|
14 | 14 | </script>
|
15 | 15 |
|
16 | 16 | <meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
17 |
| - <title>dpnp.dpnp_iface_mathematical — Data Parallel Extension for NumPy 0.18.0dev0+61.g1b3da83b493 documentation</title> |
| 17 | + <title>dpnp.dpnp_iface_mathematical — Data Parallel Extension for NumPy 0.18.0dev0+62.gf13e9a4cef documentation</title> |
18 | 18 | <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=03e43079" />
|
19 | 19 | <link rel="stylesheet" type="text/css" href="../../_static/css/theme.css?v=e59714d7" />
|
20 | 20 |
|
21 | 21 |
|
22 | 22 | <script src="../../_static/jquery.js?v=5d32c60e"></script>
|
23 | 23 | <script src="../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
24 |
| - <script src="../../_static/documentation_options.js?v=9e5e27fd"></script> |
| 24 | + <script src="../../_static/documentation_options.js?v=3a28e11e"></script> |
25 | 25 | <script src="../../_static/doctools.js?v=9bcbadda"></script>
|
26 | 26 | <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
|
27 | 27 | <script src="../../_static/js/theme.js"></script>
|
@@ -176,7 +176,6 @@ <h1>Source code for dpnp.dpnp_iface_mathematical</h1><div class="highlight"><pre
|
176 | 176 | <span class="s2">"clip"</span><span class="p">,</span>
|
177 | 177 | <span class="s2">"conj"</span><span class="p">,</span>
|
178 | 178 | <span class="s2">"conjugate"</span><span class="p">,</span>
|
179 |
| - <span class="s2">"convolve"</span><span class="p">,</span> |
180 | 179 | <span class="s2">"copysign"</span><span class="p">,</span>
|
181 | 180 | <span class="s2">"cross"</span><span class="p">,</span>
|
182 | 181 | <span class="s2">"cumprod"</span><span class="p">,</span>
|
@@ -883,27 +882,6 @@ <h1>Source code for dpnp.dpnp_iface_mathematical</h1><div class="highlight"><pre
|
883 | 882 |
|
884 | 883 | <span class="n">conj</span> <span class="o">=</span> <span class="n">conjugate</span>
|
885 | 884 |
|
886 |
| - |
887 |
| -<div class="viewcode-block" id="convolve"> |
888 |
| -<a class="viewcode-back" href="../../reference/generated/dpnp.convolve.html#dpnp.convolve">[docs]</a> |
889 |
| -<span class="k">def</span><span class="w"> </span><span class="nf">convolve</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s2">"full"</span><span class="p">):</span> |
890 |
| -<span class="w"> </span><span class="sd">"""</span> |
891 |
| -<span class="sd"> Returns the discrete, linear convolution of two one-dimensional sequences.</span> |
892 |
| - |
893 |
| -<span class="sd"> For full documentation refer to :obj:`numpy.convolve`.</span> |
894 |
| - |
895 |
| -<span class="sd"> Examples</span> |
896 |
| -<span class="sd"> --------</span> |
897 |
| -<span class="sd"> >>> ca = dpnp.convolve([1, 2, 3], [0, 1, 0.5])</span> |
898 |
| -<span class="sd"> >>> print(ca)</span> |
899 |
| -<span class="sd"> [0. , 1. , 2.5, 4. , 1.5]</span> |
900 |
| - |
901 |
| -<span class="sd"> """</span> |
902 |
| - |
903 |
| - <span class="k">return</span> <span class="n">call_origin</span><span class="p">(</span><span class="n">numpy</span><span class="o">.</span><span class="n">convolve</span><span class="p">,</span> <span class="n">a</span><span class="o">=</span><span class="n">a</span><span class="p">,</span> <span class="n">v</span><span class="o">=</span><span class="n">v</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="n">mode</span><span class="p">)</span></div> |
904 |
| - |
905 |
| - |
906 |
| - |
907 | 885 | <span class="n">_COPYSIGN_DOCSTRING</span> <span class="o">=</span> <span class="s2">"""</span>
|
908 | 886 | <span class="s2">Composes a floating-point value with the magnitude of `x1_i` and the sign of</span>
|
909 | 887 | <span class="s2">`x2_i` for each element of input arrays `x1` and `x2`.</span>
|
|
0 commit comments