Skip to content

Latest commit

 

History

History

0457. Circular Array Loop

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Topics

You are playing a game involving a circular array of non-zero integers nums. Each nums[i] denotes the number of indices forward/backward you must move if you are located at index i:

  • If nums[i] is positive, move nums[i] steps forward, and
  • If nums[i] is negative, move nums[i] steps backward.

Since the array is circular, you may assume that moving forward from the last element puts you on the first element, and moving backwards from the first element puts you on the last element.

A cycle in the array consists of a sequence of indices seq of length k where:

  • Following the movement rules above results in the repeating index sequence seq[0] -> seq[1] -> ... -> seq[k - 1] -> seq[0] -> ...
  • Every nums[seq[j]] is either all positive or all negative.
  • k > 1

Return true if there is a cycle in nums, or false otherwise.

 

Example 1:

Input: nums = [2,-1,1,2,2] Output: true Explanation: There is a cycle from index 0 -> 2 -> 3 -> 0 -> ... The cycle's length is 3. Example 2:

Input: nums = [-1,2] Output: false Explanation: The sequence from index 1 -> 1 -> 1 -> ... is not a cycle because the sequence's length is 1. By definition the sequence's length must be strictly greater than 1 to be a cycle. Example 3:

Input: nums = [-2,1,-1,-2,-2] Output: false Explanation: The sequence from index 1 -> 2 -> 1 -> ... is not a cycle because nums[1] is positive, but nums[2] is negative. Every nums[seq[j]] must be either all positive or all negative.  

Constraints:

1 <= nums.length <= 5000 -1000 <= nums[i] <= 1000 nums[i] != 0   Follow up: Could you solve it in O(n) time complexity and O(1) extra space complexity?