-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11_pt_rmse_boxplot.R
68 lines (47 loc) · 2.84 KB
/
11_pt_rmse_boxplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
library(gpm)
library(Metrics)
setwd("/media/sd19006/data/users/iotte/R-Server/hyperspectral/clean/gpm_re_norm_pci_hara_turnover_plotdiv")
## Read files and build GPM object
filepath_gpm = "/media/sd19006/data/users/iotte/R-Server/hyperspectral/clean/gpm_re_norm_pci_hara_turnover_plotdiv/"
filepath = paste(filepath_gpm, "residuen", sep = "")
outpath <- filepath
mrg_tbl_res_gpm_model <- readRDS(paste0(filepath_gpm, "gpm_pci_plotdiv_turnover_res_model_pls_2018-03-26.rds"))
mrg_tbl_gpm_model <- readRDS(paste0(filepath_gpm, "gpm_pci_plotdiv_turnover_model_pls_2018-03-26.rds"))
# residuen
tstat_res <- compRegrTests(mrg_tbl_res_gpm_model@model[[1]])
overview_res = aggregate(tstat_res$r_squared, by = list(tstat_res$model_response), mean)
colnames(overview_res) = c("Species Richness", "r.sq_residuen")
overview_res[order(overview_res$r.sq_residuen),]
RMSE_mdl_res_gpm <- ddply(tstat_res, .(model_response, model_selector),
summarise, RMSE = rmse(testing_response, testing_predicted))
levels(RMSE_mdl_res_gpm$model_response) <- c("animals NMDS I (resid)", "plants NMDS I (resid)",
"animals NMDS II (resid)", "plants NMDS II (resid)")
# nicht residuen
tstat <- compRegrTests(mrg_tbl_gpm_model@model[[1]])
overview = aggregate(tstat$r_squared, by = list(tstat$model_response), mean)
colnames(overview) = c("Species Richness", "r.sq")
overview[order(overview$r.sq),]
RMSE_mdl_gpm <- ddply(tstat, .(model_response, model_selector),
summarise, RMSE = rmse(testing_response, testing_predicted))
levels(RMSE_mdl_gpm$model_response) <- c("animals NMDS I", "plants NMDS I",
"animals NMDS II", "plants NMDS II")
plot_resp <- function(df, var, names, resp_title, path = outpath, comm){
df$resp = reorder(df$model_response, df[[var]], median)
p <- ggplot(aes_string(x = "resp", y = var), data = df) +
geom_boxplot() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab(resp_title) +
ylab(var)
print(p)
ggsave(filename = paste0(path, "plot_", var, "_", comm, ".pdf"), plot = p, width = 25,
height = 25, units = "cm")
dev.off()
}
plot_resp(df = RMSE_mdl_res_gpm, var = "RMSE", resp_title = "Taxa (Residuals)", comm = "res")
plot_resp(df = RMSE_mdl_gpm, var = "RMSE", resp_title = "Taxa", comm = "")
RMSE_mdl_res_gpm_sb = subset(RMSE_mdl_res_gpm, RMSE_mdl_res_gpm$model_response != "lui" &
RMSE_mdl_res_gpm$model_response != "SRallplants" &
RMSE_mdl_res_gpm$model_response != "SRanimals")
RMSE_mdl_gpm_sb = subset(RMSE_mdl_gpm, RMSE_mdl_gpm$model_response != "lui" &
RMSE_mdl_gpm$model_response != "all plants" &
RMSE_mdl_gpm$model_response != "all animals")