-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12_ffs_haralick_turnover.R
140 lines (111 loc) · 4.92 KB
/
12_ffs_haralick_turnover.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
library(gpm)
library(CAST)
setwd("/media/sd19006/data/users/iotte/R-Server/hyperspectral/clean")
## Read files and build GPM object
filepath_gpm = "/media/sd19006/data/users/iotte/R-Server/hyperspectral/clean/"
mrg_tbl = read.table(paste0(filepath_gpm,
"veg_beta_diversity_all_taxa_ffs_TO_NE_AC_df.csv"),
header = TRUE, sep = ";", dec = ",")
mrg_tbl$SelCat = substr(mrg_tbl$plotID, 1, 3)
mrg_tbl$SelNbr = as.numeric(substr(mrg_tbl$plotID, 4, 4))
col_selector = which(names(mrg_tbl) %in% c("SelCat", "SelNbr"))
col_diversity = seq(grep("ants_jtu_NMDS1", names(mrg_tbl)),
grep("rosids_jac_NMDS2", names(mrg_tbl)))
col_predictors = seq(grep("mean_Carter", names(mrg_tbl)),
grep("sd_TGI", names(mrg_tbl)))
col_meta = seq(length(mrg_tbl))[-c(col_selector, col_diversity, col_predictors)]
meta = createGPMMeta(mrg_tbl, type = "input",
selector = col_selector,
response = col_diversity,
predictor = col_predictors,
meta = NULL)
mrg_tbl_gpm = gpm(mrg_tbl, meta, scale = TRUE)
#mrg_tbl_gpm = createIndexFolds(x = mrg_tbl_gpm, nbr = 1)
## Iterate over all response variables
responses = mrg_tbl_gpm@meta$input$RESPONSE_FINAL
mrg_tbl_gpm_list = lapply(responses, function(rsp){
mrg_tbl_gpm@meta$input$RESPONSE_FINAL = rsp
## Remove NAs and compute resamples
mrg_tbl_gpm@data$input = mrg_tbl_gpm@data$input[complete.cases(mrg_tbl_gpm@data$input[, mrg_tbl_gpm@meta$input$RESPONSE_FINAL]), ]
#mrg_tbl_gpm = splitMultRespLSO(x = mrg_tbl_gpm, nbr = 1)
mrg_tbl_gpm = createIndexFolds(x = mrg_tbl_gpm, nbr = 1) #nested_cv = FALSE)
mrg_tbl_gpm_ffs_model = trainModel(x = mrg_tbl_gpm,
metric = "RMSE",
n_var = NULL,
mthd = "pls",
mode = "ffs",
seed_nbr = 11,
cv_nbr = 5,
var_selection = "indv")
filepath = paste0(filepath_gpm, rsp, ".rds")
saveRDS(mrg_tbl_gpm_ffs_model, file = filepath)
})
saveRDS(mrg_tbl_gpm, file = "mrg_tbl_gpm_ffs_all_taxa.rds")
filepath = paste(filepath_gpm, "gpm_ffs_40", sep = "")
## Combine models in gpm objct
models = list.files(filepath, pattern = glob2rx("*.rds"), full.names = TRUE)
mrg_tbl_gpm_model = readRDS(models[1])
for(i in seq(2, length(models))){
temp = readRDS(models[i])
mrg_tbl_gpm_model@model$pls_rfe[[i]] = temp@model$pls_ffs[[1]]
}
saveRDS(mrg_tbl_gpm_model, file = paste0(filepath, "gpm_ffs_40_2018-05-11.rds"))
#filepath = paste(filepath_gpm, "residuen", sep = "")
#mrg_tbl_res_gpm_model <- readRDS(paste0(filepath_gpm, "gpm_pci_hara_res_model_pls_2018-03-12.rds"))
mrg_tbl_gpm_model <- readRDS(paste0(filepath_gpm, "gpm_ffs_40_2018-05-11.rds"))
compVarImp <- function(models, scale = FALSE){
lapply(models, function(x){
vi_species1 <- lapply(x, function(y){
# vi <- varImp(y$model$fit, scale = FALSE) #war: var_Imp(y$model$fit, scale = FALSE)
if(inherits(y$model, "try-error")){
NULL
} else {
vi <- caret::varImp(y$model)
class(vi)
if(inherits(vi, "varImp.train")){
vi = vi$importance
}
if(scale == TRUE){
vi <- vi / max(vi)
}
variables <- rownames(vi)
vi <- data.frame(RESPONSE = y$response,
VARIABLE = variables,
IMPORTANCE = vi$Overall)
}
})
vi_species <- do.call("rbind", vi_species1)
if(is.null(vi_species)){
vi <- NULL
} else {
#return(vi_species)
#}
#})
#}
#vi_count <- vi_species %>% count(VARIABLE)
vi_count <- vi_species %>% dplyr::count(VARIABLE)
#vi_mean <- vi_species %>% group_by(RESPONSE) %>% summarise(avg = mean(IMPORTANCE))
vi_mean <- ddply(vi_species, "VARIABLE", summarise, mean = mean(IMPORTANCE))
vi <- merge(vi_count, vi_mean)
vi$RESPONSE <- vi_species$RESPONSE[1]
vi <- vi[order(vi$mean, decreasing = TRUE), ,drop = FALSE]
}
return(vi)
})
}
#mrg_tbl_gpm_model = mrg_tbl_res_gpm_model
var_imp <- compVarImp(mrg_tbl_gpm_model@model[[2]], scale = FALSE)
var_imp_scale <- compVarImp(mrg_tbl_gpm_model@model[[2]], scale = TRUE)
tst = do.call(rbind, var_imp_scale)
library(stringr)
tst2 = str_sort(tst$VARIABLE)
unique(tst2)
var_imp_plot <- plotVarImp(var_imp)
var_imp_heat <- plotVarImpHeatmap(var_imp_scale, xlab = "Species", ylab = "Band")
tstat <- compRegrTests(mrg_tbl_gpm_model@model[[2]])
#tstat_mean <- merge(tstat[[1]], mrg_tbl_res_gpm_model@model[[1]],
# by.x = "Response", by.y="names")
overview = aggregate(tstat$r_squared, by = list(tstat$model_response), mean)
colnames(overview) = c("Species Richness", "r.sq")
#overview$r.sq_residuen_rd = round(overview$r.sq_residuen, 3)
overview[order(overview$r.sq),]