Skip to content

dpnp.unique with equal_nan=True and axis specified gives incorrect output for an input with NaNs #2325

Open
@ndgrigorian

Description

@ndgrigorian

More or less identical to NumPy issue: numpy/numpy#23286

import dpnp

a = dpnp.array([0., np.nan, 2., np.nan, 2., 1., 0., 1., 2., 0.])
print(dpnp.unique(a, equal_nan=True, axis=0))
# [ 0.  1.  2. nan nan]

Expected result is [ 0. 1. 2. nan]

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions