 8 26 18.6 18.0 18.0 1 +2006 8 27 18.0 17.4 17.4 1 +2006 8 28 17.3 16.7 16.7 1 +2006 8 29 16.6 16.0 16.0 1 +2006 8 30 17.7 17.2 17.2 1 +2006 8 31 18.1 17.6 17.6 1 +2006 9 1 18.2 17.7 17.7 1 +2006 9 2 17.9 17.4 17.4 1 +2006 9 3 16.7 16.2 16.2 1 +2006 9 4 15.6 15.1 15.1 1 +2006 9 5 15.5 15.0 15.0 1 +2006 9 6 14.6 14.2 14.2 1 +2006 9 7 13.4 13.0 13.0 1 +2006 9 8 10.4 10.0 10.0 1 +2006 9 9 14.3 13.9 13.9 1 +2006 9 10 15.5 15.1 15.1 1 +2006 9 11 14.9 14.5 14.5 1 +2006 9 12 17.9 17.6 17.6 1 +2006 9 13 17.9 17.6 17.6 1 +2006 9 14 17.8 17.5 17.5 1 +2006 9 15 13.2 12.9 12.9 1 +2006 9 16 13.3 13.0 13.0 1 +2006 9 17 13.5 13.2 13.2 1 +2006 9 18 14.6 14.3 14.3 1 +2006 9 19 15.7 15.4 15.4 1 +2006 9 20 15.6 15.3 15.3 1 +2006 9 21 16.2 15.9 15.9 1 +2006 9 22 17.4 17.1 17.1 1 +2006 9 23 17.2 16.9 16.9 1 +2006 9 24 17.1 16.8 16.8 1 +2006 9 25 14.3 14.0 14.0 1 +2006 9 26 17.3 17.0 17.0 1 +2006 9 27 17.4 17.1 17.1 1 +2006 9 28 14.8 14.5 14.5 1 +2006 9 29 16.0 15.7 15.7 1 +2006 9 30 12.5 12.2 12.2 1 +2006 10 1 14.5 14.2 14.2 1 +2006 10 2 12.8 12.5 12.5 1 +2006 10 3 13.3 13.0 13.0 1 +2006 10 4 11.9 11.6 11.6 1 +2006 10 5 12.3 12.0 12.0 1 +2006 10 6 10.8 10.5 10.5 1 +2006 10 7 14.0 13.7 13.7 1 +2006 10 8 13.4 13.1 13.1 1 +2006 10 9 9.7 9.4 9.4 1 +2006 10 10 12.7 12.4 12.4 1 +2006 10 11 10.6 10.4 10.4 1 +2006 10 12 9.9 9.7 9.7 1 +2006 10 13 7.9 7.7 7.7 1 +2006 10 14 10.5 10.3 10.3 1 +2006 10 15 11.0 10.8 10.8 1 +2006 10 16 10.4 10.2 10.2 1 +2006 10 17 9.8 9.5 9.5 1 +2006 10 18 8.0 7.7 7.7 1 +2006 10 19 9.4 9.1 9.1 1 +2006 10 20 9.5 9.2 9.2 1 +2006 10 21 10.4 10.1 10.1 1 +2006 10 22 12.1 11.8 11.8 1 +2006 10 23 11.6 11.3 11.3 1 +2006 10 24 11.0 10.7 10.7 1 +2006 10 25 4.9 4.6 4.6 1 +2006 10 26 8.3 8.0 8.0 1 +2006 10 27 8.8 8.5 8.5 1 +2006 10 28 4.3 4.0 4.0 1 +2006 10 29 1.5 1.2 1.2 1 +2006 10 30 3.4 3.0 3.0 1 +2006 10 31 6.3 5.9 5.9 1 +2006 11 1 -1.3 -1.7 -1.7 1 +2006 11 2 -3.5 -3.9 -3.9 1 +2006 11 3 -1.2 -1.6 -1.6 1 +2006 11 4 1.3 0.9 0.9 1 +2006 11 5 2.4 2.0 2.0 1 +2006 11 6 5.9 5.5 5.5 1 +2006 11 7 8.7 8.3 8.3 1 +2006 11 8 5.0 4.6 4.6 1 +2006 11 9 2.0 1.6 1.6 1 +2006 11 10 1.5 1.1 1.1 1 +2006 11 11 4.0 3.6 3.6 1 +2006 11 12 1.8 1.4 1.4 1 +2006 11 13 1.1 0.6 0.6 1 +2006 11 14 5.7 5.2 5.2 1 +2006 11 15 5.6 5.1 5.1 1 +2006 11 16 6.5 6.0 6.0 1 +2006 11 17 8.5 8.0 8.0 1 +2006 11 18 8.8 8.3 8.3 1 +2006 11 19 5.8 5.3 5.3 1 +2006 11 20 5.1 4.6 4.6 1 +2006 11 21 6.0 5.5 5.5 1 +2006 11 22 6.9 6.4 6.4 1 +2006 11 23 5.2 4.7 4.7 1 +2006 11 24 7.2 6.7 6.7 1 +2006 11 25 6.8 6.3 6.3 1 +2006 11 26 8.7 8.2 8.2 1 +2006 11 27 7.8 7.3 7.3 1 +2006 11 28 7.2 6.7 6.7 1 +2006 11 29 7.5 7.0 7.0 1 +2006 11 30 9.6 9.1 9.1 1 +2006 12 1 8.3 7.8 7.8 1 +2006 12 2 7.5 7.0 7.0 1 +2006 12 3 5.7 5.2 5.2 1 +2006 12 4 6.7 6.2 6.2 1 +2006 12 5 8.1 7.5 7.5 1 +2006 12 6 9.1 8.5 8.5 1 +2006 12 7 6.6 6.0 6.0 1 +2006 12 8 7.5 6.9 6.9 1 +2006 12 9 8.3 7.7 7.7 1 +2006 12 10 4.8 4.2 4.2 1 +2006 12 11 5.2 4.6 4.6 1 +2006 12 12 5.4 4.8 4.8 1 +2006 12 13 5.7 5.1 5.1 1 +2006 12 14 8.8 8.2 8.2 1 +2006 12 15 8.1 7.5 7.5 1 +2006 12 16 4.9 4.3 4.3 1 +2006 12 17 0.3 -0.3 -0.3 1 +2006 12 18 -0.9 -1.5 -1.5 1 +2006 12 19 -1.0 -1.6 -1.6 1 +2006 12 20 3.5 2.9 2.9 1 +2006 12 21 1.7 1.1 1.1 1 +2006 12 22 4.5 3.9 3.9 1 +2006 12 23 4.6 4.0 4.0 1 +2006 12 24 5.7 5.1 5.1 1 +2006 12 25 1.2 0.5 0.5 1 +2006 12 26 3.6 2.9 2.9 1 +2006 12 27 3.2 2.5 2.5 1 +2006 12 28 3.5 2.8 2.8 1 +2006 12 29 1.7 1.0 1.0 1 +2006 12 30 3.5 2.8 2.8 1 +2006 12 31 5.3 4.6 4.6 1 +2007 1 1 5.0 4.3 4.3 1 +2007 1 2 3.2 2.5 2.5 1 +2007 1 3 1.5 0.8 0.8 1 +2007 1 4 5.3 4.6 4.6 1 +2007 1 5 3.3 2.6 2.6 1 +2007 1 6 2.1 1.4 1.4 1 +2007 1 7 3.9 3.2 3.2 1 +2007 1 8 5.8 5.1 5.1 1 +2007 1 9 6.4 5.7 5.7 1 +2007 1 10 6.7 6.0 6.0 1 +2007 1 11 1.0 0.2 0.2 1 +2007 1 12 1.2 0.4 0.4 1 +2007 1 13 2.9 2.1 2.1 1 +2007 1 14 3.3 2.5 2.5 1 +2007 1 15 3.9 3.1 3.1 1 +2007 1 16 6.0 5.2 5.2 1 +2007 1 17 1.2 0.4 0.4 1 +2007 1 18 3.9 3.1 3.1 1 +2007 1 19 -1.6 -2.4 -2.4 1 +2007 1 20 -3.5 -4.3 -4.3 1 +2007 1 21 -1.4 -2.2 -2.2 1 +2007 1 22 -6.0 -6.8 -6.8 1 +2007 1 23 -6.2 -7.0 -7.0 1 +2007 1 24 -6.9 -7.7 -7.7 1 +2007 1 25 -7.5 -8.3 -8.3 1 +2007 1 26 -2.1 -2.9 -2.9 1 +2007 1 27 -5.8 -6.6 -6.6 1 +2007 1 28 -5.7 -6.5 -6.5 1 +2007 1 29 -5.5 -6.3 -6.3 1 +2007 1 30 -2.3 -3.1 -3.1 1 +2007 1 31 1.2 0.4 0.4 1 +2007 2 1 0.3 -0.5 -0.5 1 +2007 2 2 2.3 1.5 1.5 1 +2007 2 3 2.7 1.9 1.9 1 +2007 2 4 2.2 1.4 1.4 1 +2007 2 5 0.0 -0.8 -0.8 1 +2007 2 6 -5.5 -6.3 -6.3 1 +2007 2 7 -8.3 -9.1 -9.1 1 +2007 2 8 -3.9 -4.7 -4.7 1 +2007 2 9 -5.5 -6.3 -6.3 1 +2007 2 10 -8.5 -9.3 -9.3 1 +2007 2 11 -7.8 -8.6 -8.6 1 +2007 2 12 -2.2 -3.0 -3.0 1 +2007 2 13 -1.2 -2.0 -2.0 1 +2007 2 14 -0.8 -1.6 -1.6 1 +2007 2 15 -0.5 -1.3 -1.3 1 +2007 2 16 0.8 -0.1 -0.1 1 +2007 2 17 2.5 1.6 1.6 1 +2007 2 18 0.2 -0.7 -0.7 1 +2007 2 19 -2.6 -3.5 -3.5 1 +2007 2 20 -7.9 -8.8 -8.8 1 +2007 2 21 -12.8 -13.7 -13.7 1 +2007 2 22 -7.3 -8.2 -8.2 1 +2007 2 23 -6.0 -6.9 -6.9 1 +2007 2 24 -2.7 -3.6 -3.6 1 +2007 2 25 -1.9 -2.8 -2.8 1 +2007 2 26 -0.9 -1.8 -1.8 1 +2007 2 27 -1.3 -2.2 -2.2 1 +2007 2 28 -1.4 -2.3 -2.3 1 +2007 3 1 1.8 0.9 0.9 1 +2007 3 2 1.6 0.7 0.7 1 +2007 3 3 0.8 -0.1 -0.1 1 +2007 3 4 0.8 -0.1 -0.1 1 +2007 3 5 2.4 1.5 1.5 1 +2007 3 6 1.8 0.9 0.9 1 +2007 3 7 3.2 2.3 2.3 1 +2007 3 8 4.1 3.2 3.2 1 +2007 3 9 3.5 2.6 2.6 1 +2007 3 10 5.0 4.1 4.1 1 +2007 3 11 5.8 4.9 4.9 1 +2007 3 12 7.5 6.6 6.6 1 +2007 3 13 7.4 6.4 6.4 1 +2007 3 14 7.0 6.0 6.0 1 +2007 3 15 7.4 6.4 6.4 1 +2007 3 16 7.3 6.3 6.3 1 +2007 3 17 4.7 3.8 3.8 1 +2007 3 18 3.3 2.4 2.4 1 +2007 3 19 3.1 2.2 2.2 1 +2007 3 20 2.4 1.5 1.5 1 +2007 3 21 1.2 0.3 0.3 1 +2007 3 22 0.8 -0.1 -0.1 1 +2007 3 23 2.7 1.8 1.8 1 +2007 3 24 1.8 0.9 0.9 1 +2007 3 25 4.5 3.6 3.6 1 +2007 3 26 9.2 8.3 8.3 1 +2007 3 27 10.1 9.2 9.2 1 +2007 3 28 9.4 8.5 8.5 1 +2007 3 29 9.8 8.9 8.9 1 +2007 3 30 9.5 8.6 8.6 1 +2007 3 31 5.7 4.8 4.8 1 +2007 4 1 7.4 6.5 6.5 1 +2007 4 2 9.3 8.4 8.4 1 +2007 4 3 4.1 3.2 3.2 1 +2007 4 4 5.9 5.0 5.0 1 +2007 4 5 6.9 6.0 6.0 1 +2007 4 6 3.5 2.7 2.7 1 +2007 4 7 3.2 2.4 2.4 1 +2007 4 8 1.8 1.0 1.0 1 +2007 4 9 0.8 0.0 0.0 1 +2007 4 10 2.4 1.6 1.6 1 +2007 4 11 9.6 8.8 8.8 1 +2007 4 12 7.4 6.6 6.6 1 +2007 4 13 12.0 11.2 11.2 1 +2007 4 14 13.7 12.9 12.9 1 +2007 4 15 16.4 15.6 15.6 1 +2007 4 16 16.3 15.5 15.5 1 +2007 4 17 9.5 8.7 8.7 1 +2007 4 18 7.0 6.1 6.1 1 +2007 4 19 5.0 4.1 4.1 1 +2007 4 20 4.4 3.5 3.5 1 +2007 4 21 4.3 3.4 3.4 1 +2007 4 22 6.4 5.5 5.5 1 +2007 4 23 8.6 7.6 7.6 1 +2007 4 24 10.0 9.0 9.0 1 +2007 4 25 13.8 12.8 12.8 1 +2007 4 26 16.3 15.3 15.3 1 +2007 4 27 14.8 13.8 13.8 1 +2007 4 28 8.7 7.7 7.7 1 +2007 4 29 9.3 8.2 8.2 1 +2007 4 30 5.8 4.7 4.7 1 +2007 5 1 5.9 4.8 4.8 1 +2007 5 2 8.4 7.3 7.3 1 +2007 5 3 8.7 7.6 7.6 1 +2007 5 4 9.3 8.1 8.1 1 +2007 5 5 8.9 7.7 7.7 1 +2007 5 6 12.1 10.9 10.9 1 +2007 5 7 10.4 9.2 9.2 1 +2007 5 8 11.1 9.9 9.9 1 +2007 5 9 10.3 9.0 9.0 1 +2007 5 10 9.3 8.0 8.0 1 +2007 5 11 9.4 8.1 8.1 1 +2007 5 12 7.4 6.1 6.1 1 +2007 5 13 7.5 6.2 6.2 1 +2007 5 14 10.3 8.9 8.9 1 +2007 5 15 12.1 10.7 10.7 1 +2007 5 16 10.8 9.4 9.4 1 +2007 5 17 10.2 8.8 8.8 1 +2007 5 18 12.2 10.9 10.9 1 +2007 5 19 12.3 11.0 11.0 1 +2007 5 20 15.3 14.0 14.0 1 +2007 5 21 14.0 12.7 12.7 1 +2007 5 22 10.8 9.5 9.5 1 +2007 5 23 13.5 12.2 12.2 1 +2007 5 24 15.5 14.2 14.2 1 +2007 5 25 16.2 14.9 14.9 1 +2007 5 26 17.3 16.0 16.0 1 +2007 5 27 16.0 14.7 14.7 1 +2007 5 28 11.3 10.0 10.0 1 +2007 5 29 12.9 11.7 11.7 1 +2007 5 30 13.6 12.4 12.4 1 +2007 5 31 11.4 10.2 10.2 1 +2007 6 1 12.0 10.8 10.8 1 +2007 6 2 12.9 11.7 11.7 1 +2007 6 3 14.2 13.0 13.0 1 +2007 6 4 16.3 15.1 15.1 1 +2007 6 5 19.2 18.0 18.0 1 +2007 6 6 21.1 19.9 19.9 1 +2007 6 7 19.9 18.7 18.7 1 +2007 6 8 23.5 22.3 22.3 1 +2007 6 9 23.0 21.9 21.9 1 +2007 6 10 22.8 21.7 21.7 1 +2007 6 11 19.9 18.8 18.8 1 +2007 6 12 17.8 16.7 16.7 1 +2007 6 13 16.0 14.9 14.9 1 +2007 6 14 13.2 12.1 12.1 1 +2007 6 15 13.5 12.4 12.4 1 +2007 6 16 14.3 13.2 13.2 1 +2007 6 17 12.2 11.1 11.1 1 +2007 6 18 13.9 12.8 12.8 1 +2007 6 19 15.1 14.0 14.0 1 +2007 6 20 16.8 15.7 15.7 1 +2007 6 21 15.7 14.6 14.6 1 +2007 6 22 15.8 14.7 14.7 1 +2007 6 23 14.3 13.2 13.2 1 +2007 6 24 18.1 17.0 17.0 1 +2007 6 25 18.2 17.1 17.1 1 +2007 6 26 19.9 18.8 18.8 1 +2007 6 27 12.4 11.3 11.3 1 +2007 6 28 15.9 14.8 14.8 1 +2007 6 29 15.9 14.8 14.8 1 +2007 6 30 15.1 14.1 14.1 1 +2007 7 1 16.1 15.1 15.1 1 +2007 7 2 18.1 17.1 17.1 1 +2007 7 3 18.3 17.3 17.3 1 +2007 7 4 17.4 16.4 16.4 1 +2007 7 5 19.0 18.0 18.0 1 +2007 7 6 17.9 16.9 16.9 1 +2007 7 7 15.7 14.7 14.7 1 +2007 7 8 14.4 13.4 13.4 1 +2007 7 9 14.0 13.0 13.0 1 +2007 7 10 16.3 15.3 15.3 1 +2007 7 11 16.9 15.9 15.9 1 +2007 7 12 14.6 13.6 13.6 1 +2007 7 13 16.3 15.3 15.3 1 +2007 7 14 18.7 17.7 17.7 1 +2007 7 15 18.1 17.1 17.1 1 +2007 7 16 20.2 19.2 19.2 1 +2007 7 17 19.8 18.8 18.8 1 +2007 7 18 19.0 18.0 18.0 1 +2007 7 19 16.2 15.2 15.2 1 +2007 7 20 16.6 15.6 15.6 1 +2007 7 21 17.8 16.8 16.8 1 +2007 7 22 18.1 17.1 17.1 1 +2007 7 23 15.7 14.7 14.7 1 +2007 7 24 16.9 16.0 16.0 1 +2007 7 25 17.7 16.8 16.8 1 +2007 7 26 19.0 18.1 18.1 1 +2007 7 27 16.1 15.2 15.2 1 +2007 7 28 16.8 15.9 15.9 1 +2007 7 29 14.9 14.0 14.0 1 +2007 7 30 15.0 14.1 14.1 1 +2007 7 31 16.7 15.8 15.8 1 +2007 8 1 19.2 18.3 18.3 1 +2007 8 2 18.1 17.2 17.2 1 +2007 8 3 16.3 15.4 15.4 1 +2007 8 4 18.2 17.3 17.3 1 +2007 8 5 20.5 19.6 19.6 1 +2007 8 6 21.6 20.8 20.8 1 +2007 8 7 20.1 19.3 19.3 1 +2007 8 8 20.2 19.4 19.4 1 +2007 8 9 21.1 20.3 20.3 1 +2007 8 10 20.2 19.4 19.4 1 +2007 8 11 21.7 20.9 20.9 1 +2007 8 12 21.3 20.5 20.5 1 +2007 8 13 21.3 20.5 20.5 1 +2007 8 14 19.8 19.0 19.0 1 +2007 8 15 19.1 18.3 18.3 1 +2007 8 16 19.4 18.6 18.6 1 +2007 8 17 17.0 16.3 16.3 1 +2007 8 18 15.7 15.0 15.0 1 +2007 8 19 16.7 16.0 16.0 1 +2007 8 20 17.5 16.8 16.8 1 +2007 8 21 19.3 18.6 18.6 1 +2007 8 22 18.8 18.1 18.1 1 +2007 8 23 18.1 17.4 17.4 1 +2007 8 24 20.6 20.0 20.0 1 +2007 8 25 19.8 19.2 19.2 1 +2007 8 26 15.4 14.8 14.8 1 +2007 8 27 13.2 12.6 12.6 1 +2007 8 28 10.2 9.6 9.6 1 +2007 8 29 10.9 10.3 10.3 1 +2007 8 30 10.3 9.8 9.8 1 +2007 8 31 11.6 11.1 11.1 1 +2007 9 1 11.9 11.4 11.4 1 +2007 9 2 15.1 14.6 14.6 1 +2007 9 3 13.4 12.9 12.9 1 +2007 9 4 8.8 8.3 8.3 1 +2007 9 5 12.4 11.9 11.9 1 +2007 9 6 15.1 14.7 14.7 1 +2007 9 7 11.9 11.5 11.5 1 +2007 9 8 12.3 11.9 11.9 1 +2007 9 9 12.1 11.7 11.7 1 +2007 9 10 12.4 12.0 12.0 1 +2007 9 11 13.3 12.9 12.9 1 +2007 9 12 12.6 12.3 12.3 1 +2007 9 13 11.1 10.8 10.8 1 +2007 9 14 11.6 11.3 11.3 1 +2007 9 15 10.9 10.6 10.6 1 +2007 9 16 8.5 8.2 8.2 1 +2007 9 17 14.4 14.1 14.1 1 +2007 9 18 10.7 10.4 10.4 1 +2007 9 19 9.2 8.9 8.9 1 +2007 9 20 12.0 11.7 11.7 1 +2007 9 21 13.7 13.4 13.4 1 +2007 9 22 13.1 12.8 12.8 1 +2007 9 23 12.6 12.3 12.3 1 +2007 9 24 14.7 14.4 14.4 1 +2007 9 25 14.5 14.2 14.2 1 +2007 9 26 12.3 12.0 12.0 1 +2007 9 27 9.6 9.3 9.3 1 +2007 9 28 9.5 9.2 9.2 1 +2007 9 29 12.2 11.9 11.9 1 +2007 9 30 14.2 13.9 13.9 1 +2007 10 1 13.0 12.7 12.7 1 +2007 10 2 10.3 10.0 10.0 1 +2007 10 3 11.1 10.8 10.8 1 +2007 10 4 10.2 9.9 9.9 1 +2007 10 5 9.4 9.1 9.1 1 +2007 10 6 9.2 8.9 8.9 1 +2007 10 7 10.4 10.1 10.1 1 +2007 10 8 8.9 8.6 8.6 1 +2007 10 9 6.6 6.3 6.3 1 +2007 10 10 7.1 6.8 6.8 1 +2007 10 11 4.1 3.9 3.9 1 +2007 10 12 4.4 4.2 4.2 1 +2007 10 13 2.4 2.2 2.2 1 +2007 10 14 7.7 7.5 7.5 1 +2007 10 15 11.0 10.8 10.8 1 +2007 10 16 10.9 10.7 10.7 1 +2007 10 17 10.7 10.4 10.4 1 +2007 10 18 5.2 4.9 4.9 1 +2007 10 19 4.9 4.6 4.6 1 +2007 10 20 4.0 3.7 3.7 1 +2007 10 21 5.8 5.5 5.5 1 +2007 10 22 7.5 7.2 7.2 1 +2007 10 23 7.0 6.7 6.7 1 +2007 10 24 6.0 5.7 5.7 1 +2007 10 25 4.4 4.1 4.1 1 +2007 10 26 7.0 6.7 6.7 1 +2007 10 27 8.4 8.1 8.1 1 +2007 10 28 9.3 9.0 9.0 1 +2007 10 29 8.3 8.0 8.0 1 +2007 10 30 7.9 7.5 7.5 1 +2007 10 31 4.6 4.2 4.2 1 +2007 11 1 10.0 9.6 9.6 1 +2007 11 2 3.6 3.2 3.2 1 +2007 11 3 3.0 2.6 2.6 1 +2007 11 4 3.1 2.7 2.7 1 +2007 11 5 3.7 3.3 3.3 1 +2007 11 6 5.5 5.1 5.1 1 +2007 11 7 2.3 1.9 1.9 1 +2007 11 8 2.7 2.3 2.3 1 +2007 11 9 6.0 5.6 5.6 1 +2007 11 10 -0.3 -0.7 -0.7 1 +2007 11 11 -0.1 -0.5 -0.5 1 +2007 11 12 1.7 1.3 1.3 1 +2007 11 13 0.6 0.1 0.1 1 +2007 11 14 -0.3 -0.8 -0.8 1 +2007 11 15 -0.5 -1.0 -1.0 1 +2007 11 16 2.1 1.6 1.6 1 +2007 11 17 3.1 2.6 2.6 1 +2007 11 18 4.5 4.0 4.0 1 +2007 11 19 4.2 3.7 3.7 1 +2007 11 20 1.5 1.0 1.0 1 +2007 11 21 3.8 3.3 3.3 1 +2007 11 22 4.3 3.8 3.8 1 +2007 11 23 3.2 2.7 2.7 1 +2007 11 24 -1.6 -2.1 -2.1 1 +2007 11 25 2.3 1.8 1.8 1 +2007 11 26 -0.3 -0.8 -0.8 1 +2007 11 27 -1.1 -1.6 -1.6 1 +2007 11 28 -1.6 -2.1 -2.1 1 +2007 11 29 3.6 3.1 3.1 1 +2007 11 30 3.4 2.9 2.9 1 +2007 12 1 3.4 2.9 2.9 1 +2007 12 2 5.1 4.6 4.6 1 +2007 12 3 3.8 3.3 3.3 1 +2007 12 4 2.1 1.6 1.6 1 +2007 12 5 3.6 3.0 3.0 1 +2007 12 6 7.8 7.2 7.2 1 +2007 12 7 6.1 5.5 5.5 1 +2007 12 8 4.4 3.8 3.8 1 +2007 12 9 3.2 2.6 2.6 1 +2007 12 10 4.6 4.0 4.0 1 +2007 12 11 2.6 2.0 2.0 1 +2007 12 12 0.1 -0.5 -0.5 1 +2007 12 13 -2.4 -3.0 -3.0 1 +2007 12 14 -0.6 -1.2 -1.2 1 +2007 12 15 -2.6 -3.2 -3.2 1 +2007 12 16 -1.5 -2.1 -2.1 1 +2007 12 17 -3.1 -3.7 -3.7 1 +2007 12 18 -2.1 -2.7 -2.7 1 +2007 12 19 -3.4 -4.0 -4.0 1 +2007 12 20 -0.5 -1.1 -1.1 1 +2007 12 21 -1.9 -2.5 -2.5 1 +2007 12 22 -2.7 -3.3 -3.3 1 +2007 12 23 -0.2 -0.8 -0.8 1 +2007 12 24 2.4 1.8 1.8 1 +2007 12 25 3.3 2.6 2.6 1 +2007 12 26 3.6 2.9 2.9 1 +2007 12 27 3.9 3.2 3.2 1 +2007 12 28 5.3 4.6 4.6 1 +2007 12 29 5.7 5.0 5.0 1 +2007 12 30 4.1 3.4 3.4 1 +2007 12 31 0.7 0.0 0.0 1 +2008 1 1 0.9 0.2 0.2 1 +2008 1 2 0.3 -0.4 -0.4 1 +2008 1 3 -1.2 -1.9 -1.9 1 +2008 1 4 -1.7 -2.4 -2.4 1 +2008 1 5 -1.5 -2.2 -2.2 1 +2008 1 6 0.2 -0.5 -0.5 1 +2008 1 7 1.8 1.1 1.1 1 +2008 1 8 2.1 1.4 1.4 1 +2008 1 9 2.7 2.0 2.0 1 +2008 1 10 2.5 1.8 1.8 1 +2008 1 11 5.1 4.3 4.3 1 +2008 1 12 4.1 3.3 3.3 1 +2008 1 13 2.3 1.5 1.5 1 +2008 1 14 4.4 3.6 3.6 1 +2008 1 15 4.1 3.3 3.3 1 +2008 1 16 4.7 3.9 3.9 1 +2008 1 17 4.8 4.0 4.0 1 +2008 1 18 4.0 3.2 3.2 1 +2008 1 19 5.0 4.2 4.2 1 +2008 1 20 3.4 2.6 2.6 1 +2008 1 21 1.2 0.4 0.4 1 +2008 1 22 -1.0 -1.8 -1.8 1 +2008 1 23 -2.7 -3.5 -3.5 1 +2008 1 24 4.2 3.4 3.4 1 +2008 1 25 4.0 3.2 3.2 1 +2008 1 26 3.1 2.3 2.3 1 +2008 1 27 1.4 0.6 0.6 1 +2008 1 28 0.8 0.0 0.0 1 +2008 1 29 5.9 5.1 5.1 1 +2008 1 30 2.5 1.7 1.7 1 +2008 1 31 1.1 0.3 0.3 1 +2008 2 1 3.0 2.2 2.2 1 +2008 2 2 1.1 0.3 0.3 1 +2008 2 3 0.8 0.0 0.0 1 +2008 2 4 2.3 1.5 1.5 1 +2008 2 5 2.5 1.7 1.7 1 +2008 2 6 3.7 2.9 2.9 1 +2008 2 7 2.8 2.0 2.0 1 +2008 2 8 3.5 2.7 2.7 1 +2008 2 9 5.0 4.2 4.2 1 +2008 2 10 3.8 3.0 3.0 1 +2008 2 11 2.9 2.1 2.1 1 +2008 2 12 0.7 -0.1 -0.1 1 +2008 2 13 3.4 2.6 2.6 1 +2008 2 14 -0.3 -1.1 -1.1 1 +2008 2 15 -3.5 -4.3 -4.3 1 +2008 2 16 -2.3 -3.2 -3.2 1 +2008 2 17 4.3 3.4 3.4 1 +2008 2 18 5.5 4.6 4.6 1 +2008 2 19 1.7 0.8 0.8 1 +2008 2 20 0.6 -0.3 -0.3 1 +2008 2 21 2.9 2.0 2.0 1 +2008 2 22 7.0 6.1 6.1 1 +2008 2 23 4.8 3.9 3.9 1 +2008 2 24 6.7 5.8 5.8 1 +2008 2 25 5.2 4.3 4.3 1 +2008 2 26 3.7 2.8 2.8 1 +2008 2 27 5.6 4.7 4.7 1 +2008 2 28 3.7 2.8 2.8 1 +2008 2 29 4.2 3.3 3.3 1 +2008 3 1 2.4 1.5 1.5 1 +2008 3 2 1.1 0.2 0.2 1 +2008 3 3 0.4 -0.5 -0.5 1 +2008 3 4 -0.4 -1.3 -1.3 1 +2008 3 5 -0.6 -1.5 -1.5 1 +2008 3 6 4.2 3.3 3.3 1 +2008 3 7 2.7 1.8 1.8 1 +2008 3 8 5.3 4.4 4.4 1 +2008 3 9 5.0 4.1 4.1 1 +2008 3 10 5.1 4.2 4.2 1 +2008 3 11 5.4 4.5 4.5 1 +2008 3 12 4.5 3.6 3.6 1 +2008 3 13 2.9 1.9 1.9 1 +2008 3 14 2.3 1.3 1.3 1 +2008 3 15 2.0 1.0 1.0 1 +2008 3 16 3.1 2.1 2.1 1 +2008 3 17 1.6 0.7 0.7 1 +2008 3 18 0.3 -0.6 -0.6 1 +2008 3 19 -0.3 -1.2 -1.2 1 +2008 3 20 -2.0 -2.9 -2.9 1 +2008 3 21 -2.6 -3.5 -3.5 1 +2008 3 22 -4.5 -5.4 -5.4 1 +2008 3 23 -4.4 -5.3 -5.3 1 +2008 3 24 -2.4 -3.3 -3.3 1 +2008 3 25 0.0 -0.9 -0.9 1 +2008 3 26 -0.6 -1.5 -1.5 1 +2008 3 27 0.7 -0.2 -0.2 1 +2008 3 28 1.8 0.9 0.9 1 +2008 3 29 5.0 4.1 4.1 1 +2008 3 30 7.0 6.1 6.1 1 +2008 3 31 8.0 7.1 7.1 1 +2008 4 1 7.5 6.6 6.6 1 +2008 4 2 7.1 6.2 6.2 1 +2008 4 3 4.6 3.7 3.7 1 +2008 4 4 6.0 5.1 5.1 1 +2008 4 5 8.0 7.1 7.1 1 +2008 4 6 5.2 4.4 4.4 1 +2008 4 7 5.9 5.1 5.1 1 +2008 4 8 2.1 1.3 1.3 1 +2008 4 9 1.7 0.9 0.9 1 +2008 4 10 3.9 3.1 3.1 1 +2008 4 11 3.1 2.3 2.3 1 +2008 4 12 4.0 3.2 3.2 1 +2008 4 13 2.8 2.0 2.0 1 +2008 4 14 5.4 4.6 4.6 1 +2008 4 15 6.8 6.0 6.0 1 +2008 4 16 5.4 4.6 4.6 1 +2008 4 17 5.6 4.8 4.8 1 +2008 4 18 6.1 5.2 5.2 1 +2008 4 19 6.6 5.7 5.7 1 +2008 4 20 6.7 5.8 5.8 1 +2008 4 21 8.7 7.8 7.8 1 +2008 4 22 6.8 5.9 5.9 1 +2008 4 23 9.7 8.7 8.7 1 +2008 4 24 11.9 10.9 10.9 1 +2008 4 25 13.1 12.1 12.1 1 +2008 4 26 13.5 12.5 12.5 1 +2008 4 27 13.0 12.0 12.0 1 +2008 4 28 14.1 13.1 13.1 1 +2008 4 29 13.6 12.5 12.5 1 +2008 4 30 12.7 11.6 11.6 1 +2008 5 1 11.2 10.1 10.1 1 +2008 5 2 10.1 9.0 9.0 1 +2008 5 3 12.8 11.7 11.7 1 +2008 5 4 14.3 13.1 13.1 1 +2008 5 5 11.9 10.7 10.7 1 +2008 5 6 10.6 9.4 9.4 1 +2008 5 7 11.6 10.4 10.4 1 +2008 5 8 13.1 11.9 11.9 1 +2008 5 9 16.2 14.9 14.9 1 +2008 5 10 18.2 16.9 16.9 1 +2008 5 11 19.2 17.9 17.9 1 +2008 5 12 9.5 8.2 8.2 1 +2008 5 13 7.4 6.1 6.1 1 +2008 5 14 6.6 5.2 5.2 1 +2008 5 15 6.9 5.5 5.5 1 +2008 5 16 6.0 4.6 4.6 1 +2008 5 17 7.4 6.0 6.0 1 +2008 5 18 5.4 4.1 4.1 1 +2008 5 19 8.2 6.9 6.9 1 +2008 5 20 8.1 6.8 6.8 1 +2008 5 21 10.7 9.4 9.4 1 +2008 5 22 11.3 10.0 10.0 1 +2008 5 23 11.1 9.8 9.8 1 +2008 5 24 11.8 10.5 10.5 1 +2008 5 25 12.5 11.2 11.2 1 +2008 5 26 15.3 14.0 14.0 1 +2008 5 27 12.8 11.5 11.5 1 +2008 5 28 14.8 13.5 13.5 1 +2008 5 29 18.1 16.9 16.9 1 +2008 5 30 19.6 18.4 18.4 1 +2008 5 31 18.9 17.7 17.7 1 +2008 6 1 19.7 18.5 18.5 1 +2008 6 2 18.5 17.3 17.3 1 +2008 6 3 17.0 15.8 15.8 1 +2008 6 4 17.2 16.0 16.0 1 +2008 6 5 19.7 18.5 18.5 1 +2008 6 6 21.6 20.4 20.4 1 +2008 6 7 19.3 18.1 18.1 1 +2008 6 8 21.5 20.3 20.3 1 +2008 6 9 19.7 18.6 18.6 1 +2008 6 10 17.9 16.8 16.8 1 +2008 6 11 12.0 10.9 10.9 1 +2008 6 12 11.3 10.2 10.2 1 +2008 6 13 13.6 12.5 12.5 1 +2008 6 14 12.1 11.0 11.0 1 +2008 6 15 14.2 13.1 13.1 1 +2008 6 16 14.0 12.9 12.9 1 +2008 6 17 15.2 14.1 14.1 1 +2008 6 18 15.7 14.6 14.6 1 +2008 6 19 16.9 15.8 15.8 1 +2008 6 20 17.1 16.0 16.0 1 +2008 6 21 14.9 13.8 13.8 1 +2008 6 22 16.0 14.9 14.9 1 +2008 6 23 16.0 14.9 14.9 1 +2008 6 24 15.0 13.9 13.9 1 +2008 6 25 14.9 13.8 13.8 1 +2008 6 26 16.9 15.8 15.8 1 +2008 6 27 17.2 16.1 16.1 1 +2008 6 28 16.5 15.4 15.4 1 +2008 6 29 17.9 16.8 16.8 1 +2008 6 30 15.4 14.4 14.4 1 +2008 7 1 18.5 17.5 17.5 1 +2008 7 2 18.0 17.0 17.0 1 +2008 7 3 19.3 18.3 18.3 1 +2008 7 4 21.3 20.3 20.3 1 +2008 7 5 17.9 16.9 16.9 1 +2008 7 6 14.0 13.0 13.0 1 +2008 7 7 11.7 10.7 10.7 1 +2008 7 8 13.4 12.4 12.4 1 +2008 7 9 16.2 15.2 15.2 1 +2008 7 10 20.0 19.0 19.0 1 +2008 7 11 18.0 17.0 17.0 1 +2008 7 12 18.7 17.7 17.7 1 +2008 7 13 18.3 17.3 17.3 1 +2008 7 14 17.6 16.6 16.6 1 +2008 7 15 18.9 17.9 17.9 1 +2008 7 16 18.5 17.5 17.5 1 +2008 7 17 15.8 14.8 14.8 1 +2008 7 18 16.8 15.8 15.8 1 +2008 7 19 17.3 16.3 16.3 1 +2008 7 20 18.7 17.7 17.7 1 +2008 7 21 17.5 16.5 16.5 1 +2008 7 22 18.8 17.8 17.8 1 +2008 7 23 20.5 19.5 19.5 1 +2008 7 24 22.0 21.1 21.1 1 +2008 7 25 22.0 21.1 21.1 1 +2008 7 26 24.2 23.3 23.3 1 +2008 7 27 23.7 22.8 22.8 1 +2008 7 28 21.9 21.0 21.0 1 +2008 7 29 20.9 20.0 20.0 1 +2008 7 30 20.0 19.1 19.1 1 +2008 7 31 22.4 21.5 21.5 1 +2008 8 1 22.6 21.7 21.7 1 +2008 8 2 17.8 16.9 16.9 1 +2008 8 3 18.9 18.0 18.0 1 +2008 8 4 17.2 16.3 16.3 1 +2008 8 5 12.7 11.8 11.8 1 +2008 8 6 14.8 14.0 14.0 1 +2008 8 7 15.4 14.6 14.6 1 +2008 8 8 15.8 15.0 15.0 1 +2008 8 9 15.4 14.6 14.6 1 +2008 8 10 15.3 14.5 14.5 1 +2008 8 11 18.0 17.2 17.2 1 +2008 8 12 18.3 17.5 17.5 1 +2008 8 13 19.1 18.3 18.3 1 +2008 8 14 17.1 16.3 16.3 1 +2008 8 15 17.2 16.4 16.4 1 +2008 8 16 16.0 15.2 15.2 1 +2008 8 17 13.7 13.0 13.0 1 +2008 8 18 15.6 14.9 14.9 1 +2008 8 19 17.1 16.4 16.4 1 +2008 8 20 18.7 18.0 18.0 1 +2008 8 21 16.3 15.6 15.6 1 +2008 8 22 15.5 14.8 14.8 1 +2008 8 23 14.7 14.0 14.0 1 +2008 8 24 14.3 13.7 13.7 1 +2008 8 25 15.0 14.4 14.4 1 +2008 8 26 14.8 14.2 14.2 1 +2008 8 27 16.4 15.8 15.8 1 +2008 8 28 15.6 15.0 15.0 1 +2008 8 29 12.3 11.7 11.7 1 +2008 8 30 13.5 13.0 13.0 1 +2008 8 31 12.3 11.8 11.8 1 +2008 9 1 12.5 12.0 12.0 1 +2008 9 2 15.2 14.7 14.7 1 +2008 9 3 16.3 15.8 15.8 1 +2008 9 4 15.1 14.6 14.6 1 +2008 9 5 15.5 15.0 15.0 1 +2008 9 6 12.4 12.0 12.0 1 +2008 9 7 13.8 13.4 13.4 1 +2008 9 8 12.9 12.5 12.5 1 +2008 9 9 10.8 10.4 10.4 1 +2008 9 10 11.2 10.8 10.8 1 +2008 9 11 11.3 10.9 10.9 1 +2008 9 12 9.6 9.3 9.3 1 +2008 9 13 8.2 7.9 7.9 1 +2008 9 14 9.3 9.0 9.0 1 +2008 9 15 8.7 8.4 8.4 1 +2008 9 16 8.8 8.5 8.5 1 +2008 9 17 8.5 8.2 8.2 1 +2008 9 18 8.5 8.2 8.2 1 +2008 9 19 10.8 10.5 10.5 1 +2008 9 20 12.5 12.2 12.2 1 +2008 9 21 10.1 9.8 9.8 1 +2008 9 22 10.9 10.6 10.6 1 +2008 9 23 11.7 11.4 11.4 1 +2008 9 24 12.2 11.9 11.9 1 +2008 9 25 13.1 12.8 12.8 1 +2008 9 26 11.9 11.6 11.6 1 +2008 9 27 12.2 11.9 11.9 1 +2008 9 28 11.4 11.1 11.1 1 +2008 9 29 9.3 9.0 9.0 1 +2008 9 30 8.6 8.3 8.3 1 +2008 10 1 9.3 9.0 9.0 1 +2008 10 2 8.8 8.5 8.5 1 +2008 10 3 8.8 8.5 8.5 1 +2008 10 4 9.3 9.0 9.0 1 +2008 10 5 8.4 8.1 8.1 1 +2008 10 6 9.0 8.7 8.7 1 +2008 10 7 7.9 7.6 7.6 1 +2008 10 8 8.5 8.2 8.2 1 +2008 10 9 9.9 9.6 9.6 1 +2008 10 10 11.1 10.9 10.9 1 +2008 10 11 12.5 12.3 12.3 1 +2008 10 12 10.7 10.5 10.5 1 +2008 10 13 10.6 10.4 10.4 1 +2008 10 14 11.0 10.8 10.8 1 +2008 10 15 8.2 8.0 8.0 1 +2008 10 16 8.9 8.7 8.7 1 +2008 10 17 6.7 6.4 6.4 1 +2008 10 18 6.1 5.8 5.8 1 +2008 10 19 8.6 8.3 8.3 1 +2008 10 20 9.3 9.0 9.0 1 +2008 10 21 10.6 10.3 10.3 1 +2008 10 22 8.1 7.8 7.8 1 +2008 10 23 7.5 7.2 7.2 1 +2008 10 24 9.8 9.5 9.5 1 +2008 10 25 8.5 8.2 8.2 1 +2008 10 26 8.8 8.5 8.5 1 +2008 10 27 7.3 7.0 7.0 1 +2008 10 28 4.2 3.9 3.9 1 +2008 10 29 4.6 4.3 4.3 1 +2008 10 30 2.2 1.8 1.8 1 +2008 10 31 4.0 3.6 3.6 1 +2008 11 1 0.9 0.5 0.5 1 +2008 11 2 2.7 2.3 2.3 1 +2008 11 3 4.4 4.0 4.0 1 +2008 11 4 4.9 4.5 4.5 1 +2008 11 5 3.1 2.7 2.7 1 +2008 11 6 4.1 3.7 3.7 1 +2008 11 7 5.2 4.8 4.8 1 +2008 11 8 7.6 7.2 7.2 1 +2008 11 9 8.2 7.8 7.8 1 +2008 11 10 6.9 6.5 6.5 1 +2008 11 11 6.7 6.3 6.3 1 +2008 11 12 6.7 6.3 6.3 1 +2008 11 13 5.2 4.7 4.7 1 +2008 11 14 5.4 4.9 4.9 1 +2008 11 15 8.5 8.0 8.0 1 +2008 11 16 3.0 2.5 2.5 1 +2008 11 17 0.5 0.0 0.0 1 +2008 11 18 2.5 2.0 2.0 1 +2008 11 19 1.0 0.5 0.5 1 +2008 11 20 0.1 -0.4 -0.4 1 +2008 11 21 -1.9 -2.4 -2.4 1 +2008 11 22 -2.1 -2.6 -2.6 1 +2008 11 23 -2.6 -3.1 -3.1 1 +2008 11 24 -2.3 -2.8 -2.8 1 +2008 11 25 -1.4 -1.9 -1.9 1 +2008 11 26 0.3 -0.2 -0.2 1 +2008 11 27 6.5 6.0 6.0 1 +2008 11 28 6.3 5.8 5.8 1 +2008 11 29 5.0 4.5 4.5 1 +2008 11 30 4.2 3.7 3.7 1 +2008 12 1 3.0 2.5 2.5 1 +2008 12 2 5.3 4.8 4.8 1 +2008 12 3 3.7 3.2 3.2 1 +2008 12 4 1.9 1.4 1.4 1 +2008 12 5 3.1 2.5 2.5 1 +2008 12 6 3.6 3.0 3.0 1 +2008 12 7 0.8 0.2 0.2 1 +2008 12 8 2.2 1.6 1.6 1 +2008 12 9 3.2 2.6 2.6 1 +2008 12 10 0.9 0.3 0.3 1 +2008 12 11 1.6 1.0 1.0 1 +2008 12 12 3.7 3.1 3.1 1 +2008 12 13 0.0 -0.6 -0.6 1 +2008 12 14 2.9 2.3 2.3 1 +2008 12 15 3.2 2.6 2.6 1 +2008 12 16 2.9 2.3 2.3 1 +2008 12 17 4.3 3.7 3.7 1 +2008 12 18 3.2 2.6 2.6 1 +2008 12 19 4.4 3.8 3.8 1 +2008 12 20 3.0 2.4 2.4 1 +2008 12 21 1.2 0.6 0.6 1 +2008 12 22 2.9 2.3 2.3 1 +2008 12 23 -0.5 -1.1 -1.1 1 +2008 12 24 -1.8 -2.4 -2.4 1 +2008 12 25 -1.8 -2.5 -2.5 1 +2008 12 26 -0.6 -1.3 -1.3 1 +2008 12 27 -1.1 -1.8 -1.8 1 +2008 12 28 -2.3 -3.0 -3.0 1 +2008 12 29 -3.4 -4.1 -4.1 1 +2008 12 30 -1.9 -2.6 -2.6 1 +2008 12 31 -1.7 -2.4 -2.4 1 +2009 1 1 -4.8 -5.5 -5.5 1 +2009 1 2 -6.3 -7.0 -7.0 1 +2009 1 3 -4.7 -5.4 -5.4 1 +2009 1 4 -9.9 -10.6 -10.6 1 +2009 1 5 -9.3 -10.0 -10.0 1 +2009 1 6 -2.6 -3.3 -3.3 1 +2009 1 7 -6.0 -6.7 -6.7 1 +2009 1 8 -4.1 -4.8 -4.8 1 +2009 1 9 3.1 2.4 2.4 1 +2009 1 10 1.6 0.9 0.9 1 +2009 1 11 2.6 1.8 1.8 1 +2009 1 12 5.3 4.5 4.5 1 +2009 1 13 4.6 3.8 3.8 1 +2009 1 14 2.1 1.3 1.3 1 +2009 1 15 -2.7 -3.5 -3.5 1 +2009 1 16 -6.6 -7.4 -7.4 1 +2009 1 17 -2.9 -3.7 -3.7 1 +2009 1 18 -0.9 -1.7 -1.7 1 +2009 1 19 0.1 -0.7 -0.7 1 +2009 1 20 1.9 1.1 1.1 1 +2009 1 21 0.5 -0.3 -0.3 1 +2009 1 22 0.6 -0.2 -0.2 1 +2009 1 23 1.1 0.3 0.3 1 +2009 1 24 1.5 0.7 0.7 1 +2009 1 25 2.2 1.4 1.4 1 +2009 1 26 1.2 0.4 0.4 1 +2009 1 27 -0.2 -1.0 -1.0 1 +2009 1 28 0.5 -0.3 -0.3 1 +2009 1 29 -1.1 -1.9 -1.9 1 +2009 1 30 -1.4 -2.2 -2.2 1 +2009 1 31 -1.9 -2.7 -2.7 1 +2009 2 1 -3.7 -4.5 -4.5 1 +2009 2 2 -1.6 -2.4 -2.4 1 +2009 2 3 -1.4 -2.2 -2.2 1 +2009 2 4 -1.1 -1.9 -1.9 1 +2009 2 5 -0.3 -1.1 -1.1 1 +2009 2 6 1.0 0.2 0.2 1 +2009 2 7 1.7 0.9 0.9 1 +2009 2 8 0.7 -0.1 -0.1 1 +2009 2 9 -1.8 -2.6 -2.6 1 +2009 2 10 -1.1 -1.9 -1.9 1 +2009 2 11 -0.8 -1.6 -1.6 1 +2009 2 12 -1.8 -2.6 -2.6 1 +2009 2 13 -3.0 -3.8 -3.8 1 +2009 2 14 -5.4 -6.2 -6.2 1 +2009 2 15 -3.6 -4.4 -4.4 1 +2009 2 16 -4.0 -4.9 -4.9 1 +2009 2 17 -4.2 -5.1 -5.1 1 +2009 2 18 -4.6 -5.5 -5.5 1 +2009 2 19 -4.4 -5.3 -5.3 1 +2009 2 20 -3.8 -4.7 -4.7 1 +2009 2 21 -3.7 -4.6 -4.6 1 +2009 2 22 -0.5 -1.4 -1.4 1 +2009 2 23 -1.6 -2.5 -2.5 1 +2009 2 24 -0.3 -1.2 -1.2 1 +2009 2 25 0.9 0.0 0.0 1 +2009 2 26 2.2 1.3 1.3 1 +2009 2 27 -0.2 -1.1 -1.1 1 +2009 2 28 -3.6 -4.5 -4.5 1 +2009 3 1 -4.0 -4.9 -4.9 1 +2009 3 2 0.2 -0.7 -0.7 1 +2009 3 3 2.1 1.2 1.2 1 +2009 3 4 2.5 1.6 1.6 1 +2009 3 5 1.5 0.6 0.6 1 +2009 3 6 1.2 0.3 0.3 1 +2009 3 7 0.7 -0.2 -0.2 1 +2009 3 8 1.2 0.3 0.3 1 +2009 3 9 1.1 0.2 0.2 1 +2009 3 10 -0.8 -1.7 -1.7 1 +2009 3 11 -1.2 -2.1 -2.1 1 +2009 3 12 -0.6 -1.5 -1.5 1 +2009 3 13 1.5 0.5 0.5 1 +2009 3 14 2.2 1.2 1.2 1 +2009 3 15 2.8 1.8 1.8 1 +2009 3 16 2.8 1.8 1.8 1 +2009 3 17 4.0 3.1 3.1 1 +2009 3 18 2.4 1.5 1.5 1 +2009 3 19 -0.1 -1.0 -1.0 1 +2009 3 20 1.8 0.9 0.9 1 +2009 3 21 3.4 2.5 2.5 1 +2009 3 22 0.2 -0.7 -0.7 1 +2009 3 23 -0.7 -1.6 -1.6 1 +2009 3 24 -3.0 -3.9 -3.9 1 +2009 3 25 -2.7 -3.6 -3.6 1 +2009 3 26 -1.1 -2.0 -2.0 1 +2009 3 27 -0.2 -1.1 -1.1 1 +2009 3 28 1.7 0.8 0.8 1 +2009 3 29 1.9 1.0 1.0 1 +2009 3 30 3.7 2.8 2.8 1 +2009 3 31 7.1 6.2 6.2 1 +2009 4 1 5.3 4.4 4.4 1 +2009 4 2 7.9 7.0 7.0 1 +2009 4 3 8.5 7.6 7.6 1 +2009 4 4 10.1 9.2 9.2 1 +2009 4 5 7.9 7.0 7.0 1 +2009 4 6 8.7 7.9 7.9 1 +2009 4 7 4.4 3.6 3.6 1 +2009 4 8 4.7 3.9 3.9 1 +2009 4 9 7.2 6.4 6.4 1 +2009 4 10 10.0 9.2 9.2 1 +2009 4 11 12.3 11.5 11.5 1 +2009 4 12 10.1 9.3 9.3 1 +2009 4 13 9.5 8.7 8.7 1 +2009 4 14 7.7 6.9 6.9 1 +2009 4 15 6.7 5.9 5.9 1 +2009 4 16 4.6 3.8 3.8 1 +2009 4 17 7.9 7.1 7.1 1 +2009 4 18 4.2 3.3 3.3 1 +2009 4 19 6.4 5.5 5.5 1 +2009 4 20 4.9 4.0 4.0 1 +2009 4 21 3.4 2.5 2.5 1 +2009 4 22 5.9 5.0 5.0 1 +2009 4 23 9.6 8.6 8.6 1 +2009 4 24 13.3 12.3 12.3 1 +2009 4 25 13.4 12.4 12.4 1 +2009 4 26 13.6 12.6 12.6 1 +2009 4 27 13.1 12.1 12.1 1 +2009 4 28 14.4 13.4 13.4 1 +2009 4 29 10.4 9.3 9.3 1 +2009 4 30 9.0 7.9 7.9 1 +2009 5 1 10.5 9.4 9.4 1 +2009 5 2 12.3 11.2 11.2 1 +2009 5 3 13.4 12.3 12.3 1 +2009 5 4 9.6 8.4 8.4 1 +2009 5 5 8.9 7.7 7.7 1 +2009 5 6 9.5 8.3 8.3 1 +2009 5 7 10.7 9.5 9.5 1 +2009 5 8 11.0 9.8 9.8 1 +2009 5 9 10.8 9.5 9.5 1 +2009 5 10 12.6 11.3 11.3 1 +2009 5 11 10.1 8.8 8.8 1 +2009 5 12 9.5 8.2 8.2 1 +2009 5 13 10.6 9.3 9.3 1 +2009 5 14 9.0 7.6 7.6 1 +2009 5 15 9.9 8.5 8.5 1 +2009 5 16 9.9 8.5 8.5 1 +2009 5 17 10.8 9.4 9.4 1 +2009 5 18 8.9 7.6 7.6 1 +2009 5 19 10.9 9.6 9.6 1 +2009 5 20 12.6 11.3 11.3 1 +2009 5 21 13.1 11.8 11.8 1 +2009 5 22 11.0 9.7 9.7 1 +2009 5 23 12.3 11.0 11.0 1 +2009 5 24 14.0 12.7 12.7 1 +2009 5 25 16.8 15.5 15.5 1 +2009 5 26 16.1 14.8 14.8 1 +2009 5 27 15.8 14.5 14.5 1 +2009 5 28 10.9 9.6 9.6 1 +2009 5 29 13.9 12.7 12.7 1 +2009 5 30 17.3 16.1 16.1 1 +2009 5 31 19.5 18.3 18.3 1 +2009 6 1 18.7 17.5 17.5 1 +2009 6 2 10.6 9.4 9.4 1 +2009 6 3 10.5 9.3 9.3 1 +2009 6 4 7.6 6.4 6.4 1 +2009 6 5 7.2 6.0 6.0 1 +2009 6 6 8.2 7.0 7.0 1 +2009 6 7 10.6 9.4 9.4 1 +2009 6 8 10.6 9.4 9.4 1 +2009 6 9 11.0 9.9 9.9 1 +2009 6 10 10.5 9.4 9.4 1 +2009 6 11 14.1 13.0 13.0 1 +2009 6 12 11.2 10.1 10.1 1 +2009 6 13 11.5 10.4 10.4 1 +2009 6 14 10.2 9.1 9.1 1 +2009 6 15 9.9 8.8 8.8 1 +2009 6 16 12.5 11.4 11.4 1 +2009 6 17 12.9 11.8 11.8 1 +2009 6 18 12.5 11.4 11.4 1 +2009 6 19 13.8 12.7 12.7 1 +2009 6 20 12.9 11.8 11.8 1 +2009 6 21 15.3 14.2 14.2 1 +2009 6 22 15.4 14.3 14.3 1 +2009 6 23 17.6 16.5 16.5 1 +2009 6 24 18.8 17.7 17.7 1 +2009 6 25 18.2 17.1 17.1 1 +2009 6 26 19.2 18.1 18.1 1 +2009 6 27 20.1 19.0 19.0 1 +2009 6 28 22.0 20.9 20.9 1 +2009 6 29 23.2 22.1 22.1 1 +2009 6 30 22.2 21.2 21.2 1 +2009 7 1 21.5 20.5 20.5 1 +2009 7 2 23.7 22.7 22.7 1 +2009 7 3 21.4 20.4 20.4 1 +2009 7 4 17.6 16.6 16.6 1 +2009 7 5 14.0 13.0 13.0 1 +2009 7 6 14.3 13.3 13.3 1 +2009 7 7 15.1 14.1 14.1 1 +2009 7 8 17.2 16.2 16.2 1 +2009 7 9 14.1 13.1 13.1 1 +2009 7 10 15.2 14.2 14.2 1 +2009 7 11 15.8 14.8 14.8 1 +2009 7 12 16.9 15.9 15.9 1 +2009 7 13 17.5 16.5 16.5 1 +2009 7 14 17.3 16.3 16.3 1 +2009 7 15 19.6 18.6 18.6 1 +2009 7 16 20.5 19.5 19.5 1 +2009 7 17 19.9 18.9 18.9 1 +2009 7 18 19.9 18.9 18.9 1 +2009 7 19 19.2 18.2 18.2 1 +2009 7 20 17.4 16.4 16.4 1 +2009 7 21 16.3 15.3 15.3 1 +2009 7 22 17.4 16.4 16.4 1 +2009 7 23 18.0 17.0 17.0 1 +2009 7 24 18.9 18.0 18.0 1 +2009 7 25 17.7 16.8 16.8 1 +2009 7 26 16.8 15.9 15.9 1 +2009 7 27 17.5 16.6 16.6 1 +2009 7 28 19.0 18.1 18.1 1 +2009 7 29 17.9 17.0 17.0 1 +2009 7 30 17.7 16.8 16.8 1 +2009 7 31 16.6 15.7 15.7 1 +2009 8 1 16.1 15.2 15.2 1 +2009 8 2 18.1 17.2 17.2 1 +2009 8 3 18.8 17.9 17.9 1 +2009 8 4 19.0 18.1 18.1 1 +2009 8 5 20.8 19.9 19.9 1 +2009 8 6 21.4 20.6 20.6 1 +2009 8 7 21.8 21.0 21.0 1 +2009 8 8 21.0 20.2 20.2 1 +2009 8 9 21.1 20.3 20.3 1 +2009 8 10 20.5 19.7 19.7 1 +2009 8 11 18.5 17.7 17.7 1 +2009 8 12 16.9 16.1 16.1 1 +2009 8 13 15.2 14.4 14.4 1 +2009 8 14 14.5 13.7 13.7 1 +2009 8 15 15.7 14.9 14.9 1 +2009 8 16 17.5 16.7 16.7 1 +2009 8 17 16.4 15.7 15.7 1 +2009 8 18 15.6 14.9 14.9 1 +2009 8 19 14.6 13.9 13.9 1 +2009 8 20 17.5 16.8 16.8 1 +2009 8 21 17.4 16.7 16.7 1 +2009 8 22 16.8 16.1 16.1 1 +2009 8 23 15.9 15.2 15.2 1 +2009 8 24 16.4 15.8 15.8 1 +2009 8 25 17.4 16.8 16.8 1 +2009 8 26 16.9 16.3 16.3 1 +2009 8 27 17.9 17.3 17.3 1 +2009 8 28 18.9 18.3 18.3 1 +2009 8 29 15.7 15.1 15.1 1 +2009 8 30 14.4 13.9 13.9 1 +2009 8 31 15.0 14.5 14.5 1 +2009 9 1 18.7 18.2 18.2 1 +2009 9 2 17.5 17.0 17.0 1 +2009 9 3 16.2 15.7 15.7 1 +2009 9 4 15.3 14.8 14.8 1 +2009 9 5 15.5 15.0 15.0 1 +2009 9 6 15.2 14.8 14.8 1 +2009 9 7 15.6 15.2 15.2 1 +2009 9 8 17.4 17.0 17.0 1 +2009 9 9 18.9 18.5 18.5 1 +2009 9 10 15.0 14.6 14.6 1 +2009 9 11 14.9 14.5 14.5 1 +2009 9 12 14.9 14.6 14.6 1 +2009 9 13 12.7 12.4 12.4 1 +2009 9 14 14.0 13.7 13.7 1 +2009 9 15 12.9 12.6 12.6 1 +2009 9 16 11.7 11.4 11.4 1 +2009 9 17 11.8 11.5 11.5 1 +2009 9 18 13.8 13.5 13.5 1 +2009 9 19 14.7 14.4 14.4 1 +2009 9 20 14.8 14.5 14.5 1 +2009 9 21 14.1 13.8 13.8 1 +2009 9 22 14.4 14.1 14.1 1 +2009 9 23 14.9 14.6 14.6 1 +2009 9 24 10.2 9.9 9.9 1 +2009 9 25 12.2 11.9 11.9 1 +2009 9 26 15.2 14.9 14.9 1 +2009 9 27 14.5 14.2 14.2 1 +2009 9 28 12.2 11.9 11.9 1 +2009 9 29 7.2 6.9 6.9 1 +2009 9 30 8.0 7.7 7.7 1 +2009 10 1 5.1 4.8 4.8 1 +2009 10 2 5.2 4.9 4.9 1 +2009 10 3 7.1 6.8 6.8 1 +2009 10 4 8.0 7.7 7.7 1 +2009 10 5 6.5 6.2 6.2 1 +2009 10 6 7.3 7.0 7.0 1 +2009 10 7 11.1 10.8 10.8 1 +2009 10 8 7.3 7.0 7.0 1 +2009 10 9 6.1 5.8 5.8 1 +2009 10 10 5.4 5.1 5.1 1 +2009 10 11 5.9 5.7 5.7 1 +2009 10 12 4.4 4.2 4.2 1 +2009 10 13 2.7 2.5 2.5 1 +2009 10 14 2.4 2.2 2.2 1 +2009 10 15 3.8 3.6 3.6 1 +2009 10 16 2.8 2.6 2.6 1 +2009 10 17 4.7 4.4 4.4 1 +2009 10 18 4.1 3.8 3.8 1 +2009 10 19 5.4 5.1 5.1 1 +2009 10 20 6.1 5.8 5.8 1 +2009 10 21 6.8 6.5 6.5 1 +2009 10 22 6.4 6.1 6.1 1 +2009 10 23 5.4 5.1 5.1 1 +2009 10 24 6.5 6.2 6.2 1 +2009 10 25 6.9 6.6 6.6 1 +2009 10 26 8.8 8.5 8.5 1 +2009 10 27 7.3 7.0 7.0 1 +2009 10 28 4.8 4.5 4.5 1 +2009 10 29 3.5 3.2 3.2 1 +2009 10 30 3.7 3.3 3.3 1 +2009 10 31 4.2 3.8 3.8 1 +2009 11 1 5.4 5.0 5.0 1 +2009 11 2 6.3 5.9 5.9 1 +2009 11 3 6.1 5.7 5.7 1 +2009 11 4 2.6 2.2 2.2 1 +2009 11 5 3.8 3.4 3.4 1 +2009 11 6 6.0 5.6 5.6 1 +2009 11 7 6.6 6.2 6.2 1 +2009 11 8 6.1 5.7 5.7 1 +2009 11 9 4.7 4.3 4.3 1 +2009 11 10 2.6 2.2 2.2 1 +2009 11 11 2.3 1.9 1.9 1 +2009 11 12 1.0 0.6 0.6 1 +2009 11 13 0.4 -0.1 -0.1 1 +2009 11 14 5.1 4.6 4.6 1 +2009 11 15 7.5 7.0 7.0 1 +2009 11 16 6.7 6.2 6.2 1 +2009 11 17 7.1 6.6 6.6 1 +2009 11 18 7.3 6.8 6.8 1 +2009 11 19 5.7 5.2 5.2 1 +2009 11 20 9.6 9.1 9.1 1 +2009 11 21 8.9 8.4 8.4 1 +2009 11 22 6.3 5.8 5.8 1 +2009 11 23 7.5 7.0 7.0 1 +2009 11 24 7.0 6.5 6.5 1 +2009 11 25 6.6 6.1 6.1 1 +2009 11 26 7.3 6.8 6.8 1 +2009 11 27 5.9 5.4 5.4 1 +2009 11 28 4.9 4.4 4.4 1 +2009 11 29 3.7 3.2 3.2 1 +2009 11 30 6.7 6.2 6.2 1 +2009 12 1 2.4 1.9 1.9 1 +2009 12 2 -1.7 -2.2 -2.2 1 +2009 12 3 0.3 -0.2 -0.2 1 +2009 12 4 3.4 2.9 2.9 1 +2009 12 5 5.2 4.6 4.6 1 +2009 12 6 3.3 2.7 2.7 1 +2009 12 7 4.5 3.9 3.9 1 +2009 12 8 4.1 3.5 3.5 1 +2009 12 9 3.6 3.0 3.0 1 +2009 12 10 3.1 2.5 2.5 1 +2009 12 11 1.7 1.1 1.1 1 +2009 12 12 0.7 0.1 0.1 1 +2009 12 13 1.6 1.0 1.0 1 +2009 12 14 -1.9 -2.5 -2.5 1 +2009 12 15 -1.9 -2.5 -2.5 1 +2009 12 16 -2.2 -2.8 -2.8 1 +2009 12 17 -5.1 -5.7 -5.7 1 +2009 12 18 -6.3 -6.9 -6.9 1 +2009 12 19 -4.4 -5.0 -5.0 1 +2009 12 20 -5.0 -5.6 -5.6 1 +2009 12 21 -8.3 -8.9 -8.9 1 +2009 12 22 -7.4 -8.0 -8.0 1 +2009 12 23 -2.3 -2.9 -2.9 1 +2009 12 24 -0.8 -1.4 -1.4 1 +2009 12 25 1.3 0.6 0.6 1 +2009 12 26 -2.0 -2.7 -2.7 1 +2009 12 27 -5.0 -5.7 -5.7 1 +2009 12 28 1.1 0.4 0.4 1 +2009 12 29 -8.0 -8.7 -8.7 1 +2009 12 30 -9.5 -10.2 -10.2 1 +2009 12 31 -7.6 -8.3 -8.3 1 +2010 1 1 -7.6 -8.3 -8.3 1 +2010 1 2 -8.9 -9.6 -9.6 1 +2010 1 3 -9.4 -10.1 -10.1 1 +2010 1 4 -6.1 -6.8 -6.8 1 +2010 1 5 -14.7 -15.4 -15.4 1 +2010 1 6 -16.0 -16.7 -16.7 1 +2010 1 7 -8.3 -9.0 -9.0 1 +2010 1 8 -12.0 -12.7 -12.7 1 +2010 1 9 -12.6 -13.3 -13.3 1 +2010 1 10 -7.1 -7.8 -7.8 1 +2010 1 11 -8.6 -9.4 -9.4 1 +2010 1 12 -8.8 -9.6 -9.6 1 +2010 1 13 -9.3 -10.1 -10.1 1 +2010 1 14 -6.2 -7.0 -7.0 1 +2010 1 15 -2.4 -3.2 -3.2 1 +2010 1 16 -1.1 -1.9 -1.9 1 +2010 1 17 -1.5 -2.3 -2.3 1 +2010 1 18 -1.9 -2.7 -2.7 1 +2010 1 19 -1.7 -2.5 -2.5 1 +2010 1 20 -2.2 -3.0 -3.0 1 +2010 1 21 -2.0 -2.8 -2.8 1 +2010 1 22 -2.5 -3.3 -3.3 1 +2010 1 23 -3.9 -4.7 -4.7 1 +2010 1 24 -4.3 -5.1 -5.1 1 +2010 1 25 -5.2 -6.0 -6.0 1 +2010 1 26 -8.0 -8.8 -8.8 1 +2010 1 27 -4.9 -5.7 -5.7 1 +2010 1 28 -5.9 -6.7 -6.7 1 +2010 1 29 -11.0 -11.8 -11.8 1 +2010 1 30 -12.8 -13.6 -13.6 1 +2010 1 31 -10.4 -11.2 -11.2 1 +2010 2 1 -3.0 -3.8 -3.8 1 +2010 2 2 -4.3 -5.1 -5.1 1 +2010 2 3 -1.4 -2.2 -2.2 1 +2010 2 4 0.0 -0.8 -0.8 1 +2010 2 5 -1.5 -2.3 -2.3 1 +2010 2 6 -1.6 -2.4 -2.4 1 +2010 2 7 -3.9 -4.7 -4.7 1 +2010 2 8 -6.3 -7.1 -7.1 1 +2010 2 9 -3.9 -4.7 -4.7 1 +2010 2 10 -3.7 -4.5 -4.5 1 +2010 2 11 -7.5 -8.3 -8.3 1 +2010 2 12 -5.5 -6.3 -6.3 1 +2010 2 13 -5.3 -6.1 -6.1 1 +2010 2 14 -5.3 -6.1 -6.1 1 +2010 2 15 -6.4 -7.2 -7.2 1 +2010 2 16 -5.9 -6.8 -6.8 1 +2010 2 17 -4.5 -5.4 -5.4 1 +2010 2 18 -5.8 -6.7 -6.7 1 +2010 2 19 -8.6 -9.5 -9.5 1 +2010 2 20 -12.5 -13.4 -13.4 1 +2010 2 21 -14.4 -15.3 -15.3 1 +2010 2 22 -17.1 -18.0 -18.0 1 +2010 2 23 -9.6 -10.5 -10.5 1 +2010 2 24 -7.9 -8.8 -8.8 1 +2010 2 25 -4.0 -4.9 -4.9 1 +2010 2 26 0.5 -0.4 -0.4 1 +2010 2 27 0.7 -0.2 -0.2 1 +2010 2 28 1.9 1.0 1.0 1 +2010 3 1 -0.6 -1.5 -1.5 1 +2010 3 2 -5.6 -6.5 -6.5 1 +2010 3 3 -6.3 -7.2 -7.2 1 +2010 3 4 -6.2 -7.1 -7.1 1 +2010 3 5 -5.3 -6.2 -6.2 1 +2010 3 6 -6.4 -7.3 -7.3 1 +2010 3 7 -5.3 -6.2 -6.2 1 +2010 3 8 0.5 -0.4 -0.4 1 +2010 3 9 -0.7 -1.6 -1.6 1 +2010 3 10 1.2 0.3 0.3 1 +2010 3 11 -0.2 -1.1 -1.1 1 +2010 3 12 0.7 -0.2 -0.2 1 +2010 3 13 -0.5 -1.5 -1.5 1 +2010 3 14 -2.3 -3.3 -3.3 1 +2010 3 15 -2.4 -3.4 -3.4 1 +2010 3 16 -3.4 -4.4 -4.4 1 +2010 3 17 -0.5 -1.4 -1.4 1 +2010 3 18 2.8 1.9 1.9 1 +2010 3 19 5.2 4.3 4.3 1 +2010 3 20 6.2 5.3 5.3 1 +2010 3 21 0.5 -0.4 -0.4 1 +2010 3 22 -0.7 -1.6 -1.6 1 +2010 3 23 1.4 0.5 0.5 1 +2010 3 24 1.9 1.0 1.0 1 +2010 3 25 0.9 0.0 0.0 1 +2010 3 26 5.2 4.3 4.3 1 +2010 3 27 2.6 1.7 1.7 1 +2010 3 28 1.9 1.0 1.0 1 +2010 3 29 4.1 3.2 3.2 1 +2010 3 30 3.3 2.4 2.4 1 +2010 3 31 1.8 0.9 0.9 1 +2010 4 1 5.0 4.1 4.1 1 +2010 4 2 4.3 3.4 3.4 1 +2010 4 3 6.7 5.8 5.8 1 +2010 4 4 4.6 3.7 3.7 1 +2010 4 5 1.3 0.4 0.4 1 +2010 4 6 4.9 4.1 4.1 1 +2010 4 7 6.8 6.0 6.0 1 +2010 4 8 7.7 6.9 6.9 1 +2010 4 9 4.9 4.1 4.1 1 +2010 4 10 2.9 2.1 2.1 1 +2010 4 11 4.5 3.7 3.7 1 +2010 4 12 5.7 4.9 4.9 1 +2010 4 13 7.9 7.1 7.1 1 +2010 4 14 6.6 5.8 5.8 1 +2010 4 15 8.8 8.0 8.0 1 +2010 4 16 5.9 5.1 5.1 1 +2010 4 17 7.7 6.9 6.9 1 +2010 4 18 6.2 5.3 5.3 1 +2010 4 19 5.3 4.4 4.4 1 +2010 4 20 5.5 4.6 4.6 1 +2010 4 21 2.0 1.1 1.1 1 +2010 4 22 1.5 0.6 0.6 1 +2010 4 23 5.9 4.9 4.9 1 +2010 4 24 6.8 5.8 5.8 1 +2010 4 25 9.3 8.3 8.3 1 +2010 4 26 9.8 8.8 8.8 1 +2010 4 27 10.4 9.4 9.4 1 +2010 4 28 7.1 6.1 6.1 1 +2010 4 29 12.8 11.7 11.7 1 +2010 4 30 12.8 11.7 11.7 1 +2010 5 1 10.8 9.7 9.7 1 +2010 5 2 7.7 6.6 6.6 1 +2010 5 3 8.4 7.3 7.3 1 +2010 5 4 7.2 6.0 6.0 1 +2010 5 5 5.5 4.3 4.3 1 +2010 5 6 7.1 5.9 5.9 1 +2010 5 7 7.2 6.0 6.0 1 +2010 5 8 5.2 4.0 4.0 1 +2010 5 9 6.9 5.6 5.6 1 +2010 5 10 5.9 4.6 4.6 1 +2010 5 11 9.3 8.0 8.0 1 +2010 5 12 10.0 8.7 8.7 1 +2010 5 13 11.5 10.2 10.2 1 +2010 5 14 11.8 10.4 10.4 1 +2010 5 15 16.1 14.7 14.7 1 +2010 5 16 12.2 10.8 10.8 1 +2010 5 17 15.5 14.1 14.1 1 +2010 5 18 17.6 16.3 16.3 1 +2010 5 19 17.0 15.7 15.7 1 +2010 5 20 18.4 17.1 17.1 1 +2010 5 21 18.0 16.7 16.7 1 +2010 5 22 16.8 15.5 15.5 1 +2010 5 23 11.4 10.1 10.1 1 +2010 5 24 11.2 9.9 9.9 1 +2010 5 25 9.5 8.2 8.2 1 +2010 5 26 11.1 9.8 9.8 1 +2010 5 27 11.3 10.0 10.0 1 +2010 5 28 12.4 11.1 11.1 1 +2010 5 29 10.5 9.3 9.3 1 +2010 5 30 14.1 12.9 12.9 1 +2010 5 31 13.9 12.7 12.7 1 +2010 6 1 14.0 12.8 12.8 1 +2010 6 2 16.0 14.8 14.8 1 +2010 6 3 17.4 16.2 16.2 1 +2010 6 4 14.5 13.3 13.3 1 +2010 6 5 12.8 11.6 11.6 1 +2010 6 6 15.1 13.9 13.9 1 +2010 6 7 13.2 12.0 12.0 1 +2010 6 8 14.1 12.9 12.9 1 +2010 6 9 14.1 13.0 13.0 1 +2010 6 10 15.2 14.1 14.1 1 +2010 6 11 12.7 11.6 11.6 1 +2010 6 12 13.2 12.1 12.1 1 +2010 6 13 14.3 13.2 13.2 1 +2010 6 14 13.9 12.8 12.8 1 +2010 6 15 11.9 10.8 10.8 1 +2010 6 16 14.6 13.5 13.5 1 +2010 6 17 17.0 15.9 15.9 1 +2010 6 18 13.6 12.5 12.5 1 +2010 6 19 14.2 13.1 13.1 1 +2010 6 20 14.1 13.0 13.0 1 +2010 6 21 13.4 12.3 12.3 1 +2010 6 22 16.6 15.5 15.5 1 +2010 6 23 17.4 16.3 16.3 1 +2010 6 24 19.1 18.0 18.0 1 +2010 6 25 19.2 18.1 18.1 1 +2010 6 26 16.9 15.8 15.8 1 +2010 6 27 18.3 17.2 17.2 1 +2010 6 28 20.6 19.5 19.5 1 +2010 6 29 21.3 20.2 20.2 1 +2010 6 30 21.4 20.4 20.4 1 +2010 7 1 17.9 16.9 16.9 1 +2010 7 2 21.1 20.1 20.1 1 +2010 7 3 22.6 21.6 21.6 1 +2010 7 4 22.8 21.8 21.8 1 +2010 7 5 22.2 21.2 21.2 1 +2010 7 6 19.6 18.6 18.6 1 +2010 7 7 20.6 19.6 19.6 1 +2010 7 8 22.0 21.0 21.0 1 +2010 7 9 22.4 21.4 21.4 1 +2010 7 10 23.7 22.7 22.7 1 +2010 7 11 26.1 25.1 25.1 1 +2010 7 12 25.8 24.8 24.8 1 +2010 7 13 26.7 25.7 25.7 1 +2010 7 14 23.7 22.7 22.7 1 +2010 7 15 23.8 22.8 22.8 1 +2010 7 16 23.5 22.5 22.5 1 +2010 7 17 23.0 22.0 22.0 1 +2010 7 18 21.5 20.5 20.5 1 +2010 7 19 20.5 19.5 19.5 1 +2010 7 20 22.4 21.4 21.4 1 +2010 7 21 22.5 21.5 21.5 1 +2010 7 22 23.8 22.8 22.8 1 +2010 7 23 16.6 15.6 15.6 1 +2010 7 24 15.0 14.1 14.1 1 +2010 7 25 16.7 15.8 15.8 1 +2010 7 26 17.0 16.1 16.1 1 +2010 7 27 19.8 18.9 18.9 1 +2010 7 28 20.4 19.5 19.5 1 +2010 7 29 18.0 17.1 17.1 1 +2010 7 30 18.4 17.5 17.5 1 +2010 7 31 18.0 17.1 17.1 1 +2010 8 1 20.1 19.2 19.2 1 +2010 8 2 16.7 15.8 15.8 1 +2010 8 3 18.0 17.1 17.1 1 +2010 8 4 16.4 15.5 15.5 1 +2010 8 5 18.7 17.8 17.8 1 +2010 8 6 19.0 18.2 18.2 1 +2010 8 7 16.8 16.0 16.0 1 +2010 8 8 17.7 16.9 16.9 1 +2010 8 9 19.6 18.8 18.8 1 +2010 8 10 17.9 17.1 17.1 1 +2010 8 11 18.6 17.8 17.8 1 +2010 8 12 20.3 19.5 19.5 1 +2010 8 13 21.8 21.0 21.0 1 +2010 8 14 23.3 22.5 22.5 1 +2010 8 15 20.0 19.2 19.2 1 +2010 8 16 18.4 17.6 17.6 1 +2010 8 17 17.8 17.1 17.1 1 +2010 8 18 18.8 18.1 18.1 1 +2010 8 19 16.9 16.2 16.2 1 +2010 8 20 16.2 15.5 15.5 1 +2010 8 21 18.5 17.8 17.8 1 +2010 8 22 17.6 16.9 16.9 1 +2010 8 23 17.9 17.2 17.2 1 +2010 8 24 16.4 15.8 15.8 1 +2010 8 25 13.4 12.8 12.8 1 +2010 8 26 13.2 12.6 12.6 1 +2010 8 27 12.6 12.0 12.0 1 +2010 8 28 12.6 12.0 12.0 1 +2010 8 29 11.9 11.3 11.3 1 +2010 8 30 12.2 11.7 11.7 1 +2010 8 31 13.0 12.5 12.5 1 +2010 9 1 13.3 12.8 12.8 1 +2010 9 2 9.7 9.2 9.2 1 +2010 9 3 9.7 9.2 9.2 1 +2010 9 4 11.3 10.8 10.8 1 +2010 9 5 12.5 12.0 12.0 1 +2010 9 6 13.3 12.9 12.9 1 +2010 9 7 13.1 12.7 12.7 1 +2010 9 8 14.7 14.3 14.3 1 +2010 9 9 14.3 13.9 13.9 1 +2010 9 10 14.2 13.8 13.8 1 +2010 9 11 14.8 14.4 14.4 1 +2010 9 12 16.3 16.0 16.0 1 +2010 9 13 13.8 13.5 13.5 1 +2010 9 14 12.7 12.4 12.4 1 +2010 9 15 12.2 11.9 11.9 1 +2010 9 16 12.0 11.7 11.7 1 +2010 9 17 12.5 12.2 12.2 1 +2010 9 18 10.4 10.1 10.1 1 +2010 9 19 11.1 10.8 10.8 1 +2010 9 20 10.7 10.4 10.4 1 +2010 9 21 12.5 12.2 12.2 1 +2010 9 22 10.7 10.4 10.4 1 +2010 9 23 13.1 12.8 12.8 1 +2010 9 24 14.8 14.5 14.5 1 +2010 9 25 13.5 13.2 13.2 1 +2010 9 26 10.1 9.8 9.8 1 +2010 9 27 9.6 9.3 9.3 1 +2010 9 28 8.2 7.9 7.9 1 +2010 9 29 8.5 8.2 8.2 1 +2010 9 30 7.8 7.5 7.5 1 +2010 10 1 9.1 8.8 8.8 1 +2010 10 2 9.0 8.7 8.7 1 +2010 10 3 10.5 10.2 10.2 1 +2010 10 4 11.3 11.0 11.0 1 +2010 10 5 10.5 10.2 10.2 1 +2010 10 6 10.5 10.2 10.2 1 +2010 10 7 9.9 9.6 9.6 1 +2010 10 8 10.2 9.9 9.9 1 +2010 10 9 9.0 8.7 8.7 1 +2010 10 10 7.4 7.1 7.1 1 +2010 10 11 5.1 4.9 4.9 1 +2010 10 12 5.8 5.6 5.6 1 +2010 10 13 5.8 5.6 5.6 1 +2010 10 14 6.8 6.6 6.6 1 +2010 10 15 2.6 2.4 2.4 1 +2010 10 16 1.7 1.5 1.5 1 +2010 10 17 4.4 4.1 4.1 1 +2010 10 18 5.7 5.4 5.4 1 +2010 10 19 7.2 6.9 6.9 1 +2010 10 20 4.3 4.0 4.0 1 +2010 10 21 0.3 0.0 0.0 1 +2010 10 22 1.2 0.9 0.9 1 +2010 10 23 3.8 3.5 3.5 1 +2010 10 24 2.9 2.6 2.6 1 +2010 10 25 1.9 1.6 1.6 1 +2010 10 26 2.4 2.1 2.1 1 +2010 10 27 4.7 4.4 4.4 1 +2010 10 28 8.5 8.2 8.2 1 +2010 10 29 8.2 7.9 7.9 1 +2010 10 30 9.2 8.8 8.8 1 +2010 10 31 9.0 8.6 8.6 1 +2010 11 1 7.7 7.3 7.3 1 +2010 11 2 5.7 5.3 5.3 1 +2010 11 3 8.5 8.1 8.1 1 +2010 11 4 6.5 6.1 6.1 1 +2010 11 5 3.3 2.9 2.9 1 +2010 11 6 1.8 1.4 1.4 1 +2010 11 7 0.3 -0.1 -0.1 1 +2010 11 8 -1.0 -1.4 -1.4 1 +2010 11 9 1.2 0.8 0.8 1 +2010 11 10 1.0 0.6 0.6 1 +2010 11 11 0.8 0.4 0.4 1 +2010 11 12 4.1 3.7 3.7 1 +2010 11 13 3.3 2.8 2.8 1 +2010 11 14 5.1 4.6 4.6 1 +2010 11 15 3.6 3.1 3.1 1 +2010 11 16 0.6 0.1 0.1 1 +2010 11 17 -0.3 -0.8 -0.8 1 +2010 11 18 0.3 -0.2 -0.2 1 +2010 11 19 0.1 -0.4 -0.4 1 +2010 11 20 1.1 0.6 0.6 1 +2010 11 21 1.5 1.0 1.0 1 +2010 11 22 0.2 -0.3 -0.3 1 +2010 11 23 -0.8 -1.3 -1.3 1 +2010 11 24 -2.4 -2.9 -2.9 1 +2010 11 25 -4.1 -4.6 -4.6 1 +2010 11 26 -7.3 -7.8 -7.8 1 +2010 11 27 -7.7 -8.2 -8.2 1 +2010 11 28 -5.1 -5.6 -5.6 1 +2010 11 29 -8.9 -9.4 -9.4 1 +2010 11 30 -8.8 -9.3 -9.3 1 +2010 12 1 -10.7 -11.2 -11.2 1 +2010 12 2 -9.3 -9.8 -9.8 1 +2010 12 3 -4.1 -4.6 -4.6 1 +2010 12 4 -7.3 -7.8 -7.8 1 +2010 12 5 -1.8 -2.4 -2.4 1 +2010 12 6 -1.5 -2.1 -2.1 1 +2010 12 7 -5.9 -6.5 -6.5 1 +2010 12 8 -7.5 -8.1 -8.1 1 +2010 12 9 -6.2 -6.8 -6.8 1 +2010 12 10 -7.1 -7.7 -7.7 1 +2010 12 11 -3.3 -3.9 -3.9 1 +2010 12 12 -8.1 -8.7 -8.7 1 +2010 12 13 -6.7 -7.3 -7.3 1 +2010 12 14 -4.3 -4.9 -4.9 1 +2010 12 15 -6.7 -7.3 -7.3 1 +2010 12 16 -2.3 -2.9 -2.9 1 +2010 12 17 -1.2 -1.8 -1.8 1 +2010 12 18 -3.8 -4.4 -4.4 1 +2010 12 19 -7.6 -8.2 -8.2 1 +2010 12 20 -7.0 -7.6 -7.6 1 +2010 12 21 -11.9 -12.5 -12.5 1 +2010 12 22 -15.4 -16.0 -16.0 1 +2010 12 23 -12.0 -12.6 -12.6 1 +2010 12 24 -11.2 -11.8 -11.8 1 +2010 12 25 -6.0 -6.7 -6.7 1 +2010 12 26 -6.6 -7.3 -7.3 1 +2010 12 27 -5.4 -6.1 -6.1 1 +2010 12 28 -5.6 -6.3 -6.3 1 +2010 12 29 -5.1 -5.8 -5.8 1 +2010 12 30 -7.2 -7.9 -7.9 1 +2010 12 31 -5.4 -6.1 -6.1 1 +2011 1 1 -2.3 -3.0 -3.0 1 +2011 1 2 -3.6 -4.3 -4.3 1 +2011 1 3 -6.9 -7.6 -7.6 1 +2011 1 4 -6.6 -7.3 -7.3 1 +2011 1 5 -1.2 -1.9 -1.9 1 +2011 1 6 -1.1 -1.8 -1.8 1 +2011 1 7 -0.3 -1.0 -1.0 1 +2011 1 8 -0.9 -1.6 -1.6 1 +2011 1 9 1.4 0.7 0.7 1 +2011 1 10 2.1 1.4 1.4 1 +2011 1 11 -0.2 -1.0 -1.0 1 +2011 1 12 -0.5 -1.3 -1.3 1 +2011 1 13 -5.2 -6.0 -6.0 1 +2011 1 14 -7.2 -8.0 -8.0 1 +2011 1 15 -5.5 -6.3 -6.3 1 +2011 1 16 1.3 0.5 0.5 1 +2011 1 17 4.0 3.2 3.2 1 +2011 1 18 2.5 1.7 1.7 1 +2011 1 19 -0.9 -1.7 -1.7 1 +2011 1 20 -2.3 -3.1 -3.1 1 +2011 1 21 -2.0 -2.8 -2.8 1 +2011 1 22 -1.1 -1.9 -1.9 1 +2011 1 23 -3.6 -4.4 -4.4 1 +2011 1 24 -0.5 -1.3 -1.3 1 +2011 1 25 -2.0 -2.8 -2.8 1 +2011 1 26 -5.8 -6.6 -6.6 1 +2011 1 27 -7.7 -8.5 -8.5 1 +2011 1 28 -2.9 -3.7 -3.7 1 +2011 1 29 1.0 0.2 0.2 1 +2011 1 30 0.0 -0.8 -0.8 1 +2011 1 31 -0.2 -1.0 -1.0 1 +2011 2 1 2.5 1.7 1.7 1 +2011 2 2 2.5 1.7 1.7 1 +2011 2 3 3.1 2.3 2.3 1 +2011 2 4 1.3 0.5 0.5 1 +2011 2 5 1.0 0.2 0.2 1 +2011 2 6 1.0 0.2 0.2 1 +2011 2 7 0.9 0.1 0.1 1 +2011 2 8 0.9 0.1 0.1 1 +2011 2 9 -1.6 -2.4 -2.4 1 +2011 2 10 -2.0 -2.8 -2.8 1 +2011 2 11 -5.1 -5.9 -5.9 1 +2011 2 12 -6.7 -7.5 -7.5 1 +2011 2 13 -7.8 -8.6 -8.6 1 +2011 2 14 -13.4 -14.2 -14.2 1 +2011 2 15 -8.8 -9.6 -9.6 1 +2011 2 16 -4.8 -5.7 -5.7 1 +2011 2 17 -5.5 -6.4 -6.4 1 +2011 2 18 -9.5 -10.4 -10.4 1 +2011 2 19 -14.1 -15.0 -15.0 1 +2011 2 20 -9.2 -10.1 -10.1 1 +2011 2 21 -7.1 -8.0 -8.0 1 +2011 2 22 -9.6 -10.5 -10.5 1 +2011 2 23 -11.4 -12.3 -12.3 1 +2011 2 24 -9.1 -10.0 -10.0 1 +2011 2 25 -2.0 -2.9 -2.9 1 +2011 2 26 0.1 -0.8 -0.8 1 +2011 2 27 -2.2 -3.1 -3.1 1 +2011 2 28 -2.2 -3.1 -3.1 1 +2011 3 1 -2.2 -3.1 -3.1 1 +2011 3 2 -2.1 -3.0 -3.0 1 +2011 3 3 -0.1 -1.0 -1.0 1 +2011 3 4 0.3 -0.6 -0.6 1 +2011 3 5 0.9 0.0 0.0 1 +2011 3 6 -1.4 -2.3 -2.3 1 +2011 3 7 0.1 -0.8 -0.8 1 +2011 3 8 2.7 1.8 1.8 1 +2011 3 9 1.6 0.7 0.7 1 +2011 3 10 2.3 1.4 1.4 1 +2011 3 11 1.2 0.3 0.3 1 +2011 3 12 3.2 2.3 2.3 1 +2011 3 13 1.8 0.8 0.8 1 +2011 3 14 2.5 1.5 1.5 1 +2011 3 15 -1.0 -2.0 -2.0 1 +2011 3 16 -1.4 -2.4 -2.4 1 +2011 3 17 -0.6 -1.5 -1.5 1 +2011 3 18 0.3 -0.6 -0.6 1 +2011 3 19 1.0 0.1 0.1 1 +2011 3 20 2.1 1.2 1.2 1 +2011 3 21 4.6 3.7 3.7 1 +2011 3 22 8.4 7.5 7.5 1 +2011 3 23 6.4 5.5 5.5 1 +2011 3 24 3.3 2.4 2.4 1 +2011 3 25 -0.3 -1.2 -1.2 1 +2011 3 26 -0.8 -1.7 -1.7 1 +2011 3 27 1.0 0.1 0.1 1 +2011 3 28 1.1 0.2 0.2 1 +2011 3 29 0.8 -0.1 -0.1 1 +2011 3 30 0.4 -0.5 -0.5 1 +2011 3 31 1.4 0.5 0.5 1 +2011 4 1 1.9 1.0 1.0 1 +2011 4 2 4.6 3.7 3.7 1 +2011 4 3 6.4 5.5 5.5 1 +2011 4 4 6.7 5.8 5.8 1 +2011 4 5 7.2 6.3 6.3 1 +2011 4 6 8.9 8.1 8.1 1 +2011 4 7 9.2 8.4 8.4 1 +2011 4 8 6.1 5.3 5.3 1 +2011 4 9 7.8 7.0 7.0 1 +2011 4 10 7.7 6.9 6.9 1 +2011 4 11 10.8 10.0 10.0 1 +2011 4 12 5.5 4.7 4.7 1 +2011 4 13 4.7 3.9 3.9 1 +2011 4 14 8.0 7.2 7.2 1 +2011 4 15 9.0 8.2 8.2 1 +2011 4 16 10.6 9.8 9.8 1 +2011 4 17 11.2 10.4 10.4 1 +2011 4 18 11.3 10.4 10.4 1 +2011 4 19 8.7 7.8 7.8 1 +2011 4 20 10.7 9.8 9.8 1 +2011 4 21 14.0 13.1 13.1 1 +2011 4 22 11.5 10.6 10.6 1 +2011 4 23 11.6 10.6 10.6 1 +2011 4 24 13.2 12.2 12.2 1 +2011 4 25 15.6 14.6 14.6 1 +2011 4 26 12.7 11.7 11.7 1 +2011 4 27 10.9 9.9 9.9 1 +2011 4 28 10.8 9.8 9.8 1 +2011 4 29 11.6 10.5 10.5 1 +2011 4 30 8.3 7.2 7.2 1 +2011 5 1 4.6 3.5 3.5 1 +2011 5 2 3.9 2.8 2.8 1 +2011 5 3 2.4 1.3 1.3 1 +2011 5 4 4.0 2.8 2.8 1 +2011 5 5 5.3 4.1 4.1 1 +2011 5 6 8.0 6.8 6.8 1 +2011 5 7 10.8 9.6 9.6 1 +2011 5 8 13.2 12.0 12.0 1 +2011 5 9 14.9 13.6 13.6 1 +2011 5 10 18.3 17.0 17.0 1 +2011 5 11 17.5 16.2 16.2 1 +2011 5 12 16.0 14.7 14.7 1 +2011 5 13 11.8 10.5 10.5 1 +2011 5 14 12.3 10.9 10.9 1 +2011 5 15 9.8 8.4 8.4 1 +2011 5 16 10.0 8.6 8.6 1 +2011 5 17 10.9 9.5 9.5 1 +2011 5 18 13.1 11.8 11.8 1 +2011 5 19 15.5 14.2 14.2 1 +2011 5 20 13.7 12.4 12.4 1 +2011 5 21 14.0 12.7 12.7 1 +2011 5 22 15.0 13.7 13.7 1 +2011 5 23 13.7 12.4 12.4 1 +2011 5 24 14.1 12.8 12.8 1 +2011 5 25 12.4 11.1 11.1 1 +2011 5 26 12.9 11.6 11.6 1 +2011 5 27 11.7 10.4 10.4 1 +2011 5 28 12.3 11.0 11.0 1 +2011 5 29 12.6 11.4 11.4 1 +2011 5 30 16.0 14.8 14.8 1 +2011 5 31 17.6 16.4 16.4 1 +2011 6 1 16.7 15.5 15.5 1 +2011 6 2 16.3 15.1 15.1 1 +2011 6 3 19.4 18.2 18.2 1 +2011 6 4 20.3 19.1 19.1 1 +2011 6 5 14.2 13.0 13.0 1 +2011 6 6 18.7 17.5 17.5 1 +2011 6 7 21.5 20.3 20.3 1 +2011 6 8 18.9 17.7 17.7 1 +2011 6 9 20.0 18.9 18.9 1 +2011 6 10 21.1 20.0 20.0 1 +2011 6 11 22.2 21.1 21.1 1 +2011 6 12 18.8 17.7 17.7 1 +2011 6 13 17.0 15.9 15.9 1 +2011 6 14 16.1 15.0 15.0 1 +2011 6 15 14.5 13.4 13.4 1 +2011 6 16 15.0 13.9 13.9 1 +2011 6 17 13.7 12.6 12.6 1 +2011 6 18 14.9 13.8 13.8 1 +2011 6 19 12.4 11.3 11.3 1 +2011 6 20 13.9 12.8 12.8 1 +2011 6 21 15.0 13.9 13.9 1 +2011 6 22 16.3 15.2 15.2 1 +2011 6 23 14.3 13.2 13.2 1 +2011 6 24 16.3 15.2 15.2 1 +2011 6 25 14.6 13.5 13.5 1 +2011 6 26 16.1 15.0 15.0 1 +2011 6 27 19.7 18.6 18.6 1 +2011 6 28 22.2 21.1 21.1 1 +2011 6 29 22.0 20.9 20.9 1 +2011 6 30 20.6 19.6 19.6 1 +2011 7 1 20.7 19.7 19.7 1 +2011 7 2 22.9 21.9 21.9 1 +2011 7 3 16.5 15.5 15.5 1 +2011 7 4 16.3 15.3 15.3 1 +2011 7 5 16.9 15.9 15.9 1 +2011 7 6 19.1 18.1 18.1 1 +2011 7 7 21.1 20.1 20.1 1 +2011 7 8 22.3 21.3 21.3 1 +2011 7 9 22.0 21.0 21.0 1 +2011 7 10 20.7 19.7 19.7 1 +2011 7 11 20.1 19.1 19.1 1 +2011 7 12 18.8 17.8 17.8 1 +2011 7 13 14.9 13.9 13.9 1 +2011 7 14 16.5 15.5 15.5 1 +2011 7 15 17.4 16.4 16.4 1 +2011 7 16 16.5 15.5 15.5 1 +2011 7 17 19.0 18.0 18.0 1 +2011 7 18 19.1 18.1 18.1 1 +2011 7 19 19.8 18.8 18.8 1 +2011 7 20 20.1 19.1 19.1 1 +2011 7 21 17.2 16.2 16.2 1 +2011 7 22 21.8 20.8 20.8 1 +2011 7 23 21.3 20.3 20.3 1 +2011 7 24 17.2 16.3 16.3 1 +2011 7 25 17.2 16.3 16.3 1 +2011 7 26 20.4 19.5 19.5 1 +2011 7 27 21.9 21.0 21.0 1 +2011 7 28 22.2 21.3 21.3 1 +2011 7 29 21.3 20.4 20.4 1 +2011 7 30 21.3 20.4 20.4 1 +2011 7 31 19.7 18.8 18.8 1 +2011 8 1 19.9 19.0 19.0 1 +2011 8 2 18.8 17.9 17.9 1 +2011 8 3 19.7 18.8 18.8 1 +2011 8 4 20.5 19.6 19.6 1 +2011 8 5 20.6 19.7 19.7 1 +2011 8 6 20.4 19.6 19.6 1 +2011 8 7 17.6 16.8 16.8 1 +2011 8 8 17.1 16.3 16.3 1 +2011 8 9 17.0 16.2 16.2 1 +2011 8 10 14.7 13.9 13.9 1 +2011 8 11 14.8 14.0 14.0 1 +2011 8 12 14.7 13.9 13.9 1 +2011 8 13 16.2 15.4 15.4 1 +2011 8 14 18.0 17.2 17.2 1 +2011 8 15 18.9 18.1 18.1 1 +2011 8 16 18.1 17.3 17.3 1 +2011 8 17 17.2 16.5 16.5 1 +2011 8 18 18.0 17.3 17.3 1 +2011 8 19 16.6 15.9 15.9 1 +2011 8 20 15.5 14.8 14.8 1 +2011 8 21 16.7 16.0 16.0 1 +2011 8 22 16.7 16.0 16.0 1 +2011 8 23 16.9 16.2 16.2 1 +2011 8 24 16.0 15.4 15.4 1 +2011 8 25 18.6 18.0 18.0 1 +2011 8 26 19.3 18.7 18.7 1 +2011 8 27 20.0 19.4 19.4 1 +2011 8 28 17.7 17.1 17.1 1 +2011 8 29 15.4 14.8 14.8 1 +2011 8 30 13.6 13.1 13.1 1 +2011 8 31 15.1 14.6 14.6 1 +2011 9 1 14.3 13.8 13.8 1 +2011 9 2 14.2 13.7 13.7 1 +2011 9 3 15.1 14.6 14.6 1 +2011 9 4 16.8 16.3 16.3 1 +2011 9 5 18.7 18.2 18.2 1 +2011 9 6 15.8 15.4 15.4 1 +2011 9 7 14.2 13.8 13.8 1 +2011 9 8 14.4 14.0 14.0 1 +2011 9 9 14.5 14.1 14.1 1 +2011 9 10 13.6 13.2 13.2 1 +2011 9 11 15.1 14.7 14.7 1 +2011 9 12 15.8 15.5 15.5 1 +2011 9 13 15.1 14.8 14.8 1 +2011 9 14 14.7 14.4 14.4 1 +2011 9 15 12.2 11.9 11.9 1 +2011 9 16 12.3 12.0 12.0 1 +2011 9 17 11.3 11.0 11.0 1 +2011 9 18 13.1 12.8 12.8 1 +2011 9 19 13.5 13.2 13.2 1 +2011 9 20 13.6 13.3 13.3 1 +2011 9 21 12.2 11.9 11.9 1 +2011 9 22 12.9 12.6 12.6 1 +2011 9 23 11.7 11.4 11.4 1 +2011 9 24 11.6 11.3 11.3 1 +2011 9 25 13.6 13.3 13.3 1 +2011 9 26 13.8 13.5 13.5 1 +2011 9 27 12.7 12.4 12.4 1 +2011 9 28 12.8 12.5 12.5 1 +2011 9 29 16.0 15.7 15.7 1 +2011 9 30 15.5 15.2 15.2 1 +2011 10 1 13.6 13.3 13.3 1 +2011 10 2 13.6 13.3 13.3 1 +2011 10 3 13.2 12.9 12.9 1 +2011 10 4 14.1 13.8 13.8 1 +2011 10 5 12.2 11.9 11.9 1 +2011 10 6 13.0 12.7 12.7 1 +2011 10 7 8.7 8.4 8.4 1 +2011 10 8 7.7 7.4 7.4 1 +2011 10 9 6.2 5.9 5.9 1 +2011 10 10 8.6 8.3 8.3 1 +2011 10 11 7.6 7.4 7.4 1 +2011 10 12 6.2 6.0 6.0 1 +2011 10 13 5.7 5.5 5.5 1 +2011 10 14 4.8 4.6 4.6 1 +2011 10 15 6.7 6.5 6.5 1 +2011 10 16 7.2 7.0 7.0 1 +2011 10 17 5.1 4.8 4.8 1 +2011 10 18 7.9 7.6 7.6 1 +2011 10 19 6.8 6.5 6.5 1 +2011 10 20 5.7 5.4 5.4 1 +2011 10 21 4.5 4.2 4.2 1 +2011 10 22 10.6 10.3 10.3 1 +2011 10 23 8.6 8.3 8.3 1 +2011 10 24 5.6 5.3 5.3 1 +2011 10 25 7.9 7.6 7.6 1 +2011 10 26 8.2 7.9 7.9 1 +2011 10 27 8.8 8.5 8.5 1 +2011 10 28 9.0 8.7 8.7 1 +2011 10 29 7.9 7.6 7.6 1 +2011 10 30 8.8 8.4 8.4 1 +2011 10 31 9.5 9.1 9.1 1 +2011 11 1 10.8 10.4 10.4 1 +2011 11 2 10.4 10.0 10.0 1 +2011 11 3 9.7 9.3 9.3 1 +2011 11 4 8.5 8.1 8.1 1 +2011 11 5 8.1 7.7 7.7 1 +2011 11 6 8.5 8.1 8.1 1 +2011 11 7 7.3 6.9 6.9 1 +2011 11 8 6.0 5.6 5.6 1 +2011 11 9 6.4 6.0 6.0 1 +2011 11 10 6.1 5.7 5.7 1 +2011 11 11 3.4 3.0 3.0 1 +2011 11 12 1.4 1.0 1.0 1 +2011 11 13 2.9 2.4 2.4 1 +2011 11 14 5.2 4.7 4.7 1 +2011 11 15 4.6 4.1 4.1 1 +2011 11 16 3.1 2.6 2.6 1 +2011 11 17 3.7 3.2 3.2 1 +2011 11 18 3.7 3.2 3.2 1 +2011 11 19 6.2 5.7 5.7 1 +2011 11 20 5.0 4.5 4.5 1 +2011 11 21 6.2 5.7 5.7 1 +2011 11 22 3.0 2.5 2.5 1 +2011 11 23 5.7 5.2 5.2 1 +2011 11 24 7.0 6.5 6.5 1 +2011 11 25 8.2 7.7 7.7 1 +2011 11 26 5.2 4.7 4.7 1 +2011 11 27 9.4 8.9 8.9 1 +2011 11 28 4.5 4.0 4.0 1 +2011 11 29 6.1 5.6 5.6 1 +2011 11 30 6.6 6.1 6.1 1 +2011 12 1 5.3 4.8 4.8 1 +2011 12 2 3.1 2.6 2.6 1 +2011 12 3 2.0 1.5 1.5 1 +2011 12 4 4.4 3.9 3.9 1 +2011 12 5 1.5 0.9 0.9 1 +2011 12 6 0.5 -0.1 -0.1 1 +2011 12 7 1.8 1.2 1.2 1 +2011 12 8 -0.4 -1.0 -1.0 1 +2011 12 9 2.9 2.3 2.3 1 +2011 12 10 2.3 1.7 1.7 1 +2011 12 11 0.3 -0.3 -0.3 1 +2011 12 12 2.9 2.3 2.3 1 +2011 12 13 3.7 3.1 3.1 1 +2011 12 14 4.1 3.5 3.5 1 +2011 12 15 3.1 2.5 2.5 1 +2011 12 16 2.9 2.3 2.3 1 +2011 12 17 2.1 1.5 1.5 1 +2011 12 18 0.9 0.3 0.3 1 +2011 12 19 0.3 -0.3 -0.3 1 +2011 12 20 0.9 0.3 0.3 1 +2011 12 21 0.4 -0.2 -0.2 1 +2011 12 22 -0.4 -1.0 -1.0 1 +2011 12 23 3.7 3.1 3.1 1 +2011 12 24 3.2 2.6 2.6 1 +2011 12 25 4.2 3.5 3.5 1 +2011 12 26 8.2 7.5 7.5 1 +2011 12 27 8.3 7.6 7.6 1 +2011 12 28 2.6 1.9 1.9 1 +2011 12 29 4.9 4.2 4.2 1 +2011 12 30 0.6 -0.1 -0.1 1 +2011 12 31 -2.6 -3.3 -3.3 1 \ No newline at end of file diff --git a/Lectures/Lecture-25/Lecture-25.pdf b/Lectures/Lecture-25/Lecture-25.pdf new file mode 100644 index 0000000..f39d6b9 Binary files /dev/null and b/Lectures/Lecture-25/Lecture-25.pdf differ diff --git a/Lectures/Lecture-6/Lecture 6.ipynb b/Lectures/Lecture-6/Lecture 6.ipynb index 2e0a873..bfb34b2 100644 --- a/Lectures/Lecture-6/Lecture 6.ipynb +++ b/Lectures/Lecture-6/Lecture 6.ipynb @@ -1744,6 +1744,18 @@ "display_name": "Python 3", "language": "python", "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" } }, "nbformat": 4,