-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencoding.py
107 lines (79 loc) · 4.19 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class FreqEncoder_torch(nn.Module):
def __init__(self, input_dim, max_freq_log2, N_freqs,
log_sampling=True, include_input=True,
periodic_fns=(torch.sin, torch.cos)):
super().__init__()
self.input_dim = input_dim
self.include_input = include_input
self.periodic_fns = periodic_fns
self.output_dim = 0
if self.include_input:
self.output_dim += self.input_dim
self.output_dim += self.input_dim * N_freqs * len(self.periodic_fns)
if log_sampling:
self.freq_bands = 2. ** torch.linspace(0., max_freq_log2, N_freqs)
else:
self.freq_bands = torch.linspace(2. ** 0., 2. ** max_freq_log2, N_freqs)
self.freq_bands = self.freq_bands.numpy().tolist()
def forward(self, input, **kwargs):
out = []
if self.include_input:
out.append(input)
for i in range(len(self.freq_bands)):
freq = self.freq_bands[i]
for p_fn in self.periodic_fns:
out.append(p_fn(input * freq))
out = torch.cat(out, dim=-1)
return out
class TCNN_hashgrid(nn.Module):
def __init__(self, num_levels, level_dim, log2_hashmap_size, base_resolution, desired_resolution, interpolation, **kwargs):
super().__init__()
import tinycudann as tcnn
self.encoder = tcnn.Encoding(
n_input_dims=3,
encoding_config={
"otype": "HashGrid",
"n_levels": num_levels,
"n_features_per_level": level_dim,
"log2_hashmap_size": log2_hashmap_size,
"base_resolution": base_resolution,
"per_level_scale": np.exp2(np.log2(desired_resolution / num_levels) / (num_levels - 1)),
"interpolation": "Smoothstep" if interpolation == 'smoothstep' else "Linear",
},
dtype=torch.float32,
)
self.output_dim = self.encoder.n_output_dims # patch
def forward(self, x, bound=1, **kwargs):
return self.encoder((x + bound) / (2 * bound))
def get_encoder(encoding, input_dim=3,
output_dim=1, resolution=300, mode='bilinear', # dense grid
multires=6, # freq
degree=4, # SH
num_levels=16, level_dim=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=2048, # hash/tiled grid
align_corners=False, interpolation='linear', # grid
**kwargs):
if encoding == 'None':
return lambda x, **kwargs: x, input_dim
elif encoding == 'frequency_torch':
encoder = FreqEncoder_torch(input_dim=input_dim, max_freq_log2=multires-1, N_freqs=multires, log_sampling=True)
elif encoding == 'frequency':
from freqencoder import FreqEncoder
encoder = FreqEncoder(input_dim=input_dim, degree=multires)
elif encoding == 'sh':
from shencoder import SHEncoder
encoder = SHEncoder(input_dim=input_dim, degree=degree)
elif encoding == 'hashgrid':
from gridencoder import GridEncoder
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='hash', align_corners=align_corners, interpolation=interpolation)
elif encoding == 'hashgrid_tcnn':
encoder = TCNN_hashgrid(num_levels=num_levels, level_dim=level_dim, log2_hashmap_size=log2_hashmap_size, base_resolution=base_resolution, desired_resolution=desired_resolution, interpolation=interpolation)
elif encoding == 'tiledgrid':
from gridencoder import GridEncoder
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='tiled', align_corners=align_corners, interpolation=interpolation)
else:
raise NotImplementedError('Unknown encoding mode, choose from [None, frequency, sh, hashgrid, tiledgrid]')
return encoder, encoder.output_dim